Advanced Silicon Devices – Applications and Technology Trends

Gerald Deboy
Winfried Kaindl, Uwe Kirchner, Matteo Kutschak, Eric Persson, Michael Treu

APEC 2015
Content

- Silicon devices versus GaN devices: An unbiased view on key performance indicators

- Applications: Comparison of devices in hard-switching and resonant circuits

- Summary
Comparing competing device concepts

Si Superjunction

SiC vertical drift zone

GaN lateral HEMT

- Pitch influences $R_{ON} \times A$ by improved utilization of the semiconductor volume
- Normally-on; turns into normally-off by Cascode or direct-driven concept
- Good body diode; Q_{rr} close to SiC Schottky diodes

- $R_{ON} \times A$ scales with cell pitch
- Inherently fast switching
- dv/dt scales inversely with cell pitch
- Reverse recovery charge and snappyness of body diode as major drawbacks

- Good starting point for low $R_{ON} \times A$ and Q_{OSS} due to high electron mobility
- Device capacitances are strongly influenced by the metal re-routing
- Excellent reverse behavior

- Q_{rr} close to SiC Schottky diodes
- Good starting point for low $R_{ON} \times A$ and Q_{OSS} due to high electron mobility
- Device capacitances are strongly influenced by the metal re-routing
- Excellent reverse behavior

- Q_{rr} close to SiC Schottky diodes
- Good starting point for low $R_{ON} \times A$ and Q_{OSS} due to high electron mobility
- Device capacitances are strongly influenced by the metal re-routing
- Excellent reverse behavior

- Q_{rr} close to SiC Schottky diodes
- Good starting point for low $R_{ON} \times A$ and Q_{OSS} due to high electron mobility
- Device capacitances are strongly influenced by the metal re-routing
- Excellent reverse behavior

- Q_{rr} close to SiC Schottky diodes
- Good starting point for low $R_{ON} \times A$ and Q_{OSS} due to high electron mobility
- Device capacitances are strongly influenced by the metal re-routing
- Excellent reverse behavior

- Q_{rr} close to SiC Schottky diodes
- Good starting point for low $R_{ON} \times A$ and Q_{OSS} due to high electron mobility
- Device capacitances are strongly influenced by the metal re-routing
- Excellent reverse behavior
How far can the Superjunction concept be exploited in terms of $R_{DSon} \times A$?

Still a long way until the limit is reached with Si Superjunction. Si limit potentially lower than 0.5 Ωmm^2
The output capacitance of SJ devices gets more non-linear with every generation! 190 mOhm, 600V / 650V devices
The Q_{oss} characteristic will become more and more flat! 190 mOhm, 600V / 650V devices

- GaN significantly better in absolute FoM and linearity
- trend reversed for next gen CoolMOS™
- longer delay times in resonant applications
- more rectangular voltage waveforms

Graph showing the stored charge Q_{oss} vs. Drain-Source voltage V_{DS} with different technologies and their characteristics.
E_{oss} scales with cell pitch and can be brought below the level of 1st gen GaN devices 190 mOhm, 600V / 650V devices

- FoM $R_{\text{on}} \times E_{\text{oss}}$ scales with pitch of SJ device
- Next gen CoolMOS™
40% E_{oss} reduction versus earlier SJ generation fully translates into lower turn-off losses! 190 mOhm / 600V

![Graph showing 40% reduction of switching losses and fully relieved switching up to around 10 Ohm gate resistor](image-url)
Turn-on losses are mainly determined by package and no longer benefit from silicon improvements! 190 mOhm / 600V

Turn-on losses mainly limited by parasitic package inductances

Significant improvement potential for 4pin & SMD packages
Package and switching cell optimization are mandatory to fully benefit from fast switching devices!

- **Package level**
 - Source inductance most critical
 - Solved by Kelvin contact
 - However inductance still in the commutation loop

- **Switching cell level**
 - True SMD solution allows compact, low-inductive switching cell
 - Symmetric coupling capacitances to heatsink are important from EMI point of view
 - Top side cooling optional in DSO-20

TO-247 4pin
Kelvin contact to source, decoupling of gate drive, \(E_{on} \) improvement

ThinPAK, TOLL, DSO-20
Heatsink
SMD packages will be important for SJ devices and mandatory for GaN!

- **Losses**
 - $C_{\text{heatsink TO}} = \sim 20 \, \text{pF}$
 - $E_{\text{Cpar}} = 1.6 \, \mu\text{J}$
 - $E_{\text{dev}} = 3 \, \mu\text{J}$

- **Voltage overshoot**
 - $L_{\text{par TO}} = \sim 20 \, \text{nH}$
 - $E_{\text{lpar_10A}} = 1 \, \mu\text{J}$
 - $V_{\text{overshoot}} = 100\text{V}$
 - @ $5\text{kA}/\mu\text{s}$

- $L_{\text{par}} = 3-6 \, \text{nH}$
In case of layout constraints...

