

Power and sensing

Selection guide 2023-2024

Adam White,
Division President of
Power and Sensor Systems
电源与传感系统事业部总裁

Dear customer,

Semiconductors are essential building blocks for a climateneutral and digitalized world. Both are global challenges. Both are strong motivators for us to contribute to a better future. Never before have our technological possibilities been as great as they are today: Using technology as an enabler for decarbonization; leveraging the great potential of digitalization; innovations enabling growth and prosperity for billions of people in harmony with nature and our planet.

The great importance of semiconductors as a basic technology for entire economic sectors is now recognized everywhere. The attention paid to our industry has grown significantly. This is another strong motivation for us to continue our leadership in power and sensor systems and an offering for our customers of leading products with the highest quality and delivery reliability.

Our "Product to System"-approach is a differentiator. It goes beyond thinking in terms of technologies and products.

Derived from our system knowledge, we holistically understand our customers' problems: their applications, future roadmaps and use cases, supply chain demands, and the resulting challenges and opportunities. This way, we can offer the right solutions – from stand-alone products to system solutions or supply-security and other services.

Infineon has the broadest portfolio of ambient sensors for consumer, smart homes, IoT, and automotive. Sensors are essential for digitalization and decarbonization, for example, through reducing device and building energy consumption with the help of our radar solutions. Following the "Product to System"-approach Infineon offers optimized solutions comprising hardware, software, and algorithms.

To further expand our leadership in power systems, we are accelerating our wide bandgap offering and therefore strengthening our market position by adding significant manufacturing capacities for SiC and GaN in Kulim, Malaysia. Such innovative technologies will further lead to solutions addressing decarbonization and digitalization. These semiconductors offer added value to our customers because of better system performance in terms of efficiency, size and cost compared to silicon-based solutions. In 2024, the first wafer for our customers will leave this fab.

In order to answer the structurally growing demand for semiconductors, we are expanding our manufacturing capacities. In May 2023, we have broken ground for a new plant in Dresden, Germany, to strengthen our manufacturing basis for the semiconductors that drive decarbonization and digitalization from 2026 onwards. These analog/mixed-signal components are used in power supply systems, for example, in energy-efficient charging systems, in data centers or in applications for the Internet of Things (IoT). The interaction of power semiconductors and analog/mixed-signal components makes it possible to create particularly energy-efficient and intelligent system solutions.

This Power and Sensing Selection Guide 2023-2024 catalog is the most comprehensive consolidated overview of our products and the latest advancements in power and sensing technology designed to cater to your unique needs. I strongly believe that this digital catalog can support you to stay ahead of the competition and make your projects more successful. Please feel free to contact our talented teams to provide personal support on any product-related questions.

Let's drive decarbonization and digitalization. Together.

尊敬的客户,

低碳化和数字化是我们共同面临的全球性挑战,这些促使我们为更美好的未来做出更大贡献,而半导体则是其中重要组成部分。我们可以实现的技术潜能从未像今天这样强大,技术进步能够实现更大程度的低碳化,可充分利用数字化带来的巨大潜力,并通过创新使数十亿人与自然和地球和谐相处,实现可持续的增长和繁荣。

半导体作为一项基础技术,对整个经济的重要性已经在世界各地得到充分认可,社会对我们这个行业的关注度也在显著增加,这些不仅不断促使我们继续在电源与传感器领域保持领先地位,还是我们为客户提供具有更高质量和更高可靠性的领先产品的又一强大动力。

我们的"从产品到系统"策略在业内具有与众不同的领先优势,它不再局限于技术和产品的范畴。基于我们深厚的系统知识,我们能够对客户遇到的问题有更全面的了解,包括他们的应用、未来发展路线图和用例、供应链需求以及由此带来的挑战和机遇。通过这种方式,我们能够为客户提供更加正确的解决方案,不论是提供从独立产品到系统解决方案,还是提供安全保障和其他服务。

英飞凌能够为消费电子、智能家居、物联网和汽车等行业提供更广泛的环境传感器产品组合。传感器技术对低碳化和数字化至关重要,例如通过我们的雷达解决方案,能够进一步降低设备和建筑物能耗。通过实施"从产品到系统"策略,英飞凌可提供包括硬件、软件和算法在内的整体优化解决方案。

为了进一步扩大我们在电源系统方面的领先优势,我们正在加快向市场提供宽禁带产品,通过在马来西亚库林(Kulim,Malaysia)大幅增加SiC和GaN的产能,我们的市场领先地位将会得到进一步加强。与硅基解决方案相比,这些创新半导体技术在效率、尺寸和成本方面具有更好的系统性能,能够为我们的客户提供更多附加价值,将会成为有效应对低碳化和数字化挑战的解决方案。2024年,我们客户的第一块晶圆将会从这家晶圆厂成功出货。

为了从布局上满足不断增长的半导体需求,我们正在扩大各地产能。2023年5月,我们位于德国德累斯顿(Dresden, Germany)的一家新工厂破土动工,目标是在2026年后加强我们的半导体制造能力,推动全球的低碳化和数字化进程,这些模拟/混合信号组件可用于高能效的充电系统、数据中心或物联网(IoT)等应用的电源系统。功率半导体和模拟/混合信号组件的优化组合将极大地促进构建更高能效和更加智能的系统解决方案。

这份《2023-2024电源与传感选型手册》是我们最全面的产品综合概述,同时也体现了电源与传感技术的最新进步,能够满足您具体应用的独特需求。我坚信,该手册可以帮助您在激烈的市场竞争中保持领先地位,并使您的项目更加成功。如果您有任何与产品相关的问题,请随时联系我们优秀的团队,您将会得到满意的支持和服务。

让我们一起推动低碳化和数字化进程。

Aday White

Adam White,
Division President of Power and Sensor Systems
电源与传感系统事业部总裁

Contents

Solutions	4	Products	106
SMPS	5		
Server power supply	5	15-300 V MOSFETs	107
Telecom power supply	7		
SMPS - industrial SMPS	10	500-950 V MOSFETs	145
SMPS - PC power supply	12		
SMPS - TV power supply	13	Gate-driver ICs	179
Power over Ethernet (PoE)	16		
Fast/wireless EV-charging	18	Digital isolators	218
Wireless charging	23		
USB-C chargers and adapters	29	Discrete IGBTs and silicon power diodes	227
Condition monitoring and predictive maintenance	31		
Battery chargers for mobile appliances	34	Intelligent power switches and modules	247
Battery management systems	35		
Battery protection	35	Microcontrollers	265
Battery monitoring and control	38		
Relay replacement	41	USB-C controllers and peripherals	302
Motor control	43		
Low-voltage motor drive and control	43	Power management ICs	335
HP LV motor drive and control	46		
UPS	52	Wide bandgap semiconductors	416
Contactless power and sensing	57		
·		XENSIV™ sensors	440
Applications	59		
Appliances and consumer electronics	60	Packages	495
Major home appliances	60		
Small home appliances	65	Infineon Customized Solutions	501
Cordless power tools, cordless gardening tools and OPE	68		
Wrist-worn devices	70	The Infineon Partner Program	503
Class D audio	73		
Smart speaker	76		
Security camera and video doorbell	78		
LED lighting	80		
Plug & LEDs play solutions	82		
Smart lighting solutions	83		
Smart conferencing systems	88		
ICT solutions	90		
DC-DC power solution for data center, edge, enterprise, telecom and datacom	90		
DC-DC enterprise power solution for data processing applications	92		
Renewables - residential and commercial			
solar infrastructure & energy storage systems	93		
Solar	93		
Energy storage systems	96		
Robotics	98		
Onboard chargers for xEV appliactions	101		
Light electric vehicles and electric forklift	104		

Solutions

SMPS, battery management systems, motor control, UPS, contactless power and sensing

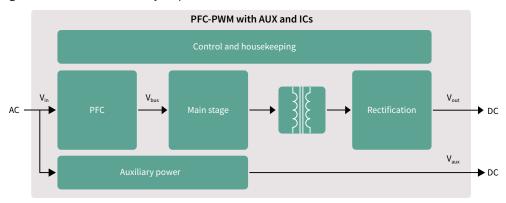
- SMPS server power supply
- SMPS telecom power supply
- SMPS industrial SMPS
- SMPS PC power supply
- SMPS TV power supply
- Power over Ethernet (PoE)
- Fast/wireless EV-charging
- Wireless charging for consumer/industrial
- USB-C chargers and adapters

- Condition monitoring and predictive maintenance
- Battery chargers for mobile appliances
- Battery protection
- Battery monitoring & control
- Relay replacement
- Low-voltage low-power motor drive and control
- HP LV motor drive and control
- UPS
- Contactless power and sensing

Server SMPS

Highly efficient server power supply

The trend in the field of data center and enterprise servers is to deliver more power per rack. Meanwhile, the rising cost of energy and environmental concerns make SMPS efficiency optimization a key requirement across the entire load range for server and data center designs. This challenging task is combined with the requirement for higher power, higher power density, and cost effectiveness.


In the PFC stage and generally in hard-switching topologies used in server applications, Infineon recommends its 600 V CoolMOS™ C7 and G7 families offering the lowest FOM R_{DS(on)}*Q_G and R_{DS(on)}*E_{oss}. These MOSFET series provide the lowest switching losses, which is necessary in fast-switching-frequency operations in high-end server SMPS. With Infineon's C7 and G7 series, the efficiency is optimized already from a very light-load operation. Available in compact SMD packages such as ThinPAK, DDPAK, and TOLL, these SJ MOSFETs offer benefits in space usage and power density. The 600 V CoolMOS™ C7 and G7 products are best used with Infineon's industry benchmark, the non-isolated EiceDRIVER™ 2EDN752x and the isolated EiceDRIVER™ Compact 1ED AF gate driver families.

Complementary to the 600 V CoolMOS™ C7 in high efficiency PFC are the CoolSiC™ Schottky diodes. The 600 V CoolMOS™ P7 family offers a good compromise between price and performance. This is valuable in both PFC and HV DC-DC stages where low Q_G and turn-off losses are important benefits, especially in case of high-switching-frequency operations and high light-load efficiency requirements.

As high power (2-6 kW and above) requires ultrahigh efficiency (96-98 percent peak) and high power density, Infineon's CoolGaN™ GIT HEMT 600 V family with totem-pole PFC controls deliver the highest efficiency and power density in the world. Using the 600 V CoolMOS™ S7 devices with active bridge circuit fulfills the Titanium® requirement at the lowest cost. Operating expenses (OPEX) and capital expenditures (CAPEX) are both reduced through simplified topologies and the power density in the server PSU is doubled.

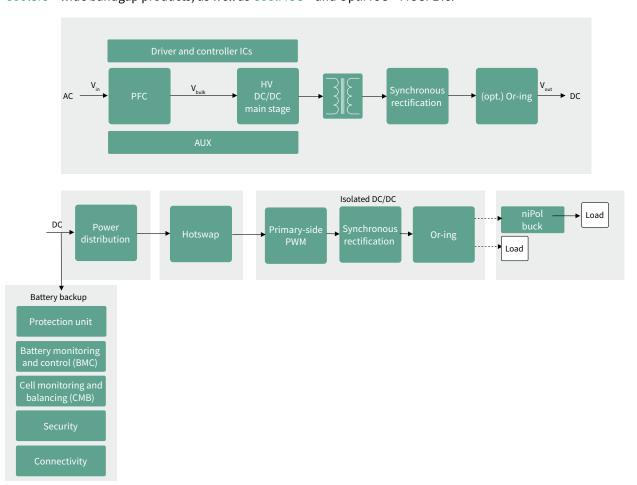
In applications with low output voltage and high output current, further efficiency improvements are enabled by the continuous reduction of on-resistance. This can be achieved by using Infineon's low-voltage OptiMOS™ MOSFET series in the synchronous rectification stage. Infineon's low-voltage products are complemented by StrongIRFET™ devices that are optimized for lower switching frequencies and highest system robustness. Infineon's EiceDRIVER™ gate-driver IC family perfectly matches the CoolGaN™ and CoolSiC™ wide-bandgap products, and CoolMOS™ and OptiMOS™ MOSFET products.

In addition, ISOFACE™ digital isolators, based on the Infineon's coreless transformer (CT) technology, provide robust galvanic isolation for safety requirements.

Recommended products

Functional block	Product category	Topology	Product family	Benefits Part FOM Part Pa
FC	High-voltage MOSFETs	CCM/interleaved PFC; TTF	600 V/650 V CoolMOS™ C7	Best FOM R _{DS(on)} *Q _G and R _{DS(on)} *E _{oss}
			650 V CoolMOS™ G7	Lowest R _{DS(on)} per package
	High voltage CaN	Totom note DEC	600 V CoolMOS™ S7	Low dependency of switching losses from R
	High-voltage GaN High-voltage SiC MOSFET	Totem-pole PFC Totem-pole PFC	CoolGaN™ GIT HEMT 600 V CoolSiC™ 650 V	Enable the highest efficiency and highest power density Highest power handling capability
	Thigh voltage sie most Et	Totalii pote i i e	Coolsic 030 V	Highest temperature handling
	SiC diodes	CCM/interleaved PFC	CoolSiC™ Schottky diode 650 V G5	Low FOM V _c *Q _c
	Control ICs	CCM PFC ICs	ICE3PCS0xG	Ease of use
	GaN gate driver ICs	Totem-pole PFC	EiceDRIVER™ 1EDF5673F	Negative V _{cc} voltage to avoid false triggering
			and 1EDF5673K	Differential output for GIT technology based GaN driving
	SiC MOSFET gate driver ICs	Totem-pole PFC	EiceDRIVER™ 2EDF9275F/1EDB9275F*	37 ns/45 ns typical propagation delay time Functional isolation 1.5 kV
	Gate driver ICs	Interleaved PFC	EiceDRIVER™ 2EDN852x/1EDN8511B	Source and sink driver capability:
			EiceDRIVER™ 1EDN8550B for Kelvin-source CoolMOS™	- 5 A for 2EDN - 4 A/8 A for 1EDN 17 ns (45 ns for 1EDN8550B) propagation delay precision for fast MOSFET and GaN switching
			EiceDRIVER™ low side: 2ED24427N01F	(-)10 V input robustness (1EDN8550B has true differential inputs for ground-shift robustness CMR up to ±150 V) Dual-channel, 10 A low-side driver in DSO-8 with power-pad
				Integrated UVLO protection and enable (EN) function High frequency, high power operation with BOM savings
		Totem-pole PFC	EiceDRIVER™ level-shift:	650 V half-bridge SOI driver with integrated bootstrap diode
			2ED2181S06F, 2ED21814S06J	Superior –VS transient voltage immunity High frequency switching (500 kHz)
			EiceDRIVER™ level-shift: IRS2186S, IRS21864S	4 A/4 A high- and low-side gate driver
			EiceDRIVER™ Compact: 1EDI60N12AF, 1ED3124MU12F	Isolated gate driver, up to 14 A, 100 ns propagation delay
		Boost PFC	EiceDRIVER™ low side: 1ED44173N01B	Single-channel with fast, accurate (± 5%), integrated overcurrent protection (OCP)
lain stage	High-voltage MOSFETs	ITTF	600 V CoolMOS™ C7/P6	Fast switching speed for improved efficiency and thermals
				Low gate charge for enhanced light-load efficiency and low power consumption at no-load condition Optimized V _{cs} threshold for lower turn-off losses
				Rugged body diode which prevents device failure during hard commutation
		LLC, half-bridge below 1 kW	600 V CoolMOS™ P7, CFD7	Low turn-off losses
				Low Q _{oss}
				Low Q _c
		LLC, phase-shift full-bridge	600 V CoolMOS™ CFD7,	Fast and rugged body diode
		below 1 kW	650 V CoolMOS™ CFD2	Optimized low Q _c and soft commutation behavior to reach highest effciency
		7VC DC ED LLC TTE	CEO V TRENCHSTORM CRT FF	Highest reliability for 650 V _{DS}
	Control ICs	ZVS PS FB, LLC, TTF HB LLC ICs	650 V TRENCHSTOP™ IGBT F5 ICE1HS01G-1	Improved ruggedness and high efficiency in low inductance designs High efficiency and low EMI
	CONTROLICS	LID EEC ICS	ICE1HS01G-1 ICE2HS01G	Tight endency and low EMI
	Gate driver ICs	LLC, ZVS	EiceDRIVER™	37 ns typical propagation delay time
	Julia 41.1701 100	phase-shift full-bridge, TTF	2EDS8165H, 2EDS8265H	Reinforced (safe) isolation 6 kV, CMTI > 150 V/ns
		phase sime ran bridge, i ii	EiceDRIVER™ Compact:	Isolated gate driver, up to 14 A, 100 ns propagation delay
			1EDI60N12AF, 1ED3124MU12F	
			EiceDRIVER™ 2EDN8524F	5 A source and sink driver capability
			with pulse transformer	17 ns propagation delay precision for fast MOSFET and GaN switching
			EiceDRIVER™ low side: 2ED24427N01F	Dual-channel, 10 A low-side driver in DSO-8 with power-pad
			with pulse transformer	Integrated UVLO protection and enable (EN) function
				High frequency, high power operation with BOM savings
			EiceDRIVER™ level-shift: 2ED2181S06F,	650 V half-bridge SOI driver with integrated bootstrap diode
			2ED21814S06J	Superior –VS transient voltage immunity
				High frequency switching (500 kHz)
	1	LID LLC !	EiceDRIVER™ level-shift: IRS2186S, IRS21864S	
ychronous	Low-voltage MOSFETs	HB LLC and center tap	OptiMOS™ 40 V	High efficiency over whole load range, layout tolerance
ectification		ITTF ZVS PS FB and center tap	OptiMOS™ 60 V OptiMOS™ 80 V	High efficiency, low thermals, low V _{DS} overshoot High efficiency over whole load range, low V _{DS} overshoot and oscillations
	Gate driver ICs	Synchronous rectification	EiceDRIVER™	EiceDRIVER™ 2EDF72x5K
		.,	2EDF7275K/2EDF7235K	Functional isolation up to 650 V _{DC} channel-to-channel isolation
			2EDL811x/2EDL801x	Compact solution available in LGA-13 5x5 mm package
			for bridge rectifier	EiceDRIVER™ 2EDL8x1x
			3.1460.000.101	Level-shift half-bridge gate driver up to 120 V isolation
			Low side: EiceDRIVER™	5 A source and sink driver capability for 2EDN (4A/8A for 1EDN)
			2EDN75xx/2EDN85xx,	17/19 ns propagation delay precision for fast MOSFET and GaN switching
			1EDN751x/1EDN8511B	(-)10 V input robustness
			EiceDRIVER™ low side: 2ED24427N01F	Dual-channel, 10 A low-side driver in DSO-8 with power-pad
				Integrated UVLO protection and enable (EN) function
				High frequency, high power operation with BOM savings
	T. Control of the Con		EiceDRIVER™ level-shift:	650 V half-bridge SOI driver with integrated bootstrap diode
			2ED2181S06F, 2ED21814S06J	Superior –VS transient voltage immunity
			22321010001,223210110000	the set and according to the set of COO Letter)
				high frequency switching (500 kHz)
			EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B	
uxiliary power supply	Control ICs	QR/FF flyback CoolSET™	EiceDRIVER™ level-shift: IRS2186S, IRS21864S	4 A/4 A high- and low-side gate driver
uxiliary power supply	Control ICs	QR/FF flyback CoolSET™	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B	4 Å/4 A high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V
uxiliary power supply	Control ICs	QR/FF flyback CoolSET™	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B 700 V - ICE5xR0070xx	4 Å/4 Å high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V Low standby power, high efficiency and robustness
	Control ICs Digital isolator	QR/FF flyback CoolSET™	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B 700 V - ICE5xR0070xx 800 V - ICE5xR0080AG	4 Å/4 A high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V Low standby power, high efficiency and robustness An integrated 700 V/800 V superjunction power MOSFET with avalanche capability
,, ,,,		QR/FF flyback CoolSET™	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B 700 V - ICE5xR0070xx 800 V - ICE5xR0080AG 800 V - ICE5QRxx80BG	4 Å/4 Å high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V Low standby power, high efficiency and robustness An integrated 700 V/800 V superjunction power MOSFET with avalanche capability Burst mode entry/exit to optimize standby power at different low load conditions
		QR/FF flyback CoolSET™	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B 700 V - ICE5xR0070xx 800 V - ICE5xR0080AG 800 V - ICE5QRxx80BG ISOFACE 2DIB0400F;	4 Å/4 A high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V Low standby power, high efficiency and robustness An integrated 700 V/800 V superjunction power MOSFET with avalanche capability Burst mode entry/exit to optimize standby power at different low load conditions 2+0 digital isolator with TTL input threshold and fail-safe default low output state
solation		QR/FF flyback CoolSET™ -	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B 700 V - ICE5xR0070xx 800 V - ICE5xR0080AG 800 V - ICE5QRxx80BG ISOFACE 2DIB0400F;	4 Å/4 A high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V Low standby power, high efficiency and robustness An integrated 700 V/800 V superjunction power MOSFET with avalanche capability Burst mode entry/exit to optimize standby power at different low load conditions 2+0 digital isolator with TTL input threshold and fail-safe default low output state 3 kV _{RMS} isolation voltage (UL 1577) in DSO-8 package High common mode transient immunity > 100 kV/us Flexibility, HR PWM, digital communication
Auxiliary power supply Isolation Housekeeping	Digital isolator	QR/FF flyback CoolSET™ -	EiceDRIVER™ level-shift: IRS2186S, IRS21864S EiceDRIVER™ 1EDNx550B 700 V - ICE5xR0070xx 800 V - ICE5xR0080AG 800 V - ICE5QRxx80BG ISOFACE 2DIB0400F; ISOFACE 2DIB0410F	4 Å/4 A high- and low-side gate driver True differential inputs for ground shift robustness CMR up to ±150 V Low standby power, high efficiency and robustness An integrated 700 V/800 V superjunction power MOSFET with avalanche capability Burst mode entry/exit to optimize standby power at different low load conditions 2+0 digital isolator with TTL input threshold and fail-safe default low output state 3 kV _{RMS} isolation voltage (UL 1577) in DSO-8 package High common mode transient immunity > 100 kV/us

^{*} Coming soon


SMPS

Full system solution for telecom power supply

The ever-increasing data consumption, coupled with new levels of virtualization and complexity of the 5G telecom infrastructure, is bringing its demanding requirements into the telecom power sector. Semiconductor technologies are key for enabling telecom SMPS performance.

The remarkable improvements in telecom SMPS performance in the past resulted from the dramatic reduction of the on-resistance achieved in high-voltage MOSFETs, thanks to the revolutionary superjunction principle introduced by Infineon at the end of the nineties with its CoolMOS™ series. To achieve today's demanding energy efficiency targets, synchronous rectification has become popular to take advantage of the unique properties of medium-voltage power MOSFETs. Infineon's low- and medium-voltage OptiMOS™ MOSFET product family – which has gained terrific popularity in DC-DC brick solutions – coupled with gate-driver ICs and microcontrollers efficiently powers the BBUs, RRUs and AAUs of macro and small cells.

Infineon's wide bandgap technologies, such as the CoolGaN™ GIT HEMT 600 V (gallium-nitride-based) and the CoolSiC™ 650 V (silicon-carbide-based) for the primary side and the upcoming CoolGaN™ SG HEMT 100 V/200 V* complement the wide portfolio of silicon-based switches, enabling higher system and electrical conversion efficiency at an attractive system costs. Infineon's EiceDRIVER™ gate driver IC family perfectly matches the CoolGaN™ and CoolSiC™ wide bandgap products, as well as CoolMOS™ and OptiMOS™ MOSFETs.

Solutions

Recommended products

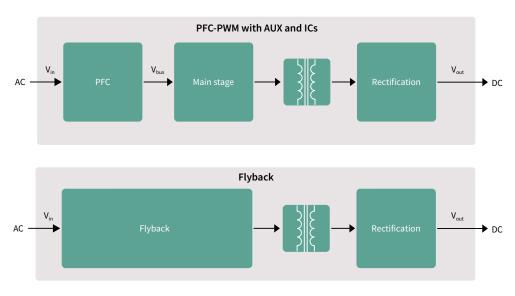
Functional block		Topology	Product family	Benefits — Rest FOM D. *O. and D. *Foos
-C	High-voltage MOSFETs	Classic CCM/interleaved PFC/Dual-boost PFC	600 V/650 V CoolMOS™ C7	- Best FOM R _{DS(on)} *Q _G and R _{DS(on)} *Eoss
				Lowest R _{DS(m)} per package Low dependency of switching losses form R
			600 V CoolMOS™ P7	- Low turn-off losses
				- Low Q _{oss}
				- Low Q _G
			600 V CoolMOS™ S7	The lowest R _{DS(on)} MOSFET for line frequency rectification
	High-voltage GaN	CCM totem-pole PFC	CoolGaN™ 600 V	Switching at high frequencies (> Si)
	High-voltage SiC MOSFET	CCM totem-pole PFC	CoolSiC™ 650 V	Enables high power density Enable very high efficiency with ease of use
	SiC diodes	Classic CCM/interleaved PFC/Dual-boost PFC	CoolSiC™ Schottky diode 650 V G6	, , ,
		<u>'</u>		- Low FOM V _F * Q _C
	Control ICs	CCM PFC ICs	ICE3PCS0xG	- High PFC and low THD
	GaN gate-driver ICs	Totem-pole PFC	EiceDRIVER™ 2EDF9275F/1EDB9275F	Negative V _{GS} voltage to avoid false triggering GaN driving
				- Differential output for GIT technology based
	SiC MOSFET gate-driver ICs	Totem-pole PFC	EiceDRIVER™ 2EDF9275F/1EDB9275F	− CMTI > 200 V/ns − 37 ns/45 ns typical propagation delay time
				- Functional isolation 1.5 kV
				- CMTI > 150 V/ns
	Gate-driver ICs	Totem-pole PFC	EiceDRIVER™ 2EDFx275F/1EDBx275F	- 37 ns/45 ns typical propagation delay time
				- Functional isolation 1.5 kV - CMTI > 150 V/ns
			EiceDRIVER™ Compact: 1EDI60N12AF, 1ED3124MU12F	- Isolated gate driver, up to 14 A, 100 ns propagation delay
			EiceDRIVER™ level-shift: 2ED2304S06F, 2EDL23N06PJ, 2ED2182S06F	Integrated bootstrap diode using Infineon SOI technology, low level-shift loss
			Ereconstructive teres of the Ereconstruction	Excellent ruggedness against negative transient voltages on VS pin
		Interleaved dual-boost PFC	EiceDRIVER™ 2EDN852x/1EDN851x	- 5 A source and sink driver capability for 2EDN
				- 8 A sink and 4 A source driver capability for 1EDN
			EiceDRIVER™ 1EDN8550B for Kelvin-source CoolMOS™	 17 ns propagation delay precision for fast MOSFET and GaN switching 8 A sink and 4 A source driver capability
			ELECTRICE TENTOSCODIOI RECVIII-SOUICE COOLWIOS	- 45 ns for propagation delay precision for fast MOSFET and GaN switching
				True differential inputs for ground shift robustness (CMR up to ±150 V)
			EiceDRIVER™ low side: 2ED24427N01F	 Dual-channel, 10 A low-side gate driver in PG-DSO-8 package with power-pad
/DC-DC main stag	e High-voltage MOSFETs	TTF, ITTF	600 V CoolMOS™ C7/P7	UVLO and enable (EN), high frequency, high power operation with BOM savings Fast-switching speed for improved efficiency and thermals
, DC-DC Main stag	ingii-voltage MOSELIS	,	000 + 0000000 01/11	Low gate charge for enhanced light load efficiency
				Optimized V _{cc} threshold for lower turn-off losses
				Rugged body diode which prevents device failure during hard commutation
		HB/FB LLC	600 V CoolMOS™ P7	- Low turn-off losses
				- Low Q _{oss}
		HB/FB LLC, ZVS PSFB	600 V, 650 V CoolMOS™ CFD7	Low Q _c Best-in-class Q_ and trr level
			<u> </u>	— Significantly reduced Q _e previous CoolMOS™ fast-body-diode series improved efficiency over
	Gate-driver ICs	HB LLC, ZVS phase-shift full-bridge	EiceDRIVER™ 2EDS8x65H	- 37 ns typical propagation delay time
				Reinforced isolation 8 kVpk
			EiceDRIVER™ 2EDN8524F with pulse transformer	CMTI > 150 V/ns 5 A source and sink driver capability
			, , , , , , , , , , , , , , , , , , , ,	- 17 ns propagation delay precision for fast MOSFET and GaN switching
				- (-)10 V input robustness
			EiceDRIVER™ Compact: 1EDI60N12AF, 1ED3124MU12F	- Isolated gate driver, up to 14 A, 100 ns propagation delay
			EiceDRIVER™ level-shift: 2ED2304S06F, 2EDL23N06PJ, 2ED2182S06F	Integrated bootstrap diode using Infineon SOI technology, low level-shift loss
	Control ICs	HBLIC	ICETHEOTE 1 ICETHEOTE	Excellent ruggedness against negative transient voltages on VS pin Wich officious and law FMI
	Control ICs	HB LLC	ICE1HS01G-1, ICE2HS01G	High efficiency and low EMI
	GaN gate-driver ICs	LLC, ZVS phase-shift full-bridge	EiceDRIVER™ 1EDS5663H	Negative V _{cs} voltage to avoid false triggering GaN driving
				Differential output for GIT technology based CMTI > 200 V/ns
	High-voltage GaN	LLC, ZVS phase-shift full-bridge	CoolGaN™ GIT HEMT 600 V	Enables the highest efficiency and highest power density
nchronous recti-	Low-voltage MOSFETs	Synchronous rectification MOSFET	OptiMOS™ 80-200 V	− Industry's lowest FOM (R _{nsion} , *Q _c) leading to high efficiency at good price/performance
cation		-,		Low voltage overshoots enabling easy design-in
				- Industry's lowest R _{DS(on)}
				Highest system efficiency and power density
				Outstanding quality and reliability
	Gate-driver ICs	Synchronous rectification	EiceDRIVER™ 2EDE7275K	Reduces the need for a snubber circuit Functional isolation up to 650 VDC channel-to-channel isolation
	Sate universes	Synchronous recemendant	ELECTRICAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE	Compact solution available in LGA-13 5x5 mm package
			EiceDRIVER™ 2EDL811x/2EDL801x	Level-shift half-bridge gate driver up to 120 V isolation
			Low side: EiceDRIVER™ 2EDN75xx/2EDN85xx, 1EDN751x/1EDN851x	- 5 A source and sink driver capability for 2EDN
				- 8 A sink and 4 A source driver capability for 1EDN
				- 17/19 ns propagation delay precision for fast MOSFET and GaN switching
			EiceDRIVER™ level-shift: IRS2186S, IRS21864S	(-)10 V input robustness 4 A/4 A high- and low-side gate driver
			EiceDRIVER™ low side: 2ED24427N01F	— Dual-channel, 10 A low-side gate driver in PG-DSO-8 package with power-pad
ixiliary power	Control ICs	5th generation QR/FF flyback CoolSET™	QR 800 V - ICE5QRxx80BG FF 800 V - ICE5xRxx80AG	UVLO and enable (EN), high frequency, high power operation with BOM savings Quasi-resonant-switching operation for high efficiency and low EMI signature
pply				Fixed-frequency-switching operation for ease of design – 100 KHz and 125 KHz
				Fast and robust start-up with cascode configuration
				- Robust protection with adjustable line input overvoltage protection, V _{cc} and CS pin short-to-ground protection
				Optimized light-load efficiency with selectable burst mode entry/exit profile
				 Frequency reduction for mid- and light-load condition to reduce switching losses and increase efficiency Direct feedback and regulation with integrated error amplifier for non-isolated output
				— Direct reedback and regulation with integrated error amplifier for non-isolated output — High power delivery of up to 42 W with 800 V CoolSET™ in heatsink-free SMD package
ommunication	4-channels digital isolator	Data transmission between the primary side	ISOFACE™ 4DIR1400H	- SOIC-16 WB package
	-	and secondary side		- Data rates up to 40 Mbps
				Operating supply voltage: 2.7 V – 6.5 V (abs. max 7.5 V)
				- VISO of 5700 V _{RMS} (UL1577, VDE 0884-17)
ousekeeping	Microcontrollers	-	XMC1xxx	CMTI: 100 kV/µs (min) Flexibility, HR PWM, digital communication
ousekeehiiig	microcontrollers	-	VINCTVVV	Reviolity, RRPWM, digital communication Arm®-based standard MCU family and wide family
wer conversion	Microcontrollers	-	XMC1xxx, XMC4xxx	Flexibility, HR PWM, digital communication
1 . 1555	 		VADDATAG	- Arm®-based standard MCU family and wide family
olated DC-DC	Microcontrollers	-	XDPP1100	Optimized for 48 V telecom isolated conversion
				Highly flexible digital core State-of-the-art dedicated AFE
				- State-of-the-art dedicated AFE - State-machine based fast loop control
				State-machine based last toop control Pre-programmed peripherals in ROM
				Negligible internal power consumption

Recommended products

-ing	Product category	Topology Or-ing MOSFET	Product family OptiMOS™ 60-200 V	Benefits — Industry's lowest FOM (R *O) leading to high efficiency at good price/performance
ing	Low-voltage MOSFETs	Or-ING MUSEE I	ОµимОS 60-200 V	- Industry's lowest FOM (R _{DS(on)} *Q _G) leading to high efficiency at good price/performance - Low-voltage overshoots enabling easy design-in
ttery manage-	Low- and medium-voltage	Back-to-back disconnect	OptiMOS™ 60-200 V	- Industry's lowest Low R
nt and protection			OptiMOS™ 80-200 V	- Wide SOA
			StrongIRFET™ 80-200 V	Perfect match of robust and excellent price/performance
	Gate-driver ICs	protection switch drivers	EiceDRIVERTM	$-$ Faster reaction time (\sim 10 μ s)
				Integrated bidirectional high or low-side current sense amplifiers
				High current source or sink support (1 A pull down, 0.3 A pull up)
				Robust against under/overvoltage in the board-net Flexible configuration of protection features plus accessibility of diagnosis information via SPI
	Microcontroller	Battery Monitoring and controlling	PSoC™ 4	- 32-bit MCU Subsystem CPU
	Microcontroller Battery Monitoring and controlling		1300 4	52-bit Hz Arm® Cortex® M0+
				Flash: Up to 256 kB flash
				- RAM: 32 kB SRAM
				— Up to 2 CAN serial channels
			0.0000000000000000000000000000000000000	- USB/Up to 4
	Memory	Datalogging	SEMPER™ EXCELON™	- Energy efficient - High density
			EXCELON	Reliable data logging memories
	Current sensing	Current measurement	XENSIV™ TLI4971	- Ultralow-power loss due to minimal resistance of the current rail
	8			Reliable current measurement over the lifetime (no re-calibration)
				Functional isolation for high-voltage application design
				Easy and compact package allows high power density
	Battery management IC	Cell monitoring and Balancing	TLE9012	Robust communication without the need for transformers or common-mode chokes
				Best-in-class voltage measurement accuracy even after soldering thanks to stress sensor technology
		1		 Integrated diagnosis easing functional safety design Integrated UART communication for systems with a microcontroller on local ground
	Small signal N/P channel	Cell balancing	OptiMOS™ 20-30 V	— Wide range of packages
	MOSFET		StrongIRFET™ 20-30 V	Suitable for space constraints between 0.5 A to 2.5 A Suitable equalizing current PCB footprint
(- Suitable equalizing current PCB lootprint - Compact solution with smalle
	Communication	Wired and wireless interface	Lin CAN	- Low quiescent current
				- ISO11898 compliant
				- Excellent EMI performance
				- Standby/sleep mode
				Wake and failure detection
			1100 071	- High ESD robustness
			AIROC™	- Bluetooth®
S				 ─ Bluetooth® Low Energy ─ Wi-Fi®
				- Wi-Fi® and Bluetooth® combos
				Reduced power consumption, including very low sleep
	Security	-	OPTIGA™ Authenticate S	High-end CC EAL6+ (high) certified security controller: ECC, RSA®, AES, SHA, TLS, HKDF
				- Full turnkey solution traction layer
				- Host code with an abstraction layer
	B: :: 11 1 .		ICOEACETH D I. I.	Customer-specific certification provided for zero-touch provisioning
	Digital Isolator	Isolators	ISOFACE™ Digital Isolators	− 2/4-channel digital isolators− Max. supply voltage: 6.5 V
				Benchmark highest CMTI: 100 kV/us min.
				- CMOS and TTL input thresholds
				Wide operating temperature range
				- Low power consumption
				- Accurate timing performance
lated DC-DC	Microcontrollers		XDP™	Optimized for 48 V telecom isolated conversion
				Highly flexible digital core AFE State-of-the-art dedicated control
				State-machine-based fast loop ROM State-machine-based fast loop ROM
				- Pre-programmed peripherals in
				Negligible internal power consumption
				- Industry smallest digital power controller
	Medium and Low-voltage	Primary-side PWM MOSFETs	OptiMOS™ 80-200 V	- Industry's lowest R _{DS(on)} and power density
	MOSFETs		StrongIRFET™ 80-200 V	Highest system efficiency reliability
		0 1 100 11 1100	Small-signal MOSFETs 60-200 V	Outstanding quality and circuit Reduces the need for a snubber
		Synchronous-rectification MOSFET	OptiMOS™ 40-100 V	reduces the need for a Shubber
		Or-ing MOSFET	StrongIRFET™ 40-100 V	
		OI-IIIg MOSEL	OptiMOS™ 25-30 V StrongIRFET™ 25-30 V	
		Active snubber	OptiMOS™ power MOSFET 60 V/100 V/150 V	
	Gate-driver ICs	Primary side	EiceDRIVER™ 2EDF7275K	− Functional isolation up to 650 V _p , channel-to-channel isolation
		,a., side		Compact solution available in LGA-13 5x5 mm package
			EiceDRIVER™ 2EDL811x/2EDL801x	- Functional isolation up to 650 V _m channel-to-channel isolation
				- Compact solution available in LGA-13 5x5 mm package
		Synchronous rectification	EiceDRIVER™ 2EDF7275K	- Functional isolation up to 650 V _{DC} channel-to-channel isolation
				- Compact solution available in LGA-13 5x5 mm package
			EiceDRIVER™ 2EDL811x/2EDL801x	- Level-shift half-bridge gate driver up to 120 V isolation
			Low side: EiceDRIVER™	- 5 A Source and Sink driver capability for 2EDN
			2EDN75xx/2EDN85xx, 1EDN751x/1EDN851x	- 8 A sink and 4 A source driver capability for 1EDN and GaN switching
			, , , , , , , , , , , , , , , , , , , ,	- 17/19 ns propagation delay precision for fast MOSFET (-)10 V input robustness
			EiceDRIVER™ level-shift: IRS2186S, IRS21864S	- 4 A/4 A high- and low-side gate driver
			EiceDRIVER™ low side: 2ED24427N01F	 Dual-channel, 10 A low-side gate driver in PG-DSO-8 package with power-pad UVLO and Enable (EN), high frequency, high power operati with BOM savings
	Digital Isolator	Isolators	ISOFACE™ Digital Isolators	- 2/4-channel digital isolators
	Digital isolatul	isotators	ISOLACE DIGITAL ISOLATORS	Max. supply voltage: 6.5 V
				Bas. sapply vottage: 0.5 V Benchmark highest CMTI: 100 kV/us min.
				CMOS and TTL input thresholds Wide operating temperature range
				- Low power consumption

Click here for more information on ICT solutions.

Industrial SMPS


Industrial SMPS

Reliable and robust

Industrial SMPS powers a wide range of devices from industrial automation robots to medical equipment and vending machines. With the expansion of the Internet of Things (IoT) and the adoption of Industry 4.0, the demand for industrial SMPS is on the rise. Industrial switch-mode power supplies (SMPS) are mostly operated in outdoor environments without air conditioning or systems without fans. Such operating conditions make reliability and robustness the key requirements for the industrial SMPS, especially when it comes to high-temperature operations, outdoor use, line surges, load jumps, short circuit, and so on. In addition to quality, reliable supply and long-term product availability are also some of the key customer concerns. Industrial SMPS life cycle goes beyond 10 years and it takes 3 to 5 years to ramp. Hence, not only do customers need high-quality products, but also stable and reliable supply over the industrial SMPS life cycle (10 to 20 years).

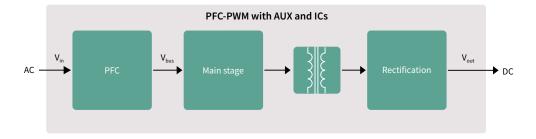
Infineon meets all of these requirements with its CoolMOS™, OptiMOS™, StrongIRFET™ and EiceDRIVER™ gate-driver product families. Infineon's products offer the best price/performance ratio along with the highest efficiency and reliability. For new designs, we recommend our CoolMOS™ P7 600 V/800 V/950 V parts, as well as the latest generation of OptiMOS™ 30 V/40 V/60 V/80 V/100 V/150 V and 250 V products. For high-power designs with convection cooling and high power supplies, our CoolMOS™ S7 in active bridge configuration will reduce the power losses to enable fanless operation. In addition, the ISOFACE™ digital isolators, based on the Infineon's coreless transformer (CT) technology, provide robust galvanic isolation for safety requirements.

Application diagrams

Product portfolio

Functional block	Product category	Topology	Technology	Benefits
PFC/Main stage	High-voltage MOSFETs	CrCM/DCM PFC	600 V/800 V/950 V CoolMOS™ P7	Best thermal performance Rugged body diode ESD enhancement for production line Wide R _{DS(on)} portfolio including both THD and SMD packages
			600 V CoolMOS™ P6	Fast-switching speed for improved efficiency and thermals Low gate charge for enhanced light-load efficiency and low power consumption at no load condition Optimized V _{cs} threshold for low turn-off losses
			600 V CoolMOS™ S7	PFC efficiency boost ~1% Lowest R _{DS(on)} in SMD packages
	High-voltage SiC MOSFET	Totem-pole PFC	CoolSiC™ 650 V	Highest power handling Best thermal capability
	Boost diodes	DCM PFC CCM PFC	650 V EC7 650 V EC7	Improved diode softness and humidity rugged. Allows a more reliable design with lower failure rates
	Control ICs	CCM PFC ICs	ICE3PCS0xG	High PFC and low THD
Main stage	Control ICs	HB LLC ICs	650 V – ICE1HS01G-1/ICE2HS01G	High efficiency and low EMI
Synchronous rectification	Medium-voltage diodes	HB LLC + center-tap	OptiMOS™ 30 V/40 V/60 V/80 V/150 V/250 V	Optimized cost/performance and low thermals
PFC/Main stage/ Synchronous rectification	Gate driver ICs	Boost PFC	EiceDRIVER™ low side: 1ED44173N01B	Single-channel with fast, accurate (± 5%), integrated over- current protection (OCP)
		Totem-pole PFC/ HB LLC	EiceDRIVER™ Compact: 1EDI60N12AF, 1ED3124MU12F	Isolated gate driver, up to 14 A, 100 ns propagation delay
			EiceDRIVER™ level-shift: 2ED2181S06F, 2ED21814S06J	650 V half-bridge SOI driver with integrated bootstrap diode Superior –VS transient voltage immunity High-frequency switching (500 kHz)
			EiceDRIVER™ level-shift: IRS2186S, IRS21864S	4 A/4 A high- and low-side gate driver
		Interleaved PFC/ HB LLC	EiceDRIVER™ low side: 2ED24427N01F	Dual-channel, 10 A low-side driver in DSO-8 with power-pad Integrated UVLO protection and enable (EN) function High frequency, high power operation with BOM savings
Flyback	Control ICs	QR flyback	ICE5QSBG	High efficiency and low standby power
	High-voltage MOSFET	Flyback	700 V/800 V CoolMOS™ P7	Best price-competitive CoolMOS™ family Lower switching losses versus standard MOSFET Controlled dV/dt and di/dt for better EMI
Auxiliary power supply	Control ICs	QR/FF flyback CoolSET™	700 V/800 V ICE5QRxx70/80A(Z)(G)	Low standby power, high efficiency and robustness
Isolation	Digital isolator		2DIB0410F	2+0 digital isolator with TTL input threshold and fail-safe default low output state 3 kV _{RMS} isolation voltage (UL 1577) in DSO-8 package High common mode transient immunity > 100 kV/μs

SMPS


PC pow

More efficient PC power supply

The PC power market is divided into high-end gaming PC and better cost-performance sectors to achieve a better price/performance for desktop SMPS. The PC OEMs are implementing the desktop SMPS by removing the AUX power block to save the cost of having a flyback circuit.

Due to the new structure of the CPU and GPU, higher and higher peak power is needed (1.5 to 2 times higher than normal power). In addition to the needed CCM PFC, Infineon 600 V CoolMOS™ P7 and OptiMOS™ 40 V/60 V offer the best price/performance and reliability to meet the design requirements, as well as to achieve the highest efficiency enabled by semiconductors available in the market.

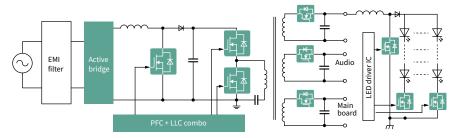
For CPU and GPU power-hungry gaming PCs, the ICE3PCS0xG CCM PFC IC provides high efficiency over the whole load range and low count of external components, besides that, the ICE3PCS0xG CCM PFC IC offers fast output dynamic response during load jump. In addition to PGFC IC, Infineon's LLC IC ICE2HS01G support customers to minimize the external component count.

Recommended products

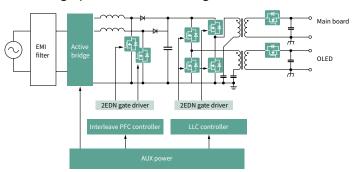
Functional block	Product category	Topology	Technology	Benefits
PFC/main stage	PFC/main stage High voltage MOSFETs		600 V CoolMOS™ P7	Best thermal performance Rugged body diode ESD enhancement for production line Wide R _{DS(on)} portfolio including both THD and SMD packages
			600 V CoolMOS™ P6	Fast switching speed for improved efficiency and thermals Low gate charge for enhanced light-load efficiency and low power consumption at no load condition Optimized V _{cs} threshold for low turn-off losses
			500 V CoolMOS™ CE	Optimized cost/performance Lower transition losses versus standard MOSFET
	Boost diodes	DCM PFC	650 V EC7	Improved diode softness and humidity rugged. Allows a more reliable design with lower failure rates
		CCM/interleaved PFC	CoolSiC™ Schottky diode 650 V G6	Low FOM V _F *Q _G
	Control ICs	CCM PFC ICs	ICE3PCS0xG	High PFC and low THD
Main stage	Control ICs	HB LLC ICs	650 V - ICE1HS01G-1/ICE2HS01G	High efficiency and low EMI
Synchronous	Medium voltage diodes	HB LLC + center-tap	OptiMOS™ 40 V	Optimized cost/performance and low thermals
rectification			OptiMOS™ 60 V	Layout tolerance and low thermals

SMPS

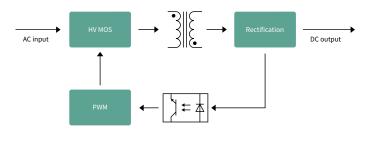
Diversify TV power supply with cost, performance, and ease of use

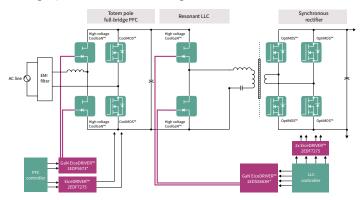

In addition to their outstanding image quality, new generation TVs gain attention for their user interface, low power consumption and slim design. This requires the power supply unit (PSU) either to keep a low profile to maintain the slim appearance of a TV and a low thermal dissipation image or to have an external adapter. In addition, a growing number of TV manufacturers use external adapters to deliver DC power to the TV. Infineon products based on digital power technology have been designed to meet the challenges of efficiency and standby power requirements for the IoT-enabled TVs (both embedded PSU and adapter).

Thanks to digital power, our customers can reduce the number of TV power supplies by easily and flexibly adapting the digital IC parameters to different TV and screen models. Infineon's digital-based flyback controllers are ideal for low-power adapters for TVs and monitors. With digital soft switching, the adapter power density can significantly be improved.


The 600 V CoolMOS™ P7 power MOSFET series has been developed to cover a broad spectrum of different applications where excellent performance and perfect ease of use are required. The rugged body diode enables the use of hardswitching topologies, such as power factor correction (PFC), boost, and two-transistor forward (TTF) and resonant topologies such as LLC, where the technologies lead to high efficiency in both hard-switching and resonant circuits.

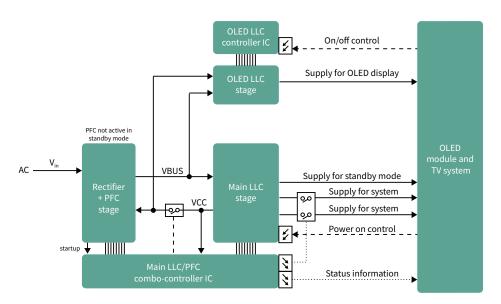
For higher on-state resistance $(R_{DS(on)})$ classes, a new feature of an integrated ESD diode helps to improve the quality in manufacturing. At the same time, the low $R_{DS(on)}$ and gate charge (Q_G) enable high efficiency in the various topologies. The $600 \text{ V CoolMOS}^{TM}$ P7 with a wide variety of $R_{DS(on)}$ and packages on consumer-grade for TV power. Infineon developed a family of packages specifically for TV power supplies, characterized by short lead, SOT-223 mold stopper, and wide creepage distance, which enable low-cost and reliable manufacturing for our customers.


Non-AUX digital solution for large screen size


High-power solution for larger screen size

Flyback solution for small screen size

High-power solution for larger screen size

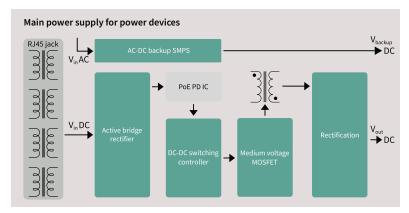


Recommended products

Functional block	Product category	Topology	Product family	Benefits
Main stage/PFC combo non-AUX	High-voltage MOSFETs	Active bridge	600 V CoolMOS™ S7	- Body diode robustness at AC line commutation - Improved thermal resistance - Absolute lowest R _{DS(on)} in the market - Enables top-side cooling with DDPAK and QDPAK - Ideal fit for solid-state and hybrid relays and circuit breakers
		Active bridge DCM PFC HB LLC	600 V CoolMOS™ P7	 Fast-switching speed for improved efficiency Low gate charge for enhanced light-load efficiency and low power consumption at no-load condition Optimized V_{cs} threshold for lower turn-off losses Rugged body diode for HB LLC application
		DCM PFC, HB LLC	600 V CoolMOS™ PFD7	Robustness and reliability with integrated robust, fast body diode and up to 2 kV ESD protection in gate Reduced gate charge for enhanced light-load efficiency, and lowe hysteresis loss
	Gate-driver IC	HB LLC	EiceDRIVER™ level-shift: 2ED2181S06F, 2ED21814S06J	650 V half-bridge SOI driver with integrated bootstrap diode High-frequency switching (500 kHz)
	Control ICs	IDP2308	PFC-LLC non-AUX digital IC for TV embedded PSU	Low BOM count/system cost due to high integration Low standby power High system reliability Shorter development cycles and higher design and production flexibility
		IDP2303A	PFC-LLC non-AUX digital IC for TV adapter	- Low BOM count/system cost due to high integration - Low standby power - Small form factor designs - High system reliability
Synchronous rectification	Low-voltage MOSFETs	Synchronous rectification	OptiMOS™ 5 100-150 V StrongIRFET™ 2 100 V	Low conduction losses, reduced overshoot FullPAK package available
-	Boost diodes	DCM PFC	650 V Rapid diode	– Low conduction losses
	Control ICs	CCM PFC ICs	ICE3PCS0xG	- High PFC and low THD
	WBG	PFC	CoolGaN™ 600 V e-mode HEMTs	Highest efficiency contribution via less parasitic parameter Space saving with SMD smaller package
	Gate-driver IC	PFC	1ED44173N01B	 Single-channel with fast, accurate (± 5%), integrated over-current protection (OCP)
High voltage MOSFETs	Active bridge DCM PFC HB LLC		600 V CoolMOS™	- Fast switching speed for improved efficiency - Low gate charge for enhanced light load efficiency and low power consumption at no-load condition - Optimized V _{cs} threshold for lower turn-off losses - Rugged body diode for HB LLC application
Main stage	Control ICs	HB LLC ICs	ICE1HS01G-1/ICE2HS01G	– High efficiency and low EMI
	WBG	HB LLC	CoolGaN™ 600 V Integrated Power Stage	Highest efficiency, highest power density High reliability Isolated gate driver integrated
	High-voltage MOSFETs	HB LLC	600 V CoolMOS™ P7	 Fast-switching speed for improved efficiency Low gate charge for enhanced light-load efficiency and low power consumption at no-load condition Optimized V_{cs} threshold for lower turn-off losses Rugged body diode for HB LLC application
Auxiliary power supply	Control ICs	QR/FF flyback CoolSET™	QR CoolSET™ - ICE5QRxx80BG FF CoolSET™ - ICE5xRxxxxXX	Low standby power, high efficiency and robustness
Flyback	Control ICs	QR flyback	ICE2QS03G	Forced resonant ZVS control reduces the switching loss Multilevel protection enables the robust design Flexible firmware provides more differentiation for OEMs
	High-voltage MOSFETs	Flyback	700 V CoolMOS™ P7	 Optimized for flyback topologies Best price competitive CoolMOS™ SJ MOSFET family Lower switching losses versus standard MOSFET Controlled dV/dt and di/dt for better EMI

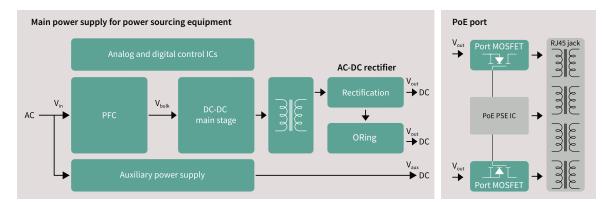
OLED TV power block diagram

OLED TVs improve user experience as they can be thinner, lighter, more flexible and consume less power than LCD/LED TVs.


Power over Ethernet (PoE)

Designing reliable and power-efficient PoE power supplies

The latest IEEE 802.3bt standard for Power over Ethernet (PoE) not only increased the available power via PoE but also changed requirements for its power supply. Power sourcing equipment (PSE) now provides up to 100 W per port via a twisted pair of Ethernet cabling, whereas powered devices (PD) have up to 71 W available. Adopting this new PoE standard also largely depends on the capability to increase the power density on the PSE side while maintaining the same form factor as wide load conditions and higher power budgets change requirements. Infineon has long-standing expertise in switched-mode power supply (SMPS) designs and offers a highly reliable, rugged and efficient high-quality MOSFET portfolio for your PoE PSE and PD designs.


Powered devices

Powered devices (PD) include devices powered by PoE such as wireless access points, 5G small-cell radio units, IP cameras, conference systems, thin clients or public address systems. DC-DC SMPS designs need to be power efficient to maximize the available power for the PD itself with the simultaneous increase of power density. Moreover, PDs need to function reliably in the field, even under potentially rough conditions for a long time.

Power sourcing equipment

Power sourcing equipment (PSE) is any equipment that is able to provide and source power on the twisted pair Ethernet cable, such as PoE switches, PoE extenders and PoE injectors. PSE needs to be highly reliable to prevent device failure and ensure uninterruptible operations of connected power devices. With IEEE 802.3bt PoE, the power demand for PoE switches significantly increases with highest efficiency over wide load conditions. For example, to fully enable a switch with twenty-four 802.3bt compliant PoE ports, up to 2.4 kW of available PoE power budget is required. Fulfilling these requirements makes modifications in AC-DC SMPS designs necessary.

Recommended product portfolio for power sourcing equipment

Functional block	Product category	Topology	Product family	Benefits
PFC	High-voltage MOSFETs	DCM, CrCM, CCM,	600 V/650 V CoolMOS™ C7 600 V CoolMOS™ P7	$\begin{array}{l} - \text{ Best FOM R}_{\text{DS(on)}} \text{ x Q}_{\text{G}} \text{ and R}_{\text{DS(on)}} \text{ x E}_{\text{oss}} \\ - \text{ Lowest R}_{\text{DS(on)}} \text{ per package} \\ - \text{ Lowest dependency of switching losses from R}_{\text{g.ext}} \\ - \text{ Low turn-off losses, low Q}_{\text{oss}} \text{ and low Q}_{\text{G}} \end{array}$
	Control ICs	DCM, CrCM, CCM	ICE3PCS0xG	- Simple external circuitry - High PFC and low THD
	High-voltage GaN	CCM totem-pole	CoolGaN™ GIT HEMT 600 V	- Highest efficiency and highest power density
	GaN driver ICs	CCM totem-pole	EiceDRIVER™ 1EDF5673Fx/1EDS5663H	 Low driving impedance (on-resistance 0.85 Ω source, 0.35 Ω sink) Input-output propagation delay accuracy: ± 5 ns Functional and reinforced isolation available
	SiC Schottky diode	DCM, CrCM, CCM	CoolSiC™ Schottky diode 650 V G5/G6	– Low FOM V _F x Q _C
	Silicon power diode	DCM, CrCM, CCM	650 V EC7	 Improved diode softness and humidity rugged. Allows a more reliable design with lower failure rates
DC-DC main stage	High-voltage MOSFETs	Flyback (ACF), HB LLC, FB LLC, ITTF, ZVS	600 V CoolMOS™ P7/C7/CFD7 650 V TRENCHSTOP™ F5	$\begin{array}{l} - \text{ Best FOM R}_{\mathrm{DS(on)}} \times \mathrm{Q_{G}} \text{ and R}_{\mathrm{DS(on)}} \times \mathrm{E}_{\mathrm{oss}} \\ - \text{ Lowest R}_{\mathrm{DS(on)}} \text{ per package} \\ - \text{ Lowest dependency of switching losses from R}_{\mathrm{g,oxt}}, \\ - \text{ Low turn-off losses, low Q}_{\mathrm{oss}} \text{ and low Q}_{\mathrm{G}} \end{array}$
	Low- and medium-voltage MOSFETs	Isolated DC-DC pri- mary-side PWM	OptiMOS™ 60 V-200 V StrongIRFET™ 60 V-200 V Small-signal MOSFETs 60 V-200 V	 Industry's lowest R_{DS(on)} and power density Highest system efficiency Outstanding quality and reliability Reduces the need for a snubber circuit
	Gate-driver ICs	-	EiceDRIVER™ 1EDNx/1EDi/2EDN7x/2E DLx/2EDFx/2EDSx	 Broadest portfolio in terms of isolation, channels, and protection
	Control ICs	HB LLC PWM-QF PWM-FF	ICE2HS01G ICE2QS03G/ICE5QSBG ICE5ASAG/ICE5GSAG	- High efficiency and low EMI
	High-voltage GaN	Flyback (ACF), HB LLC, FB LLC, ZVS	CoolGaN™ GIT HEMT 600 V	- Highest efficiency and highest power density
	GaN driver ICs	-	EiceDRIVER™ 1EDF5673Fx/1EDS5663H	 Low driving impedance (on-resistance 0.85 Ω source, 0.35 Ω sink) Input-output propagation delay accuracy: ± 5 ns Functional and reinforced isolation available
PFC-main stage combo	High-voltage MOSFETs	HB LLC	600 V CoolMOS™ P7	Low turn-off losses, low Q _{oss} , and low Q _G and thermals Fast-switching speed for improved efficiency
Synchronous rectification	Low- and medium-voltage MOSFETs	Synchronous recti- fication	OptiMOS™ 100 V-150 V OptiMOS™ 40 V-120 V StrongIRFET™ 40 V-100 V	 Industry's lowest R_{DS(on)} and power density Highest system efficiency Outstanding quality and reliability Reduces the need for a snubber circuit
	Gate-driver ICs	-	EiceDRIVER™ 1EDNx/1EDi/2EDN7x/ 2EDLx/2EDFx/2EDSx	Broadest portfolio in terms of isolation, channels, and protection
ORing	Low- and medium-voltage MOSFETs	ORing MOSFETs	OptiMOS™ 25 V-200 V	 Industry's lowest FOM (R_{DS(on)} x Q_G) Highest system efficiency and power density
Auxiliary power supply	AC-DC integrated power stage	Fixed-frequency (FF) Quasi-resonant (QR)	CoolSET™ ICE5xRxx80AG CoolSET™ ICE5QRxx80BG	 Quasi-resonant switching operation for high efficiency and low EMI signature Fixed-frequency switching operation for ease of design
Analog and digital control IC	32-bit XMC™ industrial microcontroller based on Arm® Cortex®-M	-	32-bit XMC1000 32-bit XMC4000	Flexibility, HR PWM, digital communication Arm® based standard MCU family and wide family
Port MOSFET	Medium-voltage MOSFETs	-	OptiMOS™ 100 V OptiMOS™ Linear FET StrongIRFET™ 100 V	Wide SOA and outstanding reliability for PoE ports Low R _{DS(on)} Space-saving 3.3 x 3.3 S3O8/PQFN package

Recommended product portfolio for powered devices

Functional block	Product category	Topology	Product family	Benefits
Active bridge rectifier	Medium-voltage MOSFETs	Active bridge rectifier	OptiMOS™ 100 V-150 V StrongIRFET™ 100 V	Industry's lowest R _{DS(on)} Highest system efficiency and power density
Synchronous rectification	Low- and medium- voltage MOSFETs	Synchronous rectification	OptiMOS™ 25 V-100 V OptiMOS™ 40 V IR MOSFET™ 20 V-100 V	 Industry's lowest R_{DS(on)} and power density Highest system efficiency Outstanding quality and reliability
DC-DC switching stage	Medium-voltage MOSFETs	Flyback (ACF)	OptiMOS™ 100 V-150 V	Low conduction losses, reduced overshoot Logic level switching
AC-DC backup SMPS	High-voltage MOSFETs	Flyback (ACF)	600 V to 950 V CoolMOS™ P7	Fast-switching speed for improved efficiency and thermals Reduced gate charge for enhanced light load efficiency Optimized gate-to-source voltage (V _{GS}) threshold for lower turn-off losses
	AC-DC integrated power stage	Fixed-frequency (FF)	Coolset™ 800 V ICE5GRxx80AG, 800 V ICE5ARxx80BZS, 700 V ICE5ARxx70AG, 700 V ICE5ARxx70BZS	Quasi-resonant switching operation for high efficiency and low EMI signature operation for ease of design Fixed-frequency switching
		Quasi-resonant (QR)	CoolSET™ 700 V ICE5QRxx70A(Z) (G), 800 V ICE5QRxx80A(Z)(G), 800 V ICE5QRxx80BG	

500-950 V MOSFETs

USB-C controllers and peripherals

Power

Fast/wireless EV-charging

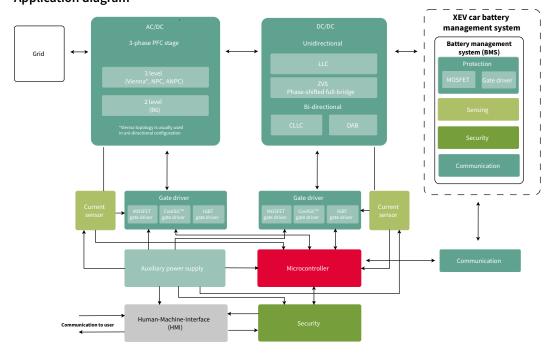
Advanced solutions for DC EV-charging

As e-mobility increasingly becomes part of daily life, there is a growing need for more efficient charging solutions. Fast electric vehicle (EV) charging stations equipped with powerful DC chargers are the answer. DC EV-chargers are an attractive choice because they allow much faster charging than the standard AC EV ones that many EV owners have at home. Today, a DC charger with 150 kW can put a 200 km charge on an EV in around 15 minutes. As fast charging and battery technologies continue to evolve and improve in the near future, experts anticipate the charging time to drop even further.

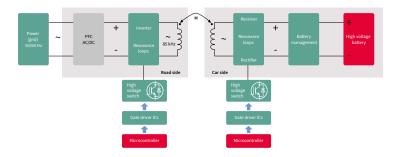
As a market leader and the global front-runner in power electronics, Infineon enables you to bring energy-efficient DC EV-charger designs to life, with our highly efficient components and in-depth technical support. We cover power ranges from kilowatts to megawatts in our broad portfolio of high-quality power semiconductors, microcontrollers, gate drivers, security, safety, and authentication solutions. Our CoolMOS™ and CoolSiC™ MOSFETs, together with EiceDRIVER™ gate drivers, for example, are ideal in a wide range of DC EV-charging designs. Their matchless advantages include highfrequency operation, high power density and reduced switching losses, allowing you to reach high efficiency levels in any battery charging system.

Infineon offering and customer benefits

CoolMOS™ and CoolSiC™ discrete and power module semiconductor solutions


EiceDRIVER™ gate driver and XMC™ microcontroller

- XENSIV™ magnetic current sensor
- OPTIGA™
- Power supply ICs (LDO, DC-DC)
- Communication (CAN transceiver)


Customer benefits

- Highly efficient power conversion for reducing system size by up to 50 percent and reduced cooling efforts
- Scalability across various platforms for upgrading system power charger
- Safe drive, advanced protection and ease of control
- Bidirectional high precision current sensing
- Identity protection against fake devices and protection against the manipula-
- Robust quality and easy to use implementation shorten time to market
- and guarantee long operation

Application diagram

Wireless methods for power transfer to charge the batteries of electric vehicles are gaining attention. Several concepts for wireless power transfer systems have been proposed, which in general seek to compensate the significant stray inductances on primary and secondary sides of the magnetic couplers by adaptive resonant methods. At the end of 2013, SAE announced a new standard for inductive charging which defined three power levels at 85 kHz. Infineon's CoolMOS ™ CFD7, C7, and P7 series along with TRENCHSTOP™ 5 IGBTs, CoolSiC™ diodes, and EiceDRIVER™ gate-driver ICs are perfectly suited for driving inductive power transfer systems on the road side which operate inside the 80 to 90 kHz band.

Infineon's solution recommendation for DC EV-charging system blocks

Our solutions have been designed for harsh environmental conditions and long lifetime thanks to Infineon's deep understanding of quality requirements. Take the next step by exploring our product portfolio for DC EV-charging systems.

PFC stage (3-phase input)

Product category	Product family	Product	Additional information
High-voltage MOSFET/	650 V CoolMOS™ C7	IPW65R019C7	650 V, 19 mΩ, TO-247
	600 V CoolMOS™ C7	IPW60R017C7	600 V, 17 mΩ, TO-247
	600 V CoolMOS™ P7	IPW60R024P7	600 V, 24 mΩ, TO-247
		IPW60R037P7	600 V, 37 mΩ, TO-247
	CoolSiC™ MOSFET 650 V	IMW65R027M1H	650 V, 27 mΩ, TO-247-3
		IMZ65R027M1H	650 V, 27 mΩ, TO-247-4
		IMWA65R027M1H	650 V, 48 mΩ, TO-247-3
		IMZA65R027M1H	650 V, 48 mΩ, TO-247-4
	650V TRENCHSTOP™ 7 H7	IKZA50N65EH7	650 V, 50 A, TO-247-3/4
		IKZA75N65EH7	650 V, 75 A, TO-247-3/4
	EasyPACK™ hybrid module 650 V HighSpeed IGBT H3	FS3L50R07W2H3F_B11	650 V, 50 A, Easy 2B, three-level
	EasyPACK™ hybrid module with 650 V TRENCHSTOP™ 5 H5	FS3L40R07W2H5F_B11	650 V, 40 A, Easy 2B, three-level
		FS3L40R07W2H5F_B67	650 V, 40 A, Easy 2B, three-level
	EasyPACK™ hybrid module with 650 V TRENCHSTOP™ 5 H5	F3L200R07W2S5FP_B55	650 V, 200 A, Easy 2B, three-level
	and CoolSiC™ Schottky diode	F3L200R07W2S5FP_B56	650 V, 200 A, Easy 2B, three-level
		F3L200R07W2S5F_B11	650 V, 200 A, Easy 2B, three-level
	EasyPACK™ module with 650 V TRENCHSTOP™ 5 S5	F3L200R07W2S5_B11	650 V, 200 A, Easy 2B, three-level
	CoolSiC™ MOSFET 1200 V	IMW120R045M1/IMZ120R045M1	1200 V, 45 mΩ, TO-247-3/4
		MW120R030M1H/IMZ120R030M1H	1200 V, 30 mΩ, TO-247-3/4
	EasyPACK™ modules with CoolSiC™ 1200 V	F3L11MR12W2M1_B74	1200 V, 11 mΩ, Easy 2B, ANPC
		FF6MR12W2M1(P)_B11*	1200 V, 6 mΩ, Easy 2B, half-bridge
		FF8MR12W2M1(P)_B11*	1200 V, 8 mΩ, Easy 2B, half-bridge
		FF11MR12W1M1(P)_B11*	1200 V, 11 mΩ, Easy 1B, half-bridge
		FF23MR12W1M1(P)_B11*	1200 V, 23 mΩ, Easy 1B, half-bridge
SiC diodes	CoolSiC™ Schottky diodes 1200 V G5	IDW15G120C5B/IDWD15G120C5	1200 V, 15 A, TO-247-3/2
		IDW20G120C5B/IDWD20G120C5	1200 V, 20 A, TO-247-3/2
		IDW30G120C5B/IDWD30G120C5	1200 V, 30 A, TO-247-3/2

Product category	Product family	Product	Additional information
ligh-voltage MOSFET/	600 V CoolMOS™ CFD7/CSFD	IPW60R018CFD7	600 V, 18 mΩ, TO-247
SIC MOSFET		IPW60R024CFD7	600 V, 24 mΩ, TO-247
		IPW60R037CSFD	600 V, 37 mΩ, TO-247
		IPW60R040CFD7	600 V, 40 mΩ, TO-247
	600 V CoolMOS™ C7	IPW60R040C7	600 V, 40 mΩ, TO-247
	650 V CoolMOS™ CFD7	IPW65R018CFD7/IPZA65R018CFD7	650 V, 29 mΩ, TO-247-3/4
		IPW65R029CFD7/IPZA65R029CFD7	650 V, 29 mΩ, TO-247-3/4
		IPW65R041CFD7	650 V, 41 mΩ, TO-247
	CoolSiC™ MOSFET 650 V	IMW65R027M1H/IMZA65R027M1H	650 V, 27 mΩ, TO-247-3/4
		IMW65R048M1H/IMZA65R048M1H	650 V, 48 mΩ, TO-247-3/4
	CoolSiC™ MOSFET 1200 V	IMW120R040M1H/IMZA120R040M1H	1200 V, 40 mΩ, TO-247-3/4
		IMW120R030M1H/IMZ120R030M1H	1200 V, 30 mΩ, TO-247-3/4
	EasyPACK™ module with CoolSiC™ 1200 V	FF6MR12W2M1(P)_B11*	1200 V, 6 mΩ, Easy 2B, half-bridge
		FF8MR12W2M1(P)_B11*	1200 V, 8 mΩ, Easy 2B, half-bridge
		FF11MR12W1M1(P)_B11*	1200 V, 11 mΩ, Easy 1B, half-bridge
		FF23MR12W1M1(P)_B11*	1200 V, 23 mΩ, Easy 1B, half-bridge
		FF45MR12W1M1(P)_B11*	1200 V, 45 mΩ, Easy 1B, half-bridge
		F4-45MR12W1M1(P)_B76*	1200 V, 45 mΩ, Easy 1B, four-pack
		F4-23MR12W1M1(P)_B76*	1200 V, 23 mΩ, Easy 1B, four-pack
		F4-15MR12W2M1(P) B76*	1200 V, 15 mΩ, Easy 2B, four-pack
		F4-11MR12W2M1(P)_B76*	1200 V, 11 mΩ, Easy 2B, four-pack
		FS45MR12W1M1_B11	1200 V, 45 mΩ, Easy 1B, sixpack
iC diodes output	CoolSiC™ Schottky diode 1200 V G5	IDW15G120C5B/IDWD15G120C5	1200 V, 15 A, TO-247-3/2
ectification diodes	,	IDW20G120C5B/IDWD20G120C5	1200 V, 20 A, TO-247-3/2
		IDW30G120C5B/IDWD30G120C5	1200 V, 30 A, TO-247-3/2
		IDWD40G120C5	1200 V, 40 A in TO-247-2
		IDW40G120C5B	1200 V, 40 A in TO-247-3
	EasyBRIDGE™ module with CoolSiC™ Schottky diode 1200 V G5	DDB2U20N12W1RF(P)_B11*	1200 V, 20 A, Easy 1B, rectifier bridge
		DDB2U40N12W1RF(P)_B11*	1200 V, 40 A, Easy 1B, rectifier bridge
		DDB2U60N12W1RF(P)_B11*	1200 V, 60 A, Easy 1B, rectifier bridge
	CoolSiC™ Schottky diode 650 V G5	IDW10G65C5	650 V, 10A, TO-247-3
	Coolsic Schottky diode 650 V G5	IDW12G65C5	650 V, 12 A, TO-247
		IDW16G65C5	650 V, 16 A, TO-247
		IDW20G65C5	650 V, 20 A, TO-247
		IDW20G65C5B	650 V, 10 A, TO-247
		IDW30G65C5	650 V, 30 A, TO-247
		IDW32G65C5B	650 V, 32 A, TO-247
		IDW40G65C5	<u> </u>
		IDW40G65C5B	650 V, 40 A, TO-247
	CoolSiC™ Schottky diode 650 V G6	IDH20G65C6	650 V, 40 A, TO-247 650 V, 20 A, TO-220
	Schollky diode 650 V Go		· · ·
		IDH16G65C6 IDH12G65C6	650 V, 16 A, TO-220 real 2-pin
			650 V, 12 A, TO 220 real 2-pin
		IDH10G65C6	650 V, 10 A, TO-220 real 2-pin
		IDH08G65C6	650 V, 8 A, TO-220 real 2-pin
		IDH06G65C6	650 V, 6 A, TO-220 real 2-pin
		IDH04G65C6	650 V, 4 A, TO-220 real 2-pin
		IDDD16G65C6	650 V, 16 A, DDPAK
		IDDD12G65C6	650 V, 12 A, DDPAK
		IDDD08G65C6	650 V, 8 A, DDPAK

www.infineon.com/ev-charging

Intelligent power switches and modules

USB-C controllers and peripherals

Gate driver and galvanic isolation

Product category	Product family	Product	Additional information
Gate-driver ICs	EiceDRIVER™ (non-isolated)	1EDN family, 2EDN family	– Single-channel/dual-channel, non-isolated low-side gate driver ICs
		1ED4417xN01B	- Single-channel with fast, accurate (± 5%), integrated overcurrent protection (OCP) $$
		2ED24427N01F	 Dual-channel, 10 A low-side gate driver in DSO-8 package with power-pad Integrated UVLO and enable (EN) function Suitable for high frequency, high power operation w/BOM savings
	EiceDRIVER™ level-shift gate driver	2ED2184S06F 2ED2110S06M	 650 V half-bridge gate driver for IGBTs and MOSFETs with SOI technology Integrated bootstrap diode High-frequency switching (500 kHz) and superior – VS transient voltage immunity
		IRS2186S, IRS21864S	– 600 V, 4 A high- and low-side gate driver
		IR2114SS, IR2214SS	- 600 V/1200 V half-bridge gate driver with DESAT, 2L SRC, soft-SD
		IR2213S	– 1200 V high- and low-side gate driver
	EiceDRIVER™ 2EDi/S isolated gate driver	2EDF7175F, 2EDF7275F	– Dual-channel functional isolated (1,5 kV)
		2EDS8265H, 2EDS8165H	– Dual-channel reinforced (safe) isolated (6 kV)
	EiceDRIVER™ compact isolated gate driver	1EDI20I12MF, 1EDI20N12AF, 1EDI60N12AF, 1EDI60N12AF	 1200 V single-channel, cost-effective functional isolated driver with Miller clamp/separate output
		1ED3122MU12H, 1ED- 3124MU12H, 1ED3125MU12F, 1ED3124MU12F	 5.7 kV/3 kV single-channel isolated driver with Miller clamp or separate output, UL 1577 certification
	EiceDRIVER™ enhanced isolated gate driver	1ED3491MU12M, 1ED3890MU12M	 5.7 kV single-channel isolated driver with analog/digital configurability, DESAT, Miller clamp, and Soft-off, UL 1577 certification
		1ED3321MC12N	 1200 V, single-/dual-channel, functional isolated driver with DESAT and Miller clamp

Current sensor

Product category	Product family	Product	Additional information
Magnetic current sensor	XENSIV™	TLI4971-A120T5-E0001	-
		TLI4971-A120T5-U-E0001	UL certified

Microcontroller

Product category	Product family	Product	Additional information
Microcontroller	XMC™	XMC1400 family (PFC stage)	Arm® Cortex® M0 based microcontroller
		XMC4500/XMC4700 (HV DC-DC/PWM stage)	Arm® Cortex® M4F based microcontroller
	AURIX™	TC26X/TC27X TC36X/TC37X	TriCore™ AURIX™ 32-bit microcontroller HSM (hardware secure module) full EVITA compliance

Internal power supply

Product category	Product family	Product	Additional information
AC/DC power conversion	Fixed-frequency/	ICE5QR0680BG	800 V, 42 W, 710 mΩ, PG-DSO-12
	quasi-resonant CoolSET™	ICE5AR0680AG	800 V, 42 W, 710 mΩ, PG-DSO-12
	Quasi-resonant CoolSET™	ICE5QSBG and IPP80R360P7	800 V, 360 mΩ, TO-220
	PWM controller	ICE5QSBG and IPA95R450P7	950 V, 450 mΩ , TO-220 FP
	CoolMOS™ SJ MOSFETs	IPN95R1K2P7	950 V, 450 mΩ, SOT-223
		IPN80R1K4P7	800 V, 1.4 Ω, SOT-223
DC-DC power conversion	Low power LDOs	TLS805/TLS810/TLS820	50 mA/100 mA/200 mA ultralow quiescent current linear voltage regulator with a wide input voltage range
		TLS202	150 mA LDO in a small-footprint package
		TLS203/TLS205	300/500 mA low noise LDO
		TLS850	500 mA wide input voltage LDO
	Buck converter	TLE8366E	1.9 A DC-DC buck converter
	Safety PMIC for AURIX™ MCU	TLF35584/TLF35585	Multichannel power supply IC, optimized for AURIX™ MCU, up to ASIL-D rated

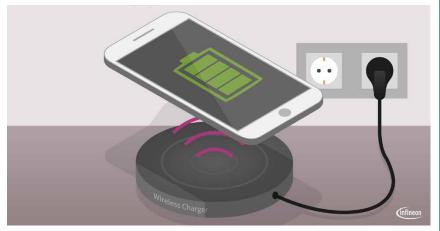
Authentication and encryption

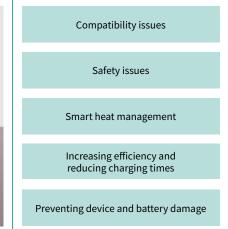
As embedded systems are increasingly becoming targets of attackers, Infineon offers OPTIGA™ - a turnkey security solution.

Product category	Product family	Product	Additional information
Security	OPTIGA™ Trust B	SLE952500000XTSA1	Asymmetric ECC authentication with individual certificate key pair and an extended temperature range of -40 to 110°C
	OPTIGA™ Trust TPM	SLB9670XQ2.0	Fully TCG TPM 2.0 standard compliant module with the SPI interface
	SLC37	SLC37ESA2M0, SLI97CSIFX1M00PE	New class of performance and security cryptocontroller adhering to CC EAL6+ high targeted and EMVCo targeted certifications for payment and eSIM applications

Communication

Product category	Product family	Product	Additional information
CAN transceiver Automotive CAN transceiver		TLE9350, TLE9351, TLE9252	High-speed automotive CAN transceiver with 5 Mbps


Wireless charging

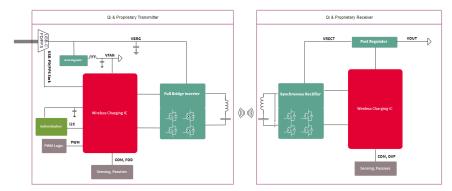

and automotive applications

Cost-effective and secure system solutions for consumer, industrial

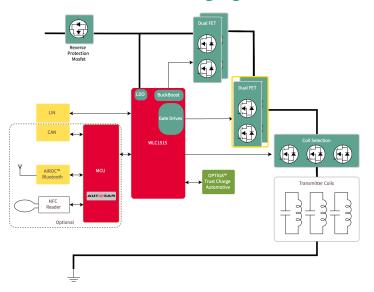
Infineon offers a broad portfolio of efficient, high-quality products and solutions to serve the key requirements of the dominant market standards: inductive (Qi (WLC)) and resonant (AirFuel) in consumer, industrial and automotive.

Overcome common design challenges with Infineon

Applications that benefit from wireless charging



Infineon's key enabling products for wireless charging


- Wireless charging ICs (WLC)
- Power MOSFETs OptiMOS™, StrongIRFET™ and CoolMOS™
- P-channel and N-channel small signal power MOSFETs
- Gate-driver ICs EiceDRIVER™: MOTIX™ 3-phase gate-driver IC
- Authentication OPTIGA™ Trust Automotive, OPTIGA™ trust auto
- XMC[™], XMC[™]-SC (including software IP), TRAVEO[™] MCU Automotive, AURIX [™], PSoC[™]
- USB-C and power delivery (PD): EZ-PD™ CCG3PA and EZ-PD™ PAG1
- PWM/flyback controllers and integrated power stage ICs CoolSET™
- GaN GIT HEMT CoolGaN™
- Voltage and buck regulators for component and bridge supply
- Reverse Conducting IGBTs R5/R6 650 V

Inductive wireless charging for consumer and industrial

Example: 50 W inductive system solution

Inductive wireless charging for automotive

Key components for inductive designs for consumer, industrial and automotive

Wireless charging product portfolio for inductive


Sub-application	Products		
Wireless charging IC	WLC1115-68LQXQ transmitter IC		
	WLC1150-68LQXQ tra		
	WLC1250 receiver IC		
	WLC1515-68LQXQ tra	ansmitter IC for automotive	
MOSFETs*	30 V	BSC0996NS, BSC0993ND, BSZ0909NS, BSZ0909ND, BSZ0910ND, IRFHS8342	
	40 V	BSZ097N04LS, BSZ063N4LS6, BSC035N04LSG, BSC072N04LD	
	60 V	BSZ099N06LS5, BSZ065N06LS5, BSZ040N06LS5	
	80 V	IRL80HS120	
	100 V	IRL100HS121, BSZ146N10LS5, BSZ096N10LS5	
Driver IC	WCDSC006, PX3519, IRS2301S, 1EDN7512B, 1ED44173N01B, 1EDI60N12AF, 2EDN7524G, IRS2007M, 2ED2182S06F, 6EDL7141		
Microcontroller	XMC™, AURIX™ XMC™-SC (including software IP), PSoC™ family 4, TRAVEO™ (automotive)		
Voltage regulators	TLE4296G V33, TLF50211EL, TLE8366EV		
MCU + BLE controller	PSoC™ 4 Bluetooth® Low Energy (Bluetooth® Smart): CY8C4248LQI-BL573 (QFN)		
AIROC™ Bluetooth® LE and Bluetooth®	CYW20719B2 / CYW20721B2		
USB-C and power delivery (PD)	EZ-PD™ PAG1, EZ-PD™ CCG3PA, EZ-PD™ CCG3, EZ-PD™ PMG1, EZ-PD™ barrel connector replacement (BCR)		
Small-signal MOSFETs	See the portfolio on	our webpage small-signal MOSFETs	
Authentication	SLS32AIA020Ux – OPTIGA™ Trust Charge (USON10 3x3 package) OPTIGA™ Trust Charge automotive		
Reverse conducting IGBTs R5/R6 - 650 V	Package TO-247 IHW30N65RS (30 A), IHW40N65R5 (40 A), IHW50N65R5 (50 A)		
Reference designs and kits	REF_WLC_TX15W_C1 – 15 W Qi power transmitter solution REF_WLC_TX50W_N1 – 50 W transmitter solution REF_WLCAUTO_TX15W_C1		

www.infineon.com/wirelesscharging

^{*} Explore more MOSFET offerings at our webpage ** Coming soon

15 W Qi transmitter solution with Infineon's wireless charging IC WLC1115

The REF_WLC_TX15W_C1 MP A11 power transmitter solution board, is an highly integrated, Qi v1.3 compliant extended power profile (EPP) transmitter design. This reference board is powered using a USB PD 3.0-compliant USB-C power adapter and can support DC connector input of 9 V - 20 V through firmware option. Combined with the OptiMOS™ power MOSFETs and OPTIGA™ Trust Charge, this solution offers a highly efficient and secure wireless charging platform. The solution board supports firmware upgrades using USB-C or I²C interface along with the included dongle and the wireless charging configuration graphical user interface (GUI). There are additional options provided for firmware updates using serial wire debug (SWD) while using the ModusToolBox™ and programmer.

Key components

- Wireless charging IC WLC1115-68LQXQ
- OptiMOS[™] power MOSFETs BSZ0910LS
- OPTIGA™ Trust Charge SLS32AIA020Ux
- Small Signal MOSFETs

Features and benefits

Key features
– Qi v1.3 compliant transmitter
− UDB-PD/legacy protocol input >9 V _{DC}
- Peak system efficiency >83%
- Typical active charging area ±10 mm
– Serial communication ports: I ² C, UART
- Programming, EXT clock option
– Foreign object detection with LEDs
Configurable using wireless charging GUI

Key benefits

- Compliant Qi stack with library support
- Programmable solution for evolving Qi standard
- Zero voltage switching for high efficiency
- Configurable gate drivers for EMC
- Configurable thresholds for FOD, protection

Explore more details:

www.infineon.com/REF_WLC_TX15W_C1

A new reference design supporting Qi2 MPP protocol is coming soon:

learn more here!

50 W transmitter solution with Infineon's wireless charging IC WLC1150

The REF_WLC_TX_50W_N1 transmitter solution board using WLC1150 enables high performance and low-cost wireless charging solutions for various applications up to 50 W output power. The configurable WLC1150 solution, with Infineon's OptiMOS™ power devices, offers highly efficient charging with flexible thermal management options. Combined with Infineon's USB-C charger solutions, it offers a complete product package that can help meet stringent regulatory and compliance requirements. The WLC1150 uses Infineon high power proprietary protocol to deliver 50 W power and is also compatible to Qi 1.3.x specification with extended power profile (EPP), basic power profile (BPP) and proprietary power delivery extension (PPDE). The controller is offered with both configuration utility and ModusToolbox™ software options to develop your wireless charging solutions for proprietary charging protocols as well as Qi latest specification.

Key components

- Wireless charging IC WLC1150-68LQXQ
- OptiMOS[™] power MOSFETs BSZ0910LS
- OPTIGA™ Trust Charge SLS32AIA020Ux (optional)
- Small signal MOSFETs

Features and benefits

Key features

- High power proprietary charging up to 50 W
- Qi v1.3.x compliant transmitter (MP-A2 and similar)
- Integrated USB-PD/PPS sink functionality
- $\,-\,$ Integrated DC/DC controller for fan that enables thermal management
- Integrated gate drivers for buck-boost, inverter
- Input voltage range: 4.5 V 24 V
- Communication ports: I²C, UART
- Temperature range: -40°C 105°C
- Packing type: tray

Key benefits

- 50 W transmitter with software included
- Adaptive foreign object detection (FOD)
- Adjustable protection OVP, OCP, OTP
- Graphical utility tool for ease of configuration, debug without code
- ModusToolbox™ Software Library for Infineon Proprietary, Qi Stack

Explore more details:

www.infineon.com/ref_wlc_tx50w_n1

15 W automotive transmitter solution with Infineon's wireless charging IC WLC1515

The REF_WLCAUTO_TX15W_C1 MP A13 power transmitter solution board using WLC1515 is a highly integrated, Qi v1.3 compliant Extended Power Profile (EPP) transmitter design ideal as a scalable platform for automotive in-cabin charger. It can also support basic power profile (BPP), Proprietary power delivery Extensions (PPDE) and custom protocols. This reference board operates with variable automotive battery input voltage of 9 V-18 V, supporting reverse polarity protection and auto transients. Its integrated buck-boost controller enables low EMI fixed frequency mode of operation. On chip LIN or serial communication are used to interface with the Host system for additional functionality. With an optional external automotive MCU such as Traveo™ II, it is possible to add AUTOSAR, CAN and NFC interface functionality. The solution board supports firmware updates using Serial Wire Debug (SWD) while using the ModusToolbox™ and programmer.

Key components

- Wireless charging IC WLC1515-68LDXS
- OptiMOS™ automotive MOSFETs
- OPTIGA™ Trust Charge auto

Features and benefits

Interface for external MCU over I2CConfigurable firmware registers

Key features Integrated Qi controller Input voltage range: 4.5 V – 24 V (40 V tolerant) Output power: 15 W Qi EPP free position Programmable high-side current sense amplifier Gate drivers for full-bridge inverter Coil selection control Integrated buck-boost controller 150 kHz –600 kHz switching frequency for synchronous buck-boost Integrated gate drivers with slew rate and dithering controls Comprehensive protection: UVLO, OVP, OCP and OTP LIN and Host Interface In-built LIN interface to LIN transceiver

Key benefits
– Qi stack with library support
– Fixed frequency operation for low EMI
- Configurable gate drivers for EMC
– Configurable thresholds for FOD, protections
– ModusToolbox™ code examples

Key components for resonant designs for consumer and industrial

Wireless charging product portfolio for resonant

Sub-application		Products		
MOSFETs**	30 V	IRLHS6376PBF, BSZ0909ND, BSZ0910ND, IRLML0030PBF		
	40 V	IRLML0040		
	60 V	IRLML0060		
	80 V	IRL80HS120		
	100 V	IRL100HS121		
	150 V	BSZ900N15NS3, BSZ520N15NS3		
	200 V	BSZ900N20NS3, BSZ22DN20NS3, BSZ12DN20NS3		
	250 V	BSZ42DN25NS3		
Driver ICs EiceDRIVER™ 2EDL71*, 1EDN7512, 2EDN75		'1*, 1EDN7512, 2EDN7524, 2ED2182S06F, 2ED24427N01F, 1EDI60N12AF, 1ED44173N01B		
	EiceDRIVER™ for CoolGaN™ GIT HEMTs 1EDS5663H, 1EDF5673F, 1EDF5673K			
GaN e-mode HEMTs	CoolGaN™ GIT HEM	CoolGaN™ GIT HEMT 600 V IGT60R190D1 (HDSOF-8-3)		
Microcontroller	XMC™, AURIX™ MCU	XMC™, AURIX™ MCU and wireless power controller XMC™-SC (including software IP), PSoC™ family 4		
MCU + BLE Controller	PSoC™ 4 Bluetooth	PSoC™ 4 Bluetooth® Low Energy (Bluetooth® Smart): CY8C4248LQI-BL573 (QFN)		
AIROC™ Bluetooth® LE & Bluetooth®	CYW20719B2 / CYW	CYW20719B2 / CYW20721B2		
JSB-C and power delivery (PD)	EZ-PD™ PAG1, EZ-PI	EZ-PD™ PAG1, EZ-PD™ CCG3PA, EZ-PD™ CCG3, EZ-PD™ PMG1, EZ-PD™ barrel connector replacement (BCR)		
/oltage regulators	TLE4296G V33, TLE4	TLE4296G V33, TLE4296G V50, TLE4296-2G V33, TLE4296-2G V50, TLF50211EL, TLE8366EV, TLE8366EV33, TLE8366EV50		
imall signal MOSFETs	See the portfolio on our webpage small-signal MOSFETs			

Are you searching for a turnkey solution for your application?

Wireless power becomes an important part of our connected lifestyles. Infineon puts an emphasis on the development of the next-generation technologies and standards that allow easy charging without the limitation of wires. What started out with phones will quickly evolve - applications such as tablets, laptops, robots, drones, power tools, handheld gaming devices, medical devices, infrastructure, and applications around Industry 4.0 will have wireless charging included. For more information, please get in contact with us via www.infineon.com/support to get your customized system solution.

www.infineon.com/wirelesscharging

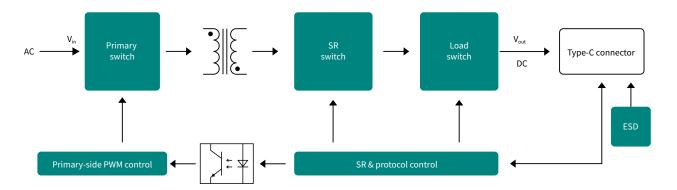
^{*}coming soon

** Explore more MOSFET offerings at our webpage.

USB-C chargers and adapters

Outstanding solution offering for mobile chargers and laptop adapters

USB-C power delivery (USB-PD) has become the standardized solution for unified. Furthermore, from smartphones to laptops, smart speakers to TVs - USB-PD is now the go-to power supply and the enabler of fast charging. USB-C power delivery (USB-PD) has revolutionized the way we charge our mobile devices, providing a unified and speedy charging experience. The implementation of USB-C technology has significantly enhanced the convenience for endusers. In addition, with the incorporation of GaN HEMTs and higher switching frequencies, it is now possible to produce chargers and adapters that are both compact and lightweight.


Infineon offers a leading portfolio of power controllers, flexible and programmable USB Type-C controllers, high-voltage CoolMOS™ superjunction MOSFETs, medium- and low-voltage OptiMOS™ MOSFETs as well as CoolGaN™ discretes and integrated power stages.

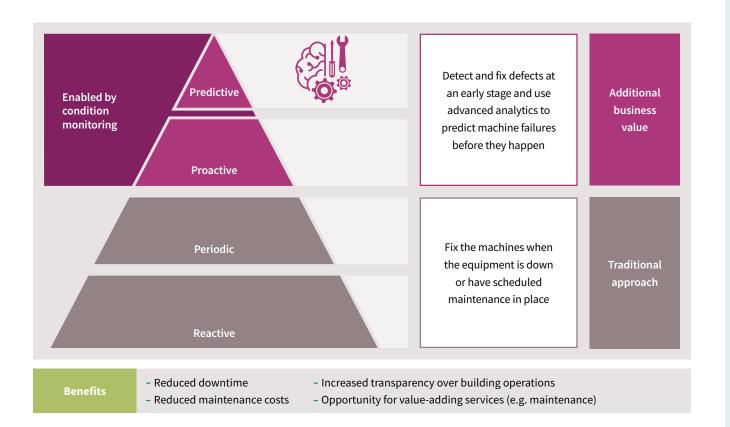
Our USB-C reference and demo designs are based on quasi-resonant (QR), zero-voltage switching (ZVS) and hybrid flyback (HFB) operation for different power levels and power density requirements and for single- and dual-output chargers.

