1200 V G5 CoolSiC™ Schottky Diode
New level of system efficiency and reliability

Aug. 2019
Agenda

1. Benefits of CoolSiC™ diode
2. Target applications
3. 1200 V G5 CoolSiC™ Schottky Diode portfolio
4. Additional information and support channels
5. Summary
Agenda

1. Benefits of CoolSiC™ diode
2. Target applications
3. 1200 V G5 CoolSiC™ Schottky Diode portfolio
4. Additional information and support channels
5. Summary
SiC diode benefit - less leads to more

- **SiC**: low Q_c
- **Ultrafast Si**: large Q_{rr}

Features
- No reverse recovery charge
- No forward recovery
- Purely capacitive switching

Technical benefits
- E_{rec} close to zero
- 40-50% reduction in IGBT turn-on loss
- No voltage overshoots
- Switching losses independent from load current, switching speed and temperature

Customer benefits
- 20-30% higher output power in same form factor
- Reduced EMI
- No need for snubber circuitry, reduced parts count
- High system reliability
Great system impact thanks to the also reduced IGBT turn-on losses by SiC’s low recovery losses

Up to 40-50% reduction in IGBT turn-on loss

- Decreased I_{RRM} means decreased S1 (IGBT) turn-on losses
- $E_{on} = \int_{t_1}^{t_2} V_O \cdot I_C \cdot dt$
No more pain with dynamic losses

Example:
1200 V Si IGBT + SiC diode in a boost stage topology ($f_{sw}=20$ kHz); used in e.g. EV DC charging/UPS…

SiC diode compared to Si diode, has …
... higher system efficiency,
... lower device thermals, for
... increased power density and reliability!

+0.8% efficiency enables higher output power!

15°C cooler
Switching losses, P_{sw}, in SiC and Si diodes

SiC diode

$$P_{sw} = 0.5 \cdot V_o \cdot f \cdot Q_C$$

Si diode

$$P_{sw} = 0.5 \cdot V_o \cdot f \cdot I_{RRM} \cdot t_B$$

SiC switching loss is very low compared to Si:
- Si shows 7-20 x higher P_{sw} than SiC due to I_{RRM}
- I_{RRM} and t_B values depends on diode forward current, di/dt and diode junction temperature
Low \(V_F \) with low temperature dependency give low static losses over entire load range

Zero reverse recovery charge

10 A CoolSiC™ diode matches \(V_F \) of 30 A rated Si ultrafast diode thanks to its superior efficiency

Up to 40 A diode rating
Agenda

1. Benefits of CoolSiC™ diode
2. Target applications
3. 1200 V G5 CoolSiC™ Schottky Diode portfolio
4. Additional information and support channels
5. Summary
The enabler: 1200 V G5 CoolSiC™ Schottky diode

System improvements?
› Reach new efficiency targets
› Higher power density
› Upgrade designs towards higher output power
 …while maintaining reliable system!

Easily enabled by CoolSiC™ Schottky diodes
Our components are a perfect match with customer system needs

Vienna rectifier
- SiC Schottky diode: CoolSiC™ Schottky diode 1200 V G5
- High voltage MOSFET: CoolMOS™ 650 V
- IGBT: TRENCHSTOP™ 5 650 V

Drive and control unit
- Gate driver: EiceDRIVER™
- μController: XMC1000, XMC4000

Full-bridge LLC
- SiC MOSFET: CoolSiC™ MOSFET 1200 V
- SiC Schottky diode: CoolSiC™ Schottky diode 1200 V G5

Application example: EV DC charging
Our components are a perfect match with customer system needs

MPPT
- SiC Schottky diode
 - CoolSiC™ Schottky diode 1200 V G5
- SiC MOSFET
 - CoolSiC™ MOSFET 1200 V
- IGBT
 - TRENCHSTOP™ IGBT6 1200 V

3-Level T-type inverter
- SiC MOSFET
 - CoolSiC™ MOSFET 1200 V
- IGBT
 - TRENCHSTOP™ IGBT6 1200 V
 - TRENCHSTOP™ 5 650 V

Drive and control unit
- Gate driver
 - 2EDN EiceDRIVER™
 - 1EDN EiceDRIVER™
- μController
 - XMC4000

Application example: solar string inverters
Our components are a perfect match with customer system needs