Possible Ringing Circuit

- Oscillation circuit triggered by dV/dt and dI/dt
- C6: integrated Gate Resistor was introduced to damp Oscillations
- Optimization tradeoff efficiency and Layout with each new technology

Layout Sensitivity

- With C6 a integrated Gate Resistor was introduced to damp Oscillations
- Optimization tradeoff efficiency and Layout with each new technology

How to use fast switching SJ devices

- Avoid a coupling capacitance between G, D
- Place the gate resistor close to the gate
- Avoid Stray inductance in the Power Loop
- Use the mutual inductance effect (opposite current flow, forced current) in the power loop
- Add ferrite beads if necessary

dV/ dt

- Low switching losses are inevitably coupled to high dV/dt and dI/dt values both at turn-on and turn-off.

Example 190 mΩ

- Turn Off dV/dt [V/ns]
- Current ID [A]

Best performance Cost/performance segment Ease of Use optimized

Copyright © Infineon Technologies AG 2015. All rights reserved.
Content

- Silicon devices versus GaN devices: An unbiased view on key performance indicators
- Applications: Comparison of devices in hard-switching and resonant circuits
- Summary
SJ devices will prevail in classic and dual boost
GaN offers significant value in Totem Pole PFC

Classic PFC
- Less System Cost
- Less Efficiency
- High Power Density

- Superjunction (S1)
- SiC (D1)

Dual Boost PFC
- High System Cost
- High Efficiency
- Less Power Density

- Superjunction (S1, S2)
- SiC (D1, D2)

Totem Pole PFC
- Less System Cost
- High Efficiency
- High Power Density

- Superjunction (S1, S2)
- GaN, SJ, IGBT (S3, S4)

GaN enables hard commutation on internal “diode”
Best competing silicon alternative in terms of power density and efficiency: TCM PFC 3 kW, 4.5 kW/l (74W/in³)

Advantage of GaN: very high frequency operation with $R_{on} \times Q_{oss}$ and Q_g as key parameters.
Comparison of hard-switching PFC stages:
Reference: CoolMOS™ C7 / SiC G5

Reference: CCM PFC 100 kHz;
CoolMOS™ C7 65 mOhm, 4pin;
SiC G5 SBD 16A
diode rectification bridge

Output power [W]
Advantage of GaN: CCM modulation in Totem Pole PFC, close to 99% efficiency with simple half bridge solution

- 0.5% better efficiency
- half bridge Totem Pole, 65 kHz; GaN 70 mOhm
- return path: bridge rectifier (one diode only)
Advantage of GaN: > 99% efficiency with combination of SJ and GaN in Totem Pole full bridge

- 0.2% better than half bridge
- 0.4% better than IGBT solution

- GaN FB, 65 kHz
- GaN HB, 65 kHz
- IGBT FB, 65 kHz
- C7 CCM PFC, 100 kHz

full bridge Totem Pole, 65 kHz;
GaN 70 mOhm / IGBT F5 40A + 16A SiC SBD
return path: CoolMOS™ C7 35 mOhm
Advantage of GaN: > 99% efficiency across wide low range with low frequency Totem Pole PFC

- >99% efficiency from 20..70% load
- 0.1% better than 65 kHz solution

Diagram:
- GaN FB, 45 kHz
- GaN FB, 65 kHz
- GaN HB, 65 kHz
- IGBT FB, 65 kHz
- C7 CCM PFC, 100 kHz

Legend:
- full bridge Totem Pole, 45 kHz;
 GaN 70 mOhm
 return path: CoolMOS™ C7 35 mOhm
Expected performance of GaN versus latest SJ devices

- Resonant LLC DC/DC Converter (750 W, 400 kHz)

- 350V...410 V to 12 V
- Power density > 200W/in³
- Pure convection cooled

GaN expected to be 0.7% better in partial load range
Latest SJ devices will benefit from parallel cap to counterbalance non-linearity

- Same dv/dt at 1/5th of magnetizing current
- Potential path to further efficiency increase for narrow range V_n applications
Last but not least! Recent improvements in key Figure-of-Merits for low voltage MOSFETs ...

100 V MOSFET: smaller area-specific on-resistance and charges through further optimization of trench structure
... Allow new solutions by using cascaded multi-cell architectures!

- 3 kW AC/DC converter, 48V out

 Cascaded converter topology, Totem Pole + phase shift ZVS
 Efficiency target > 98%
 100 V OptiMOS™ BSC034N10NS5

- FinSix 65 W Adapter, 19V out

 Switching frequency > 10 MHz
 200 V OptiMOS™ BSZ22DN20NS3
Silicon devices versus GaN devices: An unbiased view on key performance indicators

Applications: Comparison of devices in hard-switching and resonant circuits

Summary
Summary

Superjunction devices will continue to deliver better Best-in-Class R_{DSon} devices with further improved FoM $R_{on} \times E_{oss}$

Recent improvements in low voltage devices FoMs allow to rethink classic architectures and consider the use of LV devices in HV applications

The use of good layout practice, transition to 4pin packages and finally to SMD packages will become more and more important and is mandatory for GaN

GaN offers specifically advantages both in terms of power density and efficiency at hard switching topologies with continuous use of the reverse characteristic and at very high switching frequencies in resonant converters
ENERGY EFFICIENCY
MOBILITY
SECURITY

Innovative semiconductor solutions for energy efficiency, mobility and security.