Features and benefits

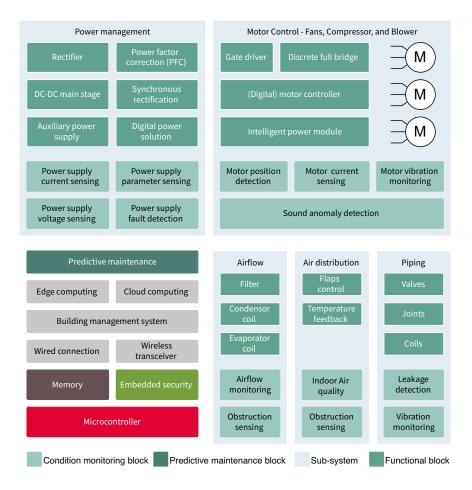
Ready-to-use reference designs Ease-of-use and reduced complexity Comprehensive offering of power and protocol controllers, high- and low-voltage switches and TVS diodes allow customers to source all components from a single supplier Highly integrated solutions Smallest form factor, low $\rm R_{\rm DS(on)}$ and low parasitic capacitances, Kelvin-source engaged ThinPAK and PQFN packages High-efficiency designs Digital controllers enabling high-efficiency designs Fully programmable USB-C PD port controllers Differentiation and short time to market Configurability and upgradability Infineon has the largest installed in-house power semiconductor capacity with - Secured supply chain 12" wafer production for discretes for maximum supply security Dedicated supply chain programs to secure capacity and enable flexibility to demand fluctuations

Application diagram

Recommended products


Functional block	Product category	Topology	Product family	Benefits
Flyback converter	High-voltage power devices (Si MOSFETs and GaN HEMTs)	Quasi-resonant flyback (QR)	600 V/700 V/800 V CoolMOS™ P7	Fast switching speed for improved efficiency and thermals Reduced gate charge for enhanced light-load efficiency Optimized gate-to-source voltage (VGS) threshold for lower turn-of losses
			600 V/650 V CoolMOS™ C7	High switching performance enabling highest efficiency Ease of use level high Optimized devices for highest efficiency switched-mode power supplies
		Active-clamp flyback (ACF) Hybrid flyback (HFB)	600 V CoolMOS™ PFD7	Robustness and reliability with integrated robust fast body diode and up to 2 kV ESD protection Reduced gate charge for enhanced light-load efficiency Lower hysteresis loss
		Flyback (QR, ZVS, ACF, HFB)	CoolGaN™ GIT HEMTs 600 V	Highest efficiency Highest power density
	Controller	Hybrid flyback controller	XDPS2201	 Asymmetrical half-bridge ZVS control to maximize efficiency Supports a wide range of configurable parameters Supports ultra-high power density (20 W/in3) design
		QR flyback controller	EZ-PD™ PAG1P/S	Secondary-side-controlled flyback solution Dual-chip flyback solution with integrated SR+PD controller
	Gate-driver IC	Active-clamp flyback (ACF)	IRS25752L	 High-side gate driver enables active clamp mode of operation Cost-effective, 600 V, single-channel driver in SOT23 package
			IRS21271S	 High-side gate driver enables active clamp mode of operation 600 V, single-channel driver with over-current protection (OCP)
PFC DC-DC	High-voltage power devices (Si MOSFETs and GaN HEMTs)	DCM PFC	600 V CoolMOS™ P7	 Fast switching speed for improved efficiency Reduced gate charge for enhanced light load efficiency Optimized gate-to-source voltage (VGS) threshold for lower turn-o losses
		DCM/CCM PFC	CoolGaN™ GIT HEMTs 600 V	Highest efficiency contribution via less parasitic parameter Space saving with SMD smaller package
	Boost diode	DCM/PFC	650 V Rapid 1 diodes	– Low conduction losses
	Controller	PFC/LLC combo	IDP2308	Digital multimode PFC and LLC combined controller with a floating High-side driver and a startup cell Comprehensive and configurable protection features Wide set of configurable parameters
	Controller	PFC/HFB combo	XDPS2221	Digital multimode PFC and HFB combined controller High-side driver and a 600 V startup cell Integrated gate drivers supporting GaN switches Configurability for protections and system performance
	High-voltage power devices (Si MOSFETs and GaN HEMTs)	HB LLC	600 V CoolMOS™ P7	Fast switching speed for improved efficiency and thermals Reduced gate charge for enhanced light load efficiency Optimized gate-to-source voltage (VGS) threshold for lower turn-ol losses
			CoolGaN™ IPS 600 V	Highest efficiency and highest power density Isolated gate driver integrated
	Gate-driver IC	HB LLC	EiceDRIVER™ Compact: 1EDI60N12AF, 1ED3124MU12F	– Isolated gate driver, up to 14 A, 100 ns propagation delay
Synchronous rectifier	Low-voltage MOSFETs	Synchronous rectification	OptiMOS™ PD 60-150 V	Low conduction losses, reduced overshoot Adapter-oriented synchronous rectification MOSFETs
	Control ICs	Synchronous rectification	EZ-PD™ PAG1S	Integration of synchronous rectification and PD controller Configurable protection, like OTP, OCP, OVP, UVP, short circuit, etc.
Protocol controller	USB-C ICs	Protocol controller	EZ-PD™ PAG1S	 Supports USB PD 2.0, PD 3.0 with PPS, QC4+, QC 4.0, QC 3.0, QC 2.0 Samsung AFC, Apple charging, and BC v1.2 charging protocols
			EZ-PD™ CCG3PA-NFET	Supports USB PD 3.0 with Programmable Power Supply (PPS) Independent constant current (CC) and constant voltage (CV) modes Configurable OVP, OCP, and OTP Integrates NFET gate driver to drive the load switch 64 kB flash memory
			EZ-PD™ CCG3PA	 Supports USB PD 3.0 with PPS, QC4, Apple 2.4 A charging, AFC, BC1.2 etc. Supports 1C and 1A port 64 kB flash memory
		Multi-port controller	EZ-PD™ CCG7DC multi- port controller	- Integrates 2 USB-C PD controllers + 2 DC-DC controllers in one single chip - Supports latest USB-C PD v3.0 with PPS, QC4+, QC4.0, Samsung AFC, Apple 2.4A, Cv1.2 - Configurable switching frequency of 150 kHz - 600 kHz - Arm® Cortex®-M0 with flash allows users to implement custom features
Connector	ESD	ESD protection	Multi-purpose diodes for ESD protection	Small packaging to support minimum board space consumption High linearity - reducing harmonic generation/enabling suppression EMC problems Exceptional quality and reliability

Condition monitoring and predictive maintenance


Accurate and reliable data collection and processing for condition monitoring and predictive maintenance

Smart Building and Industry 4.0 must answer the needs of our connected business and optimize its operations to anticipate maintenance before it becomes urgent and critical. This enables an innovative maintenance strategy that predicts system failures and aims to prevent them. Various parameters are constantly monitored, and the collected data is analyzed to make the new scheme possible. As soon as function anomalies become apparent, maintenance or repairs can be planned around the regular operation of intelligent buildings, infrastructure, or industry-critical equipment, reducing downtime and costs. Infineon's sensors, microcontrollers, connectivity, security and memory solutions offer all you need to leverage predictive maintenance's full potential. Thanks to our partner network, you can use advanced analytics and artificial intelligence to predict machine failures before they happen or to anticipate maintenance needs before they become urgent – on the Edge or in the Cloud.

predictive maintenance

Application diagram

XENSIV™ Predictive Maintenance Evaluation Kit

Our latest XENSIV™ Predictive Maintenance Evaluation Kit* lets you quickly and efficiently evaluate various condition monitoring and predictive maintenance use cases. This kit utilizes Infineon's broad XENSIV™ sensor portfolio along with the FreeRTOS XMC4700 Arm® Cortex®-M4F XMC™ qualified device to monitor the condition of most crucial elements such as filters, compressors, motors, or fans, for example, in HVAC. Based on the collected sensor data, e.g., of current consumption, airflow, and many other upcoming systems combined with the power of algorithms and deep learning techniques, failures can be detected.

Features and benefits

Key features	Key benefits
– Extension for the XMC4700 XMC™ Relax Kit	 Current monitoring (up to 120 A), e.g. for overall current anomaly detection
– Full software support of the FreeRTOS kernel	- Vibration and position sensing, e.g., for drives and compressor
- AWS Cloud integration	– Airflow and pressure measurement, e.g., for filters
– Full AWS CloudFormation template and software application stack	Open/closed lid detection, e.g., for detecting status of service lids
- On-board Wi-Fi and ethernet connectivity	– Hall speed sensors, e.g., for blocked fan and fan speed monitoring
– mikroBUS™ ClickBoard interface for extending connectivity	- Sound anomaly detection, e.g., for gears and joints
 XENSIV™ sensor satellite boards with a broad range of sensors for data collection and condition monitoring 	
 Multi-account registration support with OPTIGA™ Trust M 	

Recommended products portfolio

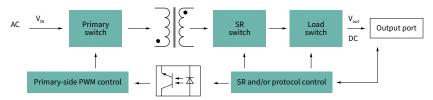
Functional block	Product category	Product family	Benefits
Sensing	XENSIV™ sensors	XENSIV™ DPS368 pressure sensor	Ultrasmall waterproof pressure sensor, environmentally protected against water (IPx8), dust and humidity, ideal for harsh environments
		XENSIV™ TLI4971 magnetic current sensor	Magnetic current sensor for AC and DC measurements in industrial applications with an analog interface and dual fast over-current detection outputs
		XENSIV™ TLI493D-W2BW 3D magnetic sensor	Small WLB-5 package with low current consumption of 7 nA in a power-down mode for compact system designs
		XENSIV™ IM69D128S MEMS microphone	Ultra-low power digital XENSIV™ MEMS microphone for building automation and IoT devices with high sensitivity
		XENSIV™ TLE4997E Hall sensor	Hall sensor for highly accurate rotation and position detection, ideally suited to analog-to-digital (A/D) conversion with the supply voltage as a reference
		XENSIV™ TLE4964-3M Hall effect magnetic switch	Hall effect switch dedicated for position detection applications highly accurate applications with superior supply voltage capability
		XENSIV™ TLI4966G double Hall switch	Double Hall switch with two output pins for industrial applications with a rotating pole wheel
Security	OPTIGA™	OPTIGA™ Trust M	A high-end security solution that provides an anchor of trust for connecting IoT devices to the cloud
		OPTIGA™ Trust M Express	Offered with CIRRENT™ Cloud ID – Infineon's cloud service automates IoT device certificate registration and device provisioning in the product cloud at scale with zero manual intervention
Control	XMC™ microcontrollers	XMC4800 microcontroller	32-bit first-ever EtherCAT® node on an ARM® Cortex®-M microcontroller with on-chip flash and analog/mixed-signal capabilities
		XMC4700 microcontroller	32-bit optimized solution to meet the performance challenges of today's embedded control applications, ideal for motor control and SMPS
	PSoC™ microcontrollers	PSoC™ 6 series	Dual-core Arm® Cortex®-M4 and Cortex-M0+ architecture with ultra- low power consumption purpose-built for IoT applications
		PSoC™ 4 series	32-bit microcontroller tackling some of the complex portions of embedded system design, making it easier and more flexible
Connectivity	Wireless connectivity	AIROC™ Wi-Fi + Bluetooth® Combos	IEEE 802.11a/b/g/n/ac/ax Wi-Fi and Bluetooth® 5.2 in a single-chip for small-factor IoT designs

SMPS

Battery chargers for mobile appliances

Infineon's solutions for battery chargers are designed to fit the large variety of topologies and power ratings for applications like e-bike or cordless power tools. Whether the design requires ultra-high efficiency or a cost-performance oriented implementation, we help you simplify the design process and accelerate time-to-market.

REF_ICC80QSG_84W1_BPA proposes flyback topology for chargers that require an output power level between 65 and 130 W with minimized bill of material. By taking advantage of the ICC80QSG controller, this design achieves a high efficiency of 90.8 % at full load and supports a wide output voltage of 9 − 21 V. The controller IC and the 700 V CoolMOS™ P7 MOSFET (IPN70R450P7S) are offered in compact wave-solderable SMD packages. With a small heat sink and no fan being required, the design offers additional flexibility.


REF_XDPS2201_170W_BPA combines the XDPS2201 digital controller and two 600 V CoolMOS™ P7 MOSFETS (IPA60R280P7S) in a half-bridge configuration. XDPS2201 is based on an asymmetrical half-bridge control and operates directly from rectified mains with no PFC input stage. The solution demonstrates a wide output voltage range of 18 V to 42 V at 95 % peak efficiency.

For output power of up to 240 W, Infineon offers a variety of USB-C PD solutions that feature a comprehensive portfolio of USB-PD power and protocol controllers.

Features and benefits

Key features	Key benefits
– Wide output voltage range	Scalable design to support different battery cell configurations
- High efficiency (>90 % for flyback, >94 % for hybrid flyback)	Fewer heatsinks and fanless operation for outdoor use
- High level of integration	Ease of design and BOM cost reduction
– Externally configurable parameters	Flexible system parameterization
- Inrush current, reverse polarity protection	- Robust operation
- No auxiliary voltage supply, no PFC stage	- Suitable for cost-conscious designs

Application diagram

Product portfolio

Application	Topology	Product type	Product/product family	Package
Chargers for battery-powered applications	QR flyback	QR flyback controller	ICC80QSG	DSO-8
		High-voltage MOSFETs	700 V CoolMOS™ P7	SOT-223
	Hybrid flyback	Standalone digital controller	XDP™ digital power XDPS2201	DSO-14
		Combo digital controller	XDP™ digital power XDPS2221	DSO-14
		High-voltage MOSFETs	600 V CoolMOS™ P7	TO-220-FP
		Medium-voltage MOSFETs	OptiMOS™ 5 60 V/80 V/100 V	Multiple
		Medium-voltage MOSFETs	OptiMOS™ 5 150 V	SuperSO8
		AC/DC integrated power stage	CoolSET™ Gen 5	DIP-7

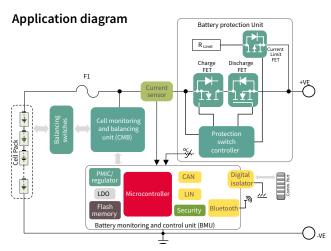
Battery protection

Solutions that allow easy design-in ensuring safe charging/discharging

The high-power density of lithium-ion batteries has made them very popular. However, the unstable behavior of lithium-ion cells under critical conditions requires them to be handled with care. That means a battery management system (BMS) is needed to monitor the battery state and ensure safe operation. BMS is typically equipped with an electronic switch that disconnects the battery from the charge or load under critical conditions that can lead to dangerous reactions. A battery protection unit (BPU) prevents possible damage to the battery cells and the failure of the battery.

Such critical conditions include:

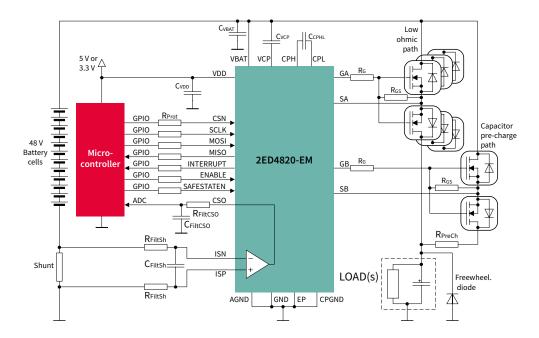
- Over-charge that occurs when the battery is charged over the allowed maximum capacity
- High and low temperature when the internal temperature of the battery cells exceeds their safe operational temperature range
- Over-discharge when the battery is discharged under the allowed minimum capacity
- Overcurrent when the battery is exposed to a short circuit condition or a high inrush turn-on current
- Reverse polarity when the battery terminals are wrongly plugged into the device


Failing to disconnect the battery during such conditions can lead to the following problems:

- Thermal runaway often due to over-charging or overheating of the battery. The overheating event can be due to
 a rise in the ambient temperature or due to charging/discharging the batteries with high current rates. Thermal
 runaway damages the battery cells and can lead to fires
- Death of the cell often due to the discharge of batteries below its specified thresholds
- Damage of load device often due to either improper inrush current management or reverse polarity

In order to prevent these failures, Infineon offers a wide range of battery protection solutions that increase the lifetime and efficiency of lithium-ion batteries under stressful conditions.

Features and benefits


Key features	Key benefits
- R _{DS(on)} and safe operating area (SOA)	 Higher performance with lower R_{DS(on)} and wider safe operating area (SOA)
– Compact bill of material (BOM)	Cheaper solutions with a more compact bill of material and more effective parallelization solutions
- Short circuit protection	Short circuit protection with higher peak current rates to withstand higher current values
- Turn-on and turn-off capabilities	- Turn-on and turn-off solutions tailored to applications needs
– All voltage class solutions	Up to 600 V MOSFET protection solutions (including single- and multi-module)

Product portfolio

Battery voltage	Application		Recommended power MOSFETs					
18 V	Charge and discharge MOSFET	$\begin{array}{c} \text{IST007N04NM6} \\ \text{40 V, 0.7 m}\Omega, \\ \text{sTOLL} \end{array}$	IRPB011N04NF2S 40 V, 1.15 m Ω , D 2 PAK	BSC005N03LS5I 30 V, 0.55 m Ω , SuperSO8	IQE008N03LM5CG 30 V, 0.85 m Ω , PQFN 3.3x3.3 Source-Down Center-Gate	BSZ0500NSIATMA. 30 V, 1.5 mΩ, PQFN 3.3x3.3		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 mΩ, SOT-23	IRLHS6376 30 V, 63 mΩ, PQFN 2x2-Dual	IRLML2244 -20 V, 54 m Ω , SOT-23	IRFHS9301 -30 V, 37 mΩ, PQFN 2x2		
	Pre-charge MOSFET	BSC084P03NS3 G -30 V , 8.4 m Ω , SuperSO8	IRFH9310 -30 V, 4.6 m Ω , SuperSO8	SPD50P03L G -30 V, 7.0 m Ω , DPAK	BSZ180P03NS3E G -30 V, 18 mΩ, PQFN 3.3x3.3	BSZ120P03NS3 G -30 V, 12 mΩ, PQFN 3.3x3.3		
24 V	Charge and discharge MOSFET	$\begin{array}{c} \text{IST007N04NM6} \\ \text{40 V, 0.7 m} \Omega, \\ \text{sTOLL} \end{array}$	$\begin{array}{c} \text{IRPB011N04NF2S} \\ \text{40 V, 1.15 m}\Omega, \\ \text{D}^2\text{PAK} \end{array}$	ISC007N04NM6 40 V, 0.7 m Ω , SuperSO8	IQE013N04LM6CG 40 V, 1.35 mΩ, PQFN 3.3x3.3 Source- Down Center-Gate	BSZ018N04LS6 40 V, 1.8 mΩ, PQFN 3.3x3.3		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 mΩ, SOT-23	IRLHS6376 30 V, 63 mΩ, PQFN 2x2-Dual	IRLML2244 -20 V, 54 mΩ, SOT-23	IRFHS9301 -30 V, 37 mΩ, PQFN 2x2		
	Pre-charge MOSFET	ISC240P06LM -60 V, 24 mΩ, SuperSO8	ISC800P06LM -60 V, 80 mΩ, SuperSO8	IPD900P06NM -60 V, 90 mΩ, DPAK	ISZ810P07LM -60 V, 81 m Ω , PQFN 3.3x3.3	ISP25DP06LM -60 V, 125 mΩ, SOT-223		
36 V	Charge and discharge MOSFET	IPT007N06N 60 V, 0.75 mΩ, TOLL	IPTG007N06N 60 V, 0.75 mΩ, TOLG	IPF010N06NF2S 60 V, 1.05 mΩ, D²PAK 7pin	IPB013N06NF2S 60 V, 1.3 mΩ, D²PAK	$\begin{array}{c} \text{IST011N06NM5} \\ \text{60 V, 1.1 m}\Omega, \\ \text{sTOLL} \end{array}$		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 mΩ, SOT-23	IRLHS6376 30 V, 63 mΩ, PQFN 2x2-Dual	IRLML2244 -20 V, 54 m Ω , SOT-23	IRFHS9301 -30 V, 37 mΩ, PQFN 2x2		
	Pre-charge MOSFET	ISC240P06LM -60 V, 24 mΩ, SuperSO8	ISC800P06LM -60 V, 80 m Ω , SuperSO8	IPD900P06NM -60 V, 90 mΩ, DPAK	ISZ810P07LM -60 V, 81 mΩ, PQFN 3.3x3.3	ISP25DP06LM -60 V, 125 mΩ, SOT-223		
48 V	Charge and discharge MOSFET	IPT012N08N5 80 V, 1.2 mΩ, TOLL	IPTG011N08NM5 80 V, 1.1 mΩ, TOLG	IPT010N08NM5 80 V, 1.0 mΩ, TOLT	IPB016N08NF2S 80 V, 1.65 mΩ, D²PAK	$\begin{array}{c} \text{IST019N08NM5} \\ 80 \text{ V, } 1.9 \text{ m}\Omega, \\ \text{sTOLL} \end{array}$		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 mΩ, SOT-23	IRLHS6376 30 V, 63 mΩ, PQFN 2x2-Dual	IRLML2244 -20 V, 54 mΩ, SOT-23	IRFHS9301 -30 V, 37 mΩ, PQFN 2x2		
	Pre-charge MOSFET	ISC750P10LM* $-100 \text{ V}, 75 \text{ m}\Omega,$ SuperSO8	$\begin{array}{c} \text{IPD19DP10NM} \\ \text{-100 V, 186 m} \Omega, \\ \text{DPAK} \end{array}$	ISZ24DP10LM* -100 V, 245 mΩ, PQFN 3.3x3.3	$\begin{array}{c} \text{ISP16DP10LM} \\ \text{-100 V, 250 m}\Omega, \\ \text{SOT-223} \end{array}$	BSP322P -100 V, 800 mΩ, SOT-223		
discharge Balancing	Charge and discharge MOSFET	IPT030N12N3 G 120 V, 3.0 mΩ, TOLL	IPT039N15N5 150 V, 3.9 mΩ, TOLL	IPB044N15N5 150 V, 4.4 mΩ, D²PAK 7pin	IPB048N15N5 150 V, 4.8 mΩ, D^2 PAK	IPT111N20NFD 200 V, 11.1 mΩ, TOLL		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 m Ω , SOT-23	IRLHS6376 30 V, 63 m Ω , PQFN 2x2-Dual	IRLML2244 -20 V, 54 m Ω , SOT-23	IRFHS9301 -30 V, 37 m Ω , PQFN 2x2		
	Pre-charge MOSFET	ISC16DP15LM $-150 \text{ V}, 160 \text{ m}\Omega,$ SuperSO8	ISZ56DP15LM -150 V, 560 mΩ, PQFN 3.3x3.3	ISZ75DP15LM -150 V, 750 mΩ, PQFN 3.3x3.3	IPD42DP15LM -150 V, 420 mΩ, DPAK	ISP14EP15LM -150 V, 1380 mΩ, SOT-223		
96 V	Charge and discharge MOSFET	IPT039N15N5 150 V, 3.9 mΩ, TOLL	IPB044N15N5 150 V, 4.4 mΩ, D²PAK 7pin	IPB048N15N5 150 V, 4.8 mΩ, D²PAK	IRF135SA204 135 V, 5.9 mΩ, D²PAK 7pin	$\begin{array}{c} \text{IPT111N20NFD} \\ \text{200 V, 11.1 m}\Omega, \\ \text{TOLL} \end{array}$		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 mΩ, SOT-23	IRLHS6376 30 V, 63 mΩ, PQFN 2x2-Dual	IRLML2244 -20 V, 54 mΩ, SOT-23	IRFHS9301 -30 V, 37 mΩ, PQFN 2x2		
	Pre-charge MOSFET	ISC16DP15LM $-150 \text{ V}, 160 \text{ m}\Omega,$ SuperSO8	ISZ56DP15LM -150 V, 560 mΩ, PQFN 3.3x3.3	ISZ75DP15LM -150 V, 750 mΩ, PQFN 3.3x3.3	IPD42DP15LM $^{-150}$ V, 420 mΩ, DPAK	ISP14EP15LM -150 V, 1380 mΩ, SOT-223		
144 V	Charge and discharge MOSFET	IPT111N20NFD 200 V, 11.1 mΩ, TOLL	IPTG111N20NM3FD 200 V, 11.1 mΩ, TOLG	IPT210N25NFD 250 V, 21.0 mΩ, TOLL	IPTG210N25NM3FD 250 V, 11.1 mΩ, TOLG	IPB107N20N3 G 200 V, 10.7 mΩ, D^2 PAK		
	Balancing MOSFET	ISK024NE2LM5 25 V, 2.4 mΩ, PQFN 2x2	IRLML6244 20 V, 21 mΩ, SOT-23	IRLHS6376 30 V, 63 m Ω , PQFN 2x2-Dual	IRLML2244 -20 V, 54 mΩ, SOT-23	IRFHS9301 -30 V, 37 mΩ, PQFN 2x2		
	Pre-charge MOSFET	BSP317P -250 V, 4000 mΩ, SOT-223	BSP92P -250 V, 12000 mΩ, SOT-223	BSR92P -250 V, 12000 mΩ, SC59	BSS192P -250 V, 12000 mΩ, SOT-89			

Gate drivers

Main reasons to use 2ED4820-EM in dependable 48 V power supplies

- Faster reaction time (~ 10 μs)
- Integrated bidirectional high or low side current sense amplifier
- High current source or sink support
- Robust against under-/overvoltage in the board-net
- Flexible configuration of protection features plus the accessibility of diagnosis information via SPI

Battery monitoring and control

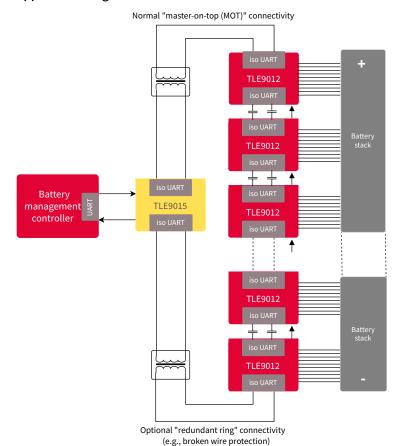
Optimize system performance by cell balancing and monitoring key battery parameters

Dedicated cell monitoring controllers are being used to keep lithium-ion cells within their allowed operational ranges regarding voltages, currents, and temperatures. They monitor the state of each cell according to pre-adjusted voltages and temperatures using high-precision ADCs. Synchronizing the distributed measurements across all cells inside a battery is key to achieving the best possible insights into the battery's dis-/charging state (SOD/SOC) and overall battery health (SOH). The critical battery state assessment becomes less precise if these measurements are spread across wider time windows and if the measurement accuracy for each parameter is not high enough. A robust high-speed communication link across multiple daisy-chained monitoring devices supports complex cell topologies for a battery. For additional robustness, the daisy-chaining realizes a redundant ring, which keeps communication up between all connected ICs in case of a broken link. CRC-protected data frames complement communication robustness. To achieve extremely low-power dedicated housekeeping functions such as periodically scheduled cell measurements and state analysis required for functional safety, the cell controller can perform independently from the master controller of the BMS. Safety features for signaling over-/undervoltage, thermal stress, etc., including emergency alarms, are triggered autonomously. When the number of cells increases, a reliable transfer of information from the cell balancing IC to the BMS controller becomes very important. Digital isolators can be used to ensure that the right data is transferred reliably by isolating the low-voltage side (BMS controller) from the high-voltage battery side.

TLE9012DQU – Li-ion battery monitoring and balancing IC

Features

- Voltage monitoring of up to 12 battery cells connected in series
- Hot plugging support
- Dedicated 16-bit delta-sigma ADC for each cell with selectable measurement mode
- High accuracy measurement for SOC and SOH calculation
- Integrated stress sensor with digital compensation algorithm and temperature-compensated measurements
- Secondary ADC with the same averaging filter characteristics as an advanced end-to-end safety mechanism
- Five temperature measurement channels for external NTCs
- Internal temperature sensors
- Integrated balancing switch allows up to 200 mA balancing current
- Differential robust serial 2 Mbit/s communication interface
- Additional four GPIO pins to e.g., connect an external EEPROM
- Internal round-robin cycle routine triggers the majority of diagnostics mechanisms
 - Automatic balancing over- and undercurrent detection scheme
 - Automatic open load and open wire detection scheme
 - Automatic NTC measurement unit monitoring scheme
- End to end CRC secured iso UART/UART communication
- Emergency mode for communication
- ISO 26262 safety element out of context for safety requirements up to
- Automotive safety integrity level D
- Green product (RoHS compliant)

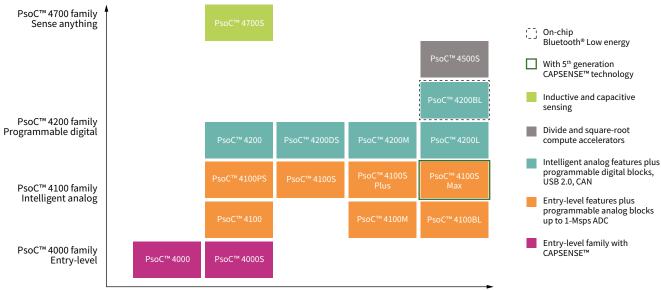


TLE9015QU - BMS transceiver IC - UART to iso UART

Features

- General
 - Two UART ports for serial communication to host microcontroller
 - Two iso UART interfaces for communication to other BMS ICs
 - 2 Mbit/s data rate for fast communication
 - Fully transparent communication scheme from UART to iso UART
 - Ring mode topology compatible
- Communication ports
 - Integrated internal logic to minimize pin count on the UART side
 - Differential current edge triggered iso UART communication interface
 - High robustness against external noise
- General purpose error pin
 - Two external fault inputs (EMM and ERRQ_ext)
 - Latching error output pin to trigger external microcontroller
- Supporting diagnosis features
 - Internal supply monitoring
 - Green product (RoHS compliant)

Application diagram



Digital isolators for battery monitoring

Part number	Isolation ring	Safety certifications	Channel configuration 1)	Input thresholds	Default output state	Package
2DIB0400F	V _{ISO} =3000 V _{RMS} (UL1577 Ed. 5)	UL1577 (Ed. 5)	2 forward 0 reverse	Variable (CMOS)	Low	PG-DSO-8 5 x 4 mm
2DIB0401F	(OLISTT Ed. 3)	VDE 0884-11 VDE 0844-17 IEC 62368-1 IEC 6001-1 IEC 61010-1 GB4943.1	(2+0)	(CIVIOS)	High	3 X 4 111111
2DIB1400F			(1+1)		Low	
2DIB1401F					High	
2DIB0410F				Fixed (TTL)	Low	
2DIB0411F					High	
2DIB1410F					Low	
2DIB1411F			(1+1)		High	

Microcontrollers for BMS

Flash capacity and features

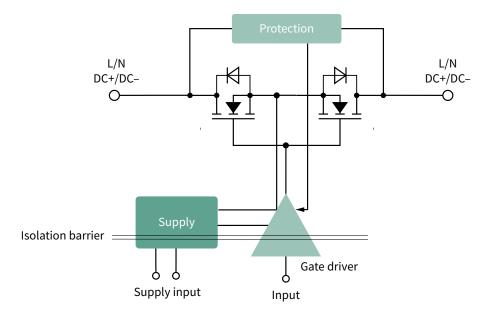
Battery security and authentication

OPTIGA™ Authenticate S provides enhanced device authentication to protect against counterfeits

Rich set of customization options	Effortless implementation	Security to rely on
 4 authentication modes 4 separate life cycle counters to prevent manipulation 3 temperature ranges 2 communication profiles 3 sets of memory 	Full turnkey solution – no security know-how required Full system integration support including embedded software, host software and advanced ecosystem support tools	Enhanced HW security with an extended key length Asymmetric cryptography Protection against reverse engineering Provisioning in a common criteria certified environment

FET-based high-voltage solid-state relays

Best-in-class R_{DS(on)} x A enables unprecedented low losses in combination with advanced control and protection features


Electromechanical relays are a mature and well-established technology. However, they suffer from some inherent weaknesses. The mechanical movement of metal contacts causes noise. The high voltages can arc before the contacts are completely opened or closed, which leads to contact degradation. An increase in contact resistance over the lifetime causes the behavior to become less predictable. Triacs (or silicon-controlled rectifiers, SCRs) are widely used as solid-state relays in AC applications. However, their controllability is limited and they suffer from high power dissipation in the range of 1 W/A.

FET-based solid-state solutions offer many benefits in relay applications. This includes significantly faster switching while eliminating arcing and the noise associated with electromechanical devices. Inherently, this results in higher reliability and more stable performance. When considering the maintenance, repair and operations (MRO) cost, a strong argument can be made for using solid-state relays. Compared to triacs, a FET-based solution offers advanced control and protection methods. The significantly lower power dissipation minimizes the cooling effort in the application. The latest CoolMOS™ S7(A) technology is a perfect match for solid-state relay applications. It offers an unprecedentedly low R_{DS(on)} x A figure of merit that will meet the needs of customers and their end markets.

Features and benefits

Key features	Key benefits
- Operational lifetime: tens of millions of operations	 Maintenance-free (no degradation of contacts), MRO cost savings
- No mechanical parts	Arcing-free operation, no contact bounce, clicking noise is eliminated
- Significantly faster switching	Advanced control and protection methods
- No increasing resistance vs. lifetime	– Stable performance, predictable behavior
– Lowest R _{ps(an)} x A in class	 Highest power density, minimized cooling effort, parallelization and scalability

Application diagram

www.infineon.com/ssr www.infineon.com/S7

Product portfolio

Product	Product family	Voltage class [V _{DS} max]	R _{DS(on)}	Package	Part number
MOSFETs	CoolMOS™ S7 industrial	600 V	22 m Ω to 65 m Ω	TO-220	IPP60R022S7, IPP60R040S7, IPP60R065S7
				TOLL	IPT60R022S7, IPT60R040S7, IPT60R065S7
			$10~\text{m}\Omega$ to $65~\text{m}\Omega$	QDPAK top-side cooled	IPDQ60R010S7, IPDQ60R022S7, IPDQ60R040S7, IPDQ60R065S7
			$10~\text{m}\Omega$ to 65 m Ω	QDPAK bottom-side cooled	IPQC60R010S7, IPQC60R040S7, IPDQ60R017S7
	CoolMOS™ S7A automotive		$10~\text{m}\Omega$ to $40~\text{m}\Omega$	QDPAK top-side cooled	IPDQ60R010S7A, IPDQ60R017S7A, IPDQ60R022S7A IPDQ60R040S7A
			$10~\text{m}\Omega$ to $40~\text{m}\Omega$	QDPAK bottom-side cooled	IPQC60R010S7A, IPQC60R017S7A, IPQC60R040S7A, IPQC60R017S7

Product	Product family	Output voltage	Output current [typ.]	Isolation type	Part number
Gate drivers	EiceDRIVER™	20 V	5 A/9 A	functional/basic isolation	1EDB6275F, 1EDB8275F, 1EDB9275F
			5 A/9 A	non-isolated	1EDN6550B, 1EDN8550B, 1EDN9550B, 1EDN8511B
			±2 A to ±6 A	functional isolation	1EDI10I12MF, 1EDI20I12MF, 1EDI30I12MF
		25 V	±2.6 A	non-isolated	1ED44173N01B
		40 V	±3 A to ±6 A	functional isolation	1ED3431MU12M, 1ED3461MU12M
				reinforced isolation	1ED3431MC12M, 1ED3461MC12M

Product	Product family	Load voltage	Output/load current	Isolation voltage	Part number
Integrated	Photovoltaic isolators (PVI)	-	2 x 5 μΑ	3.75 kV	PVI5033R
solid-state				2.5 kV	PVI1050N
relays	Photovoltaic relays (PVR)	60 V	2 A	4 kV	PVG612A
		400 V	1 A	3.75 kV	PVX6012

www.infineon.com/ssr www.infineon.com/S7

Low-voltage motor drive and control

Low-power battery applications

When it comes to increased efficiency and durability, brushless DC (BLDC) motors offer the ideal solution for power electric motor applications. Compared to traditional brushed motors, brushless DC motors are quieter, lighter, and offer an overall smaller design footprint while providing increased reliability. These improvements, however, come with an increased need for monitoring and control, requiring significantly more complex electronics and supporting algorithms. This move toward BLDC motors occurs in concert with a continuous push towards higher energy efficiency, resulting in trade-offs between power delivery and battery lifetime. This, in turn, puts a significant burden on semiconductor technologies to deliver high performance in motor control applications. In parallel, shortening life cycles and increased product diversity put an additional burden on suppliers to provide that same high performance, cost-efficient solutions across an increasing variety of use cases.

With industry-leading technology and reliability, Infineon's extensive portfolio of discrete and integrated circuits offers the breadth and depth of solutions necessary to meet the demands across a wide spectrum of motor control needs.

Features and benefits

A complete eco-system of simulations, documentation and demonstration boards Comprehensive portfolio of products and solutions Best in class MOTIX™ gate drivers for OptiMOS™ and StrongIRFET™ MOSFETs offering high efficiency and protection World-class broad and deep portfolio of LV FETs with SMD packaging improves capability and reliability while reducing assembly cost Components featuring small form factor and compact design offering highest power density and BOM savings thanks to lowest R_{DS(on)}

- High reliability of Infineon components results in prolonged product life spans

Key benefits

- Fast time-to-market
- Broad portfolio allows for right product fit to meet application needs
- Extended battery life and product life span
- Reduction overall system size and cost

Application diagram

Target end applications

Key enabling products

- Power MOSFETs –
 OptiMOS™, StrongIRFET™
- MOTIX[™] low-voltage motor control solutions
- XMC1000 microcontrollers
- XMC4000 microcontrollers
- PSoC™ 4100 microcontrollers
- PSoC™ 62 microcontrollers
- XENSIV™angle sensor
- XENSIV™ magnetic sensor
- XENSIV™ current sensor
- XENSIV™ Hall switch

www.infineon.com/bldc www.infineon.com/bdc

IGBT discretes and silicon power diodes

Intelligent power switches and modules

Power management ICs

Product portfolio

Product category	Product family	Package options	Battery voltage support [V]	Voltage class [V _{DS} max.]	Representative part numbers
Inverter/MOSFETs	StrongIRFET™ OptiMOS™	S™ SuperSO8 SC PQFN 3x3 DirectFET™ S/M/L-Can PQFN 5x6 Source Down TOLL TOLG	12-16	25-30	BSC005N03LS5, IQE006NE2LM5, IPT004N03L, IQE006NE2LM5CGSC, ISZ019N03L5S, IQE008N03LM5,
			18	40	IRL40DM247, BSC010N04LS, IST011N06NM5, IRF40SC240, IPB011N04NF2S, IPB023N04NF2S, IPF013N04NF2S, ISC012N04NM6
			36-48	60	IST011N06NM5, BSC012N06NS, BSZ100N06NS, IPT007N06N, IRFS7534, BSC014N06NS, IPTC007N06NM5, IPB013N06NF2S, IRF60DM206, IQE030N06NM5SC
		TOLT TO-220 TO-247 DPAK	48-60	75-80	BSC021N08NS5, BSC030N08NS5, IPT010N08NM5, IPTG011N08NM5, IPP040N08NF2S, IPB049N08N5, IPB016N08NF2S, IPB040N08NF2S, IPB024N08NF2S, IPF017N08NF2S, IQE050N08NM5, BSC023N08NS5SC
	D ² PAK D ² PAK 7-pin		60-72	100-120	BSC035N10NS5, ISZ080N10NM6, IPT015N10NF2S, IPTC015N10NM5, IPP050N10NF2S, IPB018N10N5, ISC030N12NM6, IPP018N10N5, IPT014N10N5, IPTC017N12NM6
			72-96	150	BSC074N15NS5, BSC110N15NS5, BSC110N15NS5SC, BSC093N15NS5SC, IPTG039N15NM5, IPTG044N15NM5, IPTC054N15NM5, IPTC039N15NM5,
			96-144	200	BSC220N20NSFD, IPTG111N20NM3FD, IPT111N20NFD, IRFP4127, IRF200P222, IRF6785, IRFP4668, IRFH5020

Product category	Voltage class [V]	Configuration	Part number	Current source/sink	Comment
Gate drivers	25	Low-side	1ED44173	2.6 A/2.6 A	Integrated fast over-current protection, fault re- porting and enable functionality, SOT-23 package
	60	Three-phase	6EDL7141	1.5 A/1.5 A	Fully configurable gate driver for battery operated motor control applications, integrated power management and current sense amplifiers, VQFN-48 package. >50 SPI programmable parameters. Highly integrated with MOSFET slew rate control, 3 OpAmps, Buck+LDO, dual charge pump
	70	Three-phase	6EDL7151*	1.5 A/1.5 A	High performance, highly integrated, programmable, PSU integrated, space saving, slew rate control, MOSFET optimizations, >50 SPI programmable parameters, slew rate control, 3 OpAmps, Buck+LDO, dual charge pump, and VDS sensing for hardware system protection
	135	High-Side	1EDL8011*	1 A sink	1EDL8011 high-side gate driver provides a simple and highly robust solution to drive a high side disconnect switch to protect battery operated systems, OCP protection, adjustable current setting threshold, time delay, safe start, UVLO.
	160	Three-phase	6ED2742S01Q NEW	1 A/2 A	160 V SOI process product for superior NPSOA with Bootstrap diodes. Support multi protection features. Pre-regulated three phase SOI gate driver with integrated charge pump, current sense amplifier, over-current protection& Fault out report in 5x5 VQFN-32 pacakge. 2K HBM ESD.
	160	High- and low-side	2ED2732S01G NEW	1 A/2 A	160 V SOI process product for superior NPSOA with Bootstrap diodes. Separate VSS/COM, thermal pad, DFN10 package, high side/ low side's own dead-time, 2 kV HBM ESD, smaller footprint, cost effective, simple, easy to use
	160	Half-bridge	2ED2742S01G NEW	1 A/2 A	160 V SOI process product for superior NPSOA with Bootstrap diodes. Separate VSS/COM, thermal pad, DFN10 package, integrated shootthrough protection logic, 2 kV HBM ESD, smaller footprint, cost effective, simple, easy to use
	160	Half-bridge	2ED2748S01G NEW	4 A/8 A	160 V SOI process product for superior NPSOA with Bootstrap diodes. High current drive for parallel MOSFET applications. Separate VSS/COM, thermal pad, DFN10 package, integrated shoot-through protection logic, 2 kV HBM ESD, smaller footprint, cost effective, simple, easy to use
	160	High- and low-side	2ED2738S01G NEW	4 A/8 A	160 V SOI process product for superior NPSOA with Bootstrap diodes. High current drive for parallel MOSFET applications. Separate VSS/COM, thermal pad, DFN10 package, high side/ low side's own dead-time, 2 kV HBM ESD, smaller footprint, cost effective, simple, easy to use
	200	Three-phase	6EDL04N02	0.165 A/0.375 A	SOI, integrated BSD, OCP, enable, fault reporting, TSSOP-28 package
	200	High- and low-side	IRS2005S	0.29 A/0.6 A	V _{cc} and V _{BS} UVLO, matched propagation delay, DSO-8 package
	200	Half-bridge	IRS2007S	0.29 A/0.6 A	V _{cc} and V _{BS} UVLO, matched propagation delay, DSO-8 package
	200	Low- or high-side	1EDN7550	4 A/8 A	Low propagation delay, differential input, high common-mode input, UVLO, SOT23-6 and TSNP-6 package options
	600	Half-bridge	IRS21867S	4 A/4 A	High current level-shift gate driver with low V _{cc} operation, DSO-8 package
	600	Three-phase	6EDL04N06PT	0.165 A/0.375 A	SOI, integrated BSD, tolerant to –VS up to 100 V, OCP, enable, fault reporting, DSO-28W package
	650	Half-bridge	2ED2304S06F	0.36 A/0.7 A	SOI, integrated BSD, tolerant to –Vs up to 100 V, DSO-8 package

www.infineon.com/bldc www.infineon.com/bdc

Category	Product name		Description
Integrated devices	MOTIX™	IFX9201SG	Integrated brushed DC motor driver
		TLE9140EQW NEW	3-Phase BLDC motor gate driver IC, voltage to 110 V, 24 V/48 V systems, gate driving capability: ~230 nC/MOSFET up to 20 kHz, gate-shaping, diagnostics and protections, developed acc. to ISO26262 achieving ASIL-B
		IMD701A	Fully programmable motor controller integrating XMC1404 microcontroller with MOTIX™ 6EDL7141 3-phase gate driver IC in one package. Include hardware MATH Co-Processor (96 MHz) for FOC algorithms, includes PWM timers, position interface (POSIF) or serial communication modules including CAN
Microcontrollers	XMC™	XMC1300 XMC1400	ARM™ Cortex® -M0 core. 32/48 MHz core, math coprocessor, peripherals up to 96 MHz peripherals, CCU4/CCU8 PWM timers, 2x serial channels, hall and encoder interface, analog comparators, 12-bit ADC, up to 200 kB flash/16 kB RAM 16-64 pins
		XMC4400	ARM™ Cortex® -M4F core, up to 144 MHz, up to 512 kB flash/80 kB RAM, 4xCCU4/2xCCU8/2xPOSIF timers, serial channels, up to 4x 12-bit ADC/2x DAC, 4xΔΣ demodulator, 64-100 pins
	PSoC™	PSoC™ 4100	ARM™ Cortex® -M0/M0+ CPU with DMA controller, up to 384 kB flash/32 kB SRAM, cryptographic coprocessor, 12-bit ADC/13-bit DAC, configurable amplifiers, 16-bit PWM timers, configurable serial communication blocks, up to 84 GPIO, 28-100 pin packages
		PSoC™ 62	Dual-core 150 MHz ARM™ Cortex® -M4 and 100 MHz M0/M0+, ultra-low power and low-power operation modes, up to 2 MB flash, 1 MB SRAM with DMA, 24x16-bit and 8x32-bit timer blocks, USB 2.0, up to 104 GPIOs
Sensors	Hall switches	XENSIV™ TLI4963	3-5.5 V operation, active error compensation, high stability magnetic thresholds, low jitter
	Angle sensor	XENSIV™ TLI5012	Integrated angle calculation, incremental interface, SPI with 8 Mbit/s, ≤ 1.90 angle error over-t emperature/life, integrated giant magnetoresistance-based angle sensor, 15-bit representation of angle value with 0.01o resolution, bi-directional SSC interface
	3D magnetic sensor XENSIV™ TLI493D		± 50 mT to ± 160 mT ranges, up to 30.8 LSB12/MT sensitivity, low-power mode, low offset and match drift, wake up function
	Magnetic coreless current sensor	XENSIV™ TLI4971	25 A to 120 A measurement range, 240 kHz bandwidth, low sensitivity error over temperature, galvanic functional isolation up to 1150 V, differential sensing, two independent over current detection outputs

Evaluation platforms

Category	Product name	Description
Application	DEMO-PTOOL-300W-M	This design kit for cordless power tools uses the DirectFET™ ME/MF and firmware developed using the XMC1300 family
	KIT_MOTOR_DC_250W_24V	Three-phase DC motor control power card ($V_{\rm DC}$ 24 V, 250 W motor drive power card for XMC1000 and XMC4000)
	Stepper motor control shield with IFX9201 and XMC1300	The stepper motor control shield based on Infineon's H-bridge IFX9201 and XMC1300 microcontroller can drive the two coils in a stepper motor featuring a dual-H-bridge configuration. This current stepper motor control board is compatible with Arduino microcontroller boards and Infineon's XMC™ microcontroller kits using the Arduino form factor
	KIT_XMC1X_AK_MOTOR_001	XMC1000 motor control application kit
Product	CY8CKIT-037	The CY8CKIT-037 is used for PSoC™ 4 solution evaluation for motor control application. The kit supports BLDC motors, PMSM (permanent magnetic synchronous motors), and stepper motors. We provide example projects including single-shunt and sensorless FOC (field-oriented control), sensored BLDC control, sensorless BLDC control, and stepper motor control example projects
	EVAL_6EDL7141_TRAP_1SH	The EVAL_6EDL7141_TRAP_1SH features fully configurable operating parameters with an on-board debugger ready for direct USB connection to PC. The BLDC motor drive board uses trapezoidal commutation based on the MOTIX™ 6EDL7141 smart three-phase driver and XMC1400 series micro-controller
	EVAL_6EDL7141_FOC_3SH	The EVAL_6EDL7141_FOC_3SH features fully configurable operating parameters with an on-board debugger ready for direct USB connection to PC. The BLDC motor drive board uses sensor-less FOC based or the MOTIX™ 6EDL7141 smart three-phase driver and XMC1400 series micro-controller
	EVAL_IMD700A_FOC_3SH	The EVAL_IMD700A_FOC_3SH features fully configurable operating parameters with an on-board debugger ready for direct USB connection to PC. The BLDC motor drive board uses sensor-less FOC based on the MOTIXTM IMD700/1A integrated XMC1400 series microcontroller with 6EDL7141 smart three-phase driver in a single package
	EVAL_TOLT_DC48V_3KW	The evaluation board features a motor drive inverter power stage using high efficiency, OptiMOS™ 5 100 V power MOSFETs in top-side cooling TOLT package. The top-side cooled MOSFET solution for 3-phase BLDC motor drive leads to increase power handling capability. The power board operates with Infineon's XMC1300 Drive Card (KIT_XMC1300_DC_V1). Firmware is provided with trapezoidal control for 48 V BLDC motor with hall sensors
	S2GO_CUR-SENSE_TLI4971	For evaluation purposes of the latest XENSIV™ current sensor TLI4971, we rely on our proven evaluation concept of Shield2Go and 2GO Kits – therefore the TLI4971 evaluation environment is also offered in those two configurations: — TLI4971 MS2GO: 2GO Kit version — TLI4971 S2GO: Shield2Go version

www.infineon.com/bldc www.infineon.com/bdc

Power

HP LV motor drive and control

Powering light e-mobility and material handling

High-power low-voltage motor drives power both personal light e-mobility vehicles such as e-bikes, e-scooters, e-motorcycles, micro EVs, as well as material handlers such as e-forklifts, delivery vehicles (xDVs), autonomous mobile robots (AMR), automated guided vehicles (AGV), and commercial, construction and agricultural vehicles (CAV). These applications can be collectively referred to as light electric vehicles (LEVs). LEVs have an ever-growing need for highly efficient, intelligent, and powerful motor-drive systems to address requirements such as high speed, high peak and continuous torque, safety, reliability, and most of all, long battery lifetime. Infineon offers a comprehensive, end-to-end solution for every segment and variation of this diverse market with power levels ranging from 200 W to even greater than 50 kW. The OptiMOS™ and StrongIRFET2™ MOSFET families form a powerful yet efficient muscle of the system, while the EiceDRIVER™ and MOTIX™ gate driver families offer a broad range of both isolated and non-isolated gate drivers. An array of motor control MCUs such as iMOTION™, XMC™, PSoC™, TRAVEO™ T2G and AURIX™ along with their software/tools ecosystem, enable quick, easy, and tailor-made implementations of advanced motor control algorithms while meeting increasing safety requirements. The XENSIV™ current and angle/position sensors enable accurate closed-loop control. Along with an extensive product portfolio, Infineon simplifies and accelerates the design process by offering demonstration, evaluation, and reference boards, simulation models, application notes, comprehensive technical support, and a vibrant developer community.

Features and benefits

Key features MOSFETs with best FOMs for drives with low R_{DS(on)}; low Q_{rr}; low Δ_{VGS(th)} Broad and deep microcontroller portfolio enabling varied design approaches (plug n-play, optimized custom design), S/W tool libraries, hall and encoder I/F MATH Co-processor, ΔΣ demodulator, functional safety Gate drivers with robust isolation, TDI, high/programmable output current, active miller clamp

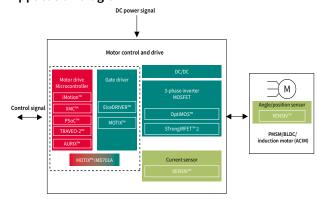
-	Current sensors having high current range, coreless sensing, high resolution, noise immunity and
	programmability

-	Hall switches, angle/position sensors and 3D angle sensors with high accuracy, low jitter and low
	nower consumption

Extended range/increase in battery life Precise motor control Enable compact motor drive design Quick and easy system design enabling fast time-to-market

Rugged, reliable and safe motor drives

Key benefits


Personal e-mobility

eBike eScooter eMotorcycle LSEV

Material handling

Application diagram

Product	Product family
3-phase inverter (MOSFETs)	OptiMOS™, StrongIRFET™
Microcontroller	iMOTION™ IMC 300, XMC™, PSoC™, TRAVEO™ T2G, AURIX™
Gate driver	EiceDRIVER™, MOTIX™
Position/speed sensor	XENSIV™ angle sensors and Hall switches
Current sensor	XENSIV [™] current sensor
Software and Design Enablement	IPOSIM, ModusToolbox™, AURIX™ Development Studio, DAVE™ Drive

Typical power level of the inverter system: 200 W-4 kW

Component	Product family	Battery voltage (V)	Voltage class (V _{DS} max)	Package options	Battery voltage support (V)	Voltage class (V _{DS} max)	Representative part numbers	Features
MOSFETs	StrongIRFET™ 2 OptiMOS™	24-36	60	TOLL TOLG TOLT D²PAK 7-pin D²PAK TO-220 TO-247 SuperSO8	24-36	60	IPTC007N06NM5*, IPTC012N06NM5*, ISC015N06NM5LF*, IPF010N06NF2S, IPF012N06NF2S, IPF016N06NF2S, IPB012N06NF2S, IPB018N06NF2S, IPB015N06NF2S, IPB013N06NF2S, IPB015N06NF2S, IPF004N06NF2S, IPF006NM5, IPT008N06NM5LF, BSC014N06NSSC, IPP030N06NF2S, IPP019N06NF2S, IPP019N06NF2S, IPP016N06NF2S, IPP016N06NF2S, IPP016N06NF2S, IQD09N06NM5CG, IQDH88N06LM5CG	Low R _{DS(m)} and low conduction losses, tight V _{GS(th)} spread for efficient paralleling, low Q _{rr} , soft body diode, innovative packages Catering to diverse application mission profile requirements with OptiMOS™ (industrial grade) and StrongIRFET™ 2
		36-48	80		36-48	80	IPTG011N08NM5, IPTC012N08NM5, IPT012N08NM5, IPT010N08NM5, IPB015N08N5, IPB017N08N5, BSC019N08N55, IPP024N08NF2S, IPB024N08NF2S, IPP016N08NF2S, IPP040N08NF2S, BSC037N08NS5, IPB049N08N5, IPTC011N08NM5*, IPTC014N08NM5*, ISC025N08NM5LF*, IPT009N08NM6*, IPF011N08NM6*, ISC015N08NM6*, IPF011N08NM5CG*, IPF023N08NF2S, IPF039N08NF2S, IPF012N08NF2S, IPF017N08NF2S, IPF014N08NF2S, IPB055N08NF2S, IPB040N08NF2S, IPB024N08NF2S, IPB049N08NF2S, IPB016N08NF2S,	(standard grade and grade with broad availability from distribu- tion partners)

Component	Voltage class (V)	Configuration	Part number	Source/sink	Package	Features
Gate drivers	60	Three-phase	6EDL7141	1.5 A/1.5 A	VQFN48	Configurable smart gate driver, integrated power management, 3 x current sense amplifiers (CSA)
	70	Three-phase	6EDL7151*	1.5 A/1.5 A		Configurable smart gate driver, integrated power management, 3 x current sense amplifiers (CSA) and VDS sensing for hardware system protection
	90	Three-phase	TLE9140EQW	0.48 A	DSO32	Active LS freewheeling during overvoltage, ASIL-B functional safety, automotive grade 0 qualified
	90	Three-phase	TLE9180D-32QK	2 A/2 A	LQFP64	3 x current sense amplifiers (CSA), ASIL-C Functional safety, automotive grade 1 qualified
	160	Three-phase	6ED2742S01Q	1 A/2 A	QFN32	SOI, integrated BSD, trickle charge pumps, power management and current sense amplifiers, RFE
	160	Half-bridge	2ED2742*	1 A/2 A	DFN10	SOI, integrated BSD, integrated shoot-through protection logic, 2 kV HBM ESD
	160	High- and low-side	2ED2732*	1 A/2 A	DFN10	SOI, integrated BSD, integrated shoot-through protection logic, 2 kV HBM ESD
	200	Three-phase	6EDL04N02PR	0.165 A/0.375 A	TSSOP-28	SOI, integrated BSD, OCP, enable, fault reporting, UVLO enable
	200	High- and low-side	IRS2005S	0.29 A/0.6 A	DSO-8	V _{cc} and V _{BS} UVLO, matched propagation delay
	200	High- and low-side	IRS2011S	1/1 A	DSO-8	UVLO, MTON/OFF, max =20 ns, 3.3 - 5 V input
	600	High- and low-side	2EDL05N06PF	0.36/0.7 A	DSO-8	SOI, UVLO, MTON/OFF, max=60 ns, 3.3 - 15 V input, BSD
	600	Single high-side	IRS21271S	0.2/0.42 A	DSO-8	UVLO, OCP, 3 - 15 V input, fault reporting
	600	Three-phase	6EDL04N06PT	0.165 A/0.375 A	DSO-28	SOI, integrated BSD, OCP, enable, fault reporting, UVLO enable

Typical power level of the inverter system: 4 kW-11 kW

Component	Product family	Package options	Battery voltage support (V)	Voltage class (V _{DS} max)	Representative part numbers	Features
MOSFETs	StrongIRFET™ 2 OptiMOS™	TOLL, TOLG TOLT D ² PAK 7-pin D ² PAK TO-220 TO-247 SuperSO8 SuperSO8 SourceDown	48-72	100-120	IPTG014N10NM5, IPTC014N10NM5, IPT015N10N5, IPT015N10NF2S*, IPB020N10N5, ISC022N10NM6, IPB017N10N5, IPT030N12N3-G, IPB036N12N3 G, IPP039N10N5, IPP050N10NF2S, IPT017N12NM6, IPTC017N12NM6, IPF019N12NM6, IPT030N12N3-G, IPTC030N12NM3, IPB055N08NF2S, IPF016N10NF2S, IPF050N10NF2S, IPF042N10NF2S, IPF052N10NF2S, IPP082N10NF2S, IPP082N10NF2S, IPP082N10NF2S, IPP050N10NF2S, IPP050N10NF2S, IPT022N10NF2S, IPT017N10NF2S, IPT015N10NF2S, IQD020N10NM5CG	Low R _{DS(on)} and low conduction losses, tight V _{GS(th)} spread for efficient paralleling, low Q _{rr} , soft body diode, innovative packages Catering to diverse application mission profile requirements with OptiMOS™ (industrial grade) and Stron-
			72-96	135-150	IRF150P220, IPT039N15N5, IPTG039N15NM5, IPTC039N15NM5, IPB044N15N5, IPT044N15N5, IPB048N15N5, IPT054N15N5, IQD063N15NM5CG, BSC093N15NS5, IRFP4568, IPT063N15N5, IRFS4115	gIRFET™ 2 (standard grade and with broad availability from distribution partners)

Component	Voltage class (V)	Configuration	Part number	Source/sink	Package	Features
Gate drivers	160	High- and low-side	2ED2738S01G*	4/8 A	DFN10	SOI, integrated BSD, integrated dead time, integrated shoot- through protection logic, 2 kV HBM ESD
	160	Half-bridge	2ED2748*	4/8 A	DFN10	Truly differential input, high-side and low-side driver, high common mode rejection capability (TDI), 8 V UVLO
	200	1-ch non-isolated	1EDN8550B	4/8 A	SOT23-6	Truly differential input, high-side and low-side driver, high common mode rejection capability (TDI), 8 V UVLO
	200	1-ch non-isolated	1EDN7550U	4/8 A	TSNP	Compact package, truly differential input, high-side and low-side driver, high common mode rejection capability (TDI), 4 V UVLO
	250	Half-bridge	2EDF5215F	5/9 A	DSO-8	Dual channel, 7 V UVLO, functional isolation gate driver, in compact package
	500	High- and low-side	IRS2110S	2/2 A	DSO-16W	MTON/OFF, max=10 ns, separate power and logic ground, SD pin, 3 - 20 V input
	600	High- and low-side	2EDL23N06PJ	2.3/2.8 A	DSO-14	3.3 V - 15 V input, -100 V transient, PGND, SOI, integrated BSD, OCP, UVLO, enable, fault reporting
	600	High- and low-side	IRS21867S	4/4 A	DSO-8	High current level shift gate driver with low V _{cc} operation
	600	1-ch isolated	IR2127	0.25/0.5 A	DIP8	Over current protection and fault reporting
	650	High- and low-side	2ED2181S06 F/J	2.5/2.5 A	DSO-8 (F) DSO-14 (J)	SOI, integrated BSD, 3.3 - 15 V input, MTON/OFF, max=35 ns, -100 V transient, separate logic and power ground (only J version)

Note: The MOSFET parts listed under various power-levels in the above tables is only for guidance purposes; higher power levels can be achieved even with lower voltage class MOSFETs through paralleling.

Typical power level of the inverter system: >11 kW

Component	Product family	Package options	Battery voltage support (V)	Voltage class [V _{DS} max]	Representative part numbers	Features
MOSFETs	StrongIRFET™ 2 OptiMOS™	TOLL TOLG TOLT D ² PAK 7-pin D ² PAK	96-144	200	IRF200P222, IPB107N20N3G, IPTG111N20NM3FD, IRFP4668, IRFS4127, IPT067N20NM6*, ISC119N20NM6*, IPT129N20NM6*, IPP319N20NM6*, IPP069N20NM6*, IPF067N20NM6*, IPB068N20NM6*	Low R _{DS(m)} and low conduction losses, tight V _{GSth} spread for efficient paralleling, low Q _n , soft body diode, innovative packages Catering to diverse application mission profile requirements with OptiMOS™ (industrial grade)
		SuperSO8 TO-220 TO-247	144-200	250-300	IRF250P224, IRF300P226, IPT210N25NFD, IPTG210N25NM3FD, IPB407N30N, IPB600N25N3 G, IRFP4868, IRFB4229, IRFS4229	and StrongIRFET™ 2 (standard grade and with broad availability from distribution partners)

Component	Voltage class (V)	Configuration	Part number	Source/ sink	Package	Features
Gate drivers	650	1-ch isolated	1EDB8275F	5/9 A	DSO-8	3 kV basic isolation with CT technology, (UL1577), separate SRC/SNK output, UVLO (4 types), CMTI > 300 V/ns
	1200		1EDI60N12AF	10/9 A		Short circuit clamping, active shut-down, UVLO, separate SRC/SNK output, 3.3 - 15 V input
	1200	2-ch isolated	2EDB8259F/ 2EDB8259Y	5/9 A	DSO16/ DSO14	3 kV basic isolation w. CT technology, (UL1577), 8 V UVLO (4 types), DIS, STP/DTC, CMTI > 300 V/ns
	1200	2-ch with reinforced isolation	2EDR8259X	5/9 A	DSO-14	Dual-channel, 8 V UVLO, gate driver with increased ch to ch creepage
	1200	2-ch with reinforced isolation	2EDR7259X	5/9 A	DSO-14	Dual-channel, 4 V UVLO, gate driver with increased ch to ch creepage

www.infineon.com/high-power-drive-up-to-200v

Microcontrollers and sensors for precision control and accurate sensing (power-level agnostic)

Component	Product family	Core/MaxClock speed	Representative parts	Package	Features
Microcontroller	iMOTION™	Arm® Cortex® M0, 48 MHz	IMC301A-F048, IMC301A-F064	LQFP-48, LQFP-64	UART, SPI, I ² C, LIN, MATH, 2x ACMP, CCU4
	ХМС™	Arm® Cortex® M0, 32 MHz	XMC13xx	TSSOP-16/28/38, VQFN-24/40,	UART, SPI, I ² C, I ² S, POSIF, MATH, 3x ACMP, CCU8
		Arm® Cortex® M0, 48 MHz	XMC14xx	TSSOP-38, VQFN-0/48, LQFP-64	UART, SPI, 1 ² C, 1 ² S, CAN, POSIF, MATH, 4x ACMP, 2x CCU8
		Arm® Cortex® M4F, up to 144 MHz	XMC4xxx	VQFN-48, TQFP-64	UART, SPI, 1 ² C, 1 ² S, CAN, POSIF, HRPWM, CCU8, Ethernet, EtherCAT
		Single and dual core Arm® Cortex®-M7 and Cortex®-M0+	XMC7100, XMC7200	TQFP-100/176, LFBGA-272	TCPWM timers of 102 ch 16 bit and 16 ch 32-bit, cryptography engine support, CAN-FD
	TRAVEO™ T2G	Single and Dual Arm® Cortex® M7 and M0+ Arm® Cortex® M4F and M0+	TRAVEO™ T2G	LQFP-64/100/176	ASIL-B functional safety, 16-bit dedicated motor TCPWM and 32-bit TCPWM, clock extension peripheral, CAN-FD, cryptography engine support, SOTA support
	AURIX™	up to 6x TriCore™ at 300 MHz+	AURIX™ TC3xx	LQFP-144/176, LFBGA-292/516	ASIL-D functional safety with up to 4-lockstep cores, CAN-FD, cryptography engine support, support high PWM (5 ns @ 200 MHz), SOTA support
Motor Control IC	MOTIX™	Arm® Cortex® M0, 48 MHz	IMD701A	VQFN-64	XMC1404 microcontroller integrated with 6EDL7141 3-ph smart gate driver in a single package

Component	Product family	Representative parts	Features
Angle/position sensors	XENSIV™ Hall switches (end of shaft/out of shaft)	XENSIV™ TLx4961/68	3 - 32 V operation, active error compensation, high stability magnetic thresholds, low jitter
	XENSIV™ angle sensor (end of shaft)	XENSIV™ TLI5012	Integrated angle calculation, incremental interface, SPI with 8 Mbit/s, ≤ 1.9° angle error over temperature/life, integrated giant magneto resistance-based angle sensor, 15-bit representation of angle value with 0.01° resolution, bi-directional SSC interface
		XENSIV™ TLE5501	Sin/cos output via analog interface, precise rotation sensing (typ. angle error of 1 deg), very-low current consumption (~2 mA), extended magnetic field range up to 100 mT, ISO-26262 (functional safety) compliant option
	XENSIV™ 3D magnetic sensor (end of shaft/out of shaft)	XENSIV™ TLI493D	Enables out-of-shaft angular sensing, ±50 mT to ±160 mT ranges, up to 30.8 LSB12/MT sensitivity, low power mode, low offset and match drift, wake up function; recommended for motors with max-speed up to 3000 rpm
Current sensor	XENSIV™ magnetic coreless current sensor	XENSIV™ TLI4971	±25 A, ±50 A, ±75 A and ±120 A measurement range, 240 kHz bandwidth, low sensitivity error over temperature, galvanic functional isolation up to 1150 V, differential sensing, two independent over current detection outputs, user programmable parameters
		XENSIV™ TLE4972	Analog output, up to ±2000 A measurement range, 210 kHz bandwidth, fast overcurrent detection output with programmable threshold, differential sensing, galvanic isolation between current rail and sensor, user programmable parameters

Design resources

Low-voltage drives scalable power demoboard platform
XMC[™] demonstration and eval boards
ModusToolbox[™]
TRAVEO[™] T2G Motor Control

System specification example

 $V_{\rm bat} = 36$ V, 250 W (continuous power) PMSM motor with configurable controller and smart gate driver

BoM Exemplar

Component	Part Numbers	Description
MOSFETs	BSC012N06NS	Small form-factor in a SuperSO8 package, low $R_{DS(on)}$, low Q_n , soft body diode
Microcontroller	IMC301A-F048	Configurable (No-Code) motor control IC; communication: UART, SPI, I ² C, LIN Motor control peripherals: MATH, 2x ACMP, CCU4
Gate driver	6EDL7141	3-phase configurable gate driver with >50 configurable parameters (slew rate, output voltage etc.); fully integrated programmable buck (7,9,10,15 V) + LDO (3.3,5 V) power supply; 3* integrated current sense amplifiers (CSA)
Position/speed sensor	TLI49611MXTMA1	Bipolar Hall latch with 3.0 V to 32 V operating supply voltage, active error compensation, low jitter (typ. 0.35 μ s), high ESD performance
Current sensor	TLI4971-A120T5-U-E0001	120 A measurement range with integrated current rail, high bandwidth of 240 KHz, high robustness to voltage slew rates up to 10 V/ns, two independent fast over-current detection (OCD) pins with configurable thresholds

System specification example

 $V_{\rm bat}$ = 48 V, 250 W (continuous power) PMSM motor with dedicated motor control MCU

BoM Exemplar

Component	Part Numbers	Description
MOSFETs	BSC019N08NS5	Small form-factor in a SuperSO8 package, low R _{DS(on)} , low Q _n , soft body diode
Microcontroller	XMC1302-T038X-0032	Core: 32 MHz Arm® Cortex® M0, peripherals clock: 64 MHz; communication: UART, SPI, I ² C, motor control peripherals: POSIF, MATH, 1x CCU8
Gate driver	6ED2742S01Q	3-phase gate driver built on silicon on insulator (SOI) technology with integrated BSD, trickle charge pumps, power management and current sense amplifiers
Position/speed sensor	TLI49611MXTMA1	Bipolar Hall latch with 3.0 V to 32 V operating supply voltage, active error compensation, low jitter (typ. 0.35 μs), high ESD performance
Current sensor	TLI4971-A120T5-U-E0001	120 A measurement range with integrated current rail, high bandwidth of 240 KHz, high robustness to voltage slew rates up to 10 V/ns, two independent fast over-current detection (OCD) pins with configurable thresholds

System specification example

V_{bat} = 36 V, 250 W (continuous power) PMSM motor with functional safety requirement

BoM Exemplar

Component	Part Numbers	Description
MOSFETs	BSC016N06NS	Small form-factor in a SuperSO8 package, low R _{DS(on)} , Low Q _{rr} , soft body diode
Microcontroller	CYT4BB5CEBQ0AESGS	Core: One/two Arm® Cortex® M7 at 250MHz + Arm® Cortex® M0+ at 100 MHz, 4 MB flash, Up to 12 16-bit counters for motor control, Up to 220 programmable I/Os
Gate driver	TLE9180D-32QK	3-phase gate driver with 3 x current sense amplifiers (CSA), ASIL-C functional safety; automotive grade 1 qualified
Position/speed sensor	TLI49611MXTMA1	Bipolar Hall latch with 3.0 V to 32 V operating supply voltage, active error compensation, low jitter (typ. 0.35 µs), high ESD performance
Current sensor	TLI4971-A120T5-U-E0001	120 A measurement range with integrated current rail, high bandwidth of 240 KHz, high robustness to voltage slew rates up to 10 V/ns. two independent fast over-current detection (OCD) pins with configurable thresholds

Digital isolators

System specification exemplar

 $V_{bat} = 48 \text{ V}, 3 \text{ kW PMSM motor}$

Component	Part Numbers	Description
MOSFETs	IPTC012N08NM5	OptiMOSTM 5 80 V power MOSFET in TOLT package enabling top-side cooling, high current rating >300 A, low $\rm Q_{\rm G}$ of 175 nC
Microcontroller	XMC1403-Q048X0200 AA	Core: 48 MHz arm cortex M0, peripherals clock: 96 MHz; communication: UART, SPI, I ² C, 2*MultiCAN; motor control peripherals: POSIF, MATH, 4x ACMP, 2x CCU88
Gate driver	2ED2738S01G	2-channel (half-bridge) gate driver with SOI isolation, integrated BSD, UVLO, separate V _{ss} /COM, thermal pad
Position/speed sensor	TLE5012B E1000	Gian magneto resistive (GMR) based analog sensor with a high magnetic field range of 20 mT to 100 mT; Max. 1.0° angle error over lifetime, discrete bridge with differential sine and cosine output
Current sensor	TLI4971-A120T5-U-E0001	120 A measurement range with Integrated current rail, high bandwidth of 240 KHz, high robustness to voltage slew rates up to 10 V/ns, two independent fast over-current detection (OCD) pins with configurable thresholds

System specification exemplar

 $V_{bat} = 48 \text{ V}, 20 \text{ kW PMSM motor}$

Component	Part Numbers	Description
MOSFETs	IPTG014N10NM5	OptiMOS™ 5 100 V power MOSFET in TOLG (TO-Leaded with gullwing) package, high current rating >300 A, low Q _c of 169 nC
Microcontroller	SAK-TC377TX-96F300S AB	AURIX™ TC377TX 3 * Tricore @ 300 MHz; functional safety ASIL - D; HSM (hardware security module); communication: 12-ch CAN-FD, 128-ch DMA
Gate driver	2EDB8259F	Half-bridge gate driver with 3 kV basic isolation based on coreless transformer (CT) technology, (UL1577), UVLO (4 types), DIS, STP/DTC, CMTI > 300 V/ns
Position/speed sensor	TLE5014(D)	Giant magneto resistive (GMR) angle sensors with a wide range of selectable interfaces (SPC, SENT, PWM, SPI), low error rate $< 1.0^{\circ}$, easy-to-use pre-configured sensors with high flexibility
Current sensor	TLE4972-AE35S5	High-precision coreless current sensor with full-scale up to 31 mT for high current applications; two independent fast over-current detection (OCD) pins with configurable thresholds

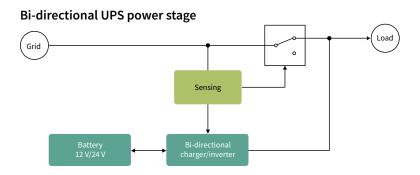
System specification exemplar

 $V_{bat} = 48 \text{ V}, 3 \text{ kW PMSM motor}$

Component	Part Numbers	Description
MOSFETs	IPT039N15N5	OptiMOS™ 5 150 V power MOSFET in TOLL package, high current rating >190 A, low Q _G of 78 nC
Microcontroller	XMC4700-F100K1536 AA	Core: ARM® Cortex ®-M4 @ 144 MHz Communication: channel USIC (configurable to SPI, UART, IIC, IIS) Motor Control Peripherals: 2 x POSIF, 4-channel ΔΣ Demodulator, 4 x 12-bit ADC, 18 input channels, 4 x parallel sampling and conversion
Gate driver	2EDB8259F	Half-bridge gate driver with 3 kV basic isolation based on coreless transformer (CT) technology, (UL1577), UVLO (4 types), DIS, STP/DTC, CMTI > 300 V/ns
Position/speed sensor	TLE5501	Tunnel magneto resistive (TMR) based pre-calibrated sensor with 360° angle measurement; Max. 1.0° (1.9°) angle error over lifetime, 16-bit representation of sine/cosine values
Current sensor	TLE4972-AE35S5	High-precision coreless current sensor with full-scale up to 31 mT for high current applications; two independent fast over-current detection (OCD) pins with configurable thresholds

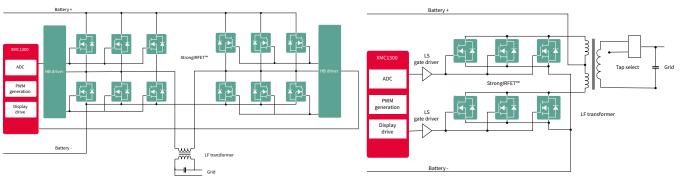
UPS

UP:

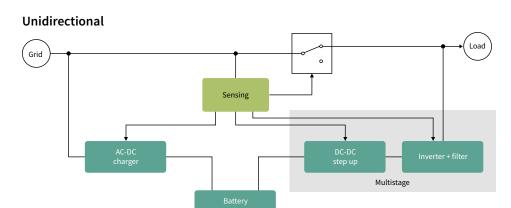

Attractive solutions for highest efficiency and power density

Today's uninterruptible power supply systems introduce a wide range of challenges. Overcoming them requires an increase in output power, energy efficiency and power density. We offer complete system-level solutions and high-quality products for diverse uninterruptible power supply applications. Equipped with our semiconductors, UPS applications can achieve the best-possible power-conversion efficiency and cutting-edge power density. The benefits are cost reduction and fewer passive components – regardless of the topology used.

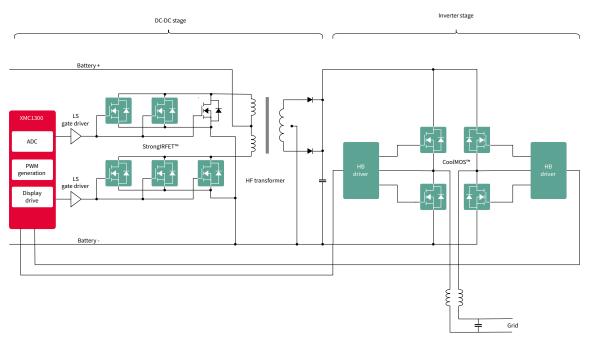
Our solutions and products for UPS applications fulfill the latest market requirements. This includes the trend of modularization of UPS brick units due to scalable power demand from data centers, as well as the topology shift from two-level to three-level to achieve higher efficiency. Our products are suitable for any kind of uninterruptible power supplies in telecom, data center, server or industrial automation environments. Our microcontroller solutions fulfill the control and power conversion requirements to enable UPS market needs. Finally, Infineon's portfolio of Wi-Fi / Bluetooth combos enables UPS proper connectivity for monitoring.


	Offline UPS	Online UPS
NOCET.	OptiMOS™ and StrongIRFET™ 20-300 V	o leight togeth
MOSFETs	CoolMOS™ SJ MOSFETs 500-950 V	CoolSiC™ MOSFETs
SiC diodes		CoolSiC™ Schottky diode
IGBTs		TRENCHSTOP™ IGBT7 TRENCHSTOP™ 5
IGDIS		HighSpeed 3 H3
Power module and stack		EasyPACK™
Driver ICs	EiceDRIVER™ 1EDi EiceDRIVER™ 2EDi	EiceDRIVER™ X3 Compact
Auxiliary power supply		CoolSET™ 650-800 V
Microcontrollers	XMC1300 series / PSoC™ 4 series	XMC1000 and XMX4000 series PSoC™ 4 series
Connectivity	AIROC™ Wi-Fi/Bluetooth® combos	

Offline UPS


Full-bridge bi-directional power stage

Push-pull bi-directional power stage



Functional block	Battery voltage	Topo- logy	MOSFET voltage class	Through hole devices TO- 220 and TO-247	Standard SMDs D ² PAK and D ² PAK-7	Advanced SMDs TOLL, TOLG, TOLT, sTOLL	Gate drivers
nverter/charger MOSFETs	12 V	Push- pull	60 V	IRFB7530/IRFB7534/ IRFB7540/IRFB7537 IRFP3006/IRFP7530/IRFP7537	IPB011N04NF2S IRFS7530	IPT012N06N IPTG007N06NM5 IPTC012N06NM5	IRS44273/IRS4427 1EDN7512B/2ED2181S06J 2ED2184S06J
		Full- bridge	30 V 40 V	IRLB3813/IRLB8314/IRLB8743 IRFB7430/IRFP7430/IRLB4132		IPT004N03L IST006N04NM6	IRS2110/IRS2186 2EDL8114G/1EDN7550B 1EDN8550B
	24 V	Push- pull	80 V 100 V	IPP023N08N5/IPA083N10N5 IRFB3077/IRFB3207/ IRFB7730/IRFB7734 IRFP4468/IRF100B201/ IRF100B202	IPB017N10N5/IPB017N08N5 IRFS7430/IRFS7734/IRF3610S	IPT014N08NM5/IPT015N10N5 IPTG011N08NM5/ IPTG014N10NM5 IPTC011N08NM5/ IPTC014N10NM5	IRS44273/IRS4427 1EDN8511B/2EDN852X 2ED2181S06J/2ED2184S06J
		Full- bridge	40 V 60 V	IRFB7430/IRFB7434/IRFB7545 IRF60B217/IRFP7530/ IRFP3006 IRFP7537	IPB011N04NF2S IRFS7430/IRFS7530	IPT012N06N IPTG007N06NM5 IPTC012N06NM5	1EDN7550B/2EDL811X 2ED2181S06J/2ED2184S06J IRS2186/1EDN8550B
	48 V	Push- pull	150 V	IPP046N15N5/IRFB4321 IRFB4228/IRFB4019/IRFB4115 IRFP4568/IRFP4321/ IRF150P220	IPB048N15N5/IPB044N15N5 IRFS4321/IRFS4115/IRFS4615	IPT039N15N5 IPTG039N15NM5 IPTC039N15NM5	1EDN851X/2EDN852X IRS44273/IRS4427
		Full- bridge	100 V	IPP030N10N5/IPP039N10N5 IPP030N10N/IRFB4110/ IPP086N10N3G IRFB4510/IRF100P218/ IRF100P219	IPB020N10N5/IPB017N10N5 IRF3710S/IRF8010S/IRFS4510	IPT015N10N5 IPTG014N10NM5 IPTC014N10NM5	1EDN8550B IRS2186 2EDL811X
	72 V	Push- pull	200 V	IPP110N20N3/IRFB4127 IRFB4227/IRF200P223	IPB110N20N3LF IRFS4127	-	1EDN851X/2EDN853X IRS44273/IRS4427
		Full- bridge	150 V	IPP046N15N5/IRFB4321 IRFP4568/IRF150P220	IPB048N15N5/IPB044N15N5 IRFS4321	IPT039N15N5 IPTG039N15NM5 IPTC039N15NM5	2EDL811X IRS2186
		Full- bridge	200 V	IPP110N20N3 IRFB4227 IRF200P222 IRFP4668	IPB110N20N3LF IRFS4127	-	2EDL811X IRS2186

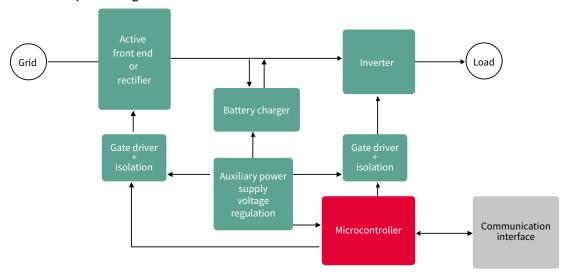
www.infineon.com/ups

Unidirectional power stage (output stage)

Unidirectional DC-DC stage

Battery voltage	Topology	MOSFET breakdown voltage	TO-220	TO-247	D ² PAK and D ² PAK-7	Gate drivers
12 V	Push-pull	40 V	IRFB7430/IRFB7434 IRLB4132/IRFP7718	IRFS7430/IRFS7430	IPT004N03L IST006N04NM6	IRS44273/IRS4427 1EDN851X/2EDN853X
		60 V	IRFB7540 IRFB7545 IRF60B217	IPB011N04NF2S IRFS7530	IPT012N06N IPTG007N06NM5 IPTC012N06NM5	2ED2181S06J 2ED2184S06J 2EDF5215 2EDL23N06PJ 2ED2182S06F
		80 V	IRFP7718 IRFP7718	IPB017N08N5 IPB016N08NF2S IPF014N08NF2S	IPT014N08NM5 IPTG011N08NM5 IPTC011N08NM5	2EDF5215 2EDL23N06PJ 2ED2182S06F
24 V	Push-pull	80 V	IPP023N08N5 IRFB3077/IRFB3207 IRFB7730/IRFB7734	IPB017N08N5 IRFS7730 IRFS7734	IPT014N08NM5 IPTG011N08NM5 IPTC011N08NM5	2ED2181S06J 2ED2184S06J
		100 V	IPP030N10N5/ IPP039N10N5 IRF100P218/IRFP4468	IPB020N10N5 IPB017N10N5 IRFS4010 IRF3610S	IPT015N10N5 IPTG014N10NM5 IPTC014N10NM5	2ED2181S06J 2ED2184S06J 2EDF5215 2EDL23N06PJ 2ED2182S06F
		150 V	IPP046N15N5 IRFB4115/IRFB4321 IRFB4019/IRF150P220	IPB044N15N5 IRFS4321/IRFS4115 IRFS4615	IPT039N15N5 IPTG039N15NM5 IPTC039N15NM5	IRS2186 2EDL811X
Microcontrollers		XMC1300 series/PSoCT	4 series			

Unidirectional inverter stage


Battery voltage	Topology	MOSFET voltage class	Through hole devices TO-220 and TO-247	Standard SMDs D²PAK and D²PAK-7	Gate drivers
200 V	Full-bridge inverter	300 V	IPP410N30N / IRFB4137	-	1EDB8275F / 2EDB825x
	120 V _{AC}		IRF300P226 / IRF300P227	IPB60R180P7 / IPB60R080P7	IRS2186
400 V	Full-bridge inverter	500 V	IPP50R190CE / IPW50R190CE	-	2EDN7524F
	220 V _{AC}	600 V	IPP60R180P7 / IPW60R099P7	IPB60R180P7 / IPB60R080P7	2EDR825x
Microcontrollers	· · · · · · ·	XMC1300 series / PSo	C™ 4 series		

Unidirectional charger

Battery voltage	Topology	MOSFET Voltage class	Through hole devices TO-220 and TO-220 FP	Standard SMDs D²PAK and DPAK		
12-72 V	Flyback	600 V	IPP60R180P7 / IPA60R180P7	IPB60R280P7 / IPD60R600P7		
		800 V	IPP80R280P7 / IPA80R280P7	IPD80R360P7		
		950 V	IPA95R450P7	IPD95R450P7		
Control ICs		ICE3AS03LJG, ICE3BS03LJG, XDPS2201				

Online UPS

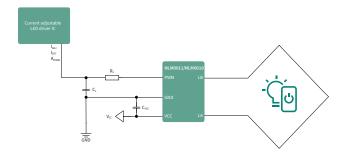
Online UPS power stage

Stage	Topology	Voltage class	Technology	Power transistor part number	Gate driver
Rectifier	Three-phase	800 V/1600 V	EasyBRIDGE, EconoBRIDGE™	DDB6U144N16R/DDB6U104N16RRP_B3	1ED3122MC12H 1ED3124MC12H
PFC	Boost PFC/	1200 V	TRENCHSTOP™ H7	IKW40N120CH7/IKW40N120CH7	1ED020l12-F2
	Vienna "T-type"	1200 V	CoolSiC™ MOSFET	F3L15MR12W2M1_B69	1ED020l12-F2
		650 V	TRENCHSTOP™ H7	IKWH50N65EH7/IKWH75N65EH7	1EDI60I12AH
		650 V	TRENCHSTOP™ 5 WR5	IKW40N65WR5	-
	Boost PFC	650 V 1200 V	CoolSiC™ Schottky diode	IDH10G65C6/IDK10G65C5 IDWD40G120C5/IDH20G120C5/IDK10G120C5	-
		600 V	CoolMOS™ P7	IPP60R060P7/IPB60R060P7	1EDB7275F
		600 V	CoolMOS™ C7	IPW65R019C7/IPB65R045C7	1EDB7275F
Inverter	NPC 1	650 V	TRENCHSTOP™ H7	IKWH50N65EH7, IKWH75N65EH7/IKZA50N65EH7, IKZA75N65EH7	2EDF7275F
		650 V	TRENCHSTOP™ HighSpeed3 IGBT Rapid diode	FS3L50R07W2H3F_B11	2EDF7275F
	NPC 2	1200 V	TRENCHSTOP™ H7	IKW40N120CH7/IKQ75N120CH7	2ED020l12-F2
		1200 V	TRENCHSTOP™ HighSpeed3 IGBT Rapid diode	FS3L25R12W2H3_B11/F3L200R12W2H3_B11	-
		650 V	TRENCHSTOP™ H7	IKWH50N65EH7, IKWH75N65EH7	2EDF7275F
	Two-level	1200 V	EconoPACK™, EasyPACK™	FS75R12W2T4_B11/FS200R12KT4R_B11	2ED020l12-F2
		1200 V	EconoDUAL™	FF600R12ME4_B11	2ED020l12-F2
	Three-level NPC1	600 V/1200 V	EconoPACK™	F3L300R07PE4	2ED020l12-F2
Battery	Half-bridge	1200 V	TRENCHSTOP™ H7	IKW40N120CH7/IKQ75N120CH7	2ED020l12-F2
charger		1200 V	CoolSiC™ MOSFET	FF6MR12W2M1_B11	2ED020l12-F2
		650 V	TRENCHSTOP™ H7	IKWH50N65EH7/IKWH75N65EH7	2EDF7275F
Aux. supply		650-800 V	CoolSET™	ICE5AR4770BZS	
Digital isolator			ISOFACE™	1ED3122MC12H/1ED3124MC12H	
Microcontroller			XMCTM PSoC™	XMC1000 ARM® Cortex® M0/XMC4000 ARM® Cortex® M4 PSoC™ 4	
Connectivity			AIROC™	Wi-Fi 4/Wi-Fi 5/Wi-Fi 6	

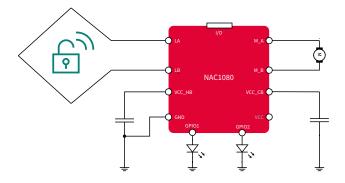
Smart devices with NFC interface

NFC-based configuration, actuation and sensing applications

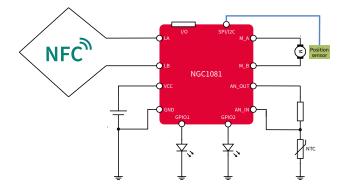
Near-field communication (NFC) is a mature technology for contactless exchange of data over short distances. Besides the data exchange, NFC technology itself can also transfer power from the polling device to the receiver devices. Due to the working principle of resonant coupling, power transmission via NFC is efficient and user-friendly because it is less sensitive to antenna/coil alignment. The combination of data exchange and energy transfer in one interface and the availability in billions of smartphones make NFC an exciting enabler for the following novel use cases:


Passive device parameter configuration: Programming or configuring product operation parameters is sometimes complicated because of access problems or equipment requirements. Using an NFC interface, contactless or even passive operation can be performed anywhere. Modern LED power supplies are already equipped with the NFC interface to enable output current configuration in production, sales channel, and the field. Infineon's NLM product series supports customers to enable NFC configuration functions effectively.

Smart actuator and sensing devices: In the IoT age, smart devices help people make their life easier and more sustainable. NFC technology provides an option to develop battery-less smart devices that operate when the NFC reader device, like a mobile phone, is present. As a complement to mainstream active IoT technology, passive NFC technology is suitable for use cases like a passive smart lock, passive sensor inlay, medical care patch, etc.


With Infineon's new NFC tag-side controller family a single-chip solution is available to develop cost-effective, miniaturized, actuation or sensing applications operating in either passive or active mode. The NAC1080, with integrated H-bridge and energy harvesting modules, enables cost-effective development of passive smart actuators like passive locks. AC1081 is a package variant in VQFN32 package.

The NGC1081 is a low-power controller with ADC/DAC unit, integrated temperature sensor, and sophisticated analog and digital I/Os. It is the ideal solution for contactless sensing applications like temperature logger, gas detector, sensor inlay, medical patch, etc. Furthermore, both sensing and actuation control capability make the NGC1081 a unique product in the market, ideally suited for applications that require these functions – for example, radiator thermostats.


Example: NFC LED power supply

Example: NFC passive lock

Example: Smart radiator thermostat

NFC configuration - NLM series

Туре	Description	Package	Ordering code
NLM0011	Dual-mode NFC configuration IC with PWM output and CLO function	SOT23-5	NLM0011XTSA1
NLM0010	Dual-mode NFC configuration IC with PWM output, without CLO function	SOT23-5	NLM0010XTSA1

See LED lighting chapter for more information.

NFC actuation and sensing - NAC1080 and NGC1081

Highly integrated single-chip solution

The low-power Arm® Cortex®-M0 based microcontroller with integrated NFC frontend, sensing unit, motor driver, and energy harvesting function enables customers to develop smart actuation and sensing devices with minimum system BOM requirement.

Full flexible software-defined functions

The flexible IC architecture and the smart partitioning between hardware and software enable customers to maximize the utilization of software-defined functions.

Build-in security functions to meet the application requirements

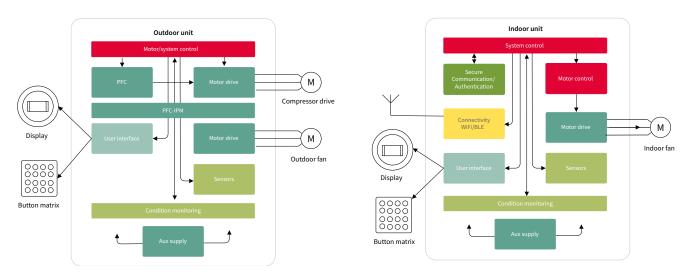
These ICs include hardware security functions such as secure area in flash, 128 bit AES accelerator and true random generator. A separate secure element can be connected via the digital interface on demand.

Туре	NFC	Processor	RAM	NVM	ADC	DAC	I2V	H-Bridge	I ² C	SPI	UART	GPIO	Analog-in	Package
NAC1080	ISO14443A	32-bit Arm® Cortex®-M0	16 kB	60 kB	no	no	no	yes	no	yes	yes	7x	no	PG-DSO-16
NAC1081	ISO14443A	32-bit Arm® Cortex®-M0	16 kB	60 kB	no	no	no	yes	no	yes	yes	7x	no	PG-VQFN-32
NGC1081	ISO14443A	32-bit Arm® Cortex®-M0	16 kB	60 kB	12 bit	10 bit	yes	yes	yes	yes	yes	16x	X4	PG-VQFN-32

Applications

Appliances and consumer electronics, ITC infrastructure, renewables, robotics, e-mobility

- Major home appliances
- Small home appliances
- Cordless Power Tools, Cordless Gardening Tools and OPE
- Wrist-worn devices
- Class D audio
- Smart speaker
- Security camera and video doorbell
- LED lighting
- Plug & LEDs play solutions
- Smart lighting solutions
- Smart conference solutions


- ICT solutions
- DC-DC power solutions für data center, edge, enterprise, telecom and datacom
- DC-DC enterprise power solutions for data processing applications
- Solar
- Energy storage systems
- Robotics
- Onboard chargers for xEV appliactions
- Light electric vehicles and electric forklift

Major home appliances

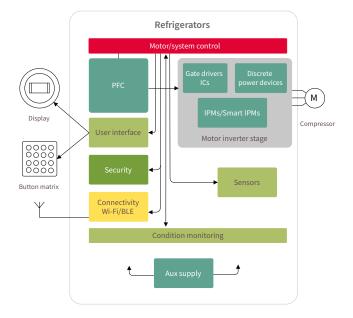
Innovative approach for air conditioning systems

Product designers are facing the daunting challenge of developing smaller, smarter, more powerful, and more energy-efficient appliances. Based on industry-leading technology and manufacturing expertise, Infineon's line of innovative components for household appliances meets and exceeds even the most rigorous requirements for reliability and quality. The block diagram of an air conditioning system shown below, together with the product selection table, provides an effective recommendation for engineers to select the right component for each power management stage inside major home appliances.

In addition to efficiency gain through power solutions, Infineon's XENSIV™ sensor portfolio also enhances major home appliances' operation through advanced sensor-enabled use cases such as condition monitoring and predictive maintenance to detect potential device failures before they occur. Furthermore, integration of voice control or presence detection in those appliances increases user convenience and results in even more efficient devices.

Product category	Product family	Benefits
Sensors	Pressure sensor	Airflow and water pressure monitoring
	MEMS microphone	Noise monitoring and voice control
	Radar sensor	Motion sensing and people tracking
	Magnetic current sensor	Current sensing
	3D magnetic sensor	Vibration and position monitoring
	Linear Hall sensor	Vibration monitoring in predictive maintenance
	Hall sensors and switches	Opened and closed lid detection
	Double Hall sensor	Speed and direction measurement
	32-bit XMC4000 industrial microcontroller Arm® Cortex®-M4	Data processing, sensor system management,
		cloud connection management and ethernet connectivity
	OPTIGA™ embedded security solutions	Data and cloud security

Functional block	Product family	Voltage class	Technology/product family	Selection/benefit	
Outdoor unit (ODU)	iMOTION™ controller	-	IMC302A-F064	Motor/PFC controller incl. software	
PFC	Non-isolated EiceDRIVER™	25 V	1ED44175N01B	Integrated over-current protection	
	Non-isolated EiceDRIVER™	25 V	1ED44171N01B	Cost/performance	
	Level-shift EiceDRIVER™	600 V	6EDL04I06PT	Infineon SOI with integrated bootstrap diode	
	TRENCHSTOP™ 5 IGBT WR5/WR6	650 V	IKW30N65WR5, IKWH30N65WR6	Recommended	
	TRENCHSTOP™ 5 IGBT advanced isolation	650 V	IKFW40N65DH5	Easy to use	
	TRENCHSTOP™ IGBT7	650 V	IKW30N65ET7	Recommended	
	EC7	650 V	IDWD60E65E7	Recommended	
	CIPOS™ Mini	600 V	CIPOS™ Mini PFC interleaved IPM series IFCM20T60GD/ IFCM20U60GD/IFCM30T60GD/IFCM30U60GD CIPOS™ Mini PFC integrated IPM series IFCM10P60GD/ IFCM10S60GD/IFCM15P60GD/IFCM15S60GD IM564-X6D	Easy to use/system size saving	
	CoolMOS™ SJ MOSFETs	600 V	IPP60R120P7	Recommended	
ODU motor drive	iMOTION™ controller	-	IMC302T-F064	Motor/PFC controller incl. software	
(compressor)	CIPOS™ IPM	-	CIPOS™ Mini	Easy to use/system size saving	
	Level-shift EiceDRIVER™	600 V	6EDL04I06PT	Infineon SOI with integrated bootstrap diode	
	RC-D2 IGBT	600 V	IKD15N60RC2	Recommended	
ODU motor drive (out-	iMOTION™ controller	-	IMC101T-T038	Motor controller incl. software	
door fan)	CIPOS™ IPM	600 V	CIPOS™ Micro IM241 series	Easy to use/system size saving	
	Level-shift EiceDRIVER™	600V	6EDL04I06PT	Infineon SOI with integrated bootstrap	
	RC-D2 IGBT	600 V	IKD06N60RC2	Recommended	
	CoolMOS™ SJ MOSFETs	600 V	IPD60R1K0PFD7S	Recommended	
Condition monitoring	XENSIV™ Hall switches	-	TLI4963-2M	Recommended	
and predictive	XENSIV™ pressure sensor	-	DPS368	Recommended	
maintenance	XENSIV™ MEMS microphone	-	IM69D130	Recommended	
	XENSIV™ Hall sensors	-	TLE4961, TLE4964, TLE4913, TLI4966G	Recommended	
	XENSIV™ 3D magnetic sensor	_	TLI493D-W2BW	Vibration and position monitoring	
	XMC4000 microcontroller	-	XMC4700	Recommended	
Indoor unit (IDU)	XMC™ microcontroller	-	XMC1400, XMC4100	Recommended	
(iMOTION™ controller	-	IMC302A-F064	Motor/PFC controller incl. software	
	PSoC™ 6	_	CY8C62x4/5	Recommended	
IDU motor control	XMC™ microcontroller	_	XMC1300, XMC1400	Recommended	
Do motor control	iMOTION™ controller	_	IMC101T-T038	Motor controller incl. software	
	CIPOS™ IPM	600 V	CIPOS™ Nano	Easy to use/system size saving	
IDU motor drive	iMOTION™ IPM	-	IMI111T-026H, IMI111T-046H	Motor controller incl. software, driver and power stage	
	Level-shift EiceDRIVER™	-	6EDL04I06PT	Infineon SOI with integrated bootstrap diode	
	RC-D2 IGBT	600 V	IKN03N60RC2, IKD04N60RC2	Recommended	
	CoolMOS™ SJ MOSFETs	600 V	IPN60R1K5PFD7S	Recommended	
Security	OPTIGA™ Trust family	-	OPTIGA TRUST M SLS32AIA	Recommended	
Connectivity Wi-Fi/BLE	-	-	CYW43439	Recommended	
User interface	PSoC™ 6	-	CY8C62x4/5	Recommended	
Sensors	XENSIV™ radar	-	BGT60LTR11AIP	Recommended	
Selisors	XENSIV™ PAS CO ₂	-	PASCO2V01	Recommended	
	XENSIV™ MEMS microphone	-	IM69D130	Recommended	
	XENSIV™ Hall switches	-	TLI4963-2M	Recommended	
Auxiliary supply	CoolMOS™ SJ MOSFETs	800 V	IPN80R4K5P7	Recommended	
y Juppty	CoolSET™	700 V	ICE5AR4770BZS	Flyback with error amplifier	
	555.5E1	100 V	BCR43x	Recommended	



Refrigerators

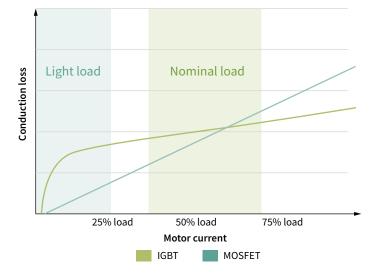
Fridge

Higher efficiency at lower cost

Today, consumers are not only looking at energy consumption and noise levels. Compact design coupled with maximum storage space is also playing an increasingly important role. In addition, there is a desire for intelligent appliances that can be easily integrated into the home network. From the manufacturer's point of view, the challenge is to meet the stricter regulations on energy efficiency while at the same time ensuring the form factor and a reduction in costs. Thus, intelligent, compact, energy- and cost-efficient drive solutions for refrigerators and freezers meet the high customer requirements.