Vienna rectifier

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC Schottky diode</td>
<td>CoolSiC™ Schottky diode 1200 V G5</td>
</tr>
<tr>
<td>High voltage MOSFET</td>
<td>CoolMOS™ 650 V</td>
</tr>
<tr>
<td>IGBT</td>
<td>TRENCHSTOP™ 5 650 V</td>
</tr>
</tbody>
</table>

2-Level 3phase inverter

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBT</td>
<td>TRENCHSTOP™ IGBT6 1200 V</td>
</tr>
<tr>
<td>SiC Schottky diode</td>
<td>CoolSiC™ Schottky diode 1200 V G5</td>
</tr>
</tbody>
</table>

Drive and control unit

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate driver</td>
<td>EiceDRIVER™</td>
</tr>
<tr>
<td>μController</td>
<td>XMC1000</td>
</tr>
<tr>
<td></td>
<td>XMC4000</td>
</tr>
</tbody>
</table>

Application example: UPS

Copyright © Infineon Technologies AG 2019. All rights reserved.
Agenda

1. Benefits of CoolSiC™ diode
2. Target applications
3. 1200 V G5 CoolSiC™ Schottky Diode portfolio
4. Additional information and support channels
5. Summary
1200 V CoolSiC™ G5 Schottky Diode

<table>
<thead>
<tr>
<th>Continuous Forward Current, I_F [A]</th>
<th>TO-252-2 (DPAK real 2-leg)</th>
<th>TO-263-2 (D²PAK real 2-leg)</th>
<th>TO-220-2 (real 2-leg)</th>
<th>TO-247-3</th>
<th>TO-247-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IDM02G120C5</td>
<td>IDK02G120C5</td>
<td>IDH02G120C5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IDM05G120C5</td>
<td>IDK05G120C5</td>
<td>IDH05G120C5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>IDM08G120C5</td>
<td>IDK08G120C5</td>
<td>IDH08G120C5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>IDM10G120C5</td>
<td>IDK10G120C5</td>
<td>IDH10G120C5</td>
<td>IDW10G120C5B 1</td>
<td>IDWD10G120C5</td>
</tr>
<tr>
<td>15-16</td>
<td>IDK16G120C5</td>
<td>IDH16G120C5</td>
<td>IDW15G120C5B 1</td>
<td>IDWD15G120C5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IDK20G120C5</td>
<td>IDH20G120C5</td>
<td>IDW20G120C5B 1</td>
<td>IDWD20G120C5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>IDW30G120C5B 1</td>
<td>IDWD30G120C5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>IDW40G120C5B 1</td>
<td>IDWD40G120C5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 $"B"$ = common-cathode configuration

Copyright © Infineon Technologies AG 2019. All rights reserved.
Nomenclature

Company
$I = \text{Infineon}$

Device
$D = \text{Diode}$

Package type
$H = \text{TO220 R2L}$
$M = \text{DPAK R2L}$
$W = \text{TO247}$
$WD = \text{TO247 R2L}$
$K = \text{D²PAK R2L}$

Continuous forward current
$[A]$

G = Low thermal resistance

Breakdown voltage
$[V]/10$

Series name
$5 = \text{Generation 5}$

B = Common-cathode configuration

120
$C5 \ (B)$
Agenda

1. Benefits of CoolSiC™ diode
2. Target applications
3. 1200 V G5 CoolSiC™ Schottky Diode portfolio
4. Additional information and support channels
5. Summary
Infineon has more than 15 years of field experience in SiC.
Support

Collaterals and brochures

› Product briefs
› Selection guides
› Application brochures
› Presentations
› Press releases, Ads

Technical material

› Application notes
› Technical articles
› Simulation models
› Datasheets

Support & tools

› PCB design data
› Simulation models

Videos

› Technical videos
› Product information videos

www.infineon.com/sicdiodes1200v
Agenda

1. Benefits of CoolSiC™ diode
2. Target applications
3. 1200 V G5 CoolSiC™ Schottky Diode portfolio
4. Additional information and support channels
5. Summary
Summary – Key take aways

- By using SiC diodes, designers for solar inverters, UPS, motor drives and other industrial applications can design in a new level of system efficiency, higher power density and reliability compared with Si based solution. 1200 V CoolSiC™ Schottky diode generation 5 supports this by low-loss turn-off, low static losses and increased surge current capability.

- Infineon is in mass production for SiC diodes since the year 2001 with proven high volume capability.

CoolSiC™

New
TO-247-2
(10A to 40A)

New
TO-263-2 (D²PAK-2)
(2A to 20A)
Part of your life. Part of tomorrow.