Infineon offers a comprehensive portfolio for refrigerator compressors. Whether you choose the highest level of integration with our intelligent power modules (IPM) or aim for the best price/performance ratio with discrete components, our IGBTs, MOSFETs, gate drivers, and microcontrollers are designed to work together seamlessly. CIPOS™ family of IPMs is the optimal solution for highly integrated compressor drives whilst discrete solutions like the 600 V RC-D2 IGBT or the CoolMOS™ PFD7 SJ MOSFET along with EiceDRIVER™ 600 V are the best choice whenever layout flexibility and thermal performance optimization are the key design targets. If full-load operation and EMI performance are key for the design, the 600 V RC-D2 is the best choice. The diode is monolithically integrated and its current rating has been optimized for price and performance. The RC-D2 is the first IGBT family to introduce the SOT-223 package to further improve the price with a smaller package that is pin-to-pin compatible and substitutable with the DPAK package. They can all be combined with iMOTION™ products for dedicated motor control. For the auxiliary power supply, the CoolSET™ family rounds up our power portfolio by offering increased robustness and performance. Our PSoC™ microcontroller family, AIROC™ Wi-Fi + Bluetooth® Combos connectivity products and XENSIV™ sensors complete the portfolio needed for a truly smart refrigerator. The energy-efficient CIPOS™ modules integrate various power and control components to increase reliability, optimize board size and reduce system costs. This simplifies power supply design and shortens time-to-market. Infineon offers the OPTIGA™ Trust hardware security solution and enables secure access to all major cloud providers.

Microcontrollers


USB-C controllers and peripherals

management ICs Power

CoolMOS™ PFD7 for next-level energy saving

Although both MOSFETs and IGBTs can be used in refrigerator compressor drives, as most of the time, the refrigerator operates under light load, the MOSFET is highly recommended due to its lower conduction loss, thus reducing overall power loss at this condition.

The 600 V CoolMOS™ PFD7 high-voltage MOSFET series, shaped by Infineon's experience of more than twenty years in pioneering in superjunction SJ technology innovation, sets a new benchmark in 600 V SJ technologies. This product family combines best-in-class performance with state-of-the-art ease of use, features an integrated fast body diode ensuring a robust device and allowing for reduced BOM for the customer.

Smart, connected and secured - system solutions for the new home appliance era

Modern refrigerators can sense their environment by being smart and connected. They provide data to their users as well as to the manufacturer (who can remotely analyze the performance data and suggest preventive maintenance). In this data exchange, secure communication systems play a crucial role.

Components and system solutions from Infineon enable you to build smart home appliances while providing secure data acquisition, control, and device connectivity. Furthermore, they enable the highest device efficiency, smallest form factors, and improved carbon footprint with smart power supply designs. Benefit from one of the most comprehensive, out-of-the-box product and design portfolios on the market to best meet your unique application needs.

Recommended products

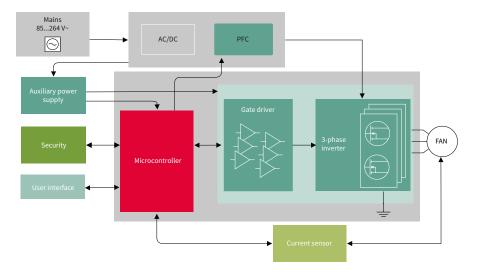
Functional block	Product family	Voltage class	Technology/product family	Selection/benefit	
PFC	iMOTION™ driver	-	IMD112T-6F040	Motor/PFC controller incl. software and integrated driver	
	Non-isolated EiceDRIVER™	25 V	1ED44171N01B	Integrated over-current protection	
		25 V	1ED44175N01B	Cost/performance	
	CoolMOS™ SJ MOSFETs	600 V	IPP60R120P7	Recommended	
	CoolSiC™ Diodes	650 V	IDW30G65C5	Recommended	
Inverter	Level-shift EiceDRIVER™	600 V 650 V	6EDL04N06PT 2ED2304S06F	Infineon SOI with integrated boot strap diode	
	XMC™ microcontroller	-	XMC1400; XMC1300	Recommended	
	iMOTION™ controller	-	IMC102T-F048	Motor/PFC controller incl. software	
	iMOTION™ driver -		IMD111T-6F040	Motor controller incl. software and integrated driver	
	MOTION™ IPM - IMM101T-046M		IMM101T-046M	Motor/PFC controller incl. software, driver and power stage	
	CIPOS™ IPM	-	CIPOS™ Mini IM523-S6A CIPOS™ Micro IM241 series	Easy to use/system size saving	
	RC-D2 IGBT	600 V	IKN04N60RC2 IKD06N60RC2	Recommended	
	CoolMOS™ SJ MOSFETs	600 V	IPN60R1K5PFD7S IPN60R600PFD7S	Recommended	
User interface	PSoC™ 6	-	CY8C62x4/5	Recommended	
Connectivity Wi-Fi/BLE	AIROC™	-	CYW43439	Recommended	
Auxiliary supply	CoolMOS™ SJ MOSFETs	800 V	IPN80R4K5P7	Recommended	
	CoolSET™	700 V	ICE5AR4770BZS	Flyback with error amplifier	
Security	OPTIGA™ Trust family	-	OPTIGA TRUST M SLS32AIA	Recommended	
Sensors	XENSIV™ radar sensor	-	BGT60LTR11AIP	Recommended	
	XENSIV™ pressure sensor	-	DPS368	Recommended	
	XENSIV™ MEMS microphones	-	IM69D130	Recommended	
	XENSIV™ PAS CO₂ sensor	-	PAS CO ₂	Recommended	
	XENSIV™ magnetic position sensors	-	TLV493D-A1B6	Recommended	

XENSIV[™] sensor solutions for smart refrigerators

Product category	Product family	Benefits
Sensors	XENSIV™ MEMS microphones IM69D130	High-performance microphone with low self-noise (high SNR) and low distortions enables noise monitoring for advanced predictive maintenance analytics
	XENSIV™ digital barometric pressure sensors DPSxxx	Advanced predictive maintenance analytics are enabled based on highest precision and relative accuracy over a wide temperature range to detect anomalies in airflow
	XENSIV™ TLV493D-A1B6 3D magnetic sensor	Accurate three-dimensional sensing with extremely low power consumption in a small 6-pin package to enable vibration and position monitoring of the compressor
	XENSIV™ TLI4970 current sensor	Fully digital solution featuring high precision and ease of use, significantly reduces overall implementation efforts as well as PCB space to enable cost fan and compressor current measurement
	XENSIV™ 60 GHz radar sensor	Accurate presence detection and vibration detection based on ability to track sub-millimeter motion at high speed and accuracy, in both stand-alone chip as well as system solution available

Ceiling fan

Energy-efficient and cost-effective with high integration for system size reduction


Ceiling fan manufacturers currently face more stringent regulations of the appliance's form factor and are under constant pressure to reduce costs. Infineon is here to provide compact, energy-efficient, cost-effective motor drive solutions. We propose a competitive solution with an extensive portfolio, high integration for system size reduction, and low cost.

Infineon is your ideal partner for all ceiling fan designs. In our portfolio, you'll find a wide range of solutions for inverterized fan motor control – whether your priority is achieving the highest level of integration using our IPMs or showcasing ultimate flexibility with the right price-performance ratio using our discrete IGBTs or MOSFETs. No matter your target, our power semiconductors, drivers, IPMs, and iMOTION™ motor controllers are designed to work together seamlessly. This means you can effortlessly realize smoother-running, quieter systems with low energy consumption and a smaller form factor.

Features and benefits

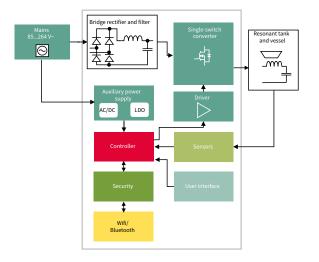
Key features	Key benefits		
Reference design for ready-to-copy PCB	Compact and cost-effective system solution		
- Turnkey PFC and motor control with MCE	– Eliminate the need for motor control software development		
- Integrated infrared remote control	Easy evaluation and system verification		
- Suitable for single-sided PCB assembly process	Reduce design-in effort and speed up time to market		
Compatible with low- and high-voltage motors	Achieve maximum system cost-performance		
– MCU design option for higher flexibility	– Higher system reliability		
- IEC61000-4-5 4 kVs surge compliant and EN55032 class B EMI compliant	- One-stop-shop		

Application diagram

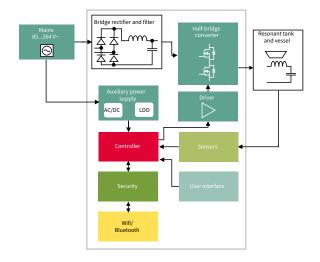
By selecting components from Infineon, you get parts engineered for best-in-class performance that upholds the highest quality standards for long-term reliability. Moreover, our excellent supply chain allows you to both build the most cost-effective, energy-efficient inverterized ceiling fan and meet the changing supply demands of the fluctuating consumer market. Explore our selection of semiconductor solutions now to find the best-fit components for your designs.

Induction cooking

Enabled by Infineon's high-efficiency power switches, secured connectivity, and touch sensor technology for the best cooking experience


The huge global market for induction cooking appliances, such as induction ranges, microwave ovens, and rice cookers, is characterized by great competition and price pressure. Along with this, manufacturers must meet rising consumer expectations and produce more reliable, energy-efficient appliances that offer more and more functions. Benefits such as faster cooking, advanced functionalities, easy cleaning, and safety features play a crucial role. At Infineon, we are well equipped to help you overcome all the challenges common to induction cooking appliances. Our solutions target the increased consumer expectations regarding modern home appliances: appliances must be energy-efficient and fully integrable, ensuring a high levels of safety and reliability. An intelligent, user-friendly, and secure user interface is essential. We support you in creating intuitive devices with an intelligent touch interface.

Features and benefits


Key features
 Complete system solution offerings for inverter, system control, auxiliary power, HMI, connectivity, sensor, security blocks
- Highly reliable and market-proven Infineon products
– Evaluation and reference boards
- Innovative reverse conducting IGBT technology
 Cutting-edge touch-sensing technologies

Key benefits - Faster time-to-market and saving system design efforts - One-stop-shop - Extend system lifetime and product life spans - Fast prototyping and system verification - Higher efficiency and better reliability - "Just work" and deliver robustness and intelligence

Induction heating inverter (voltage resonance)Single-switch

Induction heating inverter (current resonance)Half-bridge

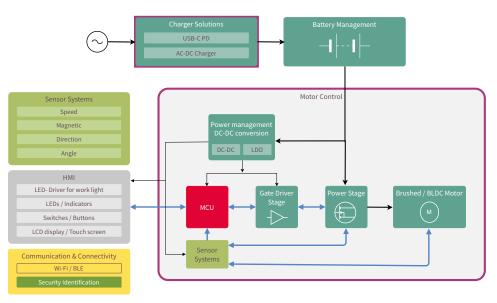
Product portfolio

Functional block	Product	Product family	Specification	Benefits
Inverter	IGBT discretes	Reverse conducting R6	650 V up to 75 kHz	– High performance and low losses
(half-bridge/		Reverse conducting R5	650 V/1100 V/1200 V/1350 V/1600 V up to 60 kHz	– High performance and low losses
quasi-resonant)		Reverse conducting R5L	1400 V up to 60 kHz	– High performance and lower losses
	Gate driver	EiceDRIVER™ 1ED44173N01B, 1ED44175N01B,	Low-side gate driver/25 V	 1ED integrated with overcurrent- protection fault and enable functions
		EiceDRIVER™ 1ED44171N01B		- Cost-effective
		EiceDRIVER™ 2ED2304S06F, 2ED2182S06F, 2EDL23I06PJ	Half-bridge gate driver/650 V/600 V	- SOI with integrated bootstrap diode
		EiceDRIVER™ 1EDI20I12AF, 1EDI20I12MF, 2ED020I12-F2	Isolated gate driver/1200 V	Galvanic isolation, separate sink/source output, DESAT, Miller clamp
System control	Microcontroller	icrocontroller XMC™ 1000 series 32-bit Arm® Cortex®-M0		– #1 choice to bring traditional 8-bit designs to the next level
		XMC [™] 4000 series	32-bit Arm® Cortex®-M4	 Successor to traditional DSP/DSC and 32-bit MCU solutions.
		PSoC™ 4 series	32-bit Arm® Cortex®-M0	Tackled some of the complex portions of embedded system design making it easier
		PSoC™ 6 series	32-bit Arm® Cortex®-M4	 Dual-core Arm® Cortex®-M4 and Cortex- M0+ architecture
Connectivity	Wireless connectivity	AIROC™ Wi-Fi + Bluetooth® combo	IEEE 802.11a/b/g/n/ac/ax Wi-Fi and Bluetooth® 5.2 in a single-chip	Technical support through our global network of IoT partners
Aux power	CoolSET™	ICE5AR4770BZS	Up to 15 W flyback controller with integrated 700 V MOSFET	Higher switching frequency to take advantage of smaller magnetics
HMI (Human- machine interface)	Microcontroller	PSoC™ 4 series	CAPSENSE™ technology	Most flexible and scalable low-power mixed-signal architecture
Security	OPTIGA™ Trust	OPTIGA™ Trust M SLS32AIA	High-end security solution for connected consumer devices	 The OPTIGA™ Trust M is a high-end security solution that provides an anchor of trust for connecting IoT devices to the cloud

Cordless power tools, cordless gardening tools and OPE

Battery-powered devices for home and professional applications

Millions of households worldwide rely on power tools to complete daily tasks or creative projects around the home. Consumers want robust, reliable, and easy-to-use portable power tools with low prices and long battery life as key selection criteria. High quality standards to earn the trust of the consumer also require diagnostic and safety features. Infineon's product portfolio is made to bring performance, safety and reliability to consumer projects. We help our customers meet all consumer needs at a reduce total costs. In addition to the extensive product portfolio, we offer wireless-charging reference designs. They deliver high performance and are easily optimized in our DAVE™ development platform. Configure your BOM and exceed expectations with Infineon components in your cordless power tool designs.


Features and benefits

ment time and cost

Key features
Comprehensive product and solution portfolio, easy to tailor to any design specification
– Infineon offers complete solutions for power supplies, chargers and motor drives
 Best-in-class EiceDRIVER™ level-shift driver for OptiMOS™ and StrongIRFET™, offering high efficiency and protection
– High reliability of Infineon components
 Offering LV FETs with SMD packaging improves the productive capability by automatic production, improves reliability and reduces assembly cost
 Components featuring small form factor and compact design offering highest power density and BOM savings thanks to lowest R_{pS(nn)}
- Trustworthy hardware-based security
Highest quality standards and a safety-certified development process
- Proven track record and outstanding partner network for embedded security
 OPTIGA™ Trust enables authentication of components connected to the syster (e.g., battery pack recognition to avoid second-party batteries etc.)
– Evaluation and demonstration boards for fast prototyping
- Available simulations, documentation, and system support to reduce develop-

Key benefits
 Convenient selection of the right fit products thanks to broad portfolio and
- Complete solutions
Extended battery lifetime and product life span
Increased production capability
Overall system size and cost reduction
– Security, quality, and safety
- Authentication
- Short time to market

Application block diagram example: cordless power tools

www.infineon.com/powertools

Solutions

Product portfolio

Functional block	Topology	Product category	Product family	Part number
Motor control	12 V, 15 V,	MOSFET	OptiMOS™ 5	BSC005N03, IQE006NE2, IPT004N, IPP055N
	18 V, 22 V		OptiMOS™ 6 StrongIRFET™	IRL40DM2, BSC010N04, IST011N06, BSZ097N04, IRF40SC, IPB011N04, IRL40B21
		Gate drivers	MOTIX™	6EDL6171, IDM700A, 2ED2742S01G, ED2744S01G, ED2748S01G, ED2732S01G ED2734S01G, ED2738S01G
			EiceDRIVER™	1ED44173N01B
		Microcontroller	XMC™ series	XMC1400. XMC1400, XMC4400
			PSoC™	PSoC™ 4100, PSoC™ 62
		Sensor systems	Hall switches	TLV4963
			Angle	TLI5012
			3D magnetic	TLV493D
			Magentic coreless current	TLI4971
	36 V	MOSFET	OptiMOS™ 5	IRL40DM2, BSC010N04, IST011N06, BSZ097N04, IRF40SC, IPB011N04,
			OptiMOS™ 6	IRL40B215, IPT009N08NM6, IPB016N08NF2S
			StronglRFET™	
		Gate drivers	MOTIX™	6EDL7141, IDM 700A, 6ED2742 NEW, 2ED2742 NEW, 2ED2732 NEW
			EiceDRIVER™	1ED44173N01B
		Microcontroller	XMC™ series	XMC1400, XMC1400, XMC4400
			PSoC™	PSoC™ 4500S
				PSoC™ 6
		Sensor systems	Hall switches	TLV4963
			Angle	TLI5012
			3D magnetic	TLV493D
			Magnetic coreless current	TLI4971
	48 V, 56 V, 72 V	MOSFET	OptiMOS™ 3	BSC021N08N, BSC030N08N, IPT010N08N, IPTG011N08N, IPP040N08N,
			OptiMOS™ 5	IPB049N08N, IPT009N08NM6, IPB016N08NF2S
			OptiMOS™ 6 StrongIRFET™	BSC035N10N, ISZ080N10N, IPT015N10N, IPTC030N12N, IPB036N12N, IPP050N10
		Gate drivers	MOTIX TM	TLE9140EQW, 1EDN755X, 6ED2742, 2ED2732, 2ED2734, 2ED2748
		Microcontroller	XMC™ series	XMC1400, XMC1400, XMC4400
		merocontrotter	PSoC TM	PSoC™ 4500S
			1 300	PSoC™6
		Sensor systems	Hall switches	TLV4963
		Jenson systems	Angle	TLI5012
			3D magnetic	TLV493D
			Magnetic coreless current	TLI4971
Charging		MOSFET	CoolMOS™ P7	IPA60R280P7S, IPD60R080P7, IPD60R280P7S, IPD60R360PFD7S, IPN70R450P7S
5.1.6		Controller IC	-	ICC80QSG, XDPS2201, XDPS2221, ICE3PCS01G
		HEMTs	CoolGaN™	IGI60F1414A1L IGI60F200A1L, IGLD60R190D1
		Gate drivers	EiceDRIVER™	1EDB9275F, 2EDB7259Y, 2EDF9275F, 2EDL05N06PF, 2EDR8259X, 2EDS9265H
		Schottky diodes	CoolSiC™ G5 CoolSiC™ G6	IMZA65R027M1H, IMZA65R048M1H, IMW65R027M1H, IMW65R048M1H
		SR switch	OptiMOS™ 5	BSC040N10NS5, BSC160N15NS5, IPP200N15N3
		Load switch	OptiMOS™ 5	BSC040N10NS5, BSC0902NSI, IPP034N08N5
		USB-PD	EZ-PD™ PMG1-B1	CYPM1115-48LQXI, CYPM1116-48LQXI
			EZ-PD™ PAG1	PAG1P, PAG1S
			EZ-PD™ BCR	CYPD3177-24LQXQ, CYPD3177-24LQXQT
		Microcontroller	XMC™	XMC1400
BMS	12 V	Protection MOSFET	OptiMOS™ StrongIRFET™	BSC004NE2LS5, IQE006NE2LM5, BSB008NE2LX, BSZ009NE2LS5, IRFH6200, IRF6200, IRF1324
	18 V			IPT004N03L, BSC005N03LS5, BSZ0500NSI, IRF6726M, IRLS3813, IRLB3813, BSC079N03LSCG
	24 V			IRL7472L1, IRL40SC228, BSC007N04LS6, IRL40T209, IRFS7430, IRL40B209, BSZ018N04LS6
	36 V			IPT007N06N, IRF60SC241, BSC014N06NS, IRF7749L1, IRL60B216, IRL60S216
	48 V	1		IPT012N08N5, IPP020N08N5, BSC025N08LS5, BSB044N08NN3G,
				BSZ070N08LS5, BSZ096N10LS5,
	72 V			IPP041N12N3G, BSC077N12NS3G, BSZ240N12NS3G, IRF135SA204, IRF135S203, IRF135B203
		Monitoring balancing IC	-	TLE9012
		Cell balancing MOSFETs		IRLML9303, IRFTS9342, IRLML9301
		Microcontrollers	XMC™, PSoC™	XMC1100, XMC1200, XMC1400, XMC1400, XMC4100, CY8C41x4/5/65, CY8C41x6/75, CY8C4147-S5
Communication		Authentication/security	OPTIGA™ Trust	SLE 95250, SLS 32AIA010MH
and HMI		Bluetooth®	AIROC™	CYBT-213043-02, CYW20736, CYW20706, CYW20704
		Wi-Fi	AIROC™	CYW43907, CYW43439, CYW954907

Smartwatches, sports watches, fitness bands and medical wrist-worn devices

All in one marketplace for wrist-worn devices with Infineon's excellent RF, sensing, connectivity, power, memory and security solutions

With its broad product portfolio, Infineon helps manufacturers of wearables to overcome the following design challenges across all device categories:

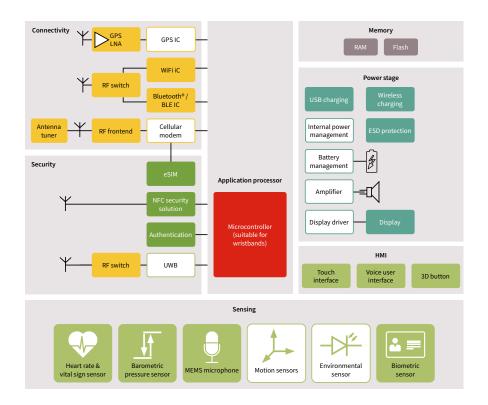
- the need for reliable device and data security to protect personal and sensitive information,
- accurate sensor readings for precise location tracking and recognition between everyday movements and a fall event,
- longer battery lifetimes and small form factors for elegant, unobtrusive designs.

Infineon's widely-deployed AIROC™ Wi-Fi and Bluetooth® Combo ICs portfolio offers the industry's best interoperability and RF performance. Infineon also helps customers to differentiate their offerings with highly efficient, secured and innovative solutions supporting the integration of additional use cases such as smart payment and ticketing, notifications and voice calls, Bluetooth® audio streaming, smart access or different ways of charging (wireless, NFC, USB).

A smartwatch provides a two-way connection via Bluetooth®, cellular baseband or Wi-Fi to a smartphone. It receives electronic communications like texts or voice calls, must display the time and have a glance-able display. These lifestyle devices monitor health and make communication (text, calls) more convenient.

A sports watch is a highly functional, robust and usually water-resistant device. Leisure or professional athletes mainly monitor their health conditions, fitness and sleep activities. Sports watches have fewer features compared to smartwatches as their main focus is on sports tracking.

A wristband or fitness band offers limited functionalities. Compared to a smartwatch, it just covers a selected amount of use cases (e.g. step counting, sleep monitoring, location tracking, access control, etc.).


A medical wrist-worn device measures and analyzes the physical activity and body functions of the wearer. These wristbands are used for elderly care, safety, connected health and much more.

Key enabling products

- › XENSIV™ 3D magnetic sensor
- > XENSIV™ 60 GHz radar sensor
- › XENSIV™ pressure sensor
- > XENSIV™ MEMS microphones
- > XENSIV™ Multigas sensor
- > Wireless charging
- > AIROC™ Wi-Fi and Combos
- > AIROC™ Wi-Fi
- > AIROC™ Bluetooth® LE and Bluetooth®
- > AIROC™ Bluetooth® 5.0 SOC for Audio
- > Wi-Fi MCUs
- > SECORA™ Connect
- > PSoC™ 6 Microcontrollers
- > PSoC™ 4 Microcontrollers
- > PSoC™ 4 Bluetooth® Low Energy (Bluetooth® Smart)
- > PSoC™ including CAPSENSE™ technology
- > OPTIGA™ Connect Consumer eSIM solution
- > OPTIGA™ Authenticate S
- NOR flash/F-RAM
- > GPS LNA
- > ESD protection
- > Antenna tuners
- > 4G/5G LTE LNAs

Block diagram for smartwatch, sports watch and wristband

Functional block	Product family	Functional block	Recommended products and solutions
Security	OPTIGA™ Authenticate S (e.g., SLE95401) OPTIGA™ Connect Consumer eSIM solution (OC1120) SECORA™ Connect (boosted SiP or MCP, passive NFC) RF switch (e.g., BGS12WN6, BGS14WMA9)	Power stage	USB type-C controller (e.g., EZ-PD™ CCG2) ESD protection (e.g., ESD119-B1, ESD131-B1, ESD307-U1) Wireless charging
Human-machine interface	 XENSIV™ 3D magnetic sensor (e.g., TLI493-W2BWAO) XENSIV™ MEMS microphones (e.g., IM69D120/D130/D130) PSoC™ 6 MCU + BLE (e.g., CY8C68237FM-BLE) 	Memory	- SEMPER™ Nano NOR flash / F-RAM
Sensing	 XENSIV™ pressure sensor (e.g., DPS368/DPS310) XENSIV™ MEMS microphones (e.g., IM69D120/D130/D128S) XENSIV™ MEMS packaging partners 	Connectivity	- 4G / 5G LTE LNAs (e.g., BGA5x1BN6 family) - GPS LNA (e.g., BGA123L4, BGA524N6) - AIROC™ Wi-Fi (e.g., CYW43362, CYW43364) - AIROC™ Wi-Fi and combos (e.g., CYW43439, CYW43012) - AIROC™ Bluetooth® 5.0 SoC for audio(e.g., CYW20719/21) - Antenna tuners (e.g., BGSA12UGL8, BGSA14GN10) - RF switches (e.g., BGS12WN6, BGS14WMA9)

Main use cases for wrist-worn devices

Main use cases for smartwatches, sports watches and wristbands

Notifications

Bluetooth® audio streaming

Voice recording and assistant

Gesture control

Location tracking

Contactless payment, access control and ticketing

Information visualization (maps, news, videos, etc.)

Physical condition monitoring (cardiac condition, blood pressure, blood glucose monitoring)

Use cases today Future use cases

Sleep monitoring

Body temperature monitoring

Smartphone autonomy & broader mobile network accessability

Fitness monitoring

Speed monitoring

Cloud authentication for safe data transfer and data privacy

Car access control

Infineon the right partner to solve your design challenges

Highest accuracy and fast signal pick-up for location tracking and altitude measurement

Secure cellular network connection

Products with smallest form factors enable high functional integration

Integrated lowest power compute, **BLE** connectivity and most robust capacitive touch

Bluetooth® audio streaming with BT/BLE Combo SoC

Precise detection of single steps, body motions or fall events

performance for voice call and voice assistant with MEMS microphones

Reliable and low-power code and data storage in a tiny footprint

Easy, convenient and secure data transmission by NFC

Device protection to enable high user experience

High reliability and data throughput with Wi-Fi/BT connectivity

Low power consumption to increase battery lifetime

Car & marine audio

applications

After-market car audio

Marine audio

Motorcycle audio

Class D audio

No compromise on quality – products for exceptional audio performance

At Infineon, we manufacture power-efficient class D audio amplifier solutions that maintain best-in-class audio quality, without heating up the surroundings. We believe smaller and lighter is better as well as that the amplifier embedded in your product should be heard but not seen. Our amplifier solutions help you design robust, flexible products that meet the needs of your customers and the market. Choose from our high-performance class D audio amplifier solutions for all power ranges and application requirements, from the smallest fully integrated single-chip solutions to the highly scalable driver and power MOSFET combinations (for a full portfolio, see Audio amplifier ICs).

Design with Infineon's solutions to benefit from:

performance

power efficiency

freedom

Maximized output power

time to market

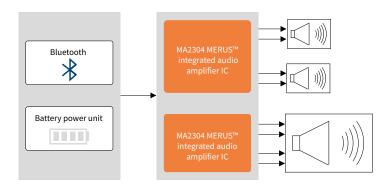
Portable/battery powered audio applications

Battery powered speakers:

- On-the-go Bluetooth® speakers
- Docking speakers
- Boom boxes
- Wearable speakers

Home audio applications

- Multiroom systems
- Audio hub
- TVs
- Sound bars
- Home theater systems
- Smart speakers


Professional audio applications

- Power-over-ethernet (PoE)
- Audio systems
- Touring amplifiers
- Active speakers
- Public announcement 70-100 V systems
- Music instrument amplifiers

Home audio

Modern home audio products vary in shape, size and configuration, but a common requirement is a great sound in combination with outstanding industrial and acoustic design. In addition to producing exceptional sound quality, MERUS™ amplifiers from Infineon can completely eliminate the need for bulky and expensive LC output filters and heatsinks. This allows the design of new innovative and great-sounding home audio products in form factors and shapes that were previously unthinkable.

Solution example: 2.1 configuration (2xBTL + 1xPBTL)

Solution specification

Number of audio channels: 2 bridge-tied load

(BTL) and 1 parallel BTL channel

Peak power output: $2x37 \text{ W} @ 4 \Omega$, 10% THD

and 74 W @ 2 Ω, 10% THD

Featured audio ICs: MA2304DNS or MA2304PNS

www.infineon.com/merus www.infineon.com/audio www.infineon.com/audiosolutions

5.1/3.1.2 configuration soundbar example

MA2304 MERUS™ integrated audio amplifier IC MA5332MS MERUS™ MCM integrated audio amplifier IC

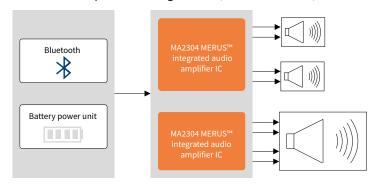
Solution specification

Number of audio channels: 5 bridge-tied load

(BTL) + 1 BTL Subwoofer

Peak power output:

5x37 W @ 4 Ω , 10% THD; 400 W @ 8 Ω , 10% THD


Featured audio ICs: MA2304DNS, MA2304PNS,

MA5332MS, MA5342MS *

Portable audio

When designing portable/battery-powered audio devices, it is essential to maximize battery playback time, and at the same time, maintain excellent audio performance. Infineon's MERUS™ amplifiers provide up to twice as long battery playback time in combination with the best-in-class audio performance and unsurpassed sound quality.

Solution example: 2.1 configuration (2xBTL + 1xPBTL)

Solution specification

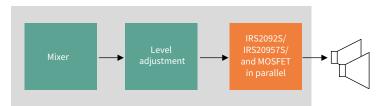
Number of audio channels: 2 bridge-tied load

(BTL) and 1 parallel BTL channels

Peak power output: 2x37 W @ 4 Ω, 10% THD

and 74 W @ 2 Ω, 10% THD

Featured audio ICs: MA2304DNS or MA2304PNS


www.infineon.com/audio www.infineon.com/audiosolutions

management ICs Power

Professional audio

Professional audio equipment is all about maximizing output power and power density. With the conception of Infineon's MERUS™ multilevel class D technology and GaN-based CoolGaN™ GIT HEMTs, it is now possible to conceive both amplifiers and power supply units with great audio performance and high efficiency in a very compact design. For engineers developing amplifiers, Infineon offers varied chip-set solutions with versatile MOSFET combinations for the scaling of output power.

Solution example: active speakers

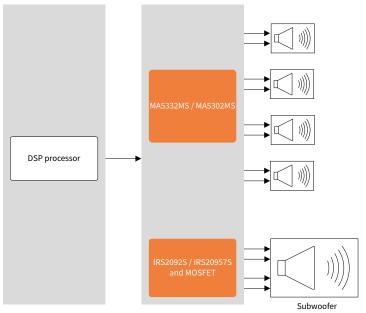
Solution specification

Number of audio channels: 2 half-bridge channels Peak power output: $>500 \text{ W} @ 4 \Omega$, 1% THD Featured audio ICs: IRS2092S, IRS20957S,

IRS2461S, IRS2452AM

Solution example: public announcement 70-100 V system

Solution specification


Number of channels: 2 half-bridge channels Peak power output: 500 W, 70 $\rm V_{RMS}/100~V_{RMS},\,1\%~THD$

- Featured audio IC: IRS2452AM

Car and marine audio

Car and marine audio systems need to generate powerful and great sound while limiting the system size and heat generation to a minimum level. Infineon's MERUS™ multi-chip module integrated class D amplifiers and class D controller + MOSFETs combinations enable high-level power density and design flexibility to deliver the best music listening experience regardless of where you are, whether it's in your car, on your motorcycle, or on the water.

Solution example: 5 channel car audio amplifier

Solution specification

Number of audio channels: 5 half-bridge channels Peak power output: 150 W @ $4/2 \Omega$, 1% THD;

500 W @ 4 Ω, 1% THD

Featured audio ICs: MA5332MS, MA5302MS*,

IRS2092S, IRS20957S

www.infineon.com/merus www.infineon.com/audio www.infineon.com/audiosolutions

*Coming soon

Gate-driver ICs

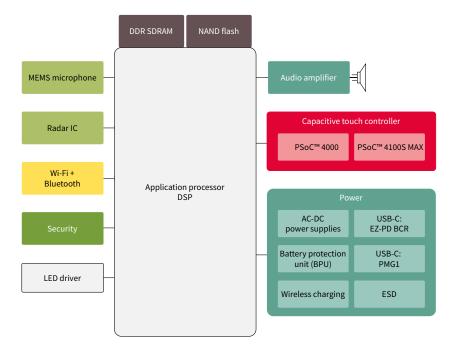
Smart speaker

Speakers for an intuitive and outstanding user experience

Once a novelty in households, smart speakers are more and more becoming increasingly commonplace. Rising user expectations accompany this rapid adoption. However, frustration with devices that do not understand or hear commands leads to lower user adoption. Consequently, growth rates for smart speakers are failing to reach their full potential. Components such as MEMS microphones, touch controllers, and new technologies such as radar are vital in improving the user experience in the smart speaker segment.

Infine on has long-standing expertise in sensors, connectivity and power solutions that fulfill the consumer market requirements in terms of outstanding performance, reliability and energy efficiency.

Features and benefits


Key features

- High sensitivity, low self-noise (high SNR) and distortion, wide dynamic range, and high acoustic overload point with XENSIV™ MEMS microphones
- Multilevel switching technology at fully rated power in a wide range of ME-RUS™ class D amplifiers
- Ultralow-power AIROC™ Wi-Fi and Bluetooth® combo in a single-chip solution enables small-form-factor IoT designs
- Reliable, elegant and durable CAPSENSE™ touch controller with advanced capacitive touch sensors
- XENSIV™ 60 GHz radar sensor brings innovative, intuitive sensing capabilities
- Highly efficient and power-dense SMPS solutions
- Highly integrated EZ-PD™ USB-C controller supports all USB-PD profiles
- IoT security controller OPTIGA™ Trust M maintains the unique identity and integrity of the speaker

Key benefit

- Improved audio input and thus voice command recognition, especially in extended use cases such as whispering or longer distances to the speaker for a better user experience
- Best-in-class audio quality and lowest power consumption enable the class D audio amplifier to be used in filterless configurations
- Connectivity for high interoperability and performance without dropouts anywhere in the home, extended battery playback time, or the reduction of battery size without compromising on battery playback time to save cost
- Noise immunity, water resistance, and sleek, futuristic user interfaces and gesture recognition
- Precise presence detection for more contextual awareness to ease interaction, sub-millimeter motion tracking to capture movement at high speed accurately, vital sensing for monitoring health status such as respiratory and heart rate
- Highly efficient charger in a small form factor
- USB-IF certified with market-proven USB-PD stack, ensuring specification compliance and interoperability, requiring no firmware development
- Easy and secure cloud provisioning services

Application diagram

Recommended products

Functional block	Produc	t family	Product	Benefits
Audio input	Microphones		XENSIV™ MEMS microphones	High-performance microphone with low self-noise (high SNR) and low distortions, setting a the new performance benchmark for a superior user experience
Audio output	Class D amplifier		MERUS™ class D audio amplifiers MA2304DNS	 Cooler, smaller and lighter amplifiers designed to maximize power efficiency and dynamic range while providing best-in-class audio performance in the product form factors for great-sounding audio products Extended battery playback time or the reduction of battery size without compromising on battery playback time to save cost
Connectivity	Wi-Fi + Bluetooth® con	nbos	AIROC® Wi-Fi + Bluetooth combos	 Best-in-class interoperability to the widest deployed wireless IP Whole Home Range with high throughput for multi-channel audio and RSDB (Real Simultaneous Dual Band) for speaker sub-networks Ultralow-power technology designed with battery operation in mind
Sensing	Capacitive sensing tou	ich controller	CAPSENSE™ capacitive touch sensing controller	State-of-the-art noise immunity (SNR > 100:1) & water rejection have made CAPSENSE™ the industry leader Advanced inductive touch sensors make possible sleek, futuristic user interfaces with metallic overlay
	Radar sensor		XENSIV™ 60 GHz radar sensor	 Accurate presence detection and vibration detection based on ability to track sub-millimeter motion at high speed and accuracy, Both stand-alone chip as well as system solution available
	CO ₂ sensor		XENSIV™ PAS CO₂ sensor	 Superior accuracy, providing a direct readout of the real CO₂ level, not simply a correlation Size and cost advantages
Security	IoT security controller		OPTIGA™ Trust M	 Easy & secure provisioning services with OPTIGA™ Trust M for maintaining speaker's unique identity & integrity Unify different products under unified PKI architecture
Power	USB-C PD controller		EZ-PD™ USB-C controller	USB-IF certified with market-proven USB-PD stack, ensuring spec compliance and interoperability Supports all USB-PD profiles commonly used in USB-C power adapters and requires no firmware development A highly-integrated solution that minimizes incremental BOM costs
	ESD protection		ESD111, ESD245	Outstanding low capacitance devices for best signal integrity High protection performance by ultralow clamping voltage
	Wireless charging		15 W inductive wireless power transmitter	Powerful and cost-effective wireless charging solutions for high performance, smart and secure charging solutions supported by Infineon's unique wireless power controllers
	High-voltage MOSFETs	Flyback	700 V CoolMOS™ P7 (standard grade)	Best price-competitive CoolMOS™ SJ MOSFET family Lower switching losses than a standard MOSFET
		ACF, FMCI	600 V CoolMOS™ PFD7	– Lower Q _{rr} , lower hysteresis loss, low R _{DS(on)}
	SMPS Flyback	QR flyback ICs	ICE5QSAG	- High efficiency and low standby power
	converter Control ICs	FFR flyback IC	XDPS21071	- High power density and ideal for USB-PD
	SMPS synchronous rectifi-	Low-voltage MOSFETs	OptiMOS™ PD	Low conduction losses and reduced overshoot Logic level switching / S308 / PQFN 3.3x3.3 packages available
	cation	Control ICs	IR1161LTRPBF	High efficiency Simple external circuitry
	SMPS load switch	Low voltage MOSFETs	OptiMOS™ 30 V	Low conduction lossesS308 / PQFN 3.3x3.3 packages available

Security camera and video doorbell

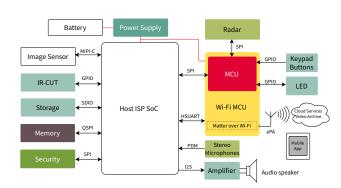
Make your wire-free camera smarter

Advancements in video surveillance technology take indoor and outdoor security solutions to the next level. Smart cameras that are connected to management systems and cloud platforms detect intruders more easily and alarm you in case of danger. By equipping cameras and doorbells with reliable connectivity and accurate sensor solutions, safetyenhancing IoT features can be implemented, significantly improving intrusion detection, and other unusual behavior. Camera hardware improvement enables differentiated features to move from the cloud to the edge. Cameras become an active component in smart homes, not just passive observers. Wire-free cameras and doorbells often demand low power with high integration features.

Infineon offers a broad range of products to make security cameras and video doorbells smart and connected. The AIROC™ wireless connectivity solution portfolio for Wi-Fi, Bluetooth® and Matter offers stable connections to cloud and management systems, making cameras and doorbells linked with the whole smart home. Sensors such as Infineon's XENSIV™ radar sensors can help overcome bandwidth limitations, for example, by the waking-up function and reducing false positives when motion near the camera is detected. And XENSIV™ MEMS Microphone enables sound/ voice-triggered recording and notification. At the same time, Infineon's embedded security solutions make connected cameras more robust against cyberattacks. Infineon's best-in-class low-power MCU and wireless support wire-free cameras and doorbells which are usually battery-operated.

Features and benefits

Kev features Reliable and robust connectivity with Wi-Fi6/E Improvement in coverage, deploy density, latency, throughput, etc. - Low power Wi-Fi and MCU Offloading host burden for power saving; BOM reduction Connectivity processor in wireless solution Interoperability between devices in smart home - Infineon leading solution of Matter Accurate data collection for new use cases, e.g. wake-up functions with radar sensor Highly accurate set of sensors with low power consumption Ensuring device integrity and robust design against cyber attacks Turnkey embedded security solutions



Current generation block diagram - battery powered

Battery Image Sensor Wi-Fi Combo → Amplifier 🎞

Next generation block diagram - battery powered

	Sensing	Security	мси	Memory	Software service
MEMS Microphone	Radar IC	OPTIGA™ Trust M	- PSoC [™] 4 M0/M0+ processor	– SEMPER™ Nano flash	- IoT Network Intelligence (INI)
- IM73D122	- BGT60LTR11AIP (60 GHz)	- M5271SLS32AIA010MS / MH	 PSoC[™] 6 M4-M0+ processor 	 ULTREON™ RRAM 	 Mobile App Intelligence (MAI)
- IM69D128S	- BGT60UTR11AIP (60 GHz)	- M5271SLS32AIA010MK / ML	 Next-gen edge compute 		
- IM70D122	- BGT60TR13C (60 GHz)	OPTIGA™ TPM	processor		
- IM72D128	- BGT60UTR13D (60 GHz)	- SLB 9670 TPM 2.0			
- IM68A130	- BGT24LTR11 (24 GHz)				
- IM70A135	- BGT24MTR11 (24 GHz)				

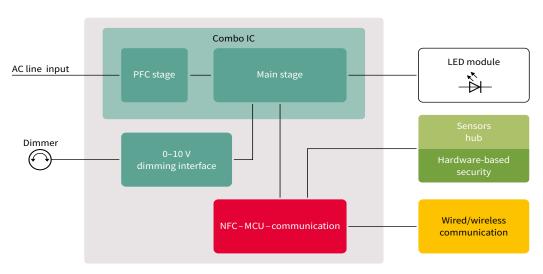
Wi-Fi

Good	Better	Best	Wi-Fi 6/6E
CYW43439	CYW4373	CYW5459x for high performance	CYW5557x for High performance
 Single band, 1x1 11 n, iPA. SDIO 	- 1x1 11 ac dual-band, USB and SDIO	- RSDB, MU-MIMO, 2x2 11 ac	– 2x2 11 ax, tri-band capable
– Low power	 TCP/IP keep alive 	– 80 MHz channel, up to 867Mbps	 Integrated high-power front end
- BT/BLE 5.0 UART	- WPA3	 PCle3.0 and SDIO 2.0 Wi-Fi 	 Highest throughput -1.2 Gbps max.
 TCP/IP keep alive 	 Antenna diversity 	- BT/BLE 5.1	 Advanced Coexistence
- WPA3	– External PA for long range	 2- and 3-antenna configurations 	 Novel long-range extension modes for
 Antenna diversity 			devices
 Cost-effective connectivity 	CYW43012 for low power	CYW43022 for ultra-low power	
	– Ultra-low-power, 28 nm	43012 pin-compatible "drop-in"	CYW55x13 for ULP and offloading
	– 802.11a/b/g/n-compliant, dual-band	replacement with no RBOM	– 1x1 11 ax, Tri-band, 20 MHz for IoT
	– TCP/IP keep a live	change	– Ultra low power, extended battery life
	 High volume production, field-proven 	 New Deep Sleep mode enabling 	 WiFi MCU with connectivity processor
	in battery cameras	improved DTIM power states	for system-level power saving and BOM
	 No capacity constraints 	 ROM update frees up run-time 	reduction
		RAM space for features & patches	- Software compatible with 55572

LED lighting

Solutions for cost-sensitive applications as well as for smart lighting

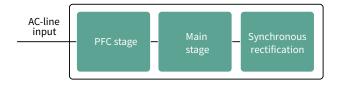
Infineon supplies tailored products for LED drivers, LED strips, horticultural, and smart lighting. Our broad portfolio of LED lighting comprises LED driver ICs, MOSFETs, and microcontrollers suited for LED drivers as well as sensors and dedicated ICs for secure communication. In addition to offering products of proven quality, a competent global lighting team supports our lighting customers in designing LED lighting products and systems in collaboration with our channel partners.

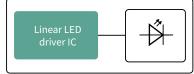

Key trends and challenges in LED lighting and our offering:

- Human-centric lighting (HCL)
 - The lowest cost implementation of tunable white with single-stage flyback constant voltage and smart linear regulators with advanced headroom control ensuring high efficiency - BCR601

- Configuration of output current and some further parameters
 - Our NFC controller allows the configuration of the output current without the need for an additional
 - Our XDPL lighting IC family allows, besides output current, also adjustment of other features like protection, dimming curves, etc.
- Cost reduction combined with efficiency increase
 - Integration of resonance inductor for PFC + resonant topology enables highest efficiency at low cost
 - Integration is enabled by the coreless transformer technology that enables high switching frequencies

LED drivers





Recommended LED driver products

Functional block	Product type	Product family	MOSFET technology	Voltage class
PFC stage	PFC	IRS2505	CoolMOS™ P7	600 V/700 V/800 V/950 V 1)
Main stage	PFC + LCC (constant current) PFC + LLC (constant current)	ICL5102 ²⁾	CoolMOS™ P7 (up to 600 mΩ) CoolMOS™ PFD7	600 V/600V
			CoolMOS™ CE (above 600 mΩ)	600 V
		ICL5102HV ³⁾	CoolMOS™ PFD7	950 V
	PFC + flyback (dual-stage)	XDPL8221 ²⁾	CoolMOS™ P7	800 V/950 V
	PFC/flyback (single-stage constant current)	XDPL8105	CoolMOS™ P7	800 V/950 V
	PFC/flyback (single-stage constant voltage)	XDPL8219	CoolMOS™ P7	800 V/950 V
	PFC/flyback (single-stage constant voltage)	ICL8800/ICL8810/ ICL8820	CoolMOS™ P7	800 V/950 V
	PFC, flyback low-side gate driver	1EDN7550B	any CoolMOS™ SJ MOSFETs	-
		2EDN8524F	any CoolMOS™ SJ MOSFETs	-
	Half-bridge LLC gate driver	2ED2101S06F	any CoolMOS™ SJ MOSFETs	650 V (SOI)
		1EDI20N12AF	any CoolMOS™ SJ MOSFETs	1200 V (coreless transformer/CT)
		2EDF7275F	any CoolMOS™ SJ MOSFETs	650 V (coreless transformer/CT)
Buck/linear solutions	Secondary buck (single-channel) Secondary buck (multichannel)	ILD8150	integrated	80 V
	High-side buck gate driver	1EDB8275F	any CoolMOS™ SJ MOSFETs	650 V
	Low-side buck gate driver	1EDN8511B	any CoolMOS™ SJ MOSFETs	-
	Secondary linear controller with feedback	BCR601	small-signal MOSFETs	75 V/100 V
	Tunable white with linear LED driver	BCR601, BCR602	small-signal MOSFETs	75 V/100 V
Dimming	0-10 V dimming interface IC	CDM10V	-	-
		CDM10VD	-	-
NFC	NFC configuration IC	NLM0010/NLM0011 ⁴⁾	-	-
Microcontroller	XMC™ microcontroller	XMC1100	-	-

LED driver with constant voltage output and linear/switch mode LED driver ICs

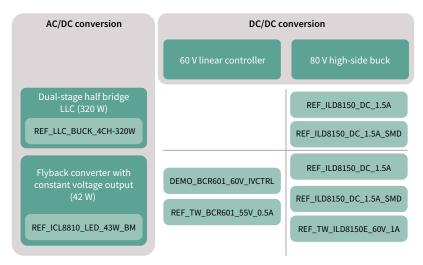
Linear LED driver IC product portfolio

Functional block	Topology	IC product family	MOSFET technology
Lowest cost LED driver IC	Linear	BCR400W series	Integrated
Low voltage drop LED driver IC		BCR430U/BCR431U	
Robust LED driver IC		BCR40xU/BCR42xU	

For additional portfolio, take a look at Lighting ICs.

www.infineon.com/lighting

- 1) 700 V, 800 V and 950 V CoolMOS™ P7 are optimized for PFC and flyback topologies. 600 V CoolMOS™ P7 is suitable for hard as well as so switching topologies (flyback, PFC and LLC)
- 2) PFC and resonant combo controllers3) Higher input voltage
- In addition to current configuration also constant lumen output (CLO) feature is included.



Plug & LEDs play solutions

Modular LED lighting reference designs for LLC, buck and PFC flyback topologies

LED lighting has become a mature technology with stringent requirements on light quality. In order to achieve high light quality, there is a strong trend towards two-stage topologies. These two-stage topologies ensure that the light flicker or, also called light ripple, remains at low levels according to the IEEE 1789 standard and other new upcoming regulations. Primary constant voltage output, followed by a DC-DC buck, enables dimming, efficiency, cost, and scalability benefits. Infineon has solutions for both the primary AC-DC stage as well as for the secondary DC-DC buck stage. These solutions can be combined in a plug & play concept. In other words, depending on the requirements, the suitable AC-DC stage and the best fitting DC-DC stage can be selected and tested.

Our solutions include but are not limited to:

Low to medium power platform promising tunable white at low cost

REF_ICL8810_LED_43W_BM

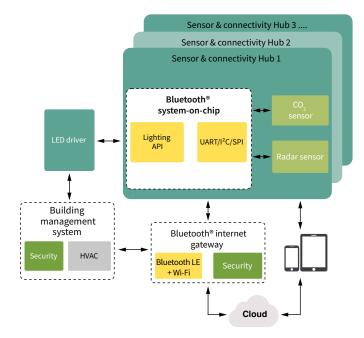
REF_TW_BCR601_55V_0.5A

320 W DCM PFC cost-effective and scalable platform design with up to 4 DC-DC channels

REF_LLC_BUCK_4CH_320W

REF ILD8150 DC 1.5A

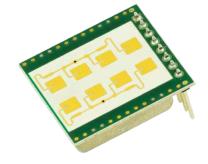
Discover more solutions on www.infineon.com/leddriver-reference-solutions


Gate-driver ICs

Smart lighting solutions

Connectivity and sensor solutions for connected and smart lighting to facilitate everyday life

In the last few years, connected and smart lighting has gained high momentum in the lighting industry. In this application field, sensing and connectivity play an essential role. Besides helping realize energy savings, they also enable new use cases beyond lighting controls.


Radar sensor solutions

For energy saving, passive infrared (PIR) sensors are used. Novel sensors like radar can overcome weaknesses of PIR sensors like poor design, limited detection of micro-movements, and limited area coverage, to name a few. Radar sensors can be seamlessly integrated into the luminaires enabling nice design as well as platform design of luminaires since there is no need for drilling holes as in the case of PIR sensors. Advanced use cases like people counting and people tracking can also be ensured with radar technology. In order to add more intelligence to the entire system, connectivity is a key element.

Our partners:

Our system design house partners deliver both standard products and customized solutions to fit specific lighting applications from movement detection through automatic light activation to person counting. In addition, they offer all levels of support to get your intelligent lighting system up and running as quickly and efficiently as possible. See below a list of some of our partner solutions and check our Lighting brochure for more.

Functional block	Topology	IC product family
RF Beam	K-LD2	Presence detection including slight movements
	K-LD7	
InnoSent	INS-313x	Motion detection range up to 5 m
	INS-333x	Motion detection range up to 10 m
Novelic	RIOT100 - NRM302	Turnkey motion and presence sensor solution up to 15 m

Additionally, Infineon provides numerous radar solutions.

Please find out more about them in Radar sensor for IoT chapter.

www.infineon.com/smart-lighting www.infineon.com/makeradar

Gate-driver ICs

management ICs

Power

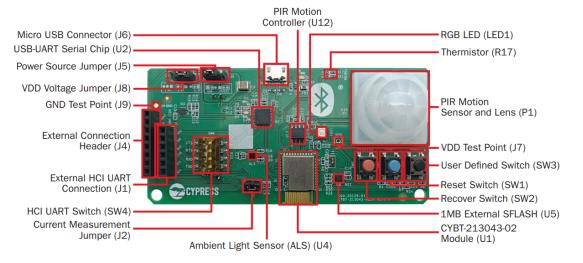
Bluetooth® Mesh devices and modules for connected and smart lighting applications

Embedding Bluetooth® Mesh networking in lighting systems, including luminaires, fixtures, and wall switches, opens a range of system applications to manage lighting brightness or color, efficiency based on occupancy movements, and correlation of lighting ecosystem components. The range and coverage of Bluetooth® Mesh devices allow for low latency, whole building coverage of automation and occupancy interaction via smartphone and tablet applications, as well as cloud applications for building management. Infineon provides a range of Bluetooth® Mesh MCUs and certified modules that enable lighting control functionality, safety and occupancy sensor management and robust, secure, reliable networked managed solutions.

Bluetooth® Mesh SoCs and certified modules: solutions and benefits

Bluetooth® Mesh system-on-a-chip (SoCs) and certified modules offer a range of efficient and future-proof upgradeable solutions:

Solutions	Benefits
 Module diversity with integrated components ranging from the basic battery-powered sensor to the most sophisticated detection and safety devices 	Accommodating different needs now and in future
- Fully-integrated modules	Accelerate time-to-market Reducing development and manufacturing costs
– Ultra-high-transmit power designs with integrated antennas	– Enabling long range and unfailing node-node connections
- Integrated CPU, memory (flash and RAM) and I/O	- Suiting all foreseeable applications hosting


Bluetooth® Mesh evaluation kit CYBT-213043-MESH

The Bluetooth® Mesh evaluation kit (CYBT-213043-MESH) enables you to evaluate SIG Mesh functionality and features using the CYBT-213043-02 module. The CYBT-213043-02 module is an integrated, fully certified, 12.0 mm x 16.61 mm x 1.70 mm, programmable Bluetooth® Smart Ready module designed to reduce your time-to-market.

Utilized device: CYW20819

Kit contents:

4x mesh evaluation boards 4x USB A to micro-B cables 1x quick-start guide

Bluetooth® Mesh Networking - An Introduction for Developers Bluetooth®-Mesh-Paving-the-Way-for-Smart-Lighting Bluetooth®-Mesh specifications:

www.bluetooth.com/specifications/mesh-specifications

Getting Started with Bluetooth® Mesh

www.infineon.com/smart-lighting www.infineon.com/makeradar

(AppNote AN227069)

	CYW20706	CYW20735	CYW20819	CYW20820	CYW20719
Product features	(i) Influent	(§) Infineon AROCO	(i) Infineon	(i) Infineon	(Infineon
TBA Processor	CM3	CM4 w/FPU	CM4	CM4	CM4 w/FPU
TBA Radio	-	ULP RF	ULP RF	ULP RF	ULP RF
Operating temperature	105 C	85 C	125 C planned	125 C planned	85 C
Transmit power	10 dBm Tx	10 dBm Tx	4 dBm Tx	10 dBm Tx	4 dBm Tx
Memory	-	-	256 kB flash	256 kB flash	1 MB flash

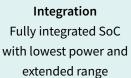
Features/Integration

Interested in more? We offer a broad silicon portfolio to support your Bluetooth® Mesh design.


Fully-certified Bluetooth® modules (FCC, ISED, MIC, CE)

Load range Up to 20 dBm transmit power

CYBT-483056-02


CVRT_353027_02

Value
Balance of features for cost sensitive applications

CYBT-343052-02

CYBT-273063-02

Wi-Fi enterprise networking and internet connectivity

Wi-Fi networking is the backbone of enterprise, retail, and home internet connectivity. Wi-Fi is the bridging medium for Bluetooth® Mesh networks to enterprise networks and cloud applications capturing messaging from across the lighting installation for secure enterprise building management applications. Wi-Fi can also connect sensors and fixtures directly to enterprise or home access points for long-range solutions or integrated solutions including security lighting and cameras. Infineon offers a range of secure, high-performance enterprise-ready Wi-Fi solutions that can be added to switches, panels, and lighting bays. These solutions can be stand-alone network nodes or offer Bluetooth® Mesh Gateway services bridging Mesh-networked devices to cloud applications.

IoT Wi-Fi portfolio

Technology	Wi-Fi	Wi-Fi + MCU	Wi-Fi + Bluetooth® Combos
	CYW43364 SB 1x1 11n SDIO		CYW43439 SB 1x1 11n + BT5.2 SDIO/SPI
Wi-Fi 4 (802.11n)		CYW43903 SB 1x1 11n + 160-MHz R4	CYW43012 ULP DB 1x1 11n + BT5.1 SDIO/SPI WLBGA/WLCSP
		1x1 DB 11n + 320-MHz R4	
		1x1ac DB + 320-MHz R4	CYW54590** DB 2x2 11ac + BT 5.1 PCIe/SDIO
Wi-Fi 5 (802.11ac)			CYW4373/89373 DB 1x1 11ac + BT5.0 USB/SDIO/PCIe
			CYW54591 DB 2x2 11ac, RSDB, BT5.1 PCIe/SDIO

Infineon's Wi-Fi portfolio provides high-performance, flexible connectivity for Linux, Android, and RTOS. Many of the Wi-Fi + Bluetooth® combos are supported on Infineon's WICED Wi-Fi and ModusToolbox™ Software Development Kits (SDK) which provide code examples, tools and development support.

Infineon's Wi-Fi and Bluetooth® combos use production-ready, fully-certified Wi-Fi + Bluetooth® combo modules based on both Linux and RTOS based platforms. Many of the Wi-Fi + Bluetooth® combos are supported on Infineon's WICED Wi-Fi and ModusToolbox™ Software Development Kits (SDK) which provide code examples, tools and development support for easier and faster development.

www.infineon.com/smart-lighting www.infineon.com/makeradar

^{**}For more information on this product, contact our product support.

Wi-Fi enterprise networking and internet connectivity

We offer a broad platform portfolio to support your Bluetooth® Mesh gateway.

IoT Wi-Fi portfolio

A global Wi-Fi module partner ecosystem enables support and development for your IoT application.

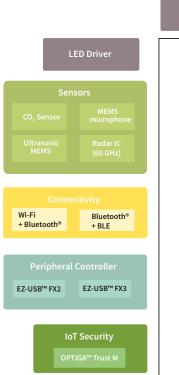
Design, build and sell RF Modules with limited software and hardware certification support

Module makers

Smart conferencing systems

Design conference phones and video conferencing systems for exceptional performance and user experience

The last few years have changed how we interact with our colleagues in the workspace. With the rise of remote work and flexible office spaces new challenges arise – new soft skills, but more importantly, new technology is needed to meet the hybrid way of working. In this changing environment, conferencing systems and speakerphones are essential to enhance the productivity of remote teams and serve customers effectively. The user experience and functionality are further enhanced by smart features, including voice assistants for businesses, user tracking, and new connectivity technologies. Infineon's portfolio provides exceptional performance, user experience, and energy efficiency for the next generation of conferencing systems and speakerphones.


Features and benefits

Key features
- Best-in-class figures of merit
- Reliable connectivity and power solutions
- Co-processor in connectivity solutions
- Small footprints of components
 Turnkey embedded security solutions
- Highly accurate set of sensors with low power consumption


Key benefits

- Lower system power consumption and energy savings and enablement of deep sleep modes
- Less failure and increased up-time with stable connectivity of surveillance camera to cloud and management platforms
- Keep-alive feature in connectivity solutions
- Sleeker designs and space savings
- More robust designs against cyberattacks in connected eco-systems
- Accurate data collection for IoT use cases, e.g. wake-up functions with radar sensors

Application diagram

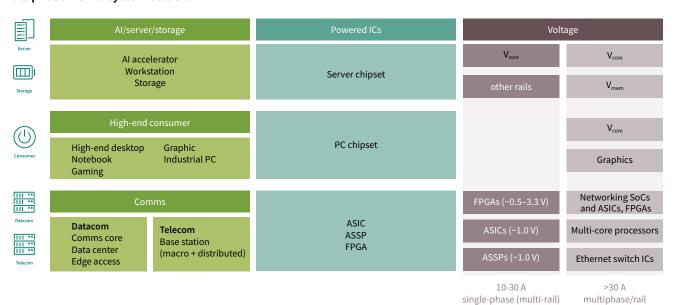
Product portfolio

Functional block	Produc	ct family	Product	Benefits
Audio input	Microphones		XENSIV™ MEMS microphones	 High-performance microphone with low self-noise (high SNR) and low distortions, setting a new performance benchmark for a superior user experience
Audio output	Class D amplifier		MERUS™ class D audio amplifiers	 Cooler, smaller and lighter amplifiers designed to maximize power efficiency and dynamic range while providing best-in-class audio performance in product form factors for great-sounding audio products Extended battery playback time or the reduction of battery size
Connectivity	Bluetooth® modules and Wi-Fi + Bluetooth® Combo	os	AIROC™ Wi-Fi + Bluetooth® combos and Bluetooth® modules	- Best-in-class interoperability to the widest deployed wireless IP - Whole Home Range with high throughput for multichannel audio and RSDB (Real Simultaneous Dual Band) for speaker sub-networks - Ultra-low-power technology designed with battery operation in mind
Sensing	Capacitive sensing touch	controller	CAPSENSE™ capacitive touch sensing controller	 State-of-the-art noise immunity (SNR > 100:1) and water rejection have made CAPSENSE™ the industry leader Advanced inductive touch sensors make possible sleek, futuristic user interfaces with metallic overlay
	Radar sensor		XENSIV™ 60 GHz radar sensor	 Accurate presence detection and vibration detection based on the ability to track sub-millimeter motion at high speed and accuracy, both stand-alone chip as well as system solution available
	CO ₂ sensor		XENSIV™ PAS CO ₂ sensor	 Along with size and cost advantages, the sensor delivers superior accuracy, providing a direct readout of the real CO₂ level
Security	IoT security controller		OPTIGA™ Trust M	 Easy and secure provisioning services with OPTIGA™ Trust M for maintaining the speaker's unique identity and integrity Unify different products under unified PKI architecture
Data communication	USB peripheral controller	rs	EZ-USB™ FX SuperSpeed controllers	 Most versatile USB peripheral controller which can add a USB 5 Gbps connectivity to any system
Power	USB-C PD controller		EZ-PD™ USB-C controller	 USB-IF certified with market-proven USB PD stack, ensuring spec compliance and interoperability Supports all USB PD profiles commonly used in USB-C power adapters A highly-integrated solution that minimizes incremental BOM costs
	ESD protection		ESD111, ESD245	Outstanding low capacitance devices for best signal integrity High protection performance by ultra low clamping voltage
	Wireless charging		15 W inductive wireless power transmitter	 Powerful and cost-effective wireless charging solutions for high performance, smart and secure charging solutions supported by Infineon's unique wireless power controllers
	High-voltage MOSFETs	Flyback	700 V CoolMOS™ P7 (standard grade)	 Best price-competitive CoolMOS™ SJ MOSFET family Lower switching losses than a standard MOSFET
		ACF, FMCI	600 V CoolMOS™ PFD7	– Lower Q _{rr} , lower hysteresis loss, low R _{DS(on)}
	SMPS flyback converter	QR flyback ICs	ICE5QSAG	– High efficiency and low standby power
	control ICs	FFR flyback IC	XDPS21071	– High power density and ideal for USB-PD
	SMPS synchronous rectification	Low-voltage MOSFETs	OptiMOS™ PD	Low conduction losses and reduced overshoot Logic-level switching/S308/PQFN 3.3 x 3.3 packages available
		Control ICs	IR1161LTRPBF	– High efficiency/simple external circuitry
	SMPS load switch	Low-voltage MOSFETs	OptiMOS™ 30 V	Low conduction lossesS308/PQFN 3.3 x 3.3 packages available

DC-DC power solution for data center, edge, enterprise, telecom and datacom

Digital multiphase and point-of-load DC-DC solution

As an industry leader in digital power management, Infineon delivers solutions for the next-generation data center, edge, enterprise, server and telecom applications, storage and client computing applications. Infineon offers a complete portfolio including digital multiphase controllers, integrated power stages, integrated point-of-load (POL) voltage regulators and discrete MOSFETs. These proven technologies offer full flexibility to our customers to optimize a complete system solution for space, performance, ease-of-design and cost to meet critical design goals. In addition, our latest software tools help simplify design, shorten design cycles, and improve time-to-market.

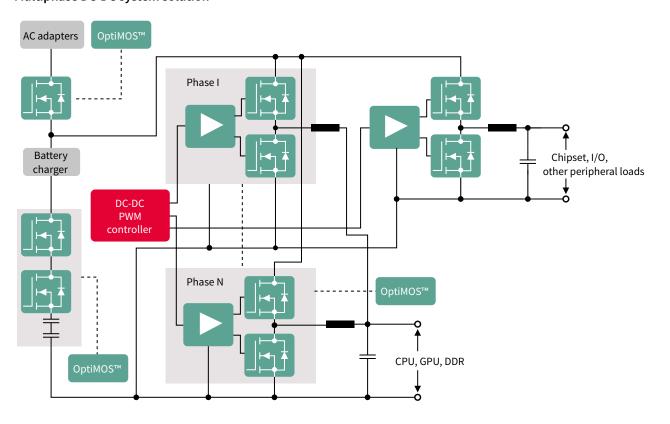

Features and benefits

 Multi-protocol support Complete system solution Digital controller flexibility 	Best-in-class efficiency	
Digital controller flexibility	– Multi-protocol support	
· · · · · · · · · · · · · · · · · · ·	Complete system solution	
· · · · · · · · · · · · · · · · · · ·		
	 Digital controller flexibility 	
- Ease-of-design	– Ease-of-design	
- Smallest solution size	– Smallest solution size	

Key benefits

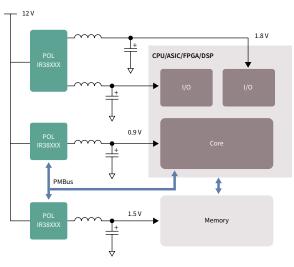
- Digital multiphase controller and power stage provide industry's highest efficiency of more than 95 percent
- Intel SVID, AMD SVI2/3, NVIDIA PWM VID, parallel VID (up to 8 bits), PMBus Rev1.3, AVS Bus (PMBus Rev1.3)
- A broad portfolio of fully integrated point-of-load, integrated power stage and digital controller solutions in addition to discrete drivers and MOSFETs offers full flexibility to optimize complete system solutions ranging from 1 A to 1000+ A
- Industry's benchmark for feature richness and low-quiescent power
- Intuitive GUI enables faster optimization, thereby reduces design cycle time
- Best-in-class OptiMOS™ MOSFETs combined with advanced packaging technologies enable high power density at high efficiency, and superior control engine with digital multiphase controllers help minimize output capacitance significantly

Multiphase DC-DC system solution



Click here for more information on server SMPS and telecom SMPS solutions.

Multiphase DC-DC system solution



DC-DC enterprise power solution for data processing applications

Integrated point-of-load (IPOL) converters

Infineon's IPOL converters integrate a PWM controller, a driver, and MOSFETs into a small PQFN package for ease of use. The patented PWM modulation scheme allows greater than 1 MHz switching frequencies to deliver ultracompact layouts and the smallest bill of materials (BOM). A PMBus interface is available for monitoring and control in systems that use advanced CPUs, ASICs and FPGAs.

Block diagram

Key features

- Input voltage range4.5-21 V
- > Output current 1-40 A
- Operating temperature range of -40 to 125°C

Key benefits

- Integrated controller, driver, MOSFETs for small footprint
- High-efficiency MOSFETs and thermally enhanced packages for operation without heat sinks

DC-DC IPOL portfolio

Digital interface IPOL

I ² C PMBus, telemetry, margin, faults, SVID PVID Digital control/configuration, telemetry and diagnostic						
Part number	Max. current [A]	Package size [mm]	Max. V _{in}	Max. f _{sw}	Distinctive fea- tures	
IR38064MTRPBF	35	5 x 7	21 V	1500 KHz	PMBus	
IR38063M	25	5 x 7	21 V	1500 KHz		
IR38062M	15	5 x 7	21 V	1500 KHz		
IR38060M	6	5x6	16 V	1500 KHz		
IR38163M	30	5 x 7	16 V	1500 KHz	OptiMOS™ 5, SVID + PMBus	
IR38165M	30	5 x 7	16 V	1500 KHz	OptiMOS™ 5, SVID	
IR38363M	15	5 x 7	16 V	1500 KHz	OptiMOS™ 5, SVID + PMBus	
IR38365M	15	5 x 7	16 V	1500 KHz	OptiMOS™ 5, SVID	
IR38263M	30	5 x 7	16 V	1500 KHz	OptiMOS™ 5, PVID + PMBus	
IR38265M	30	5 x 7	16 V	1500 KHz	OptiMOS™ 5, PVID	
IR38164M	30	5 x 7	16 V	1500 KHz	OptiMOS™ 5, SVID + PMBus, enhanced Imon	
IRPS5401M	4+4+2 +2+0.5	7 x 7	14 V	1500 KHz	5 output PMIC, PMBus	

Analog IPOL

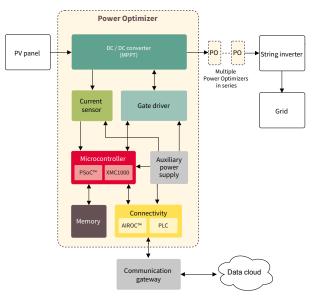
Ultr	"Performance" voltage-mode PWM Ultralow jitter and noise, high accuracy and low ripple					
Part number	Max. current [A]	Package size [mm]	Max. V _{in}	Max. f _{sw}	Distinctive fea- tures	
IR3823AMTRPBF	3	3.5 x 3.5	17 V	2000 KHz	Constant-on-time	
IR3899AMTRPBF	9	4 x 5	17 V	2000 KHz	(COT)	
TDA38820	20	4 x 5	17 V	2000 KHz		
IR3888MTRPBF	25	5x6	17 V	2000 KHz		
IR3447AMTRPBF	25	5x6	17 V	600 KHz		
IR3887MTRPBF	30	4 x 5	17 V	2000 KHz		
IR3889MTRPBF	30	5x6	17 V	2000 KHz		
TDA38840	40	5x6	17 V	2000 KHz		
IR3846AMTRPBF	40	5 x 7	17 V	600 KHz		

www.infineon.com/dataprocessing

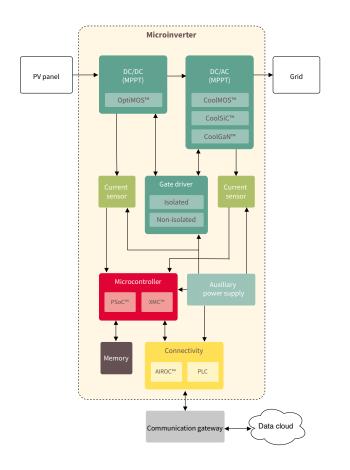
Solar

High efficient solutions for photovoltaic energy systems

Infineon provides a comprehensive portfolio to deliver the best efficiency and reliability for solar applications. Cutting-edge technologies such as CoolMOS™ SJ MOSFETs, CoolSiC™ Schottky diodes, CoolSiC™ MOSFETs, CoolGaN™ HEMT and TRENCHSTOP™ IGBTs. All these power transistors can be safely operated by EiceDRIVER™ coreless transformer gate drivers. Beyond power stage with the rich experience and highest quality ensure Infineon's unique supplier position, which enables one-stop-shop for solar applications. ARM® Cortex®-M4 and Arm® Cortex®-M0 MCU families enable easy and high-efficiency design for power conversion blocks. Additionally, our Arm® Cortex-M0-PSoC™ 4 entry-level family can also be used for PLC (Power Line Communication). Wi-Fi connectivity can be provided by our AIROC™ family of devices.

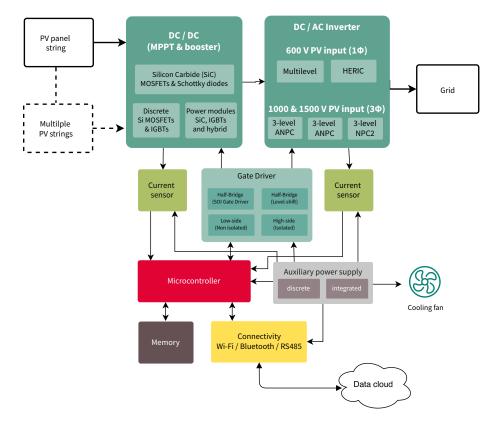

	Power optimizer 250 W - 1300 W	Micro inverter 250 W - 1500 W	String inverter 1 kW - 200 kW	Central inverter 500 kW - 5000 kW
Si MOSFETs	OptiMOS™ SuperSO8/TOLL/TOLT 60 V - 200 V	OptiMOS™ SuperSO8/TOLL 60 V - 150 V	OptiMOS™ 150 V - 300 V	-
31 MOSFE 15	-	COOIMOS™ TOLL/D²PAK 600 V - 950 V	CoolMOS™ TO-247-3/TO-247-4/D²PAK/TOLL/QDPAK 600 - 950 V	-
SiC MOSFETs - discrete	-	CoolSiC™ MOSFET discrete D²PAK-7/TOLL 650 V/1200 V	CoolSiC™ MOSFET discrete TO-247-3/TO-247-4/D²PAK-7 650 V/1200 V/1700 V/2000 V	CoolSiC™ MOSFET discrete TO-247-3/TO-247-4/D²PAK-7 1200 V/1700 V/2000 V
SiC MOSFETs - power modules	-	-	CoolSiC™ hybrid modules 650 V to 1200 V	Silicon Carbide CoolSiC™ MOSFET Modules 1200 V
GaN HEMT	-	CoolGaN™ DSO-20/TOLL 600 V	CoolGaN™ DSO-20/TOLL 600 V	
IGBTs - discrete	-	-	650 V/1200 V TRENCHSTOP™ 7 H7 TO-247-3/TO-247-4/TO-247PLUS 600 V/650 V/1200 V	CoolSiC™ hybrid modules 650 V to 1200 V
IGBTs - power modules	-	-	Easy 1B/2B	PrimePACK™ EconoDUAL™ 3/62 mm
Gate driver ICs	EiceDRIVER™ 2EDi/1ED Compact/2EDL/1EDN	EiceDRIVER™ 2EDi/1EDB/2EDL/ 1ED Compact(1ED-AF) 650 V SOI/1EDB	EiceDRIVER™ 2EDi/650 V SOI/ X3 Compact(1ED31xx) X3 Analog(1ED34xx) 1ED-F3/1EDB/IRS2011	EiceDRIVER™ X3 Compact(1ED31xx)/ X3 Analog(1ED34xx)/ 1ED-F3/1EDB 2ED24427N01F/650 V SOI
SiC diodes	-	CoolSiC™ Schottky diodes DPAK/D²PAK 650 V/1200 V	CoolSiC™ Schottky diodes TO-220/TO-247/D²PAK 650 V/1200 V	-
	-	-	BAT165 Schottky diode	
Si diodes			650 V EC7 diode	
Connectivity Auxiliary power supply	AIROC™ Wi-Fi + Bluetooth® Combos/PLC -	AIROC™ Wi-Fi + Bluetooth® Combos/PLC CoolSET™ 800 V	AIROC™ Wi-Fi + Bluetooth® Combos CoolSET™ 800 V	AIROC™ Wi-Fi + Bluetooth® Combos CoolSET™ 800 V
Memory	F-RAM	F-RAM	F-RAM/Asynchronous SRAM	F-RAM/Asynchronous SRAM
Current sensing	XENSIV™	XENSIV™	XENSIV™	XENSIV™
	XMC1000 Arm® Cortex®-M0	XMC1000 Arm® Cortex®-M0	XMC1000 Arm® Cortex®-M0	XMC1000 Arm® Cortex®-M0
Microcontrollers	XMC4000 Arm® Cortex®-M4	XMC4000 Arm® Cortex®-M4	XMC4000 Arm® Cortex®-M4	XMC4000 Arm® Cortex®-M4

Infineon's product portfolio supports full solar ecosystem including energy storage and EV-charging. Solar power optimizers and micro inverter find their place on the roof right under PV panels. They are exposed to very high ambient temperatures, high thermal cycling and have to meet 25 years life-time, which is equivalent to PV panels. With Infineon's stringent quality measures and production screening processes all these can be met.


We see on the picture string inverter installed on the wall. Its product offering is shown below for single-phase and three-phase configurations. Energy Storage Solutions (ESS) and EV-charging solutions are placed in respective application chapters in this selection guide.

Power optimizer

Functional block	Product family	Voltage class [V _{ps} max]	Package*	Part number*	R _{DS(on)}
DC-DC converter	OptiMOS™	60 V	SuperSO8	ISC058N04NM5	5.8 mΩ
				ISC060N06NM6*	6.0 mΩ
			SuperSO8 SC	BSC028N06NSSC	2.8 mΩ
		80 V	SuperSO8	BSC021N08NS5	2.1 mΩ
				ISC031N08NM6*	3.1 mΩ
		100 V	SuperSO8	ISC060N10NM6	6.0 mΩ
			SuperSO8 SC	BSC040N10NS5SC	4.0 mΩ
		120 V	SuperSO8	ISC030N12NM6	3.0 mΩ
		150 V	SuperSO8	BSC093N15NS5	9.3 mΩ
			TOLT	IPTC044N15NM5	4.4 mΩ
		200 V	SuperSO8	ISC119N20NM6*	11.9 mΩ
			TOLL	IPT067N20NM6*	6.7 mΩ
Gate driver	EiceDRIVER™	Single channel	PG-SOT23-6	1EDN8550	
			SON-10	1EDN7116G	
		Dual channel	SON-8	2EDL8024G	
			DSO	IRS2011	
				2EDL8034F5B*	
Microcontroller	XMC [™] / PSoC [™]	XMC1000 for control loop	PSoC™ 4 for PLC commi	unication	<u>'</u>
Memory	EXCELON™	CY15B102QN-50SXE (F-RA	M)		
Auxiliary power supply	-	TLE8366EV (PWM step-dov	vn DC/DC converter)		
Connectivity	AIROC™	CYW43439 (Wi-Fi 4) / CYW4	373 (Wi-Fi 5)		
	PLC	CY8CPLC20-48LTXIT			
Current sensor	XENSIV™	TLI4971-A025T5			


Microinverter

Functional block	Product family	Voltage class [V _{ss} max]	Package*	Part number*	R _{DS(on)}
MPPT – Boost stage	OptiMOS™	60 V	SuperSO8	BSC066N06NS	6.6 mΩ
				ISC060N06NM6*	6.0 mΩ
		201/	SuperSO8 SC	BSC028N06NSSC	2.8 mΩ
		80 V	SuperSO8	BSC026N08NS5 ISC031N08NM6*	2.6 mΩ 3.1 mΩ
		100 V	SuperSO8	ISC060N10NM6	6.0 mΩ
		100 V	SuperSO8 SC	BSC040N10NS5SC	4.0 mΩ
		120 V	SuperSO8	ISC030N12NM6	3.0 mΩ
		150 V	*	BSC093N15NS5	9.3 mΩ
		130 V	SuperSO8		
		0001/	TOLT	IPTC044N15NM5	4.4 mΩ
		200 V	SuperSO8 TOLL	ISC119N20NM6* IPT067N20NM6*	11.9 mΩ 6.7 mΩ
	CoolSiC™ Schottky diode	1200 V	DPAK	IDM02G120C5	2 A
	coolsic Schottky diode	1200 V	DIAN		
				IDM05G120C5	5 A
	Gate driver: EiceDRIVER™		VDSON-8	2EDL81xx	
			DSO	2EDN7524F	
				2ED24427N01F	
				IRS2011S, IRS2005S, IRS2007S, IRS2008S	
				2EDL8034F5B*	
Inverter stage	CoolMOS™	600 V	TO-Leadless	IPT60R102G7	102 mΩ
			D ² PAK	IPB60R145CDF7	145 mΩ
			DDPAK	IPDD60R105CFD7	105 mΩ
		650 V	D ² PAK	IPB65R125CFD7	125 mΩ
			D ² PAK	IPB65R041CFD7	41 mΩ
	CoolGaN™	600 V	DSO-20-87	IGOT60R070D1	70 mΩ
			TO-Leadless	IGT60R070D1	70 mΩ
	CoolSiC™ MOSFET	650 V	TO-Leadless	IMT65R163M1H*	163 mΩ
			D ² PAK-7	IMBG65R163M1H	163 mΩ
		1200 V	D ² PAK-7	IMBG120R140M1H	140 mΩ
	Gate driver: EiceDRIVER™	650 V	DSO	2EDS8165H	
				2EDRx258X	
				2EDS9265H	
		1200 V		1EDI60I12AF, 1EDI30I12MF	
4:	VMCTM / DC - CTM		DC - CTM 4 for DLC	•	
1icrocontroller	XMCTM / PSoCTM	XMC1000 for control loop /	PSOC 4 IOF PLC COMMU	JIIICATION	
lemory	EXCELON™ F-RAM	CY15B102QN-50SXE			
uxiliary power supply	CoolSET™	ICE5QR4780BG (800 V, 15 V	V, Quasi-Resonant)		
		ICE5GR4780AG (800 V, 15 V	V, Fixed-Frequency)		
Connectivity	AIROC™	CYW43439 (Wi-Fi 4) / CYW4	373 (Wi-Fi 5)		
	PLC	CY8CPLC20-48LTXIT			
Current sensor	XENSIV™	TLI4971-A025T5			

www.infineon.com/solar

Single- and three-phase string inverter

Inverter type	Functional block	Product category	Product technology	Voltage	Package	Part number	R _{DS(on)}	[A]
ingle-	MPPT -	Si MOSFET	CoolMOS™ C7	650 V	TO-247-3	IPW65R019C7	19 mΩ	-
ohase	Boost stage				TO-247-4	IPZ65R019C7	19 mΩ	-
		SIC MOSFET	CoolSiC™ MOSFET	650 V	TO-247-4	IMZA65R027M1H	27 mΩ	-
					TO-263-7	IMBG65R022M1H	22 mΩ	-
					TO-Leadless	IMT65R022M1H*	22 mΩ	-
		IGBT	TRENCHSTOP™ 7 H7	650 V	TO-247-3	IKWH50N65EH7	-	50 A
					TO-247-4	IKZA50N65EH7	-	50 A
		Diode	CoolSiC™ diode	650 V	TO-247	IDW20G65C5	-	20 A
						IDW32G65C5B	-	32 A
	Invverter 5-level	Si MOSFET	OptiMOS™ 5	150 V	SuperSO8	BSC093N15NS5	9.3 mΩ	-
	Inverter	Si MOSFET	CoolMOS™ CFD7	650 V	TO-247-3	IPW65R018CFD7	18 mΩ	-
	2-level,				TO-247-4	IPZA65R018CFD7	18 mΩ	-
	e.g. Heric				TO-247-4	IPZA65R029CFD7	29 mΩ	-
					QDPAK	IPDQ65R017CFD7	17 mΩ	-
		SIC MOSFET	CoolSiC™ MOSFET	650 V	TO-247-4	IMZA65R027M1H	27 mΩ	-
					TO-247-3	IMW65R048M1H	48 mΩ	-
					TO-263-7	IMBG65R022M1H	22 mΩ	_
					TO-Leadless	IMT65R022M1H*	22 mΩ	
		ICDT	TDENCHETODIN 7 HZ	6501/				-
		IGBT	TRENCHSTOP™ 7 H7	650 V	TO-247-4	IKZA50N65EH7	-	50 A
					TO-247-3	IKWH50N65EH7	-	50 A
Three-	MPPT -	IGBT	TRENCHSTOP™ 7 H7	1200 V	TO-247-3	IKW40N120CH7	-	40 A
ohase	Boost stage				TO-247PLUS-3	IKQ75N120CH7	-	75 A
						IKQ100N120CH7	-	100 A
		SIC MOSFET	CoolSiC™ MOSFET	1200 V	TO-247-3/-4	IMW120R030M1H, IMZ120R030M1H	30 mΩ	-
					IMW120R040M1H, MZA120R040M1H	40 mΩ	-	
					IMW120R060M1H, IMZ120R060M1H	60 mΩ	-	
		Silicon carbide MOSFET module	CoolSiC™ MOSFET	2000 V	Easy 3B	DF4-19MR20W3M1HF_B11	19 mΩ	120 /
	Inverter	IGBT	TDENICHST∩D™ 7 H7	1200 V	TO-247-3	IKW40N120CH7	-	40 A
	ilivertei	IGBI	TRENCHSTOP™ 7 H7	1200 V				
				-	TO-247PLUS-3	IKQ75N120CH7	-	75 A
			TRENCHSTOP™ 7 H7			IKQ140N120CH7	-	140 /
		SiC MOSFET CoolSiC™ MOSFET	CoolSiC™ MOSFET	1200 V	7 TO-247-3/-4	IMW120R030M1H, IMZ120R030M1H	30 mΩ	-
						IMW120R040M1H, MZA120R040M1H	40 mΩ	-
						IMW120R060M1H, IMZ120R060M1H	60 mΩ	-
				1700 V	D ² PAK-7	IMBF170R650M1	650 mΩ	-
				2000 V	TO-247-4-PLUS	IMYH200R012M1H	12 mΩ	-
		Silicon carbide MOSFET module	CoolSiC™ MOSFET	1200 V	Easy 2B	IF3L8MR12W2M1HP_B11	8.1 mΩ	-
Gate-drive	er ICs	EiceDRIVER™		25 V	SOT23-6	1ED44175/3N01B		
Jace-UIIV	LI 1C3	FICEDKIVEK						
				650 V	DSO-16	2EDS7165H		
				650 V		2ED2181S06F		
				1200 V		IR2214SS, IR2213S		
				1200 V		1EDI60I12AF, 1EDI30I12MF		
				2300 V		1ED3124MU12H, 1ED3122M	U12H	
				2300 V		1ED3322MC12N, 2ED020l12-F2		
				2300 V		1ED3491MU12M, 1ED3890M		
		FiceDRIVER™ 2F	EDN family, EiceDRIVE		<u>I</u>	, , , , , , , , , , , , , , , , , , , ,		
/licrocont	roller			. 1500				
Memory		F-RAM / Asynch						
Auxiliary բ	power supply	Integrated: Coo	lSET™ Quasiresonant	(QR) / Co	olSET™ with Fixe	ed Frequency (FF)		
		Discrete: CoolS	ET™ (QR or FF) + Cool	MOS™ P7				
Connectiv	vity	AIROC™ CYW43	439 (Wi-Fi 4) / CYW437	73 (Wi-Fi	5)			
Connectiv								
connectiv		ISOFACE™ digita	al isolators for RS485					

Energy storage systems

Battery

Make energy storage systems the backbone of the new energy era with our semiconductor system solutions

Facing diminishing fossil reserves, the world nonetheless needs to manage the rising demand for electrical energy while meeting the growing call for urgent climate action. The transition to renewable energies has become inevitable.

Energy storage systems play a vital role in managing this transition successfully. Our system solutions help to make energy storage the backbone of the new energy era. Our unique application expertise and comprehensive offering make us the natural choice to advance energy storage solutions in efficiency, performance, optimal cost, and innovation.


Features and benefits

Key features	
 Efficient power conversion in DC-DC and AC-DC stage 	
– Power-dense design	
– Bi-directional power flow	
– Safe operation of Li-ion battery	
– Long battery lifetime	
Wide range of Micro Controller Solutions	
– Safe data transfer is essential	

Key benefits

- Improvement of system performance with industry-leading semiconductor
- offering such as OptiMOS™, CoolMOS™, CoolSiC™ MOSFETs, CoolGaN™ HEMT but also best-in-class modules and matching EiceDRIVER™ gate drivers
- Reduction of design efforts and faster time to market
- Trust in a true partnership during the whole system's lifetime
- Full system provider form power conversion stage (PCS) to the battery management system (BMS), monitoring of battery's SOC, SOH and cell capacity through constant logging of critical parameters to measure the battery health
- OPTIGA™ Trust family protects BMS against cyber attacks
- Ultra-low-energy data-logging of key battery health parameters in F-RAM
- XMC7000, XMC4000 and XMC1000 ARM® Cortex®-M7, ARM® Cortex®-M4 and Cortex®-M0 MCU families enable easy-to-design and stable control over the system
- ISOFACE™ digital isolators, AIROC™ Wi-Fi + Bluetooth® Combos

Application diagram

(h)

Solutions

Highlight/recommended product portfolio

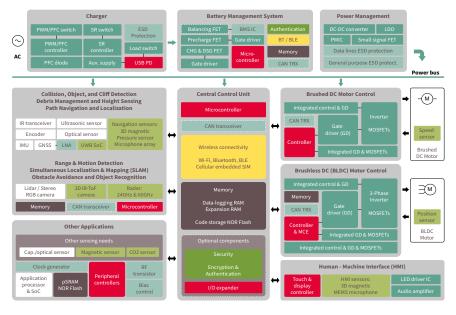
Functional block	Power/battery voltage	Voltage class [V _{DS} max]	Product family	Package	Benefits
Power conversion systems (PCS)	< 10 kW	40 V to 300 V	OptiMOS™ and StrongIRFET™	SuperSO8, TOLL, TOLT, TO-220, D ² PAK	- High power density and system cost reduction
, , , , , ,		600 V/650 V	CoolMOS™ CFD7	TO-220/247, TOLL, QDPAK	 Highest efficiency, enabling increased power density/more compact and easier design
		650 V 650 V	CoolSiC™ Schottky diode CoolSiC™ MOSFET	TO-220, D ² PAK, DDPAK TO-247. D ² PAK, TOLL*	 Improved system efficiency and extremely fast switching Combination of high performance, high reliability and ease of use
		600 V 650 V	CoolGaN™ HEMT TRENCHSTOP™ 5 H5/	DSO-20/TOLL TO-247	 Ultra high-power density and efficiency Conventional designs, high current operations
	10-100 kW	40 V to 300 V	CoolSiC [™] hybrid devices OptiMOS [™] and StrongIRFET [™]	TOLL, TOLT, TO-220,	- High power density and system cost reduction
		600 - 950 V	CoolMOS™ C7/P7	D ² PAK TO-247, QDPAK, TOLL	Ease of use and fast design-in
		650 V	CoolSiC™ MOSFET	TO-247, D ² PAK, TOLL*	Combination of high performance, high reliability and ease of use
		650 V	TRENCHSTOP™ 7 H7	TO-247, TO-247PLUS, TO-247-HCC, TO-247-asymetric (3 &4 pin)	Best-in-class performance and controllability
		650 V	CoolSiC™ Schottky diode C6	TO-220, D ² PAK, DDPAK	Higher frequency and increased power density
			CoolSiC™ MOSFET	TO-247, TO-247-HCC	Highest efficiency and increased power density
		1200 V	TRENCHSTOP™ 7 H7	TO-247, TO-247PLUS, TO-247-HCC, TO-247-asymetric (3 &4 pin)	– Best-in-class performance and controllability
	101-250 kW	40 V to 300 V	OptiMOS™ and StrongIRFET™	TOLL, TOLT, TO-220, D ² PAK	 Enables and simplifies the setup of 2nd life batteries Lower switching voltage enables higher inverter efficiency
			CoolSiC™ MOSFET	D ² PAK-7, TO-247-HCC	- Enables efficient auxiliary supply
		1200 V	EasyPACK™ 2B	Modules	Highest efficiency for reduced cooling effort
	> 0.25 MW	1700 V	PrimePACK™ / EconoDUAL™	Modules	High power densityEasy and most reliable assembly
	> 0.25 MW	1200 V 1700 V	PrimePACK™/EconoDUAL™	Modules	- Easy and most reliable assembly
		200 V	PrimePACK™/EconoDUAL™ EiceDRIVER™ 1EDN gate driver	PG-SOT23-6/ PG-SOT23-5 WSON-6 / TSNP-6	– Single-channel non-isolated
		650 V	EiceDRIVER™ 2EDR gate driver	PG-DSO-14-WB	 Dual-channel reinforced (safe) isolated
		650 V	EiceDRIVER™ 2EDB gate driver	PG-DSO-14-NB	 Dual-channel functional isolated
		2300 V	EiceDRIVER™ Compact gate driver	DSO-8	– Single-channel isolated driver with Miller clamp/sep-out
		1200 V/2300 V	EiceDRIVER™ Enhanced gate driver	DSO-16	- Single-channel isolated driver with DESAT and Miller clamp
BMS – battery protection	40 - 100 V	60 V to 200 V	OptiMOS™ Linear FET	TOLL, D ² PAK	 Minimize parallelization of MOSFETs Market-leading MOSFETs with lowest R_{DS(on)} enabling low conduction losses Widest SOA area with LinearFET™
	150 - 400 V	600 V	CoolMOS™ S7	TOLL, QDPAK	- Lowest R _{DS(on)} MOSFET
BMS Monitoring and balancing	-	-	Battery management IC (TLE9012DQU)	PG-TQFP-48	ASIL-D compliant Cell balancing with integrated switches with up to 150 mA using external resistors to reduce chip power consumption 12x delta-sigma ADCs ensure that the voltage of all cells is measured synchronously ISO UART includes an 8-bit CRC to ensure data integrity until microcontroller register
BMS transceiver	-	-	Battery management IC (TLE9015QU)	PG-TQFP-48	 UART to ISO UART communication General purpose error pin Support diagnosis feature
Digital isolators	-	-	ISOFACE™ digital isolators	PG-DSO-8-8	- Isolated CAN/UART communication
-			2DIB/4DIR	PG-DSO-8-16	– Support diagnosis feature, general purpose error pin
Current sensors	-	-	XENSIV™ - high-precision coreless current sensors	PG-TISON-8	High accuracy of current sensingNoise robustness
Auxiliary power	-	650 V to 950 V	CoolSET™	DSO-12	- Compact, robust and easy to use solution
supply Microcontroller	_	_	XMC™ families YMC1000/	PG-VOEN-40	- 32-hit MCII suhsystem
MICIOCONTROLLER	-		XMC4000/XMC7000 XMC4000/XMC7000 PSoC™ 4	PG-VQFN-40 PG-VQFN-56 PG-TSSOP-16 PG-TSSOP-38	 32-bit MCU subsystem 48/144/350MHz Arm® Cortex®-M0+ CPU Up to up to 8 MB flash 32 kB SRAM Up to 2 CAN USB/up to 4 serial channels
	-	-	Serial SPI F-RAM EXCELON™ F-RAM	PG-DSO-8	 Zero-delay writes 1014 read/write cycles 10-year data retention at +85°C temperature
Memory					200x lower energy than EEPROMNo complex wear-leveling overheads
Security	-	-	OPTIGA™ Trust family	PG-USON-10-2	

www.infineon.com/energy-storage-systems

Robotics

Superior solutions for smart and safe robots

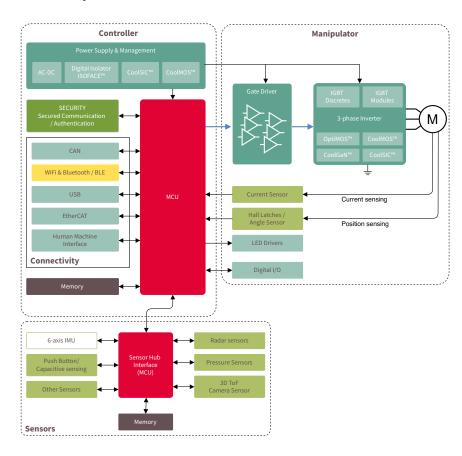
Disruptive technologies have significantly changed our lifestyle in the past few decades. Now a new era is on the horizon – the age of robots. Today's robots can identify and navigate through surroundings, work alongside and even interact with humans. All this would not be possible without the recent advancements in semiconductor solutions. Drawing on Infineon's insights into all facets of the robotics field and with a comprehensive portfolio of power products and sensors on offer, Infineon provides reliable system solutions that address the latest trends in robotics, whether it is Artificial Intelligence, Internet of Things, smart home, cloud-based services, human-machine interface, or any roboticsrelated field.


Features and benefits

Key features - Fast time to market - Complete solutions - broad portfolio from power to connectivity (Wi-Fi and Bluetooth®) and - Extended battery lifetime and product life spans Overall system size and cost reduction - Security, quality, and safety Authentication

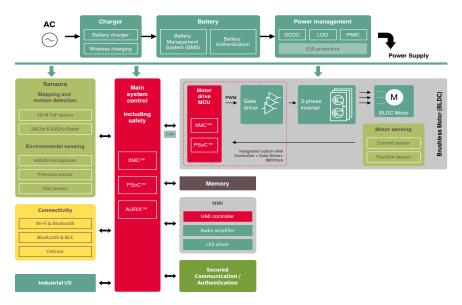
- A complete ecosystem of simulations, documentation, and demonstration boards enable faster time to market
- Whatever design specification, Infineon has the answer thanks to its comprehensive portfolio of products and solutions which you can easily tailor to your needs
- High reliability of Infineon components results in prolonged product life spans
- Reduction of overall system size and cost thanks to small form factor and compact design of components. both of which are required for highest power density
- BOM savings thanks to the lowest R_{DS(on}
- Trustworthy hardware-based security
- $As a security \ market \ leader \ with \ a \ proven \ track \ record \ and \ outstanding \ partner \ network \ for \ embedded$ security, Infineon provides the highest quality standards and a safety-certified development process
- OPTIGA™ Trust enables authentication of components connected to the system (e.g., battery pack recognition to avoid second-party batteries)

Domestic robots - simplifying everyday life and work


Structural system overview: domestic robots

The latest generation of domestic robots, e.g. vacuum, lawn or pool robots, provide a new level of assistance and simplicity in homes and professional environments. They directly interact with humans, which imposes unique design challenges, especially in domestic environments. Energy efficiency, long battery life, security, sensing capabilities, and intelligent mind are key to user-friendly and safe designs. By choosing Infineon, you get a onestop semiconductor shop for all your robot design needs.

Industrial robots and cobots - advance through collaboration


Structural system overview: industrial robots and cobots

With the experience we gained by serving industrial robot manufacturers with the best system solutions for years, Infineon is well set to provide the right fit products for the next generations of collaborative robots. Cobots, as they are shortly called, work outside the limitation of a safety cell, directly interacting with humans. This setup requires a precise set of design features, especially for the sake of workplace safety. With Infineon's semiconductors for cobot systems, you benefit from the expertise of an experienced and reliable partner.

Mobile robots - driving production and automation forward

Structural system overview: Mobile robots (AGV, AMR)

Autonomous mobile robots (AMRs) are a self-driving force behind automated processes and offer the highest degree of flexibility within working environments due to battery-powered systems. With its complete product portfolio for robotics applications- from the power supply to motor drives and sensors for navigation and environment scanning -Infineon makes it possible for mobile robots to find their way through nearly all environments.

Solutions

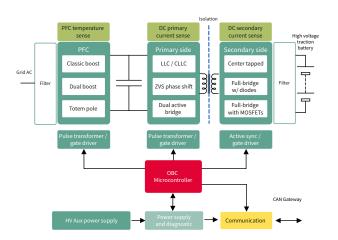
Sensors

	lucts	Industri	al robots	Cobots	Mobile robots (AMR, AGV)	Domestic robots		
Common s	ystem power	> 5 KW	< 5 KW	100 – 1000 W	200- 500 W	10 – 100 W		
Common operati	ng/battery voltage	3 V ~ 400V _{sc}	1 v~ 110 V-220 V _{sc}	1 V~ 110 V-220 V _{AC} /48 V _{DC} Bus	24 V - 48 V _{pc}	12 V - 36 V _{DC}		
Power supply and charger	Power switch	650 V and 1200 V CoolSiC™ MOSFET 600 V/650 V IGBT HighSpeed 5 650 V IGBT TRENCHSTOP™ 7 IGBT7 T7 650 V and 1200 V EasyPACK™ Module	and H7	600 V/650 V CoolMOS™ 650 V CoolSiC™ 20 V - 200 V OptiMOS™ and StrongIRFET™	600 V/650 V CoolMOS™ 650 V CoolSiC™ 20 V - 200 V OptiMOS™ and StrongIRFET™	600 V/650 V CoolMOS™ 650 V CoolSiC™ 20 V - 200 V OptiMOS™ and StrongIRFET™		
	PFC power diodes	650 V CoolSiC™ Schottky diode						
	Gate driver EiceDRIVER™ family	low-side single-channel: 1EDN7550B, low-side dual-channel: 2ED24427N01 1200 V single-channel isolated: 1ED3124MU12F, 1EDI60N12AF	1EDN8550B, 1ED44175N01B, 1ED44173 F, 2EDN7523G 650 V half-bridge: 2EDF9275F, 2EDF7175F, 2ED2304S06F, 2ED2182S06F, 2ED2110S06M 650 V high-side: 1EDB9275F, 1EDB8275F, 1EDB8275F	3N01B				
	ISOFACE Digital Isolators ISOFACE Isolated Industrial Interface	ISO1I813T, ISO1H816G 2DIB0410F	,					
	Microcontroller (MCU)	Arm® Cortex®-M0: XMC1100 or XMC13	00					
		Arm® Cortex®-M4: XMC4200						
Motor control and drive	Power switch	1200 V IGBT 7 S7 1200 V CoolSiC™ MOSFET 1200 V CoolSiC™ Easy1B Module	600V/650V CoolMOS™ 650 V and 1200 V CoolSiC™ CoolGaN™ GIT HEMT 600 V 600 V/650 V/1200 V TRENCHSTOP™ 600 V EasyPIM™ and EasyPACK™ 600 V CIPOS™ (full integration)	60 – 100 V OptiMOS™ and StrongIRFET™ Recommended packages: PQFN 3 x 3 (space savings) Super SO8 (price/performance) TOLL (high current)	60 – 150 V OptiMOS™ and StrongIRFET™ Recommended packages: PQFN 3 x 3 (space savings) Super SO8 (price/performance) TOLL (high current)	25 – 60 V OptiMOS™ and StrongIRFET™ single- and dual-channel MOSFETs Recommended packages: PQFN 3 x 3 (space savings) Super SO8 (price/performance) TOLL (high current)		
	Gate driver EiceDRIVER™ family	1200V single-channel isolated Compact: 1ED31xx and 1ED-MF 1200 V single-channel isolated Enhanced: 1ED34xx and 1ED-F2 1200 V half-bridge IR2214SS 1200 V three-phase: 6ED2230S12T	650 V half-bridge: 2EDF9275F, 2EDF7275F, 2EDF7175F, 2ED2304S06F, 2ED2182S06F, 650 V high-side: 1EDB8275F, 1EDB9275F, 1EDB6275F 650 V three-phase: 6EDL04N06PT	600 V half-bridge: IRS21867S, IRS2186S 200 V half-bridge: IRS2005S, IRS2007S, IRS2008S, 2EDF7275K 200 V three-phase: 6EDL04N02 160 V three-phase: 6ED2742S01 200 V high-side: 1EDN7550B & 1EDB8550B 160 V half-bridge: 2ED2748S01G, 2ED2738S01G 120 V half- bridge: 2EDL8124G				
		three-phase: 6ED2230S12T 650 V three-phase: 6EDL04N06PT 60 V three-phase programmable: 6EDL7141 25 V low-side: 1ED44173N01B, IRS44273L						
	Microcontroller (MCU)	PSoC™: Arm® Cortex® M4F+M0 → CY8C XMC™: Arm® Cortex® M4F → XMC4800, TRAVEO II™: Arm® Cortex® M7 Dual Co AURIX™: TriCore → TC337	Arm® Cortex® M0 → XMC1000					
	ISOFACE Digital Isolators ISOFACE Isolated Industrial Interface	2DIB0410F ISO1I813T, ISO1H816G						
	illuustilat iliteriace							
	Hall switch	XENSIV™ TLx496x						
		XENSIV™ TLx496x XENSIV™ TLI4971						
	Hall switch							
•	Hall switch Current sensor	XENSIV™ TLI4971			XMC™: XMC4x00 (Arm® Cortex® - M4			
•	Hall switch Current sensor Angle sensor	XENSIV™ TLI4971			PSoC™: PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5,	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™		
•	Hall switch Current sensor Angle sensor Microcontroller (MCU)	XENSIV™ TLI4971			PSoC™: PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7-		
•	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches	XENSIV™ TLI4971			PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS74 ,TSOP6 or SOT363 dual-channel		
•	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal)	XENSIV™ TLI4971			PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS74 ,TSOP6 or SOT363 dual-channel		
nanagement system (BMS)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC	XENSIV™ TLI4971			PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7- ,TSOP6 or SOT363 dual-channel		
nanagement system (BMS) Gensing (e.g., room napping, HMI, collision	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT.	S1125A, IRS2877AS (functional safety IS	SO26262)	PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS74 ,TSOP6 or SOT363 dual-channel		
ensing (e.g., room napping, HMI, collision	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight)	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ VCSEL Driver: IRS9100C, IRS	S1125A, IRS2877AS (functional safety IS		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS74 ,TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image sensor IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
ensing (e.g., room napping, HMI, collision	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight) 3D image sensors	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ VCSEL Driver: IRS9100C, IRS: XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e.	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V – 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7, TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image senso IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
eensing (e.g., room napping, HMI, collision voidance, air quality)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight) 3D image sensors MEMS microphones Other sensors	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT. XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ VCSEL Driver: IRS9100C, IRS: XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., CO₂ Sensor: XENSIV™ PAS CO₂	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V - 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7. ,TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image sensor IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
nanagement system (BMS) Sensing (e.g., room napping, HMI, collision avoidance, air quality)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar Tof (Time-of-Flight) 3D image sensors MEMS microphones Other sensors Wi-Fi	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT. XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ VCSEL Driver: IRS9100C, IRS9 XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., CO_ Sensor: XENSIV™ PAS CO_ CYW43439 (1x1 2.4GHz Wi-Fi 4) CYW4373 (1x1 dual-band Wi-Fi 5) CYW55571 (1x1 Tri-band Wi-Fi 6)	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V – 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7, TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image senso IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
Battery nanagement system (BMS) Sensing (e.g., room napping, HMI, collision avoidance, air quality) Connectivity and human- nachine interface (HMI)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight) 3D image sensors MEMS microphones Other sensors	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT. XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ VCSEL Driver: IRS9100C, IRS: XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., CO₂ Sensor: XENSIV™ PAS CO₂ CYW43439 (1x1 2.4GHz Wi-Fi 4) CYW4373 (1x1 dual-band Wi-Fi 5)	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V - 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7. ,TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image sensor IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
nanagement system (BMS) Sensing (e.g., room napping, HMI, collision avoidance, air quality)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar Tof (Time-of-Flight) 3D image sensors MEMS microphones Other sensors Wi-Fi	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT. XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ WCSEL Driver: IRS9100C, IRS XENSIV™ WCSEL Driver: IRS9100C, IRS XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., CO₂ Sensor: XENSIV™ PAS CO₂ CYW43439 (1x1 2.4GHz Wi-Fi 4) CYW43439 (1x1 dual-band Wi-Fi 5) CYW55571 (1x1 Tri-band Wi-Fi 6) PSoc™ 4000 - entry-level PSoc™ 4100 - more touch buttons	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog 3., airflow control)		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS74 ,TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image sensor IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
Sensing (e.g., room mapping, HMI, collision evoidance, air quality)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight) 3D image sensors MEMS microphones Other sensors Wi-Fi HMI Main control MCU	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT XENSIV™ 24 GHz: BGT24LTR11 or BGT XENSIV™ NESEL Driver: IRS9100C, IRS XENSIV™ WCSEL Driver: IRS9100C, IRS XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., C0, Sensor: XENSIV™ PAS C0, CYW43439 (1x1 2.4GHz Wi-Fi 4) CYW4373 (1x1 dual-band Wi-Fi 5) CYW55571 (1x1 Tri-band Wi-Fi 6) PS0C™ 4000 - entry-level PS0C™ 4100 - more touch buttons PS0C™ 4700 - inductive sensing	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog 3., airflow control)		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V − 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS74 ,TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image sensor IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
Gensing (e.g., room napping, HMI, collision avoidance, air quality) Connectivity and human-nachine interface (HMI)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight) 3D image sensors MEMS microphones Other sensors Wi-Fi HMI Main control MCU	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 24 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ WCSEL Driver: IRS9100C, IRS XENSIV™ WEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., CO₂ Sensor: XENSIV™ PAS CO₂ CYW43439 (1x1 2.4GHz Wi-Fi 4) CYW43439 (1x1 dual-band Wi-Fi 5) CYW55571 (1x1 Tri-band Wi-Fi 6) PSoC™ 4000 - entry-level PSoC™ 4100 - more touch buttons PSoC™ 4700 - inductive sensing Single or dual core Arm® Cortex®-M7 a	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog 3., airflow control)		PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V - 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7. ,TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image sensor IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C,		
Sensing (e.g., room mapping, HMI, collision avoidance, air quality) Connectivity and human-machine interface (HMI)	Hall switch Current sensor Angle sensor Microcontroller (MCU) Protection switches Balancing switches (small signal) Monitoring and balancing IC Battery authentication Radar ToF (Time-of-Flight) 3D image sensors MEMS microphones Other sensors Wi-Fi HMI Main control MCU Authentication and protection	XENSIV™ TLI4971 XENSIV™ TLE/TLI5012B, TLE5014SP XENSIV™ 60 GHz: BGT60LTR11AIP XENSIV™ 24 GHz: BGT24LTR11 or BGT. XENSIV™ 24 GHz: BGT24LTR11 or BGT. XENSIV™ REAL3™ 3D image sensor: IR XENSIV™ VCSEL Driver: IRS9100C, IRS: XENSIV™ MEMS microphones: IM72D1 Pressure sensor: XENSIV™ DPS368 (e., CO, Sensor: XENSIV™ PAS CO, CYW43439 (1x1 2.4GHz Wi-Fi 4) CYW4373 (1x1 dual-band Wi-Fi 5) CYW55571 (1x1 Tri-band Wi-Fi 6) PSoC™ 4000 - entry-level PSoC™ 4100 - more touch buttons PSoC™ 4700 - inductive sensing Single or dual core Arm® Cortex®-M7 a OPTIGA™ Trust M, OPTIGA™ TPM S25FL-L serial NOR flash memories De	S1125A, IRS2877AS (functional safety IS 9102C 28 (digital interface), IM68A130 (analog 3., airflow control)	; interface)	PSoC™ : PSoC™ 4 (Arm® Cortex®M4F 100 V – 150 V OptiMOS™ or StrongIRFET™ IPT015N10N5, IRFS4115 20 V or 30 V N/P MOSFETS in SOT23 TLE9012AQU (sensing IC), TLE90150	+M0) 30 V – 80 V LinearFET™ Gen.2 OptiMOS™, StrongIRFET™ BSC007N04LS6, IRL40T209, IRFS7 , TSOP6 or SOT363 dual-channel QU (transceiver IC) XENSIV™ REAL3™ 3D image senso IRS2381C, IRS2875C, IRS2877C XENSIV™ VCSEL Driver: IRS9100C		

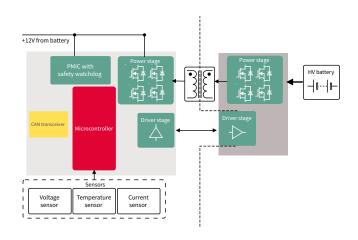
On-board charger for xEV appliactions

Best solutions for electrified powertrain in xEV applications: on-board chargers and HV/LV DC-DC converter

The electrification of the powertrain enables local emission-free mobility and driving pleasure. The needed energy is stored and delivered from a battery. Infineon's semiconductor solutions do not only enable core functionalities in the electrification but also extend the driving range, reduce charging times and energy transfer between the high voltage systems with the traditional 12 V domain.


On-board chargers

All plug-in hybrid electric vehicles (PHEV) and pure electric cars are equipped with at least one on-board charger, allowing battery recharge from any standard AC power outlet. Available power depends on regional regulations and installation base, typically providing up to 7.4 kW for PHEVs and up to 22 kW maximum power. System designers face the challenge of supporting the varied voltage and current levels while increasing the power density. When it comes to on-board charging, the key success factors involve efficiency and a high power density for a small form factor. The long-term trend is moving towards bidirectional charging, where the charger also feeds power from the car to the smart grid.


High-voltage DC-DC converter

The architecture of electric vehicles comprises at least one low-voltage sub-network with low-voltage energy storage and multiple electrical loads and one high-voltage sub-network with high-voltage energy storage. The auxiliary HV/LV DC-DC converter's function is to enable the bidirectional energy flow between these two electrical subnets. Typical design challenges are achieving the greatest possible efficiency and keeping the overall system costs under control. The space required for the DC-DC converter should also be kept to an absolute minimum. Infineon's portfolio is specially designed to help overcome these barriers easily.

On-board chargers: functional blocks

HV/LV DC-DC converter: functional blocks

Product portfolio for on-board charger and HV/LV DC-DC applications

Infineon's comprehensive portfolio of semiconductors (sensors, microcontrollers, power semiconductors, etc.) lends itself perfectly to designing compact units for on-board, off-board, and wireless EV-charging. Infineon products in this sector support high-switching frequencies at lowest possible on-state resistance (R_{DS(on)}) to enable compact and efficient designs. The power offering includes MOSFETs such as CoolMOS™, IGBTs such as TRENCHSTOP™ 5, SiC Schottky diodes such as the CoolSiC™ Schottky diode 650 V, the CoolSiC™ Hybrid discrete (integrated IGBT and SiC diode), and easy module solutions. In addition, integrated MOSFET and IGBT drivers, controller ICs for active CCM PFC high-performance microcontroller solutions, and highly accurate current sensors complete the product portfolio. For more information about off-board chargers, refer to the Fast/wireless EV-charging chapter.

Automotive products for on-board charger units

Product family	Part number	Description
CoolMOS™ 650 V	IPx65RxxxCFD7A	650 V MOSFETs with integrated fast body diode
TRENCHSTOP™ 5 AUTO IGBT	AIKW50N, AIKW40N, AIGW40	IGBT discrete dedicated to automotive applications
CoolSiC™ 1200 V	AIMW120Rx	Automotive 1200 V discrete SiC MOSFET
Level shifter	AUIRS2191S, AUIRS2113S	Automotive high and low side driver
EiceDRIVER™ Automotive	2ED020I12FA	Dual-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs
AURIX™ microcontroller	TC23xL, TC26xD, TX36x*, TC37X*	32-bit lockstep microcontroller
OPTIREG™ PMIC	TLF35584, TLF35585	ISO 26262 – system-supply optimized for AURIX™
CAN FD transceiver	TLE9350, TLE9351, TLE9252	High-speed automotive CAN transceiver with 5 Mbps
OPTIREG™ SBC	TLE9461, TLE9471	High integrated solution for microcontroller supply and communication
OPTIREG™ linear	TLS810, TLS850, TLS105, TLS820	Automotive linear voltage regulators
XENSIV™ current sensor	TLI4971	Coreless magnetic current sensors

Modules for on-board charger units

Product family	Part number	Description
CoolMOS™ Easy module 650 V	F4-35MR07W1D7S8_B11/A*	650 V MOSFET in H-bridge configuration with integrated capacitor in Easy 1B package
CoolMOS™ Easy module 650 V	F4-35MR07W2D7S8_B13/A*	650 V MOSFET in H-bridge configuration with IGBT H5, rapid diode & integrated capacitor in Easy 2B package
CoolMOS™ Easy module 650 V	F4-xxMR07WxD7_Bxx/A	650 V MOSFET in H-bridge configuration in Easy package
CoolMOS™ Easy module 650 V	FSxxMR07WxD7_Bxx/A	650 V MOSFET in SixPACK configuration in Easy package
CoolMOS™ Easy module 650 V	FFxxMR07WxD7_Bxx/A	650 V MOSFET in half-bridge configuration in Easy package
CoolSiC™ Easy module 1200 V	F4-xxMR12WxM1H_Bxx/A	1200 V SiC MOSFET in H-bridge configuration in Easy package
CoolSiC™ Easy module 1200 V	FSxxMR12WxM1H_Bxx/A	1200 V SiC MOSFET in SixPACK configuration in Easy package
CoolSiC™ Easy module 1200 V	FFxxMR12WxM1H_Bxx/A	1200 V SiC MOSFET in half-bridge configuration in Easy package

For more information about off-board chargers, refer to the Fast/wireless EV-charging chapter.

Automotive products for the car side**

Product family	Part number	Description
EiceDRIVER™ Automotive	1ED020I12FA2	Single-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs
EiceDRIVER™ Automotive	1ED020I12FTA	Single-channel isolated driver, two-level turn-off for 650 V/1200 V IGBTs
EiceDRIVER™ Automotive	2ED020I12FA	Dual-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs
CoolMOS™	IPx65RxxxCFD7A	650 V MOSFET with integrated fast body diode
AURIX™	TC23xL, TC26xD, TX36x*, TC37X*	32-bit lockstep microcontroller
OPTIREG™ PMIC	TLF35584, TLF35585	ISO 26262 – system-supply optimized for AURIX™
CAN FD transceiver	TLE9350, TLE9351, TLE9252	High-speed automotive CAN transceiver with 5 Mbps
OPTIREG™ SBC	TLE9461, TLE9471	High integrated solution for microcontroller supply and communication
OPTIREG™ linear	TLS810, TLS850, TLS105, TLS820	Automotive linear voltage regulators

Industrial products for the road side**

Product family	Part number	Description
CoolMOS™ CFD7 SJ MOSFET	IPW60R031CFD7	600 V MOSFET, 31 mΩ, TO-247
CoolMOS™ C7 SJ MOSFET	IPW60R040C7	600 V MOSFET, 40 mΩ, TO-247
CoolMOS™ P7 SJ MOSFET	IPW60R037P7	600 V MOSFET, 37 mΩ, TO-247
TRENCHSTOP™ 5 IGBTs	IKW40N65F5	Fast IGBT with Rapid 1 diode, 40 A, TO-247
TRENCHSTOP™ 5 IGBTs	IGW40N65F5	Fast IGBT, single, 40 A, TO-247
CoolSiC™ Schottky diode	IDW40G65C5	650 V SiC Schottky diode generation 5, 40 A, TO-247
XMC [™] microcontroller	XMC4000	32-bit Arm® Cortex® -M4F microcontrollers, up to 125 °C ambient temperature
Linear voltage regulators	TLS805, TLS820, TLS850	Scalable Linear regulator family from 50mA to 500mA with robust design and feature sets
Current sensor	TLI4970	600 V functional isolation, ± 50 A
EiceDRIVER™ SOI gate driver	2ED21xxS06F	650 V half-bridge gate driver for IGBTs and MOSFETs
EiceDRIVER™ 1ED Compact gate-driver IC	1EDxxxI12AF/MF, 1ED31xxMU12H	1200 V, single-channel, isolated driver with Miller clamp or separate output

Industrial products for the road side

Part number	Product family	Description
EasyPACK™ module with CoolSiC™ 1200 V	F3L11MR12W2M1_B74	1200 V SiC MOSFET in three-level configuration in Easy 2B package
EasyDUAL™ 1B module CoolSiC™ 1200 V	FF45MR12W1M1(P)_B11*	1200 V SiC MOSFET in half-bridge configuration in Easy 1B package
EasyDUAL™ 1B module with CoolSiC™ 1200 V	FF23MR12W1M1(P)_B11	1200 V SiC MOSFET in half-bridge configuration in Easy 1B package
EasyPACK™ 1B module with CoolSiC™ 1200 V	F4-45MR12W1M1(P)_B76*	1200 V SiC MOSFET in H-bridge configuration in Easy 1B package
EasyPACK™ 1B module with 1200 V CoolSiC™	F4-23MR12W1M1(P)_B76*	1200 V SiC MOSFET in H-bridge configuration in Easy 1B package
EasyBRIDGE™ module with 1200 V CoolSiC™	DDB2U20N12W1RF(P)_B11	1200 V SiC diode in rectifier bridge configuration in Easy 1B package
EasyBRIDGE™ module with 1200 V CoolSiC™	DDB2U40N12W1RF(P)_B11	1200 V SiC diode in rectifier bridge configuration in Easy 1B package
EasyBRIDGE™ module with 1200 V CoolSiC™	DDB2U60N12W1RF(P)_B11	1200 V SiC diode in rectifier bridge configuration in Easy 1B package

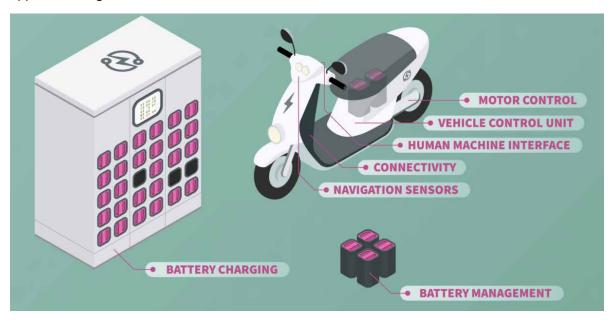
www.infineon.com/emobility www.infineon.com/obc

^{*} For more information on the product, contact our product support ** Available in different current ratings

Light electric vehicles and electric forklift

eBike, eScooter, eMotorcycle, eRickshaw, eMicroCar, eForklift

As a leader in power semiconductors, Infineon strives to enable the most efficient, reliable, and smart solutions for the e-mobility, Minimobility, and Micromobility markets. Keeping up with the latest market trends worldwide, Infineon prepares for the ramp-up of all forms of light electric vehicles (LEVs).


- Micromobility electric bicycle (e-bike), electric kick-scooter
- Electric powered 2/3 wheelers (ePTW) e-moped, e-scooter, e-rickshaw, e-motorcycle
- MicroEV electric microcars, low-speed electric vehicles (LSEV), neighborhood EV (NEV), electric quadricycle
- Other electric transporters (e.g. e-forklift, e-golf cart, e-ATV) with less than 200 V batteries

Contrasting to automotive (passenger car) requirements, L-category (light) vehicles (though often also on-road) require different sets of safety and qualification standards. As an example, the newest motorcycle standards place more responsibility on the operator rather than the vehicle itself to mitigate risks. Infineon considers mission profiles of different end applications and offers suitable non-automotive and automotive components for this wide range of use cases. Different from the traditional vehicles with internal combustion engines, these types of vehicles are powered by battery technology with bus voltage ranging from 28 V to 168 V. The commonalities among these different types of LEVs are motor inverters/drives, battery management systems, battery chargers/battery charging stations/battery swapping stations. Additionally, LEVs house increasingly popular smart features and electronics made possible due to their larger battery sizes.

Features and benefits

Key features - Leading power MOSFET technology - Track record of reliability and quality - Complete portfolio for driver, microcontroller, and sensors - Broad connectivity products compliant with various standards - Complete design support with simulations, documentation, and demonstration boards for high-end solutions Key benefits - Highest power density and increased battery operating time - Prolonged lifetime and low failure rate - One-stop shop for designers - Enabling smart features - Shortened development cycle

Application diagram

6 kW motor drive with 96 V bus voltage

Functional block	Topology	Product category	Product family	Part number
Motor drive	3-phase half-bridge (B6)	LV MOSFETs	OptiMOS™ 5	IPT039N15N5
		Microcontrollers MSIL-relevant	AURIX™	SAK-TC334LP-32F200F MSIL-ready
		Gate driver MSIL-relevant	EiceDRIVER™	2EDB8259F, 2ED2738S01G
		Position/speed sensor MSIL-relevant	XENSIV™	TLE5501 E0002
		Current sensor MSIL-relevant	XENSIV™	TLE4972-AE35S5 MSIL-ready

For additional configurations, please refer to High power low voltage drives.

Swappable 48 V 1.2 kWh battery

Functional block	Topology	Product category	Product family	Part number
BMS	Back-to-back with pre-charge	LV MOSFETs (charge)	OptiMOS™ TOLT	IPTC015N10NM5
		LV MOSFETs (discharge)	OptiMOS™ TOLT	IPTC015N10NM5
		LV MOSFETs (pre-charge)	OptiMOS™	BSC070N10NS5
		Microcontrollers MSIL-relevant	PSoC™	CY8C4146/7AZI-S463
		Gate driver MSIL-relevant	EiceDRIVER™	2ED4820 MSIL-ready
		Current sensor MSIL-relevant	XENSIV™	TLE4972 MSIL-ready
		Cell balancing IC MSIL-relevant	TLE	TLE9012 MSIL-ready
		Memory (RAM)	NOR flash	S25FL256LAGMFB001
		Bluetooth®	AIROC™	CYW20719B1KUMLG
		Security	OPTIGA™ Authenticate S	SLE95401TSNP6XTSA1

For additional configurations, please refer to Battery management systems.

3 kW AC-DC rectifiers in swapping battery stations

Functional block	Topology	Product category	Product family	Part number
Battery charging	CCM PFC	PFC switch	CoolMOS™ P7	IPW60R037P7
		Gate driver	EiceDRIVER™	1EDN8511B
		PFC controller	ICE3x family	ICE3PCS01G
	Resonant HB LLC	LLC switch (primary side)	CoolMOS™ CFD7	IPW60R031CFD7
		Gate driver	EiceDRIVER™ 2-ch functional-isolated gate drivers	2EDS8265H
		FBSR switch	OptiMOS™ 5	BSC040N10NS5
		FBSR gate driver	EiceDRIVER™ non-isolated driver IC	2EDF7275F
		MCU	XMC™ industrial microcontroller family	XMC4200-F64k256BA
	QR flyback	Aux power controller	CoolSET™	ICE5QR2280AZ

For additional configurations, please refer to Battery chargers.

250 W AC-DC offline charger

Functional block	Topology	Product category	Product family	Part number
Battery charging	PFC	Controller	XDP™	XDPS2222
		PFC switch	CoolMOS™ P7	IPA60R099P7
	LLC HV DC-DC	HB switch	CoolMOS™ P7	IPA60R280P7
		SR switch	OptiMOS™	BSC074N15NS5
	QR flyback controller	Aux power IC	CoolSET™	ICE5AR4770AG

For additional configurations, please refer to Battery chargers.

Products

- 15-300 V MOSFETs
- 500-950 V MOSFETs
- Gate-driver ICs
- Digital Isolators
- Discrete IGBTs and silicon power diodes
- Intelligent power switches and modules
- Microcontrollers
- USB-C controllers and peripherals
- Power management ICs
- Wide bandgap semiconductors
- XENSIV™ sensor technologies for automotive, industrial and consumer applications
- Packages

ackages

15-300 V MOSFETs

- 15-300 V MOSFETs N-channel power MOSFETs
 - Technology development and product family positioning
- Guidance for applications and voltage classes
- Space-saving and high-performance packages
- Discrete packages
- OptiMOS™ 40 V and 60 V in PQFN 8x6
- Small-signal/small power MOSFETs -250 to 600 V

- OptiMOS™ power MOSFETs 15-150 V Source-Down
- OptiMOS™ 6 power MOSFETs 100 V
- OptiMOS™ PD
- StrongIRFET™ 2 MOSFETs 40 V/60 V/80 V/100 V
- TOLx family
- Product portfolio
- Nomenclature

Infineon shapes power for growth through MOSFET innovation

With more than 40 years of experience in power MOSFET innovation, Infineon has led the way in solving the challenges design engineers face on a daily basis while enabling them achieve their targets. Although these targets may have changed over the years, the innovative spirit behind Infineon's product offering has persisted – from device design, technology, package and product development through manufacturing. Looking at the evolution of MOSFETs in the industry, numerous advancements in MOSFET technology have enabled the applications and trends that have become an indispensable part of our lives. Infineon power MOSFET innovation has proven that optimization at the component level brings significant system-level performance advantages and contributes to an easier, safer and greener future.

OptiMOS™ and **StrongIRFET™**

15-300 V N-channel power MOSFETs

Infineon's semiconductors are designed to bring greater efficiency, power density and cost-effectiveness. The full range of OptiMOS™ and StrongIRFET™ power MOSFETs enables innovation and performance in applications such as switch mode power supplies (SMPS), battery powered applications, motor control, drives, inverters, and computing.

Infineon's highly innovative OptiMOS™ and StrongIRFET™ families consistently meet the highest quality and performance demands in key specifications for power system designs such as on-state resistance (R_{DS(on)}) and figure of merit (FOM).

 $OptiMOS^{\text{\tiny{M}}}\ power\ MOSFETs\ provide\ best-in-class\ performance.\ Features\ include\ ultra\ low\ R_{_{DS(on)}},\ as\ well\ as\ low\ charge$ for high switching frequency applications. StrongIRFET™ power MOSFETs are designed for drives applications and are ideal for designs with a low switching frequency, as well as those that require a high current carrying capability.

Technology development and product family positioning

StrongIRFET™

Robust and excellent price/performance ratio

- Optimized for switching frequency < 100 kHz
- Designed for industrial applications
- High current carrying capability
- Rugged silicon

20-250 V

Best-in-class technology

- Optimized for broad switching frequency
- Designed for high performance applications

OptiMOS™

- Industry's best figure of merit
- High efficiency and power density

80 V / 100 V

25 V / 120 V

OptiMOS™ 3

150 V

200-300 V

OptiMOS™ 7

15 V

StrongIRFET™ and IR MOSFET™ for switching frequency <100 kHz OptiMOS™ for broad switching frequency Low R_{DS(on)} Rugged silicon and broad portfolio selection - Industry's best Figure of Merit (FOM) High efficiency and power density Active and preferred Active and preferred (price/performance optimized) (price/performance optimized) (high-performance optimized) (high-performance optimized) **StrongIRFET™2** 40 V / 60 V / 80 V / 100 V StrongIRFET™ OptiMOS™ OptiMOS™ 6 OptiMOS™ 5 80-100 V 25-60 V 25 V / 30 V 40 V / 60 V 40 V 100 V OptiMOS™ IR MOSFET" StrongIRFET™ 80 V / 100 V / 150 V

With more than 40 years of experience in power MOSFET innovation, Infineon offers a broad portfolio of products. The product portfolio is divided into "active and preferred", referring to the latest technology available offering best-inclass performance, and "active", consisting of well-established technologies which complete this broad portfolio.

StrongIRFET™ 2 power MOSFETs are the latest generation to be added to the family. Available in 40 V, 60 V, 80 V and 100 V, this family offers broad availability and excellent price/performance ratio and are suitable for a broad range of applications.

Building on its legacy of innovation, Infineon now unveils the industry's premier 15 V trench power MOSFETs, using the brand-new OptiMOS™ 7 technology. The OptiMOS 7 15 V series primarily targets optimized DC-DC conversion for servers, computing, datacenter, and artificial intelligence applications.

OptiMOS™ 6 power MOSFETs 40 V, 80 V, 100 V and 120 V are the newest addition to the OptiMOS™ product family. They are the perfect solution when best-in-class (BiC) products and high efficiency over a wide range of output power are required. For other voltage classes, from 15 V up to 150 V, OptiMOS™ 5 represents the latest generation in the market, offering low conduction losses and high switching performance.

For high and low frequency applications OptiMOS[™] 3 power MOSFETs is our largest OptiMOS[™] family and complements our existing product portfolio as well as providing additional options when best-in-class is not required. StrongIRFET[™] is recommended for 20-300 V applications when the high performance is not essential and the cost is a more significant consideration.

USB-C controllers and peripherals

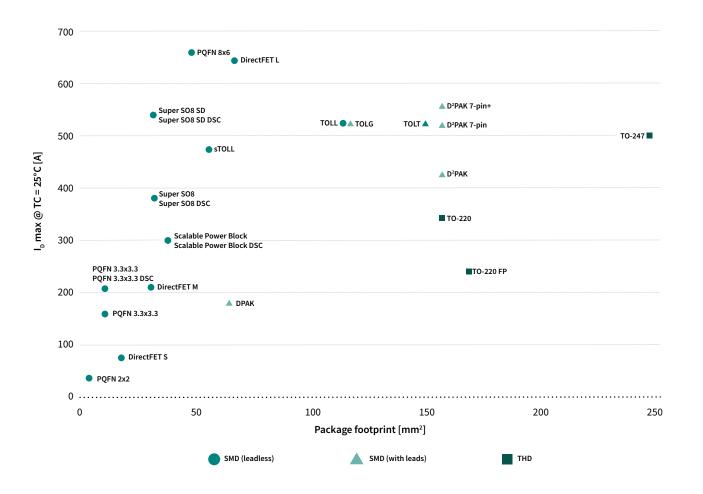
Guidance for applications and voltage classes

OptiMOS™ and StrongIRFET™ portfolio, covering from 15 up to 300 V MOSFETs, can address a broad range of needs from low to high switching frequencies. The tables below provide a guidance on the recommended OptiMOS™ or StrongIRFET™ products for each major sub-application and voltage class.

Red	commended volt	tage	15 V to 30 V	40 V	60 V	75 V to 80 V	100 V	120 V to 150 V	200 V	250 V	300 V
red	Low power Power tools,	OptiMOS™	√	✓	✓	√					
Battery powered	multicopter, battery, industrial drives	StrongIRFET™	✓	✓	✓	✓					
ttery	High power	OptiMOS™			✓	✓	✓	✓	✓		
Ba	(LEV, LSEV)	StrongIRFET™			✓	✓	✓	✓	✓		
		OptiMOS™			√	√	√	√			
	Solar	StronglRFET™			√	√	√				
						slow sw	itching				
		OptiMOS™	✓	✓	√	✓	√	✓	✓	√	✓
Inverters	Online UPS	StrongIRFET™	✓	✓	✓	✓	✓	✓	<i>y y y y</i>	✓	✓
Inve	Offilite 0F3					fast swi	tching				
		OptiMOS™	✓	✓	✓	✓	✓	✓	✓	✓	✓
		StrongIRFET™	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Offline UPS	OptiMOS™		√	✓						
		StrongIRFET™		✓	✓						
	Adapter /	OptiMOS™		√	√	√	√				
	Charger	StronglRFET™		√	✓	√	√				
	DC D	OptiMOS™		√	√						
	PC Power	StronglRFET™		✓	✓						
	LCD TV	OptiMOS™			✓	✓	✓				
SMPS	LCD IV	StrongIRFET™			✓	✓	✓				
S		OptiMOS™		✓	✓	✓					
	Server	StrongIRFET™	✓	✓	✓	✓					
	AC-DC	OptiMOS™				✓	✓	✓	✓		
	AC-DC	StrongIRFET™				✓	✓				
	Telecom	OptiMOS™	✓	✓	✓	✓	✓	✓			
	Telecom	StrongIRFET™	✓	✓	✓	✓	✓				

Space-saving and high-performance packages

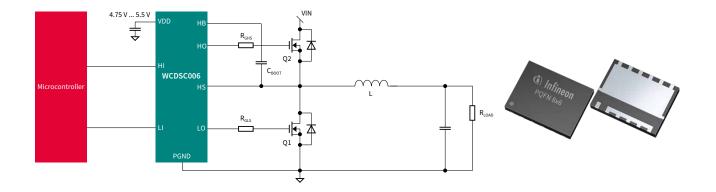
	TO-247	TO-220	TO-220 FullPAK	D ² PAK	D²PAK 7-pin	TO-Leadless	TOLT (Top-side cooling)	TOLG (Gullwing leads)
					ST THE		The state of the s	
			Optimized for hig	gh power applica	ntions and high c	urrent capability		
Special features			-	-			Optimized for top-side cooling	Optimized for TCoB ¹⁾ robustness
Height [mm]	5.0	4.4	4.5	4.4	4.4	2.3	2.3	2.3
Outline [mm]	40.15 x 15.9	29.5 x 10.0	29.5 x 10.0	15.0 x 10.0	15.0 x 10.0	11.7 x 9.9	15.0 x 9.9	11.7 x 9.9
Thermal resistance R_{thJC} [K/W]	2.0	0.5	2.5	0.5	0.5	0.4	0.4	0.4


	sTOLL	SuperSO8	SuperSO8 dual-side cooling (DSC)	Power Block	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3	PQFN 2x2	DirectFET™
		S integral						Contaction of Co
	Optimized for high power in small form factor	For highest efficiency and power management	Optimized for dual-side cooling	Significant design shrink	Highest power density per area	High efficiency in small form factor	Enables significant space saving	Optimized for dual side cooling
Height [mm]	2.3	1.0	0.75	5.0 x 6.0: 1.0 6.3 x 6.0: 0.9 6.3 x 6.0 DSC: 0.7	1.0	1.0	0.9	Small: 0.65 Medium: 0.65 Large: 0.71
Outline [mm]	8.0 x 7.0	5.15x6.15	5.0 x 6.0	5.0 x 6.0 6.3 x 6.0	3.3 x 3.3	3.3 x 3.3	2.0 x 2.0	Small: 4.8 x 3.8 Medium: 6.3 x 4.9 Large: 9.1 x 6.98
Thermal resistance R _{th IC} [K/W]	0.6	0.8	0.5	1.5	1.4	3.2	11.1	0.5

Discrete packages

Infineon has been making an impact in the MOSFET industry with innovation in MOSFET manufacturing techniques and processes as well as pioneering new packages to meet the changing demands of cutting-edge designs in various applications. OptiMOS™ and StrongIRFET™ technologies are available in different packages to address demands for high current carrying capability and significant space saving. The broad portfolio enables footprint reduction, boosted current rating and optimized thermal performance. While the surface mount leadless devices are enabled for footprint reduction, through-hole packages are characterized by a high-power rating.

Infineon offers innovative packages such as DirectFET™ and TO-Leadless (TOLL). DirectFET™ is designed for high frequency applications by offering the lowest parasitic resistance. This package is available in three different can sizes: small, medium and large. TO-Leadless is optimized to dissipate power up to 375 W, increasing power density with a substantial reduction in footprint.


New package innovations include the SuperSO8 Source-Down package offering high power density and performance; the TOLG (Gullwing leads) optimized for TCoB (Thermal cycling on board) robustness; TOLT (top-side cooling) optimized for superior thermal performance; sTOLL optimized for high power in small form factor; and the SuperSO8 dual-side cooling (DSC) optimized for dual-side cooling in a standard 5x6 mm² footprint.

OptiMOS™ 40 V and 60 V in PQFN 8x6

A high-power density package family

Infineon's family of OptiMOS $^{\text{M}}$ N-channel power MOSFETs in PQFN 8 x 6 packages are benchmark products optimized for very low R_{DS(on)} and high-current capability, alongside Infineon's renowned quality standard for robust industry designs. This makes the PQFN 8 x 6 MOSFET package the ideal solution for various battery powered, battery protection, and battery formation applications requiring low package resistance and high-current handling MOSFETs. The PQFN 8 x 6 family of MOSFETs is available in a small 8x6 mm leadless package to reduce the physical footprint and overall BOM of end products. The improved $R_{DS(on)}$ and I_D ratings, continuous and pulsed, enable increased battery run time and higher power density.

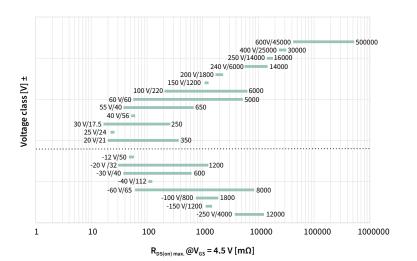
Features and benefits

Key features	Key benefits
- >50% reduction in footprint compared to TOLL	 Power density increase enabling higher power designs while maintaining the space contraints
 Best-in-class continuous current rating and competitive avalanche energy rating 	Good design martin in worst case conditionals (e.g. in-rush motor stall/short)
Excellent package area utilization	– Ultra low R _{DS(on)} with good thermal resistance R _{thuc}
- Ultra low package parasitics	EMI improvement due to lower device parasitics
- Footprint compatability with SuperSO8 5x6	 Simple PCB design change based on SuperSO8 provides scalability across varying power requirements

Small-signal/small-power MOSFETs -250 to 600 V

Combining latest high-performance silicon technology with small and innovative packaging

Small-signal/small power products are ideally suited for space-constrained automotive and non-automotive applications. With an optimal price/performance ratio and small footprint packages, Infineon's small-signal and small-power MOSFETs are the best fit for a wide range of applications and circuits. These include low-voltage drives, linear battery charger, battery protection, load switches, DC-DC converters, reverse polarity protection and many more.


The entire family includes different packages:

SOT-223, SOT-23, SOT-323, SOT-363, SOT-89, TSOP-6 and SC59

The product portfolio covers N-channel and P-channel enhancement mode MOSFETs as well as N-channel depletion mode products:

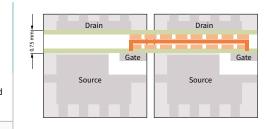
- -250 V to -12 V P-channel enhancement mode (available in single and dual configurations)
- 20 V to 600 V N-channel enhancement mode (available in single and dual configurations)
- -20/+20 V and -30/+30 V complementary (P + N channel) enhancement mode
- 60 V to 600 V N-channel depletion mode

Key features	Key benefits
- Products available in Automotive, Industrial and Standard qualification levels	 Suitable for automotive and high quality demanding applications
$-$ Four $\rm V_{\rm GS(th)}$ classes available for 1.8 V, 2.5 V, 4.5 V, and 10 V gate drives	– Easy interface to MCU
– ESD protected P-channel parts	Reduction of design complexity
- V _{DS} range from -250 V to 600 V	– Wide selection of products available
– RoHS compliant and halogen free	- Environmentally friendly

Small-signal/small-power MOSFETs are available in seven industry-standard package types ranging from the largest SOT-223 to the smallest SOT-323.

Products are offered in single, dual and complementary configurations and are suitable for a wide range of applications, including battery protection, LED lighting, low-voltage drives and DC-DC converters.


SOT-363	SOT-323	SOT-23	TSOP-6	SC59	SOT-89	SOT-223
	O salarga		G Infinence TSOPS	G Infineon Sc59	G Mineon Solis	G Infinence

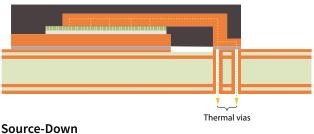

www.infineon.com/smallsignal www.infineon.com/smallpower

OptiMOS™ power MOSFETs 15 -150 V Source-Down

An innovative PQFN 3.3 mm x 3.3 mm product family

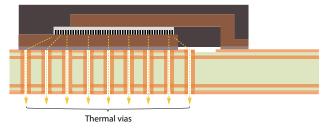
Once again, Infineon is setting a new standard in MOSFET performance with the new Source-Down package to support the requirement for high power density and optimized system-level efficiency. In comparison with a normal Drain-Down device, in the Source-Down technology, the source potential is connected to the thermal pad. The OptiMOS™ power MOSFET 3.3x3.3 mm² Source-Down packages are now available in 15 V-150 V in BSC (bottom-side cooling) and in DSC (dual-side cooling). The latest addition to the family is the OptiMOS™ power MOSFET 5x6 mm² Source-Down, available in BSC. Optional Center-Gate footprint is also available for both families. Here the gate pin is moved to the center supporting easy parallel configuration of multiple MOSFETs. With the larger drain-to-source creepage distance, it is possible to connect the gates of multiple devices on a single PCB layer.

Features and benefits


Key features
— Major reduction in $R_{\text{\tiny Os(on)}}$, up to 30% due to larger silicon die in same package outline
 Improved R_{thJC} overcurrent PQFN package technology
- High power density
- Standard-Gate and Center-Gate footprint options
- Available in standard and logic level options

Key benefits - Enabling highest power density and performance - Superior thermal performance - Form factor reduction - Optimized layout possibilities - Simplifying parallel configuration of multiple MOSFETs with Center-Gate footprints - Simplified gate drive

Optimized thermal management


Drain-Down

POFN 3.3x3.3

Source-Down

PQFN 3.3x3.3

www.infineon.com/PQFN-3-source-down

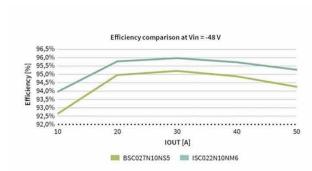
In the Source-Down package technology, the heat is dissipated directly into the PCB through a thermal pad instead of over the bond wire or the copper clip. The package significantly improves the thermal resistance (R_{thJC}) of this product family. In most cases, thermal vias cannot be used on the thermal pad if it is connected to the noisy switch node potential. With Source-Down, the thermal pad of the low-side MOSFET is now on the ground potential enabling the use of thermal vias right underneath the device. This considerably improves the thermal performance and the power density in the end application.

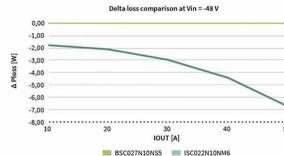
Power

OptiMOS™ 6 power MOSFETs 100 V

Next generation of cutting-edge MOSFETs

OptiMOS™ 6 100 V devices are setting a new technology standard in the field of discrete MOSFET devices. Compared to alternative products, Infineon's leading thin wafer technology enables significant performance benefits compared to OptiMOS™ 5:

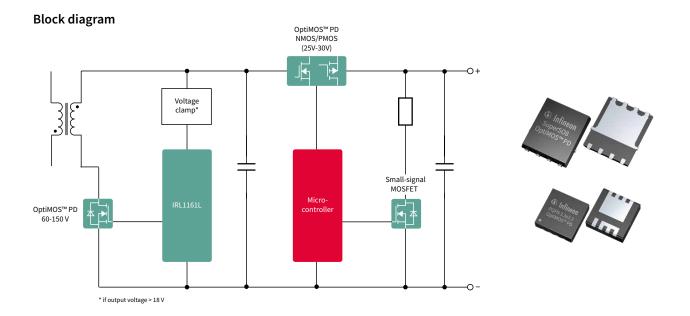

- R_{DS(on)} reduced by 22%
- Improved FOM $Q_G \times R_{DS(on)}$ by 37%
- Improved FOM Q_{Gd} x $R_{DS(on)}$ by 38%


Infineon's OptiMOS™ 6 power MOSFET 100 V family offers an optimized solution for synchronous rectification in switched mode power supplies (SMPS) in servers, desktop PCs, wireless and quick chargers. The improved performance in on-state resistance ($R_{DS(on)}$) and figure of merits (FOM - $R_{DS(on)}$ x Q_G and Q_{Gd} x $R_{DS(on)}$) yields an efficiency improvement, allowing easier thermal design and less paralleling, leading to system cost reduction. In addition, the best-in-class R_{DS(on)} and high switching performance makes these devices suitable for telecom applications.

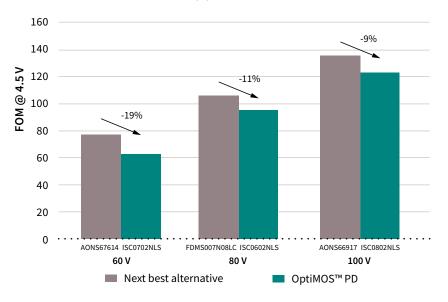
Infineon's market-leading OptiMOS™ 6 power MOSFETs 100 V are available in two different packages:

- SuperSO8 5x6 mm² with R_{DS(on)} ranging from 23 mΩ down to 2.2 mΩ
- PQFN 3x3 3.3 x 3.3 mm 2 with $R_{_{DS(on)}}$ ranging from 23 m Ω down to 8 m Ω

Target applications include a ZVS inverting buck-boost -(36...60) V to 12 V DC-DC converter. In this topology, an active clamp circuit recovers, in a lossless way, Q_{rr} from the SR switch towards the output, while achieving zero-voltage switching for the control switch.


Best-in-class products in the newly released OptiMOS™ 6 technology (ISC022N10NM6) are compared to OptiMOS™ 5 (BSC027N10NS5) in SuperSO8 (PQFN 5x6) package in this application. The result is stunning: OptiMOS™ 6 in 2.2 mΩ achieves roughly 1% better efficiency across all the line and load conditions, compared to the 2.7 mΩ product in OptiMOS™ 5.

The improvement in efficiency is explainable as the joint contribution of the lower driving losses (thanks to approximatively 20% lower (typ) Q_G) lower turn-off losses (due the lower Q_{Gd} – an improvement just shy of 40%) and lower conduction losses with a 18% lower R_{DS(on)}. The improvement in efficiency lowers the total losses by 7 W, a remarkable improvement allowing easier thermal management and increased power density. ISC022N10NM6 represents the lowest R_{DS(on)} available in the market for SuperSO8 (PQFN 5x6) package in 100 V.

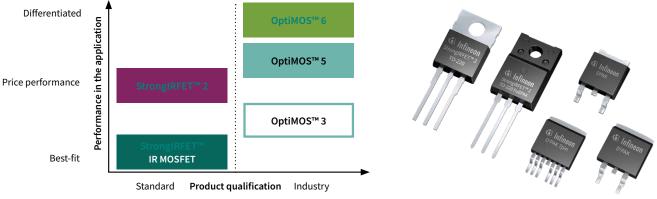

OptiMOS™ PD

The best fit for USB-PD and fast charger designs

OptiMOS™ PD is Infineon's new MOSFET portfolio representing the best fit for USB-PD and fast charger designs and is available in 2 small standard packages: PQFN 3.3x3.3 and SuperSO8. Logic level availability enables parts to be fully driven from 4.5 V or directly from microcontrollers resulting in a lower part count in the application. The portfolio ranges from 25 V up to 150 V MOSFETs where 25 V and 30 V products represent the fit as load switch and 60-150 V parts are the optimal choice to function as synchronous rectification FETs in charger and adapter designs.

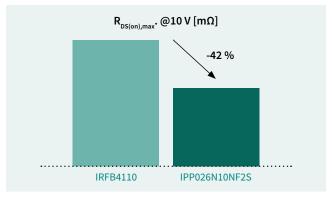
OptiMOS™ PD comparison of R_{DS(on)} in 60 V, 80 V and 100 V

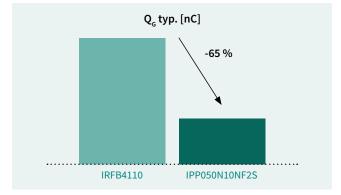
The OptiMOS™ PD family features MOSFETs offering a low on-state resistance $(R_{DS(on)})$, less switching losses as well as low gate-, outputand reverse-recovery charges. The reduction in overall losses results in an excellent price/performance ratio leading to a decrease in total system BOM cost.



StrongIRFET™ 2 MOSFETs - 40 V/60 V/80 V/100 V

Right-fit products for a broad range of applications


The new StrongIRFET™ 2 power MOSFETs are the latest generation of MOSFET technology addressing a wide range of applications such as adapters, motor drives, e-scooters, battery management systems, light electric vehicles, robotics, power and gardening tools. Featuring broad availability and excellent price/performance ratio, this new technology offers right-fit products with an easy choice for designers interested in convenient selection and purchasing. Optimized for both low- and high-switching frequencies, the family supports a broad range of applications enabling flexibility in design.

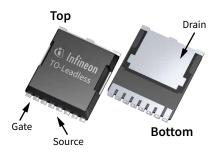


Features and benefits

Key features	Key benefits		
– Broad availability from distribution partners	– Increased security of supply		
- Excellent price/performance ratio	- Right-fit products		
- Ideal for high and low switching frequency	– Supports wide variety of applications		
- Industry standard footprint	Standard pin out allows for drop-in replacement		
- High current rating	- Increased product ruggedness		

StrongIRFET™ 2 vs. previous generation 100 V performance comparison

Compared to the previous StrongIRFETTM generation in 100 V TO-220 package, StrongIRFETTM 2 shows significant improvements such as ~40% lower $R_{DS(on)}$ and ~65% reduced Q_G . This results in better efficiency and longer life time.



Power

TOLx family

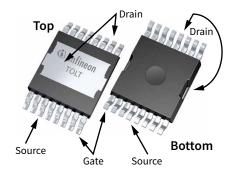
TO-Leadless (TOLL)

Optimized for high power applications

TO-Leadless is optimized to handle currents up to 500 A, increasing power density with a substantial reduction in footprint. A footprint reduction of 30% compared to D²PAK, together with a height reduction of 50%, results in an overall space saving of 60% enabling much more compact designs.

Key features	Key benefits
– Best-in-class technology	– High performance capability
- High current rating > 500 A	– High system reliability
- 60% space reduction compared to D ² PAK 7-pin	- Optimized board utilization

TOLG (Gullwing leads)

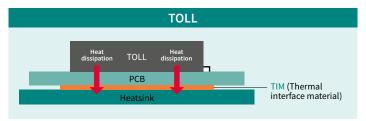

Top Drain Outhorn Gate Bottom Source

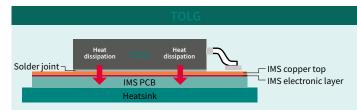
Optimized for better TCoB robustness

TOLG package offers a compatible footprint to the TO-Leadless with the additional feature of Gullwing leads resulting in two times higher TCoB performances compared to TO-Leadless. This package is excellent on aluminum insulated metal substrate boards (Al-IMS).

Key features	Key benefits
– Best-in-class technology	High performance capability
High current rating > 450 A	High system reliability
 Low ringing and voltage overshoot 	– High efficiency and lower EMI
- 60% space reduction compared to D2PAK 7-pin	 Optimized board utilization
– Gullwing leads	High thermal cycling on board performance

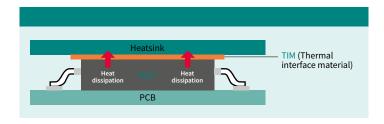
TOLT (Top-side cooling)


Optimized for superior thermal performance

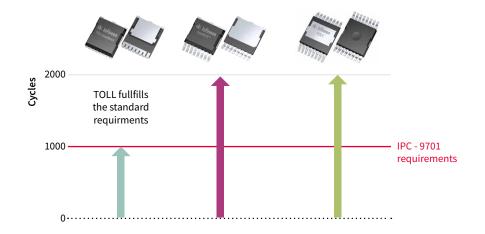

TOLT is the new top-side cooling package within the TOLx family. With top-side cooling, the drain is exposed at the surface of the package allowing for 95 percent of the heat to be dissipated directly to the heatsink, achieving 20 percent better R_{thJA} and 50 percent improved R_{thJC} compared to the TOLL package. With bottom-side cooling packages, like the TOLL or the D²PAK, the heat is dissipated via the PCB to the heatsink resulting in high power losses.

Key features	Key benefits
- Low R _{DS(on)}	 Reduction in conduction losses
– High current rating	- Increased product ruggedness
– Top-side cooling	- Superior thermal performance
– Negative standoff	Minimize thermal resistance to heatsink

www.infineon.com/toll www.infineon.com/tolg www.infinon.com/tolt


TOLx family – Cooling concept

With TOLL/TOLG, board mounting, the heat is dissipated through the PCB to the heatsink. Due to the PCB thermal resistance, power losses occur.



With top-side cooling setup, the drain pad is exposed on the top of the package allowing the majority of the heat to be dissipated into the top-mounted heatsink. This pulls heat away from the PCB resulting in at least 20 percent better $R_{th,JA}$ compared to standard over-molded TOLL.

Thermal cycling on IMS board (TCoB) performance

www.infineon.com/optimos-tolg www.infineon.com/optimos-tolt

OptiMOS™ 7 15 V logic level

=	=
D.C.	nc.

$R_{DS(on),max}$ @ V_{GS} =4.5 V [m Ω]	Source-Down PQFN 3.3x3.3	Source-Down PQFN 3.3x3.3 dual-side	PQFN 2x2
	IQE004NE1LM7	IQE004NE1LM7SC	
< 1	$R_{DS(on)}$ =0.57 m Ω	$R_{DS(on)}$ =0.57 m Ω	
	IQE004NE1LM7CG	IQE004NE1LM7CGSC	
	$R_{DS(on)} = 0.57 \text{ m}\Omega$	$R_{DS(on)} = 0.57 \text{ m}\Omega$	
2.4			ISK018NE1LM7
2-4			R=2.15 mΩ

OptiMOS™ and StrongIRFET™ 20 V (super) logic level

% <u>=</u> % |

R _{DS(on),max} @ V _{GS} =4.5 V [mΩ]	PQFN 2x2	PQFN 3.3x3.3	SuperSO8
<1			$\begin{array}{l} \text{IRFH6200TRPBF}^{1)} \\ \text{R}_{\text{DS(on)}} = 0.99 \text{ m}\Omega \end{array}$
2-4		IRLHM620TRPBF** 1) $R_{DS(on)}$ =2.5 mΩ	
>10	IRLHS6242TRPBF $R_{DS(on)}$ =11.7 $m\Omega$ IRLHS6276TRPBF $R_{}$ =45 $m\Omega$		

OptiMOS™ and StrongIRFET™ 25 V logic level

$\begin{array}{c} R_{DS(on),max} \\ @\ V_{GS} = 10\ V \\ [m\Omega] \end{array}$	DirectFET™	PQFN 2x2	PQFN 3.3x3.3	SuperSO8	Source-Down PQFN 3.3x3.3	Source-Down PQFN 3.3x3.3 dual-side cooling (DSC)	Source-Down PQFN 5x6
, ,				BSC004NE2LS5 $R_{DS(pp)} = 0.45 \text{ m}\Omega$	IQE006NE2LM5 $R_{DS(qn)} = 0.65 \text{ m}\Omega$	IQE006NE2LM5CGSC R _{DS(on)} =0.58 mΩ	IQDH29NE2LM5CG $R_{DS(on)}$ =0.29 m Ω
				BSC009NE2LS5 R _{DS(on)} =0.9 mΩ	IQE006NE2LM5CG R _{DS(on)} =0.65 mΩ	IQE006NE2LM5SC R _{DS(on)} =0.58 mΩ	DS(on)
<1	IRF6717MTRPBF $R_{DS(on)}$ =0.95 m Ω			BSC009NE2LS $R_{DS(on)} = 0.9 \text{ m}\Omega$	Signif	55(01)	
			BSZ009NE2LS5 $R_{DS(on)}$ =0.9 m Ω	BSC009NE2LS5I* $R_{DS(on)} = 0.95 \text{ m}\Omega$			
			BSZ010NE2LS5 $R_{DS(on)}$ =1.0 mΩ	BSC010NE2LS $R_{DS(on)} = 1.0 \text{ m}\Omega$			
			BSZ011NE2LS5I $R_{DS(on)}$ =1.1 mΩ	BSC010NE2LSI* $R_{DS(on)}$ =1.05 mΩ			
				BSC014NE2LSI* $R_{DS(on)}=1.4 \text{ m}\Omega$			
1-2			BSZ013NE2LS5I* $R_{DS(on)}$ =1.3 mΩ				
			BSZ014NE2LS5IF** $R_{DS(on)}=1.45 \text{ m}\Omega$	BSC015NE2LS5I* $R_{DS(on)}=1.5 \text{ m}\Omega$			
			BSZ017NE2LS5I* $R_{DS(on)}$ =1.7 mΩ	BSC018NE2LS $R_{DS(op)} = 1.8 \text{ m}\Omega$			
			BSZ018NE2LS $R_{DS(qn)}=1.8 \text{ m}\Omega$	Salani			
		ISK024NE2LM5 $R_{DS(on)} = 2.4 \text{ m}\Omega$	BSZ031NE2LS5 $R_{DS(on)}=3.1 \text{ m}\Omega$	BSC024NE2LS $R_{DS(on)} = 2.4 \text{ m}\Omega$			
2-4		(*DS(on) 2.7 1112	$\begin{array}{c} R_{DS(on)} = 3.1 \text{ m}\Omega \\ BSZ033NE2LS5 \\ R_{DS(on)} = 3.3 \text{ m}\Omega \end{array}$	BSC026NE2LS5 $R_{DS(on)}$ =2.6 mΩ			
			BSZ036NE2LS $R_{DS(on)}$ =3.6 mΩ	BSC032NE2LS $R_{DS(on)}$ =3.2 mΩ			
4-10			BSZ060NE2LS $R_{DS(on)}$ =6.0 mΩ	BSC050NE2LS $R_{DS(on)}$ =5.0 mΩ			
> 10							

^{*} Optimized for resonant applications (e.g. LLC converter) ** Monolithically-integrated Schottky-like diode *** R $_{\rm DS(on),max}$ @ V $_{\rm GS}$ =4.5 V

Gate-driver ICs

OptiMOS™ 25 V in Power Block 5x6

		Monolithically-in- tegrated		$R_{_{DS(on),max.}}[\ m\Omega]$ @ $V_{_{GS}}$ =4.5 V max.		Q _G [nC] @ V _{GS} =4.5 V typ.	
Part number	number Package Schot		BV _{DSS} [V]	High-side	Low-side	High-side	Low-side
BSG0810NDI	SuperSO8	✓	25	4.0	1.2	5.6	16.0
BSG0811ND	SuperSO8	-	25	4.0	1.1	5.6	20.0
BSG0813NDI	SuperSO8	✓	25	4.0	1.7	5.6	12.0

OptiMOS™ 25/30 V symmetrical and asymmetrical dual N-channel MOSFETs in 5x6 and 3x3 PQFN

	Integrates the low-side and high-side MOSFET of a synchronous DC-DC converter into a single package. The small outline and the interconnection of the two MOSFETs within the package minimize the loop inductance which boosts efficiency.								
		Monolithically-in-		$R_{DS(on), max.}$ [$m\Omega$] @ V_{GS} =4.5 V max.		Q _G [nC] @ V _{GS} =4.5 V typ.			
Part number	Раскаде	Package tegrated Schottky-like diode	BV _{DSS} [V]	High-side	Low-side	High-side	Low-side		
BSC0911ND*	asymmetrical dual 5x6	-	25	4.8	1.7	7.7	25		
BSC0921NDI*	asymmetrical dual 5x6	✓	30	7	2.1	5.8	21		
BSC0923NDI*	asymmetrical dual 5x6	✓	30	7	3.7	5.2	12.2		
BSC0924NDI*	asymmetrical dual 5x6	✓	30	7	5.2	5.2	8.6		

OptiMOS[™] 40 V, 60 V and 100 V in Symmetrical Power Block 6.3x6.3

Part number	Package	Dual-side cooling	BV _{DSS} [V]	$R_{DS(on)}$ [$m\Omega$] @ V_{GS} = 10 V max	Q _G [nC] @ V _{GS} = 10 V typ.
ISG0613N04NM6H1)	Power Block 6.3x6.0	-	40V	0,88	69
ISG0613N04NM6HSC1)	Power Block 6.3x6.0	✓	40V	0,88	69
ISG0614N06NM5H1)	Power Block 6.3x6.0	-	60V	1,61	68
ISG0614N06NM5HSC1)	Power Block 6.3x6.0	✓	60V	1,61	68
ISG0616N10NM5HSC1)	Power Block 6.3x6.0	✓	100V	3,4	52

OptiMOS™/StrongIRFET ™ 30 V - 100 V dual N-channel MOSFETs

	Package	Monolithically		$R_{DS(on), max.}$ [$m\Omega$] @ V_{GS} =10 V max.		Q _G [nC] @ V _{GS} =10 V typ.	
Part number		integrated Schottky like diode	BV _{DSS} [V]	High-side	Low-side	High-side	Low-side
IRLHS6276*	symmetrical dual PQFN 2x2	-	20	45**	45**	3.1**	3.1**
IRF7907*	asymmetrical dual SO8	-	30	16.4	11.8	6.7**	14**
IRLHS6376*	symmetrical dual PQFN 2x2	-	30	63**	63**	2.8**	2.8**
BSC072N04LD*	symmetrical dual 5x6	-	40	7.2	7.2	39	39
BSC076N04ND	symmetrical dual 5x6	-	40	7.6	7.6	28	28
BSC112N06LD*	symmetrical dual 5x6	-	60	11.2	11.2	41	41
BSC155N06ND	symmetrical dual 5x6	-	60	15.5	15.5	21	21
IRF7351	symmetrical dual SO8	_	60	17.8	17.8	24	24

Dual N-channel audio MOSFETs

Digital audio MOSFET half-bridges are specifically designed for class D audio amplifier applications. They consist of two power MOSFET switches connected in half-bridge configuration.							
		Monolithically-	DV Dd	$R_{DS(on), max.}$ [$m\Omega$] @ V_{GS} =4.5 V max.		Q _g [nC] @ V _{gs} =4.5 V typ.	
Part number	Package	integrated Schottky like diode	BV _{DSS} [V]	High-side	Low-side	High-side	Low-side
IRFI4212H-117P	half-bridge in TO220FP	-	100	72.5	72.5	12	12
IRFI4019H-117P	half-bridge in TO220FP	_	150	95	95	13	13
IRFI4020H-117P	half-bridge in TO220FP	_	200	100	100	19	19

- * Logic level (capable of 4.5 V gate drive)
- ** R_{DS(on)} at V_{GS}=4.5V 1) Coming soon

OptiMOS™ and StrongIRFET™ 30 V logic level

$\begin{array}{c} R_{DS(on),\;max.} \\ @\ V_{GS} = 10\ V \\ [m\Omega] \end{array}$	TO-252 (DPAK)	ТО-220
1-2		$ \begin{array}{l} \text{IRLB3813PBF} \\ R_{\text{DS(on)}} = 1.95 \text{ m}\Omega \end{array} $
	IRLR8743TRPBF $R_{DS(on)}$ =3.1 m Ω	IRLB8743PBF
4-10		$ \begin{array}{l} R_{DS(on)} \! = \! 3.2 \; m\Omega \\ \\ IRLB8748PBF \\ R_{DS(on)} \! = \! 4.8 \; m\Omega \\ \\ IRLB8721PBF \\ R_{DS(on)} \! = \! 8.7 \; m\Omega \end{array} $

OptiMOS™ and StrongIRFET™ 30 V logic level

。= ﴾[]	
/RD/VRM	

$\begin{array}{c} R_{DS(on), max.} \\ @\ V_{GS}^{} = 10\ V \\ [m\Omega] \end{array}$	DirectFET™	PQFN 3.3 x 3.3 Source-Down	PQFN 3.3 x 3.3 Source-Down Dual-side cooling (DSC)	PQFN 5x6 Source-Down	PQFN 3.3 x 3.3	SuperSO8
		IQE008N03LM5	IQE008N03LM5CGSC	IQDH35N03LM5CG		BSC005N03LS5
<1		$R_{DS(on)}$ =0.85 m Ω	$R_{DS(on)} = 0.85 \text{ m}\Omega$	$R_{DS(on)} = 0.35 \text{ m}\Omega$		$R_{DS(on)} = 0.55 \text{ m}\Omega$
_		IQE008N03LM5CG	IQE008N03LM5SC			BSC005N03LS5I*
		$R_{DS(on)}$ =0.85 m Ω	$R_{DS(on)} = 0.85 \text{ m}\Omega$			$R_{DS(on)} = 0.5 \text{ m}\Omega$
						ISC011N03L5S
						$R_{DS(on)}=1.1 \text{ m}\Omega$
						IRFH8303TRPBF
						$R_{DS(on)}=1.1 \text{ m}\Omega$
						BSC011N03LS
						$R_{DS(on)}=1.1 \text{ m}\Omega$
						BSC011N03LSI*
						$R_{DS(on)} = 1.1 \text{ m}\Omega$
					BSZ0500NSI*	
1-2					$R_{DS(on)}=1.5 \text{ m}\Omega$	
1-2	IRF6727MTRPBF				BSZ019N03LS	
	$R_{DS(on)}=1.7 \text{ m}\Omega$				$R_{DS(on)}=1.9 \text{ m}\Omega$	
					ISZ019N03L5S	
					$R_{DS(on)}=1.9 \text{ m}\Omega$	
						ISC019N03L5S
						$R_{DS(on)} = 1.9 \text{ m}\Omega$
					BSZ0501NSI*	BSC0901NS
					R _{DS(on)} =2.0 mΩ	$R_{DS(on)}=1.9 \text{ m}\Omega$
						BSC0501NSI**
						$R_{DS(on)}$ =1.9 m Ω

OptiMOS™ and StrongIRFET™ 30 V logic level

=	=

$\begin{array}{c} R_{DS(on),max.} \\ @V_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	PQFN 3.3x3.3	SuperSO8	S08	PQFN 2x2
	BSZ0901NSI**	IRFH8311TRPBF		ISK036N03LM5
	$R_{DS(on)}=2.1 \text{ m}\Omega$	$R_{DS(on)}$ =2.1 m Ω		$R_{DS(on)}=3.6 \text{ m}\Omega$
		IRFH5302TRPBF		
		$R_{DS(on)}=2.1 \text{ m}\Omega$		
		BSC0502NSI*		
	DCZGGGGNC	R _{DS(on)} =2.3 mΩ		
	BSZ0902NS	ISC026N03L5S		
	R _{DS(on)} =2.6 mΩ BSZ0902NSI*	R _{DS(on)} =2.6 mΩ		
	$R_{\text{DS}(qn)} = 2.8 \text{ m}\Omega$	BSC0902NS $R_{DS(\alpha)}=2.6 \text{ m}\Omega$		
	BSZ0502NSI*	BSC0902NSI*	IRF8788TRPBF	
2-4	$R_{DS(on)} = 2.8 \text{ m}\Omega$	$R_{DS(\Omega)} = 2.8 \text{ m}\Omega$	$R_{\text{DS(an)}} = 2.8 \text{ m}\Omega$	
	BSZ0503NSI*	IRFH8318TRPBF	DS(on) Z.O THIS2	
	$R_{DS(on)} = 3.4 \text{ m}\Omega$	$R_{DS(on)} = 3.1 \text{ m}\Omega$		
	IRLHM630TRPBF**	BSC0503NSI*		
	$R_{DS(on)} = 3.2 \text{ m}\Omega$	$R_{DS(on)} = 3.0 \text{ m}\Omega$		
	IRFHM830	BSC0504NSI*	IRF7862TRPBF	
	$R_{DS(op)} = 3.8 \text{ m}\Omega$	$R_{ns(nn)} = 3.7 \text{ m}\Omega$	$R_{DS(on)} = 3.3 \text{ m}\Omega$	
	BSZ0904NSI**	D5(011)	DS(011)	
	$R_{DS(on)} = 4.0 \text{ m}\Omega$			
	ISZ040N03L5IS	ISC037N03L5IS		
	$R_{DS(on)}$ =4.0 m Ω	$R_{DS(on)} = 3.7 \text{ m}\Omega$		
		IRFH8324TRPBF		
		$R_{DS(on)}$ =4.1 m Ω		
	BSZ0506NS	ISC045N03L5S		
	$R_{DS(on)}$ =4.4 m Ω	$R_{DS(on)}$ =4.5 m Ω		
	BSZ0589NS	BSC0906NS		
4-10	$R_{DS(on)}$ =4.4 m Ω	$R_{DS(on)}$ =4.5 m Ω		
	ISZ065N03L5S	BSC052N03LS		
	$R_{DS(on)}=6.5 \text{ m}\Omega$	$R_{DS(on)} = 5.2 \text{ m}\Omega$		
	BSZ065N03LS			
	$R_{DS(on)} = 6.5 \text{ m}\Omega$	IDELIO224TDDDE		
		IRFH8334TRPBF $R_{DS(on)}$ =9.0 m Ω		

OptiMOS™ and StrongIRFET™ 40 V normal level

<u>2</u> 7	

<u>Y</u> /	- +
Motor control	Offline

3	Z /
UPS	

$R_{DS(on), max.}$ @ V_{GS} =10 V [$m\Omega$]	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D²PAK 7-pin)	TO-220	PQFN 5.x6 Source-Down	TO-247	DirectFET™	sTOLL	SuperSO8	TO-220 FullPA
<1			IRF40SC240 R _{DS(on)} =0.65 mΩ		IQD005N04NM6CG R _{DS(on)} = 0.5 mΩ			IST006N04NM6 R _{DS(on)} =0.6 mΩ	ISC007N04NM6 R _{DS(on)} =0.7 mΩ	
					IQD005N04NM6 $R_{DS(on)} = 0.5 \text{ m}\Omega$			IST007N04NM6 R _{DS(on)} =0.7 mΩ	ISC010N04NM6 R _{DS(on)} =1.0 mΩ	
			IPF009N04NF2S $R_{DS(on)} = 0.9 \text{ m}\Omega$					IST010N04NM5 R _{DS(on)} =1.0 mΩ		
		IPB011N04NF2S $R_{DS(on)} = 1.15 \text{ m}\Omega$				IRFP7430PBF $R_{DS(on)}$ =1.3 mΩ			ISC012N04NM6 $R_{DS(on)}$ =1.2 mΩ	
		IPB012N04NF2S $R_{DS(on)} = 1.25 \text{ m}\Omega$	IPF010N04NF2S $R_{DS(on)} = 1 \text{ m}\Omega$	IPP011N04NF2S $R_{DS(on)} = 1.15 \text{ m}\Omega$			IRF7739L1TRPBF $R_{DS(on)}$ =1.0 mΩ		IRFH7084TRPBF $R_{DS(on)} = 1.25 \text{ m}\Omega$	
			IRFS3004TRL7PP $R_{DS(on)} = 1.25 \text{ m}\Omega$	IPP013N04NF2S $R_{DS(on)} = 1.3 \text{ m}\Omega$			IRF7480MTRPBF $R_{DS(on)} = 1.2 \text{ m}\Omega$		IRFH7004TRPBF $R_{DS(on)} = 1.4 \text{ m}\Omega$	
1-2		IPB014N04NF2S $R_{DS(on)} = 1.45 \text{ m}\Omega$	IPF013N04NF2S $R_{DS(on)} = 1.35 \text{ m}\Omega$	IPP015N04NF2S $R_{DS(on)} = 1.5 \text{ m}\Omega$			IRF7946TRPBF $R_{DS(on)}$ =1.4 mΩ		ISC015N04NM5 $R_{DS(on)}$ =1.5 mΩ	
		IRFS3004 R _{DS(on)} =1.75 mΩ		IRFB3004PBF R _{DS(on)} =1.75 mΩ					ISC017N04NM5 R _{DS(on)} =1.7 mΩ	
									ISC019N04NM5 R _{DS(on)} =1.9 mΩ	
	IPD023N04NF2S $R_{DS(on)} = 2.3 \text{ m}\Omega$	IPB023N04NF2S $R_{DS(on)} = 2.35 \text{ m}\Omega$							IRFH7440TRPBF $R_{DS(on)} = 2.4 \text{ m}\Omega$	IPA028N04NM3S R _{DS(on)} =2.8 mΩ
				IPP026N04NF2S $R_{DS(on)} = 2.6 \text{ m}\Omega$						
2-4	$\frac{\text{IPD029N04NF2S}}{\text{R}_{\text{DS(on)}} = 2.9 \text{ m}\Omega}$								$R_{DS(on)} = 2.8 \text{ m}\Omega$	
				IPP033N04NF2S $R_{DS(on)} = 3.3 \text{ m}\Omega$					IRFH7446TRPBF $R_{DS(on)} = 3.3 \text{ m}\Omega$	
									ISC036N04NM5 $R_{DS(on)}$ =3.6 m Ω	
4-10									ISC046N04NM5 R _{DS(on)} =4.6 mΩ	
4-10	IRF40R207 $R_{DS(on)} = 5.1 \text{ m}\Omega$			IRF40B207 R _{DS(on)} =4.5 mΩ					ISC058N04NM5 R _{DS(on)} =5.8 mΩ	

(F)

Ն= Industrial drives :: ! **(3)** - + =

OptiMOS™ and StrongIRFET™ 40 V logic level

$\begin{array}{c} R_{_{DS(on),max.}} \\ @V_{_{GS}} = 10 \ V \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D2PAK)	TO-263 (D2PAK 7-pin)	PQFN 5x6 Sour- ce-Down	PQFN 2x2	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down dual-side cooling (DSC)	TO-220	TO-247	DirectFET™	PQFN 3.3x3.3	SuperSO8	SuperSO8 dual-side cooling (DSC)
<1				IQDH45N04LM6CG $R_{DS(on)} = 0.45 \text{ m}\Omega$						IRL7472L1TRPBF $R_{DS(on)}$ =0.45 mΩ		$\begin{array}{c} BSC007N04LS6 \\ R_{DS(on)} = 0.7 \text{ m}\Omega \end{array}$	BSC007N04LS6SC $R_{DS(on)}$ =0.7 m Ω BSC009N04LSSC
		IRLS3034TRLPBF R _{DS(on)} =1.7 mΩ	IRLS3034TRL7PP $R_{DS(on)} = 1.4 \text{ m}\Omega$			$\begin{split} & \text{IQE013N04LM6} \\ & R_{\text{DS(on)}} = 1.35 \text{ m}\Omega \\ & \text{IQE013N04LM6CG} \\ & R_{\text{DS(on)}} = 1.35 \text{ m}\Omega \end{split}$	$\begin{split} & \text{IQE013N04LM6CGSO} \\ & R_{\text{DS(on)}} = 1.35 \text{ m}\Omega \\ & \text{IQE013N04LM6SC} \\ & R_{\text{DS(on)}} = 1.35 \text{ m}\Omega \end{split}$	IRLB3034PBF R _{DS(on)} =1.7 mΩ	IRLP3034PBF R _{DS(on)} =1.7 mΩ	$ \begin{aligned} & \text{IRL40DM247} \\ & R_{\text{DS(on)}} = & 1.0 \text{ m}\Omega \\ & \text{IRL7486MTRPBF} \\ & R_{\text{DS(on)}} = & 1.4 \text{ m}\Omega \end{aligned} $		$\begin{array}{c} \text{BSC010N04LS} \\ \text{R}_{\text{DS(on)}} = 1.0 \text{ m}\Omega \\ \text{BSC010N04LS6} \\ \text{R}_{\text{DS(on)}} = 1.0 \text{ m}\Omega \end{array}$	$R_{DS(on)} = 0.94 \text{ m}\Omega$
		IRL40S212 $R_{DS(on)}$ =1.9 mΩ										$\begin{array}{c} BSC010N04LSI \\ R_{DS(on)} = 1.05 \ m\Omega \\ BSC010N04LSC^{\star} \end{array}$	
1-2												$\begin{split} R_{DS(on)} &= 1.05 \text{ m}\Omega \\ ISC012N04LM6 \\ R_{DS(on)} &= 1.2 \text{ m}\Omega \\ BSC014N04LS \\ R_{DS(on)} &= 1.4 \text{ m}\Omega \end{split}$	
											$\begin{array}{c} \text{BSZ018N04LS6} \\ \text{R}_{\text{DS(on)}} = 1.8 \text{ m}\Omega \end{array}$	$\begin{aligned} & \text{BSC014N04LSI} \\ & \text{R}_{\text{DS(on)}} = & 1.45 \text{ m}\Omega \\ & \text{BSC019N04LS} \\ & \text{R}_{\text{DS(on)}} = & 1.9 \text{ m}\Omega \\ & \text{BSC019N04LST} \end{aligned}$	
										IRF6613TRPBF $R_{DS(on)}$ =3.4 m Ω	$\frac{BSZ021N04LS6}{R_{DS(on)} = 2.1m\Omega}$	$R_{DS(on)} = 1.9 \text{ m}\Omega$ $BSC022N04LS$ $R_{DS(on)} = 2.2 \text{ m}\Omega$	
											BSZ024N04LS6 $R_{DS(on)} = 2.4 \text{ m}\Omega$ BSZ025N04LS	BSC022N04LS6 $R_{DS(on)}$ =2.2 mΩ BSC026N04LS	
2-4											$R_{DS(on)}$ =2.5 mΩ BSZ028N04LS $R_{DS(on)}$ =2.8 mΩ	$R_{DS(on)} = 2.6 \text{ m}\Omega$	
	IPD036N04L G										BSZ034N04LS R _{DS(on)} =3.4 mΩ	BSC032N04LS $R_{DS(on)}$ =3.2 mΩ	
	$R_{DS(on)}$ =3.6 mΩ IRLR3114ZTRPBF $R_{DS(on)}$ =4.5 mΩ				ISK057N04LM6 R _{DS(on)} = 5.75 mΩ								
4-10	N _{DS(on)} -7.5 Hill				11 _{DS(on)} = 3.13 11112						BSZ063N04LS6 R _{DS(on)} =6.3 mΩ		
												$\begin{array}{c} \text{BSC059N04LS6} \\ \text{R}_{\text{DS(on)}} = 5.9 \text{ m}\Omega \end{array}$	

Gate-driver ICs

®

Ն|=

<u>P</u>

$\bigcap_{i=1}^{n} \bigcap_{j=1}^{n}$ **3**

OptiMOS™ and StrongIRFET™ 60 V normal level

R _{DS(on), max.} @V _{GS} =10 V	TO-252	TO-263	TO-263	TO-262	PQFN 5x6	TO-220	TO-220	TO-247	SuperSO8 DSC (dual side
[mΩ]	(DPAK)	(D ² PAK)	(D²PAK 7-pin)	(I ² PAK)	Source-Down		FullPAK		cooling)
>1					$ QD009N06NM5CG $ $R_{DS(on)} = 0.9 \text{ m}\Omega$				
			IPB010N06N ²⁾						
			$R_{DS(on)} = 1.0 \text{ m}\Omega$						
			IPF010N06NF2S						
			$R_{DS(on)} = 1.05 \text{ m}\Omega$ IPF012N06NF2S						
			$R_{DS(on)} = 1.2 \text{ m}\Omega$						
		IPB013N06NF2S	DS(OII)						
		$R_{DS(on)} = 1.3 \text{ m}\Omega$							
						IPP014N06NF2S $R_{DS(on)}$ =1.4 mΩ			BSC014N06NSSC R = 1.4 mO
						IPP016N06NF2S			$R_{DS(on)} = 1.4 \text{ m}\Omega$ BSC016N06NSSC
1-2						$R_{DS(on)} = 1.6 \text{ m}\Omega$			$R_{DS(on)} = 1.6 \text{ m}\Omega$
						IPP019N06NF2S			
		IDD01ENOCNESC				$R_{DS(on)} = 1.9 \text{ m}\Omega$			
		IPB015N06NF2S $R_{DS(on)} = 1.5 \text{ m}\Omega$							
		DS(on)	IPF016N06NF2S						
			$R_{DS(on)} = 1.7 \text{ m}\Omega$						
		IPB018N06NF2S							
		$R_{DS(on)} = 1.8 \text{ m}\Omega$				IPP020N06N ²⁾		IRFP7530PBF	
						$R_{DS(on)} = 2.0 \text{ m}\Omega$		$R_{DS(on)} = 2.0 \text{ m}\Omega$	
	IPD025N06N ²⁾								BSC028N06NSSC
	$R_{DS(on)} = 2.5 \text{ m}\Omega$			IDIO20NOCNI?)					$R_{DS(on)} = 2.8 \text{ m}\Omega$
	IPD028N06NF2S $R_{DS(on)} = 2.85 \text{ m}\Omega$			IPI029N06N ²⁾ $R_{DS(on)} = 2.9 \text{ m}Ω$					
	DS(on)	IPB026N06N ²⁾		DS(on)		IPP029N06N ²⁾			
		$R_{DS(on)} = 2.6 \text{ m}\Omega$				$R_{DS(on)} = 2.9 \text{ m}\Omega$			
		IPB029N06NF2S					IPA029N06N ²⁾		
2-4		$R_{DS(on)} = 2.9 \text{ m}\Omega$				IPP030N06NF2S	$R_{DS(on)} = 2.9 \text{ m}\Omega$		
						$R_{DS(on)}$ =3.05 m Ω			
	IPD033N06N ²⁾								
	R _{DS(on)} =3.3 mΩ IPD038N06NF2S	IDECZESZEDI DDE				IPP040N06NF2S		IRFP7537PBF	
	$R_{DS(on)} = 3.85 \text{ m}\Omega$	IRFS7537TRLPBF $R_{DS(on)}$ =3.3 mΩ				$R_{DS(on)}$ =4.00 m Ω		$R_{DS(on)} = 3.3 \text{ m}\Omega$	
	DS(on)	DS(OR)				DS(OR)	IPA040N06N ²⁾	DS(on)	
							$R_{DS(on)} = 4.0 \text{ m}\Omega$		
						IPP040N06N ²⁾ $R_{DS(on)} = 4.0 \text{ m}\Omega$			
		IRFS7540TRLPBF				N _{DS(on)} -4.0 11122			
		$R_{DS(on)} = 5.1 \text{ m}\Omega$							
	IPD053N06N ²⁾								
4-10	R _{DS(on)} =5.3 mΩ	IPB057N06N ²⁾				IDEDZE4EDDE			
		$R_{DS(on)} = 5.7 \text{ m}\Omega$				IRFB7545PBF $R_{DS(on)} = 5.9 \text{ m}\Omega$			
	IRFR7546TRPBF	nzíou)				DS(OR)	IPA060N06N ²⁾		
	$R_{DS(on)} = 7.9 \text{ m}\Omega$						$R_{DS(on)} = 6.0 \text{ m}\Omega$		
	IRF60R217								
	$R_{DS(on)} = 9.9 \text{ m}\Omega$								

Digital isolators

AC.OC Adapter Battery Consumer DC.CC Electric tops Industrial LED drives | Action | Adapter | Battery | Consumer | DC.CC | Electric tops | Industrial | LED drives | Consumer |

OptiMOS[™] and StrongIRFET[™] 60 V normal level

$\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$	PQFN 3.3x3.3	PQFN 3.3x3.3 Source- Down	SO8	SuperSO8	TOLT	TO-Leadless	sTOLL
					IPTC007N06NM5	IPT007N06N 1)	IST011N06NM5
<1					$R_{DS(on)} = 0.7 \text{ m}\Omega$	$R_{DS(on)} = 0.7 \text{ m}\Omega$	$R_{DS(on)} = 1.1 \text{ m}\Omega$
-						IPT009N06NM5 $R_{DS(on)} = 0.9 \text{ m}\Omega$	
				ISC010N06NM5	IPTC012N06NM5		IST015N06NM5
				$R_{DS(on)} = 1.05 \text{ m}\Omega$	$R_{DS(on)} = 1.2 \text{ m}\Omega$		$R_{DS(on)} = 1.5 \text{ m}\Omega$
				BSC012N06NS		IPT012N06N 1)	
				$R_{DS(on)} = 1.2 \text{ m}\Omega$		$R_{DS(on)} = 1.2 \text{ m}\Omega$	
				BSC014N06NST 1)		IPT008N06NM5LF	
1-2				$R_{DS(on)} = 1.45 \text{ m}\Omega$		$R_{DS(on)} = 0.8 \text{ m}\Omega$	
				ISC015N06NM5LF			
				$R_{DS(on)} = 1.55 \text{ m}\Omega$			
				BSC016N06NST 1)			
				$R_{DS(on)} = 1.6 \text{ m}\Omega$			
				BSC019N06NS 1)			
				$R_{DS(on)} = 1.9 \text{ m}\Omega$			
		IQE030N06NM5CG		BSC028N06NS ¹⁾			
		$R_{DS(on)} = 3 \text{ m}\Omega$		$R_{DS(on)} = 2.8 \text{ m}\Omega$			
	BSZ039N06NS	IQE030N06NM5					
	$R_{DS(on)} = 3.9 \text{ m}\Omega$	$R_{DS(on)} = 3 \text{ m}\Omega$		DCC024NOCNC I)			
				BSC034N06NS ¹⁾ R _{DS(op)} =3.4 mΩ			
				BSC039N06NS ¹⁾			
				$R_{DS(on)} = 3.9 \text{ m}\Omega$			
2-4	BSZ042N06NS ¹⁾		IRF7855TRPBF	IRFH7545TRPBF			
	$R_{DS(on)} = 4.2 \text{ m}\Omega$		$R_{DS(on)} = 9.4 \text{ m}\Omega$	$R_{DS(qn)} = 5.2 \text{ m}\Omega$			
	DS(on)		DS(on)	BSC066N06NS 1)			
				$R_{ps(qn)} = 6.6 \text{ m}\Omega$			
	BSZ068N06NS ¹⁾			BSC097N06NS ¹⁾			
	$R_{DS(on)} = 6.8 \text{ m}\Omega$			$R_{DS(on)} = 9.7 \text{ m}\Omega$			
	BSZ100N06NS 1)			nzioui			
	$R_{DS(on)} = 10.0 \text{ m}\Omega$						

N=

Adapter Battery Consumer DC-DC Electric toys Industrial drives Office PC power Power tools Server SMPS Solar

OptiMOS™ and StrongIRFET™ 60 V logic level

$\begin{array}{c} \textbf{R}_{\text{DS(on), max.}} \\ \textbf{@V}_{\text{GS}} = \textbf{10 V} \\ \textbf{[m}\Omega \end{bmatrix}$	TO-252 (DPAK)	PQFN 5x6 Source-Down	PQFN 3.3x3.3 Source-Down	TO-263 (D²PAK 7-pin)	TO-220	PQFN 2x2	PQFN 3.3x3.3	SuperSO8
<1		IQDH88N06LM5CG $R_{DS(on)} = 0.88 \text{ m}\Omega$						$R_{DS(on)} = 0.9 \text{ m}\Omega$
1-2		55(01)						$R_{DS(on)} = 1.1 \text{ m}$ $R_{DS(on)} = 1.1 \text{ m}$ $R_{DS(on)} = 1.5 \text{ m}$
				IRLS3036TRL7PP $R_{DS(on)} = 1.9 \text{ m}\Omega$			ISZ034N06LM5 $R_{DS(on)} = 3.4 \text{ m}\Omega$,
			$R_{DS(0n)} = 2.2 \text{ m}\Omega$		IRLB3036PBF $R_{DS(on)} = 2.4 \text{ m}\Omega$			$\begin{array}{c} \text{BSC027N06LS5} \\ \text{R}_{\text{DS(on)}} = 2.7 \text{ m}\Omega \end{array}$
2-4			$\begin{aligned} & \text{IQE022N06LM5CG} \\ & R_{\text{DS(on)}} = 2.2 \text{ m}\Omega \\ & \text{IQE022N06LM5SC} \\ & R_{\text{DS(on)}} = 2.2 \text{ m}\Omega \end{aligned}$					
			$\frac{IQE022N06LM5CGSC}{R_{DS(on)}} = 2.2 \text{ m}\Omega$					
	IPD048N06L3 G R _{DS(on)} = 4.8 mΩ						BSZ040N06LS5 $R_{DS(on)}$ =4.0 mΩ	BSC065N06LS5 R _{DS(on)} =6.5 mΩ
4-10	IRLR3636TRPBF $R_{DS(on)} = 6.8 \text{ m}\Omega$						$R_{DS(on)} = 6.5 \text{ m}\Omega$	BSC094N06LS5 $R_{DS(on)} = 9.4 \text{ m}\Omega$
	IPD079N06L3 G $R_{DS(on)} = 7.9 \text{ m}\Omega$						BSZ099N06LS5 $R_{DS(on)}$ =9.9 mΩ	
>10	IPD220N06L3 G $R_{DS(on)}$ = 22 mΩ					R _{DS(on)} =17.0 m Ω		

Industrial drives **® 3** ===

==

Industrial drives

==

(F)

(20)

OptiMOS™ and StrongIRFET™ 75 V normal level

$\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D ² PAK)	TO-263 (D ² PAK 7-pin)	TO-220	TO-247
1-2			$ \begin{array}{l} \text{IRFS7730TRL7PP} \\ \text{R}_{\text{DS(on)}} = 2.0 \text{ m}\Omega \end{array} $		
					IRFP4368PBF $R_{DS(on)}$ =1.85 mΩ
		$ \begin{array}{c} \text{IRFS7730TRLPBF} \\ \text{R}_{\text{DS(on)}} = 2.6 \text{ m}\Omega \end{array} $			IRFP3077PBF $R_{DS(on)}$ =3.3 mΩ
2-4				IRFB7730PBF $R_{DS(on)}$ =2.6 mΩ	
2-4		$ \begin{array}{c} \text{IRFS7734TRLPBF} \\ \text{R}_{\text{DS(on)}} = 3.5 \text{ m}\Omega \end{array} $			
				IRFB7734PBF $R_{DS(on)}$ =3.5 mΩ	
		IRFS3307ZTRLPBF		IRFB3307ZPBF	
	IRFR3607PBF	$R_{DS(on)} = 5.8 \text{ m}\Omega$ IRFS3607TRLPBF		$R_{DS(on)} = 5.8 \text{ m}\Omega$	
		$R_{DS(on)} = 9.0 \text{ m}\Omega$			

OptiMOS™ and StrongIRFET™ 80 V normal level/logic level

$R_{DS(on), max.}$ @ V_{GS} =10 V [$m\Omega$]	TO-252 (DPAK)	TO-263 (D ² PAK)	TO-263 (D ² PAK 7-pin)	TO-220	TO-220 FullPAK	SuperSO8 DSC (dual-side co- oling)	PQFN 5x6 Source-Down	PQFN 3.3x3.3 Source-Down	PQFN 2x2	PQFN 3.3x3.3	SuperSO8	TO-Leadless
							IQD016N08NM5CG $R_{DS(on)} = 1.6 \text{ m}\Omega$					
1-2		IPB016N08NF2S R _{DS(on)} = 1.65 mΩ	IPB015N08N5 R _{DS(on)} =1.5 mΩ	IPP016N08NF2S R _{ns(on)} =1.6 mΩ			53(51)					
		DS(01)	IPF014N08NF2S $R_{DS(on)} = 1.4 \text{ m}\Omega$	IPP019N08NF2S R _{DS(op)} =1.9 mΩ								IPT010N08NM5 R _{DS(pp)} =1.0 mΩ
		IPB019N08NF2S $R_{DS(on)} = 1.95 \text{ m}\Omega$	$\frac{\text{IPF017N08NF2S}}{\text{R}_{\text{DS(on)}} = 1.7 \text{ m}\Omega}$	Dajonj								IPT012N08N5 R _{DS(on)} =1.2 mΩ
		IPB020N08N5	IPB019N08N5	IPP024N08NF2S		BSC023N08NS5SC						IPT012N08NF2S $R_{DS(on)} = 1.23 \text{ m}\Omega$ IPT013N08NM5LF
		$R_{DS(on)} = 2.0 \text{ m}\Omega$	R _{DS(on)} =1.95 mΩ	R _{DS(on)} =2.4 mΩ		$R_{DS(on)} = 2.3 \text{ m}\Omega$						$R_{DS(on)} = 1.3 \text{ m}\Omega$
			IPF023N08NF2S $R_{DS(on)} = 2.3 \text{ m}\Omega$	IPP023N08N5 R _{DS(on)} =2.3 mΩ		BSC033N08NS5SC $R_{DS(on)} = 3.3 \text{ m}\Omega$					BSC025N08LS5 $R_{DS(on)} = 2.5 \text{ m}\Omega$	IPT014N08NM5 R _{DS(on)} =1.4 mΩ
2-4											ISC025N08NM5LF* $R_{DS(on)} = 2.55 \text{ m}\Omega$	
		IPB024N08NF2S $R_{DS(on)} = 2.4 \text{ m}\Omega$	IPF039N08NF2S $R_{DS(on)} = 3.9 \text{ m}Ω$								BSC026N08NS5 $R_{DS(on)} = 2.6 \text{ m}\Omega$	IPT019N08N5 R _{DS(on)} =1.9 mΩ
					IPA030N10NF2S $R_{DS(on)} = 3 \text{ m}\Omega$						BSC030N08NS5 $R_{DS(on)}$ =3.0 mΩ	
		IPB031N08N5 $R_{DS(on)} = 3.1 \text{ m}\Omega$		IPP034N08N5 R _{DS(on)} =3.4 mΩ								
		IPB040N08NF2S $R_{DS(on)} = 4 \text{ m}\Omega$		IPP040N08NF2S R _{DS(on)} =4.0 mΩ				IQE046N08LM5 $R_{DS(on)} = 4.6 \text{ m}\Omega$			BSC037N08NS5 $R_{DS(on)}$ =3.7 mΩ	
	IPD046N08N5 R _{DS(on)} =4.6 mΩ	IPB049N08N5 R _{DS(on)} =4.9 mΩ			IPA040N08NM5S R _{DS(on)} =4.0 mΩ			IQE046N08LM5CG $R_{DS(on)} = 4.6 \text{ m}\Omega$			BSC040N08NS5 $R_{DS(on)}$ =4.0 mΩ	
	IPD040N08NF2S $R_{DS(on)} = 4 \text{ m}\Omega$	IPB055N08NF2S $R_{DS(on)} = 5.5 \text{ m}\Omega$			IPA052N08NM5S R _{DS(on)} =5.2 mΩ			IQE046N08LM5SC $R_{DS(on)} = 4.6 \text{ m}\Omega$			BSC052N08NS5 $R_{DS(on)}$ =5.2 mΩ	
4-10	IPD055N08NF2S $R_{DS(on)} = 5.5 \text{ m}\Omega$			IPP055N08NF2S R _{DS(on)} =5.5 mΩ	IPA082N10NF2S $R_{DS(on)} = 8.2 \text{ m}\Omega$			IQE046N08LM5CGSC $R_{DS(on)} = 4.6 \text{ m}\Omega$		BSZ070N08LS5 R _{DS(on)} =7.0 mΩ		
										BSZ075N08NS5 $R_{DS(on)}$ =7.5 mΩ	$R_{DS(on)} = 6.1 \text{ m}\Omega$	
											BSC072N08NS5 $R_{DS(on)}$ =7.2 mΩ	
										BSZ084N08NS5 R _{DS(on)} =8.4 mΩ		
. 10											BSC117N08NS5 R _{DS(on)} =11.7 mΩ	
>10									IRL80HS120 R _{DS(on)} =32.0 mΩ	BSZ110N08NS5 R _{DS(on)} =11.0 mΩ		

OptiMOS™ and StrongIRFET™ 80 V normal level/logic level

$\begin{array}{c} \textbf{R}_{\text{DS(on), max.}} \\ \textbf{@V}_{\text{GS}} = 10 \ \textbf{V} \\ \textbf{[m}\Omega \end{bmatrix}$	TOLT (TO-Leaded top-side cooling)	sTOLL	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)
1-2	$\begin{aligned} & \text{IPTC011N08NM5} \\ & R_{\text{DS(on)}} = 1.2 \text{ m}\Omega \\ & \text{IPTC014N08NM5} \\ & R_{\text{DS(on)}} = 1.4 \text{ m}\Omega \end{aligned}$	$ ST019N08NM5 $ $R_{DS(on)} = 1.9 \text{ m}\Omega$		
5			$\begin{split} & \text{IQE050N08NM5} \\ & \text{R}_{\text{DS(on)}} = 5 \text{ m}\Omega \\ & \text{IQE050N08NM5CG} \\ & \text{R}_{\text{DS(on)}} = 5 \text{ m}\Omega \end{split}$	$\begin{aligned} & \text{IQE050N08NM5SC} \\ & \text{R}_{\text{DS(on)}} = 5 \text{ m}\Omega \\ & \text{IQE050N08NM5CGSC} \\ & \text{R}_{\text{DS(on)}} = 5 \text{ m}\Omega \end{aligned}$

OptiMOS™ and StrongIRFET™ 100 V normal level

$\begin{array}{c} \textbf{R}_{\text{DS(on), max.}} \\ \textbf{@V}_{\text{GS}} = \textbf{10 V} \\ \textbf{[m}\Omega \end{bmatrix}$	TO-252 (DPAK)	TO-263 (D ² PAK)	TO-263 (D²PAK 7-pin)	TO-220	TO-220 FullPAK	TO-247
			IPF015N10N5	IPP018N10N5		IRF100P218
			$R_{DS(on)} = 1.53 \text{ m}\Omega$	$R_{DS(on)} = 1.8 \text{ m}\Omega$		$R_{DS(on)}=1.1 \text{ m}\Omega$
			IPF016N10NF2S			IRF100P219
1-2			$R_{DS(on)} = 1.6 \text{ m}\Omega$			$R_{DS(on)}=2.1 \text{ m}\Omega$
			IPB017N10N5			
			$R_{DS(on)} = 1.7 \text{ m}\Omega$			
			IPB017N10N5LF			
			R _{DS(on)} =1.7 mΩ			
		IPB018N10N5				
		$R_{DS(on)} = 1.8 \text{ m}\Omega$				
		IPB020N10N5		IPP023N10N5	IPA030N10NF2S	IRFP4468PBF
		$R_{DS(on)} = 2.0 \text{ m}\Omega$		$R_{DS(on)} = 2.3 \text{ m}\Omega$	$R_{DS(on)} = 3.0 \text{ m}\Omega$	$R_{DS(on)} = 2.6 \text{ m}\Omega$
2-4		IPB020N10N5LF	IPB024N10N5	IPP026N10NF2S		
		$R_{DS(on)} = 2.0 \text{ m}\Omega$	$R_{DS(on)} = 2.4 \text{ m}\Omega$	$R_{DS(on)} = 2.6 \text{ m}\Omega$		
		IPB026N10NF2S	IPB032N10N5	IPP030N10N5		
		$R_{DS(on)} = 2.65 \text{ m}\Omega$	$R_{DS(on)} = 3.2 \text{ m}\Omega$	$R_{DS(on)}$ =3.0 m Ω		
		IPB027N10N5	IRFS4010TRL7PP	IPP039N10N5		
		$R_{DS(on)} = 2.7 \text{ m}\Omega$	$R_{DS(on)} = 4.0 \text{ m}\Omega$	$R_{DS(on)} = 3.9 \text{ m}\Omega$		
	IPD050N10N5	IPB033N10N5LF	IPF042N10NF2S	IRF100B201		IRFP4110PBF
	$R_{DS(on)} = 5.0 \text{ m}\Omega$	$R_{DS(on)} = 3.3 \text{ m}\Omega$	Rds(on) = $4.25 \text{ m}\Omega$	$R_{DS(on)} = 4.2 \text{ m}\Omega$		$R_{DS(on)} = 4.5 \text{ m}\Omega$
	IPD052N10NF2S	IPB043N10NF2S	IPF050N10NF2S	IRFB4110PBF	IPA050N10NM5S	IRFP4310ZPBF
	$R_{DS(on)} = 5.2 \text{ m}\Omega$	$R_{DS(on)} = 4.35 \text{ m}\Omega$	Rds(on) = $5.05 \text{ m}\Omega$	$R_{DS(on)} = 4.5 \text{ m}\Omega$	$R_{DS(on)} = 5.0 \text{ m}\Omega$	$R_{DS(on)} = 6.0 \text{ m}\Omega$
		IRFS4010TRLPBF		IPP050N10NF2S		
		$R_{DS(on)} = 4.7 \text{ m}\Omega$		$R_{DS(on)} = 5.0 \text{ m}\Omega$		
		IPB050N10NF2S		IRFB4310ZPBF	IPA082N10NF2S	
		$R_{DS(on)} = 5.05 \text{ m}\Omega$		$R_{DS(on)} = 6.0 \text{ m}\Omega$	$R_{DS(on)} = 8.2 \text{ m}\Omega$	
4-10		IRFS4310ZTRLPBF		IPP082N10NF2S	IPA083N10N5	
		$R_{DS(on)} = 7.0 \text{ m}\Omega$		$R_{DS(on)}=8.2 \text{ m}\Omega$	$R_{DS(on)} = 8.3 \text{ m}\Omega$	
				IPP083N10N5	IPA083N10NM5S	
				$R_{DS(on)} = 8.3 \text{ m}\Omega$	$R_{DS(on)} = 8.3 \text{ m}\Omega$	
				$R_{DS(on)} = 8.6 \text{ m}\Omega$		
		IRFS4410ZTRLPBF		N _{DS(on)} =0.01112		
		$R_{DS(on)} = 9.0 \text{ m}\Omega$				
		11 _{DS(on)} -3.0 11122		IRFB4410ZPBF		
				$R_{DS(on)} = 9.0 \text{ m}\Omega$		
	IPD130N10NF2S			IPP129N10NF2S		
	$R_{DS(on)} = 13 \text{ m}\Omega$			$R_{DS(on)} = 12.9 \text{ m}\Omega$		
10-25	``DS(on) 13 11112			**DS(on) 12.3 11112		
	IRFR4510TRPBF	IRFS4510TRLPBF		IRFB4510PBF	IPA126N10NM3S	
	$R_{DS(on)} = 13.9 \text{ m}\Omega$	$R_{DS(on)} = 13.9 \text{ m}\Omega$		$R_{DS(on)} = 13.5 \text{ m}\Omega$	$R_{DS(on)} = 12.6 \text{ m}\Omega$	
>25	IPD78CN10N G					
- 25	$R_{DS(on)} = 78.0 \text{ m}\Omega$					

^{on), max.} _s =10 V nΩ]	DirectFET™	PQFN 3.3x3.3	PQFN 3.3x3.3 Sour- ce-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	PQFN 5x6 Source-Down	SuperSO8	SuperSO8 DSC (dual-side cooling)	S08	TO-Leadless	TOLT (TO-Leaded top-side cooling)	sTOLL
		ISZ080N10NM6 $R_{DS(on)} = 8.0 \text{ m}\Omega$							$IPT014N10N5$ $R_{DS(on)} = 1.4 \text{ m}\Omega$	IPTC015N10NM5 $R_{DS(on)} = 1.5 \text{ m}\Omega$	
2						$\begin{array}{c} ISC022N10NM6 \\ R_{DS(on)} = 2.2 \text{ m}\Omega \end{array}$			IPT015N10N5 $R_{DS(on)}$ =1.5 mΩ		
-						$\begin{array}{c} ISC027N10NM6 \\ R_{DS(on)} = 2.7 \text{ m}\Omega \end{array}$			$R_{DS(on)} = 1.5 \text{ m}\Omega$		
						ISC030N10NM6 R _{DS(on)} = 3.0 mΩ			IPT017N10NF2S $R_{DS(on)} = 1.75 \text{ m}\Omega$	$R_{DS(on)} = 1.9 \text{ m}\Omega$	
					IQD020N10NM5CGSC $R_{DS(on)} = 2 \text{ m}\Omega$	BSC027N10NS5 $R_{DS(on)} = 2.7 \text{ m}\Omega$	BSC030N10NS5SC $R_{DS(on)} = 3 \text{ m}\Omega$		IPT020N10N5 $R_{DS(on)} = 2.0 \text{ m}\Omega$		
						ISC035N10NM5LF ¹⁾ $R_{DS(on)} = 3.55 \text{ m}\Omega$			$R_{DS(on)} = 2.25 \text{ m}\Omega$		
4	IRF7769L1TRPBF $R_{DS(on)} = 3.5 \text{ m}\Omega$					BSC035N10NS5 $R_{DS(on)} = 3.5 \text{ m}\Omega$	BSC040N10NS5SC $R_{DS(on)} = 4.0 \text{ m}\Omega$		IPT026N10N5 $R_{DS(on)} = 2.6 \text{ m}\Omega$		$R_{DS(on)} = 2.6 \text{ m}\Omega$
						$\begin{array}{c} ISC035N10NM5LF \\ R_{DS(on)} = 3.55 \text{ m}\Omega \end{array}$					
						BSC040N10NS5 R _{DS(on)} =4.0 mΩ					
			IQE065N10NM5 $R_{DS(on)} = 6.5 \text{ m}\Omega$	$\frac{\text{IQE065N10NM5SC}}{\text{R}_{\text{DS(on)}} = 6.5 \text{ m}\Omega}$		BSC050N10N5 $R_{DS(on)} = 5.0 \text{ m}\Omega$					
			IQE065N10NM5CG $R_{DS(on)} = 6.5 \text{ m}\Omega$	$\frac{\text{IQE065N10NM5CGSC}}{\text{R}_{\text{DS(on)}} = 6.5 \text{ m}\Omega}$		ISC060N10NM6 $R_{DS(on)} = 6.0 \text{ m}\Omega$					
10						BSC070N10NS5 $R_{DS(on)} = 7.0 \text{ m}\Omega$	BSC070N10NS5SC $R_{DS(on)}$ =7.0 mΩ				
		BSZ097N10NS5 $R_{DS(on)} = 9.7 \text{ m}\Omega$				$\begin{array}{c} ISC080N10NM6 \\ R_{DS(on)} = 8.0 \text{ m}\Omega \end{array}$					
	IDECC44TDDDE	ISZ113N10NM5LF R _{DS(on)} =11.3 mΩ				BSC098N10NS5 $R_{DS(on)}$ =9.8 mΩ					
	IRF6644TRPBF $R_{DS(on)} = 13.0 \text{ m}\Omega$	$\begin{array}{c} \text{ISZ230N10NM6} \\ \text{R}_{\text{DS(on)}} = 23 \text{ m}\Omega \end{array}$				IDELIEGA CEDDE -					
-25						IRFH5210TRPBF $R_{DS(on)} = 14.9 \text{ m}\Omega$					
-						ISC230N10NM6 $R_{DS(on)} = 23 \text{ m}\Omega$		IRF7853TRPBF $R_{DS(on)} = 18.0 \text{ m}\Omega$			

OptiMOS™ and StrongIRFET™ 100 V logic level

)	==		₽Źſ
r	DC-DC	LED	Motor control

$\begin{array}{c} \textbf{R}_{\text{DS(on), max.}} \\ \textbf{@V}_{\text{GS}} = \textbf{10 V} \\ \textbf{[m}\boldsymbol{\Omega} \end{bmatrix}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-220	PQFN 2x2	PQFN 3.3x3.3	SuperSO8
2-4						BSC034N10LS5
4-10		IRLS4030TRLPBF $R_{DS(on)}=4.3 \text{ m}\Omega$	IRLB4030PBF $R_{DS(on)}$ =4.3 m Ω		BSZ096N10LS5 R _{DS(on)} =9.6 mΩ	$\begin{aligned} R_{DS(on)} = & 3.4 \text{ m}\Omega \\ BSC070N10LS5 \\ R_{DS(on)} = & 7.0 \text{ m}\Omega \\ IRLH5030TRPBF \\ R_{DS(on)} = & 9.0 \text{ m}\Omega \\ BSC096N10LS5 \\ R_{DS(on)} = & 9.6 \text{ m}\Omega \end{aligned}$
10-25	IRLR3110ZTRPBF $R_{DS(on)}$ =14.0 m Ω				$\begin{array}{c} BSZ146N10LS5 \\ R_{DS(on)} = 14.6 \ m\Omega \end{array}$	$\begin{aligned} & \text{BSC146N10LS5} \\ & \text{R}_{\text{DS(on)}} = 14.6 \text{ m}\Omega \end{aligned}$
>25				IRL100HS121 $R_{DS(qn)}$ =42.0 m Ω		

OptiMOS™ and StrongIRFET™ 120 V normal level/logic level

$\begin{array}{c} R_{DS(on),max.} \\ @V_{GS} = 10 \ V \\ [m\Omega] \end{array}$	TO-263 (D²PAK 7-pin)	PQFN 3.3x3.3	SuperSO8	TO-220	TO-263 (D²PAK)	TOLG (TO-Leaded Gullwing)	TO-Leadless (TOLL)	TO-Leaded Top-side Cooling (TOLT)
1-2	IPF019N12NM6 $R_{DS(on)} = 1.9 \text{ m}\Omega$					IPTG017N12NM6 ¹⁾ $R_{DS(on)} = 1.7 \text{ m}\Omega$		IPTC017N12NM6 $R_{DS(on)} = 1.7 \text{ m}\Omega$
			ISC030N12NM6 $R_{DS(on)} = 3.04 \text{ m}\Omega$ ISC032N12LM6 ¹⁾	IPP022N12NM6 ¹⁾ $R_{DS(on)} = 2.2 \text{ m}\Omega$	IPB022N12NM6 ¹⁾ $R_{DS(on)} = 2.2 \text{ m}\Omega$ IPB035N12NM6 ¹⁾		$R_{DS(on)} = 1.7 \text{ m}\Omega$	IPTC028N12NM6 ³ $R_{DS(on)} = 2.8 \text{ m}\Omega$
2-4			$R_{DS(on)} = 3.2 \text{ m}\Omega$ $ISC037N12NM6$		$R_{DS(on)} = 3.5 \text{ m}\Omega$		IPT030N12N3 G	
4-10			$\begin{split} R_{DS(on)} &= 3.7 \text{ m}\Omega \\ ISC037N12NM6^{1)} \\ R_{DS(on)} &= 3.7 \text{ m}\Omega \\ ISC073N12LM6 \\ R_{DS(on)} &= 7.3 \text{ m}\Omega \\ ISC078N12NM6^{1)} \\ R_{DS(on)} &= 7.8 \text{ m}\Omega \\ R_{DS(on)} &= 8 \text{ m}\Omega \end{split}$				R _{DS(on)} =3.0 mΩ	
10-25		$\begin{split} & \text{ISZ106N12LM6} \\ & R_{\text{DS(on)}} = 10.6 \text{ m}\Omega \\ & \text{ISZ330N12LM6} \\ & R_{\text{DS(on)}} = 33 \text{ m}\Omega \end{split}$	$\begin{split} & \text{ISC104N12LM6} \\ & R_{\text{DS(on)}} = 10.4 \text{ m}\Omega \\ & \text{ISC110N12NM6}^{1)} \\ & R_{\text{DS(on)}} = 11 \text{ m}\Omega \\ & \text{BSC120N12LS} \end{split}$		IPB133N12NM6 ¹⁾ $R_{DS(on)} = 13.3 \text{ m}Ω$			
			$R_{DS(on)} = 12 \text{ m}\Omega$ $ISC320N12LM6^{1}$ $R_{DS(on)} = 32 \text{ m}\Omega$					

DC-DC

(F)

OptiMOS™ and StrongIRFET™ 135-150 V normal level

$egin{aligned} R_{ extsf{DS(on), max.}} \ @V_{ extsf{GS}} = & 10 \ V \ [m\Omega] \end{aligned}$	DirectFET™	PQFN 3.3x3.3	PQFN 5x6 Source-Down	SuperSO8 dual-side cooling (DSC)	SuperSO8	TO-Leadless
			IQD063N15NM5CGSC	BSC093N15NS5SC	ISC037N13NM6 ¹⁾	IPT020N13NM6 ¹⁾
			$R_{DS(on)} = 6.3 \text{ m}\Omega$	$R_{DS(on)} = 9.3 \text{ m}\Omega$	$R_{DS(on)} = 3.7 \text{ m}\Omega$	$R_{DS(on)} = 2.0 \text{ m}\Omega$
					ISC046N13NM61)	IPT039N15N5
					$R_{DS(on)} = 4.6 \text{ m}\Omega$	$R_{DS(on)} = 3.9 \text{ m}\Omega$
4-10					BSC074N15NS5 ²⁾	IPT044N15N5
. 10					$R_{DS(on)} = 7.4 \text{ m}\Omega$	$R_{DS(on)} = 4.4 \text{ m}\Omega$
					BSC093N15NS5	IPT054N15N5
					$R_{DS(on)} = 9.3 \text{ m}\Omega$	$R_{DS(on)} = 5.4 \text{ m}\Omega$
						IPT063N15N5
						$R_{DS(on)} = 6.3 \text{ m}\Omega$
	IRF7779L2TRPBF ²⁾	ISZ143N13NM61)		BSC110N15NS5SC	BSC110N15NS5	
10-25	$R_{DS(on)} = 11.0 \text{ m}\Omega$	$R_{DS(on)} = 14.3 \text{ m}\Omega$		R _{DS(on)} = 11.0	$R_{DS(on)} = 11.0 \text{ m}\Omega$	
10-25				BSC160N15NS5SC	BSC160N15NS5	
				$R_{DS(on)} = 16.0 \text{ m}\Omega$	$R_{DS(on)} = 16.0 \text{ m}\Omega$	
		BSZ300N15NS5			IRFH5015TRPBF	
		$R_{DS(on)} = 30.0 \text{ m}\Omega$			$R_{DS(on)} = 31.0 \text{ m}\Omega$	
- 25	IRF6643TRPBF					
>25	$R_{DS(on)} = 34.5 \text{ m}\Omega$					
	IRF6775MTRPBF					
	$R_{DS(on)} = 56.0 \text{ m}\Omega$					

UPS UPS

OptiMOS™ and StrongIRFET™ 135-150 V normal level

$\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D ² PAK 7-pin)	TO-262 (I²PAK)	TO-Leaded top-side cooling (TOLT)	TO-Leaded Gullwing (TOLG)	TO-220	TO-247
		IPB048N15N5	IPF021N13NM61)	IPI051N15N5	IPTC020N13NM6 ¹⁾	IPTG020N13NM6 ¹⁾	IPP051N15N5 ²⁾	IRF150P220
		$R_{DS(on)}$ =4.8 m Ω	$R_{DS(on)} = 2.1 \text{ m}\Omega$	$R_{DS(on)} = 5.1 \text{ m}\Omega$	$R_{DS(on)} = 2.0 \text{ m}\Omega$	$R_{DS(on)} = 2 \text{ m}\Omega$	$R_{DS(on)} = 5.1 \text{ m}\Omega$	$R_{DS(on)} = 2.5 \text{ m}\Omega$
		IPB048N15N5LF	IPF031N13NM6 ¹⁾		IPTC039N15NM5	IPTG029N13NM6 ¹⁾	IPP073N13NM61)	IRF150P221
		$R_{DS(on)} = 4.8 \text{ m}\Omega$	$R_{DS(on)} = 3.1 \text{ m}\Omega$		$R_{DS(on)} = 3.9 \text{ m}\Omega$	$R_{DS(on)} = 2.9 \text{ m}\Omega$	$R_{DS(on)} = 7.3 \text{ m}\Omega$	$R_{DS(on)}$ =4.8 m Ω
			IPB044N15N5		IPTC044N15NM5	IPTG039N15NM5		IRFP4568PBF
			$R_{DS(on)}$ =4.4 m Ω		$R_{DS(on)} = 4.4 \text{ m}\Omega$	$R_{DS(on)} = 3.9 \text{ m}\Omega$		$R_{DS(on)} = 5.9 \text{ m}\Omega$
4-10		IPB073N15N5	IPB060N15N5	IPI076N15N5	IPTC054N15NM5	IPTG044N15NM5	IPP076N15N5	
0		$R_{DS(on)} = 7.3 \text{ m}\Omega$	$R_{DS(on)} = 6.0 \text{ m}\Omega$	$R_{DS(on)} = 7.6 \text{ m}\Omega$	$R_{DS(on)} = 5.4 \text{ m}\Omega$	$R_{DS(on)} = 4.4 \text{ m}\Omega$	$R_{DS(on)} = 7.6 \text{ m}\Omega$	
		IPB083N15N5LF			IPTC063N15NM5	IPTG054N15NM5		
		$R_{DS(on)}$ =8.3 m Ω			$R_{DS(on)} = 6.3 \text{ m}\Omega$	$R_{DS(on)} = 5.4 \text{ m}\Omega$		
						IPTG063N15NM5	IRF135B203 ²⁾	
						$R_{DS(on)} = 6.3 \text{ m}\Omega$	$R_{DS(on)} = 8.4 \text{ m}\Omega$	
							IRFB4115PBF	
							$R_{DS(on)} = 11.0 \text{ m}\Omega$	
		IRFS4321					IRFB4321PBF	IRFP4321PBF
10-25		$R_{DS(on)} = 15.0 \text{ m}\Omega$					$R_{DS(on)} = 15.0 \text{ m}\Omega$	$R_{DS(on)} = 15.5 \text{ m}\Omega$
		IRFS4115TRLPBF					IRFB4228PBF	
		$R_{DS(on)} = 12.1 \text{ m}\Omega$					$R_{DS(on)} = 15.0 \text{ m}\Omega$	
		IRFS4615PBF						
		$R_{DS(on)} = 42.0 \text{ m}\Omega$						
	IRFR4615						IRFB5615PBF	
>25	$R_{DS(on)} = 42.0 \text{ m}\Omega$						$R_{DS(on)} = 39.0 \text{ m}\Omega$	
							IRFB4019PBF	
							$R_{DS(on)} = 95.0 \text{ m}\Omega$	

OptiMOS™ and StrongIRFET™ 200 V normal level

$\begin{array}{c} R_{DS(on), max.} \\ @V_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D ² PAK 7-pin)	TO-220	TO-220 FullPAK	TO-247
		IPB068N20NM6 ¹⁾	IPF067N20NM6 ¹⁾	IPP069N20NM6 ¹⁾		IRF200P222
4-10		$R_{DS(on)} = 6.8 \text{ m}\Omega$	$R_{DS(on)} = 6.7 \text{ m}\Omega$	$R_{DS(on)} = 6.9 \text{ m}\Omega$		$R_{DS(on)} = 6.6 \text{ m}\Omega$
						IRFP4668PBF $R_{DS(on)} = 9.7 \text{ m}\Omega$
		IPB107N20N3 G		IPP110N20N3 G		IRF200P223
10-25		$R_{DS(on)} = 10.7 \text{ m}\Omega$		$R_{DS(on)} = 11.0 \text{ m}\Omega$		$R_{DS(on)} = 11.5 \text{ m}\Omega$
		IPB110N20N3LF		Salani		55(511)
		$R_{DS(on)} = 11.0 \text{ m}\Omega$				
		IPB117N20NFD		IPP120N20NFD		IRFP4127PBF
		$R_{DS(on)} = 11.7 \text{ m}\Omega$		$R_{DS(on)} = 12.0 \text{ m}\Omega$		$R_{DS(on)} = 21.0 \text{ m}\Omega$
				IRFB4127PBF		IRFP4227PBF
				$R_{DS(on)} = 20.0 \text{ m}\Omega$		$R_{DS(on)} = 25.0 \text{ m}\Omega$
		IRFS4127TRLPBF				
		$R_{DS(on)} = 22.0 \text{ m}\Omega$				
		IRFS4227TRLPBF		IRFB4227PBF	IPA320N20NM3S	
		$R_{DS(on)} = 26.0 \text{ m}\Omega$		$R_{DS(on)} = 26.0 \text{ m}\Omega$	$R_{DS(on)} = 32.0 \text{ m}\Omega$	
	IPD320N20N3 G	IPB320N20N3 G		IPP319N20NM6 ¹⁾		
	$R_{DS(on)} = 32.0 \text{ m}\Omega$	$R_{DS(on)} = 32.0 \text{ m}\Omega$		$R_{DS(on)} = 31.9 \text{ m}\Omega$		
>25				IPP320N20N3 G		
~25				$R_{DS(on)} = 32.0 \text{ m}\Omega$		
	IRFR4620TRLPBF	IRFS4620TRLPBF		IRFB5620PBF		
	$R_{DS(on)} = 78.0 \text{ m}\Omega$	$R_{DS(on)} = 78.0 \text{ m}\Omega$		$R_{DS(on)} = 72.5 \text{ m}\Omega$		
				IRFB4020PBF		
				$R_{DS(on)} = 100.0 \text{ m}\Omega$		

OptiMOS™ and StrongIRFET™ 200 V normal level

$R_{DS(on), max.} \ @V_{GS} = 10 V \ [m\Omega]$	DirectFET™	PQFN 3.3x3.3	SuperSO8	SO8	TO-Leadless	TOLG (TO-Leaded Gullwing)
			ISC119N20NM6 1)		IPT067N20NM61)	
			$R_{DS(on)} = 11.9 \text{ m}\Omega$		$R_{DS(on)} = 6.7 \text{ m}\Omega$	
10-25			ISC151N20NM6 1)		IPT111N20NFD	IPTG111N20NM3FD
10-25			$R_{DS(on)} = 15.1 \text{ m}\Omega$		$R_{DS(on)}=11.1 \text{ m}\Omega$	$R_{DS(on)} = 11.1 \text{ m}\Omega$
			BSC220N20NSFD		IPT129N20NM6 ¹⁾	
			$R_{DS(on)}$ =22.0 m Ω		$R_{DS(on)} = 12.9 \text{ m}\Omega$	
			BSC320N20NS3 G			
			$R_{DS(on)} = 32.0 \text{ m}\Omega$			
			BSC350N20NSFD			
			$R_{DS(on)} = 35.0 \text{ m}\Omega$			
			BSC500N20NS3G			
			$R_{DS(on)} = 50.0 \text{ m}\Omega$			
. 25		ISZ520N20NM6 ¹⁾	IRFH5020			
>25		$R_{DS(on)} = 52 \text{ m}\Omega$	$R_{DS(on)} = 55.0 \text{ m}\Omega$			
		BSZ900N20NS3 G	BSC900N20NS3 G	IRF7820TRPBF		
		$R_{DS(on)} = 90.0 \text{ m}\Omega$	$R_{DS(on)} = 90.0 \text{ m}\Omega$	$R_{DS(on)} = 78.0 \text{ m}\Omega$		
	IRF6785TRPBF		BSC12DN20NS3 G			
	$R_{DS(on)} = 100.0 \text{ m}\Omega$		$R_{DS(on)} = 125.0 \text{ m}\Omega$			
		BSZ22DN20NS3 G	BSC22DN20NS3 G			
		$R_{DS(on)}$ =225.0 m Ω	$R_{DS(on)}$ =225.0 m Ω			

Adapter 6

<u>P</u>

W =

(F)

OptiMOS™ and StrongIRFET™ 250 V normal level

$egin{array}{l} {\sf R}_{{\sf DS(on),max.}} \ @{\sf V}_{{\sf GS}} = & 10~{\sf V} \ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TOLG (TO-Leaded Gullwing)	TO-220	TO-220 FullPAK	TO-247	PQFN 3.3x3.3	SuperSO8	TO-Leadless
		IPB200N25N3 G	IPTG210N25NM3FD			IRF250P224			
10.25		$R_{DS(on)} = 20.0 \text{ m}\Omega$	$R_{DS(on)} = 21 \text{ m}\Omega$	IPP220N25NFD		$R_{DS(on)}$ =12.0 mΩ IRFP4768PBF			IPT210N25NFD
10-25				$R_{DS(on)} = 22.0 \text{ m}\Omega$		$R_{DS(on)} = 17.5 \text{ m}\Omega$			$R_{DS(on)}$ =21.0 m Ω
						IRF250P225			
						$R_{DS(on)}$ =22.0 m Ω			
								BSC430N25NSFD	
								$R_{DS(on)}$ =43.0 m Ω	
		IRFS4229TRLPBF		IRFB4332PBF		IRFP4332PBF		BSC600N25NS3 G	
		$R_{DS(on)} = 48.0 \text{ m}\Omega$		$R_{DS(on)} = 33.0 \text{ m}\Omega$		$R_{DS(on)} = 33.0 \text{ m}\Omega$		$R_{DS(on)} = 60.0 \text{ m}\Omega$	
	IPD600N25N3 G	IPB600N25N3 G		IRFB4229PBF				BSC670N25NSFD	
>25	$R_{DS(on)} = 60.0 \text{ m}\Omega$	$R_{DS(on)} = 60.0 \text{ m}\Omega$		$R_{DS(on)} = 46.0 \text{ m}\Omega$				$R_{DS(on)}$ =67.0 m Ω	
				IPP600N25N3 G	IPA600N25NM3S	IRFP4229PBF	BSZ16DN25NS3		
				$R_{DS(on)} = 60.0 \text{ m}\Omega$	$R_{DS(on)} = 60.0 \text{ m}\Omega$	$R_{DS(on)} = 46.0 \text{ m}\Omega$	G		
							$R_{DS(on)} = 165.0 \text{ m}\Omega$		
								BSC16DN25NS3 G	
							$R_{DS(on)} = 425.0 m\Omega$	$R_{DS(on)} = 165.0 \text{ m}\Omega$	

OptiMOS™ and StrongIRFET™ 300 V normal level

=1	₽₽L	
DC-AC	Motor control	Tele

$\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-263 (D²PAK)	TO-220	ТО-247	SuperSO8
0-25			IRF300P226 $R_{DS(on)}$ =19.0 mΩ	
	IPB407N30N $R_{DS(on)}$ =40.7 mΩ	IPP410N30N $R_{DS(on)}$ =41.0 mΩ		
>25			IRF300P227 $R_{DS(on)} = 40 \text{ m}\Omega$	
				$\begin{array}{c} BSC13DN30NSFD \\ R_{DS(on)} = 130.0 \ m\Omega \end{array}$

PQFN 3.3x3.3

Power MOSFETs complementary

ltage

>50 mΩ

27-64 mΩ

SO8

		Vo
Complementary	-20/20	
ē		

-30/30

IRF9389			
N: 27 mΩ, 6.8 A			
P: 64 mΩ, -4.6 A			

www.infineon.com/powermosfet-12V-300V www.infineon.com/complementary

BSZ15DC02KD H*/**

N: 55 m Ω , 5.1 A P: 150 m Ω , -3.2 A

BSZ215C H*/**

N: 55 m Ω , 5.1 A P: 150 m Ω , -3.2 A

^{*}Products are qualified to Automotive AEC Q101

^{**}R_{DS(on)} specified at 4.5 V

Power P-channel MOSFETs

oltage [V]	TO-252 (DPAK)	TO-263 (D²PAK)	TO-220	PQFN 3.3x3.3	SuperSO8	SO8	PQFN 2x2
						BSO201SP H R _{DS(on)} =7.0 mΩ	
-20						R _{DS(on)} - 1.0 1112	IRLHS2242TRPBF**
							$R_{DS(on)} = 31.0 \text{ m}\Omega$
					BSC030P03NS3 G	IRF9310	DS(OR)
					$R_{DS(on)} = 3.0 \text{ m}\Omega$	$R_{DS(on)} = 4.6 \text{ m}\Omega$	
	IPD042P03L3 G				BSC060P03NS3E G	IRF9317	
	$R_{DS(on)} = 4.2 \text{ m}\Omega$				$R_{DS(on)} = 6.0 \text{ m}\Omega; ESD$	$R_{DS(on)} = 6.6 \text{ m}\Omega$	
				BSZ086P03NS3 G	IRFH9310	IRF9321	
	000000000000000000000000000000000000000			$R_{DS(on)} = 8.6 \text{ m}\Omega$	$R_{DS(on)} = 4.6 \text{ m}\Omega$	$R_{DS(on)} = 7.2 \text{ m}\Omega$	
	SPD50P03L G ^{1)*} R _{DS(on)} =7.0 mΩ			BSZ086P03NS3E G $R_{DS(on)}$ =8.6 m Ω			
	N _{DS(on)} -7.011122			DS(on) -0.0 11122	BSC084P03NS3 G		
					$R_{DS(on)} = 8.4 \text{ m}\Omega$		
				BSZ120P03NS3 G	DS(OR)	BSO301SP H	
				$R_{DS(on)} = 12.0 \text{ m}\Omega$		$R_{DS(on)} = 8.0 \text{ m}\Omega$	
-30						IRF9388TRPBF	
-30						$R_{DS(on)}=11.9 \text{ m}\Omega$	
						IRF9358	
				DC7100D03NC3 C		$R_{DS(on)}$ =16 mΩ; dual	
				BSZ180P03NS3 G R =18.0 mO			
				$R_{DS(on)} = 18.0 \text{ m}\Omega$ BSZ180P03NS3E G			
				$R_{DS(on)} = 18.0 \text{ m}\Omega; ESD$			
				Signif			IRFHS9301TRPBF
						IRF9362	$R_{DS(on)} = 37.0 \text{ m}\Omega$
						$R_{DS(on)}$ =21 m Ω ; dual	
						IRF9335	
						$R_{DS(on)} = 59 \text{ m}\Omega$	
-	IPD380P06NM	IPB110P06LM	SPP80P06P H*	ISZ810P06LM	ISC240P06LM		
	$R_{DS(on)} = 38 \text{ m}\Omega$	$R_{DS(on)} = 11 \text{ m}\Omega$	$R_{DS(on)} = 23.0 \text{ m}\Omega$	$R_{DS(on)} = 81 \text{ m}\Omega$	$R_{DS(on)} = 24 \text{ m}\Omega$		
	IPD650P06NM	SPB80P06P G*			ISC800P06LM		
	$R_{DS(on)} = 65 \text{ m}\Omega$ SPD30P06P G*	$R_{DS(on)} = 23.0 \text{ m}\Omega$			$R_{DS(on)} = 80 \text{ m}\Omega$		
	$R_{DS(on)} = 75.0 \text{ m}\Omega$						
	IPD900P06NM						
	$R_{DS(on)} = 90 \text{ m}\Omega$						
-60	SPD18P06P G*						
-00	$R_{DS(on)} = 130.0 \text{ m}\Omega$						
	SPD09P06PL G*						
	R _{DS(on)} =250.0 mΩ						
	IPD25DP06NM						
	$R_{DS(on)} = 250 \text{ m}\Omega$ SPD08P06P G*						
	$R_{DS(on)} = 300.0 \text{ m}\Omega$						
	IPD40DP06NM						
	$R_{DS(on)} = 400 \text{ m}\Omega$						
	SPD15P10PL G*	IPB320P10LM		ISZ24DP10LM	ISC750P10LM		
	$R_{DS(on)} = 200.0 \text{ m}\Omega$	$R_{DS(on)} = 32 \text{ m}\Omega$		$R_{DS(on)} = 245 \text{ m}\Omega$	$R_{DS(on)} = 75 \text{ m}\Omega$		
	SPD15P10P G*	IPB330P10NM	IPP330P10NM				
	$R_{DS(on)} = 240.0 \text{ m}\Omega$	$R_{DS(on)} = 33 \text{ m}\Omega$	$R_{DS(on)} = 33 \text{ m}\Omega$				
	SPD04P10PL G*	IPB19DP10NM					
-100	R _{DS(on)} =850.0 mΩ	$R_{DS(on)} = 185 \text{ m}\Omega$					
	IPD11DP10NM R _{DS(on)} =111 mΩ						
	IPD18DP10LM						
	$R_{DS(on)} = 178 \text{ m}\Omega$						
	IPD19DP10NM						
	$R_{DS(on)} = 186 \text{ m}\Omega$						
	IPD42DP15LM	IPB720P15LM		ISZ56DP15LM	ISC16DP15LM		
	$R_{DS(on)} = 420 \text{ m}\Omega$	$R_{DS(on)} = 72 \text{ m}\Omega$		$R_{DS(on)} = 560 \text{ m}\Omega$	$R_{DS(on)} = 160 \text{ m}\Omega$		
-150				ISZ75DP15LM R = 750 mO			
				$R_{DS(on)} = 750 \text{ m}\Omega$ ISZ15EP15LM			
		1		LISKISEKISEM	1	1	1

www.infineon.com/pchannel

Small-signal/small-power N-channel

/oltage [V]	SOT-223	TSOP-6	SOT-89	SC59	SOT-23	SOT-323	SOT-363
		BSL202SN ⁴⁾ 36 mΩ, 7.5 A, SLL		BSR802N ⁵⁾ 32 mΩ, 3.7 A, ULL		BSS816NW ⁵⁾ 240 mΩ, 1.4 A, ULL	BSD214SN ⁴⁾ 250 mΩ, 1.5 A, SLL
		IRLMS2002 1) 4)		BSR202N 4)	IRLML6244 ^{1) 4)}	BSS214NW ⁴⁾	BSD840N 5)
		45 mΩ, 6.5 A, SLL BSL806N ⁵⁾		33 mΩ, 3.8 A, SLL	27 mΩ, 6.3 A, SLL IRLML6246 ^{1) 4)}	250 mΩ, 1.5 A, SLL	560 mΩ, 0.88 A, ULL, dua BSD235N ⁴⁾
		82 mΩ, 2.3 A, ULL, dual			66 mΩ, 4.1 A, SLL IRLML2502 ^{1) 4)}		600 mΩ, 0.95 A, SLL, dua
20 V					80 mΩ, 4.2 A, SLL		
					BSS806N ⁵⁾ 82 mΩ, 2.3 A, ULL		
					BSS806NE ⁵⁾ 82 mΩ, 2.3 A, ULL, ESD		
					BSS205N 4)		
					85 mΩ, 2.5 A, SLL BSS214N ⁴⁾		
					250 mΩ, 1.5 A, SLL		
25 V					IRFML8244 ^{1) 3)} 41 mΩ, 5.8 A, LL		
		IRLTS6342 ^{1) 4)} 22 mΩ, 8.3 A, SLL			IRLML6344 ^{1) 4)} 37 mΩ, 5.0 A, SLL		BSD316SN ³⁾ 280 mΩ, 1.4 A, LL
		IRFTS8342 1) 3)			IRLML0030 1) 3)		, ,
		29 mΩ, 8.2 A, LL IRLMS1503 ¹⁾³⁾			40 mΩ, 5.3 A, LL IRLML6346 ^{1) 4)}		
30 V		200 mΩ, 3.2A, LL			80 mΩ, 3.4 A, SLL BSS306N ³⁾		
30 0					93 mΩ, 2.3 A, LL		
					IRLML2030 ^{1) 3)} 154 mΩ, 2.7 A, LL		
					BSS316N ³⁾ 280 mΩ, 1.4 A, LL		
					IRLML2803 ³⁾		
					400 mΩ, 1.2 A, LL IRLML0040 ^{1) 3)}		
40 V	IDEL 00 47 1131				78 mΩ, 3.6 A, LL		
	IRFL024Z ^{1) 2)} 57.5 mΩ, 5.1 A, NL				BSS670S2L ³⁾ 825 mΩ, 0.54 A, LL		
	IRLL2705 ^{1) 3)} 65 mΩ, 3.8 A, LL						
	IRFL4105 1) 2)						
55 V	45 mΩ, 3.7 A, NL IRLL024N ^{1) 3)}						
	100 mΩ, 3.5 A, LL IRLL014N ^{1) 3)}						
	280 mΩ, 2.0 A, LL						
	IRFL014N ^{1) 2)} 160 mΩ, 1.9 A, NL						
	BSP295 3)	BSL606SN 3)	BSS606N 3)		IRLML0060 1) 3)	BSS138W ³⁾	2N7002DW ³⁾
	500 mΩ, 1.8 A, LL	95 mΩ, 4.5 A, LL	90 mΩ, 3.2 A, LL		116 mΩ, 2.7 A, LL IRLML2060 ^{1) 3)}	4 Ω, 0.28 A, LL SN7002W ³⁾	4 Ω, 0.3 A, LL, dual
					640 mΩ, 1.2 A, LL 2N7002 ^{1) 3)}	7.5 Ω, 0.23 A, LL	
					4 Ω, 0.3 A, LL		
60 V					BSS138I ^{1) 3)} 4 Ω, 0.23 A, LL		
00 V					BSS138N ³⁾ 4 Ω, 0.23 A, LL		
					SN7002I 1) 3)		
					7.5 Ω, 0.2 A, LL SN7002N ³⁾		
					7.5 Ω, 0.2 A, LL BSS159N ⁶⁾		
					8 Ω, 0.13 A, depletion		
	BSP373N ²⁾ 240 mΩ, 1.8 A, NL				IRLML0100 235 mΩ, 1.6 A, LL		
	BSP372N ³⁾ 270 mΩ, 1.8 A, LL				BSS119N ³⁾ 10 Ω, 0.19 A, LL		
	BSP296N 3)				BSS123I 1) 3)		
100 V	800 mΩ, 1.2 A, LL				10 Ω 0.19 A, LL BSS123N ³⁾		
					10 Ω 0.19 A, LL BSS169I ^{1) 6)}		
					12 Ω, 0.09 A, depletion		
					BSS169 ⁶⁾ 12 Ω, 0.09 A, depletion		
150 V	IRFL4315 ^{1) 2)} 185 mΩ, 2.6 A, NL	IRF5802 ^{1) 2)} 1.2 Ω, 0.9 A, NL					
	BSP297 3)	IRF5801 1) 2)					
200 V	3 Ω, 0.66 A, LL BSP149 ⁶⁾	2.2Ω, 0.6 A, NL					
	3.5 Ω, 0.14 A, LL, depletion BSP88 ³⁾		BSS87 ³⁾		BSS131 ³⁾		
	7.5 Ω, 0.35 A, LL		7.5 Ω, 0.26 A, LL		20 Ω, 0.11 A, LL		
240 V	BSP89 ³⁾ 7.5 Ω, 0.35 A, LL						
	BSP129 ⁶⁾ 20 Ω, 0.05 A, LL, depletion						
	20 23, 0.00 75, EE, depletion				BSS139I 1) 6)		
250 V					30 Ω, 0.10 A, LL, depletion BSS139 ⁶⁾		
	DCD2043				30 Ω, 0.10 A, LL, depletion		
400 V	BSP324 ³⁾ 22 Ω, 0.17 A, LL						
	BSP125 ³⁾ 60 Ω, 0.12 A, LL		BSS225 ³⁾ 45 Ω, 0.09 A, LL		BSS127I ^{1) 3)} 600 Ω, 0.021 A, LL		
	BSP135I 1) 6)				BSS127 3)		
600 V	60 Ω, 0.02 A, LL, depletion BSP135 ⁶⁾				600 Ω, 0.021 A, LL BSS126l ^{1) 6)}		
000 V	60 Ω, 0.02 A, LL, depletion				700 Ω, 0.021 A, LL, depletion		
					BSS126 ⁶⁾		
					700 Ω, 0.021 A, LL, depletion		

www.infineon.com/smallsignal

Solutions

15-300 V MOSFETs

500-950 V MOSFETs

Gate-driver ICs

Digital isolators

Intelligent power IGBT discretes and switches and modules silicon power diodes

Microcontrollers USB-C controllers and peripherals

Power management ICs

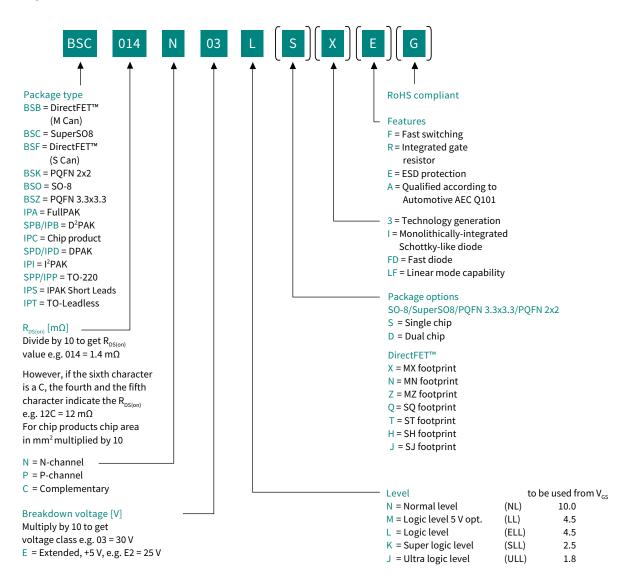
Sensors

Small-signal/small-power P-channel

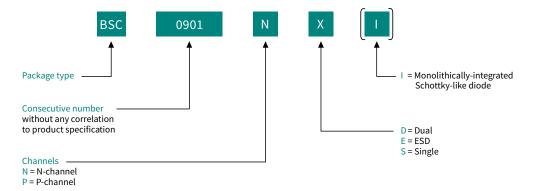
Voltage [V]	SOT-223	TSOP-6	SOT-89	SC59	SOT-23	SOT-323	SOT-363
2501/	BSP317P ³⁾ 5 Ω, -0.43 A, LL		BSS192P ³⁾ 15 Ω, -0.19 A, LL	BSR92P ³⁾ 13 Ω, -0.14 A, LL			
-250 V	BSP92P ³⁾ 15 Ω, -0.26 A, LL						
-150 V	ISP14EP15LM ^{1) 3)} 1.4 Ω, -1.29 A, LL						
				BSR316P ³⁾ 2.2 Ω, -0.36 A, LL			
	BSP322P 3)			2.212, 0.307, EE			
	1 Ω, -1.0 A, LL BSP316P ³⁾						
-100 V	2.3 Ω, -0.68 A, LL ISP16DP10LM ^{1) 3)}						
	190 mΩ, -3.9 A, LL ISP98DP10LM ^{1) 3)}						
	1.05 Ω, -1.55 A, LL ISP20EP10LM ^{1) 3)}						
	2.2 Ω, -0.99 A, LL			DCD215D 3	10017ED001A4 1\3\	DCC04DW3)	
	ISP650P06NM ^{1) 2)} 65 mΩ, -3.7 A, NL			BSR315P ³⁾ 1.3 Ω, -0.62 A, LL	ISS17EP06LM ^{1) 3)} 2.2 Ω, -0.3 A, LL	BSS84PW ³⁾ 12 Ω, -0.15 A, LL	
	ISP12DP06NM ^{1) 2)} 125 mΩ, -2.8 A, NL						
	ISP13DP06NMS ^{1) 2)} 125 mΩ, -2.8 A, NL				BSS83P ³⁾ 3 Ω, -0.33 A, LL		
	BSP613P ²⁾ 130 mΩ, -2.9 A, NL				ISS55EP06LM ^{1) 3)} 7 Ω, -0.18 A, LL		
	ISP25DP06NM ^{1) 2)} 250 mΩ, -1.9 A, NL				BSS84P ³⁾ 12 Ω, -0.17 A, LL		
-60 V	ISP26DP06NMS ^{1) 2)} 260 mΩ, -1.9 A, NL						
	BSP170P ²⁾ 300 mΩ, -1.9 A, NL						
P-channel MOSFETs	ISP25DP06LM ^{1) 3)}						
el MG	310 mΩ, -1.9 A, LL ISP25DP06LMS ^{1) 3)}						
hann	310 mΩ, -1.9 A, LL BSP171P ³⁾						
Pc	450 mΩ, -1.9 A, LL ISP75DP06LM ¹⁾³⁾						
	1 Ω, -1.1 A, LL BSP315P ³⁾						
	1.4 Ω, -1.17 A, LL	IDEC003 (1/2)					
-40 V		IRF5803 ^{1) 2)} 112 mΩ, -3.4 A, NL					
		IRFTS9342 ^{1) 2)} 40 mΩ, -5.8 A, NL			IRLML9301 ^{1) 3)} 103 mΩ, -1.3 A, LL		
		BSL307SP ³⁾ 74 mΩ, -5.5 A, LL			BSS308PE ³⁾ 130 mΩ, -2.1 A, LL, ESD		
		BSL308PE ³⁾ 130 mΩ, -2.1 A, LL, dual,			IRLML5203 ^{1) 3)} 165 mΩ, -3.0 A, LL		
-30 V		ESD			BSS314PE 3)		
					230 mΩ, -1.5 A, LL, ESD BSS315P ³⁾		
					270 mΩ, -1.5 A, LL IRLML9303 ^{1) 4)}		
					270 mΩ, -2.3 A, LL IRLML5103 ^{1) 3)}		
		PCI 207CD 41			1000 mΩ, -0.76A, LL	PCC200DW 41	BSV236SP ⁴⁾
		BSL207SP ⁴⁾ 41 mΩ, -6.0 A, SLL			IRLML2244 ^{1) 4)} 95 mΩ, -4.3 A, SLL	BSS209PW ⁴⁾ 900 mΩ, -0.58 A, SLL	285 mΩ, -1.5 A, SLL
-20 V		IRLTS2242 ¹⁾⁴⁾ 55 mΩ, -6.9 A, SLL			IRLML6402 ^{1) 4)} 135 mΩ, -3.7 A, SLL	BSS223PW ⁴⁾ 2.1 Ω, -0.39 A, SLL	BSD223P ⁴⁾ 2.1 Ω, -0.39 A, SLL, dual
20 7		IRLMS6802 ^{1) 4)} 100 mΩ, -5.6 A, SLL			IRLML2246 ^{1) 4)} 236 mΩ, -2.6 A, SLL		
		BSL211SP ⁴⁾ 110 mΩ, -4.7 A, SLL			BSS215P ⁴⁾ 280 mΩ, -1.5 A, SLL		
-12 V					IRLML6401 ⁴⁾ 125 mΩ, -4.3 A, ULL		

Small-signal/small-power complementary

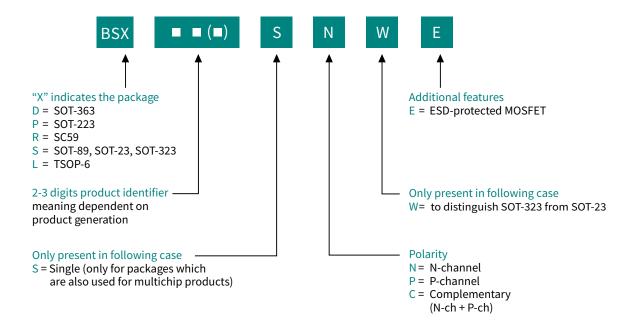
Voltage [V]		TSOP-6	SOT-363
ntary	-20/20	BSL215C $^{4)}$ N: 250 mΩ, 1.5 A, SLL P: 280 mΩ, -1.5 A, SLL	BSD235C ⁴⁾ N: 600 mΩ, 0.95 A, SLL P: 2.1 Ω, -0.53 A, SLL
Complemen	-30/30	BSL308C $^{3)}$ N: 93 mΩ, 2.3 A, LL P: 130 mΩ, -2.0 A, LL	
		BSL316C ³⁾ N: 280 mΩ, 1.4 A, LL P: 270 mΩ, -1.5 A, LL	

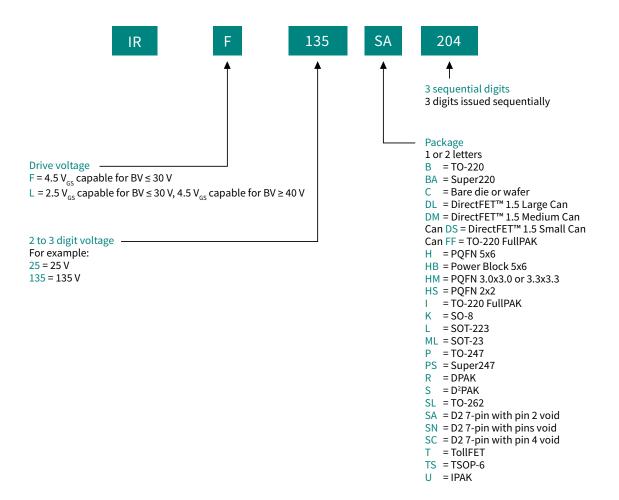

www.infineon.com/smallsignal

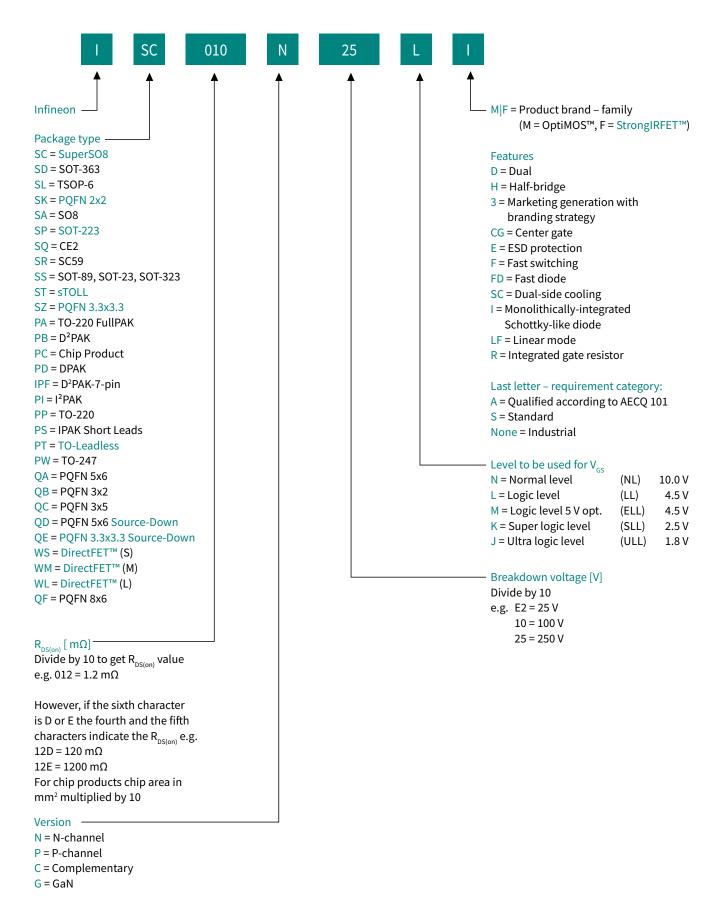
www.infineon.com/small power


⁴⁾ R_{DS(on)} specified at 2.5 V 5) R_{DS(on)} specified at 1.8 V 6) R_{DS(on)} specified at 0 V

Nomenclature


OptiMOS™


OptiMOS™ 30 V


Small signal

StrongIRFET™ (from May 2015 to 2019)

New nomenclature for OptiMOS™ and StrongIRFET™ MOSFETs (2019 onward)

Infineon support for low voltage MOSFETs

Useful links and helpful information

Further information, data sheets and documents www.infineon.com/powermosfet-12V-300V www.infineon.com/smallsignal www.infineon.com/pchannel www.infineon.com/depletion www.infineon.com/complementary

MOSFET Cross Reference

www.infineon.com/cms/en/product/search/cross-reference

Evaluation boards and simulation models www.infineon.com/powermosfet-simulationmodels

Die support

www.infineon.com/baredie

MOSFET Community

community.infineon.com/t5/Power-MOSFET/bd-p/MOSFET

For more information regarding StrongIRFET™ and OptiMOS™ power MOSFET bare die products, please contact the Infineon Service Center or your local sales counterpart.

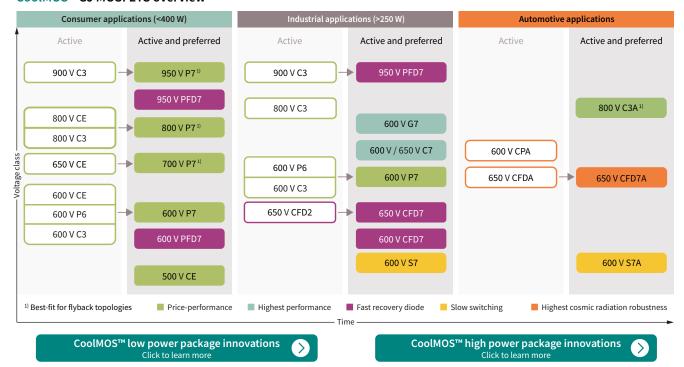
Support

1

Simulation

500-950 V MOSFETs

- CoolMOS™ SJ MOSFETs
- 950 V CoolMOS™ P7 SJ MOSFETs
- 950 V CoolMOS™ PFD7 SJ MOSFETs
- 800 V CoolMOS™ P7 SJ MOSFETs
- 700 V CoolMOS™ P7 SJ MOSFETs
- 600 V CoolMOS™ P7 SJ MOSFETs
- 600 V CoolMOS™ PFD7 SJ MOSFETs
- 600 V and 650 V CoolMOS™ C7 and 600
 V C7 Gold (G7) SJ MOSFETs


- 600 V CoolMOS™ S7 SJ MOSFETs
- 600 V CoolMOS[™] CFD7 SJ MOSFETs
- 650 V CoolMOS™ CFD7 SJ MOSFETs
- CoolMOS™ CE SJ MOSFETs
- CoolMOS™ SJ MOSFETs for automotive
- CoolMOS™ SJ MOSFET package innovations
- 500-950 V MOSFETs product portfolio
- 500-950 V MOSFETs nomenclature

WBG se

CoolMOS™ SJ MOSFETs Trusted leader in high-voltage MOSFETs

Infineon's CoolMOS™ products offer a significant reduction of conduction, switching and driving losses, and enable high power density as well as efficiency for superior power conversion systems.

CoolMOS™ SJ MOSFETS overview*

High-voltage superjunction MOSFETs address consumer applications, such as home appliance drives, smartphone/ tablet chargers, notebook adapters, LED lighting, PC power, as well as audio and TV power supplies. Customers are increasingly replacing standard MOSFETs with superjunction MOSFETs to benefit from higher efficiency and lower power consumption for end users. CoolMOS™ P7 sets a benchmark by offering high performance and competitive price all at once. The CoolMOS™ PFD7 series is a state-of-the-art solution for high density chargers/adapters, lighting applications as well as home appliance drives (e.g., refrigerator compressors).

Also for industrial applications such as server, telecom, PC power, solar, ESS, UPS, EV-charging and others, Infineon's CoolMOS™ 7 superjunction MOSFETs with the C7, G7, CFD7, P7 and S7 product families offer what you need - from highest efficiency to best price performance. The S7 product family specifically addresses slow switching applications such as solid state relay and solid state circuit breaker offering the best-in-class R_{DS(on)} within the industry. Complementary to the silicon CoolMOS™ portfolio, Infineon offers a broad wide bandgap (WBG) portfolio of CoolGaN™ GIT HEMTs, CoolGaN™ IPS and CoolSiC™ MOSFETs to further optimize efficiency and system cost (see Wide bandgap semiconductors).

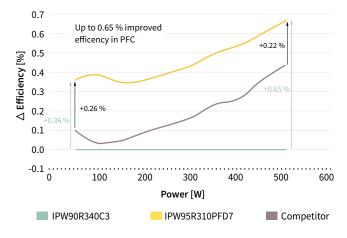
Infineon's industrial- and consumer-qualified CoolMOS™ superjunction MOSFET offering is complemented by the automotive-qualified series 600 V CPA, 650 V CFDA, 800 V C3A and the latest 650 V CFD7A as well as 600 V S7A. Infineon's excellent-performing automotive series address on-board chargers, DC-DC converters, active pre-charge and discharge function, insulation monitor, HV eFuse, and HV eDisconnect with proven outstanding quality standards going well beyond the AEC-Q101, supporting customers to gain momentum in the rapidly growing xEV market.

www.infineon.com/coolmos

Subject to change and exceptions possible.
For more details on product status check out the individual product pages online.

950 V CoolMOS™ PFD7 SJ MOSFETs

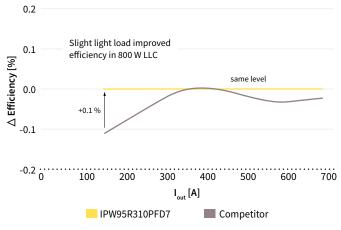
Perfect fit for soft- and hard-switching topologies


The 950 V CoolMOS™ PFD7 is a revolutionary superjunction technology for high-voltage power MOSFETs, with an integrated fast body diode to address lighting and industrial SMPS applications. The new series is tailor-made for usage across several topologies, such as PFC, LLC, and flyback.

Features and benefits

Key features Integrated ultra-fast body diode with BiC Q Best-in-class FOM $R_{DS(on)}$ x E_{oss} ; reduced Q_{c} , C_{iss} and C_{c} BiC $R_{DS(nn)}$ in various packages like 450 mΩ in DPAK and 60 mΩ in TO-247 V_{(GS)th} of 3 V and smallest V_{(GS)th} variation of ±0.5 V ESD protection up to class 2 (HBM) - Offering the highest quality and reliability Price competitiveness over previous CoolMOS™ families

- Hard commutation ruggedness that enables the usage of PFD7 in different
- Improved efficiency and thermal behavior over internal and external comparable products
- Enabling higher power density designs and BOM savings
- Easy to drive and design-in
- Improved production yield by reducing ESD-related failures and reduced field returns
- Cost-competitive designs with superjunction

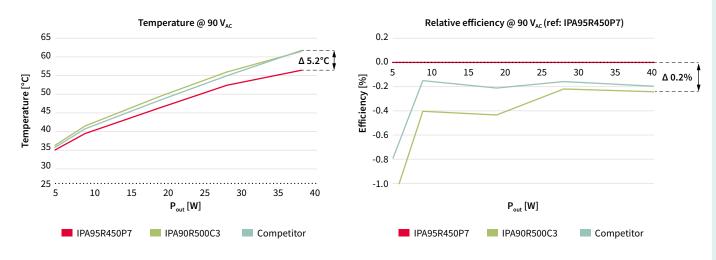

Efficieny measurements for 310 m Ω devices at 90 V_{AC} (R_{g,ext} = 10 Ω)

950 V CoolMOS™ PFD7 outperforms previous CoolMOS™ families as well as the main competition concerning PFC efficiency:

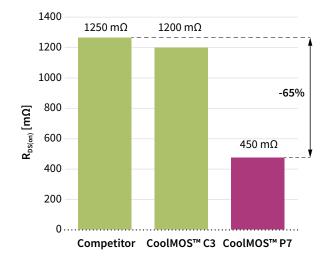
- Improvement of 0.26 percent in light-load and 0.22 percent in full-load efficiency compared to the main
- Improvement of 0.36 percent in light-load and 0.65 percent in full-load efficiency compared to 900 V CoolMOS™ C3

Efficieny measurements for 310 m Ω in 880 W ZVS FB set up

950 V CoolMOS™ PFD7 closes the gap and matches the performance of the main competition regarding LLC efficiency:


 Improvement of 0.1 percent in light-load efficiency compared to the main competition

Power


950 V CoolMOS™ P7 SJ MOSFETs

Perfect fit for PFC and flyback topologies

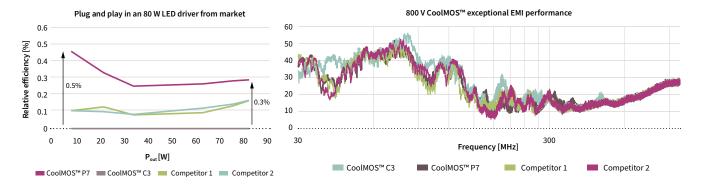
Designed to meet the growing consumer needs in the high-voltage MOSFETs arena, the 950 V CoolMOS™ P7 technology focuses on the low-power SMPS market. The P7 family addresses applications ranging from lighting, smart meter, mobile phone charger, notebook adapter, to AUX power supply and industrial SMPS. Offering 50 V more blocking voltage than its predecessor 900 V CoolMOS™ C3, the 950 V CoolMOS™ P7 series delivers outstanding performance in terms of efficiency, thermal behavior, and ease of use. As all other P7 family members, the 950 V CoolMOS™ P7 series comes with an integrated Zener diode ESD protection. The integrated diode considerably improves ESD robustness, thus reducing ESD-related yield loss and reaching exceptional ease-of-use levels. CoolMOS™ P7 is developed with a best-in-class threshold voltage (V_{cS(th)}) of 3 V and a narrow tolerance of only ± 0.5 V, which makes it easy to drive and design-in.

Compared to competition, the 950 V CoolMOSTM P7 delivers best-in-class efficiency and thermal performance. Plug-and-play at 90 V_{AC} in a 40 W adapter reference design, featuring the snubberless concept, demonstrates excellent efficiency gains of up to 0.2 percent and lower MOSFET temperature of up to 5.2°C compared to similar competitor technology. With over 20 years of experience in superjunction technology, Infineon introduces 950 V CoolMOSTM P7 with best-in-class DPAK on-resistance ($R_{DS(on)}$). This SMD device comes with the $R_{DS(on)}$ of 450 m Ω - more than 60 percent lower $R_{DS(on)}$ compared to the nearest competitor. Such low $R_{DS(on)}$ value enables higher density designs while decreasing BOM and assembly cost.

Best-in-class DPAK R_{DS(on)}

Customer benefits:

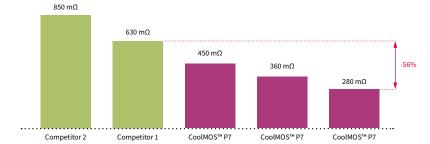
- Possible change from leaded to SMD packages
- High power density
- Lower BOM cost
- Lower production cost



800 V CoolMOS™ P7 SJ MOSFETs

A benchmark in efficiency and thermal performance

With the 800 V CoolMOS™ P7 series, Infineon sets a benchmark in 800 V superjunction technologies and combines best-in-class performance with the remarkable ease of use. This product family is a perfect fit for flyback-based consumer and industrial SMPS applications. In addition, it is also suitable for PFC stages within consumer, as well as solar applications, fully covering the market needs in terms of its price/performance ratio.


The technology offers fully optimized key parameters to deliver best-in-class efficiency as well as thermal performance. As demonstrated on an 80 W LED driver, bought on the market, the >45 percent reduction in switching losses (E_{oss}) and output capacitance (C_{oss}) as well as the significant improvement in input capacitance (C_{iss}) and gate charge (C_{iss}), compared to competitor technologies, lead to 0.5 percent higher efficiency at light load which helps to reduce standby power in the end application. At full load, the observed improvement is up to 0.3 percent higher efficiency and 6°C lower device temperature.

EMI is a system level topic, and the optimization needs to be done on the system level only. Nevertheless, a pure plug-and-play measurement on Infineon's 45 W adapter reveals that 800 V CoolMOS™ P7 shows similar EMI performance to Infineon's previous technologies as well as to competitors' technologies.

Compared to competition, the 800 V CoolMOS™ P7 technology allows to integrate much lower R_{DS(on)} values into small packages, such as a DPAK. This finally enables high power density designs at highly competitive price levels.

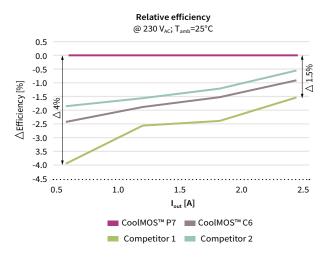
Overview of lowest DPAK $R_{DS(on)}$ for 800 V superjunction MOSFET

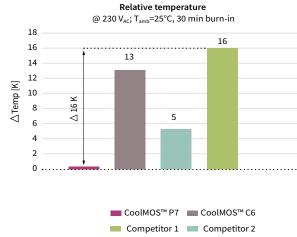
CoolMOS[™] P7 sets a new benchmark in best-in-class DPAK R_{DS(on)}

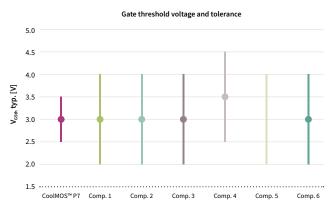
Customer benefits:

- High power density
- Lower BOM cost
- Lower production cost

The complete P7 platform has been developed with an integrated Zener diode that is used as an electrostatic discharge (ESD) protection mechanism, which increases the overall device ruggedness up to human body model (HBM) class 2 level.






700 V CoolMOS™ P7 SJ MOSFETs

Infineon's solution for flyback topologies

The 700 V CoolMOS™ P7 family has been developed to serve today's and, especially, tomorrow's trends in flyback topologies. The products address the low-power SMPS market, mainly focusing on mobile phone chargers and notebook adapters, but are also suitable for power supplies, used within lighting applications, home entertainment (TV, game consoles or audio), and auxiliary power supplies. 700 V CoolMOS™ P7 achieves outstanding efficiency gains of up to 4 percent and a decrease in device temperature of up to 16 K compared to the competition. In contrast with the previous 650 V CoolMOS™ C6 technology, 700 V CoolMOS™ P7 offers 2.4 percent gain in efficiency and 12 K lower device temperature, measured at a flyback-based charger application, operated at 140 kHz switching speed.

Keeping the ease of use in mind, Infineon has developed the technology with a low threshold voltage (V_{GS(th)}) of 3 V and a very narrow tolerance of ±0.5 V. This makes the CoolMOS™ P7 easy to design-in and enables the usage of lower gate source voltage, which facilitates its driving and leads to lower idle losses. To increase the ESD ruggedness up to HBM class 2 level, 700 V CoolMOS™ P7 has an integrated Zener diode. This helps to support increased assembly yield, leads to reduction of production related failures and, finally, manufacturing cost savings on customer side.

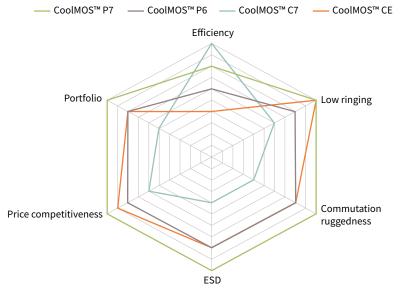
Features and benefits

Key features Highly performant technology Low switching losses (E_{oss}) Highly efficient Excellent thermal behavior Allowing high-speed switching Integrated protection Zener diode Optimized V_{GS(th)} of 3 V with very narrow tolerance of ±0.5 V Finely graduated portfolio

Key benefits

Cost-competitive technology
 Further efficiency gain at higher switching speed
 Supporting less magnetic size with lower BOM costs
 High ESD ruggedness up to HBM class 2 level
 Easy to drive and design-in
 Enabler for smaller form factors and high power density designs

Excellent choice in selecting the best-fitting product



600 V CoolMOS™ P7 SJ MOSFETs

Perfect combination of high efficiency and ease of use

The 600 V CoolMOS™ P7 is a general purpose series, targeting a broad variety of applications, ranging from low-power SMPS up to the highest power levels. In the low-power arena, it is the successor of the 600 V CoolMOS™ CE, and for high-power SPMS applications, it is the replacement for the 600 V CoolMOS™ P6, which makes it the perfect choice for applications such as chargers, adapters, lighting, TV and PC power supplies, solar, small light electric vehicles, server and telecom power supplies, and electric vehicle (EV) charging.

The 600 V CoolMOS™ P7 is Infineon's most well-balanced CoolMOS™ technology in terms of combining ease of use and excellent efficiency performance. Compared to its predecessors, it offers higher efficiency and improved power density ${\rm due}\ to\ the\ significantly\ reduced\ gate\ charge\ (Q_{_{G}})\ and\ switching\ losses\ (E_{_{OSS}})\ levels,\ as\ well\ as\ optimized$ on-state resistance (R_{DS(on)}). The carefully selected integrated gate resistors enable very low ringing tendency and, thanks to its outstanding robustness of body diode against hard commutation, it is suitable for hard as well as soft-switching topologies, such as LLC. In addition, an excellent ESD capability helps to improve the quality in manufacturing. The 600 V CoolMOS™ P7 family offers a wide range of on-resistance (R_{DS(on)})/package combinations, including THD, as well as SMD devices, at an $R_{\scriptscriptstyle DS(on)}$ granularity from 24 to 600 m Ω and comes along with the most competitive price/performance ratio of all 600 V CoolMOS™ offerings.

Features and benefits

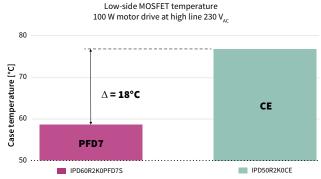
Key features

- Suitable for hard and soft switching (PFC and LLC) due to an outstanding commutation ruggedness
- Optimized balance between efficiency and ease of use
- Significant reduction of switching and conduction losses leading to low MOSFET temperature
- Excellent ESD robustness >2 kV (HBM) for all products
- Better $R_{\scriptscriptstyle DS(on)}$ /package products compared to competition
- Large portfolio with granular $\boldsymbol{R}_{DS(on)}$ selection qualified for a variety of industrial and consumer applications

Key benefits

- Ease of use and fast design-in through low ringing tendency and usage across PFC and PWM stages
- Improved efficiency and simplified thermal management due to low switching and conduction losses
- Higher manufacturing quality due to >2 kV ESD protection
- Increased power density solutions enabled by using products with smaller footprint
- Suitable for a wide variety of applications and power ranges

600 V CoolMOS™ PFD7 SJ MOSFETs


The next level for ultrahigh power density designs and energy-efficient home appliance drives

The 600 V CoolMOS™ PFD7 MOSFET series sets a new benchmark in 600 V superjunction (SJ) technologies, shaped by Infineon's experience of more than 20 years in pioneering in superjunction technology innovation. The series combines best-in-class performance with state-of-the-art ease of use and features an integrated fast body diode ensuring a robust device and in turn reduced BOM for the customer. This product family offers up to 1.17 percent efficiency increase compared to the CoolMOS™ P7 technologies, which leads to a power density increase of 1.8 W/in³.

CoolMOS™ PFD7 pushes the SJ MOSFET technology to new limits leading to outstanding improvement of lower conduction and charge/discharge losses as well as a reduced turn-off and gate-driving losses.

A broad range of R_{DS(on)} values in combination with a variety of packages helps in selecting the right part to optimize designs. Furthermore, an integrated ESD protection of up to 2 kV eliminates ESD-related yield loss. Infineon's industry-leading SMD package offering contributes to bill-of-material and PCB space savings and simplifies manufacturing. This unique set of product features and their resulting benefits, position the CoolMOSTM PFD7 superjunction MOSFET family exceptionally well for ultrahigh density applications like chargers and adapters, USB power delivery but also for home appliance drives (e.g. refrigerator compressors) and specific lighting SMPS applications.

600 V CoolMOS™ PFD7 increases efficiency in lightand full-load conditions. This results in a power density increase of 1.8 W/in³ for ultrahigh power chargers and adapters.

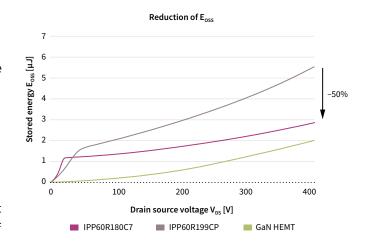
600 V CoolMOS™ PFD7 provides up to 2 percent higher efficiency at 100 W, which results in an 18°C thermal improvement. Its excellent commutation ruggedness makes it the perfect fit for low-power drives.

Features and benefits

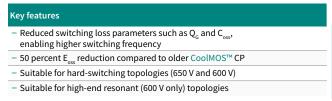
Key features	
$-$ Very low FOM $\rm R_{\rm DS(on)}$ x $\rm E_{\rm oss}$	
– Integrated robust fast body diode	
– Ultra-low Q_m and industry's fastest recovery time (T_m)	
- Up to 2 kV ESD protection (HBM class 2)	
 Wide range of R_{DS(on)} values and broad package portfolio 	
- Excellent commutation ruggedness	

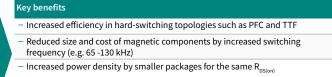
Key benefits

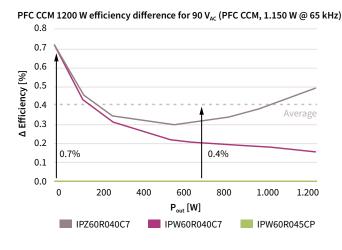
- Minimized switching losses
- Power density improvement compared to latest CoolMOS™ charger technology
- Increased efficiency (especially at light-load operation) and improved thermal behavior compared to CoolMOS™ CE technology for home appliance motor drives
- BOM cost reduction and easy manufacturing
- Robustness and reliability
- Easy to select right parts for design fine-tuning

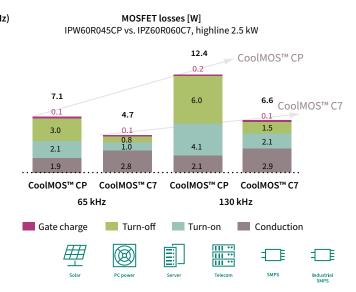


600 V and 650 V CoolMOS™ C7 and 600 V C7 Gold (G7) SJ MOSFETs

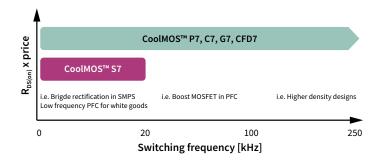

Infineon's superjunction MOSFET series for highest efficiency


The 600 V and 650 V CoolMOSTM C7 and and 600 V C7 Gold (G7) superjunction MOSFET series are designed to achieve record level efficiency performance – they offer substantial efficiency benefits over the whole load range in hard-switching applications compared to previous series and competition. This is achieved by minimizing switching losses via ultralow levels of switching losses (E_{oss}) (approximately 50 percent reduction compared to the CoolMOSTM CP), reduced gate charge ($Q_{\rm G}$) and a careful balance of other relevant product key parameters. The low E_{oss} and $Q_{\rm G}$ also enable operation at higher switching frequency and related size reduction of the circuit magnetics.




The outstanding figures of merit (FOM) and the best-in-class on-state resistance (R_{DS(on)}) offerings make the CoolMOS™ C7 and C7 Gold series key enablers for highest efficiency and power density. While the 650 V CoolMOS™ C7 and 600 V C7 Gold (G7) superjunction MOSFETs are solely designed for hard-switching applications such as PFC, the 600 V version is also well suited for high-end LLC stages due to its rugged body diode that withstands slew rates up to 20 V/ns. The product portfolio contains TO-247 4-pin, ThinPAK 8x8, TO-Leadless and top-side cooled Double DPAK (DDPAK) packages which come with additional Kelvin source contacts enabling further efficiency advantages over the classical 3-pin approach.

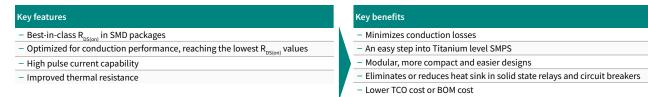
Features and benefits



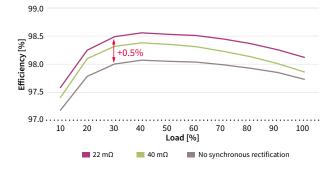
600 V CoolMOS™ S7 SJ MOSFETs

The best price/performance SJ MOSFET for low frequency switching applications

The 600 V CoolMOS™ S7 superjunction MOSFET is the perfect fit for applications where MOSFETs are switched at low frequency, such as active bridge rectification, inverter stages, in-rush relays, PLCs, power solid state relays and solid state circuit breakers. The new MOSFET design with the best conduction performance allows the CoolMOS™ S7 to offer cost-optimized distinctively low on-resistance $(R_{DS(on)})$ values, ideally suited for applications looking to minimize conduction losses at the best price.

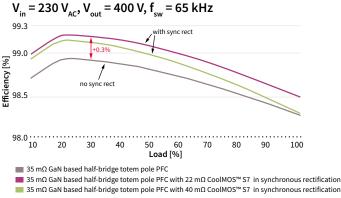


The CoolMOS™ S7 leads the way for power density, uniquely fitting a 22 m Ω R_{DS(on)} chip into an innovative small TO-Leadless (TOLL) SMD package.


Use cases

Typically, CoolMOS™ S7 is used in active rectification bridges, where diodes are replaced or paralleled with MOSFETs, obtaining an increase in efficiency without the need for extensive system redesign. In this application, the TO-leadless (TOLL) package in low R_{DS(on)} allows the most efficient and compact modular design based on daughter cards. The CoolMOS™ S7 delivers also tremendous value to solid state relay (SSR) and solid state circuit breaker (SSCB) designs, by bringing the superjunction MOSFET advantages to a system level cost comparable to other silicon alternatives. In addition, any socket or topology switching at low frequency can greatly benefit from the leading low R_{DS(pp)} x price.

Features and benefits

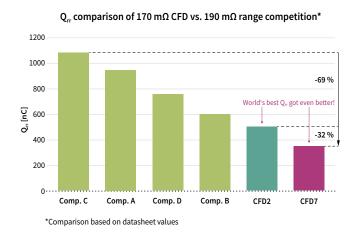


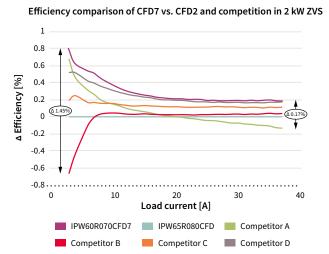
Efficiency in 2400 W PFC at $V_{in} = 230 V_{AC}$ Difference between using or not using the active-bridge rectification

CoolMOS™ S7 brings more efficiency to power supplies when used in an active rectification bridge.

3 kW GaN-based totem pole PFC efficiency calculation with and without synchronous rectification when

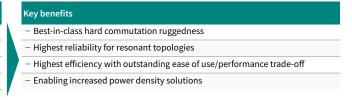
CoolMOS™ S7 is the perfect complement for CoolSiC™ MOSFETs and CoolGaN™ GIT HEMTs in totem pole PFC topologies.


600 V CoolMOS™ CFD7 SJ MOSFETs


Infineon's solution for resonant switching high-power applications

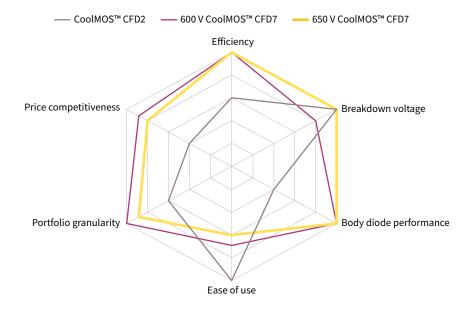
The 600 V CoolMOS™ CFD7 is one of Infineon's high-voltage superjunction MOSFET series with an integrated fast body diode. It is the ideal choice for resonant topologies, such as LLC and ZVS PSFB, and targets the high SMPS market.

As a result of significantly reduced gate charge (Q_{rr}) , improved turn-off behavior, a reverse recovery charge (Q_{rr}) of up to 69 percent lower compared to the competition, as well as the lowest reverse recovery time (t_{rr}) in the market, it combines the highest efficiency and best-in-class reliability in soft-switching applications, without sacrificing the easy implementation in the design-in process.


In addition, the 600 V CoolMOS™ CFD7 enables higher power density solutions by offering the best-in-class on-state resistance (R_{DS(on)}) package combinations in through-hole devices, as well as in surface mount devices. In ThinPAK 8x8 and TO-220 with CoolMOS™ CFD7, a R_{DS(on)} of around 30 percent below the next best competitor offering can be achieved. All this together makes CoolMOS™ CFD7 the perfect fit for server and telecom applications, and it is also suitable for EV-charging stations.

Features and benefits

Key features	
– Ultrafast body diode	
– Best-in-class reverse recovery charge (Q _{rr})	
 Improved reverse diode dv/dt and dif/dt ruggedness 	
 Lowest figure of merit (R_{DS(on)} x Q_G x E_{oss}) 	
Best-in-class R _{ps(op)} /package combinations	


650 V CoolMOS™ CFD7 SJ MOSFETs

Tailored to win in resonant topologies

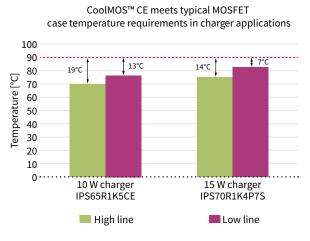
The need for improved efficiency and higher power density in industrial SMPS applications is driven by the megatrends of the 21st century such as big data, digitalization and e-mobility. Furthermore, over the last few years, due to the higher nominal input voltages in the US, a trend towards 450 V bus voltage, and the need for worldwide applicable designs, the demand for 650 V breakdown voltage has increased significantly - also for resonant topologies.

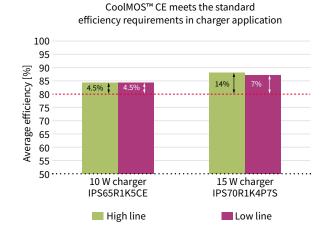
The 650 V device family is the voltage-range extension of Infineon's renowned CoolMOS™ CFD7 family, the successor to the well-established CoolMOS™ CFD2. It comes along with an additional 50 V breakdown voltage, integrated fast body diode, improved switching performance (compared to previous generations), and excellent thermal behavior. Thanks to these features, the 650 V CoolMOS™ CFD7 allows for the highest efficiency and power density levels in soft-switching applications such as LLC and ZVS phase-shift-full-bridge.

The best-in-class $R_{DS(on)}$ in TO-247, TO-220, and D^2PAK enables customers to increase the power density level of their designs primarily addressing telecom, server, solar, and (off-board) EV-charging applications.

Features and benefits

Key features		Key benefits
– 650 V blocking voltage		– 50 V extra margin for increased bus voltage
- Ultrafast body diode		– Excellent hard commutation ruggedness
- Reduced switching losses	7	- Outstanding light load efficiency
– Low R _{DS(on)} dependency over temperature		- High full load efficiency

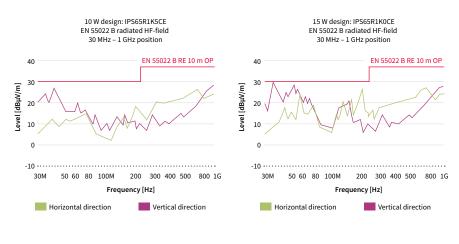



CoolMOS™ CE SJ MOSFETs

High-voltage superjunction MOSFETs for consumer applications

Infineon's CoolMOS™ CE is a product family that addresses consumer and lighting applications. It offers benefits in efficiency and thermal behavior versus standard MOSFETs and is optimized for ease of use and cost-competitiveness, while delivering the right-fit performance and excellent Infineon quality.

Application example: 10 W and 15 W smartphone charger



CoolMOS™ CE case temperature:

The maximum MOSFET case temperature is required to be below 90°C. CoolMOS™ CE meets this requirement and offers enough margin required for design-in flexibility.

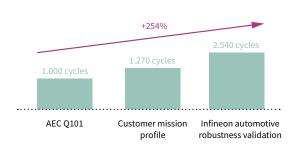
CoolMOS™ CE efficiency performance:

CoolMOS™ CE meets the 80 percent standard efficiency requirement and offers enough margin required for design-in flexibility.

The performance of CoolMOS™ CE in the 10 W and 15 W design demonstrates that the series meets common EMI requirements for charger applications and thus, is also offering design-in flexibility.

CoolMOS™ CE customer benefits				
Product portfolio	Broad portfolio covering five voltage classes in both through-hole and SMD packages			
Quality	Field failure rates are as low as 0.1 DPM			
Design-in support	Large field application engineering team to provide professional and flexible support for your design			

CoolMOS™ SJ MOSFETs for automotive


600 V CoolMOS™ CPA, 650 V CoolMOS™ CFDA, 800 V CoolMOS™ C3A, 650 V CoolMOS™ CFD7A – on the fast lane in automotive applications

The highest system performance in a size and weight constrained environment, outstanding and proven product quality and reliability, as well as 100 percent reliable delivery, are key requirements for manufacturers in the automotive market. With the high-voltage automotive MOSFET series 600 V CoolMOS™ CPA and 650 V CoolMOS™ CFDA, 800 V CoolMOS™ C3A and 650 V CoolMOS™ CFD7A, Infineon is perfectly prepared to take the challenges in the strongly growing automotive market.

Product series	Key features	Applications	Quality
600 V CoolMOS™ CPA	Best choice for demanding hard-switching applications - Lowest R _{DS(on)} per package - Lowest gate charge value Q _G	Hard-switching topologies (with SiC diode) PFC boost stages in on-board charger	Quality level well beyond the formal requirements of the AEC Q101 standard through Special screening measures in
650 V CoolMOS™ CFDA	Easy implementation of layout and design Integrated fast body diode Limited voltage overshoot during hard commutation – self-limiting dl/dt and dV/dt Low Q _{rr} at repetitive commutation on body diode and low Q _{oss}	Resonant-switching topologies DC-DC stage of OBC LLC or full-bridge phase shift (ZVS) in DC-DC converter HID lamp Active DC link discharge Pre-charge	front end, back end Mission-profile based qualifica- tion procedures
800 V CoolMOS™ C3A	Outstanding performance in terms of efficiency, thermal behavior and ease-of-use High blocking voltage	- Flyback low-power auxiliaries - On-board charger - HV-LV DC-DC converter - Battery disconnect unit - Traction inverter auxiliaries - DC-link pre-charge - DC-link active discharge - Isolation monitoring	
650 V CoolMOS™ CFD7A	Improved 650 V CoolMOS™ CFDA Higher application voltage possible (at the same proven reliability level) D²PAK 7-pin with increased creepage distance and Kelvin source Considerable improvement in key parameters (higher efficiency)	- On-board charger - Hard-switching topologies (with SiC diode) - PFC boost stages - DC-DC stage of OBC - HV-LV DC-DC converter - LLC or full-bridge phase shift (ZVS) - Auxiliary power supplies	

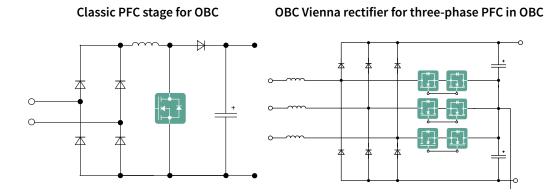
CoolMOS™ SJ MOSFET automotive – benchmark in quality and reliability

Robustness validation - example for thermal cycling test

Focus on top-notch quality and reliability without any compromise – that is the principle Infineon applies during development and qualification of all CoolMOS™ superjunction technologies. For our automotive grade derivatives, the great quality levels of the industrial-based technologies are further boosted by special screening measures in front- and back-end, as well as by extended qualification procedures. The Infineon robustness validation approach with extended stress-test procedures, doubling the real

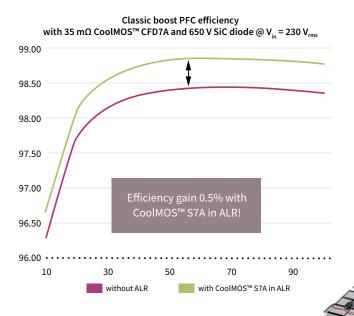
application requirements, is one of our key measures to ensure a quality level well beyond the formal requirements of the AEC Q101 standard. Aside from extended stress times on standard qualification tests, it comprises test procedures, specially developed by Infineon to ensure highest quality of e.g., the power metallization of our devices. Usage of robust package technologies, 100 percent gate oxide screening, and top-notch production monitoring, including yield screening measures, part average testing (PAT), statistical bin alarm (SBA), and pattern recognition procedures, complete our package to guarantee highest automotive quality. This holistic approach results in an unrivalled quality position of Infineon's CoolMOS™ SJ MOSFETs for automotive..

www.infineon.com/cfd7a www.infineon.com/coolmos-automotive



CoolMOS™ SJ MOSFET automotive – ready to support future application trends

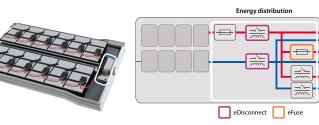
Driven by the carbon dioxide (CO₂) reduction initiatives, the market of plug-in hybrid PHEV and pure EV is strongly growing. Higher ranges of the electric vehicles are realized by increasing the battery capacity and the energy efficiency of the used electric components. The used battery voltage classes tend to become standardized at approximately 450 V with a trend towards the higher voltages, as this supports faster charging times and enables lighter cabling within the vehicle. Discrete high-voltage components are widely used for on-board charger (OBC) and DC-DC converter (LDC) applications, as price pressure increasingly displaces module-based solutions. The trend towards fast charging impacts on the power range demanded from OBC topologies. Presently, as well as in the past, a vast majority of OBC topologies have been found in the range up to 7.2 kW, whereas the future tends to stir the trend towards 11 kW or even up to 22 kW. This development, paired with a demand for high efficiency and power density at low system cost, is a strong driver for the usage of three-phase solutions.



While for the lower power OBC solutions classic PFC approaches are the well-established approaches in the market, the Vienna rectifier is the optimal solution for the higher power levels. As a true three-phase topology, it delivers full power if attached to a three-phase input but is flexible enough to run on a single-phase if required. The three-level topology minimizes the filter effort compared to other solutions. By using the doubled frequency on the magnetic components, it also helps to significantly reduce the size of the passives. As a three-level topology, the Vienna rectifier, followed by two paralleled DC-DC stages, furthermore leads to a relaxed voltage stress level on the power MOSFETs. This way, it enables to handle upcoming higher battery voltage levels. The R_{DS(on)}, required to yield a desired efficiency level in a Vienna Rectifier, is a function of applied switching frequency and demanded power level. With our 600 V CoolMOSTM CPA and 650 V CoolMOSTM CFDA portfolio, covering an R_{DS(on)} range from 45 to 660 mΩ, we are well-prepared to support your next-generation three-phase Vienna rectifier design. With CoolMOSTM you are ready to seize your share in the emerging high-power on-board charger markets.

600 V CoolMOS™ S7A

Best-in-class $R_{\scriptscriptstyle DS(on)}$ x A SJ MOSFET for slow-switching automotive applications


The automotive-grade 600 V CoolMOSTM S7A superjunction MOSFET addresses xEV applications where MOSFETs are switched at low frequency, such as HV eFuse, HV eDisconnect, and on-board charger in the slow-switching leg of the PFC stage. The more stringent requirements for increased power density, safety, and reliability in these applications are met by combining the superior robustness and performance of the S7A MOSFET with the innovative package concept offered by the QDPAK TSC. The new MOSFET design offers a cost-optimized, distinctively low on-resistance $R_{DS(on)}$ of $10 \text{ m}\Omega$, enabling increased power density and minimized conduction losses. The top-side cooled QDPAK package offers increased efficiency and controllability thanks to its intrinsic Kelvin source, high power dissipation capability, and innovative cooling concept.

CoolMOS[™] S7A is the ideal device for the ALR active line rectification in a classic boost PFC topology, which offers a power loss reduction up to 30 percent and an overall PLC efficiency improvement of 0.5 percent.

CoolMOS™ S7A is the semiconductor solution for HV eDisconnect and HV eFuse. It answers e-mobility needs with respect to reliability (maintenance-free), flexible and cost-optimized system integration, scalability, and minimized failure propagation.

HV power distribution unit

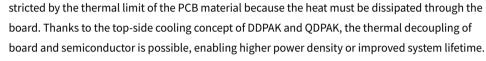
Features and benefits

Key features
– Best-in-class $R_{DS(on)}$: 10 m Ω
– Smallest R _{DS(on)} in SMD packages
- Optimized for conduction performance
- Industry's leading heat-sinking capability
- High pulse current capability
- Body diode robustness at AC line commutation
- Kelvin-source concept

Key benefits	
- Minimized conduction losses	
- Increased energy efficiency	
– More compact and easier designs	
- Increased power density	
– Lower TCO cost or BOM cost	
- Flexible system integration	
- Variable cooling strategy	

CoolMOS™ SJ MOSFET high-power package innovations

Space-saving and high performance packages



An SMD package for high efficiency and controllability in automotive applications

Innovative top-side cooled SMD solution for high-power applications

Top-side cooled Double & Quadruple DPAK (DDPAK + QDPAK) These top-side cooled surface mount device (SMD) packages address high-power SMPS applications such as PC power, solar, server and telecom as well as automotive applications like HV eDisconnect, HV eFuse and on-board charger. SMD-based SMPS designs support fast switching

Bottom-side cooled QDPAK

TO-263-7 (D²PAK-7-pin)

The bottom-side cooled surface mount device (SMD) packages address high-power SMPS applications such as solar, server, telecom as well as automotive applications. SMD-based SMPS designs support fast switching and help to reduce the parasitic inductance associated with long leaded package. Furthermore, SMD packages simplify assembly and reduce cost, while minimizing space requirements for the overall packages. The bottom-side cooled variant of QDPAK allow designers to benefit from these advantages, while implementing a more traditional cooling scheme for high power switches compared to the novel top-side cooled variants. Tried and tested PCB materials and assembly can be used, while improving the power path routing thanks to multiple source pins, as well as benefiting from advanced features such as multiple gate pins for safety applications.

The TO-263-7-pin package is a SMD package addressing automotive-specific requirements including high efficiency and controllability. The Kelvin source pin leads to reduced

and help to reduce the parasitic inductance associated with long leaded packages such as the common TO-220 and TO-247 package. In today's SMD-based designs, the output power is re-

switching losses. Furthermore, the 7-pin design increases the creepage distance at

the PCB and therefore helps to improve the manufacturability.

Innovative bottom-side cooled SMD solution for high-power applications

For highest efficiency and controllability in high-power SMPS markets

TO-247 4-pin with asymmetric leads

The TO-247 4-pin package with asymmetric leads is an optimized version of the standard TO-247 4-pin and enables highest efficiency and controllability in the high-power SMPS market. The fourth pin acts as a Kelvin source. The main current of the switch is placed outside of the gate loop and the feedback is eliminated. This leads to less switching losses, especially at high currents. Secondly, the EMI will be reduced due to cleaner waveforms. In addition, the asymmetric leads further improve the ease of use in the design-in process. Compared to the standard TO-247 4-pin the distance between the critical pins has been increased to enable simplified wave soldering and reduced board yield loss.

Enabling significant space savings

ThinPAK 8x8

With a very small footprint of only 64 mm² (vs. 150 mm² for the D²PAK) and a very low profile with only 1 mm height (vs. 4.4 mm for the D²PAK) the ThinPAK 8x8 leadless SMD package for high-voltage MOSFETs is a first choice to decrease system size in power-density driven designs. Low parasitic inductance and a separate 4-pin Kelvin source connection offer best efficiency and ease of use. The package is RoHS compliant with halogen-free mold compound.

Optimized for high-power applications

TO-Leadless

Combined with the CoolMOS™ C7 Gold (G7) technology, the TO-Leadless (TOLL) package is Infineon's flagship SMD package for high power/high current SMD solutions. Compared to D²PAK 7-pin, TO-Leadless shows a 30 percent reduction in footprint, yet offers improved thermal performance. This, and the 50 percent height reduction result in a significant advantage whenever highest power density is demanded. Equipped with 4-pin Kelvin source connection and low parasitic inductances the package offers best efficiency and ease of use. The package is MSL1 compliant and reflow solderable.

CoolMOS™ SJ MOSFET low-power package innovations

Addressing today's consumer needs

Cost-effective drop-in replacement for DPAK

SOT-223

The SOT-223 package without middle pin is a cost-effective alternative to DPAK, addressing the need for cost reductions in price-sensitive applications. It offers a smaller footprint, while still being pin-to-pin compatible with DPAK, thus, allowing a drop-in replacement for DPAK and second sourcing. Moreover, SOT-223 achieves comparable thermal performance to DPAK and enables customers to achieve improved form factors or space savings in designs with low power dissipation.

Solution for slim and small adapters and chargers

ThinPAK 5x6

ThinPAK 5x6 reduces the PCB area by 52 percent and height by 54 percent when compared to the DPAK package which is widely used in chargers and adapters. ThinPAK 5x6 is the right device to replace DPAK and meet the market demands of slimmer and smaller designs. Also, ThinPAK 5x6 enables a reduced charger and adapter case hot spot temperature by increasing the space between the MOSFET and the charger and adapter case.

Solution for height reduction in adapters and chargers

TO-220 FullPAK Narrow Lead

Infineon's TO-220 FullPAK Narrow Lead addresses customer needs with regards to height reduction requirements in adapter and charger applications. By offering an optimized standoff width and height and improved creepage distance, the package can be fully inserted into the PCB without any production concerns and, therefore, is especially suitable for slim and semi-slim adapter solutions.

Improved creepage distance for open frame power supplies

TO-220 FullPAK Wide Creepage

This package solution has an increased creepage distance between the pins to 4.25 mm compared to 2.54 mm of a TO-220 FullPAK package. It targets open frame power supplies such as TV sets and PC power, where dust can enter the case through air vents. Dust particles can reduce the effective creepage between pins over time, which may lead to high voltage arcing. The package meets the requirements of open frame power supplies without any additional measures. Thus, it reduces system cost by offering an alternative to frequently used approaches to increase creepage distance.

950 V CoolMOS™ PFD7

$\begin{matrix} R_{_{DS(on)}} \\ [m\Omega] \end{matrix}$	TO-220 FullPAK	TO247	TO252 (DPAK)	TO263 (D²PAK)
60		IPW95R60PFD7		
130	IPA95R130PFD7	IPW95R130PFD7		IPB95R130PFD7
310	IPA95R310PFD7	IPW95R310PFD7		IPB95R310PFD7
450	IPA95R450PFD7		IPD95R450PFD7	IPB95R450PFD7

950 V CoolMOS™ P7

$R_{_{DS(on)}} \ [m\Omega]$	TO-220	TO-220 FullPAK	SOT-223	TO-251 Long lead	TO-252 (DPAK)
450		IPA95R450P7			IPD95R450P7
750		IPA95R750P7		IPU95R750P7	IPD95R750P7
1200		IPA95R1K2P7	IPN95R1K2P7		IPD95R1K2P7
2000					IPD95R2K0P7
3700			IPN95R3K7P7	IPU95R3K7P7	

900 V CoolMOS™ C3

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220	TO-262 (I²PAK)	TO-263 (D²PAK)	TO-220 FullPAK	TO-247	TO-252 (DPAK)
120					IPW90R120C3	
340	IPP90R340C3	IPI90R340C3	IPB90R340C3	IPA90R340C3	IPW90R340C3	
500		IPI90R500C3		IPA90R500C3	IPW90R500C3	
800	IPP90R800C3			IPA90R800C3		
1200						IPD90R1K2C3

800 V CoolMOS™ P7

$R_{DS(on)}$ $[m\Omega]$	TO -220	TO-220 FullPAK	TO-247	TO-252 (DPAK)	TO-251 (IPAK)	SOT-223	TO-220 FullPAK narrow lead	ThinPAK 5x6
280	IPP80R280P7	IPA80R280P7	IPW80R280P7	IPD80R280P7				
360		IPA80R360P7	IPW80R360P7	IPD80R360P7			IPAN80R360P7	
450	IPP80R450P7	IPA80R450P7		IPD80R450P7				
600		IPA80R600P7		IPD80R600P7	IPU80R600P7	IPN80R600P7		IPLK80R600P7
750		IPA80R750P7		IPD80R750P7				IPLK80R750P7
900	IPP80R900P7	IPA80R900P7		IPD80R900P7	IPU80R900P7	IPN80R900P7		IPLK80R900P7
1200				IPD80R1K2P7				IPLK80R1K2P7
1400	IPP80R1K4P7	IPA80R1K4P7		IPD80R1K4P7	IPU80R1K4P7	IPN80R1K4P7		IPLK80R1K4P7
2000				IPD80R2K0P7	IPU80R2K0P7	IPN80R2K0P7		IPLK80R2K0P7
2400				IPD80R2K4P7		IPN80R2K4P7		
3300				IPD80R3K3P7		IPN80R3K3P7		
4500				IPD80R4K5P7	IPU80R4K5P7	IPN80R4K5P7		

www.infineon.com/coolmos www.infineon.com/c3

www.infineon.com/800v-p7 www.infineon.com/950v-p7

Gate-driver ICs

800 V CoolMOS™ CE

$R_{DS(on)}$ $[m\Omega]$	TO-220 FullPAK	TO-252 (DPAK)
310	IPA80R310CE	
460	IPA80R460CE	
650	IPA80R650CE	
1000	IPA80R1K0CE	IPD80R1K0CE
1400	IPA80R1K4CE	IPD80R1K4CE
2800		IPD80R2K8CF

800 V CoolMOS™ C3

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220	TO-263 (D²PAK)	TO-220 FullPAK	TO-247	TO-252 (DPAK)
85				SPW55N80C3	
290	SPP17N80C3	SPB17N80C3	SPA17N80C3	SPW17N80C3	
450	SPP11N80C3				
650	SPP08N80C3		SPA08N80C3		
900	SPP06N80C3		SPA06N80C3		SPD06N80C3
1300	SPP04N80C3				SPD04N80C3
2700					SPD02N80C3

700 V CoolMOS™ P7

$R_{_{DS(on)}}$ $[m\Omega]$	TO-251 (IPAK Short Lead)	TO-220 FullPAK	TO-252 (DPAK)	TO-220 FullPAK narrow lead	SOT-223	ThinPAK 5x6
360		IPA70R360P7S	IPD70R360P7S		IPN70R360P7S	
450	450				IPN70R450P7S	
600	00 IPS70R600P7S IPA70R600P7S		IPD70R600P7S	IPAN70R600P7S	IPN70R600P7S	IPLK70R600P7
750				IPAN70R750P7S		IPLK70R750P7
900			IPD70R900P7S		IPN70R900P7S	IPLK70R900P7
1200						IPLK70R1K2P7
1400	IPS70R1K4P7S		IPD70R1K4P7S		IPN70R1K4P7S	IPLK70R1K4P7
2000					IPN70R2K0P7S	IPLK70R2K0P7

650 V CoolMOS™ C7

$R_{_{DS(on)}} \ [m\Omega]$	TO-220	TO-263 (D²PAK)	TO-220 FullPAK	TO-247	TO-247 4-pin	TO-252 (DPAK)	ThinPAK 8x8
19				IPW65R019C7	IPZ65R019C7		
45	IPP65R045C7	IPB65R045C7	IPA65R045C7	IPW65R045C7	IPZ65R045C7		
65	IPP65R065C7	IPB65R065C7	IPA65R065C7	IPW65R065C7	IPZ65R065C7		
70							IPL65R070C7
95	IPP65R095C7	IPB65R095C7	IPA65R095C7	IPW65R095C7	IPZ65R095C7		
99							IPL65R099C7
125	IPP65R125C7	IPB65R125C7	IPA65R125C7	IPW65R125C7			
130							IPL65R130C7
190	IPP65R190C7	IPB65R190C7	IPA65R190C7	IPW65R190C7		IPD65R190C7	
195							IPL65R195C7
225	IPP65R225C7	IPB65R225C7	IPA65R225C7			IPD65R225C7	

650 V CoolMOS™ CE

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220 FullPAK	TO-252 (DPAK)	TO-220 FullPAK Narrow Lead
400	IPA65R400CE	IPD65R400CE	
650	IPA65R650CE	IPD65R650CE	IPAN65R650CE
1000	IPA65R1K0CE		

650 V CoolMOS™ CFD2

$R_{DS(on)}$ $[m\Omega]$	TO-220	TO-262 (I²PAK)	TO-263 (D²PAK)	TO-220 FullPAK	TO-247	TO-252 (DPAK)	ThinPAK 8x8
41					IPW65R041CFD		
80					IPW65R080CFD		
110	IPP65R110CFD		IPB65R110CFD	IPA65R110CFD	IPW65R110CFD		
150	IPP65R150CFD		IPB65R150CFD	IPA65R150CFD	IPW65R150CFD		
165							IPL65R165CFD
190	IPP65R190CFD	IPI65R190CFD	IPB65R190CFD	IPA65R190CFD	IPW65R190CFD		
210							
310	IPP65R310CFD		IPB65R310CFD	IPA65R310CFD			
420	IPP65R420CFD					IPD65R420CFD	
660						IPD65R660CFD	
950						IPD65R950CFD	

650 V CoolMOS™ CFD7

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220	TO-263 (D²PAK)	TO-247	TO-247 4-pin	TO-Leadless (TOLL)	ThinPAK 8x8	QDPAK BSC	QDPAK TSC
17							IPQC65R017CFD7*	IPDQ65R017CFD7
18			IPW65R018CFD7	IPZA65R018CFD7				
29			IPW65R029CFD7	IPZA65R029CFD7				IPDQ65R029CFD7
40					IPT65R040CFD7		IPQC65R040CFD7*	IPDQ65R040CFD7
41	IPP65R041CFD7	IPB65R041CFD7	IPW65R041CFD7					
60	IPP65R060CFD7		IPW65R060CFD7		IPT65R060CFD7			IPDQ65R060CFD7
65						IPL65R065CFD7		
80					IPT65R080CFD7			IPDQ65R080CFD7*
90	IPP65R090CFD7	IPB65R090CFD7	IPW65R090CFD7					
95						IPL65R095CFD7		
99					IPT65R099CFD7			IPDQ65R099CFD7
110	IPP65R110CFD7	IPB65R110CFD7	IPW65R110CFD7					
115						IPL65R115CFD7		
125		IPB65R125CFD7	IPW65R125CFD7		IPT65R125CFD7			IPDQ65R125CFD7
130						IPL65R130CFD7		
155	IPP65R155CFD7	IPB65R155CFD7	IPW65R155CFD7		IPT65R155CFD7			
160						IPL65R160CFD7		
190	IPP65R190CFD7				IPT65R190CFD7			
200						IPI 65R200CFD7		

www.infineon.com/coolmos www.infineon.com/g7 www.infineon.com/c7

www.infineon.com/cfd2 www.infineon.com/ce

Solutions

600 V CoolMOS™ PFD7

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220 FullPAK Narrow Leads	TO-252 (DPAK)	SOT-223	ThinPAK 5x6
125	IPAN60R125PFD7S			
210	IPAN60R210PFD7S	IPD60R210PFD7S		
280	IPAN60R280PFD7S	IPD60R280PFD7S		
360	IPAN60R360PFD7S	IPD60R360PFD7S	IPN60R360PFD7S	IPLK60R360PFD7
600		IPD60R600PFD7S	IPN60R600PFD7S	IPLK60R600PFD7
1000		IPD60R1K0PFD7S	IPN60R1K0PFD7S	IPLK60R1K0PFD7
1500		IPD60R1K5PFD7S	IPN60R1K5PFD7S	IPLK60R1K5PFD7
2000		IPD60R2K0PFD7S	IPN60R2K0PFD7S	

EV charger

600 V CoolMOS™ P7 industrial grade

$R_{DS(on)}$ $[m\Omega]$	TO -220	TO-220 FullPAK	TO-247	TO-252 (DPAK)	ThinPAK 8x8	TO-263 (D²PAK)
24			IPW60R024P7			
37			IPW60R037P7			
45			IPW60R045P7			IPB60R045P7
60	IPP60R060P7	IPA60R060P7	IPW60R060P7			IPB60R060P7
65					IPL60R065P7	
80	IPP60R080P7	IPA60R080P7	IPW60R080P7		IPL60R085P7	IPB60R080P7
99	IPP60R099P7	IPA60R099P7	IPW60R099P7			IPB60R099P7
105					IPL60R105P7	
120	IPP60R120P7	IPA60R120P7	IPW60R120P7			IPB60R120P7
125					IPL60R125P7	
160	IPP60R160P7	IPA60R160P7				
180	IPP60R180P7	IPA60R180P7	IPW60R180P7	IPD60R180P7		IPB60R180P7
185					IPL60R185P7	
280	IPP60R280P7	IPA60R280P7		IPD60R280P7		IPB60R280P7
285					IPL60R285P7	
360	IPP60R360P7			IPD60R360P7		IPB60R360P7
365						
600	IPP60R600P7	IPA60R600P7		IPD60R600P7		

TO-220

FullPAK Narrow lead

IPAN60R180P7S

600 V CoolMOS™ P7 standard grade

TO-220 FullPAK

SOT-223

600 V CoolMOS™ CFD7

IPA60R180P7S

IPA60R280P7S

IPA60R360P7S

IPA60R600P7S

 $R_{DS(on)}$ $[m\Omega]$

180

280

360

600

TO-252

(DPAK)

IPD60R180P7S

IPD60R280P7S

IPD60R360P7S

IPD60R600P7S

IPN60R360P7S

IPN60R600P7S

ď	

$R_{\scriptscriptstyle{DS(on)}}\ [m\Omega]$	TO-220	TO-263 (D²PAK)	TO-220 FullPAK	TO-247	TO-252 (DPAK)	ThinPAK 8x8	DDPAK	TO-Leadless (TOLL)	QDPAK
15									IPDQ60R015CFD7*
18				IPW60R018CFD7					
20									IPDQ60R020CFD7*
24				IPW60R024CFD7					
25									IPDQ60R025CFD7*
31/35				IPW60R031CFD7				IPT60R035CFD7	IPDQ60R035CFD7*
40/45		IPB60R040CFD7		IPW60R040CFD7			IPDD60R045CFD7	IPT60R045CFD7	IPDQ60R045CFD7*
55		IPB60R055CFD7		IPW60R055CFD7			IPDD60R055CFD7	IPT60R055CFD7	IPDQ60R055CFD7
60						IPL60R060CFD7			
70	IPP60R070CFD7	IPB60R070CFD7		IPW60R070CFD7					
75						IPL60R075CFD7	IPDD60R075CFD7	IPT60R075CFD7	IPDQ60R075CFD7*
90/95	IPP60R090CFD7	IPB60R090CFD7		IPW60R090CFD7		IPL60R095CFD7	IPDD60R090CFD7	IPT60R090CFD7	
105/115	IPP60R105CFD7	IPB60R105CFD7		IPW60R105CFD7		IPL60R115CFD7	IPDD60R105CFD7	IPT60R105CFD7	
125/140	IPP60R125CFD7		IPA60R125CFD7	IPW60R125CFD7			IPDD60R125CFD7	IPT60R125CFD7	
145/160	IPP60R145CFD7				IPD60R145CFD7	IPL60R160CFD7	IPDD60R145CFD7		
170	IPP60R170CFD7		IPA60R170CFD7		IPD60R170CFD7		IPDD60R170CFD7		
185						IPL60R185CFD7			
210/225	IPP60R210CFD7								

280

600 V CoolMOS™ S7

$R_{DS(on)}$ $[m\Omega]$	TO -220	TO-Leadless (TOLL)	TO-Leadless (TOLL) incl. temperature sensor	QDPAK BSC incl. temperature sensor	QDPAK TSC incl. temperature sensor	QDPAK TSC	QDPAK BSC
10				IPQC60T010S7*	IPDQ60T010S7*	IPDQ60R010S7	IPQC60R010S7
17				IPQC60T017S7*	IPDQ60T017S7*	IPDQ60R017S7	IPQC60R017S7
22	IPP60R022S7	IPT60R022S7	IPT60T022S7*	IPQC60T022S7*	IPDQ60T022S7*	IPDQ60R022S7	
40	IPP60R040S7	IPT60R040S7	IPT60T040S7*			IPDQ60R040S7	IPQC60R040S7
65	IPP60R065S7	IPT60R065S7	IPT60T065S7*			IPDQ60R065S7	

600 V CoolMOS™ C7 Gold (G-series)

$R_{_{DS(on)}}$ $[m\Omega]$	TO-Leadless (TOLL)	TO-252 (Double DPAK)
28	IPT60R028G7	
50	IPT60R050G7	IPDD60R050G7
80	IPT60R080G7	IPDD60R080G7
102	IPT60R102G7	IPDD60R102G7
125	IPT60R125G7	IPDD60R125G7
150	IPT60R150G7	IPDD60R150G7
190		IPDD60R190G7

600 V CoolMOS™ C7

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220	TO-263 (D²PAK)	TO-220 FullPAK	TO-247	TO-247 4-pin	TO-252 (DPAK)	ThinPAK 8x8
17				IPW60R017C7	IPZ60R017C7		
40	IPP60R040C7	IPB60R040C7		IPW60R040C7	IPZ60R040C7		
60	IPP60R060C7	IPB60R060C7	IPA60R060C7	IPW60R060C7	IPZ60R060C7		
65							IPL60R065C7
99	IPP60R099C7	IPB60R099C7	IPA60R099C7	IPW60R099C7	IPZ60R099C7		
104							IPL60R104C7
120	IPP60R120C7		IPA60R120C7	IPW60R120C7			
125							IPL60R125C7
180	IPP60R180C7	IPB60R180C7	IPA60R180C7	IPW60R180C7		IPD60R180C7	
185							IPL60R185C7

TO-247

IPW60R041P6

IPW60R070P6

IPW60R099P6

IPW60R125P6

IPW60R160P6

IPW60R190P6

600 V CoolMOS™ P6

TO-220

IPP60R099P6

IPP60R125P6

IPP60R160P6

IPP60R190P6

 $\begin{matrix} R_{_{DS(on)}} \\ [m\Omega] \end{matrix}$

41

70

99

125

180

210 230

255

280

330/360 380

> 600 650

TO-220 FullPAK

IPA60R099P6

IPA60R125P6

IPA60R160P6

IPA60R190P6

IPA60R230P6

IPA60R280P6

IPA60R380P6

IPA60R600P6

TO-263 (D²PAK)

IPB60R160P6

IPB60R280P6

TO-252 (DPAK)

IPD60R380P6

IPD60R600P6

TO-247 4-pin

IPZ60R099P6

ThinPAK 5x6

ThinPAK 8x8

IPL60R210P6

www.infineon.com/coolmos
www.infineon.com/c7

IPL60R360P6S

IPL60R650P6S

600 V CoolMOS™ CE

Gate-driver ICs

$R_{DS(on)}$ [m Ω]	TO-220 FullPAK	TO-252 (DPAK)	TO-251 (IPAK)	SOT-223	TO-220 FullPAK Narrow Lead
190					
280					
380					
400	IPA60R400CE	IPD60R400CE			
460					
600					
650	IPA60R650CE	IPD60R650CE			
800		IPD60R800CE			
1000	IPA60R1K0CE	IPD60R1K0CE		IPN60R1K0CE	
1500		IPD60R1K5CE	IPU60R1K5CE	IPN60R1K5CE	
2100		IPD60R2K1CE	IPU60R2K1CE	IPN60R2K1CE	
3400		IPD60R3K4CE		IPN60R3K4CE	

500 V CoolMOS™ CE

ſ	١	0	
Ţ	Ţ	П	
LED			

$R_{_{DS(on)}}$ $[m\Omega]$	TO-220	TO-220 FullPAK	TO-252 (DPAK)	SOT-223
190	IPP50R190CE	IPA50R190CE		
280	IPP50R280CE	IPA50R280CE	IPD50R280CE	
380	IPP50R380CE	IPA50R380CE	IPD50R380CE	
500		IPA50R500CE	IPD50R500CE	
650				
800		IPA50R800CE		
950		IPA50R950CE	IPD50R950CE	
1400				IPN50R1K4CE
2000			IPD50R2K0CE	IPN50R2K0CE
3000			IPD50R3K0CE	

CoolMOS™ SJ MOSFET automotive

800 V CoolMOS™ C3A

$R_{DS(on)}$ @ $T_j = 25^{\circ}C$ $V_{GS} = 10 V$ $[m\Omega]$	TO-247	TO-252 (DPAK)	TO-263 (D ² PAK)
290	IPW80R290C3A		IPB80R290C3A
2700		IPD80B2K7C3A	

650 V CoolMOS™ CFDA

$R_{DS(on)}$ @ $T_J = 25$ °C $V_{GS} = 10 \text{ V}$ [$m\Omega$]	TO-220	TO-247	TO-252 (DPAK)	TO-263 (D²PAK)
48		IPW65R048CFDA		
80		IPW65R080CFDA		
110	IPP65R110CFDA	IPW65R110CFDA		IPB65R110CFDA
150	IPP65R150CFDA	IPW65R150CFDA		IPB65R150CFDA
190				IPB65R190CFDA
310				IPB65R310CFDA
420			IPD65R420CFDA	
660			IPD65R660CFDA	IPB65R660CFDA

www.infineon.com/coolmos www.infineon.com/coolmos-automotive www.infineon.com/cfda

Gate-driver ICs

650 V CoolMOS™ CFD7A

$R_{DS(on)}$ @ $T_J = 25^{\circ}C$ $V_{GS} = 10 V$ [$m\Omega$]	TO-220	TO-247	TO-247 Short leads	TO-263-3 (D ² PAK 3-pin)	TO-263-7 (D ² PAK 7-pin)	QDPAK BSC	QDPAK TSC
17						IPQC65R017CFD7A	IPDQ65R017CFD7A
22		IPW65R022CFD7A	IPWS65R022CFD7A				
29							
35		IPW65R035CFD7A	IPWS65R035CFD7A				
40						IPQC65R040CFD7A	IPDQ65R040CFD7A
50	IPP65R050CFD7A	IPW65R050CFD7A	IPWS65R050CFD7A	IPB65R050CFD7A	IPBE65R050CFD7A		
60							
75	IPP65R075CFD7A	IPW65R075CFD7A	IPWS65R075CFD7A	IPB65R075CFD7A	IPBE65R075CFD7A		
80							
99	IPP65R099CFD7A	IPW65R099CFD7A		IPB65R099CFD7A	IPBE65R099CFD7A		
115	IPP65R115CFD7A	IPW65R115CFD7A		IPB65R115CFD7A	IPBE65R115CFD7A		
125						IPQC65R125CFD7A	IPDQ65R125CFD7A
145	IPP65R145CFD7A	IPW65R145CFD7A		IPB65R145CFD7A	IPBE65R145CFD7A		
190	IPP65R190CFD7A	IPW65R190CFD7A		IPB65R190CFD7A	IPBE65R190CFD7A		
230				IPB65R230CFD7A	IPBE65R230CFD7A		

600 V CoolMOS™ CPA

4	DC
	-LV DC-D onverter

$R_{DS(on)}$ @ $T_J = 25$ °C $V_{GS} = 10 \text{ V}$ [$m\Omega$]	TO-247	TO-263 (D²PAK)
45	IPW60R045CPA	
75	IPW60R075CPA	
99	IPW60R099CPA	IPB60R099CPA

600 V CoolMOS™ S7A

$R_{DS(on)} @ T_J = 25^{\circ}C$ $V_{GS} = 10 V$ [$m\Omega$]	QDPAK TSC	QDPAK BSC
40	IPDQ60R040S7A	IPQC60R040S7A
22	IPDQ60R022S7A	
17	IPDQ60R017S7A	IPQC60R017S7A
10	IPDQ60R010S7A	IPQC60R010S7A

www.infineon.com/coolmos-automotive www.infineon.com/cfd7a www.infineon.com/s7a

CoolMOS™ SJ MOSFETs – packages

SOT-223

						R _{DS(or}	_{n)} [mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
500	CE								650/800	950/1400	2000/3000
	P7						360	600			
600	CE									1000/1500	2100/3400
	PFD7						360	600		1000/1500	2000
700	P7						360	450/600	750	900/1200/1400	2000
700	CE									1500	
800	P7								600/750	900/1200/1400	2000/2400/ 3300/4500
950	P7									1200	2000/3700

TO-247

						R _{DS(on)} [n	nΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
	P7	24/37/45	60/80	99/120	180						
	C7	17/40	60	99/120	180						
600	P6	41	70	99/125	160/190	280					
600	CFD7	18/24/31/37/40/55	70	90/105/125/145	170						
	CPA	45	75	99							
	С3		70	100	160/190						
	CFD7	18/29/37/41	60	90/110/125	155						
	C7	19/45	65	95/125	190						
650	CFD2	41	80	110	150/190			420			
	CFDA	48	80	110	150/190						
	CFD7A	22/35/50	75	99/115/145	190	230					
900	P7					280	360				
800	С3		85			290					
900	С3			120			340	500			
950	PFD7		60	130*			310				

TO-247 short leads

						R _{DS(on)}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
650	CFD7A	22/35/50	75								

TO-247 4-pin

						R _{DS(on)}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
500	C 7	17/40	60	99							
600	P6			99							
650	C 7	19/45	65	95							

TO-247 4-pin asymmetric leads

						R _{DS(on)}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
600	P7	24/37/45	60/80	99/120	180						
650	CFD7	18/29									

www.infineon.com/coolmos-latest-packages

IPAK

						R _{DS(on}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
600	CE									1500	2100
800	P7							600	750	900/1200/1400	2000/2400 3300/4500
950	P7							450	750	1200	2000/3700

IPAK Short Lead

						R _{DS(on}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
700	P7						360/600			900/1400	

I^2PAK

						R _{DS(on}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
500	СРА			99/125	165/199						
600	C6				190						
CEO	CFD2				190						
650	C6				190		380				
900	C3						340	500			

DPAK

						_					
			,	,	,	R _{DS(on}	[mΩ]		,	,	
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
500	CE					280	380	500	650/800	950	3000
	P7				180	280	360	600			
	C 7				180						
600	CE						400		650/800	1000/1500	2100/3400
800	P6						380	600			
	CFD7			145	170	210/280	360				
	PFD7					210/280	360	600		1000/1500	2000
650	C7				190	225					
	CE						400		650		
650	CFD2							420	660	950	
	CFDA							420	660		
700	P7						360	600		900/1400	
	P7					280	360	450/600	750	900/1200/1400	2000/2400 3300/4500
800	С3									900/1300	2700
	СЗА										2700
	CE									1000/1400	2800
900	С3									1200	
950	P7							450	750	1200	2000
	PFD7							450			

www.infineon.com/coolmos-latest-packages

Solutions

D²PAK

						R _{DS(on}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
	C7	40	60	99/120	180						
	P7	45	60/80	99/120	180	280	360				
600	CPA			99							
	CFD7	40 55	70	90/105 125/145	170	210 280	360				
	CFD7	41		90/110/125	155						
	C7	45	65	95/125	190	225					
650	CFD2			110	150/190		310				
	CFDA			110	150/190		310		660		
	CFD7A	50	75	99 /115/145	190	230					
800	СЗА					290					
900	С3						340				

D²PAK 7-pin

						R _{DS(on)}	[mΩ]					
Voltage [V]	Series	0-59										
650	CFD7A	50	75 99 /115 145/190 230									

Double DPAK (DDPAK)

						R _{DS(on)}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
600	CFD7	45/55	75	90/105/ 125/145	170						
	G7	50	80	102/125	150/190						

QDPAK TSC

			$R_{DS(on)}[m\Omega]$											
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500			
500	S 7	10/17/22/40	65											
600	S7A	10/17/22/40												
CEO.	CFD7	17*/29*/40*	60*/80*	99*/125*										
650	CFD7A	17*/29*/40*	60*/80*	99*/125*										

QDPAK BSC

						R _{DS(on)}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
	S 7	10/17*/22*/40*									
600	S7A	10/17*/22*/40*									
650	CFD7	17*/29*/40*	60*								
	CFD7A	17*/40*		125*							

TO-220 FullPAK

						R _{DS(on}	₎ [mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
500	CE				190	280	380	500	800	950	
	P7		60/80	99/120	160/180	280		600			
	C7		60	99/120	180						
600	CE						400		650	1000	
600	CFD7			125	170	280	360				
	P6			99/125	160/190	230/280	380	600			
	С3				190	280	380	600			
	C7	45	65	95/125	190	225					
650	CE						400		650	1000	
	CFD2			110	150/190		310	420	660		
700	P7						360	600		900	
	P7					280	360	450/600	750	900/1400	
800	С3					290			650	900	
	CE						310	460	650	1000/1400	
900	С3						340	500	800	1000/1200	
950	P7							450	750	1200	
	PFD7			130*			310	450			

TO-220 FullPAK Narrow Lead

			$R_{DS(on)}[m\Omega]$								
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
	CE								650		
600	P7				180						
	PFD7			125		210/280	360				
650	CE								650		
700	P7						360	600	750		
800	P7					280	360	450			

TO-Leadless

Solutions

TO-220

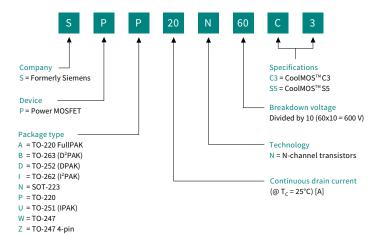
						R _{DS(on)}	[mΩ]				
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
500	CE				190	280	380				
	P7		60/80	99/120	160/180	280	360	600			
600	C7	40	60	99/120	180						
	P6			99/125	160/190						
	CFD7		70	90/105/ 125/145	170	280	360				
	S7	22									
	С3			160	190	280	380	600			
	CFD7	41	60	90/110	155	190					
	C7	45	65	95/125	190	225					
650	CFD2			110	150/190		310	420			
	CFDA			110	150						
	CFD7A	50/75*		99 /115 /145*	190						
900	P7					280	360	450/600	750	900/1200/1400	
800	С3					290		450	650	900/1300	

TO-220 FullPAK Wide Creepage

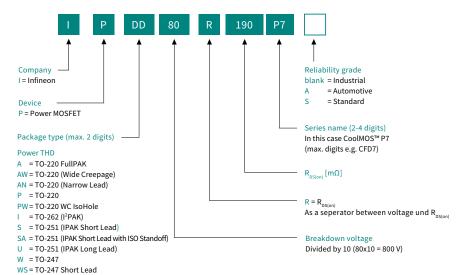
		$R_{DS(on)}[m\Omega]$									
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500
600	P7					280	360	600			
600	CE				190	280	380	600			
700	CE							600		950	

ThinPAK 5x6

			$R_{DS(on)}\left[m\Omega ight]$									
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500	
600	PFD7						360	600		1000/1500		
700	P7							600	750	900/1200/1400	2000	
800	Pi							600	750	900/1200/1400	2000	


ThinPAK 8x8

	Thin 7 it ox											
			$R_{_{DS(\mathrm{on})}}$ [m Ω]									
Voltage [V]	Series	0-59	60-89	90-149	150-199	200-299	300-400	401-600	601-899	900-1500	>1500	
500	P7		65/85	105/125	185	285						
	C7		65	104/125	185							
600	CFD7		60/75	95/115/140	160/185	225						
	P6				180	210						
	CFD7		65	95/115/130	160	200						
650	С7		70	99/130	195	230						
	CFD2				165		340					


ACTIVE & PREFERRED

Nomenclature

Power MOSFETs (until 2005)

Power MOSFETs (from October 2015 onwards)

Standard SMD

B = TO-263 (D²PAK)

Z = TO-247 4-pin ZA = TO-247 4-pin asymmetric

- D = TO-252 (DPAK)
- N = SOT-223

Power SMD

BE = TO-263 HV 7-pin

T = TO-Leadless

DC = TO-252 (Double DPAK) BSC DD = TO-252 (Double DPAK) TSC

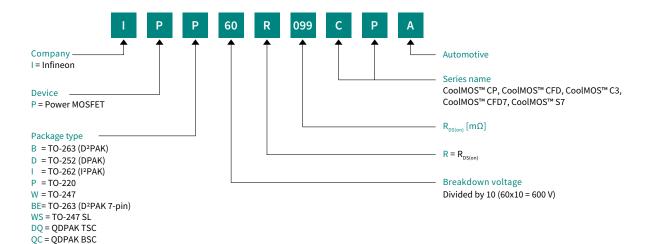
DQ = TO-252 (HDSOP Quadruple DPAK) TSC

QC = TO-252 (HDSOP Quadruple DPAK) BSC

Power leadless

L = ThinPAK 8x8

LK = ThinPAK 5x6 Kelvin source


LS = ThinPAK 5x6 TA = ThinTOLL 8x8

TB = ThinTOLL 5x6

Others

C = Bare die

Automotive MOSFETs

Infineon support for high-voltage MOSFETs

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/coolmos www.infineon.com/coolmos-latest-packages www.infineon.com/coolmos-automotive www.infineon.com/gan

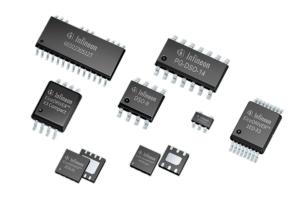
Evaluationboards and simulation models

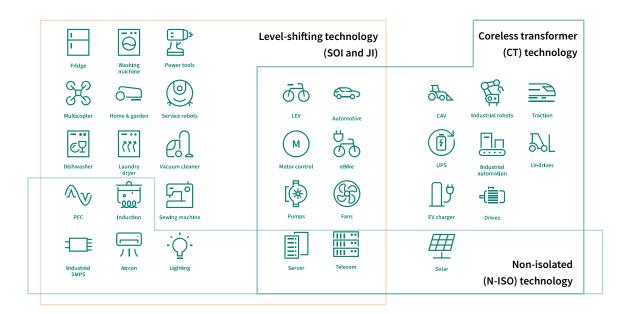
www.infineon.com/coolmos-boards www.infineon.com/powermosfet-simulationmodels

upport Evaluation box

o: 1 ::

Gate-driver ICs


- Infineon gate-driver IC applications
- Driver configuration overview
- Infineon gate-driver IC technologies
- How to choose a gate driver
- Infineon gate driver IC package options
- Gate-driver ICs for GaN HEMTs
- Gate-driver ICs portfolio
- Infineon solid-state relay package options
- Gate-driver ICs for SiC MOSFETs
- EiceDRIVER™ non-isolated low-side gate drivers
- 2EDN EiceDRIVER™ family
- EiceDRIVER ™ 1EDN71x6G/U family
- EiceDRIVER™ 1EDL8011, 135 V high-side driver
- EiceDRIVER™ 2EDL8x2x family


- MOTIX[™] 6EDL7141 high performance motor control
- MOTIX™ 3-phase smart gate drive controller IC
- MOTIX[™] 160 V SOI gate-driver family
- EiceDRIVER™ 650 V level-shift SOI gate driver family
- EiceDRIVER™ 1200 V level-shift SOI gate driver family
- 2EDi EiceDRIVER™ family
- EiceDRIVER™ X3 Compact and 2L-SRC Compact
- EiceDRIVER™ Enhanced 1ED-F3 and X3 Analog
- EiceDRIVER™ Enhanced X3 Digital
- EiceDRIVER™ APD 2ED4820-EM
- EiceDRIVER™ 1EDI302xAS/1EDI303xAS
- Infineon solid-state relays (SSR) technologies
- Gate driver nomenclature

Infineon gate-driver IC applications

Leveraging the application expertise and advanced technologies of Infineon and International Rectifier,

EiceDRIVER™ gate-driver ICs are well-suited for many applications such as industrial motor drives, home appliances, solar inverters, automotive applications, EV-charging, UPS, switch-mode power supplies (SMPS), high-voltage lighting, battery-powered applications, and so on.

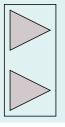
Infineon gate-driver IC technologies

Non-Isolated GD	Level-s	sniπ GD	Isolated GD
Non-isolated (N-ISO)	Junction isolation (JI)	Silicon on insulator (SOI)	Coreless transformer (CT)
Monolithic construction of ground-reference gate drivers for 20 V to 35 V supply voltage applications Comprehensive families of single- and dual-low-side drivers with flexible options for output current, logic configurations and UVLOs (plus non-isolated TDI) Uses rugged and high-performance technologies of HVIC process or state-of-the-art 130 nm process	Monolithic construction of one to six gate drive channels up to 1200 V rating Industrial pioneering high-voltage IC (HVIC) technology used in all high-voltage gate drive applications Gen 2 technology (IR prefix): Industrial pioneering HVIC process Gen 5 technology (IRS prefix): Cost-effective pin-to-pin versions of Gen 2	Monolithic construction of 2 to 6 gate drive channels up to 1200 V rating Built-in PN-based bootstrap diode (36 Ω typ.) for simplified bootstrap operation & reduced PCB area Negative transient immunity to prevent latch-up: -100 V for 300 ns >50 percent lower level-shift losses for higher efficiency, higher frequency operation, smaller heat sinks, and	Two separate chips solution with magnetic coupling providing galvanically isolated single- and dual channel gate drivers VDE 0884-11 isolation technology providing isolation up to 8 kVpk V _{IOTM} and up to ±2300 V functional isolation CMTI of more than 300 V/ns Strongest gate-drive output currents (up to ±18 A) reducing need for exter-
		higher reliability	nal booster

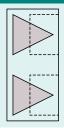
Driver configuration overview

1-channel low-side driver

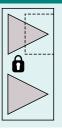
Allows low offset of the voltage between input and output


1-channel high-side driver

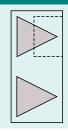
Allows high voltage offset between input and output


2-channel low-side driver

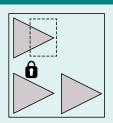
Both channels allow individual low voltage offsets, no interlock


2-channel high-side driver

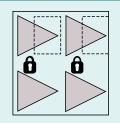
Both channels allow individual high voltage offsets, no interlock


Half-bridge driver

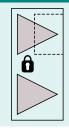
Two interlocked channels for shoot through protection where one of the channels allows a high voltage offset.


High- and low-side driver

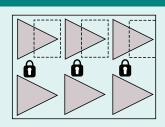
Two non-interlocked channels, one for high voltage, one for low voltage offsets. The industry may also refer this as half-bridge.


Half-bridge plus single low-side driver

Half-bridge with one additional low-side driver.


Full-bridge driver

Four channels in a package with two independent half bridges.


Synchronous-buck drivers

High speed drivers for dual high side and low side MOSFETs in synchronous rectified buck converters.

Three-phase bridge

Six channels in a package with three independent half bridges

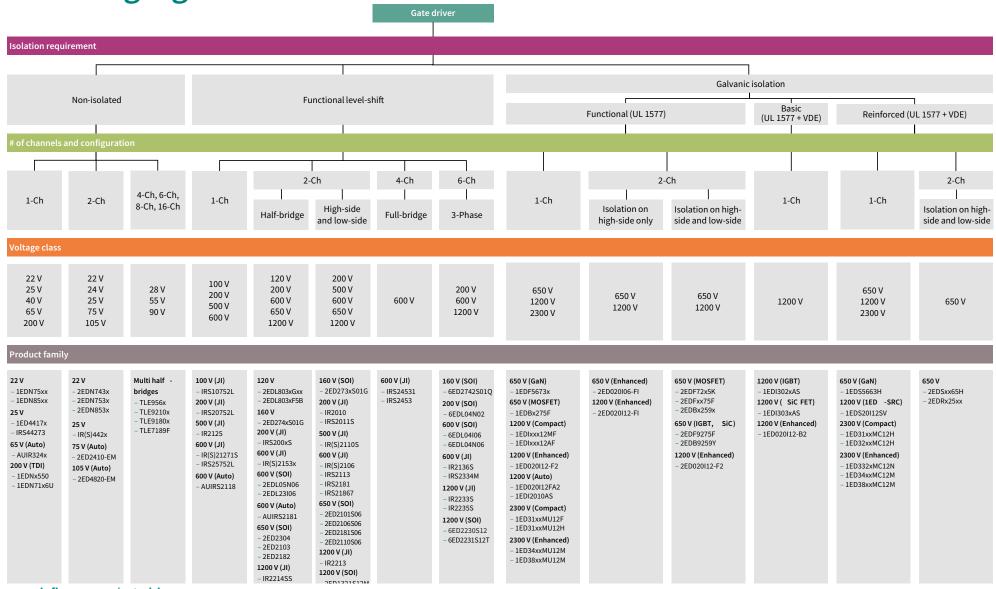
www.infineon.com/gatedriver

EiceDRIVER™ and MOTIX™ gate-driver IC

Gate-driver ICs serve as the interface between control signals (digital or analog controllers) and power switches (IGBTs, MOSFETs, SiC MOSFETs, and GaN HEMTs). Integrated gate driver solutions reduce design complexity, development time, bill of materials (BOM), and board space while improving reliability over discretely-implemented gate-drive solutions.

Every switch needs a driver, the right driver makes a difference. Infineon offers a comprehensive portfolio of EiceDRIVER™ gate-driver ICs with a variety of configurations, voltage classes, isolation levels, protection features, and package options. EiceDRIVER™ gate-driver ICs are complementary to Infineon IGBT discretes and modules, silicon (CoolMOS™, OptiMOS™ and StrongIRFET™) and silicon carbide MOSFETs (CoolSiC™), gallium nitride HEMTs (CoolGaN™), or as part of integrated power modules (CIPOS™ IPM and iMOTION™ IPM).

In addition, MOTIX™ gate driver is part of the MOTIX™ scalable product portfolio for low-voltage motor control solutions including MOTIX™ Driver, MOTIX™ Bridge, MOTIX™ SBC, and MOTIX™ MCU.


Gate driver config	uration		25 V	25 - 105 V	200 V	500 V	600 V	650 V	1200 V	2300 V
		Isolated								
	1-Channel	High-side								
		Low-side								
		Isolated								
Gate drivers		High-side								
Gate univers	2-Channel	Low-side								
		High-side + Low-side								
		Half-bridge								
	4-Channel	Half-bridge								
	6-Channel	Three-phase								
	Non-isolated	(N-ISO) Junction isol	ation (JI)	Silicon or	n insulator (SC	oi) 💮 c	oreless transfo	rmer (CT)		

Note 1 Voltage class on the top row is defined base on different driver configurations for the maximum Voltage class.

- votage class on the top row is defined base on different driver. Comigurations for the maximum votage class.

 1. For single high-side, high-side and low-side, half bridge and three phase gate drivers, voltage class is defined as switch break down voltage in applications.
- 2. For low side drivers (N-ISO), voltage class is defined as maximum operating range supply voltage.
- 3. For special cases as IEDNx550 (IEDN-TDI, N-ISO), voltage class is defined as maximum bus voltage (highest floating voltage it can manage).

Choosing a gate-driver IC

www.infineon.com/gatedriver

500-950 V MOSFETs

IGBT discretes and silicon power diodes

Infineon gate-driver IC package options

DSO-8 (SOIC-8N)	(i) Infinen	DSO-24 (DSO-28 without 4 pins)	G lolinor Constitution of the Constitution of	TSSOP-8	1818 102
DSO-8 with power pad		DSO-28 (SOIC-28WB)	G Minon Cooks	TSSOP-28	S Inlinear
DSO-8 300-mil (SOIC-8WB)	G Minney	DSO-36	is Infinence	VDSON-8	The state of the s
DSO-14 (SOIC-14N)	G Inlinear	LCC-32 (PLCC-44)	TOR PLECAS	VQFN-14 (MLPQ 4X4 14L)	
DSO-14 150mil	G Introce	LQFP-64	on hillings of the second	VQFN-28 (MLPQ 5x5 28L)	
DSO-14 300mil	G Intimum Constitution	MQFP-64	TOR TOWN	VQFN-32 5x5 mm	
DSO-16	1 2 2 2 2 2 3 5 T	SOT23-5	a Influora	VQFN-34 (MLPQ 7Xx7 48L)	
DSO-16 300-mil (SOIC-16WB)	d Inlinear	SOT23-6	a Infineon	VQFN-48	
DSO-16 (fine pitch)	O Million Diffy	SSOP-24	TOR	VSON-10 3x3 mm	d Islands
DSO-18	© Infineon	TFLGA-13	and	WSON-6	
DSO-19	d Infineon	TQFN-48		WSON-8	
DSO-20 (SOIC-20WB)	TER THITITITI	TSDSO-24	mmmm more	СНІР	
DSO-20 (fine pitch)	G Iniman	TSNP-6			
DSO-20 WB		TSNP-7	O MANUEL STATE OF THE PARTY OF		

Gate-driver ICs for GaN HEMTs

GaN HEMTs represent a key technology for modern power electronics systems, providing high efficiency and power density. Infineon's CoolGaN™ HEMT families and EiceDRIVER™ gate-driver ICs are designed to provide the best possible performance in GaN-based systems, minimizing R&D effort and cost. Infineon offers a broad range of EiceDRIVER™ gate-driver ICs optimized for driving GaN GIT (gate injection transistor) and SG (Schottky gate) HEMTs.

Recommended drivers for GaN GIT HEMTs and 650 V GaN HEMTs

Infineon's CoolGaN™ GIT technology is based on a hybrid-drain HEMT with p-GaN gate resulting in a robust normallyoff power switch. To deal with the particularities of this concept, an innovative differential gate-drive concept has been implemented in tailor-made gate driver ICs of the EiceDRIVER™ 1EDx56x3 product family optimized for CoolGaN™ GIT HEMTs. These drivers ensure robust and highly efficient operation of the high-voltage GaN switch, and at the same time concurrently minimizing R&D efforts and shortening time-to-market. Infineon's EiceDRIVER™ 1EDx56x3 provide negative V_{cs} voltage, which leads to safe off-states during switching transients. Additionally, it protects the GaN switch against spurious turn-on, even for the first pulse or after a burst mode operation. Thanks to the integrated galvanic isolation, Infineon's EiceDRIVER™ GaN gate-driver ICs are best suited to drive high-voltage GaN HEMTs in hard-switching halfbridge applications, such as the totem-pole PFC topology. If the PWM signals have to cross the safe isolation barrier, such as in the resonant LLC with secondary-side control, the 1EDS5663H with reinforced isolation is the right choice. Nevertheless, in many applications, standard gate-driver ICs with right fit UVLO protection can also be employed when coupled to an RC circuit to generate both the required small steady-state current and the turn-on/turn-off peak currents. Dual-channel drivers of the EiceDRIVER™ 2EDxx259 product family feature dead-time control (DTC) and shoot-through protection (STP) to ensure safe operation in half-bridge topologies using a single IC. A hybrid gate driving configuration for half-bridge topologies, composed of two single-channel gate driver ICs of the EiceDRIVER™ 1EDBx275F and 1EDNx550B, allows optimizing the driver IC placement on the PCB in order to minimize the gate loop parasitic inductances. This results in a PCB area saving (compared with a dual-channel gate-driver IC) and it comes with a highly competitive bill-of-material (BOM).

To summarize, the 1-channel and 2-channel gate-driver ICs of the EiceDRIVER™ family are the best choices to match with Infineon's CoolGaN™ GIT HEMTs and other 650 GaN HEMTs technologies (e.g., Schottky gate, Cascode) to achieve an optimum combination of efficiency, power density, and robustness in high-performance power conversion applications.

Product family	Part number	Current peak sink/ source	VCC2 (-Vee2)	UVLO*	Prop delay	СМТІ	Other features	Package
1EDi-G1	1EDF5673K	4 A / -8 A	20 V	5 V	37 ns	200 V/ns	Gate driver ICs for high-voltage GaN power switches (CoolGaN™, GIT	LGA-13 5x5mm
	1EDF5673F						technology based products), functional isolation	DSO-16 150 mil
	1EDS5663H						Gate driver ICs for high-voltage GaN power switches (CoolGaN™, GIT technology based products), reinforced isolation, UL 1577	DSO-16 300 mil
1EDB	1EDB7275F	5 A / -9 A	20 V	4 V	45 ns	300 V/ns	Separate source/sink outputs, fast start-up times and fast recovery,	DSO-8 150 mil
	1EDB8275F			8 V			basic isolation, UL 1577	
1EDN-TDI	1EDN7550B	5 A / -9 A	20 V	4 V	45 ns	n. a.	Truly differential inputs to provide high common-mode robustness	SOT23 6-pin
	1EDN8550B	5 A / -9 A		8 V				
2EDB	2EDB7259Y	5 A / -9 A	20 V	4 V	38 ns	150 V/ns	fast start-up times and fast output clamping, basic isolation, UL 1577	DSO-14 150 mil
	2EDB8259Y			8 V				
2EDR	2EDR7259X	5 A / -9 A	20 V	4 V	38 ns	150 V/ns	fast start-up times and fast output clamping, reinforced isolation, UL	DSO-14 300 mil
	2EDR8259X			8 V			1577, VDE 0884-17, IEC 60747-17	

www.infineon.com/driver-gan www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

^{* 8} V UVLO parts recommended for bipolar driving or for unipolar driving with $V_{DD} \ge 10V$

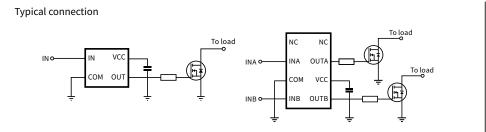
Evaluation boards with gate-driver ICs for GaN GIT HEMTs and 650 V GaN HEMTs

Our evaluation board helps you to set up and test GaN driving solutions quickly and easily.

Recommended drivers for GaN SG HEMTs

The 1EDN71x6Gx is a single-channel gate-driver IC product family optimized for driving Infineon CoolGaN™ SG HEMTs, as well as other GaN SG HEMTs and Si MOSFETs. This gate driver includes several key features that enable a high-performance system design with fast-switching transistors, including truly differential input (TDI), four driving strength options, active Miller clamp, bootstrap voltage clamp, and with or without adjustable charge pump in PG-SON-10 and PG-TSNP-7 package respectively.

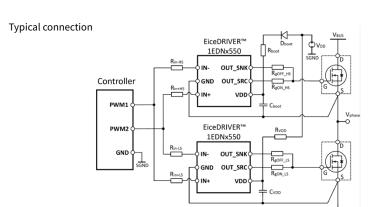
Product family	PN	Current peak sink/ source	CMR _{static} / CMR _{dynamic}	UVLO	Prop delay	СМТІ	Other features	Package
1EDN71x6x	1EDN7116G	2.0A/2.0	150 V/200 V	4 V	55 ns	100 V/ ns	Negative charge pump, miller clamp	PG-VSON-10
	1EDN7126G	1.5A/1.5A			75 ns			
	1EDN7136G	1.0A/1.0A			105 ns			
	1EDN7146G	0.5A/0.5A			125 ns			
	1EDN7116U	2.0A/2.0	150 V/200 V	4 V	55 ns	100 V/ns	Miller clamp	PG-TSNP-7
	1EDN7126U	1.5A/1.5A			75 ns	100 V/ns		
	1EDN7136U	1.0A/1.0A			105 ns	100 V/ns		
	1EDN7146U	0.5A/0.5A			125 ns	100 V/ns		


www.infineon.com/driver-gan www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

DSO-8 (with power-pad)

Product overview

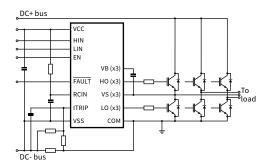
Infineon's gate-driver IC solutions are the expert's choice. With more than 400 reliable and efficient gate driver solutions, we provide a comprehensive portfolio for virtually any application. To ease the selection process, this overview is structured along the configurations of the gate-driver ICs, as opposed to application topology.


Non-isolated low-side gate-driver IC

Configu- ration	Voltage class [V]	Ι _{ο+} / _{ιο-} typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN		Technology		Fea	atur	es				Pa	cka	ge		
		2.6/2.6	8.0/7.3	34/34	1ED44173N01B	NEW	N-ISO	✓	✓	✓						√		T	
		2.6/2.6	11.9/11.0	50/50	1ED44175N01B	NEW	N-ISO	√	✓	✓						√			
	25	0.8/1.75	11.9/11.4	50/50	1ED44176N01F	NEW	N-ISO	√	✓	✓	√		√						
		2.6/2.6	11.9/11.0	50/50	1ED44171N01B	NEW	N-ISO	V	✓						V				
		1.5/1.5	10.2/9.2	50/50	IRS44273L		N-ISO								V				
1-channel		4/8	4.2/3.9	19/19	1EDN7511B		N-ISO					✓				V			
	22	4/8	4.2/3.9	19/19	1EDN7512B		N-ISO								V				
	22	4/8	4.2/3.9	19/19	1EDN7512G		N-ISO										✓		
		4/8	8.0/7.0	19/19	1EDN8511B		N-ISO					✓				V			
	5	1.6/3.3	8.9/8	200/150	IR2121		N-ISO		✓	✓				✓					
		2.3/3.3	10.2/9.2	50/50	IRS44262S		N-ISO						√						
		2.3/3.3	N.A.	50/50	IRS4426S		N-ISO						√						
	25	2.3/3.3	N.A.	50/50	IRS4427S		N-ISO						√						
		2.3/3.3	N.A.	65/85	IR4426S		N-ISO						✓					T	
		2.3/3.3	N.A.	65/85	IR4427S		N-ISO						√						
		5/5	4.2/3.9	19/19	2EDN7523F		N-ISO	V					√						
		5/5	4.2/3.9	19/19	2EDN7523G		N-ISO	✓										✓	
		5/5	4.2/3.9	19/19	2EDN7523R		N-ISO	V										v	/
		5/5	4.2/3.9	19/19	2EDN7524F		N-ISO	√					√						
		5/5	4.2/3.9	19/19	2EDN7524G		N-ISO	V										✓	
		5/5	4.2/3.9	19/19	2EDN7524R		N-ISO	V										v	/
		5/5	8.0/7.0	19/19	2EDN8523F		N-ISO	✓					✓					T	
		5/5	8.0/7.0	19/19	2EDN8523R		N-ISO	✓										V	/
		5/5	8.0/7.0	19/19	2EDN8524F		N-ISO	V					√						
		5/5	8.0/7.0	19/19	2EDN8524R		N-ISO	✓										v	/
2-channel		4/4	4.2/3.9	19/19	2EDN7424F		N-ISO	✓					✓						
		4/4	4.2/3.9	19/19	2EDN7424R		N-ISO	✓										v	/
	22	4/4	4.2/3.9	19/19	2EDN7434F	NEW	N-ISO	✓					✓						
	22	4/4	4.2/3.9	19/19	2EDN7434R	NEW	N-ISO	✓										V	/
		5/5	4.2/3.9	19/19	2EDN7533B	NEW	N-ISO									✓			
		5/5	4.2/3.9	19/19	2EDN7533F	NEW	N-ISO	✓					✓						
		5/5	4.2/3.9	19/19	2EDN7533R	NEW	N-ISO	✓										v	/
		5/5	4.2/3.9	19/19	2EDN7534U	NEW	N-ISO												✓
		5/5	4.2/3.9	19/19	2EDN7534B	NEW	N-ISO									✓			
		5/5	4.2/3.9	19/19	2EDN7534F	NEW	N-ISO	✓					✓						
		5/5	4.2/3.9	19/19	2EDN7534R	NEW	N-ISO	✓										v	/
		5/5	4.2/3.9	19/19	2EDN7534G	NEW	N-ISO	✓										✓	
		5/5	8.0/7.0	19/19	2EDN8533F	NEW	N-ISO	✓					✓						
		5/5	8.0/7.0	19/19	2EDN8533R	NEW	N-ISO	✓										v	/
		5/5	8.0/7.0	19/19	2EDN8534F	NEW	N-ISO	✓					✓						
		5/5	8.0/7.0	19/19	2EDN8534R	NEW	N-ISO	✓										v	/

www.infineon.com/gatedriver www.infineon.com/gdfinder

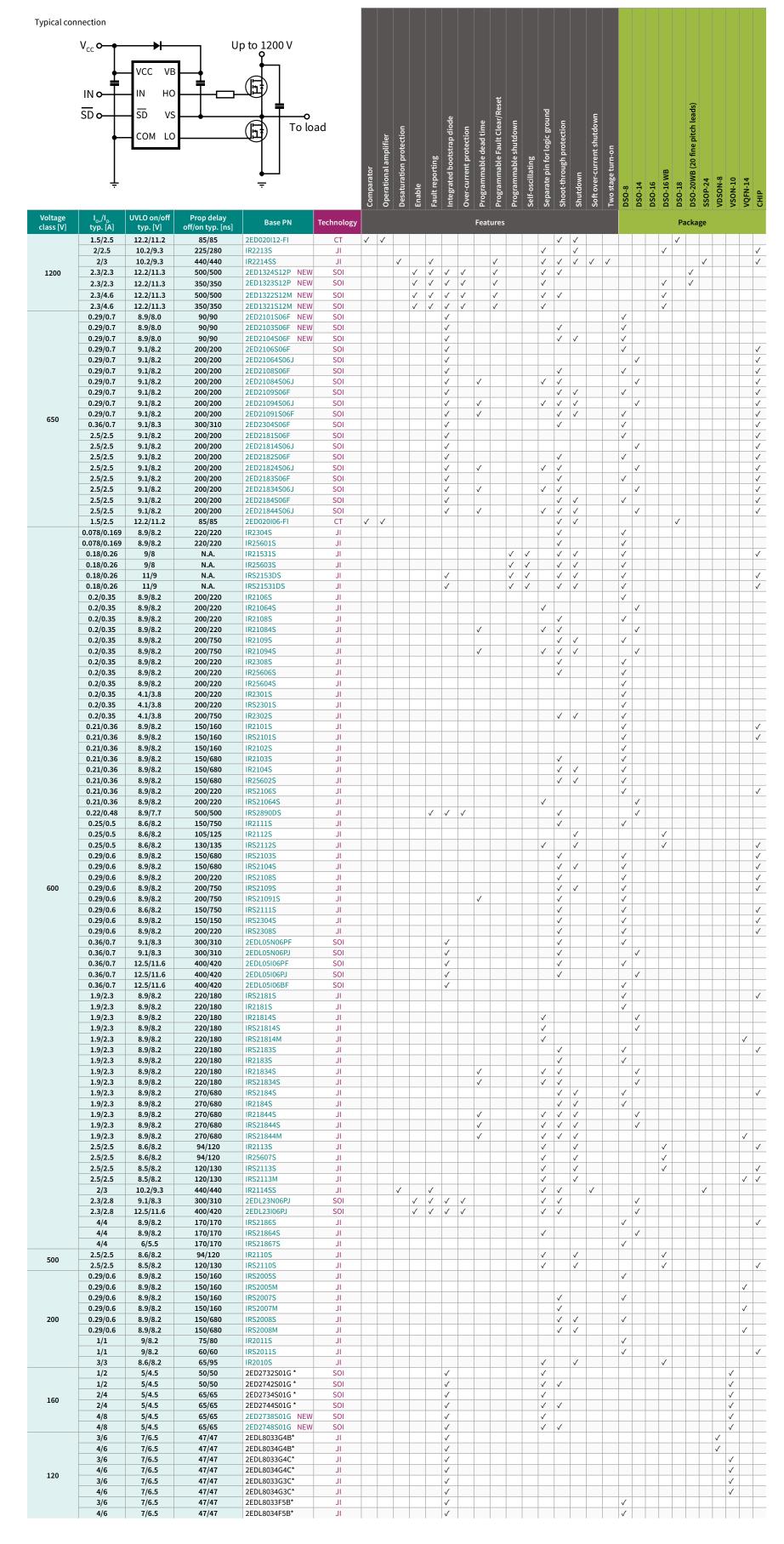
Non-isolated TDI gate-driver IC



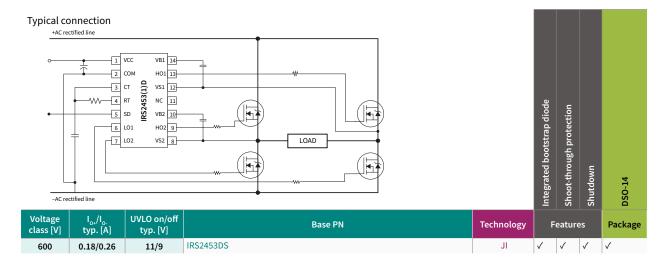
							¥	¥	Š	⊨	S	μ,	₽ >	
Configura- tiuon	Voltage class [V]	l _{o₊} /l _o . typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN	Technology		Feat	ures			Pack	age	
		4/8	4.2/3.9	45/45	1EDN7550U	N-ISO			✓	✓		✓		
		4/8	4.2/3.9	45/45	1EDN7550B	N-ISO			✓	✓	✓			
		4/8	8.0/7.0	45/45	1EDN8550B	N-ISO			✓	✓	✓			
		4/8	12.2/11.5	45/45	1EDN6550B NEW	N-ISO			✓	✓	✓			
		4/8	14.9/14.4	45/45	1EDN9550B NEW	N-ISO			✓	✓	✓			
		2/2	3.85/3.75	55/55	1EDN7116G NEW	N-ISO	✓	✓		✓			✓	
1-channel	200	2/2	3.85/3.75	55/55	1EDN7116U *	N-ISO		✓		✓			✓	
		1.5/1.5	3.85/3.75	75/75	1EDN7126G NEW	N-ISO	✓	✓		✓			✓	
		1.5/1.5	3.85/3.75	75/75	1EDN7126U *	N-ISO		✓		✓			✓	
		1/1	3.85/3.75	105/105	1EDN7136G NEW	N-ISO	✓	✓		✓			✓	
		1/1	3.85/3.75	105/105	1EDN7136U *	N-ISO		✓		✓			✓	
		0.5/0.5	3.85/3.75	125/125	1EDN7146G NEW	N-ISO	✓	✓		✓			✓	
		0.5/0.5	3.85/3.75	125/125	1EDN7146U *	N-ISO		✓		✓			✓	

ve Miller clamp

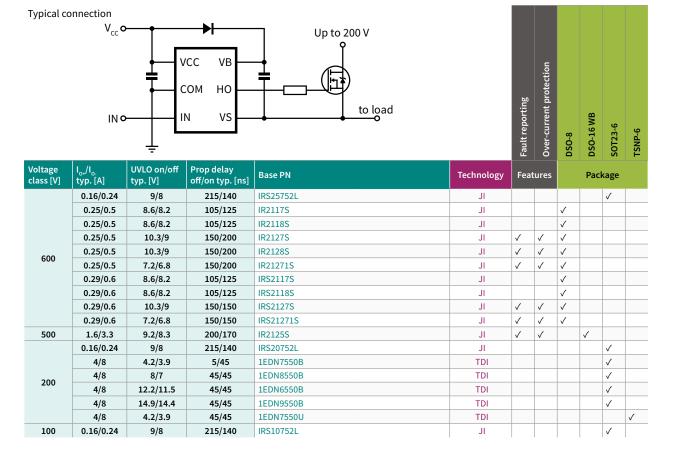
Three-phase gate-driver ICs


Typical connection

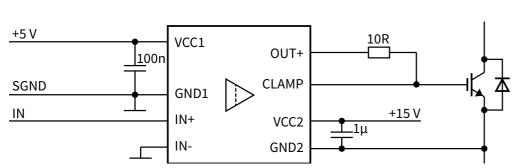
Brake chopper
Desaturation protection
Enable
Fault reporting
Integrated bootstrap diode
Operaltional amplifier
Over-current protection
Power Management Unit
Programmable dead time
Programmable Fault Clear/Reset
Programmable OCP Reference Threshold
Programmable Op-amp Voltage Gain
Trickle Charge Pumps (100% duty cycle)
Separate pin for logic ground
Shoot-through protection
Shutdown
Two stage turn on
DSO-20 WB
DSO-24
DSO-28 WB
LCC-32
MQFP-64
TSSOP-28
VQFN-28
VQFN-32
VQFN-34
VQFN-48
CHIP

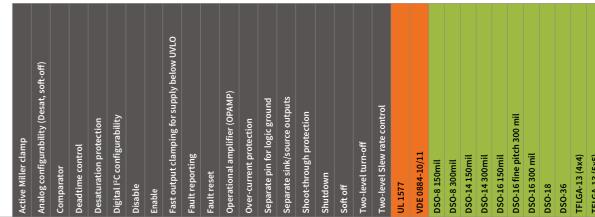

Voltage class [V]	l _{o+} /l _{o-} typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN	Tech-no- logy							1	Featı	ıres									Pa	acka	ge		
	0.35/0.65	12.2 / 11.3	600/600	6ED2231S12T	SOI			✓	✓	✓		✓		✓			✓	✓			✓						✓
	0.35/0.65	11.4/10.4	600/600	6ED2230S12T	SOI			✓	✓	✓		✓		✓			✓	✓			✓						✓
	0.25/0.5	8.6/8.2	700/750	IR2233S	JI				✓		✓	✓					✓	✓	✓			✓					
1200	0.25/0.5	8.6/8.2	700/750	IR2233J	JI				✓		✓	✓					✓	✓	✓				✓				
	0.25/0.5	10.4/9.4	700/750	IR2235S	JI				✓		✓	✓					✓	✓	✓			✓					
	0.25/0.5	10.4/9.4	700/750	IR2235J	JI				✓		✓	✓					✓	✓	✓				✓				
	0.35/0.54	11.2/10.2	550/550	IR2238Q	JI	✓	✓		✓			✓	✓	'			✓		✓ \	/			✓				
	0.165/0.375	11.7/9.8	490/530	6EDL04I06NT	SOI			✓	✓	✓		✓					✓					✓					✓
	0.165/0.375	11.7/9.8	490/530	6EDL04I06PT	SOI			✓	✓	✓		✓					✓					✓					✓
	0.165/0.375	9/8.1	530/530	6EDL04N06PT	SOI			✓	✓	✓		✓					✓					✓					✓
	0.2/0.35	8.9/8.2	400/425	IR2136S	JI			✓	✓			✓					✓					✓	✓				✓
	0.2/0.35	11.1/10.9	400/425	IR21363S	JI			✓	✓			✓					✓					✓					✓
	0.2/0.35	10.4/9.4	530/500	IR21364S	JI			✓	✓			✓					✓					✓					✓
	0.2/0.35	11.1/10.9	530/530	IRS2334M	JI																				✓		
	0.2/0.35	11.1/10.9	530/530	IRS2334S	JI															✓	'						
	0.2/0.35	8.9/8.2	530/530	IRS2336DJ	JI			✓	✓	✓		✓					✓						✓				✓
	0.2/0.35	8.9/8.2	530/530	IRS2336DM	JI			✓	✓	✓		✓					✓									√	✓
	0.2/0.35	8.9/8.2	530/530	IRS2336DS	JI			✓	✓	✓		✓					✓					✓				Ш	✓
	0.2/0.35	8.9/8.2	530/530	IRS23364DS	JI			✓	✓	✓		✓					✓					✓					✓
	0.2/0.35	8.9/8.2	530/530	IRS23365DM	JI			✓	✓	✓		✓					✓									✓	
	0.25/0.5	9/8.7	425/675	IR2130S	JI				✓		✓	✓					✓					✓					✓
	0.25/0.5	9/8.7	425/675	IR2130J	JI				✓		✓	✓					✓						✓				✓
	0.25/0.5	9/8.7	425/675	IR2132S	JI				✓		✓	✓					✓		_			✓					✓
	0.25/0.5	9/8.7	425/675	IR2132J	JI				✓		✓	✓					✓						✓			$\perp \perp \downarrow$	✓
	0.25/0.5	8.6/8.2	700/750	IR2133S	JI				✓		✓	✓					✓		✓			✓					
	0.25/0.5	8.6/8.2	700/750	IR2133J	JI				✓		✓	✓					✓	Ш	✓				✓	Ш		Ш	
	0.25/0.5	10.4/9.4	700/750	IR2135J	JI				✓		√	✓					✓		✓				✓				✓
200	0.165/0.375	11.7/9.8	490/530	6ED003L02-F2	SOI			✓	✓			✓					✓		_					✓		Ш	
	0.165/0.375	9/8.1	530/530	6EDL04N02PR	SOI			✓	✓	✓		√					✓	-						✓		Ш	
160	1/2	7.5/6.8	100/100	6ED2742S01Q NEW	SOI			✓	✓	✓	✓	✓	✓	✓	✓	√ v	/ /	√	_					Ш	✓	Ш	
60	1.5/1.5	5.8/4.5	140/140	6EDL7141	SOI			V	✓		✓	✓	√ √	· <	✓	√ v	/ /	✓	√ \	/							/

Half-bridge and high- and low-side gate-driver IC



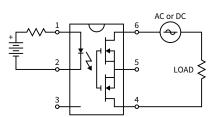
Digital isolators


Full-bridge gate-driver ICs



Single high-side gate-driver ICs

Galvanic isolated gate-driver ICs


									ctive	ompar eadtin	Desaturat Digital I²C	Disal Enabl Fast	ault repr	ver-curr eparate	ера Роо	hutdo oft off wo-ley	l k	VDE 08 DSO-8	DSO-83 DSO-14 DSO-16 DSO-16	DSO-16 DSO-16 DSO-18	DSO-18
guration	Voltage class [V]	Isolation type	Isolation rating	ا _{مب} اا _{م۔} typ. [A]	UVLO on/off	Prop delay	Base PN	Technolog	y a	ŭ	۵ ۵		Featur	es	йій	<u> </u>	1 6 5	5 6 6		kage	۵ ۵
	Ctass [V]	Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms)	typ. [A] 5.5/5.5	typ. [V] 10/8	off/on typ. [ns] 90/90	1ED3120MC12H NEW	СТ						✓	√		✓	√ √			
		Functional	V _{ISO} = 5.7 kV(rms)	5.5/5.5	10/8	90/90	1ED3120MU12H NEW	СТ							√		√	/			
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	5.5/5.5	12.5/10.5	90/90	1ED3121MC12H NEW	СТ						√			√				
		Functional Reinforced	V _{ISO} = 5.7 kV(rms) V _{IORM} = 1.7 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms)	5.5/5.5 5.5/5.5	12.5/10.5 12.5/10.5	90/90 280/280	1ED3121MU12H NEW 1ED3131MC12H NEW	CT CT							✓ ✓		✓ ✓	✓ ✓ ✓			
		Functional	V _{ISO} = 5.7 kV(rms)	5.5/5.5	12.5/10.5	280/280	1ED3131MU12H NEW	CT							√		✓ ✓	V V			
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	10/9	10/8	90/90	1ED3122MC12H NEW	СТ	✓					✓			✓				
		Functional	V _{ISO} = 5.7 kV(rms)	10/9	10/8	90/90	1ED3122MU12H NEW	СТ	✓					✓			✓	✓			
		Functional	V _{ISO} = 3 kV(rms)	10/9	12.5/10.5	90/90	1ED3125MU12F NEW	CT	√					√			√	√			
		Functional Reinforced	V _{ISO} = 3 kV(rms) V = 1.7 kV(rms)·V = 8 kV·V = 5.7 kV(rms)	10/9 13.5/14	12.5/10.5 10/8	90/90 90/90	1ED3127MU12F NEW 1ED3123MC12H NEW	CT CT	✓					✓ ✓	/		√	✓ ✓ ✓	,		+
		Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	13.5/14	10/8	90/90	1ED3123MU12H NEW	CT						✓ ✓	✓ ✓		V	V V			+
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	13.5/14	12.5/10.5	90/90	1ED3124MC12H NEW	СТ							√		√				
		Functional	V _{ISO} = 5.7 kV(rms)	13.5/14	12.5/10.5	90/90	1ED3124MU12H NEW	СТ						✓	√		✓	✓			
		Functional	V _{iso} = 3 kV(rms)	13.5/14	12.5/10.5	90/90	1ED3124MU12F NEW	СТ						✓	√		✓	✓			
		Functional	V _{ISO} = 3 kV(rms);	6/6.5	8.5/9.3	45/45	1ED3140MU12F NEW	СТ							✓		✓	✓			
		Functional	V _{ISO} = 3 kV(rms);	6/6.5	11/12	45/45	1ED3141MU12F NEW	СТ						√			√	√ √			
		Functional Reinforced	V _{ISO} = 3 kV(rms);	6/6.5 10/10	12.5/13.6 12.5/10.4	45/45 110/110	1ED3142MU12F NEW 1ED3240MC12H NEW	СТ						✓ ✓	✓		✓ ✓ ✓	✓ ✓ ✓	,		+
	2300	Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms) V _{IORM} = 1.7 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms)	10/10	12.5/10.4	110/110	1ED3250MC12H NEW	CT						V			V V				
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	18/18	12.5/10.4	110/110	1ED3251MC12H NEW	СТ	✓					✓			✓ ✓	✓ ✓	,		
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	18/18	12.5/10.4	110/110	1ED3241MC12H NEW	СТ	✓					✓			√ √	√ √			
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	3.3/6	12.6/10.4	86/80	1ED3320MC12N NEW	СТ	✓		✓		✓ ✓	✓		✓	✓				
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	6/8.5	12.6/10.4	86/80	1ED3321MC12N NEW	СТ	√		√		√ √	√		✓	√				
		Reinforced Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$	6/8.5 6/8.5	14.2/11.9 12.6/10.4	86/80 86/80	1ED3322MC12N NEW 1ED3323MC12N NEW	CT CT	√		√ √		√ √ √ √	✓ ✓	V		✓ ✓				
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms) V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	3.8/2.5	12.6/10.4	236/244	1ED3323MC12N NEW	CT	V /		√ /		√ √		/		V /			/	+
		Functional	V _{ISO} = 5.7 kV(rms)	3.8/2.5	12.6/10.4	236/244	1ED3431MU12M NEW	CT	✓ ✓		√		√ √		✓	√	\ \ \			/	
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	3.8/2.5	Adjustable	236/244	1ED3830MC12M NEW	СТ	√		√ √		√ √		✓ /	√ √	√	√			
		Functional	V _{ISO} = 5.7 kV(rms)	3.8/2.5	Adjustable	236/244	1ED3830MU12M NEW	СТ	✓		√ √		√ √		✓	√ √	✓		v	/	
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	7.5/5	12.6/10.4	236/244	1ED3461MC12M NEW	СТ	√ √		√		✓ ✓		✓ 	✓	✓	√		/	
		Functional	V _{ISO} = 5.7 kV(rms)	7.5/5	12.6/10.4	236/244	1ED3461MU12M NEW	CT	√ √		√ / /		√ √	√		√	√			/	
		Reinforced Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IORM} = 5.7 \text{ kV(rms)}$	7.5/5 7.5/5	Adjustable Adjustable	236/244	1ED3860MC12M NEW 1ED3860MU12M NEW	CT CT	√ ✓		✓ ✓ ✓ ✓		√ √ √ √		✓ ✓	√ √ √ √	✓ ✓	V	V	/	
		Functional Reinforced	V _{ISO} = 5.7 kV(rms) V _{IORM} = 1.7 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms)	7.5/5 11/7.5	Adjustable 12.6/10.4	236/244 236/244	1ED3860MU12M NEW 1ED3491MC12M NEW	CT	√ √ √		√ √ √		√ √ √ √		✓ ✓	√ √ √	√ √	1	V		
		Functional	$V_{IORM} = 1.7 \text{ kV(FIIIS)}; V_{IOTM} = 0 \text{ kV}; V_{ISO} = 5.7 \text{ kV(FIIIS)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	11/7.5	12.6/10.4	236/244	1ED3491MU12M NEW	CT	√ √		√		√ √		✓ ✓	✓ ✓	✓ ✓			/	
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	11/7.5	Adjustable	236/244	1ED3890MC12M NEW	СТ	√		√ √		√ √		✓ /	✓ ✓	✓	√			
		Functional	V _{ISO} = 5.7 kV(rms)	11/7.5	Adjustable	236/244	1ED3890MU12M NEW	СТ	✓		√ √		✓ ✓		√	√ √	✓		,	/	
		Basic	V _{IORM} = 1.4 kV; V _{IOTM} =6 kV; V _{ISO} = 3.7 kV(rms)	2/2	12/11	165/170	1ED020I12-B2	СТ	✓		√		✓ ✓	✓			✓			✓	
nnel		Basic	$V_{IORM} = 1.4 \text{ kV}; V_{IOTM} = 6 \text{ kV}; V_{ISO} = 3.7 \text{ kV(rms)}$	2/2	12/11	1750/1750	1ED020I12-BT	СТ	√		√		√ √	√		✓	✓	✓		✓	4
		Functional	V _{ISO} = ± 1.2 kV	2/2	12/11	165/170	1ED020I12-F2	CT	√ ✓		√		√ √	√						√	
		Functional Reinforced	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	2/2 4/8	12/11 5.0/4.5	1750/1750 37/37	1ED020I12-FT 1EDS5663H	CT CT	√		✓	✓	√ √	√	✓ 	✓ ✓	√	./		·/	+
		Functional	$V_{\text{IOTM}} = 4.2 \text{ kV(peak)}; V_{\text{ISO}} = 3 \text{ kV(rms)}$	5.4/9.8	12.2/11.5	45/45	1EDB6275F	CT				√			√	V	√	V		V	
		Functional	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms)	5.4/9.8	4.2/3.9	45/45	1EDB7275F	СТ				√			√		✓	V			
		Functional	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms)	5.4/9.8	8/7	45/45	1EDB8275F	СТ				√			✓		✓	✓			
		Functional	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms)	5.4/9.8	14.9/14.4	45/45	1EDB9275F	СТ				√			✓		✓	√			
	-	Functional	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms)	4/8	5/4.5	37/37	1EDF5673F	CT				√ √			✓ ✓	✓ ✓			✓		+
		Functional Functional	V _{IOWM} = 460 V(rms); V _{ISO} = 1.5 kV(rms) V _{ISO} = ± 1.2 kV	4/8 1.3/0.9	5/4.5 12/11.1	37/37 300/300	1EDF5673K 1EDI05I12AF	CT CT				V		√	✓ ✓	V		1			+
		Functional	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{ISO} = \pm 1.2 \text{ kV}$	1.3/0.9	12/11.1	300/300	1EDI05I12AH	CT						√	√			V /	,		+
		Functional	V _{ISO} = 2.5 kV(rms)	1.3/0.9	12/11.1	300/300	1EDC05I12AH	СТ						✓	√		✓	√			
		Functional	V _{ISO} = ± 1.2 kV	2.2/2.3	12/11.1	300/300	1EDI10I12MF	СТ	✓					✓				✓			
		Functional	V _{ISO} = ± 1.2 kV	2.2/2.3	12/11.1	300/300	1EDI10I12MH	СТ	✓					✓				✓			4
		Functional	V _{iso} = 2.5 kV(rms)	2.2/2.3	12/11.1	300/300	1EDC10I12MH	CT	✓					✓ ✓	,		√	√			
		Functional Functional	V _{ISO} = ± 1.2 kV V _{ISO} = ± 1.2 kV	4/3.5 4/3.5	9.1/8.5 12/11.1	120/115 125/120	1EDI20N12AF 1EDI20H12AH	CT CT						✓ ✓				V /	,		
		Functional	V _{ISO} = 2.5 kV(rms)	4/3.5	12/11.1	125/120	1EDC20H12AH	CT						V	√			✓ ✓			
	1200	Functional	V _{ISO} = ± 1.2 kV	4/3.5	12/11.1	300/300	1EDI20I12AF	СТ						✓				✓ ·			
		Functional	V _{ISO} = ± 1.2 kV	4/3.5	12/11.1	300/300	1EDI20I12AH	СТ						✓	√			✓			
		Functional	V _{ISO} = 2.5 kV(rms)	4/3.5	12/11.1	300/300	1EDC20I12AH	СТ						✓	✓		✓	✓			
		Functional	V _{ISO} = ± 1.2 kV	4.4/4.1	12/11.1	300/300	1EDI20I12MF	СТ	√					√				√			+
		Functional	V _{ISO} = ± 1.2 kV	4.4/4.1	12/11.1	300/300	1EDI20I12MH	CT CT	√ ✓					✓ ✓			√	√			
		Functional Functional	V _{ISO} = 2.5 kV(rms) V _{ISO} = ± 1.2 kV	4.4/4.1 5.9/6.2	12/11.1 12/11.1	300/300 300/300	1EDC20I12MH 1EDI30I12MF	CT	√ ✓					✓ ✓			V	V			+
		Functional	V _{ISO} = ± 1.2 kV	5.9/6.2	12/11.1	300/300	1EDI30I12MH	CT	√					√				\ \	,		
		Functional	V _{ISO} = 2.5 kV(rms)	5.9/6.2	12/11.1	300/300	1EDC30I12MH	СТ	√					✓			✓	√	,		
		Functional	V _{ISO} = ± 1.2 kV	7.5/6.8	12/11.1	300/300	1EDI40I12AF	СТ						✓	✓			✓			
		Functional	V _{ISO} = ± 1.2 kV	7.5/6.8	12/11.1	300/300	1EDI40I12AH	СТ							√			√			
		Functional	V _{ISO} = 2.5 kV(rms)	7.5/6.8	12/11.1	300/300	1EDC40I12AH	CT						√	√		✓	√			4
		Functional Functional	V _{ISO} = ± 1.2 kV V _{ISO} = ± 1.2 kV	10/9.4	9.1/8.5 12/11.1	120/115 125/120	1EDI60N12AF 1EDI60H12AH	CT CT						√ √	✓ ✓			✓ ✓			
		Functional	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{ISO} = 2.5 \text{ kV(rms)}$	10/9.4	12/11.1	125/120	1EDC60H12AH	CT							✓ ✓		√	✓ ✓			
		Functional	V _{ISO} = ± 1.2 kV	10/9.4	12/11.1	300/300	1EDI60I12AF	CT							√			✓ V			
		Functional	V _{ISO} = ± 1.2 kV	10/9.4	12/11.1	300/300	1EDI60I12AH	СТ						✓	√			✓			
		Functional	V _{ISO} = 2.5 kV(rms)	10/9.4	12/11.1	300/300	1EDC60I12AH	CT						√	✓		✓	√			4
		Reinforced	V _{IORM} = 1.4 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5 kV(rms)	SRC/2	11.9/11	460/460	1EDS20I12SV	CT			√ √	√ ./	1 1	1 1		✓ ✓ ✓ ✓		√			✓
		Functional Functional	V _{ISO} = 5 kV(rms) V _{ISO} = ± 1.2 kV	SRC/2 SRC/2	11.9/11 11.9/11	460/460 460/460	1EDU20I12SV 1EDI20I12SV	CT CT			√ √	√ √	√ √ √ √	√ √ √ √		✓ ✓ ✓ ✓	V				√ √
		Functional	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{ISO} = \pm 1.2 \text{ kV}$	2/2	12/11	165/170	2ED020I12-F2	CT	√		√		√ √	V V		V					√ ✓
		Reinforced	V _{IORM} = 1.4 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	1/2	4.2/3.9	37/37	2EDS7165H	СТ				✓ ✓					✓	√		✓	
		Reinforced	$V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	1/2	8/7	37/37	2EDS8165H	СТ				√					✓			✓	
		Reinforced	$V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	4/8	8/7	37/37	2EDS8265H	СТ				√ √					✓			✓	
		Reinforced	V _{IORM} = 1.4 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	4/8	14.9/14.4	37/37	2EDS9265H	CT				√ √ / /			,		√			✓	4
		Reinforced Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms) V = 4.2 kV(peak); V = 5.7 kV(rms)	5/9 5/9	4.2/3.9 8/7	38/36 38/36	2EDR7259X 2EDR8259H	CT CT		✓ ✓		√ √ √ √			✓ ✓		✓ ✓		√	√	
		Reinforced	$V_{IOTM} = 4.2 \text{ kV(peak)}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IOTM} = 4.2 \text{ kV(peak)}; V_{ISO} = 5.7 \text{ kV(rms)}$	5/9	8/7	38/36	2EDR8259X	CT		√ √		√			✓ ✓		√ √		√	٧	
		Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9	14.9/14.4	38/36	2EDR9259X	СТ		√		√			√		✓ /		√		
		Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9	8/7	38/36	2EDR8258X	СТ		✓		✓ ✓			✓		✓	✓	✓		
		Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9	12.2/11.5	38/36	2EDR6258X	СТ		✓		✓ ✓			✓		✓		✓		4
	1200**	Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9	14.9/14.4	38/36	2EDR9258X	CT		√		V V			✓		✓	√	✓		
nel		Basic	V _{IORM} = 800 V(rms); V _{IOTM} = 3.5 kV; V _{ISO} = 2.5 kV(rms)	5/9	4.2/3.9	38/36	2EDB7259K	CT		√ ./		√ √ √ ./			√ ./		√ ./				4
		Basic Basic	V _{IORM} = 800 V(rms); V _{IOTM} = 3.5 kV; V _{ISO} = 2.5 kV(rms) V = 1 kV(rms); V = 4.2 kV; V = 3 kV(rms)	5/9 5/9	8/7 8/7	38/36 38/36	2EDB8259K 2EDB8259F	CT CT		✓		√ √ √ √			✓		✓		√		
		Basic	V _{IORM} = 1 kV(rms); V _{IOTM} = 4.2 kV; V _{ISO} = 3 kV(rms) V _{IORM} = 1 kV(rms); V _{IOTM} = 4.2 kV; V _{ISO} = 3 kV(rms)	5/9	4.2/3.9	38/36	2EDB8259F 2EDB7259Y	CT				√ √ √							✓		+
		Basic	$V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV}; V_{ISO} = 3 \text{ kV(rms)}$ $V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV}; V_{ISO} = 3 \text{ kV(rms)}$	5/9	8/7	38/36	2EDB7259Y	CT				√							✓		
		Basic	$V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV}; V_{ISO} = 3 \text{ kV(rms)}$	5/9	14.9/14.4	38/36	2EDB9259Y	CT				√ /							√		
		Functional	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms)	1/2	4.2/3.9	37/37	2EDF7175F	СТ				√ √							√		
		Functional	$V_{IOWM} = 510 \text{ V(rms)}; V_{ISO} = 1.5 \text{ kV(rms)}$	4/8	4.2/3.9	37/37	2EDF7275F	СТ				√ √							✓		
		Functional	V _{IOWM} = 460 V(rms); V _{ISO} = 1.5 kV(rms)	4/8	4.2/3.9	37/37	2EDF7275K	СТ				√ √									
		Functional	V _{IOWM} = 460 V(rms); V _{ISO} = 1.5 kV(rms)	4/8	4.2/3.9	37/37	2EDF7235K	CT		✓		√			✓						
		Functional	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms) V = 510 V(rms); V = 1.5 kV(rms)	4/8 4/8	8/7 14.9/14.4	37/37 37/37	2EDF8275F 2EDF9275F	CT CT				√ √ √ √							✓ ✓		
		Functional Basic	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms) V _{IORM} = 500 V(rms); V _{IOTM} = 3.2 kV; V _{ISO} = 2.3 kV(rms)	4/8 5/9	4.2/3.9	38/36	2EDF9275F 2EDB7259E	CT		√		√			√		√		V		
	650**	Basic	V _{IORM} = 500 V(rms); V _{IOTM} = 3.2 kV; V _{ISO} = 2.3 kV(rms) V _{IORM} = 500 V(rms); V _{IOTM} = 3.2 kV; V _{ISO} = 2.3 kV(rms)	5/9	8/7	38/36	2EDB1239E 2EDB8259E	CT		√ √		√ √			✓ ✓		√ √				
				1.5/2.5	12.2/11.2	85/85	2ED020I12-FI	СТ		√			✓			✓				√	
nnel	1200	Functional on high side	ISO												✓						-

Automotive gate-driver ICs

							Buffer	Desatt Enable	Fault r	Operal Over-c	Progra Progra	Separa Separa Shoot-	Shutde SPI Int	Two-le	VDE 08	150 26	DSO-8 DSO-1	DSO-1 DSO-1	DSO-2	DSO-3
Configuration	Voltage class [V]	l _{o+} /l _{o-} typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN	Technology					F	eatures						Packa	age	
		12/12	12.6/11.8	60/60	1EDI3020AS	СТ	√	/ /	✓	✓		✓		√ v	/ /	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3021AS	СТ	√	/ /	✓	✓		✓		√ v	/ /	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3023AS	СТ	√	/ /	✓	✓		✓		√ v	/ /	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3030AS	СТ	√	/ /	✓	✓		✓		√ v	/ /	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3031AS	СТ	√	/ /	✓	✓		✓		√ v	/ /	✓			✓	
1-channel isolated	1200	12/12	12.6/11.8	60/60	1EDI3033AS	СТ	√	/ /	✓	✓		✓		√ v	/ /	✓			✓	
		2.1/2.1	12/11	165/170	1ED020I12FA2	СТ		/	✓					v	/ /				✓	
		2/2	12/11	1900/1750	1ED020I12FTA	СТ		/	✓					√ v	/ /				✓	
		2/2	12.5/11.7	215/215	1EDI2004AS	СТ		/ /	✓	✓		✓		√ v	/ /	✓				✓
		2/2	12.5/11.7	215/215	1EDI2002AS	СТ		/ /	✓	✓		✓		√ v	/ / /					✓
		2/2	12.5/11.7	215/215	1EDI2010AS	СТ		/ /	✓	✓		✓		√ v	/ /					✓
2-channel isolated	1200	2/2	12/11	165/170	2ED020I12FA	СТ		/	✓			✓		V	/ /					✓
Half-bridge	100	1/1	7.3/6.8	N.A.	AUIR2085S	JI		✓		✓	V V ,	/					✓			
		1.9/2.3	8.9/8.2	135/135	AUIRS21811S	JI											✓			
Uiah aida and la		1.9/2.3	8.9/8.2	200/160	AUIRS21814S	JI						✓					✓			
High-side and low- side	600	1.9/2.3	8.9/8.2	200/160	AUIRS2181S	JI											✓			
5.40		3.5/3.5	8.9/8.2	90/90	AUIRS2191S	JI						✓						✓		
		0.2/0.35	4.1/3.8	200/220	AUIRS2301S	JI											✓			
Single high-side	65	0.3/0.3	10/6.5	2500/2500	AUIR3241STR	N-ISO		✓	✓								✓			
Single ingir-side	65	0.3/0.3	10/6.5	2500/2500	AUIR3242STR	N-ISO		✓	✓								✓			
Dual high-side	75	0.3/1.4	12.5/10.0	4000/7000	2ED2410-EM NE	W N-ISO		✓	✓	✓					✓					✓
Duat Ingil-side	105	0.3/1.0	7.0/6.6	3000/3000	2ED4820-EM NE	W N-ISO		✓	✓	✓			✓		√	/				✓
Single low-side	200	3/6	10.2/9.3	60/90	AUIRS1170S	N-ISO								/			✓			.

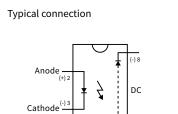
Complementary: Opto-isolated solid state relays

Typical connection

Microelectronic relays (MER) are power MOSFET or IGBT output photovoltaic relays where the output switch is controlled by radiation from a Ga-Al-As light emitting diode (LED) optically isolated from the output. MERs are a good choice to replace mechanical relays.

					뤔	.WS	를	SM	뤔	.WS
Load voltage [V]	Load current [mA]	$R_{_{DS(on)}} \ [\Omega]$	Isolation voltage [V _{RMS}]	Base PN						
	140 AC-DC	27/7	4000	PVU414		✓				
	120 AC-DC	35/9	4000	PVT412L	✓			✓		
	240 AC-DC	6/2	4000	PVT412A	✓	✓				
	140 AC-DC	27/7	4000	PVT412	✓	✓				
	120 AC-DC	35	4000	PVT422			✓	✓		
	150 AC-DC	24	4000	PVA3354N					✓	✓
300	150 AC-DC	24	4000	PVA3324N					✓	
300	50 AC-DC	160	4000	PVA3055N					✓	✓
	30 AC-DC	160	4000	PVA3054N					✓	✓
	170 AC-DC	15/4.25	4000	PVT312L	✓	✓				
250	190 AC-DC	10/3	4000	PVT312	✓	✓				
230	170 AC-DC	8	4000	PVT322A				✓		
	170 AC-DC	10	4000	PVT322			✓	✓		
200	150 AC-DC	24	4000	PVA2352N					✓	
150	550 AC-DC	0.7/0.25	4000	PVT212		✓				
	550 DC	1.5	4000	PVD1354N					✓	✓
100	350 DC	1.5	4000	PVD1352N					✓	✓
100	375 AC-DC	5	4000	PVA1354N					✓	✓
	373 AC-DC	5	4000	PVA1352N					✓	✓
	1500 DC	0.25	4000	PVDZ172N					✓	✓
60	1000 AC	0.5	4000	PVAZ172N					✓	✓
60	2000 AC/4000 DC	0.1/0.035	4000	PVG612A	✓	✓				
	1000 AC/2000 DC	0.5/0.15	4000	PVG612	✓	✓				
20	2500 AC/4500 DC	0.1/0.04	4000	PVN012		✓				

Infineon solid-state relay package options


Complementary: Opto-isolated solid state relays

current (DC

5

10 10

10

10/5

10/5

8

Output voltage

5/10

5/10

5

Photovoltaic isolators generate an electrically isolated DC voltage upon receipt of a DC input signal and are capable of directly driving MOSFET or IGBT gates. The output is controlled by radiation from a GaAlAs light emitting diode (LED) optically isolated from the output

PVI5050N

tro	m the output		DIP-8	SMT-8	DIP-8	SMT-8
ontrol C) [mA]	Isolation voltage [V _{RMS}]	Base PN		Pacl	cage	
	3570	PVI5033R	✓	✓		
	2500	PVI1050N	✓	✓		
	4000	PVI5080N			✓	✓

Features

Addressing various application requirements, Infineon delivers solutions with an assortment of features intended to optimize performance, minimize size and reduce cost. Below is a table of additional gate-driver IC features available in the current portfolio.

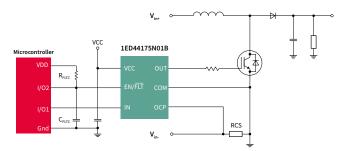
Features	Abbreviation	Benefits
Active Miller clamp	M-CLAMP	Protection against inadvertent dynamic turn-on because of parasitic Miller effects
Active shutdown	SD-ACT	Ensures a safe IGBT off-state in case the output chip is not connected to the power supply or an undervoltage lockout is in effect
Brake chopper	BRAKE	Integrated brake IGBT driver with protection
Comparator	CMP	General purpose comparator included
Desaturation protection	DESAT	Protects the IGBT at short circuit
Enable	EN	Dedicated pin terminates all outputs
Fault reporting	FAULT-RPT	Indicates an overcurrent or under-voltage shutdown has occurred
Fault reset	FAULT-RST	Dedicated pin resets the DESAT-FAULT-state of the chip
High-voltage start-up	HVSTART	Provides easy and fast circuit start-up while enabling low circuit standby losses
Integrated bootstrap diode	BSD	Integrated bootstrap reduces BOM
Operational amplifier	OPAMP	An independent op-amp for current measurement or overcurrent detection
Oscillator	OSC	Integrated front end oscillator
Over-current protection (ITRIP)	ОСР	Ensures safe application operation in case of overcurrent
Programmable dead time	DT-PROG	Dead time is programmable with external resistor for flexible design
Programmable fault clear time	FLTC	The length of the fault clear time period (t_{FLTC}) is programmed by external capacitor which connected between FLTC and V_{ss} (C_{FLTC}).
Programmable shutdown	SD-PROG	A shutdown feature has been designed into a pin
Separate pin for logic ground	SEP-GND	Dedicated pin or logic ground for improved noise immunity
Separate sink/source outputs	SEP-OUT	Simplifies gate resistor selection, reduces BOM, and improves dV/dt control
Shoot-through protection	STP	Additional shoot-through protection logic such as interlock
Short-circuit clamping	SC-CLAMP	During short circuit the IGBT's gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage.
Shutdown	SD	Dedicated pin disables the IC outputs
Soft overcurrent shutdown	SD-SOFT	Dedicated pin turns off the desaturated transistor, preventing overvoltages
Truly Differential Inputs	TDI	Control inputs independent from gate driver GND, robust against ground shifts from power MOSFET switching
Two-level turn-off	TLTO	Lowers VCE overshoots at turn-off during short circuits or overcurrent events
UL 1577	UL	Double galvanic isolation certification
Undervoltage lockout	UVLO	Ensures safe application operation by avoiding unexpected driver behavior at low voltages
VDE 0884-10 or VDE 0884-11	VDE	Reinforced galvanic isolation certifications for non-optical couplers

Gate-driver ICs for SiC MOSFETs

Ultra-fast switching 650 V to 2000 V power transistors such as CoolSiC™ SiC MOSFETs can be more easily handled by isolated gate driver solutions.

The following EiceDRIVER™ gate driver ICs incorporate the most important key features for driving SiC MOSFET such as tight propagation delay matching, precise input filters, wide output supply voltage range, negative gate voltage capability, extended CMTI capability, Miller clamp, and DESAT protection.

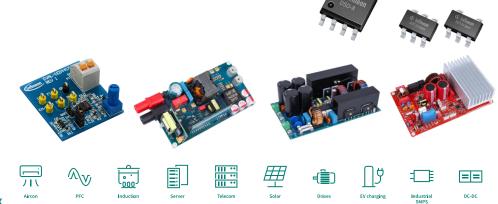
Product family	Part number	Typ. current	V _{CC2} -V _{EE2}	UVLO	Prop. delay (accuracy)	СМТІ	Isolated	Other key features	Package
	Achieve high e	fficiency and	l power	density: take	advantage of low	ı propaga	tion delay	and high CMTI	
EiceDRIVER™ 1EDB 1-channel family	1EDB9275F 1EDB6275F	5/9 A	20 V	14.9/14.4 V 12.2/11.5 V	45 ns (+6/-4 ns)	300 V/ns	✓	Separate source/sink outputs, fast start-up times and fast reco- very, basic isolation, UL 1577	DSO-8, 150 mil
EiceDRIVER™ 2EDi 2-channel family	2EDR9259X 2EDR9258X 2EDR6258X	5/9 A	20 V	14.9/15.4 V 14.9/15.4 V 12.5/11.5 V	38 ns (+9/-5 ns)	150 V/ns	✓	2EDi Gen 2, dead-time control, disable/enable, reinforced isolation, UL 1577, VDE-11, IEC 62368-1, GB4943.1	DSO-14, 300mil
	2EDB9259Y			14.9/15.4 V			✓	2EDi Gen 2, dead-time control, basic isolation, UL 1577, GB4943.1	DSO-14, 150 mil
EiceDRIVER™ 1EDN-TDI 1-channel family	1EDN6550B 1EDN9550B	4/8 A	20 V	12.2/11.5 V 14.9/14.4 V	45 ns (+10/-7 ns)	N/A	_	Separate source/sink outputs	SOT23-6
		Avoid pa	rasitic t	urn-on: take	advantage of Mille	er clamp o	ptions		
EiceDRIVER™ 1ED Compact	1EDI20I12MF	4 A	20 V	12.7/10.5 V	300 ns	100 V/ns	✓	Miller clamp, functional isolation	DSO-8,
1-channel family	1EDI60N12AF	10 A	35 V	10/8 V	125 ns	100 V/ns	✓	Separate source/sink outputs, functional isolation	150 mil
EiceDRIVER™ X3 Compact 1-channel family	1ED3124MC12H 1ED31xxMU12F	5.5/10/14 A	35 V	12.5/10.5 V 14.2/12 V	90 ns (+/- 7 ns)	200 V/ns	√	Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-8, 300 mil DSO-8, 150 mil
EiceDRIVER™ 2L-SRC Compact 1-channel family	1ED32xxMC12H	10/18 A	35 V	12.5/10.4 V	110 ns (+/- 15 ns)	200 V/ns	✓	Two-level slew-rate control, Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-8, 300 mil
	Short-circuit	t protect you	ır CoolS	iC™: take ad\	antage of the fast	and accu	rate DESA	T protection	
EiceDRIVER™ 1ED-F3 1-channel family	1ED332xMC12N	3/6 A	35 V	12.6/10.4 V 13.6/12.6 V	85 ns	300 V/ns	✓	Miller clamp, short circuit protection, soft-off, reinforced isolation, UL 1577 and VDE-11	DSO-16, 300 mil
EiceDRIVER™ X3 Analog 1-channel family	1ED34x1MC12M	3/6/9 A	35 V	12.6/10.4 V	244 ns (+/- 30 ns)	200 V/ns	√	Analog configurable, fast and accurate short circuit protection and soft turn-off Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-16, 300 mil
EiceDRIVER™ X3 Digital 1-channel family	1ED38x0MC12M	3/6/9 A	35 V	12.6/10.4 V default, but adjustable	244 ns (+/- 30 ns)	200 V/ns	√	Digital configurable (I ² C), fast and accurate short circuit protection, rich monitoring functionality (predictive maintenance) Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-16, 300 mil
EiceDRIVER™ 2ED-F2 2-channel family	2ED020I12-F2	2 A	28 V	12.6/10.4 V	170 ns	50 V/ns	✓	Miller clamp, short circuit protection	DSO-36, 300mil


EiceDRIVER™ non-isolated low-side gate drivers

1ED4417x, 1-ch, low-side drivers with integrated protection features

EiceDRIVER™ 1ED4417x family are 25 V, 1-channel low-voltage, non-inverting, low-side gate drivers designed for ground-referenced applications such as power-factor correction (PFC) circuits. Typically, over-current protection (OCP) is implemented by a current measurement with a comparator and multiple resistors and capacitors. The 1ED44176N01F, 1ED44175N01B, and 1ED44173N01B provides up to 20 percent cost and 50 percent space savings by integrating a fast and accurate over-current protection feature (OCP). The new family of low-side gate drivers utilize Infineon's proprietary latch immune CMOS technologies to enable a rugged monolithic construction while realizing best-in-class fault reporting accuracy with OCP threshold tolerance of +/-5 percent. In addition, Infineon's IC technology enables a tiny PG-SOT23 package (or DSO-8 for 1ED44176N01) by combining the fault output and enable functions into a single pin.

The family also includes 1ED44171N01B, a cost-effective, simple driver with enable and fault reporting functions. With a single PCB layout, 1ED44171N01B can be used as a second source option to the popular" IRS44273L. Enabling a single-supplier, dual sourcing strategy for fast-reacting supply flexibility.


Simplified application diagram

Part Number	Package	I _{0±} [A]	UVLO [V]	V _{octh} [mV]	T _{on/off} [ns]	Ground pins	Feature
1ED44171N01B	SOT23-5	2.6/2.6 A	11.9/11.4 V	N/A	50/50 ns	СОМ	Enable, Fault, cost-effective
1ED44173N01B	SOT23-6	2.6/2.6 A	8/7 V	-250 mV	34/34 ns	СОМ	OCP (negative current sensing),
1ED44175N01B	SOT23-6	2.6/2.6 A	11.9/11.4 V	-250 mV	50/50 ns	СОМ	Enable, Fault
1ED44176N01F	DSO-8	0.8/1.75 A	11.9/11.4 V	500 mV	50/50 ns	V _{ss} /COM	OCP (positive current sensing), Enable, Fault, Programmable fault clear time

Evaluation and reference board

- EVAL-1ED44176N01F
- > EVAL-1ED44175N01B
- > EVAL-1ED44173N01B
- > EVAL-PFC5KIKWWR5SYS
- > REF-SHA35WRC2SYS
- > REF-AIRCON-C302A-IM564

2EDN EiceDRIVER™ family

Rugged, fast, dual-channel low-side 4 A/5 A gate-driver ICs

EiceDRIVER™ 2EDN family overview

Dual-channel driver ICs are the crucial link between control ICs and powerful MOSFET, wide band gap (WBG) switching devices. Driver ICs enable high system level efficiencies, excellent power density and consistent system robustness.

EiceDRIVER™ 2EDN family: Fast, precise and compatible

- Highly efficient SMPS enabled by 19 ns propagation delay and 2 ns channel-to-channel mismatch precision for fast MOSFET and WBG switches
- Diversified applications driven by strong output current 4 A/5 A per channel
- Unique designs are supported by the availability of numerous packages

Applications

- Server
- Telecom
- DC-DC Converters
- Power tools
- Industrial SMPS
- Low speed electrical vehicles
- Solar power inverter
- LED lighting

EiceDRIVER™ 2EDN family: The new reference in ruggedness and low power dissipation

- 4 V and 8 V UVLO (undervoltage lock out) options for instant FETs protection under abnormal conditions, further improved with active output voltage
- -10 V robustness of control and enable inputs provides crucial safety margin when driving pulse transformers or driving FETs in various packages
- 5 A reverse output current robustness eliminates the need for Schottky switching diodes and reduces bill-of-material
- Cool driver ICs from true rail-to-rail low impedance output stages

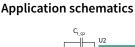
- 5 A source/sink current
- 2 ns channel-to-channel mismatch
- 10 ns minimum input pulse width
- True rail-to-rail low impedance output stages
- 4 V and 8 V UVLO options, with active output voltage clamping
- 19 ns propagation delay for both control and
- -10 V robustness of control and enable inputs
- 5 A reverse output current robustness
- 2 independent channels
- Industry standard pinout and packages

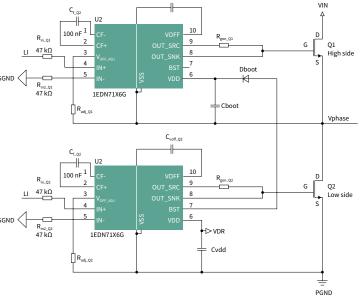
www.infineon.com/2EDN

- Fast Miller plateau transition
- Precise timing
- Low power dissipation in driver IC
- Fast and reliable FETs turn-off. independent of control IC
- Increased GND-bounce robustness
 - Saves switching diodes
- Option to increase drive current by truly concurrent switching of 2 channels
- Straight forward design upgrades

System benefits

- High power efficiency
 - in hard switching PFC with SiC diode
 - in half-bridges and synchronous rectifications
- Cooler driver IC operation
- Higher FETs drive capability
- Instant FETs protection under abnormal operation
- Crucial safety margin to drive pulse transformer
- Increases power density
- **BOM** savings
- One IC covering many applications
- Short time to market





EiceDRIVER ™ 1EDN71x6G/U family

200 V 1-ch gate drivers with truly differential input (TDI)

The 1EDN71x6G/U is a 1-channel gate driver family optimized for Infineon CoolGaN™ Schottky-gate (SG) HEMTs, and also compatible with other GaN SG HEMTs and silicon MOSFETs. The TDI feature eliminates the risk of false triggering due to ground bounce in low-side applications and enable 1EDN71x6G/U to address even high-side applications. The TDI feature works by controlling the gate driver output state exclusively by the voltage difference between the two inputs, completely independent of the driver's reference (ground) potential as long as the common-mode voltage is below 150 V (static) and 200 V (dynamic).

Features and benefits

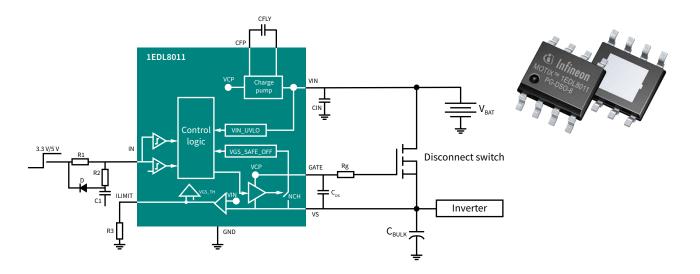
Product features	Product benefits
– Truly differential logic input (TDI)	High-side driving and low-side ground bounce immunity
- Four driving strengths	Optimize switching speed without external gate resistors
– Active Miller clamp	- Prevent induced turn-on
- Optional negative charge pump	- Additional induced turn-on immunity
– Active bootstrap capacitor	No overcharging the bootstrap capacitor during deadtime

Product family

Product	Ourput current	Source/sink resistance	Input pulse blanking time	Package
1EDN7116G	2 A	0.8 Ω	20 ns	VSON-10
1EDN7126G	1.5 A	1.0 Ω	40 ns	VSON-10
1EDN7136G	1 A	1.5 Ω	60 ns	VSON-10
1EDN7146G	0.5 A	3.0 Ω	80 ns	VSON-10
1EDN7116U*	2 A	0.8 Ω	20 ns	TSNP-7
1EDN7126U*	1.5 A	1.0 Ω	40 ns	TSNP-7
1EDN7136U*	1 A	1.5 Ω	60 ns	TSNP-7
1EDN7146U*	0.5 A	3.0 Ω	80 ns	TSNP-7

www.infineon.com/1edn

EiceDRIVER™ 1EDL8011, 135 V high-side driver


Integrated high-side driver with strong gate drive and integrated charge pump

Infineon's upcoming EiceDRIVER™ 1EDL8011 high-side gate driver provides a simple and highly robust solution to drive a disconnect switch to protect battery operated systems during potential short conditions. 1EDL8011 enables fast turn on/off control of high side N-channel MOSFETs due to the powerful internal gate sourcing and sinking current capabilities. It consists of an integrated charge pump with an external capacitor to provide support for strong start-up and turn-off and scalable FETs in parallel application scenarios. The internal charge pump provides proper MOSFET gate voltage during low operating input voltage conditions. High-side protection avoids faulty shorting conditions in the load and the dangerous presence of in-rush currents for battery-powered applications.

1EDL8011 features include OCP protection, the adjustable current setting threshold, time delay as well as a safe start-up mechanism with flexible blanking during MOSFET turn-on transition. Input voltage under-voltage lockout (UVLO) avoids operation under hazardous conditions and ensures the right level of gate voltage to fully enhance the MOSFET.

The 1EDL8011 gate driver addresses two main use cases in battery operated systems:

- In-rush current control: allows controlled turn-on of the disconnect switch by using an external R combined with a safe start-up and blanking mechanism.
- Short circuit protection: whenever a short occurs at the load side, it allows disconnecting the load from the source by quickly turning off the disconnect switch. This is made possible by the strong pull-down inside the 1EDL8011, therefore protecting the whole system.

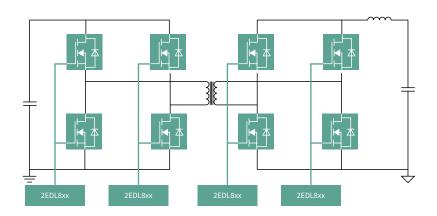
Features and benefits

Product features	Product benefits
− Operating voltage: 7V − 135V	– Wide voltage operating range
– Powerful gate sinking current up to 1A	- Fast turn off for proper protection
– Off-mode quiescent current 1μA	– Efficiency and long battery life

Product family

Product	Package	Voltage [A]
1EDL8011*	DSO-8	7 – 135 V

www.infineon.com/1edl


the part number, visit infineon.com or

EiceDRIVER™ 2EDL8x2x family

120 V, 3/4 A, junction-isolated high- and low-side gate drivers

The 2EDL8x2x is a family of high- and low-side gate driver designed for advanced switching DC-DC converters. The 2EDL802x takes in independent inputs while 2EDL812x takes in differential inputs with both having built-in hysteresis for enhanced noise immunity. The gate-driver family comes in two packages: VDSON-8 4x4 mm and VSON-10 3x3 mm.

Application schematics

Features and benefits

Product features					
- 120 V integrated boot-strap diode with 10 ns reverse recovery time					
- 2 A to 4 A output source currents					
- 6 A output sink currents					
8 V/+ 15 V differential input robustness					
– 5 A reverse current output robustness					
- ±1 ns (typ.) channel-to-channel delay matching					

Product benefits			
 Drive strength for fast Miller plateau transition 			
- Fast and robust			
– Immunity against false triggering from ground bounce			
No need for Schottky clamping diodes			

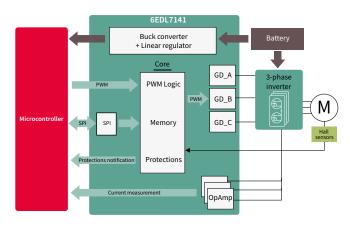
Product family

Part nu	Input	Source current	Sink current	Min. input pulse width	Propagation delay (typ.)	Matching delay (typ)	ESD	Package
2EDL8123G	Differential	3 A						VDSON-8
2EDL8124G		4 A						4x4 mm
2EDL8023G	Independent	3 A						
2EDL8024G		4 A	6 A	40 ns	45 ns	2 ns	2 kV	
2EDL8123G3C*	Differential	3 A	6 A	40115	45 115	2115	2 KV	VSON-10 3x3 mm
2EDL8124G3C*		4 A						
2EDL8023G3C*	Independent	3 A						
2EDL8024G3C*		4 A						

Evaluation board:

EVAL_HB_2EDL8x2xG* REF_600W_FBFB_QB*

www.infineon.com/2edl8


MOTIX™ 6EDL7141 high performance motor control

Next-generation fully programmable three-phase gate driver

6EDL7141, Infineon's latest three-phase motor control gate-driver IC allows our customers to develop their next generation of high performance battery operated products using BLDC or PMSM motors. Ideal applications include cordless power tools, gardening products, and automated guided vehicles. With over 50 fully programmable parameters using built-in digital SPI interface, 6EDL7141 is fully configurable to drive a wide range of MOSFET's to yield the best possible system efficiency. The integrated buck regulator provides the power for both the microcontroller and the Hall sensors in the motor, further reducing peripheral components and required PCB area. In addition, with a full suite of system protection features such as OCP, UVLO, over-temperature, and locked rotor detection, this dedicated motor controller will increase reliability and robustness in severe operating fault conditions.

Block diagram

Three-phase BLDC battery-powered motor control

Features and benefits

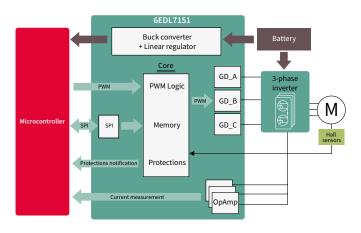
Key features	Key benefits
- Integrated power supply	Reduced external components and PCB area
- Programmable slew rate	Optimized efficiency and EMI
- Programmable gate drive supply	Maximum flexibility to use different inverter FETs
- 3x current shunt amplifier	Highly accurate current sense while saving external components
– ADC ref. of 5 V	Higher dynamic range to increase signal resolution
Complete dedicated motor control protection suite	– Improve reliability and fault detection

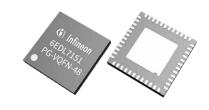
EVAL_6EDL7141_TRAP_1SH

BC 1 shunt evaluation board

Parallel 40 V OptiMOS™5 PQFN

XMC1404 MCU


On-board programming dongle


Featured module IC: 6EDL7141

MOTIX™ 6EDL7151 3-phase smart gate drive controller IC

Three-phase motor control gate-driver IC for battery supplied BLDC motor control

The 6EDL7151 is Infineon's latest 3-phase gate driver which includes added V sensor to allow additional hardware system protection for battery supplied motor control products. Ideal applications include cordless power tools, gardening products, and automated guided vehicles. With over 50 programmable parameters using built-in digital SPI interface, 6EDL7151 is fully configurable to drive a wide range of MOSFET's to yield the best possible system efficiency. 6EDL7151 is also designed for maximum performance. Features include programmable dead time delays for preventing current shoot through between HS and LS switches in normal operation and separate charge pumps for low and high side gate drivers support 100 percent duty cycle and low voltage supply operation. Supplies for the gate drivers are programmable to one of the following levels: 7 V, 10 V, 12 V or 15 V. Additionally, the slew rate of the driving signal can be programmed with fine granularity to reduce EMI emissions. An integrated synchronous buck converter provides an efficient supply of current to the rest of the system. The 6EDL7151 also integrates a linear voltage regulator (up to 300 mA), powered by the buck converter to supply the MCU and other sensitive components in the system. 6EDL7151 includes three current sense amplifiers for accurate current measurements that support bi directional low side current sensing with programmable gain. $R_{DS(on)}$ sensing is supported through internal connection of the phase nodes to the current sense amplifiers inputs. Temperature compensation if needed shall be provided by the user application. 6EDL7151 also includes highly programmable V_{DS} sensors for inverter MOSFET protection. In addition, 6EDL7151 provides numerous protections features for improving application robustness during adverse conditions like monitoring of power supply voltages as well as system parameters. The failure behavior, threshold voltages and filter times of the supervisions of the device are adjustable via SPI. Monitored aspects include inverter currents, gate drive voltages and currents, device temperature, and rotor locked.

Features and benefits

Product features	Product benefits
- Integrated power supplies	Reduced external component count and PCB area
– Adjustable slew rate	– Lower voltage overshoots and EMI reduction
- 3x current shunt amplifier	Maximum flexibility to use different inverter MOSFET's
- Complete dedicated motor control protection suite	Highly accurate integrated current sense saves external components
– V _{DS} sensing	Improved reliability and fault detection

Product family

Product	Package		Voltage [V]				DVDD regulator output [V]			
6EDL7151*	VQFN 48 7mm x 7mm	5.5 – 70 V			5.0 V					
	'	1		Sither	35		9			

www.infineon.com/6edl7151

USB-C controllers and peripherals

MOTIX™ 160 V SOI gate-driver family

2ED27xxS01G half-bridge and high- and low-side gate-driver family with integrated bootstrap diode

6ED2742S01Q three-phase driver with charge pump, current sense amplifier, **OCP** and bootstrap diode

MOTIX™ 160 V SOI gate-driver family is designed for the BLDC motor drive applications. The SOI technology enables integrated bootstrap diodes, which can be used to supply the external high-side bootstrap capacitor. The output drivers feature a highpulse current buffer stage designed for minimum driver cross-conduction. MOTIX™ 2ED27xxS01G family consists of three halfbridge and three high- and low-side 160 V SOI gate drivers. The UVLO protection is on both V_{CC} and V_R pins. Fast propagation delays (50 ns) are suitable for motor drive and power conversion applications in VSON-10 (3x3 mm) package with exposed ground pad. MOTIX™ 6ED2742S01Q is a 160 V three-phase SOI gate driver, which supports 100% duty cycle operation by a trickle charge pump. Protection features include UVLO, OCP with configurable threshold, fault and automatic fault clear. A current sense operational amplifier (CSA) with selectable gain is integrated between the V_{ss} and COM.

Product		Package	Output current	Configuration	Deadtime	Propagation delay
2ED2732S01G*		VSON-10 3x3 mm	1/2 A	High- and low-side	None	50 ns
2ED2734S01G*			2/4 A	(HS+LS)		65 ns
2ED2738S01G	IEW		4/8 A			65 ns
2ED2742S01G*			1/2 A	Half-bridge	50 ns	50 ns
2ED2744S01G*			2/4 A			65 ns
2ED2748S01G	EW		4/8 A			65 ns
6ED2742S01Q		VQFN-32 5x5 mm	1/2 A	Three-phase	100 ns	100 ns

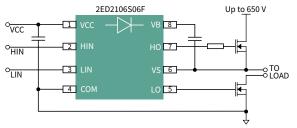
Applications for MOTIX™ 160 V SOI gate driver family

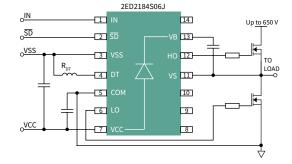
- Servo/stepper drives in robotics and factory automation
- General purpose low-voltage drives
- Battery-operated small home appliances (SHA)
- Professional and consumer service robotics
- Logistics vehicles (e-forklifts, autonomous warehouse robotics)
- Commercial and agricultural drones
- Hand-held battery-operated power tools
- Garden or outdoor power equipment (OPE) tools
- e-scooters, e-bikes, and other e-vehicles that do not require automotive qualification (LSEV)

www.infineon.com/SOI

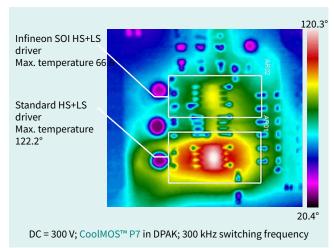
* Coming soon

6ED2742S01Q key features


- Integrated power management with charge pump and preregulator supports wide input voltage range of 6 V to 140 V
- Integrated over-current protection comparator for single-shunt low side operation with programmable +/-5% reference threshold
- Integrated current sense amplifier with programmable voltage gain and ability to read output voltage offset during zero phase current
- Always positive output voltage offset to reduce need for +/- V_{per} for downstream ADC in microcontroller.
- Integrated, per phase, high-side trickle charge pumps to enable 100% duty cycle operation
- Integrated, multi-function RFE pin combines FAULT, FAULT Clear, and Enable functionality


EiceDRIVER™ 650 V level-shift SOI gate driver family

2ED2101/3/4 and 2ED2110: EiceDRIVER™ fast level-shift SOI family with 90 ns prop delay 2ED2106/8/9 and 2ED2181/2/3/4: EiceDRIVER™ general purpose SOI family


EiceDRIVER™ 650 V SOI is a family of high-voltage, high-speed MOSFET and IGBT gate drivers. Based on Infineon's SOI technology, this family features an integrated, ultra-fast, low R_{DS(on)} bootstrap diode and offers excellent ruggedness and noise immunity with tolerance to negative transient voltages of up to -100 V. The absence of parasitic thyristor structures ensures superior latch up immunity. The level-shift loss is significantly reduced on the EiceDRIVER™ SOI gate drivers compared to other technologies.

Simplified application diagrams

Power dissipation of Infineon SOI

Evaluation board

EVAL-M1-2ED2106S EVAL-2ED2101 HB-LLC

Product family	Part number	Output current	Prop. delay	Input logic	Configuration	Package
EiceDRIVER™	2ED2101S06F	0.29/0.7 A	.7 A 90 ns	HIN, LIN	High- and low-side	DSO-8
fast level-shift SOI	2ED2103S06F			HIN, LIN	Half-bridge	
	2ED2104S06F			IN, SD	Half-bridge	
	2ED2110S06M	2.5/2.5 A		HIN, LIN	High- and low-side	DSO-16 WB
EiceDRIVER™	2ED2106S06F	0.29/0.7 A	200/200 ns	HIN, LIN	High- and low-side	DSO-8
general purpose SOI	2ED21064S06J			HIN, LIN		DSO-14
	2ED2108S06F		740/200 ns II	HIN, LIN	Half-bridge	DSO-8
	2ED21084S06J			HIN, LIN		DSO-14
	2ED2109S06F			IN, SD		DSO-8
	2ED21094S06J			IN, SD		DSO-14
	2ED21091S06F			IN, DT/SD		DSO-8
	2ED2181S06F	2.5/2.5 A	200/200 ns	HIN, LIN	High- and low-side	DSO-8
	2ED21814S06J			HIN, LIN		DSO-14
	2ED2182S06F			HIN, LIN	Half-bridge	DSO-8
	2ED21824S06J			HIN, LIN		DSO-14
	2ED2183S06F			HIN, LIN		DSO-8
	2ED21834S06J			HIN, LIN		DSO-14
	2ED2184S06F		600/200 ns	IN, SD		DSO-8
	2ED21844S06J			IN, SD		DSO-14

EiceDRIVER™ 1200 V level-shift SOI gate driver family

6ED223x: 1200 V three-phase SOI driver with OCP, bootstrap diode 2ED132x: 1200 V half-bridge and high- and low-side SOI driver with OCP, Miller clamp and bootstrap diode

The 6ED2231S12T is a 1200-V three-phase SOI gate driver, with 0.35 A/0.65 A current in DSO-24 package (DSO-28 with 4 pins removed). The 2ED132x family consists of four 1200 V SOI gate drivers, in half-bridge or high- and low-side configurations. 2ED132x family offers 2.3 A output current in high creepage (8 mm)/clearance DSO-20 wide body package or higher sink option (4.6 A) in DSO-16 wide body package. Both 6ED2231S12T and the 2ED132x family integrates ultra-fast over-current protection (OCP) with ± 5% accuracy, and bootstrap diode. In addition, the 2ED132x family also integrates active Miller clamp.

> Space savings Cost savings Easy to design

 Higher reliability Faster time to market

Current solutions

6 x opto-isolated drivers + 3 x 1200 V bootstrap diodes

New 6ED2231S12T

Integrates 6x gate-driver functionality and 3x boot-strap diodes Over-current protection IGBT/SiC MOSFET UVLOs

6ED2231S12T easily fits within EasyPIM™ 1B module footprint

EVAL-M1-6ED2231-B1

Features and benefits

- Leading negative VS immunity
- > 50% lower level-shift switching losses
- Integrated bootstrap diode
- 1200 V breakdown voltage
- Integrated input filters

- Increased robustness and reliability resulting in reduced manufacturing and field failures
- Reduced power dissipation, lower temperature
- Faster frequency switching
- Smaller PCB footprints
- Reduced BOM costs
- Improved noise sensitivity

- Increased profitability from lower lifecycle costs
- Faster time to market for higher share capture
- Enables new applications
 - Increased flexibility Increased reliability

 Latch-up 	immunity
------------------------------	----------

Product Nar	me	Configuration	Package	Output current	Key features	Deadtime	T _{on} /T _{off}
6ED2231S12T	NEW	Three-phase	DSO-24 (DSO-28 with 4 pins removed)	0.35/0.65 A	OCP, RFE	460 ns	700/650 ns
2ED1324S12P	NEW	Half-bridge	DSO-20WB (20 fine pitch leads)	2.3/2.3 A	OCP, SOFF, AMC, RFE	380 ns	500 ns
2ED1323S12P	NEW	HS+LS	DSO-20WB (20 fine pitch leads)	2.3/2.3 A	OCP, SOFF, AMC, RFE	None	350 ns
2ED1322S12M	NEW	Half-bridge	DSO-16WB (300mil)	2.3/4.6 A	OCP, SOFF, RFE	400 ns	500 ns
2ED1321S12M	NEW	HS+LS	DSO-16WB (300mil)	2.3/4.6 A	OCP, SOFF, RFE	None	350 ns

www.infineon.com/SO www.infineon.com/1200VHVIC www.infineon.com/6ED2230

2EDi EiceDRIVER™ family

Fast, robust, dual-channel galvanic isolated gate-river ICs

Galvanic isolated EiceDRIVER™ family overview

The 2EDi is a family of dual-channel isolated gate driver ICs designed to drive Si MOSFETS, SiC MOSFETs and GaN power switches. Isolation is achieved by means of Infineon's coreless transformer (CT) technology which guarantees robust operation and industry benchmark common-mode rejection (CMTI). The high propagation delay accuracy and low channel-to-channel mismatch makes the product ideal for use in fast-switching power system. In addition, high CMTI, high reverse current capability and fast clamping of the output below UVLO guarantees reliable operation in the application.

2EDi Gen 2: What is new?

- DSO-14 packages with increased channel-to-channel creepage to easier the layout or enable the use with higher working voltages or worst pollution layout
- New LGA 4 mm x 4 mm package enabling 70 percent space saving
- Fulfills the latest component standard for magnetic couplers (IEC 60747-17)
- Programmable dead-time and shoot-through functionality

Applications

- Server
- Telecom
- DC-DC converters
- Power tools
- Industrial SMPS
- Low speed electrical vehicles
- Solar power inverter
- LED lighting

Features and benefits

Key features

- Fast power switching with accurate timing
- 5 A/9 A source/sink currents
- Propagation delay typ. 38 ns with 6 ns channel-to-channel precision
- Optimized for area and system BOM
- < 1 Ω source and sink output resistance</p>
- Output stages with 5 A reverse current capability
- Robust
- CMTI >150 V/ns
- Under voltage lockout function for switch protection
- Deadtime control and shoot through protection
- Output-to-output channel isolation
- Functional level galvanic isolation
- Input-to-output channel isolation
- Functional, basic and reinforced galvanic isolation

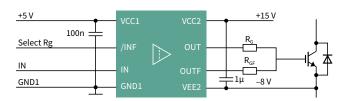
Key benefits

- Efficiency gain and lower losses
- Strong driving enables reduced switching losses
- Accurate timing enables deadtime optimization or synchronized driving in case of parallel MOSFETs
- Improved thermal behavior at smaller form factor
 Most of the driving power is dissipated externally
- with reduced thermal stress on the driver

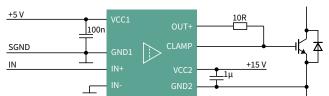
 Eliminates two costly protection diodes on the
- Eliminates two costly protection diodes on the gate driver outputs
- Protection and safe operation
- Reliable driver operation against fast switching transients
- MOSFET is protected from thermal stress in abnormal conditions
- Protection against noise and spurious pulses
- Flexible configurations
- High-side + low-side, high-side + high-side, lowside + low-side
- Regulatory safety
- Functional for level-shifting and ground bounce immunity
- Reinforced for control of primary-side MOSFETs from secondary-side controller

Customer value

- Enabling higher system efficiency and higher power density designs
- Improving long term competitive cost position, integration and mass manufacturability
- Extending end-product lifetime
- by improving safe operation of power switches in normal and abnormal field (grid) conditions
- Lower EMI by ground isolation
- Simplified safety approval
- through component standards (UL1577, IEC60747-17) and system standards (IEC62368) certificates


EiceDRIVER™ X3 Compact and 2L-SRC Compact

5.7 kV, 18 A, 1-ch, isolated drivers with Miller clamp and two-level slew rate control


The EiceDRIVER™ X3 Compact family (1ED31xx) provides Miller clamp or separate output options with up to 14 A current, in DSO-8 150 mil and 300 mil package. The EiceDRIVER™ 2L-SRC Compact family (1ED32xx) provides Miller clamp or 2-level slew rate control options with up to 18 A current, in DSO-8 300 mil package. The Miller clamp function is highly recommended for SiC MOSFET 0 V turn off and TRENCHSTOP™ IGBT7 against parasitic turn on. The two-level slew rate control function allows customers to change the output current on the fly. It is highly recommend for industrial drives application, where customer suffer from the EMI and switching loss optimization. Both EiceDRIVER™ X3 Compact and 2L-SRC Compact families are rated up to 2300 V functional isolation and 200 kV/µs CMTI. They are ideal for IGBTs, Si MOSFETs, and SiC MOSFETs in applications like solar inverter, EV-charging, industrial drives, CAC, industrial induction cooking, CAV, UPS, server and telecom SMPS, etc.

Simplified application diagram

Two-level slew rate control (1ED3241MC12H)

Active Miller clamp (1ED3122MC12H)

Evaluation board

 EVAL-1ED3121MX12H
 EVAL-1ED3241MC12H

 EVAL-1ED3122MX12H
 EVAL-1ED3251MC12H

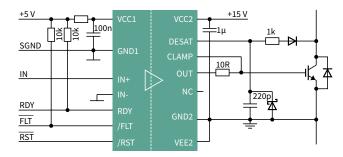
 EVAL-1ED3124MX12H
 REF-22K-GPD-INV-EASY3B

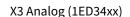
Family	Part number	Typ. output current	Feature	Prop. delay	Input filter	UVLO	Prop.delay matching	Package	Isolation rating
EiceDRIVER™	1ED3127MU12F	10 A	Miller clamp	90 ns	30 ns	12 V	7 ns	DSO-8 150mil	UL 1577:
X3 Compact	1ED3125MU12F	10 A			10.5 V			VISO = 3 kV _{RMS}	
	1ED3140MU12F	6.5 A	Separate output		8.5 V				
	1ED3141MU12F	6.5 A				11 V			
	1ED3142MU12F	6.5 A		12.5 V					
	1ED3124MU12F	14 A		90 ns	30 ns	10.5 V			
	1ED3131MC12H	5.5 A		270 ns	180 ns	10.5 V		DSO-8 300mil	UL 1577:
	1ED3120MC12H	5.5 A		90 ns	30 ns	8 V			$V_{ISO} = 5.7 \text{ kV}_{RMS}$
	1ED3121MC12H	5.5 A				10.5 V			VDE 0884-11:
	1ED3122MC12H	10 A	Miller clamp	1		8 V			V _{IORM} = 1767 V
	1ED3123MC12H	14 A	Separate output 8 V 10.5 V	Separate output 8 V		(reinforced)			
	1ED3124MC12H	14 A							
EiceDRIVER™	1ED3240MC12H	10 A	Turn-on and turn-off slew	110 ns	30 ns	10.5 V	15 ns		
2L-SRC	1ED3241MC12H	18 A	rate control			10.5 V			
Compact	1ED3250MC12H	10 A	Turn-on slew rate control			10.5 V			
	1ED3251MC12H	18 A	and Miller clamp			10.5 V			

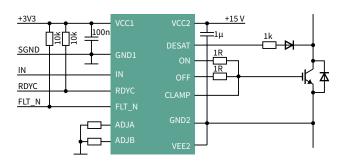
www.infineon.com/gdcompact www.infineon.com/src

EiceDRIVER™ Enhanced 1ED-F3 and X3 Analog

5.7 kV, 9 A, 1-ch, isolated drivers with DESAT, Miller clamp and soft-off


The EiceDRIVER™ Enhanced 1ED-F3 family (1ED332x) provides DESAT, Miller clamp and soft-off features with up to 6 A current, in DSO-16 300 mil package. The EiceDRIVER™ Enhanced X3 Analog family (1ED34xx) provides Miller clamp, resistor configurable DESAT and soft-off function with up to 9 A current, in DSO-16 300 mil fine pitch package.


The 1ED-F3 family (1ED332x) is pin-to-pin with our previous generation 1ED020I12-F2 (1ED-F2), with higher current, shorter propagation delay, higher isolation ratings and additional soft-off function. The X3 Analog family (1ED34xx) offers best-in-class DESAT protection accuracy with the resistor configurability on DESAT filter and leading edge blanking time and soft-off current.


Both EiceDRIVER™ Enhanced 1ED-F3 and X3 Analog families are rated up to 2300 V functional isolation and 200 kV/µs CMTI. They are ideal for IGBTs, Si MOSFETs, and SiC in applications like solar inverter, EV-charging, industrial drives, CAC, industrial induction cooking, CAV, UPS, server and telecom SMPS, etc.

Simplified application diagram

1ED-F3 (1ED332x)

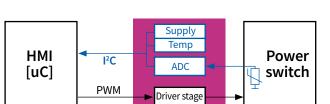
Evaluation board

EVAL-1ED3321MC12N EVAL-1ED3491MX12M

Family	Part number	Typ. output current	Feature	Prop. delay	Input filter	UVLO	Prop.delay matching	Package	Isolation rating
EiceDRIVER™ Enhanced	1ED3320MC12N	3/6 A	Miller clamp, DESAT, soft-off	80 ns	35 ns	10.5 V	15 ns	DSO-16 300mil	UL 1577: V _{ISO} = 5.7 kV _{RMS}
1ED-F3	1ED3321MC12N	6/8.5 A				10.5 V	VDE 0884-	VDE 0884-11:	
	1ED3322MC12N	6/8.5 A	Miller clamp, DESAT			12 V			V _{IORM} = 1767 V (reinforced)
	1ED3323MC12N	6/8.5 A				10.5 V			
EiceDRIVER™ Enhanced	1ED3431MC12M	3 A	Miller clamp, resistor adjustable DESAT and soft-off	236 ns	100 ns	10.5 V	30 ns	DSO-16 300mil fine pitch	-
X3 Analog	1ED3461MC12M	6 A	Clamp driver, resistor adjustable DESAT and soft-off			10.5 V			
	1ED3491MC12M	9 A				10.5 V			

Digital isolators

EiceDRIVER™ Enhanced X3 Digital

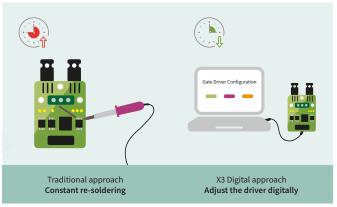

5.7 kV, 9 A, 1-ch, isolated drivers with I²C configurability for DESAT, Miller clamp, soft-off and many more

The EiceDRIVER™ Enhanced X3 Digital family (1ED38xx) provides I²C configurability for DESAT, soft-off, UVLO, Miller clamp, two-level turn off (TLTO), and fault function to simplify the design of highly reliable systems. All adjustments are done from the input side via the I²C interface (pin SDA and SCL). The 1ED38xx offers up to 9 A current, in DSO-16 300 mil fine-pitch package.

The EiceDRIVER™ Enhanced X3 Digital family is rated up to 2300 V functional isolation and 200 kV/µs CMTI. They are ideal for IGBTs, Si MOSFETs, and SiC MOSFETs especially due to the configurability of DESAT and UVLO. This family is recommended in applications like solar inverter, EV-charging, industrial drives, CAC, industrial induction cooking, CAV, UPS, server and telecom SMPS, etc. Two noticeable advantages of the digitally configurable approach for customers are predictive maintenance in sophisticated industrial systems and rapid prototyping for fast solution development.

Predictive maintenance

Using the I²C interface, the 1ED38xx is able to register the counts of UVLO spikes, monitor the supply voltage and temperature increase. With the long-term analysis of the collected data, customers are able to decide when is the best time to schedule a maintenance cycle before the system fails.


Simplified application diagram

X3 Digital (1ED38xx)

Rapid prototyping

The I²C interface enables rapid prototyping without hardware changes. Using a traditional gate driver, customers have to first design an initial PCB board, and then adjust and replace the components on the board during evaluation. However, with the 1ED38xx I²C interface, customers can configure up to 27 parameters to optimize the board without replacing the components. This feature extremely shortens the development flow.

Family	Part Number	Typ. output current	Feature	Isolation rating
EiceDRIVER™ Enhanced X3 Digital	1ED3830MC12M	3 A	I ² C configurabili- ty, Miller clamp, DESAT, soft-off,	UL 1577: VISO = 5.7 kV _{RMS}
	1ED3860MC12M	6 A	two-level turn- off, integrated ADC	VDE 0884-11: VIORM = 1767 V (reinforced)
	1ED3890MC12M	9 A		

www.infineon.com/gdenhanced

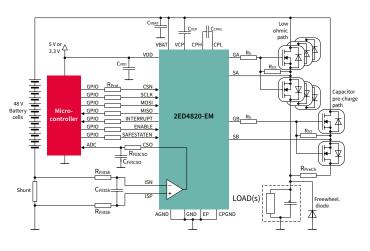
EiceDRIVER™ APD 2ED4820-EM

48 V smart high-side MOSFET gate driver with SPI for automotive applications

The EiceDRIVER™ 2ED4820-EM is a smart high side N-channel MOSFET gate driver with two outputs controlled via SPI. The integrated powerful charge pump allows external MOSFETs to stay continuously on. Thanks to the enhanced turn-on and turn-off ability of the driver, the number of MOSFETs could be easily scaled up to manage large currents in the order of several hundred amps, while ensuring fast switch on and off. The MOSFETs could be controlled in a back to back configuration either common mode or common source. The integrated current sense amplifier supports highside and even load-side current measurement with a dedicated monitoring output. The 2ED4820-EM comes along with several latching failure detections, to implement protections for the external MOSFETs, the load and the power source. Parameters can be adjusted by SPI; monitoring data, configuration, warning and failure detection registers can be read.

Summary of features

- Extended supply voltage range: 20 70 V
- Two independent high-side gate driver outputs with 1 A pull down, 0.3 A pull up for fast switch off/on
- Low supply current in sleep mode IBAT_Q < 5 μA
- Device control, configuration and diagnostic via SPI
- Configurable overcurrent/short circuit protection
- Configurable Drain-Source overvoltage protection
- Gate undervoltage lockout (V_{GS})
- Ground loss detection
- AEC-Q100 qualification



Benefits

- Supports back-to-back MOSFET topologies (common drain or common source)
- SAFESTATEN input to trigger safe state mode in case of µC failure
- One bidirectional high or low side analog current sense interface with configurable gain to optimize power losses
- Robust against V_{bat} voltages up to 105 V and V_{source} voltages versus V_{bat} of -90 V

Potential applications

- Battery protection switch
- Input protection switch
- Static load and supply switch for high currents

Products and evaluation boards

Product	Description	Ordering code	Package
2ED4820-EM	48 V smart high-side MOSFET gate driver with SPI	SP005629911	PG-TSDSO-24
2ED4820 EB2 2HSV48	2ED4820 dual high-side switch – 48 V evaluation board	SP005353778	BOARD
R 48V BATT Switch10	48 V battery disconnect switch - reference design	SP005595834	BOARD

EiceDRIVER™ 1EDI302xAS/1EDI303xAS

1200 V galvanically isolated automotive gate-driver IC family

The EiceDRIVER™ 1EDI302xAS/1EDI303xAS is a family of automotive qualified single-channel high-voltage gate drivers optimized for IGBT and SiC technologies. The robust Infineon coreless transformer (CT) technology is used to provide bidirectional signal transfer across the galvanic isolation barrier. Comprehensive safety features and ISO26262 compliance enable ASIL D classification on the system level. Accompanying safety documents ease and speed-up FMEDA analysis in the application. The compact package design and the high level of feature integration save valuable PCB space and system cost, while the pre-configured settings reduce design efforts. Pin-compatible product variants make it easy to switch between variants and swiftly adjust ECUs to different application needs (i.e., SiC MOSFET vs. IGBT).

Simplified block diagram

Product features

- > Single-channel isolated IGBT driver
- For IGBTs up to 1200 V
- > High CMTI up to 150 V/ns
- > 8 kV basic insulation according to DIN VDE V 0884-11:2017-01
- Basic insulation according to UL 1577
- Min. 12 A peak current rail-to-rail output
- Propagation delay 60 ns typical
- Typ. 10 A integrated active Miller clamp supports unipolar switching
- > Integrated, accurate 12 bit ADC for temperature measurements
- > Integrated safety features to support ASIL B(D):
 - DESAT and differential OCP protection
 - Gate and output stage monitoring
 - Shoot-through protection
 - Primary/secondary supply monitoring
 - Internal supervision
- > Advanced driver diagnosis with duty cycle coded DATA pin
- AEC-Q100 qualified
- Compact DSO-20 fine pitch package

Potential applications

- > Traction inverters for HEV and EV
- Auxiliary inverters for HEV and EV
- > High-power DC-DC converters

Evaluation board

1EDI30XXAS EVALBOARD 1EDI303XAS EVALBOARD

1EDI302XAS EVALBOARD

Product family overview

Product variant	Driver support	Additional functionality
1EDI3020AS	IGBT	ADC for temperature Diode
1EDI3021AS	IGBT	Active short circuit
1EDI3023AS	IGBT	ADC for NTC and DC-link
1EDI3030AS	SiC	ADC for temperature diode
1EDI3031AS	SiC	Active short circuit
1EDI3033AS	SiC	ADC for NTC and DC-link

www.infineon.com/eicedriver

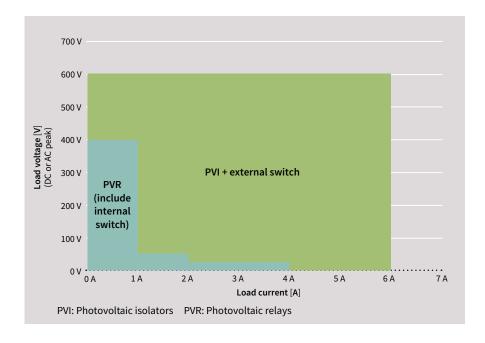
Infineon solid-state relays (SSR) technologies

Using Infineon power-switch technologies, Infineon solid-state relays (SSRs) are remotely controlled switches (on/off) with complete galvanic isolation from input to output. No power supply is needed on the output.

Two main sub-groups:

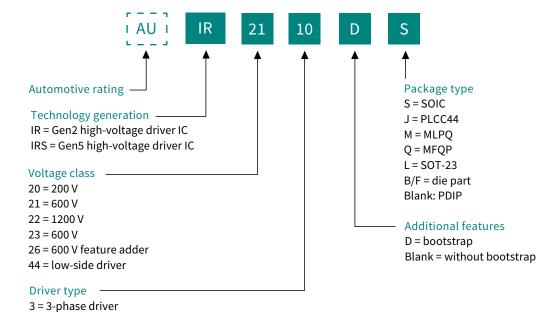
- Photovoltaic isolators (PVI)
 - Isolated, low-power DC voltage sources capable of driving MOSFET or IGBT gates directly
- Photovoltaic relays (PVR)
 - PVI plus internal power MOSFET

Main benefits of Infineon SSR technology:


- Optically isolated technology provides galvanic isolation for safety applications
- Wide range of applications from industrial automation to test equipment
- Established and reliable products with over 20 years of history

Key advantages over electromechanical relays:

- Silent operation
- No contact bounce
- Compact solution
- Fast response time
- High input sensitivity
- High reliability with long operational life
- Insensitivity to stray EMF, shock and vibration
- Stable contact resistance over life


Infineon SSRs can be used in a wide range of applications:

- Electro-mechanical relay (EMR) replacement
- Battery management systems
- UPS
- Automatic test equipment
- Instrumentation systems
- Industrial automation
- Thermostats
- Programmable logic controllers

Nomenclature

Naming convention for existing families of gate-driver ICs

Number of channels 1 = 1-ch EiceDRIVER™ 2 = 2-ch (half-bridge) EiceDRIVER™ 6 = 6-ch (3-phase) EiceDRIVER™ Isolation technology S = reinforced galvanic isolation B = basic galvanic isolation I = functional galvanic isolation C = UL certified functional galvanic isolation L = level-shifting (SOI) N = non-isolated driver Minimum drive strength in hundreds of milliamps Optimal switch Type

Package type F = DSO8-150 mil H = DSO8-300 mil

Key features

A = separate sink/source B = Bootstrap diode

D = DESAT

M = active Miller clamp

S = slew rate control

T = two-level turn-off

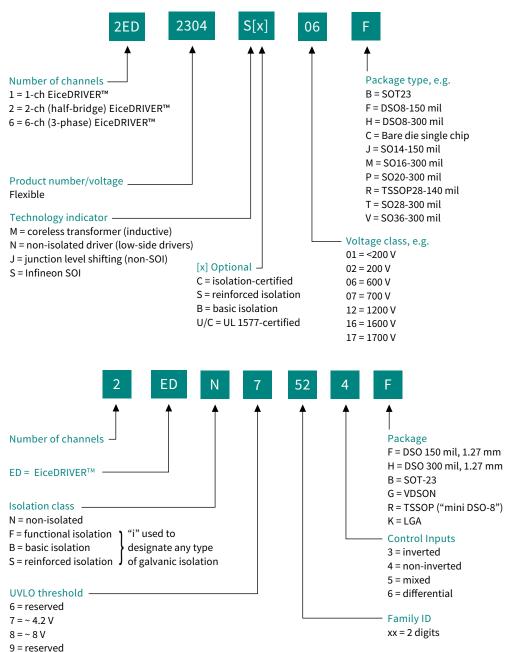
Voltage class

06 = 600 V

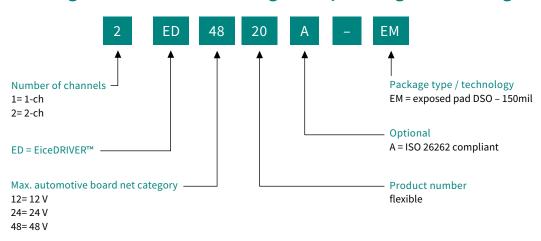
12 = 1200 V

H = high-speed IGBT

7 = current-sense IC


Other: half-bridge, high-side/low-side, etc.

I = IGBT


J = JFET

N = MOSFET

Naming convention for existing and upcoming families of gate-driver ICs

Naming convention for existing and upcoming families of gate-driver ICs

Infineon support for gate-driver ICs

Useful links and helpful information

$Further\ information,\ data sheets\ and\ documents$

www.infineon.com/200vhvic www.infineon.com/700vhvic www.infineon.com/1200vhvic www.infineon.com/gdsic www.infineon.com/gdsic-cn (CN) www.infineon.com/gdcompact www.infineon.com/gdlowside

Gate driver IC community FAQs www.infineon.com/gdforum

Gate driver simulation (SPICE) models www.infineon.com/gdmodel

www.Infineon.com/gdenhanced www.infineon.com/src www.infineon.com/src-cn (CN) www.infineon.com/1ED4417x www.infineon.com/1EDN www.infineon.com/2EDN www.infineon.com/TDI

Gate driver selection tools www.infineon.com/gdfinder

Cross reference tool www.infineon.com/crs

www.infineon.com/gatedriver www.infineon.com/gatedriver-cn (CN) www.infineon.com/ifxdesigner www.infineon.com/gdevalboards www.infineon.com/gdlowside

Support Evaluation boar

Digital isolators

- ISOFACE™ dual-channel digital isolators
- ISOFACE™ quad-channel digital isolators

ISOFACE™ dual-channel digital isolators

Robust digital isolators with precise timing and low power consumption

ISOFACE™ digital isolators are based on Infineon's coreless transformer (CT) technology and provide robust isolation for high voltage applications. They are the preferred choice for isolated gate signal transfer in high-density power designs and isolated communication such as UART or CAN.

The 2DIBx4xxF family features

- Dual-channel digital isolators with eight variants and data rates up to 40 Mbits/s
- 3 kV_{RMS} isolation voltage
- CMOS/TTL input thresholds
- High common-mode transient immunity (CMTI)
- Accurate timing performance
- Wide operating supply voltage from 2.7 V to 6.5 V

Product variants

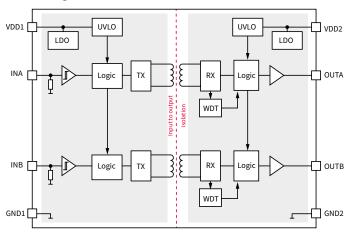
Part number	Isolation rating	Channel configuration	Input thresholds	Default output state	Package
2DIB0400F	V _{ISO} = 3000 V _{RMS} (UL1577 Ed. 5)	2 forward 0 reverse	Variable (CMOS)	Low	PG-DSO-8 5 x 4 mm
2DIB0401F		(2+0)		High	
2DIB1400F		1 forward 1 reverse	Fixed (TTL)	Low	
2DIB1401F		(1+1)		High	
2DIB0410F		2 forward 0 reverse		Low	
2DIB0411F		(2+0)		High	
2DIB1410F		1 forward 1 reverse		Low	
2DIB1411F		(1+1)		High	

Features and benefits

Key features	
− High CMTI > 100 V/ns	
− Wide supply voltage range 2.7 V ~ 6.5 V (abs. max. 7.5 V)	
- TTL or CMOS input threshold	
- Typical propagation delay 26 ns with -4/+6 ns spread	
– Both high and low fail-safe default output state	
Both component and system level certification	
- Pin-to-nin compatibility	

key benefits	5	benefits	Key	
--------------	---	----------	-----	--

- High immunity against system noise or high dv/dt
- Reliable performance in SMPS with switching noise on IC power supply
- Optimized noise margin for different applications
- For high system power efficiency
- Reliable high or low default output state in case of failures
- Simplified system certification process
- For easy device replacement and alternative sourcing

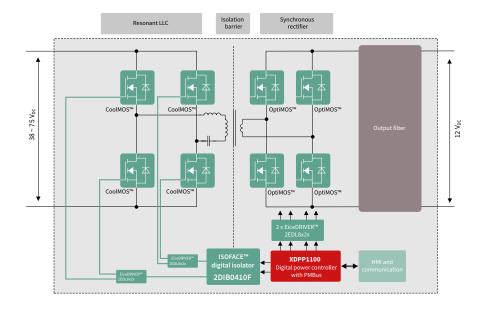

Infineon ISOFACE™ dual-channel digital isolators are used to transfer gate driving and communication signals like CAN and UART over the isolation barrier. With high robustness and accurate switching characteristics, they are suitable for high power density designs and isolated communication systems.

Power management ICs

Dual-channel digital isolator 2DIB0410F in SOIC-8 narrow body package

Infineon ISOFACE[™] dual-channel digital isolator 2DIB0410F (with 2 forward channels) provides robust isolation for high voltage applications. With a wide supply voltage range, TTL input thresholds and default output state low, it is the perfect fit for high-power density DC-DC brick applications.

Block diagram of 2DIB041xF with two forward data channels



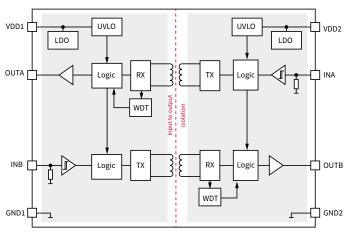
Features and benefits

Key features
- High CMTI > 100 V/ns
Wide operating supply voltage range 2.7 V ~ 6.5 V (abs. max. 7.5 V)
- TTL input threshold
- Integrated glitch filter
– Default low fail-safe output state
- Both component and system-level certification

Key benefits - High immunity against system noise - Reliable performance in SMPS with switching noise on IC power supply - Optimized noise margin for SMPS applications - Effective noise suppression in SMPS applications - Reliable low output state in case of failures - Simplified system certification process

2DIB0410F used in isolated DC-DC brick application

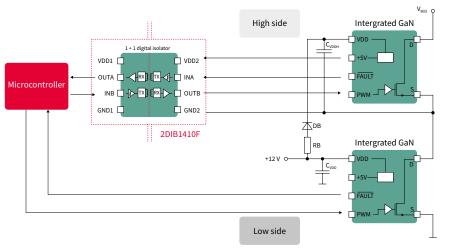
Infineon ISOFACE™ dual-channel digital isolator 2DIB0410F is a perfect fit for isolated DC-DC brick applications to transfer half- or full-bridge gate driving signals. The two-channel configuration allows transfer of low- and high-side gate-signals over the isolation barrier.



Dual-channel digital isolator 2DIB1410F in SOIC-8 narrow body package

Infineon ISOFACE™ dual-channel digital isolator 2DIB1410F (with one forward and one reverse channel) provides robust isolation for high voltage applications. With high common-mode transient immunity (>100 V/ns), TTL input threshold, and default low output state, it is the perfect match for GaN-IPS with high dv/dt in high-density power designs (GaN with integrated non-isolated gate driver).

Block diagram of 2DIB14xxF with one forward and one reverse data channel


Features and benefits

Key features	
- High CMTI > 100 V/ns	
− Wide supply voltage range 2.7 ~ 6.5 V (abs. max. 7.5 V)	
- TTL input threshold	
- Integrated glitch filter	
– Default low fail-safe output state	
- Both component and system-level certification	

Key benefit

- For GaN with integrated non-isolated gate driver with high dv/dt
- Reliable performance in SMPS with switching noises on IC power supply
- Optimized noise margin for SMPS applications
- Effective noise suppression in SMPS applications
- Reliable low output state in case of failures
- Simplified system certification process

2DIB1410F used in totem-pole PFC with GaN IPS

Infineon ISOFACE™ dual-channel digital isolator 2DIB1410F can be used together with GaN IPS for high-side floating drive. One forward channel is used to transfer the gate signal. The reverse channel can be used for protection signal.

ISOFACE™ quad-channel digital isolators

Robust digital isolators with precise timing and low power consumption

ISOFACE™ digital isolators are based on Infineon's coreless transformer (CT) technology and provide reinforced isolation for high-voltage applications. They are the preferred choice for isolated gate signal transfer in high-density power designs and isolated communication such as UART/CAN and SPI. The quad-channel digital isolators also offer AEC-Q variants to meet even stringent customer application requirements.

The 4DIRx4xxH family features

- Quad-channel digital isolators with eight variants and data rates up to 40 Mbits/s
- 5.7 kV_{RMS} isolation voltage
- Active high or low enable logic level for the output on Side 1
- High common-mode transient immunity (CMTI)
- Accurate timing performance
- Wide operating supply voltage from 2.7 V to 6.5 V

Product variants

Part number	Channel configuration	Output enable	Default output state	Package
4DIR0400H	4 forward 0 reverse (4+0)		Low	
4DIR0401H(A) 1)			High	
4DIR1400H(A) 1)	3 forward 1 reverse (3+1)		Low	
4DIR1401H(A) 1)		Active-high	High	PG-DSO-16 300 mil
4DIR2400H(A) 1)	2 forward 2 reverse (2+2)		Low	
4DIR2401H(A) 1)			High	
4DIR1420H(A) 1)	3 forward 1 reverse (3+1)	Active-low	Low	
4DIR1421H(A) 1)			High	

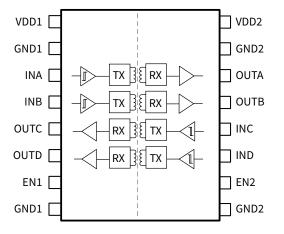
Features and benefits

Key features
– High CMTI > 100 V/μs
− Wide supply voltage range 2.7 V ~ 6.5 V (abs. max. 7.5 V)
– Active high or low enable logic level for the output on Side 1
- Typical propagation delay 26 ns with -4/+6 ns spread
– Both high and low fail-safe default output state
- Both component- and system-level certification
- Pin-to-pin compatibility

Key benefits
High immunity against system noise and high dv/dt
Reliable performance in UART/CAN and SPI communication
Compatible with chip select function in SPI communication
For high system power efficiency
Reliable high or low default output state in case of failures
Simplified system certification process
For easy device replacement and alternative sourcing

Infineon ISOFACE™ quad-channel digital isolators transfer gate driving and communication signals like CAN/UART and SPI over the isolation barrier.

Industria

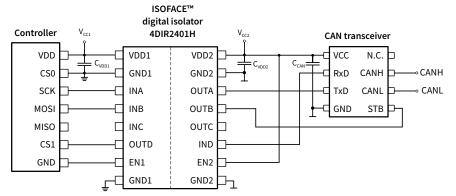


www.infineon.com/digitalisolators

Quad-channel digital isolator 4DIR2401H in SOIC-16 wide body package

Infineon ISOFACE™ quad-channel digital isolator 4DIR2401H (with 2 forward and 2 reverse channels) provides robust isolation for high-voltage applications. With a wide supply voltage range, CMOS input threshold, and default output state high, it is the perfect fit for a wide range of SMPS applications and isolated communication like UART/CAN.

4DIR240xH with 2 forward and 2 reverse data channels

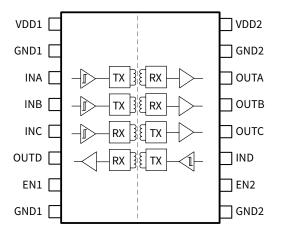


Features and benefits

Key features	
– High CMTI > 100 V/μs	
 Wide supply voltage range 2.7 V ~ 6.5 V (abs. max. 7.5 V) 	
– Active high enable logic level for the output on Side 1	
- Typical propagation delay 26 ns with -4/+6 ns spread	
– Low fail-safe default output state	
– Both component- and system-level certification	
- Pin-to-pin compatibility	

Key benefits
– High immunity against system noise
- Reliable performance in UART/CAN and SPI communication
Output enable function for system-level protection
– For high system power efficiency
Reliable low default output state in case of failures
- Simplified system certification process
For easy device replacement and alternative sourcing

Infineon ISOFACE™ quad-channel digital isolators 4DIR2401H can be used in SMPS applications for inter-board communication and other isolated communication like UART/CAN.

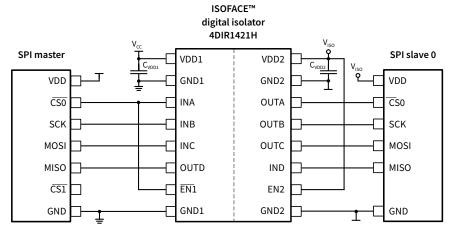


Quad-channel digital isolator 4DIR1421H in SOIC-16 wide body package

Infineon ISOFACE™ quad-channel digital isolator 4DIR1421H (with 3 forward and 1 reverse channels) provides robust isolation for high-voltage applications. With a wide supply voltage range, active-low enable logic level for the output on side 1 and default output state low; it is the perfect fit for isolated SPI communication.

Key benefits

4DIR142xH with 3 forward and 1 reverse data channels



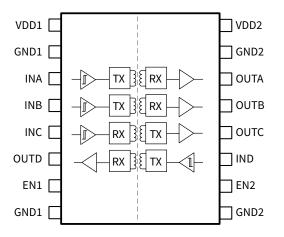
Features and benefits

Key features
– High CMTI > 100 V/μs
− Wide supply voltage range 2.7 V ~ 6.5 V (abs. max. 7.5 V)
– Active low enable logic level for the output on Side 1
- Typical propagation delay 26 ns with -4/+6 ns spread
– High fail-safe default output state
- Both component- and system-level certification
- Pin-to-pin compatibility

	- High immunity against system noise
	- Reliable performance in SPI communication
	- Compatible with chip select function in SPI communication
	– For high system power efficiency
	- Reliable high output state in case of failures
	- Simplified system certification process

- For easy device replacement and alternative sourcing

Infineon ISOFACE™ quad-channel digital isolator 4DIR1420H is designed for isolated SPI communication. The negative enable logic level for output on side 1 is compatible with the chip select function of SPI communication controllers. The default high output state is designed not to block the SPI communication bus in case of failure on the input side.



Quad-channel digital isolator 4DIR1400H in SOIC-16 wide body package

Infineon ISOFACE™ quad-channel digital isolator 4DIR1400H (with 3 forward and 1 reverse channels) provides robust isolation for high-voltage applications. With a wide supply voltage range, active-high enable logic level for the output on side 1 and default output state low. It is the perfect fit for a wide range of applications, including telecom/server PSU, industrial SMPS, EV-charging, and industrial drives.

4DIR140xH with 3 forward and 1 reverse data channels

Features and benefits

Key features	
– High CMTI > 100 V/μs	
− Wide supply voltage range 2.7 V ~ 6.5 V (abs. max. 7.5 V)	
– Active high enable logic level for the output on Side 1	
- Typical propagation delay 26 ns with -4/+6 ns spread	
– Low fail-safe default output state	
Both component and system-level certification	
- Pin-to-pin compatibility	

	ney beliefits
	- High immunity against system noise
	 Reliable performance in UART/CAN and SPI communication
Ì	- Output enable function for system level protection
	– For high system power efficiency
	– Reliable low default output state in case of failures
	- Simplified system certification process

For easy device replacement and alternative sourcing

CoolMOS**

OpBMOS**

INDUCT FILE CONTROL TO THE COOL T

Infineon ISOFACE™ quad-channel digital isolators

4DIR1400H can be used for HV DC-DC Converter in

PSU for telecom and server. The quad-channel digital
isolator controls the primary LLC converter indirectly
and communicates with the PFC controller through the
reinforced isolation barrier. Two data channels are used
to transfer the half-bridge PWM control signals (HS and
LS). The remaining two data channels are used for UART
communication between the primary-side PFC controller
and the secondary-side LLC controller. The default low
output state ensures the safe turn-off of the half-bridge
MOSFETs in any fault condition.

Infineon support for digital isolators

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/digitalisolators

upport Evaluation be

trollers Microco herals

Discrete IGBTs and silicon power diodes

- Discrete IGBTs
- 650 V 1200 V TRENCHSTOP™ IGBT7 T7, H7 and S7
- 1200 V and above IGBT families
- 650 V TRENCHSTOP™ IGBTs
- Lower power drive IGBT portfolio
- 650 V Reverse Conducting R6 IGBT
- TRENCHSTOP™ 5 advanced isolation

- TRENCHSTOP™ 5 selection tree
- IGBT selection tree
- Discrete IGBTs product portfolio
- Silicon power diodes
- CoolSiC[™] hybrid devices portfolio
- Discrete IGBT nomenclature
- Silicon power diodes nomenclature

and per

ors manag


WBG

kages

Discrete IGBTs

Market leadership through groundbreaking innovation and application focus

Resolute to achieve the highest standards in performance and quality, Infineon offers a comprehensive portfolio of application-specific discrete IGBTs. From 600 V up to 1600 V, we offer a wide range of IGBT voltage classes to meet different voltage requirements in each application.

Digital isolators

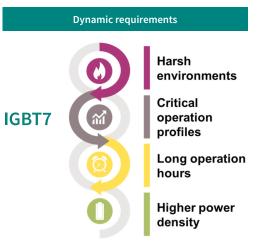
It's time to SWITCH!

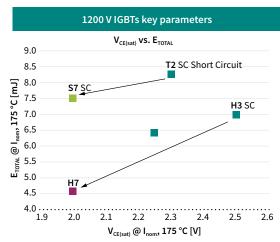
Infineon has revolutionized the world of IGBTs with the 7th generation of TRENCHSTOP™ IGBTs, designed with the latest micro-pattern trench technology. This advanced technology offers unparalleled control and performance, resulting in significant loss reduction, improved efficiency, and increased power density in your applications.

650 V - 1200 V TRENCHSTOP™ IGBT7 T7, H7 and S7

The 7th generation of TRENCHSTOP™ IGBTs sets a new benchmark in the world of discrete IGBT and diode technology. With its outstanding performance, it is the fastest IGBT on the market and boasts the highest power density with current rating devices up to 150 A. For the first time ever, this technology is now available in the 650 and 1200 V discrete IGBT market.

Fulfilling the needs of decarbonization and industry 4.0




2 voltage classes 650 V and 1200 V 3 flavours T7, H7 and S7 5 Packages

Produced in 300 mm fab **Enabling future growth**

The extensive portfolio of 650 V/1200 V TRENCHSTOP™ IGBT7 T7, H7 and S7 is specifically designed to meet the demands of various applications, including solar photovoltaic, uninterruptible power supplies, battery chargers, and industrial drives. This unique discrete offering provides a high current rating portfolio up to 150 A in four different package types, with conduction parameter V_{(CE)sat} 50% lower compared to previous generations and switching losses up to 84% lower.

Make the switch today and revolutionize your applications!

Don't miss out on this opportunity to upgrade your applications with the latest and greatest in IGBT technology. The 7th generation of TRENCHSTOP™ IGBTs offers unparalleled performance and efficiency, making it the perfect choice for any application looking to take their power awnd performance to the next level. Make the switch today!

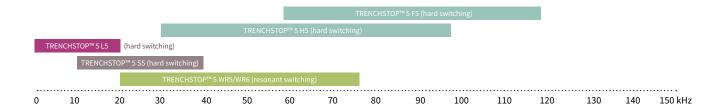
www.infineon.com/discreteIGBT7 www.infineon.com/igbtdiscretes www.infineon.com/gatedriver

1200 V and above IGBT families

The 7th generation of TRENCHSTOP™ IGBTs, known as 650 V IGBT T7 and H7 and 1200 V IGBT7 H7 and S7, are setting new standards in the market. With its unparalleled speed, it is the fastest IGBT currently available. Furthermore, the IGBT7 boasts a remarkable power density, making it a top performer in terms of efficiency and performance. As a direct replacement for all previous industrial IGBT generations, including the high-voltage TRENCHSTOP™ T2 and HighSpeed 3 H3 series, these devices are an excellent choice for those looking to upgrade their technology and improve their system's overall performance.

The Reverse Conducting R5 and R5L are the latest generations in the RC-H series of reverse conducting IGBT. With a monolithically integrated diode, they offer optimized performance for resonant switching applications such as induction cooking. R5 devices are available in 1100 V, 1200 V, 1350 V and 1600 V blocking voltage while R5L devices are available in 1400 V blocking voltage.

EiceDRIVER™ isolated gate driver like X3 Compact family and EiceDRIVER™ 1200 V level shift gate driver family are perfect match for the 1200 V IGBT in motor control, general purpose inverter, solar, and UPS applications. EiceDRIVER™ low-side gate driver with over current protection is widely used in induction cooking application.



Reverse Conducting R5 and R5L	World-class Reverse Conducting RC-H products - High performance and low losses	Induction cooking Resonant switching — Medium to high frequency converters
TRENCHSTOP™ 7 H7	 High speed/high power IGBT First tailless/low-loss IGBT on market Market proven and recognized quality leader 	Solar, ESS, UPS, welding – Medium frequency converters
TRENCHSTOP™ IGBT7 S7	New low switching losses and high power IGBTs Optimized for operation up to 20 kHz Best-in-class V _{CE(sat)} and low switching losses	Industrial drives, solar, HVAC Low/medium frequency converters

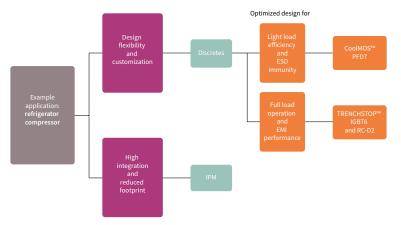
(h_rr)

650 V TRENCHSTOP™ 5 IGBT

Ideally suited for customers who are looking for outstanding efficiency and power density, the TRENCHSTOP™ 5 is optimized to comprehend various switching frequencies. Wafer thickness has been reduced by more than 25 percent, which enables a dramatic improvement in both switching and conduction losses while providing an increased breakthrough voltage of 650 V. Based on the TRENCHSTOP™ 5 IGBT technology, Infineon has developed six different product families targeting specific applications, allowing designers to optimize for high efficiency, system cost or reliability demands of the market. The quantum leap of efficiency improvement provided by the TRENCHSTOP™ 5 IGBT families opens up new opportunities for designers to explore. EiceDRIVER™ isolated gate driver such as the X3 Compact family which is perfect for 650 V IGBTs in solar and UPS applications. EiceDRIVER™ low side gate driver with overcurrent protection is widely used in induction cooking application and PFC stage.

TRENCHSTOP™ 5 L5	Best-in-class IGBT low V _{CE(sat)} IGBT - V _{CE(sat)} IGBT - 1.05 V - Best trade-off V _{CE(sat)} V _{SS} E _{ts} for frequencies below 20 kHz	Solar, UPS, welding - Ultra-low frequency converters - Three-level inverter type I NPC 1 and NPC 2 - Modified HERIC inverter - AC output (aluminum/magnesium welding)
TRENCHSTOP™ 5 S5	Best-in-class ease-of-use IGBT Elimination of: - Collector-emitter snubber capacitor and gate capacitor in low inductance designs (<100 nH) - Softer switching than TRENCHSTOP™ 5 H5	UPS, battery charger, solar, welding – Medium frequency converters – Multilevel inverter stages – Output stages – PFC
TRENCHSTOP™ 5 H5/F5	Best-in-class high frequency IGBT - Bridge to SJ MOSFET performance - Highest efficiency, especially under light load conditions	UPS, solar, welding - High frequency converters - Multilevel inverter stages - Output stages - PFC
TRENCHSTOP™ 5 WR5	Price optimized reverse conducting TRENCHSTOP™ 5 with an optimized monolithically integrated diode tailored for specific hard switching applications — Monolithic diode optimized for PFC and welding applications — Excellent R _G controllability — Perfect fit to mainstream design for 20 kHz < fsw < 60 kHz	Air conditioning, welding - RAC/CAC PFC outdoor compressor - Compact/portable welding - Light-medium industrial welding
TRENCHSTOP™ 5 WR6	Outstanding price/performance ratio with the latest 650 V reverse-conducting IGBT in the new high creepage TO-247-3 package - Very low V _{CE(sat)} of 1.45 V @25°C - High creepage and clearance TO-247 package - Optimized for full-rated hard switching turn-off	Air conditioning, welding - RAC/CAC PFC outdoor compressor - Compact/portable welding - Light-medium industrial welding

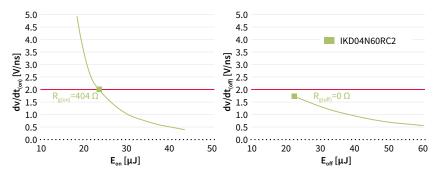
Gate-driver ICs


Lower power drive IGBT portfolio

650 V TRENCHSTOP™ IGBT6 and 600 V RC-D2

Motor drives up to 1 kW are used in a wide variety of applications, from home appliance fans and compressors to pumps. The market for these products demands design flexibility, EMI performance, and easy controllability. Therefore, these compact motors require power electronics with the lowest losses and best thermal performance. The TRENCHSTOP™ IGBT6 family of discrete devices has been designed for the lowest switching losses, which is particularly important in systems with higher switching frequencies (up to 30 kHz). Additionally, the IGBTs are co-packed with the soft, fast-recovery Rapid 1 anti-parallel diodes for the lowest total losses. With a higher blocking voltage at 650 V, and short-circuit rating, TRENCHSTOP™ IGBT6 is a key contributor to robust motor designs.

The new RC-D2 family of discrete devices has been cost-optimized in surface-mounted packages. The device contains a monolithically integrated diode and has HV-H3TRB ruggedness capability. With a blocking voltage at 600 V, and 3 µs short-circuit rating, the RC-D2 is a key contributor to cost-effective motor designs.


Switch selection for low power drives < 300 W

Features and benefits

EMI performance

- $-R_{g(on)}$ and $R_{g(off)}$ are selected to meet dv/dt of 2 V/ns at 500 mA and T_j of
- IGBTs (IKD04N60RC2) are easily controllable by optimizing R_g values
- EMI performance can be enhanced with additional passive components

www.infineon.com/IGBT6 www.infineon.com/rcd2 www.infineon.com/gatedriver

Reverse Conducting for soft-switching applications

650 V Reverse Conducting R6 IGBT in TO-247 package

The 650 V R6 IGBT offers the lowest $V_{CE(sat)}$ and optimized E_{off} for best efficiency, minimized power losses and cooling effort. The good EMI behavior simplifies filtering design, reduces system costs and effort for the designers. Thanks to the best system performances and high compatibility with the existing gate driver solution, 650 V R6 IGBT represents the optimal choice for soft switching topologies.

Features and benefits

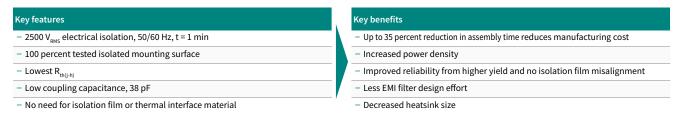
Key features	Key benefits
– Very low $V_{CE(sat)}$ and low E_{off}	- Lowest losses on IGBT, high system efficiency for higher power output
High ruggedness and stable temperature behavior	- Fast and easy replacement of predecessor R5 portfolio
g ruggeaness and stable temperature senarior	- High device reliability
− Maximum operating T _J of 175 °C	- Good EMI behavior

Package innovations

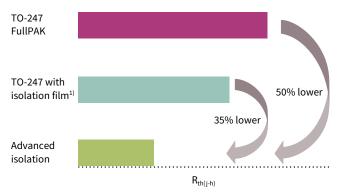
Discrete IGBT package overview

Infineon discrete IGBT package portfolio contains SMD (surface mount device) packages, for example, D2PAK, DPAK, SOT-223, and through-hole packages, for example, T0-220, T0-220 FP, T0-247, T0-247-3-HCC, T0-247-4, T0-247-4 asymetric (650V, 1200V; 76-136 A), T0-247PLUS, T0-247PLUS-4, and T0-247 advanced isolation packages. It provides discrete IGBTs solutions with and without anti-parallel diode, which is an excellent fit to use in industrial, home appliance, and automotive applications.

	SOT-223 SMD	TO-252 (DPAK)	TO-263 (D2PAK)	TO-220	TO-220 FullPAK	TO-247	TO-247 4-pin	TO-247PLUS	TO 24701116	TRENCHSTOP™ advanced isolation TO-247	TO-247-3-HCC
Package options		A	0.11.20					S Mines			
Voltage class	600 V, 650 V,	1100 V, 1200 V	, 1350 V, 1600 V	V						600 V, 650 V	650 V
Configuration	DuoPack (wit	th diode), sing	gle IGBTs							DuoPack IGBTs with diode and single diodes	
Continuous collector current T _c = 100°C	3-120 A									40-90 A	20 -70 A


TRENCHSTOP™ advanced isolation

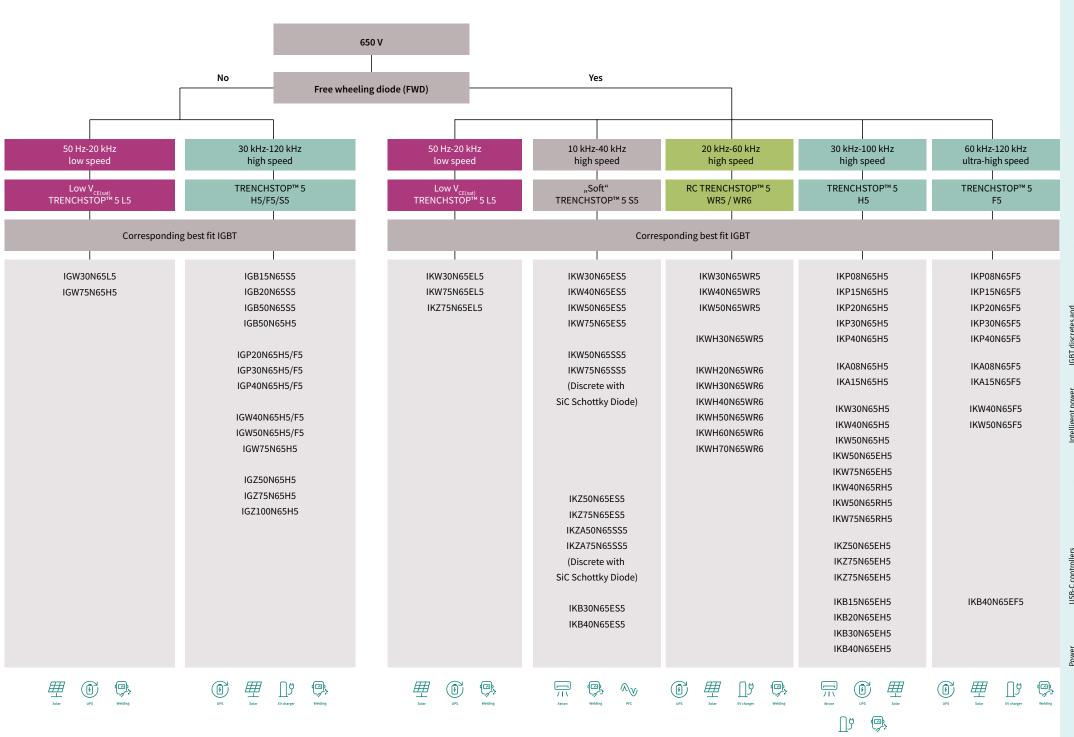
Fully isolated TO-247 package with industry leading IGBTs

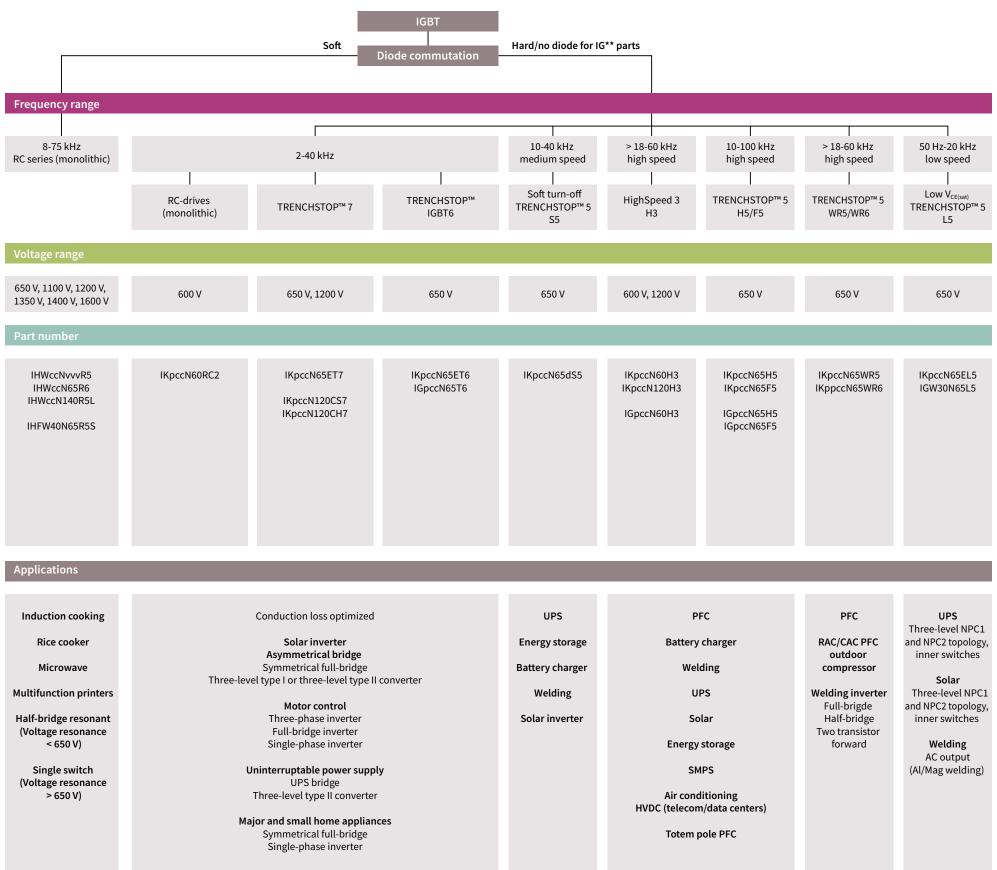

TRENCHSTOP™ advanced isolation solution breaks the limits reached by traditional packaging and isolation techniques. This new isolated package enables the highest power density, the best performance and the lowest cooling effort thanks to an effective and reliable thermal path from the IGBT die to the heatsink.

In addition to providing 100 percent electrical isolation, TRENCHSTOP™ advanced isolation also eliminates the need for thermal grease or thermal interface sheets. The new package delivers at least 35 percent lower thermal resistivity, helping designers to increase power density, as well as lower system complexity and assembling costs. This new package solution allows industrial and home appliance designs to fully utilize the high performance of TRENCHSTOP™ IGBTs without compromises for isolation and cooling.

Features and benefits

Thermal resistivity of package and isolation types


1) Isolation material: standard polyimide based reinforced carrier insulator film with 152 μm thickness, 1.3 W/mK thermal conductivity


www.infineon.com/advanced-isolation www.infineon.com/gatedriver

235

TRENCHSTOP™ 5 selection tree

IGBT selection tree

Digital isolators

TRENCHSTOP™ and RC-D2 drives

600 V/650 V product family together with 650 V SOI gate driver family

colle	ontinuous ctor current T_=100°C	TO-251 (IPAK)	TO-252 (DPAK)	TO-263 (D²PAK)	TO-220	TO-247 advanced isolation	TO-220 FullPAK	TO-247	TO-247PLUS/ Super 247 (TO-247AA)	SOT-223
	[A]	Hal	Hal	Hal	Hal	Hal	Hal	Hal	Hal	Hal
	4	IGU04N60T								
	6		IGD06N60T IGD06N65T6		IGP06N60T					
_	10		IGD10N65T6	IGB10N60T	IGP10N60T					
.eg	15		IGD15N65T6	IGB15N60T	IGP15N60T					
Single IGBT	30			IGB30N60T				IGW30N60T		
S	40									
	50			IGB50N60T	IGP50N60T			IGW50N60T		
	75							IGW75N60T		
	1									IKN01N60RC2
	3									IKN03N60RC2
	4		IKD04N60RC2		IKP04N60T					IKN04N60RC2
	6		IKD06N60RC2 IKD06N65ET6	IKB06N60T	IKP06N60T		IKA06N60T			IKN06N60RC2
	8		IKD08N65ET6							
IGBT and diode	10		IKD10N60RC2	IKB10N60T	IKP10N60T		IKA10N60T			
anc	15		IKD15N60RC2	IKB15N60T	IKP15N60T		IKA15N60T			
BET	20			IKB20N60T	IKP20N60T			IKW20N60T		
≚	30							IKW30N60T		
	40									
	50					IKFW50N60ET		IKW50N60T		
	75					IKFW75N60ET		IKW75N60T		
	100								IKQ100N60T	
	120								IKQ120N60T	

TRENCHSTOP™ IGBT6

650 V product family together with 650 V SOI gate driver family

,	Sewing machine

Continuous collector current @ Tc=100°C [A]	TO-252 (DPAK)	TO-220 FullPAK (Hal)
6	IKD06N65ET6 IGD06N65T6	
8	IKD08N65ET6	IKA08N65ET6
10	IGD10N65T6	IKA10N65ET6
15	IGD15N65T6	IKA15N65ET6

TRENCHSTOP™ IGBT7 S7

1200 V product family together with isolated driver and 1200 V level-shift driver family

Continuous collector current @ T _c =100°C [A]		TO-247	TO-247PLUS 3-pin	TO-247 4-pin
Б	40			IKZA40N120CS7
<u>5</u>	75		IGQ75N120S7	
Single IGBT	100		IGQ100N120S7	
Si	120		IGQ120N120S7	
	8	IKW08N120CS7		
	15	IKW15N120CS7		
~	25	IKW25N120CS7		
Pacl	40	IKW40N120CS7		
DuoPack	50	IKW50N120CS7		
	75		IKQ75N120CS7	
	100		IKQ100N120CS7	
	120		IKQ120N120CS7	

TRENCHSTOP IGBT7 T7

Together with isolated driver, 650 V SOI driver, and low-side driver family

collector current		T0-247-3
@	Tc=100°C [A]	(Hal)
	20	IKW20N65ET7
支	30	IKW30N65ET7
DuoPack	40	IKW40N65ET7
2	50	IKW50N65ET7
	75	IKW75N65ET7

TRENCHSTOP™ IGBT7 H7

1200 V product family together with isolated driver and 1200 V level-shift driver family

Continuous collector current @ Tc=100°C [A]	TO247-3	TO-247 4-pin assymetric	TO-247PLUS 3-pin	TO-247PLUS 4-pin
40	IKW40N120CH7	IKZA40N120CH7		
50	IKW50N120CH7	IKZA50N120CH7	IKQ50N120CH7	IKY50N120CH7
75	IKW75N120CH7	IKZA75N120CH7	IKQ75N120CH7	IKY75N120CH7
100			IKQ100N120CH7	IKY100N120CH7
120			IKQ120N120CH7	IKY120N120CH7
140			IKQ140N120CH7	IKY140N120CH7

www.infineon.com/igbt6 www.infineon.com/discreteigbt7

Reverse Conducting IGBTs

Continuous collector current @T _c =100°C	TO-247 advanced isolation	TO-247					
[A]		650 V	1100 V	1200 V	1350 V	1400 V	1600 V
20		IHW20N65R5*				IHW20N140R5L	
20				IHW20N120R5	IHW20N135R5		
25						IHW25N140R5L	
30		IHW30N65R6 IHW30N65R5	IHW30N110R5	IHW30N120R5	IHW30N135R5	IHW30N140R5L	IHW30N160R5
40	IHFW40N65R5S	IHW40N65R6 IHW40N65R5		IHW40N120R5	IHW40N135R5	IHW40N140R5L	
50		IHW50N65R6 IHW50N65R5					

600 V HighSpeed 3 H3

Together with isolated driver, 650 V SQI driver, and low-side driver family

roge	tner with	AITCON PPC Welding Solar UPS				
Continuous collector current		TO-263 (D²PAK)	TO-220	TO-247 advanced isolation	TO-247	
@	ر _ّ =100°C [A]	Hal	Hal	Hall	Hal	
	20	IGB20N60H3	IGP20N60H3		IGW20N60H3	
	30	IGB30N60H3	IGP30N60H3		IGW30N60H3	
	40				IGW40N60H3	
IGBT	50				IGW50N60H3	
	60				IGW60N60H3	
	75				IGW75N60H3	
	100				IGW100N60H3	
	20	IKB20N60H3	IKP20N60H3		IKW20N60H3	
	30				IKW30N60H3	
	40			IKFW40N60DH3E	IKW40N60H3	
Duo- Pack	50			IKFW50N60DH3E IKFW50N60DH3	IKW50N60H3	
I uck	60			IKFW60N60DH3E IKFW60N60EH3	IKW60N60H3	
	75				IKW75N60H3	
	90			IKFW90N60EH3		

CoolSiC[™] hybrid discrete

Continuous collector current @ T _c =100°C [A]			TO-247 3-pin	TO-247-4pin	
	TRENCHSTOP™ 5 H5 + "half" rated diode	40	IKW40N65RH5	IKZA40N65RH5	
충		50	IKW50N65RH5	IKZA50N65RH5	
DuoPack		75	IKW75N65RH5	IKZA75N65RH5	
۵	TRENCHSTOP™ 5 S5	50	IKW50N65SS5	IKZA50N65SS5	
	+ "full" rated diode	75	IKW75N65SS5	IKZA75N65SS5	

For the CoolSiC™ MOSFET portfolio and our broad WBG offering, please check the Wide bandgap semiconductors chapter.

www.infineon.com/rch5 www.infineon.com/rch6 www.infineon.com/coolsic-hybrid-discretes www.infineon.com/advanced-isolation

TRENCHSTOP™ 5 F5, H5 and S5

Together with isolated driver, 650 V SOI driver, and low-side driver family

/I\

colle	ntinuous ctor current	TO-263 (D²PAK)	TO-220	TO-247 advanced isolation	TO-220 FullPAK	TO-247	TO-247 4-pin
@	T _c =100°C [A]	Hal	Hal	Hal	Hal	Hal	Hal
	15	IGB15N65S5					
	20	IGB20N65S5	IGP20N65F5/IGP20N65H5				
	30		IGP30N65F5/IGP30N65H5				
E E	40		IGP40N65F5/IGP40N65H5			IGW40N65F5/IGW40N65H5	
IGBT	F0	IGB50N60H5				IGW50N65F5/IGW50N65H5	IGZ50N65H5
	50	IGB50N60S5					
	75					IGW75N65H5	IGZ75N65H5
	100						IGZ100N65H5
	8		IKP08N65F5/IKP08N65H5		IKA08N65F5/IKA08N65H5		
	15	IKB15N65EH5	IKP15N65F5/IKP15N65H5		IKA15N65F5/IKA15N65H5		
	20	IKB20N65EH5	IKP20N65H5/IKP20N65F5				
	28		IKP28N65ES5				
	20	IKB30N65EH5	IKP30N65H5/IKP30N65F5			IKW30N65H5	
	30	IKB30N65ES5				IKW30N65ES5	
	39		IKP39N65ES5				
×		IKB40N65ES5	IKP40N65F5/IKP40N65H5	IKFW40N65DH5		IKW40N65F5/IKW40N65H5	
DuoPack	40	IKB40N65EH5				IKW40N65ES5	
ă		IKB40N65EF5					
				IKFW50N65ES5		IKW50N65F5/IKW50N65H5	IKZ50N65EH5
	50			IKFW50N65DH5		IKW50N65EH5	IKZ50N65ES5
				IKFW50N65EH5		IKW50N65ES5	
	60			IKFW60N65ES5			
	75			IKFW75N65ES5		IKW75N65EH5	IKZ75N65EH5
	15			IKFW75N65EH5		IKW75N65ES5	

TRENCHSTOP™ 5 L5 low V_{CE(sat)}

650 V product family together with low-side driver family

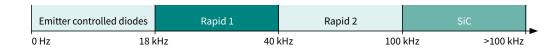
\blacksquare	
4	
Solar	

colle	ontinuous ctor current T _c =100°C [A]	TO-251 (IPAK)	TO-252 (DPAK)	TO-263 (D²PAK)	TO-220	TO-262 (I ² PAK)	TO-220 FullPAK	TO-247	TO-247 4-pin
IGBT	30							IGW30N65L5	
⁶	30							IKW30N65EL5	
Du Pa	75							IKW75N65EL5	IKZ75N75EL5

IKFW90N65ES5

TRENCHSTOP™ 5 WR5/WR6

650 V product family together with low-side driver family



	υσυ	v produc	welding	
Continuous collector current			TO-247	TO-247 HCC
	@	T _c =100°C [A]	Hal	(Hal)
		20		IKWH20N65WR6
		30	IKW30N65WR5	IKWH30N65WR5/IKWH30N65WR6
	oPack	40	IKW40N65WR5	IKWH40N65WR6
	Duol	50	IKW50N65WR5	IKWH50N65WR6
	_	60		IKWH60N65WR6
		70		IKWH70N65WR6

Silicon power diodes

Filling the gap between SiC diodes and emitter controlled diodes

The Rapid diode family complements Infineon's existing high-power 600 V/650 V diode portfolio by filling the gap between SiC diodes and previously released emitter controlled diodes. They offer a perfect cost/performance balance and target high-efficiency applications switching between 18 and 100 kHz. Rapid 1 and Rapid 2 diodes are optimized to have excellent compatibility with CoolMOS™ and high speed IGBTs (insulated gate bipolar transistor) such as the TRENCHSTOP™ IGBT7 and TRENCHSTOP™ 5.

The Rapid 1 diode family

Rapid 1 is forward voltage drop (V_F) optimized to address low switching frequency applications between 18 kHz and 40 kHz, for example, air conditioner and welder PFC stages.

- > 1.35 V temperature-stable forward voltage (V_r)
- Lowest peak reverse recovery current (I_{rrm})
- > Reverse recovery time (t_{rr}) < 100 ns
- High softness factor

The Rapid 2 diode family

Rapid 2 is Q_{rr}/t_{rr} optimized hyperfast diode to address high-speed switching applications between 40 kHz and 100 kHz, typically found in PFCs in high efficiency switch mode power supplies (SMPS) and welding machines.

- > Lowest reverse recovery charge (Q_{rr}): V_F ratio for best-in-class performance
- Lowest peak reverse recovery current (I_{rm})
- > Reverse recovery t_{rr} < 50 ns
- High softness factor

www.infineon.com/rapiddiodes www.infineon.com/ultrasoftdiodes

Rapid 1 diodes

650 V product family

Continuous current I _F @T _c =100°C [A]	TO-220	TO-220 FullPAK (Hal)	TO-247	TO-247 common cathode	TO-247 advanced isolation
8	IDP08E65D1				
15	IDP15E65D1				
20		IDV20E65D1			
30	IDP30E65D1		IDW30E65D1	IDW30C65D1	
40			IDW40E65D1		IDFW40E65D1E
60				IDW60C65D1	IDFW60C65D1
75				IDW75D65D1	
80				IDW80C65D1	IDFW80C65D1

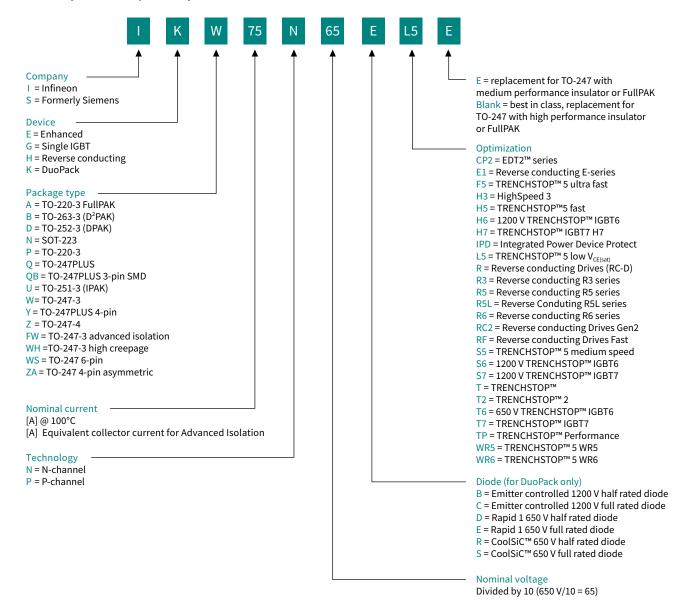
Rapid 2 diodes

650 V product family

Continuous current I _F	TO-220	TO-220 FullPAK	TO-220 common cathode	TO-247	TO-247 common cathode
@T _c =100°C [A]	Hal	Hal	Hal	Hal	Hal
8	IDP08E65D2	IDV08E65D2			
15	IDP15E65D2	IDV15E65D2		IDW15E65D2	
20	IDP20E65D2		IDP20C65D2		IDW20C65D2
30	IDP30E65D2	IDV30E65D2	IDP30C65D2		IDW30C65D2
40	IDP40E65D2			IDW40E65D2	
80					IDW80C65D2

Emitter controlled diodes

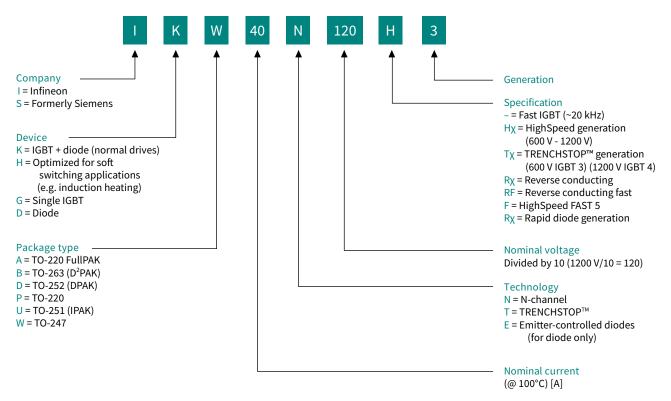
600 V and 1200 V product families



Continuous current I _F @T _c =100°C [A]		TO-263 (D²PAK) (Hal)	TO-220 Real 2-pin	TO-247
	30			IDW30E60
009 V	50			IDW50E60
09	75			IDW75E60
	100			IDW100E60
1200 V	12		IDP12E120	
	18		IDP18E120	
Ä	30	IDB30E120	IDP30E120	

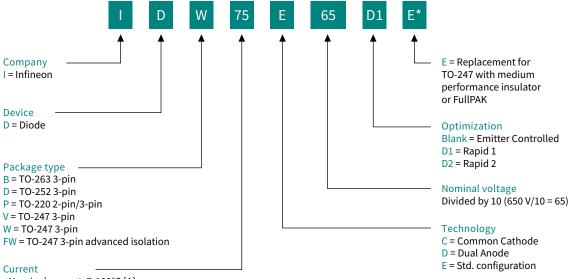
Nomenclature

IGBT (after 03/2013)



www.infineon.com/igbtdiscretes

^{*} Only for advanced isolation


Digital isolators

IGBT (before 03/2013)

Nomenclature

Silicon power diodes

- Nominal current @ 100°C [A]
- Equivalent collector current for advanced isolation

Infineon support for discrete IGBTs and silicon power diodes

Useful links and helpful information

$Further\ information,\ data sheets\ and\ documents$

www.infineon.com/igbt www.infineon.com/igbtdiscretes www.infineon.com/rapiddiodes www.infineon.com/discreteIGBT7 www.infineon.com/ultrasoftdiodes www.infineon.com/discrete-automotive-igbt www.infineon.com/latest-discrete-packages

Evaluationboards and simulation models

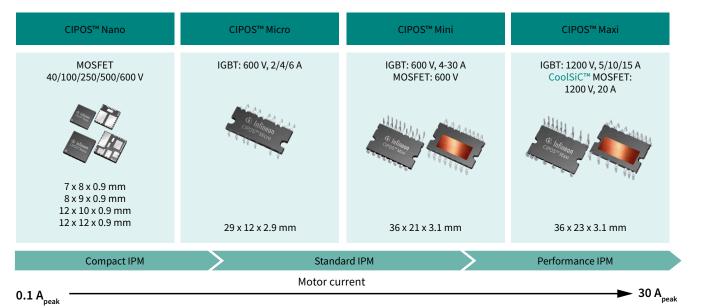
www.infineon.com/eval-TO-247-4pin www.infineon.com/igbtdiscrete-simulationmodels

t Evaluation board

o: 1 ::

Intelligent power switches and modules

- CIPOS™ IPM family
- iMOTION™ IPM
- ISOFACE™ isolated industrial interface
- ISOFACE™ galvanic-isolated digital input ICs
- Industrial PROFET™
- HITFET™
- CIPOS™, iMOTION™, ISOFACE™, industrial PROFET™ and HITFET™ product portfolio


CIPOS™ IPM family

CIPOS™ intelligent power modules in different packages, voltage and current classes

Infineon has a broad portfolio of intelligent power modules (IPMs) with different semiconductors combined in various packages in varying voltage and current classes. These IPMs are separated into Compact, Standard and Performance families.

Part of the IPMs is divided into CIPOS™ Nano, CIPOS™ Micro, CIPOS™ Mini and CIPOS™ Maxi families. CIPOS™ IPMs are families of highly integrated, compact power modules designed to drive motors in applications ranging from home appliances, fans, pumps, HVAC to industrial drives. These energy-efficient intelligent power modules integrate the latest power semiconductor and ICs technologies from Infineon.

CIPOS™ product overview

Key benefits

- Fast time-to-market
- Increased reliability
- Reduced system design complexity
- Improved manufacturability

CIPOS™ Nano

Smallest IPM in the world with various topology, voltage options

The ultra-compact CIPOS™ Nano is a family of highly integrated power modules for high-efficiency consumer and light industrial applications. CIPOS™ Nano is designed for the rectifier, converter, and inverter stage in power management circuits and motor drives for applications like fans, hair dryers, air purifiers, and circulation pumps. By implementing an innovative Power QFN package, which utilizes PCB copper traces to dissipate heat from the module, CIPOS™ Nano family delivers a new benchmark in device size, offering up to a 60 percent smaller footprint than existing three-phase motor control power IPMs.

The family is comprised of a series of fully integrated three-phase, half-bridge and H-bridge surface-mount motor control circuit solutions. The new alternative approach utilizes PCB copper traces to dissipate heat from the module, providing cost savings through a smaller package design and even eliminating the need for an external heat sink.

Features and benefits

- Various switch technologies such as HEXFETs, Trench FREDFETs, Trench MOSFETs, CoolMOS™ and OptiMOS™ apply to motor drivers - Multiple package platforms with various topologies to suitable for a variety of application scenarios - Integrated bootstrap functionality and gate drivers - Realize a variety of protection (overcurrent protection, under-voltage lockout, over-temperature protection, fault reporting and etc.) - Accessible for heat sink-less operation

	ney advantages
	- Smallest modules in the market
	 Cost savings from smaller footprint and reduced PCB space
7	- Easy implementation of 2 or 3-phase motor drives
	 Half bridge configuration enables more flexible board design w/better thermal performance

 Same PCB footprint to address multiple application markets (100 VAC – 230 VAC)

Key applications

- Hair dryer
- Fan motor
- Pump
- Air conditioner Indoor Unit
- Air purifiers
- Small kitchen appliances
- CPAP machine

QFN 7x8	QFN 8x9	QFN 12x10	QFN 12x12
7 x 8 x 0.9 mm	8 x 9 x 0.9 mm	12 x 10 x 0.9 mm	12 x 12 x 0.9 mm
			S. Margan

CIPOS™ Micro

Solution for low power motor drive applications

CIPOS™ Micro is a family of compact, three-phase IPMs (intelligent power modules) for low-power (i.e., up to 500 W with heatsink) motor drive applications, including ventilation fans, circulation pumps, air purifiers, dish washer and refrigerator compressor drives. CIPOS™ Micro has several protection features, including precise overcurrent protection and a UL-certified temperature sensor. Available in both surface mount and through-hole configurations, the family features rugged and efficient high voltage IGBTs specially optimized for variable frequency drives with a 600 V rating. Also, these IPMs utilize high-voltage gate drivers tuned to achieve an optimal balance between EMI and switching losses.

Features and benefits

Key features	
– Wide range of product coverage	
 Optimized dv/dt for loss and EMI trade offs 	
– HV H3TRB qualified	
- Compatible with mass-market TO-2xx heat sinks and clips	
= Power canability up to 500 W at isolation 2000 V 1 min	

Key benefits

- Save system space and cost through the enhanced power capability
- Offer application-optimized solution for both fast switching and low EMI version
- Improve system ruggedness thru enhanced protection features and isolation voltage

Key applications

- RAC outdoor fan
- Dish washer
- Fan motor and pump
- Washing machine
- Refrigerator
- General purpose drive

DIP 29x12	SOP 29x12
29 x 12 x 3.1 mm	29 x 12 x 3.1 mm
S Infinon	G Infragrance Constitution of the Constitution

CIPOS™ Mini

Broad range of configurations from PFC to inverter

CIPOS™ Mini is a family of highly efficient intelligent power modules that has the highest power density with 4 A to 30 A rated products built into a single package platform. It integrates various power and control components to increase reliability, and optimize PCB size and system costs. Utilizing multiple configurations, CIPOS™ Mini IPMs apply to a wide range of applications to control variable speed drives, such as air conditioners, washing machines, refrigerators, vacuum cleaners, compressors, and industrial drives up to 3 kW.

The configurations offered within the CIPOS™ Mini family are IGBT 3-phase inverter, integrated PFC, and 2-phase and 3-phase interleaved PFC. All options include an integrated gate driver and a built-in temperature sensor. CIPOS™ Mini provides optimized performance for power applications, which need good thermal conduction and electrical isolation, but also EMI-safe control, innovative FAULT indication, and overload protection.

Infineon's TRENCHSTOP™ IGBTs and reverse-conducting IGBTs are combined with newly optimized Infineon SOI gate driver IC for excellent electrical performance. Also, CIPOS™ Mini family offers IPMs with DCB substrates, improving heat dissipation to provide higher power capability.

Features and benefits

Key features	Key benefits
– Wide range of current rating: 4 A to 30 A	– Lower PCB size and system cost
- High integration (bootstrap circuit, thermistor, single boost PFC)	– Easy power extension from 300 W to 3 kW
 Optimized for target application requirements (separate version for washing machine and air conditioner) 	Optimized performance for each application - UL certified package and temp sensor.

Key applications

- Refrigerator
- Washing machine
- Room air conditioning
- Fans and pumps
- HVAC outdoor fan
- General purpose drives

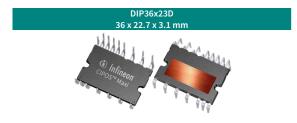
CIPOS™ Maxi

Smallest package in 1200 V IPM class while still offering high power density and best performance

The high-performance CIPOS™ Maxi intelligent power modules (IPMs) integrate various switching devices and control components to increase reliability, optimize PCB size and system costs. CIPOS™ Maxi IPMs are designed to control three-phase AC motors and permanent magnet motors in variable speed drive applications such as low-power industrial motor drives, pumps, fan drives, and active filters for HVAC (heating, ventilation, and air conditioning). The product concept is specially adapted to power applications, which need excellent thermal performance and electrical isolation as well as meeting EMI requirements and overload protection.

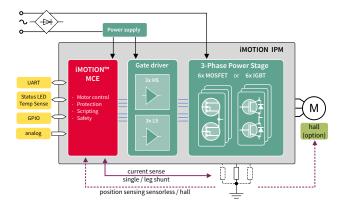
The existing IGBT-based portfolio IM818 series offers 5 A and 15 A in 1200 V class up to 3.0 kW power rating, while the newly released IM828 series offers superior efficiency up to 99% and optimal reliability up to 4.8 kW power rating through the 6 revolutionary CoolSiC™ MOSFETs with an optimized 1200 V 6-channel SOI gate driver. IM828 series provides the exceptional power density with a wide switching speed range up to 80 kHz to adapt to fast-switching applications with superior lower power losses.

Features and benefits


Key benefits
 Fully isolated dual in-line molded module with DCB
- 1200 V TRENCHSTOP™ IGBT 4
- 1200 V CoolSiC™ MOSFET
- Rugged 1200 V SOI gate driver technology
- Integrated booststrap functionality
- Overcurrent shutdown
– Under-voltage lockout at all channels
- All of six switches turn-off during protection
- Cross-conduction prevention
- Independent NTC for temperature monitoring
$\overline{}$ – Allowable negative VS potential up to -11 V for signal transmission at V $_{\rm BS}$ of 15 V
- Low side emitter pins accessible for all phase current monitoring (open emitter)
- Programmable fault clear timing
– Enable input

Key advantages

- The smallest package size in 1200 V IPM class with high power density and best performance
- Enhanced robustness of gate driver technology for excellent protection
- High efficiency
- Adapted to high switching application with lower power loss
- Simplified design and manufacturing
- Time-to-market


Key applications

- Fan and pump
- HVAC outdoor fan
- Low-power general purpose drives (GPI, servo drive)
- Active filter (active power factor correction) for HVAC

Fully integrated iMOTION™ IPM for BLDC motor control

iMOTION™ IPM is a family of fully integrated modules for the control of three-phase motors, optimized for low-power devices. Within the iMOTION™ IPM family, there are two different series: The IMM100 and IMI110, which combine the motor controller IC and a three-phase inverter stage in a single package, minimizing external components count and PCB area. The three-phase inverter stage is based either on six MOSFETs or six IGBTs. These iMOTION™ IPMs offer the highest integration level by making use of the field-proven iMOTION™ Motion Control Engine (MCE) in combination with providing all required hardware functions: From single shunt current sensing to bootstrap capability, signal filtering and several hardware protections like dead-time insertion and shoot through prevention. An iMOTION™ IPM does not require a heatsink and addresses motor drives with a rated output power between 30 W and 80W with 600 V maximum DC blocking voltage, depending on the chosen product variant. All IMM100 and IMI110 devices support the functional safety requirements according to the IEC/UL 60730-1 ("class B").

Features and benefits

Key benefits	Key advantages
 Completely self-sustaining Motion Control Engine with identical feature set as the IMC100 series 	 Fastest time-to-market with easy parametrization and tuning of mo and PFC control
- Up to 80 W without heatsink	 Applicable for fans and small pumps
- Support for IEC 60335-1 ('Class B')	- Support for functional safety integrated
- Controller, gate driver and power stage in one package	- Minimizing BOM count and PCB area
 IMI in DSO-22 package with single layer layout option 	 Reducing PCB and production costs

EVAL-IMM101T-046 is a Starter Kit for iMOTION™ IMM101T-046M IPMs. Together with the iMOTION™ Solution Designer the board can be used for an easy system configuration, controlling, tuning and monitoring. EVAL-IMM101T-046 enables rapid prototyping of various inverterized motor control systems, for example fans, pumps and compressors.

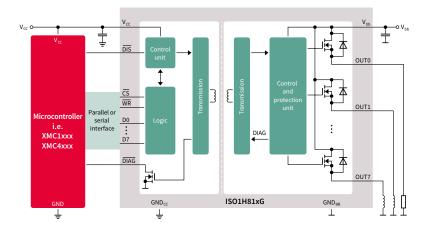
Product portfolio

Product	Function	Integration	Description	Package	
IMI111T-026H	Motor inverter	MCE incl Scripting, gate driver, IGBT based inverter	Output rating: 600V/2 A, single shunt sensorless operation	PG-DSO-22-1	
IMI111T-046H	Motor inverter	MCE incl Scripting, gate driver, IGBT based inverter	Output rating: 600V/4 A, single shunt sensorless operation	PG-DSO-22-1	
IMM101T-046M	Motor inverter	MCE incl Scripting, gate driver, MOSFET based inverter	Output rating: 600 V/1.4 Ω R _{DS(on)} , single/leg shunt, sensorless/hall	PG-IQFN-38-1	
IMM101T-056M	Motor inverter	MCE incl Scripting, gate driver, MOSFET based inverter	Output rating: 600 V/0.95 Ω R _{DS(op)} , single/leg shunt, sensorless/hall	PG-IQFN-38-2	
IMM102T-056M	Motor inverter + PFC control	MCE incl Scripting, gate driver, MOSFET based inverter	Output rating: 500 V/6 Ω R _{DS(on)} , single/leg shunt, sensorless/hall	PG-IQFN-38-3	
IMM102T-046M	Motor inverter + PFC control	MCE incl Scripting, gate driver, MOSFET based inverter	Output rating: 600 V/1.4 Ω R _{DS(on)} , single/leg shunt, sensorless/hall	PG-IQFN-38-4	
IMM102T-056M	Motor inverter + PFC control	MCE incl Scripting, gate driver, MOSFET based inverter	Output rating: 600 V/0.95 Ω R _{econs} , single/leg shunt, sensorless/hall	PG-IQFN-38-5	

www.infineon.com/IMM100 www.infineon.com/IMI110

ISOFACE™ isolated industrial interface

Galvanic-isolated output switch and digital input ICs offers unmatched system uptime, high reliability and up to 50% shortened product launch time


The ISOFACE™ product family provides robust and intelligent galvanic-isolation for various industrial control application such as programmable logic controllers, sensor input modules, distributed control systems, control panels and general control equipment. The output switches are compact in design, enabling robust and reliable operation at low system cost. The input ICs are equally robust, offers reliable operation in a compact form factor and offers industry leading superior EMI robustness setting a new standard in diagnostics.

ISOFACE™ galvanic-isolated 8-channel output switches

The ISO1H81xG(A) 1) product family integrates:

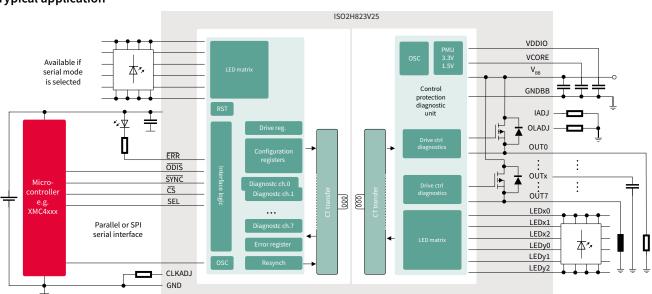
- Robust galvanic isolation (UL508 and C22.2 NO14 certified) to protect the 3.3 V/5 V control domain of an industrial control system from the harsh 24 V process side
- 8-channel high-side power-switching capabilities of up to 1.2 A per channel
- Active current limitation and overtemperature protection
- Common diagnostic feedback for overtemperature and for V_{bb} undervoltage

Isolated output switch block diagram

Isolated output switches

Key features	Key benefits
– Integrated galvanic isolation (500 V _{AC})	 Robust and reliable
– Eight channels (0.6 or 1.2 A, each)	- Compact system solution
- Inductive load switching	– Lower system cost
- Diagnostic feedback (overtemperature, overload)	– System status feedback
– Serial and parallel MCU interface	Directly interfacing with all MPUs and MCUs

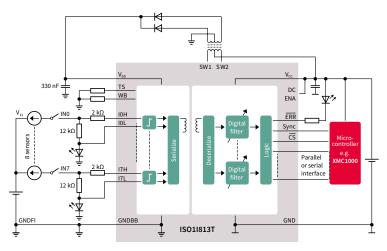
ISOFACE™ galvanic-isolated 8-channel high-side switch with 10-fold diagnostics


The ISO2H823V establishes a new standard in diagnostics for industrial control applications. For example, in industrial plants with capital-intensive single-tool equipment at work or with time-critical chemical processes running, obtaining in real-time differentiated feedback from the factory floor enables both, preventive maintenance and drastic reduction of the time to fix a problem. This is why the ISO2H823V is a highly desirable system solution. System designers benefit from the ISO2H823V through short time to market, reduced PCB area and uncompromised product reliability.

The ISO2H823V integrates:

- Robust 2.5 kV AC galvanic isolation:
 - UL508 and CSA C22.2 No.14 certified
 - Protecting the 3.3 V control domain of an industrial control system from the harsh 24 V process side
 - Exceeding the IEC 61131-2 requirements for reinforced isolation
- 8-channel high-side power-switching capabilities of up to 0.6 A per channel with active current limitation and overtemperature protection
- 10-fold diagnostic feedback
 - 5 types of feedback which are available individually for each of the eight outputs
 - 5 types of IC-level feedback
- Common diagnostic feedback for overtemperature and for V_{hb} undervoltage

Typical application


Key features	Key benefits
- Robust 2.5 kV AC galvanic isolation	– Reliable and UL certified
– Eight channels (up to 0.6 A per channel)	- Small form factor solution
- 10-fold diagnostic feedback (over-temperature, overload)	- Preventive maintenance and short down-times

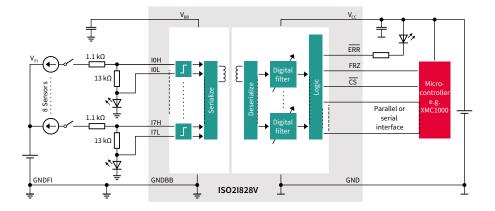
ISOFACE™ galvanic-isolated digital input ICs

The UL1577 certified ISO1I81xT digital input IC family is an intelligent system solution offering robust galvanic isolation between the microcontroller on the "control side" and the 24 V factory floor environment, frequently referred to as the "process side".

Digital input switch block diagram

Galvanic-isolated digital input ICs

Key features	Key benefits			
 Integrated galvanic isolation (500 VAC) 	– Robust and reliable			
- Eight channels (IEC type 1/2/3)	- Compact system solution			
– Up to 500 kHz sampling speed	- High-speed applications			
- Programmable input filters	- Superior EMI robustness			
- Channel-specific diagnostics (wire-break, undervoltage)	– System status feedback			
	- Valuable maintenance support			



Packages

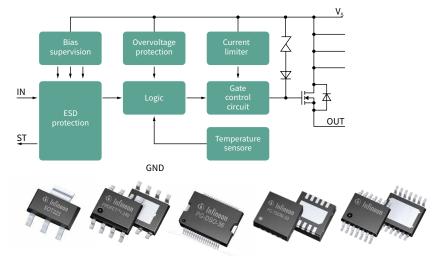
ISOFACE™ galvanic-isolated digital input ICs

Galvanic-isolated sink input ICs

The ISOFACE™ ISO2I828V digital input IC family complements Infineon's portfolio of well-established digital input ICs. The latest generation offers enhanced performance with state-of-art low power consumption and a wide range of diagnostic capabilities. The input ICs are UL1577 certified and offer de facto industry standard isolation. The user can benefit from a smaller package size leading to PCB area saving and a compact design.

Key features
 Integrated industry-standard galvanic isolation (2500 V_{rms})
- IEC type 1, 3: 8 x 24 V and 4 x 48 V
- Glitch filter per channel
- Interrupt on change
Overtemperature and overvoltage alarm
- Robust SPI serial communication
 Low power consumption

K	ey benefits
Ξ	Improved reliability and robustness
-	Improved sensor compatibility
-	Superior EMI robustness
-	Reduces communication traffic
-	System status feedback
-	Full register access in daisy chain
_	Excellent performance with lower power dissipation



Industrial PROFET™

Protected high-side switches

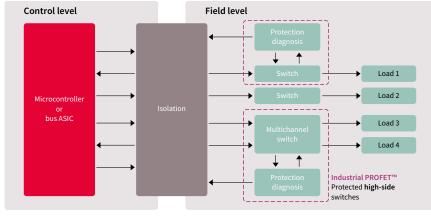
Infineon's market-proven high-side switch Industrial PROFET™ products have been designed to target various industrial applications that drive all types of resistive, inductive and capacitive loads. Due to their outstanding energy robustness, they are perfectly suitable for switching challenging inductive loads and driving relays. Their main application areas include high-voltage and (V_{supply} up to 60 V) and PWM applications up to 1 kHz. Industrial PROFET™ can be applied to drive any kind of sensor units, indicators, displays, LEDs, relays, valves and magnetic actuators or replace electromechanical relays, fuses and discrete circuitry. Industrial PROFET™ products are also perfect for applications with long wiring or any other kind of inductive loads or applications with space constraints. Failsafe systems do make use of them as well.

PROFET™ typical block diagram

Key applications

- Industrial automation
- Programmable logic controller (PLC)
- Digital DCS and PC I/O modules
- Robotics
- Building and home automation
- Solar applications
- Wind energy systems
- Failsafe systems
- Smart grid
- Motor control and drives
- Power supplies

Features and benefits


Key features

- Right fit for digital output modules, motor or robot control, protected switching of decentralized loads like sensors or auxiliary supply
- Outstanding robustness and reliability as required by industrial mission profiles
- Thermally optimized products with low R_{DS(on)} to deal with the high ambient temperatures in applications with limited or even no cooling
- Diagnosis and protection for safe system operation
- Small and compact design for higher integration and applications with space constraints

Key benefits

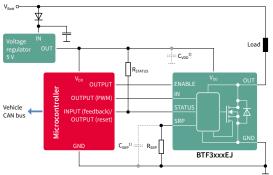
- Small system form factor
- No/little downtime of system in operation
- Low heating up of a system
- System cost saving by built-in protection and tailored featureset
- Reduced system maintenance efforts by providing optimized diagnostics

PLC - programmable logic controller digital output modules

www.infineon.com/industrial-profet

PROFET™ as actuators typically address I/O modules supplying nominal currents of 2 A or 0.5 A. However, PROFET™ portfolio also provides devices for lower and higher currents. PROFET™ parts are suitable for switching resistive, capacitive and, by featuring high EAS, inductive loads.

Corresponding PROFET™ evaluation boards are available on request.


Sensors WBC

HITFET™

Low-side smart protected switches

HITFETTM stands for highly-integrated temperature-protected MOSFET. These well-established low-side switches offer a compelling feature set with protection against overtemperature, short circuit and overload conditions as well as ESD robustness. The HITFETTM + family is the new generation based on new technology, enabling a significant shrink compared to the existing Classic HITFETTM portfolio (up to 50 percent shrink). This novel generation consists of standard and fully-featured protected low-side switches (11 to 125 m Ω) in the TO-252-3 DPAK/TO-252-5 DPAK and TDSO-8 packages. Classic HITFETTM and HITFETTM + devices address a wide range of applications, including resistive, inductive and capacitive loads.

Application diagramm example for HITFET™ +

1) C_{SRP} -GND < 100 pF – maximum permittet parasitic capacitance at the SRP-pin 2) Filter capacitor on supply, recommended 100 nF

Key applications

- Industrial automation*
- Programmable logic controller (PLC)**
- Digital I/O modules
- Building and home management
- All kind of solenoid or valve driving
- Power modules
- Solar power inverters

Features and benefits

Key features - Low-side switches with integrated protection features - Scalable in R_{DS(on)} ranges from 800 mΩ down to 11 mΩ - Adjustable slew rate control (BTFxxx and BTT30xxEJ) - Thermal shutdown with auto restart or latch behavior - Status feedback via - Increased input current (HITFET™ +12 V/24 V) - Digital readout via SRP (BTF3050TE) - Via status pin (BTF3xxxEJ)

(ey benefits

- High design flexibility with scalable R_{DS(on)} and package
- Driving applications with high switching speed requirements up to 25 kHz (e.g. valve, solenoid)
- Easy to design-in
- Choice of packages to match individual application needs

Low-side switch shield with BTF3050TE for Arduino

Featured products: Three BTF3050TE low-side switches of the HITFET™ +12 V family Combatible with: Microcontroller boards using the Arduino form factor and the corresponding Infineon's kits with Arm® powered XMC™ microcontroller Orderable part number: SHIELDBTF3050TETOBO1

Evaluation board based on BTT3050EJ

Featured products: One single-channel low-side switch of BTT3050EJ a device of the HITFET™ +24 family

Combatible with: Can be used as single stand and is also pin-compatible with microcontroller boards using the Arduino form factor (e.g. XMC1100 Boot Kit, Arduino Uno) **Orderable part number:** BTT3050EJDEMOBOARDTOBO1

www.infineon.com/hitfet www.infineon.com/shields-for-arduino

^{*}See block diagram on page 278

^{**} See block diagram on page 279

ISOFACE™ product portfolio

ISOFACE™ output switches

	Product overview	ISO1H801G	ISO1H811G	ISO1H812G	ISO1H815G	ISO1H816G	ISO2H823V
	V _{bb} operational range: 11 V to 35 V	✓	✓	✓	✓	✓	✓
	Max. continuous load current per channel	0.6 A	0.6 A	0.6 A	1.2 A	1.2 A	0.6 A
Switch	Load current increase by using outputs in parallel	✓	✓	✓	√	✓	✓
	Inductive clamping energy per channel: 1 Joule	✓	✓	✓	✓	✓	150 mJ
Microcontroller	Туре	Parallel	Parallel	Serial	Parallel	Serial	Serial/Parallel
interface	Nominal voltages	5 V	3.3 V/5 V	3.3 V/5 V	3.3 V/5 V	3.3 V/5 V	3.3 V
	Isolation voltage: V _{ISO} = 500 VAC UL508 and EN 61131-2 certified	√	✓	✓	✓	√	2.5 kV AC
Safety features	Active current limitation	✓	✓	✓	✓	✓	✓
,	Thermal shutdown	✓	✓	✓	✓	✓	✓
	Common output disable pin	✓	✓	✓	✓	✓	✓
Diagnostics	Overtemperature		✓	✓	✓	✓	✓
feedback	V _{bb} undervoltage		✓	✓	✓	✓	✓
Package DSO-36 (16x14 mm)		✓	✓	✓	✓	✓	VQFN-70
Ordering code	Ordering code		ISO1H811GAUMA1	ISO1H812GAUMA1	ISO1H815GAUMA1	ISO1H816GAUMA1	ISO2H823V25XUMA1

ISOFACE™ digital input IC

Proc	duct overview	ISO1I811T	ISO1I813T	
	IEC type: I, II, III	✓	✓	
Input characteristics	Input status LED	✓	✓	
	Max. sampling frequency	125 kHz	500 kHz	
	Deglitching filter setting	Hard wired	Software, individual per channel	
	Synchronous data acquisition	-	√	
	3.3 V/5 V	✓	√	
uC interface	Serial and parallel	✓	√	
Safety features	500 VAC isolation voltage	✓	✓	
	Wire break, channel-specific	-	✓	
Diagnostic feedback	V _{bb} undervoltage	✓	✓	
Support for external V _{bb} supply		-	✓	
Package TSSOP-48 (8x12.5 mm)		✓	✓	
Ordering code		ISO1I811TXUMA1	ISO1I813TXUMA1	

Load current Typical, per channel	1-channel	2-channel	4-channel	8-channel
7 A	ITS428L2 ●			
3 A	7 A, 60 mΩ, TO-252-5 ITS4060S-SJ-N, ISP772T 3.1 A, 60 mΩ			
2 A 3 A	DSO-8 ITS4100S-SJ-N, ISP762T 2.4 A, 100 mΩ, DSO-8			
	ITS4200S-ME-P, ITS4142N 1.4 A, 200 mΩ, SOT223	ITS4040D-EP-D ● 2.6 A, 40 mΩ, TSDSO14	ITS4075Q-EP-D	
1 A 2 A	ISP752T 1.3 A, 200 mΩ, DSO-8	ITS5215L ● 2 A, 90 mΩ, DSO-12	ITS724G ● 2 A, 90 mΩ, DSO-20	
1A2A	ITS4200S-SJ-D, ISP752R ● 1.2 A, 200 mΩ, DSO-8		ITS716G ● 1 A, 140 mΩ, DSO-20	
	ITS6035S-EP-K** 2A, 27 mΩ, TSDSO14		ITS711L1 ● 1 A, 200 mΩ, DSO-20	
0.5 A 1 A	ITS4200S-ME-N, ISP452 0.7 A, 200 mΩ, SOT223		ITS4090Q-EP-D ● 0.7 A, 90 mΩ, TSDSO14	ITS42008-SB-D, ITS4880R ● 0.6 A, 200 mΩ, DSO-36
	ITS4200S-ME-O, ITS4141N 0.7 A, 200 mΩ, SOT223		ITS4130Q-EP-D ● 0.65 A, 130 mΩ, TSDSO14	
< 0.5 A	ITS4300S-SJ-D, ISP742RI ● 0.4 A, 300 mΩ, DSO-8	ITS42K5D-LD-F ● 0.25 A, 2.5Ω, TSON-10		
	ITS41k0S-ME-N, ITS4140N 0.2 A, 1Ω, SOT223			

= With diagnosis

Product	Number of channels	R _{DS(on)} (typ) [mΩ]	Nominal load current [A]	E _{as} [mJ]	Recommended E _{AS} operating voltage range [mJ] [V]		Diagnosis	Package
ITS6035S-EP-K**	1	27	1.38 5	350 @ 2.0 A	8.0 36.0	3.02 13.2	Digital and analog	TSDSO-14
ITS4060S-SJ-N	1	50	3.10	900 @ 1.50 A	5.00 34.00	17.0	n/a	DSO-8
ISP772T	1	50	2.60	900 @ 1.50 A	5.00 34.00	17.0	n/a	DSO-8
ITS428L2	1	60	7.00	190 @ 7.00 A	4.75 41.00	22.0	Digital	TO252-5
ITS4100S-SJ-N	1	70	2.40	870 @ 1.00 A	5.00 34.00	10.0	n/a	PG-DSO-8
ISP762T	1	70	2.00	870 @ 1.00 A	5.00 34.00	10.0	n/a	DSO-8
ITS4200S-ME-O	1	150	1.10	700 @ 0.50 A	11.00 45.00	1.4	n/a	SOT-223-4
ITS4141N	1	150	1.10	700 @ 0.50 A	12.00 45.00	1.4	n/a	SOT-223-4
ITS4200S-ME-P	1	150	2.20	160 @ 1.00 A	11.00 45.00	3.0	n/a	SOT-223-4
ITS4142N	1	150	2.20	160 @ 1.00 A	12.00 45.00	3.0	n/a	SOT-223-4
ITS4200S-ME-N	1	160	1.20	500 @ 0.50 A	5.00 34.00	1.5	n/a	DSO-8
ISP452	1	160	1.20	500 @ 0.50 A	5.00 34.00	1.5	n/a	SOT-223-4
ITS4200S-SJ-D	1	150	1.70	125 @ 1.00 A	6.00 52.00	6.5	Digital	DSO-8
ISP752R	1	200	1.70	125 @ 1.00 A	6.00 52.00	6.5	Digital	DSO-8
ISP752T	1	200	1.70	125 @ 1.00 A	6.00 52.00	6.5	n/a	DSO-8
ITS4300S-SJ-D	1	250	0.80	800 @ 0.30 A	5.00 34.00	1.2	Digital	DSO-8
ISP742RI	1	350	0.80	800 @ 0.30 A	5.00 34.00	1.2	Digital, inverted	DSO-8
ITS41K0S-ME-N	1	1000	0.55	1000 @ 0.15 A	4.90 60.00	0.9	n/a	SOT-223-4
ITS4140N	1	1000	0.55	1000 @ 0.15 A	4.90 60.00	0.9	n/a	SOT-223-4
ITS4040D-EP-D	2	40	2 x 2.00	185 @ 2 A	5.00 45.00	4.1	Digital	TSDSO-14
ITS5215L	2	90	2 x 2.00	178 @ 3.50 A	5.50 40.00	15.0	Digital	DSO-12
ITS4075Q-EP-D	4	75	4 x 2.00	60 @ 2 A	5.00 45.00	4.1	Digital	TSDSO-14
ITS4090Q-EP-D	4	90	4 x 0.50	410 @ 0.5 A	5.00 45.00	1.5	Digital	TSDSO-14
ITS724G	4	90	4 x 2.00	120 @ 3.30 A	5.50 40.00	15.0	Digital	DSO-20
ITS4130Q-EP-D	4	130	4 x 0.50	380 @ 0.5 A	5.00 45.00	1.25	Digital	TSDSO-14
ITS716G	4	140	4 x 1.00	76 @ 2.30 A	5.50 40.00	9.0	Digital	DSO-20
ITS711L1	4	200	4 x 1.00	150 @ 1.90 A	5.00 35.00	7.5	Digital	DSO-20
ITS42008-SB-D	8	200	8 x 0.60	10,000 @ 625 mA	11.00 45.00	3.0	Digital	DSO-36
ITS4880R	8	200	8 x 0.60	10,000 @ 625 mA	11.00 45.00	3.0	Digital	DSO-36

Evaluation board

- ITS4040D-EP-D
- ITS4075Q-EP-D
- ITS4090Q-EP-D
- ITS4130Q-EP-D

www.infineon.com/industrial-profet

- * Per one channel
- ** Coming soon

HITFET™ product portfolio

Product type	Product family	Channels	R _{DS(on)} @ 25°C [mW]	Nominal load current [A]	EAS [mJ]	Operating voltage range [V]	I _{L(lim)} (typ) [A]	I _{L(lim)_TRIGGER} (typ) [A]	Diagnosis	Package
BTS3011TE	HITFET™+	1	10.7	10	300 @ 5 A	up to 28	35	70	Status pin	TO-252-5 (DPAK 5-leg)
BTT3018EJ	HITFET™+	1	16	7.0	150	up to 36	45	-	Status pin	TDSO-8
BTS3035EJ	HITFET™+	1	28	5.00	105 @ 5 A	up to 31	20.00	-	Status pin	TDSO-8
BTS3035TF	HITFET™+	1	30	5.00	106 @ 5 A	up to 31	20.00	-	-	TO-252-3 (DPAK 3-leg)
BTF3035EJ	HITFET™+	1	28	5.00	95 @ 5 A	up to 32	14.00	41.00	Status pin	TDSO-8
BTF3050TE	HITFET™+	1	40	3.00	120 @ 3 A	up to 28	8.00	30.00	Through SRP pin	TO-252-5 (DPAK 5-leg)
BTS3050EJ	HITFET™+	1	40	4.00	62 @ 3 A	up to 31	15.00	-	Status pin	TDSO-8
BTS3050TF	HITFET™+	1	44	4.00	64 @ 4 A	up to 31	15.00	-	-	TO-252-3 (DPAK 3-leg)
BTF3050EJ	HITFET™+	1	40	4.00	62 @ 4 A	up to 32	10.00	29.00	Status pin	TDSO-8
BTS3060TF	HITFET™+	1	50	3.00	55 @ 3 A	up to 35	10.50	-	-	TO-252-3 (DPAK 3-leg)
BTS3080EJ	HITFET™+	1	64	3.00	35 @ 3 A	up to 31	10.00	-	Status pin	TDSO-8
BTS3080TF	HITFET™+	1	69	3.00	38 @ 3 A	up to 31	10.00	-	-	TO-252-3 (DPAK 3-leg)
BTF3080EJ	HITFET™+	1	64	3.00	33 @ 3 A	up to 32	7.00	18.00	Status pin	TDSO-8
BTS3125EJ	HITFET™+	1	100	2.00	30 @ 2 A	up to 31	7.00	-	Status pin	TDSO-8
BTS3125TF	HITFET™+	1	108	2.00	24 @ 2 A	up to 31	7.00	-	-	TO-252-3 (DPAK 3-leg)
BTF3125EJ	HITFET™+	1	100	2.00	23 @ 2 A	up to 32	5.00	12.00	Status pin	TDSO-8
BTS3018TC	Classic HITFET™	1	14	6.00	1900	up to 36	30.00	-	Through input pin	TO-263-3-2 (TO-220-3 (SMD))
BTS141TC	Classic HITFET™	1	25	5.10	4000	up to 36	25.00	-	Through input pin	TO-263-3-2 (TO-220-3 (SMD))
BTS3028SDL	Classic HITFET™	1	28	5.00	350	up to 36	18.00	-	Through input pin	TO-252-3 (DPAK 3-leg)
BTS3028SDR	Classic HITFET™	1	28	5.00	350	up to 36	18.00	-	Through input pin	TO-252-3 (DPAK 3-leg)
BTS133TC	Classic HITFET™	1	40	3.80	2000	up to 36	21.00	-	Through input pin	TO-263-3-2 (TO-220-3 (SMD))
BTS3046SDL	Classic HITFET™	1	46	3.60	140	up to 36	10.00	-	Through input pin	TO-252-3 (DPAK 3-leg)
BTS3046SDR	Classic HITFET™	1	46	3.60	140	up to 36	10.00	-	Through input pin	TO-252-3 (DPAK 3-leg)
BTS117TC	Classic HITFET™	1	80	3.50	1000	up to 36	7.00	-	Through input pin	TO-263-3-2 (TO-220-3 (SMD))
BTS3104SDL	Classic HITFET™	1	104	2.00	50	up to 36	6.00	-	Through input pin	TO-252-3 (DPAK 3-leg)
BTS3104SDR	Classic HITFET™	1	104	2.00	50	up to 36	6.00	-	Through input pin	TO-252-3 (DPAK 3-leg)
BTS3408G	Classic HITFET™	2	480	0.55	800	up to 36	1.00	-	Through input pin	DSO-8
BSP75N	Classic HITFET™	1	490	0.70	550	up to 36	1.00	_	Through input pin	SOT-223

CIPOS™ IPM product portfolio

	MOSFET based CIPOS™ IPMs								
Product family	Voltage [V]	Configuration	R _{DS(on),max} . [Ω]	Package	Product name				
	40	Half-bridge	0.005	QFN 7x8	IRSM005-800MH				
	100	Half-bridge	0.021	QFN 7x8	IRSM005-301MH				
	250	H-bridge	0.063	QFN 12x10	IM111-X3Q1B				
		Half-bridge	0.15	QFN 8x9	IRSM808-204MH				
CIPOS™ Nano		3-phase inverter	0.45 ~ 2.40	QFN 12x12	IRSM836-024MA/IRSM836-044MA IRSM836-084MA				
	500	Half-bridge	0.80/1.70	QFN 8x9	IRSM808-105MH/IRSM807-045MH				
		3-phase inverter	1.70 ~ 6.00	QFN 12x12	IRSM836-015MA/IRSM836-025MA/IRSM836-035MA IRSM836-045MA				
	600	H-bridge	0.28	QFN 12X10	IM111-X6Q1B				
CIPOS™ Maxi	1200	3-phase inverter	0.055	DIP 36x23D	IM828-XCC				

	IGBT based CIPOS™ IPMs								
Product family	Voltage [V]	Configuration	Rated current [A]	Package	Product name				
CIPOS™ Micro	600	3-phase inverter	2.0/4.0/6.0	DIP 29x12	IM241-S6T2B/IM241-M6T2B/IM241-L6T2B IM241-S6T2J/IM241-M6T2J				
CIPOS MICIO			2.0/4.0/6.0	SOP 29x12	IM241-S6S1B/IM241-M6S1B/IM241-L6S1B IM241-S6S1J/IM241-M6S1J				
CIPOS™ Mini	600	PFC integrated	10.0 ~ 20.0	DIP 36x21D	IFCM10S60GD/IFCM10P60GD IFCM15S60GD/IFCM15P60GD IM564-X6D				
		3-phase inverter	4.0 ~ 30.0	DIP 36x21	IGCM04F60GA/IGCM04G60GA/IGCM06F60GA/IGCM06G60GA IGCM10F60GA/IKCM10H60GA/IKCM10L60GA IGCM15F60GA/IKCM15L60GA/IKCM15F60GA/IKCM15H60GA IGCM20F60GA/IKCM20L60GA IKCM30F60GA IMCM30F60GA IM523-S6A/IM523-M6A/IM523-L6A/IM523-X6A				
			15.0 ~ 30.0	DIP 36x21D	IKCM15L60GD/IKCM20L60GD/IKCM30F60GD IM535-U6D				
		Single boost PFC + inverter	10.0 ~ 20.0	DIP 36x21D	IKCM15L60GD/IKCM20L60GD/IKCM30F60GD IM535-U6D				
	650	3-phase interleaved PFC	20.0/30.0	DIP 36x21D	IFCM20T65GD/IFCM30T65GD				
		2-phase interleaved PFC	30.0	DIP 36x21D	IFCM30T65GD/IFCM30U65GD				
CIPOS™ Maxi	1200	3-phase inverter	5.0 ~ 15.0	DIP 36x23D	IM818-SCC/IM818-MCC/IM818-LCC				

Infineon support for intelligent switches and modules

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/isoface www.infineon.com/hitfet www.infineon.com/industrial-profet www.infineon.com/shields-for-arduino

unnort Evaluation bo

Microcontrollers

- XMC[™] microcontrollers
- XMC[™] ecosystem, enablement and partners
- XMC[™] digital power explorer kit
- XMC[™] starter kits
- XMC[™] peripherals
- AURIX[™] 32-bit microcontrollers
- AURIX™ TC2xx family system architecture
- AURIX™ TC3xx family system architecture

- AURIX™ starter and application kits
- Application example: Industrial robotics
- Microcontroller PDH partner
- TRAVEO™ II portfolio
- MOTIX[™] Embedded Power ICs
- BLDC Motor Control Shield for Arduino
- CAN-FD transceivers

XMCTM

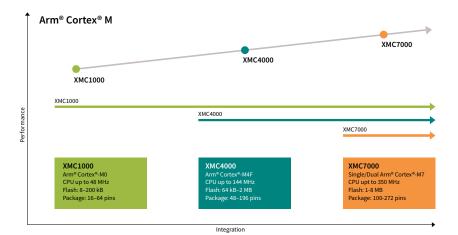
One microcontroller platform - countless solutions

Infineon's XMC™ 32-bit industrial microcontroller portfolio is designed for efficiency and demanding industrial applications.

XMC™ MCU portfolio

- RAM: 8 kB up to 1 MB
- Flash: 16 kB up to 8 MB
- Accurate analog mixed-signal peripherals
- Fast timer/PWM peripherals
- Rich communication interfaces
- 16-pin to 272-pin count packages

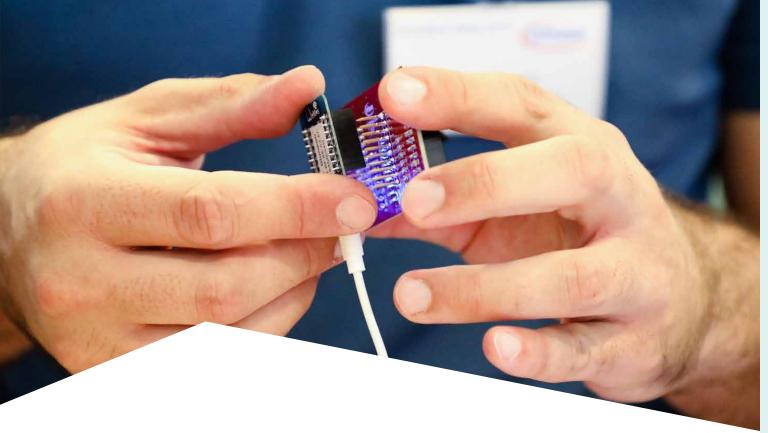
XMC1000 family


- Arm® Cortex®-M0 up to 48 MHz
- Peripherals up to 96 MHz
- One-time event request unit (ERU)
- V_{DD} : 1.8 to 5.5 V
- T_{Ambient}: -40°C to 105°C

XMC4000 family

- Arm® Cortex®-M4 up to 144 MHz
- Built-in DSP, SFPU
- EtherCAT
- Event request unit (ERU)
- T_{Ambient}: -40°C to 125°C

XMC7000 family


- Single or dual core Arm® Cortex®-M7 and Cortex®-M0+
- Up to 8 MB flash
- Up to 10x CAN FD and 2x Ethernet
- T_{Ambient}: -40°C to 125°C

XMC7000 XMC7100 XMC7100/7200 XMC7100/7200 XMC7200 Basic control & EV-Charging, TCPWM, CAN-FD Industrial Drives, TCPWM, CAN-FD, GB Ethernet. ADCs with 1Msps, TCPWM, CAN-FD TQFP-176, LFBGA-272 TQFP-176, LFBGA-272 XMC4700/4800 XMC4800, XMC4300 XMC4000 XMC4100/XMC4400 XMC4100 XMC4200 XMC4500 XMC1400 XMC1400 XMC1400 Hall and encoder I/F, MATH co-processor, CAN SMPS control, connectivity VQFN-40/64 LQFP-64 Multi CAN - 2 nodes VQFN-48/64 LQFP-64 XMC1000 XMC1200, XMC1300 XMC1100 XMC1300 XMC1300 Basic control and connectivity TSSOP-16/38 VQFN-24/40 SMPS control, connectivity, TSSOP-16/38 VQFN-24/40 Hall and encoder I/F, MATH co-processor, TSSOP-16/38 VQFN-24/40 LED lighting Digital power Motor control Industrial I/O XMC[™] entry

XMC[™] ecosystem, enablement and partners

A comprehensive set of tools, products, components, and services are available for fast and efficient design with XMC™ microcontrollers.

Infineon enablement for XMC™ MCUs

ModusToolbox™ Software - www.infineon.com/mtb

Modern and extensible development environment supporting a wide range of Infineon microcontroller devices

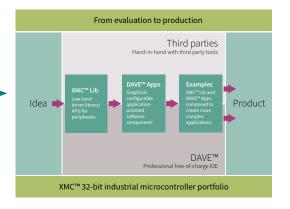
DAVE™ – www.infineon.com/dave

Professional and free-of-charge development platform

XMC[™] **library for Embedded Coder**® – www.infineon.com/matlab Model-based design from MATLAB® and Simulink® environment, download free of charge

IEC60730 class B library for XMC[™] – www.infineon.com/iec60730 Available for XMC[™] industrial microcontrollers free of charge Microcontroller/Probe[™] XMC[™] – www.infineon.com/ucprobexmc Free-of-charge version of microcontroller/Probe[™] for XMC[™] MCUs to build user interfaces for visualizing, observing, and control of

the internals of XMC™ MCUs


XMC™ link – www.infineon.com/xmclink

Functional isolated debug probe, based on SEGGER, I-Link

Functional isolated debug probe, based on SEGGER J-Link technology

In addition to a rich third party ecosystem and enablement landscape, which support the entire development cycle from evaluation to production.

For more click here.

Infineon's XMC[™] 32-bit industrial microcontroller portfolio is designed for system cost and efficiency for demanding industrial applications. It comes with the most advanced peripheral set in the industry. Fast and largely autonomous peripherals can be configured to support individual needs.

Highlights include analog mixed-signal, timer/PWM and communication peripherals powered by either an Arm® Cortex®-M0 core (XMC1000 family) or an Arm® Cortex®-M4 core with a floating point unit (XMC4000 family).

	5	Clocks					Analog			Timer/PWM				ctivity		
Arm [®] Cortex [®] - M0	Co-processor	Frequency	Peripherals	М	Memory		Number of channels	Analog comparators	CCU4 (4 ch)	CCU8 (4 ch)	POSIF	BCCU	US IC	CAN 2.0B	Package	
XMC11x	-	32	64	Flash	8-64 kB	1/1	/1 Up to 12	-	1x	-	-	-	2x	-	VQFN 24/40	
				RAM	16 kB										TSSOP 16/38	
XMC12x	-	32	64	Flash	16-200 kB	1/2 Up to 12		Up to 3	1x	-	-	✓	2x	-	VQFN 24/40	
				RAM	16 kB		12								TSSOP 16/28/38	
XMC13x	√	32	64	Flash	8-200 kB	1/2	Up to	Up to 3	1x	1x	√	√	2x	-	VQFN 24/40	
				RAM	16 kB		12								TSSOP 16/38	
XMC14x	√	48	96	Flash	32-200 kB	1/2	Up to	Up to 4	2x	2x	✓	✓	4x	√	VQFN 40/48/64	
				RAM	16 kB		12								LQFP 64	

Supply voltage range 1.8-5.5 V

Temperature range -40°C ... 85°C/105°C

	Frequency [MHz]		Analog			Ti	mer/P\	νM			Co	nnecti	vity		U	Unit			
Arm [®] Cortex [®] -M0		М	emory	ADC1 2-bit/S&H	Number of channels	DAC1 2-bit	CCU4 (4 ch)	CCU8 (4 ch)	HRPWM (150 ps)	POSIF	Σ Demodulator	USIC	CAN 2.0B	USB	Ethernet	EtherCAT®	SDIO/SD/MMC	SDIO/SD/MM External BUS (Package
XMC41x	80	Flash	64-128 kB	2/2	Up to 9	2 ch	2x	1x	✓	√	-	4x	Up to 2	√	-	-	-	-	VQFN 48
		RAM	20 kB																TQFP 64
XMC42x	80	Flash	256 kB	2/2	Up to 9	2 ch	2x	1x	✓	✓	-	4x	2x	✓	-	-	-	-	VQFN 48
		RAM	40 kB																TQFP 64
XMC43x	144	Flash	256 kB	2/2	14	2 ch	2x	1x	-	-	-	4x	2x	√	√	✓	✓	-	LQFP 100
		RAM	128 kB																
XMC44x	120	Flash	256-512 kB	4/4	Up to 18	2 ch	4x	2x	✓	2x	4 ch	4x	4x 2x	✓	√	-	-	-	TQFP 64
		RAM	80 kB																LQFP 100
XMC45x	120	Flash	512 kB-1 MB	4/4	Up to 26	2 ch	4x	4x 2x	х -	2x	4 ch	1 ch 4x	4x Up	✓	√	-	√	✓	LQFP 100/144 LFBGA 144
		RAM	128-160 kB																
XMC47x	144	Flash	1.5-2 MB	4/4	Up to 26	2 ch	4x	2x	-	2x	4 ch	6x	6x	✓	✓	-	√	√	LQFP 100/144
		RAM	276-352 kB																LFBGA 196
XMC48x	144	Flash	1-2 MB	4/4	Up to 26	2 ch	4x	2x	-	2x	4 ch	6x	6x	✓	√	✓	√	✓	LQFP 100/144
		RAM	276-352 kB																LFBGA 196

Supply voltage range 3.1-3.6 V

Temperature range -40°C ... 85°C/125°C

	[z]			A	Analog	Tir	mer/TCP	ΝM		Co	onnectiv	ity		
Frequency [MHz]		Memory		ADC 12bit	Number of Channels	16 bit motor- control	16 bit general- purpose	32 bit general- purpose	SCB	CAN-FD	Ethernet	Gb Ethernet	SDHC (eMMC, SD, SDIO)	Package
XMC71xx	250	Flash	4 MB	3	18 ch	12 ch	63 ch	8 ch	up to 11 ch	up to 8	✓	-	✓	QFP-100, QFP-144, QFP-176, BGA-272
XMC72xx	350	Flash RAM	768 kB 8 MB 1 MB	3	18 ch	15 ch	87 ch	16 ch	up to	up to	✓	√	√	QFP-176, BGA-272

Supply voltage range 2.7-5.5V

Temperature range -40 ...125°C

www.infineon.com/xmc www.infineon.com/mtb

XMC[™] 7000 microcontrollers

High-quality grade MCU platform for industrial applications

The XMC7000 is the latest entry in Infineon's industrial microcontroller portfolio, equipped with peripherals such as CAN-FD, TCPWM and Gb Ethernet, which increase flexibility and offer added value. The XMC7000 architecture is built on a low-power 40-nm process technology and the MCUs offer best-in-class compute performance addressing highend industrial applications.

The XMC7000 offers both single and dual-core Arm® Cortex®-M7 options, supported by an Arm® Cortex®-M0+ enabling designers to optimize their end products to meet the dynamic and demanding business conditions of industrial applications. The advanced peripheral set and robust security features make it attractive to customers, who need a high-quality MCU platform. The MCU can operate in harsh environments with a temperature range of -40°C to 125°C, and it is ideal for power-critical applications based on its low-power modes, which go down to 8 μA. The flexible XMC7000 comes in four package/pin types with 17-part number variants to meet many design requirements.

XMC7100/7200

4 MB flash / 768 kB RAM, 250 MHz single/dual core 100 – 272 pin (QFP/BGA)

XMC7200

8 MB flash / 1 MB RAM, 350 MHz single/dual core 176 – 272 pin (QFP/BGA)

- Single or dual core Arm® Cortex®-M7 and Cortex®-M0+
- M7 CPU core Frequency up to 350 MHz
- Temperature range: Ta = -40 to 125°C
- Memory Up to 8 MB flash, 1 MB RAM
- TCPWM timers of 102Ch 16 bit and 16Ch 32 bit
- Cryptography Engine support
- Interfaces such as CAN-FD, Gb Ethernet
- SMIF and SDHC interface supported
- Extended voltage operating range: 2.7 to 5.5V
- low power modes(LP/deep sleep, hibernate)
- Add. timer, ADC and Serial COM. Chs
- Read While Write (RWW) flash capability

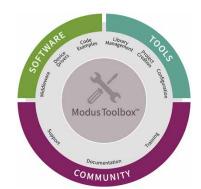
BGA-272

QFP-176

Features and benefits

Key benefits

- Best-in-class computing performance
- Low power to support electrification and digitization
- $\boldsymbol{-}$ Optimal solution for motor control $\boldsymbol{\&}$ power conversion applications
- Advanced security options
- Ability to operate in high ambient environments
- XMC7000 is easy to adapt to existing PCB
- Different core/memory/package combinations


XMC[™] 7000 part numbers

Type	Description
XMC7100-F100K1088AA	Single Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 100 pins, 1 MB flash
XMC7100-F100K2112AA	Single Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 100 pins, 2 MB flash
XMC7100-F100K4160AA	Single Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 100 pins, 4 MB flash
XMC7100D-F100K2112AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 100 pins, 2 MB flash
XMC7100D-F100K4160AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 100 pins, 4 MB flash
XMC7100-F144K2112AA	Single Core Arm® Cortex® M7(+ Arm® Cortex®-M0+), TQFP 144 pins, 2 MB flash
XMC7100-F144K4160AA	Single Core Arm® Cortex® M7(+ Arm® Cortex®-M0+), TQFP 144 pins, 4 MB flash
XMC7100D-F144K2112AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 144 pins, 2 MB flash
XMC7100D-F144K4160AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 144 pins, 4 MB flash
XMC7100-F176K4160AA	Single Core Arm® Cortex® M7(+ Arm® Cortex®-M0+), TQFP 176 pins, 4 MB flash
XMC7100D-F176K4160AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 176 pins, 4 MB flash
XMC7100-E272K4160AA	Single Core Arm® Cortex® M7(+ Arm® Cortex®-M0+), LBGA 272 pins, 4 MB flash
XMC7100D-E272K4160AA	Dual Core Arm® Cortex® M7(+ Arm® Cortex®-M0+), LFBGA 272 pins, 4 MB flash
XMC7200-F176K8384AA	Single Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 176 pins, 8 MB flash
XMC7200D-F176K8384AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), TQFP 176 pins, 8 MB flash
XMC7200-E272K8384AA	Single Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), LFBGA 272 pins, 8 MB flash
XMC7200D-E272K8384AA	Dual Core Arm® Cortex® M7 (+Arm® Cortex®-M0+), LFBGA 272 pins, 8 MB flash

Software

ModusToolbox™ Software Environment

ModusToolbox™ software supports application development using the XMC7200 evaluation kit by providing board support package (BSP) and validated code examples to help you get started. To download the latest version of the software, please visit the ModusToolbox™ webpage.

XMC[™] digital power explorer kit

The new digital power explorer kit is designed with the particular goal of making it easy for engineers to take the first steps into digital power control with XMC™ microcontrollers. It showcases both XMC™ families Arm® Cortex-M microcontrollers: XMC4000 and XMC1000, 30 V dual n-channel OptiMOS™ MOSFETs and IRS2011S gate drivers. The kit includes two different control card options, XMC1300 control card (Arm® Cortex®-M0) and XMC4200 control card (Arm® Cortex®-M4F), which allow designers to evaluate both XMC™ microcontroller families and make the right price/performance choice for their application.

- Synchronous buck converter evaluation kit controlled with XMC4200 or XMC1300 Arm® Cortex®-M MCUs
- Onboard resistive load banks
- Featuring BSC0924NDI dual n-channel OptiMOS™ MOSFET and IRS2011S high- and low-side gate driver
- Different control schemes possible
- Voltage mode control
- Peak current mode control (with slope compensation)

- Easy entry in digital power control applications
- Understand the details of voltage/peak current control and how to extract the maximum of XMC[™] devices
- DAVE™ v4 APPs for buck converter and many more example

High power density 800 W 130 kHz platinum server design with XMC1300

The 800 W PFC CCM evaluation board demonstrates design and practical results of an 800 W 130 kHz platinum server PFC evaluation board based on Infineon devices, in terms of power semiconductors, non-isolated gate drivers, analog and digital controllers for the PFC converter, as well as flyback controller for the auxiliary supply. This evaluation board verifies the performance of the latest 600 V CoolMOS™ C7 superjunction MOSFET technology working at 130 kHz in a PFC CCM boost converter along with EiceDRIVER™ ICs and CoolSiC™ Schottky diode 650 V G5 using digital control.

Features and benefits

(ey features

- Classic PFC boost stage digitally controlled with XMC1302 including voltage and current loops
- Protections, including cycle-by-cycle current protection
- Run time debug with isolated UART to PC interface and PC software

Customer benefit

- High efficient PFC stage with a complete system solution from Infineon
- HW and SW available
- Higher switching frequency permits higher power density

800 W PFC CCM with XMC1300	Specifica	tion	Infineon components			
	V _{in}	90-265 V _{AC}	MCU	XMC1302 (TSSOP38)		
	V _{out_nom}	380 V _{DC}	MOSFET	600 V CoolMOS™ C7		
	I _{out}	2 A	MOSFET driver	EiceDRIVER™ 2EDN7524F non-isolated		
	PWM frequency	130 kHz	Diode	CoolSiC™ Schottky diode 650 V G5		
- E	THD	<10%	Auxiliary PSU	ICE2QR4780Z		
	Power factor	>0.9 from 20% load				
And the second s	Efficiency	97% (peak)				

600 W half-bridge LLC evaluation board with 600 V CoolMOS™ C7 SJ MOSFET with digital control

The 600 W LLC digital control evaluation board shows how to design the half-bridge LLC stage of a server SMPS with the target to meet 80+ Titanium standard efficiency requirements. For this purpose, the latest CoolMOS™ technologies, 600 V CoolMOS™ C7 or P6 superjunction MOSFETs have been used on the primary side, and OptiMOS™ low-voltage power MOSFET in SuperSO8, BSC010N04LS, in the synchronous rectification secondary stage in combination with QR CoolSET™ ICE2QR2280Z, high- and low-side driver 2EDL05N06PF, low-side gate driver 2EDN7524F and a XMC4200 microcontroller.

Features and benefits

Key features

- 600 W LLC half-bridge stage with synchronous rectification (SR)
- All controlled with XMC4200 including:
- Start up (PWM to PFM) and burst-mode algorithms
- Adaptive dead time and capacitive-mode detection
- No hard commutation at any condition

Customer benefits

- Learn LLC topology with a complete system solution from Infineon
- HW and- SW available
- Close to customer solution
- High efficiency → 97.8%Reliability and power density

600 W LLC digital control	Specif	ication	Infineon components			
The could be seen to b	V _{in}	350-410 V _{DC}	MCU	XMC4200 (VQFN48)		
	V _{out nom}	12 V _{DC}	MOSFET SR	BSC010N04LS		
TOTAL PARTY OF THE	I out	50 A	HB driver	2EDL05N06PF		
	P _{out}	600 W	LLC HB MOSFET	CoolMOS™ IPP60R190P6		
	f _{res}	157 kHz	Auxiliary PSU	ICE2QR2280Z		

www.infineon.com/xmc

www.infineon.com/800w-pfc-eval

www.infineon.com/600w-llc-eval

Digital isolators

Power

3 kW dual-phase LLC converter using XMC4400

The 3 kW dual-phase LLC demonstration board is an example of a high efficiency isolated DC-DC converter using the state-of-the-art Infineon components, both power devices and controller/driver ICs. The use of an advanced digital control using the XMC4400 microcontroller, together with the latest generation of CoolMOS™ and OptiMOS™ devices, allows achieving a very flat efficiency curve in the entire load range. The demonstration board is targets the high voltage DC-DC stage of high-end telecom rectifiers.

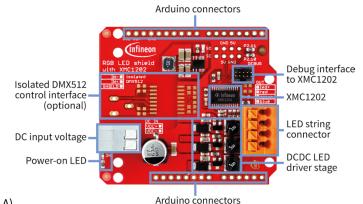
Features and benefits

Key features	Customer benefits
– Full digital control by XMC4400 on the secondary side	- Full digital control by XMC4400 on the secondary side
Digital current sharing with phase shedding	– Efficiency peak 98.5% and more than 97.2% in the entire load range
 Accurate algorithm able to prevent hard commutation and capacitive load mode in LLC operation 	– Easy monitoring and parameter setting via a graphic user interface

3 kW dual-phase LLC converter using XMC4400	Specif	ication	Infineon components			
	V _{in}	350-410 V _{DC}	MCU	XMC4400 (LQFP64)		
	V_{out_nom}	54.3 V _{DC}	SR MOSFET	OptiMOS™ BSC093N15NS5		
	I out_max	55 A	Drivers	1EDI60N12AF 2EDN7524R		
	P _{out}	3000 W	LLC Half-bridge MOSFET	CoolMOS™ P6 IPW60R041P6		
CEANAGE THE STATE OF THE STATE	f _{range}	90-200 kHz	Auxiliary PSU	ICE2QR2280Z		
	Peak efficiency	>98.4%				

RGB LED lighting shield with XMC1202 for Arduino

The RGB LED lighting shield with XMC1202 for Arduino uses a DC-DC buck topology and is able to drive up to three LED channels with constant current. The shield itself is powered by a programmable XMC™ 32-bit Arm® MCU with embedded brightness color control unit (BCCU, XMC1200 MCU series), for flicker-free LED dimming and color control.


Features

- Compatible with Arduino Uno R3 and XMC1100 boot kit from Infineon
- Easily configurable for various light engines and any input voltage (within operating conditions)
- > Wide DC input voltage range
- > Simple I²C interface

Operating conditions

- > Nominal: 12-48 V input voltage (max. 6-60 V)
- > Average LED current up to 700 mA (max. peak current 1 A)

The Infineon shields mentioned above are hardware compatible with Arduino and Infineon's XMC[™] boot and relax kits.

3 kW dual-phase LLC converter

XMC4800 automation board V2 – explore XMC4800 microcontroller based on Arm® Cortex®-M4

The XMC4800 automation board V2 uses Infineon's industry leading XMC[™] Arm® Cortex®-M4 microcontroller in combination with Infineon's supply, interface, communication and safety products. The XMC4800 automation board V2 is designed to evaluate the capabilities of the XMC4800 microcontroller especially in EtherCAT® slave applications and can be used with a wide range of development tools including Infineon's free-of-charge Eclipse based IDE, DAVE™.

Key features
- XMC4800-E196 MCU based on Arm® Cortex®-M4 at 144 MHz
− EtherCAT® slave controller, 2 MB flash and 352 kB RAM
– OPTIGA™ Trust E embedded security solution (CC EAL6+)
– Real time clock crystal
– SPI FRAM (64 kB non-volatile memory)
− EtherCAT® slave node (2 EtherCAT® PHY and RJ45 Jacks)
– 24 V ISOFACE™ 8-channel inputs and 8-channel outputs CAN transceive
– CAN transceiver

	Customer benefits
	- Complete automation kit gateway
	- Combined MCU with EtherCAT slave application
	– Isolated interfaces with diagnose
١	– Ethernet connectivity with software examples available
	- 24 V supply
	- CAN connectivity
	– Full software DAVE™ examples

XMC4800 automation board V2	Туре	Description	OPN
	KIT_XMC48_AUT_BASE_V2	The XMC4800 automation board V2 utilizes Infineon's industry leading XMC™ Arm® Cortex®-M4 microcontroller in combination with Infineon's supply, interface/communication and safety products	KITXMC48AUTBASEV2TOBO1
	XMC4800-E196K2048	Arm® Cortex®-M4 microcontroller	XMC4800E196K2048AAXQMA1
	ISO2H823V2.5	24 V 8-channel isolated output	ISO2H823V25XUMA1
	ISO1I813T	24 V 8-channel isolated input	ISO1I813TXUMA1
	SLS 32AIA020A4 USON10	OPTIGA™ Trust E – embedded security solution	SLS32AIA020A4USON10XTMA2
800030000000000000000000000000000000000	TLE6250GV33	Infineon CAN transceiver	TLE6250GV33XUMA1
	IFX54441LDV	Infineon voltage regulator	IFX54441LDVXUMA1

XMC[™] wireless power controller – enabling wireless charging transmitter applications

Infineon's XMC[™] wireless power controller, based on the Arm® Cortex®-M0 core, provides a powerful and cost-effective platform for high performance, smart and safe wireless charging applications. The XMC™ wireless power controller helps the next-generation wireless charging systems to meet strict safety, environmental and regulatory requirements, while still enabling industry-leading charging performance and efficiency. This controller works seamlessly with Infineon's power devices in a scalable architecture to provide a complete charging solution for everything from a fast-charge smartphone, to a 20 W robot, or a 60 W drone and beyond.

Features and benefits

Key features	Customer benefits
- Supports inductive and resonant charging methods	 Supports 15 W charging and existing standards, including fast charging of smartphones
- Power levels up to 60 W	- Full power 15 W without exotic thermal management
Multiple industry standard and custom charging profiles using the same hardware architecture	 Achieves charging rates equivalent to wired charging
- Single- and multi-coil transmitters	 Supports custom-charging profiles and industry standards on the same hardware
– Half- and full-bridge support	Foreign object detection (FOD) with improved accuracy quality-factor monitoring
- Variable and fixed-frequency transmitter types	 Foreign object detection capability can be extended beyond existing standards to improve detection
- Buck and boost topologies	- Supports custom coils, and greater than three coils
- Integrated flash for parameter storage	
– Voltage supply 1.8-5.5 V	_
- Space saving VQFN-40 package	

For a detailed overview of Infineon's wireless charging solutions, check the Wireless charging chapter.

XMC[™] starter kits

Kits and evaluation boards

Xtreme2Go

Order number: KIT_XMC_2GO_XTR_ XMC1400

- > XMC1400 family kit with ADAFRUIT, MikroE and Shields2Go connectivity. Extension for IoT and other cloud applications.
- > The XMC1400 series devices are optimized for motor control, power conversion and LED Lighting applications and Human-Machine Interface (HMI)


For more information on this product, please contact our product support.

Platform2Go XMC4400

Order number: KIT_XMC_PLT_2GO_XMC4400

- > Equipped with an Arm® Cortex®-M4 based XMC™ microcontroller, the XMC4400 Platform2Go is designed to evaluate the capabilities of Infineon's XMC4400 microcontroller. It can be used with a wide range of development tools including Infineon's free of charge Eclipse based IDE DAVE™
- > This kit has the XMC4400 device with debugger plus Ethernet, CAN, Arduino, MikroBUS and Shields2Go form factor.

Click on the following to find/purchase the kit:

XMC1400 Arduino

Order number: KIT_XMC1400_ARDUINO

- > This kit utilizes Infineon's industry leading Arm® Cortex® M0 microcontroller in combination with Arduino form factor.
- > It can be used with a wide range of development tools including Infineon's free of charge Eclipse based IDE, DAVE™ and much more.

Click on the following to find/purchase the kit:

www.infineon.com/xmc1400_ARDUINO

Platform2Go XMC4200

Order number: KIT_XMC_PLT 2GO_XMC 4200

- ➤ Equipped with an Arm® Cortex®-M4 based XMC™ microcontroller from Infineon Technologies AG, the XMC4200 Platform2Go is designed to evaluate the capabilities of Infineon's XMC4200 microcontroller.
- > It can be used with a wide range of development tools including Infineon's free of charge Eclipse based IDE DAVE™
- This kit has the XMC4200 device with debugger plus CAN, Arduino, MikroBUS and Shields2Go form factor.

Click on the following to find/purchase the kit: www.infineon.com/XMC4200patform2go

RGB LED Lighting Shield

Order number: KIT_XMC_LED_DALI_20_RGB

- One of the first intelligent evaluation boards compatible with Arduino as well as Infineon's XMC1100 BOOT KIT.
- Designed to be easily configurable and combinable for different LED light engines and lamps, for fast prototyping and in-expensive evaluation of LED lighting applications.
- The RGB LED lighting shield with XMC1302 uses a DC-DC buck topology.

Click on the following to find/purchase the kit:
www.infineon.com/cms/en/product/evaluation-boards/kit_xmc_led_dali_20_rgb/

XMC[™] peripherals

IEC60730 class B library for XMC™

Supporting the XMC1xxx and XMC4xxx families

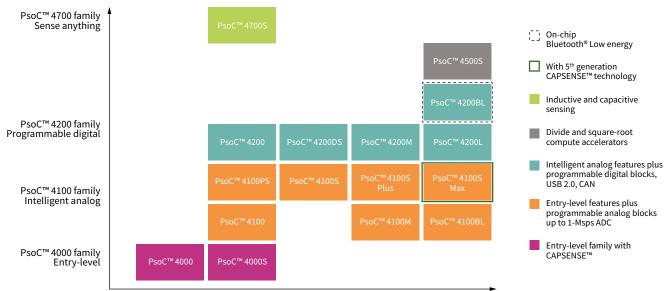
In collaboration with the consultancy Hitex, Infineon developed the IEC60730 – class B software library for XMC™ industrial microcontrollers for household electrical appliances. This is a dedicated software library for XMC™ MCUs with routines for internal supervisory functions and for self-diagnostics.

Extended documentation and pre-certified software libraries to XMC™ Cortex® Arm® based controllers are free of charge. For more information, please check: www.hitex.com/classb

Documentation	Consultancy
Safety application note Failure mode report FMEDA tool by Infineon, revised in workshops by TÜV Süd	EMBEDDED TOOLS & SOLUTIONS
	Implementation support by Hitex

Embedded security for XMC™ MCUs

Infineon and its partners provide solutions which support with data protection, allowing authentication and encryption and securing firmware file updates to prevent cloning and downtimes.


Security solutions										
Software		Hardware								
Secure bootloader by Infineon, XMC1000	OPTIGA™ family by Infineon Hardware-based security solutions									
CodeMeter μEmbedded by WIBU, XMC4000 exclusive	OPTIGA™ Trust family	OPTIGA™ TPM family								
KMS/CycurKEYS by ESCRYPT, XMC4000	O' Infineon	(a) Infineon								
emSecure by SEGGER		The state of the s								
	Turnkey and programmable security solutions	Standardized certified turnkey solution								

PSoC™ 4 microcontrollers

Your problem solver on chip

PSoC[™] 4 has tackled some of the complex portions of embedded system design making it easier for you to get your product to market. Functions such as analog sensor integration, capacitive touch, and wireless connectivity have been integrated and optimized in PSoC[™] 4 to just work.

The PSoC[™] 4 portfolio consists of several families of Arm® Cortex®-M0 and Cortex-M0+ microcontrollers. Most devices in the portfolio include Infineon's CAPSENSE[™] technology for capacitive-sensing applications. Other key features in the PSoC[™] 4 portfolio include a customizable analog front end through programmable analog blocks as well as wired and wireless connectivity options such as USB, CAN, and Bluetooth® Low Energy. These unique features make PSoC 4 the industry's most flexible and scalable low-power mixed-signal architecture.

Flash capacity and features

Features and benefits

Sense anything

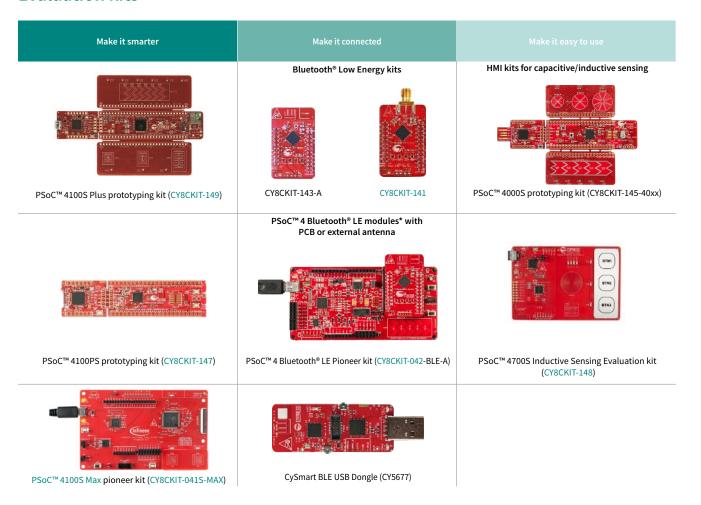
Programmable analog and digital blocks in PSoC 4 enable you to customize your analog-front-end, apply simple glue logic and easily integrate intelligent analog sensors into an application

Intelligent sensor integration

Easy-to-use HMI

PSoC 4 simplifies complex HMI interfaces such as capacitive and inductive sensing enabling sleek, robust, and easy-to-use interfaces

Capacitive and inductive sensing


Connected

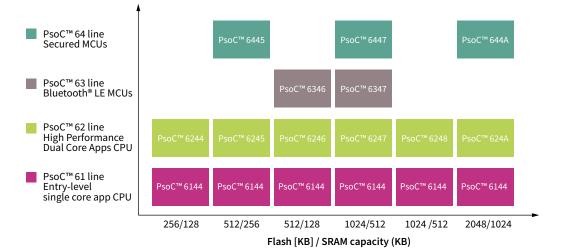
Bluetooth® Low Energy (BLE) integrated into some PSoC 4 devices simplifies RF design. Additional wired interfaces such as USB and CAN are also available

Wired and wireless connectivity

Evaluation kits

Software

ModusToolbox™ Software Environment


PSoC[™] Creator IDE with graphical front ends

PSoC™ 6 microcontrollers

Purpose-Built for IoT

The PSoC[™] 6 family is built on an ultra-low-power architecture, and the MCUs feature low-power design techniques that are ideal for battery-powered applications. The dual-core Arm® Cortex®-M4 and Cortex-M0+ architecture let designers optimize for power and performance simultaneously. Using its dual cores combined with configurable memory and peripheral protection units, the PSoC[™] 6 MCU delivers the highest level of protection defined by the Platform Security Architecture (PSA) from Arm. Designers can use the MCU's rich analog and digital peripherals to create custom analog front ends (AFEs) or digital interfaces for innovative system components such as MEMS sensors, and electronic ink displays. The PSoC[™] 6 MCU features the latest generation of industry-leading CAPSENSE[™] capacitive-sensing technology, enabling modern touch and gesture-based interfaces that are robust and reliable. PSoC[™] 6 MCU, paired with Infineon's AIROC[™] Wi-Fi, AIROC[™] Bluetooth®, or AIROC[™] combos radio modules, is the perfect solution for secure, low-power, feature-rich IoT products.

Features and benefits

Lowest power

IoT devices are often portable, making battery life a critical factor. The PSoC[™] 6 MCU architecture is built on a cutting-edge, ultra-low-power, 40-nm process technology with a dual Arm® Cortex®-M core architecture. Active power consumption is as low as 22-µA/MHz for the M4 core, and 15-µA/MHz for the M0+ core. PSoC[™] 6 delivers extended battery life without sacrificing performance.

Most flexibility

The PSoC™ 6 MCU architecture's best-in-class flexibility enables the addition of new features and addresses the need for unique IoT products with multiple connectivity options, such as USB and BLE. PSoC™ 6 also offers software-defined peripherals to create custom analog and digital circuits, and the industry's best capacitive-sensing solution, CAPSENSE®. In addition, a flexible dual-core architecture is used to optimize for system power consumption and performance. The possibilities are endless.

Built-in security

The PSoC[™] 6 MCU architecture supports multiple, simultaneous secure environments without the need for external memories or secure elements, and offers scalable secure memory for multiple, independent user-defined security policies, preventing your IoT device from becoming a security liability. PSoC[™] 6 provides you with a new standard for IoT security.

PSoC™ 6 Kits

Product family	Kit type	Kit MPN	Selection factors								
PSoC™ 61, PSoC™ 62 product family											
PSoC™ 62xA, 62xA, 61xA, 61x8 Prototyping CY8CPROTO-062-4343W Highest-end MCU, single-band Wi-Fi											
	Pioneer	CY8CKIT-062S2-43012	Highest-end MCU, machine learning, graphics, dual-band/low power Wi-Fi, Arduino shield capability								
	Evaluation	CY8CEVAL-062S2	Highest-end MCU, machine learning, graphics, flexible M.2 card-based Wi-Fi module evaluation (single-band, dualband), Arduino shield capability, mikroBUS interface								
PSoC [™] 62x7, 62x6, 61x7, 61x6	Pioneer	CY8CKIT-062-WIFI-BT	Standalone MCU, graphics, single-band Wi-Fi, analog rich, Arduino shield capability								
PSoC™ 62x5, 61x5	Prototyping	CY8CPROTO-062S3-4343W	Standalone MCU, single-band Wi-Fi connectivity processor, industrial (CAN-FD)								
PSoC™ 62x4, 61x4	Pioneer	CY8CKIT-062S4	Standalone MCU, low power analog, sensor coprocessor, Arduino shield capability								
			PSoC™ 64 Product Family								
PSoC™ 64xA Pioneer CY8CKIT-064B0S2-4343W Standalone secured MCU, trusted firmware-M, single-band Wi-Fi, Arduino shield capability											
PSoC™ 64x7	Prototyping	CY8CPROTO-064S1-SB	Standalone secured MCU								
PSoC™ 64x5	Prototyping	CY8CPROTO-064B0S3	Standalone secured MCU, industrial (CAN-FD)								

Software

ModusToolbox™ Software Environment

PSoC™ Creator IDE with graphical front ends

AURIX™ – 32-bit microcontrollers

32-bit multicore TriCore™ – safety joins performance

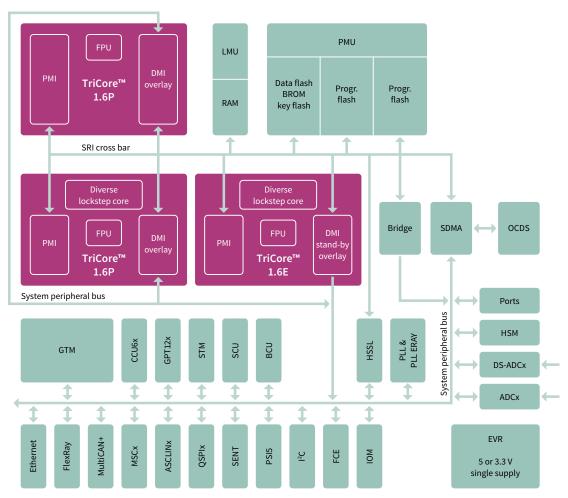
AURIX™ is Infineon's family of microcontrollers serving the needs of industrial applications in terms of performance and safety. Its innovative multicore architecture, based on up to six independent 32-bit TriCore™ CPUs at 300 MHz, has been designed to meet the highest safety standards while increasing the performance at the same time. Using the AURIX™ scalable platform, developers will be able to implement applications such as motor control and drives, PLC or any other automation application. Developments using AURIX™ require less effort to achieve the SIL/IEC61508 standard based on its innovative safety concept and multiple HW safety features. Furthermore, AURIX™ has enhanced communication capabilities to support communication between CAN, LIN, FlexRay and Ethernet buses.

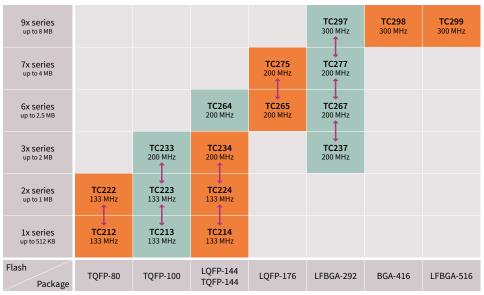
Features and benefits

Key features

- TriCore[™] with DSP functionality
- Best-in-class real-time performance: up to six TriCore™ with up to 300 MHz per core
- Supporting floating point and fix point with all cores
- Up to 6.9 MB of internal RAM, up to 16 MB of flash
- Innovative single supply 5 V or 3.3 V
- IEC61508 conformance to support safety requirements up to SIL 3
- Embedded EEPROM
- Advanced communication peripherals: CAN FD, LIN, SPI, FlexRay, Ethernet

Customer benefit


- High scalability gives the best cost-performance fit
- High integration leads to significant cost savings
- High integration leads to reduced complexity
- Innovative supply concept leads to best-in-class power consumption



Powerful 1st generation AURIX[™] TC2xx system architecture

AURIX™ TC2xx family system architecture

AURIX™ TC2xx family package scalability

Upgrade/downgrade with pin-compatible packages

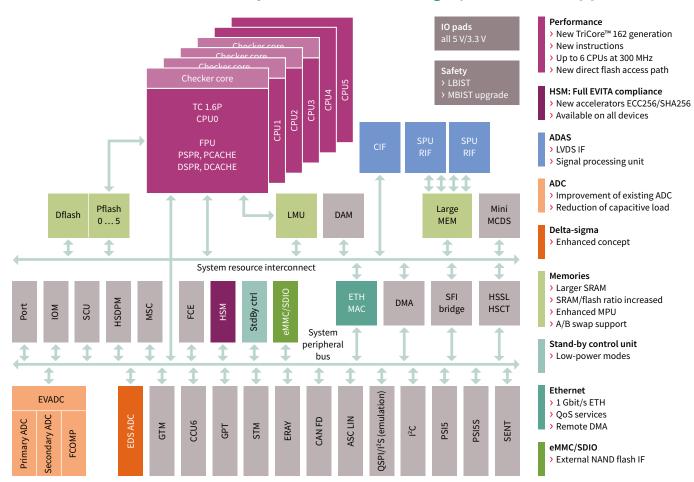
AURIX™ TC2xx portfolio

Producttype	Max. clock frequency [MHz]	Program memory [kB]	SRAM (incl. cache) [kB]	Co-processor ¹⁾	Cores/lockstep	Timed I/O	Number of ADC channels	External bus interface	CAN nodes	Communication in terfaces ²⁾		Packages	Additional features/remarks ⁴⁾
TC299TX	300	8000	2728	FPU	3/1	263	84/10 DS	yes	6	4xASCLIN, 6xQSPI, 3xMSC, 2xl ² C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD	K	LFBGA-516	EVR, STBU, HSM
TC299TP	300	8000	728	FPU	3/1	263	84/10 DS	yes	6	4xASCLIN, 6xQSPI, 3xMSC, 2xI ² C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD	K	LFBGA-516	EVR, STBU, HSM
TC298TP	300	8000	728	FPU	3/1	232	60/10 DS	yes	6	4xASCLIN, 6xQSPI, 3xMSC, 2xI ² C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD	K	LBGA-416	EVR, STBU, HSM
TC297TA	300	8000	2728	FPU, FFT, CIF	3/1	169	60/10 DS	no	6	4xASCLIN, 4xQSPI, 3xMSC, 2xI ² C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD	K	LFBGA-292	EVR, STBU, HSM
TC297TX	300	8000	2728	FPU	3/1	263	60/10 DS	no	6	4xASCLIN, 4xQSPI, 3xMSC, 2xI ² C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD	K	LFBGA-292	EVR, STBU, HSM
TC297TP	300	8000	728	FPU	3/1	169	60/10 DS	no	6	4xASCLIN, 4xQSPI, 3xMSC, 2xI ² C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD	K	LFBGA-292	EVR, STBU, HSM
TC277TP	200	4000	472	FPU	3/2	169	60/6 DS	no	4	4xASCLIN, 4xQSPI, 2xMSC, HSSL, 2xI ² C, 10xSENT, 3xPSI5, FlexRay, Ethernet, CAN FD	K	LFBGA-292	EVR, WUT, HSM
TC275TP	200	4000	472	FPU	3/2	112	60/6 DS	no	4	4xASCLIN, 4xQSPI, 2xMSC, HSSL, 2xI ² C, 10xSENT, 3xPSI5, FlexRay, Ethernet, CAN FD	K	LQFP-176	EVR, WUT, HSM
TC267D	200	2500	240	FPU	2/1	169	50/3 DS	no	5	4xASCLIN, 4xQSPI, 2xMSC, 2xI ² C, 10xSENT, 3xPSI5, HSSL, FlexRay, Ethernet, CAN FD	K	LFBGA-292	EVR, STBU
TC265D	200	2500	240	FPU	2/1	112	50/3 DS	no	5	4xASCLIN, 4xQSPI, 2xMSC, 2xI ² C, 10xSENT, HSSL, 3xPSI5, FlexRay, Ethernet, CAN FD	K	LQFP-176	EVR, STBU
TC264DA	200	2500	752	FPU, FFT, CIF	2/1	88	40/3 DS	no	5	4xASCLIN, 4xQSPI, 2xMSC, 2xI ² C, 10xSENT, HSSL, 3xPSI5, FlexRay, Ethernet, CAN FD	K	LQFP-144	EVR, STBU
TC264D	200	2500	240	FPU	2/1	88	40/3 DS	no	5	4xASCLIN, 4xQSPI, 2xMSC, 2xI ² C, 10xSENT, HSSL, 3xPSI5, FlexRay, Ethernet, CAN FD	K	LQFP-144	EVR, STBU
TC237LP	200	2000	192	FPU	1/1	120	24	no	6	2xASCLIN, 4xQSPI, 4xSENT, FlexRay, CAN FD	K	LFBGA-292	EVR, WUT, HSM
TC234LA	200	2000	704	FPU, FFT	1/1	120	24	no	6	2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet	K	TQFP-144	EVR, WUT, HSM
TC234LX	200	2000	704	FPU	1/1	120	24	no	6	2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet	K	TQFP-144	EVR, WUT, HSM
TC234LP	200	2000	192	FPU	1/1	120	24	no	6	2xASCLIN, 4xQSPI, 4xSENT, FlexRay, CAN FD	K	TQFP-144	EVR, WUT, HSM
TC233LP	200	2000	192	FPU	1/1	78	24	no	6	2xASCLIN, 4xQSPI, 4xSENT, FlexRay, CAN FD	K	TQFP-100	EVR, WUT, HSM
TC224L	133	1000	96	FPU	1/1	120	24	no	3	2xASCLIN, 4xQSPI, 4xSENT, CAN FD	K	TQFP-144	EVR, WUT
TC223L	133	1000	96	FPU	1/1	78	24	no	3	2xASCLIN, 4xQSPI, 4xSENT, CAN FD	K	TQFP-100	EVR, WUT
TC222L	133	1000	96	FPU	1/1	59	24	no	3	2xASCLIN, 4xQSPI, 4xSENT, CAN FD	K	TQFP-80	EVR, WUT
TC214L	133	500	96	FPU	1/1	120	14	no	3	2xASCLIN, 4xQSPI, 4xSENT, CAN FD	K	TQFP-144	EVR, WUT
TC213L	133	500	96	FPU	1/1	78	24	no	3	2xASCLIN, 4xQSPI, 4xSENT, CAN FD	K	TQFP-100	EVR, WUT
TC212L	133	500	96	FPU	1/1	59	24	no	3	2xASCLIN, 4xQSPI, 4xSENT, CAN FD	K	TQFP-80	EVR, WUT

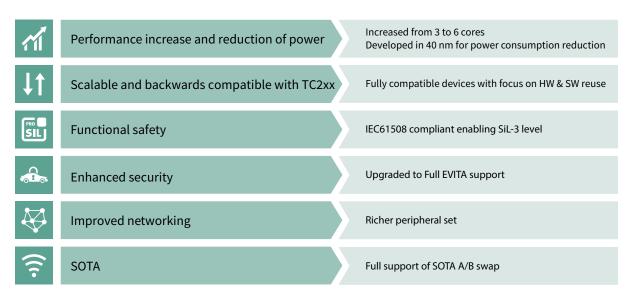
¹⁾ CIF = camera and external ADC Interface, FFT = fast fourier transform accelerator, FPU = floating point unit, PCP = peripheral control processor

Evolution from TC2xx to TC3xx - Easy migration with focus on reuse

- Fast conversion of existing AURIX™ TC2xx designs
 - Backwards compatibility
 - High AURIX™ TC3xx compatibility to pinout of existing QFP100/144/176 and BGA packages
- Flexibility scalability within the AURIX™ TC3xx family
 - Up-/Downgrade paths for devices in identical packages
 - Compatible pin-out of QFP/BGA package options enabling combination designs
- Pin-to-pin compatibility between the devices of AURIX™ TC2xx/TC3xx and from generation to generation
- A high scalability with a very large portfolio for both AURIX™ TC2xx and TC3xx


²⁾ ASC = asynchronous serial channel, ASCLIN = asyn/synchronous local interconnect network, HSSL= high-speed serial link, I²C = inter-integrated circuit, LIN = local interconnect network, MLI = micro link interface, MSC = micro second channel, PSI5 = peripheral sensor interface 5, QSPI = queued serial peripheral interface, SENT = single edge nibble transmission, SSC = synchronous serial channel, CAN FD ISO11898-1:2015

³⁾ Ambient temperature range: A = -40°C ... 140°C, B = 0°C ... 70°C, F = -40°C ... 85°C, H = -40°C ... 110°C, K = -40°C ... 125°C, L = -40°C ... 150°C, X = -40°C ... 105°C


FUR = embedded voltage regulator, HSM = hardware security module, STBU = stand-by control unit, WUT = wake-up timer

AURIX™ TC3xx family system architecture

AURIX™ TC3xx – scalable family - from low-cost to high-performance applications

AURIX™ TC3xx provides an upgrade on key parameters with focus on SW and HW reuse

AURIX™ TC3xx package scalability

6x 300 MHz	9x A series 16 MB							TC397XA 300 MHz	
6x 300 MHz	9x series 16 MB							TC397x 300 MHz	TC399x 300 MHz
4x 300 MHz	Ex series 12 MB							TC387Qx 300 MHz	
4x 300 MHz	8x series 10 MB							TC387Q 300 MHz	TC389Q 300 MHz
3x 300 MHz	7x X series 6 MB							TC377TX 300 MHz	
3x 300 MHz	7x series 6 MB					TC375T 300 MHz		TC377T 300 MHz	
2x 300 MHz	6x series 4 MB			TC364D 300 MHz	TC366D 300 MHz	TC365D 300 MHz		TC367D 300 MHz	
4x 300 MHz	Ax series 4 MB						TC3A8Q 300 MHz	TC3A7Q 300 MHz	
3x 300 MHz	5x A series 4 MB				TC356TA 300 MHz			TC357TA 300 MHz	
2x 300 MHz	3x A series 2 MB				TC336DA ¹⁾ 200 MHz			TC337DA ¹⁾ 200 MHz	
1x 300 MHz	3x series 2 MB	TC332L ¹⁾ 200 MHz	TC333L ¹⁾ 200 MHz	TC334L ¹⁾ 200 MHz	TC336L ¹⁾ 200 MHz			TC337L ¹⁾ 200 MHz	
1x 300 MHz	2x series	TC322L 160 MHz	TC323L 160 MHz	TC324L 160 MHz				TC327L 160 MHz	
Flash	Package	TQFP-80	TQFP-100	T/LQFP-144	BGA-180	LQFP-176	BGA-233	LFBGA-292	LFBGA-516

- Advanced package technologies deliver the best price/performance ratio
- Customers can choose between different devices in the same pin-compatible package

MCU scalability

1) An option of 300 MHz is also available

- > Performance and flash
- > Pin compatibility
- > Binary-compatible cores

Safety/security concept

- > ISO 26262 compliance
- > IEC61508 compliant

Security

AURIX™ TC3xx

Power consumption

- > On-chip SC DC-DC high-efficiency power supply
- > Integrated standby controller

Connectivity

- > Ethernet: up to 2x1 GB
- > CAN FD: up to 12 channels
-) eMMC IF

Gate-driver ICs

AURIX™ TC3xx portfolio

Product type	Cores/lockstep	Max clock frequency [MHz]	Program memory [kB]	SRAM (incl. cache) [kB]	Radar accelerator/ radar interface ¹⁾	CAN/CAN FD nodes	Ethernet 100/1000 Mbit	External bus interface ²⁾	Communication interfaces	MSM	Femperature ranges	Packages	Additional features/ remarks ³⁾
<u> </u>	ŭ	Z # E	_	S	2 8 2	υž		û .⊑ X™ TC3xx fam		Ξ_	<u> </u>	<u> </u>	A T Z
TC399XX										EVITA	K, L	LFBGA-516	5 V/3.3 V EVR,
TC399XP	6/4	300	16000	2816	no	12	1	2x HSSL EBU, eMMC,	25x SENT, 4x PSI5, 2x I ² C, 4x MSC 6x SPI, 2x FlexRay, 12x LIN,	full EVITA	K, L	LFBGA-516	8-bit SCR 5 V/3.3 V EVR,
	,				110			2x HSSL	25x SENT, 4x PSI5, 2x I ² C, 4x MSC	full			8-bit SCR
TC397XX	6/4	300	16000	6912	no	12	1	eMMC, 2x HSSL	6x SPI, 2x FlexRay, 12x LIN, 25x SENT, 4x PSI5, 2x I ² C, 4x MSC	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC397XP	6/4	300	16000	2816	no	12	1	eMMC, 2x HSSL	6x SPI, 2x FlexRay, 12x LIN, 25x SENT, 4x PSI5, 2x I ² C, 4x MSC	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC397XA	6/4	300	16000	6912	2x SPU/ 8x 400 Mbit/s LVDS	12	1	2x HSSL	6x SPI, 2x FlexRay, 12x LIN, 25x SENT, 4x PSI5, 2x I ² C, 4x MSC	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC389QP	4/2	300	10000	1568	no	12	1	HSSL	5x SPI, 2x FlexRay, 24x LIN,	EVITA	K, L	LFBGA-516	5 V/3.3 V EVR,
TC387QP	4/2	300	10000	1568	no	12	1	HSSL	25x SENT, 4x PSI5, 2x I ² C, 3x MSC 5x SPI, 2x FlexRay, 24x LIN,	full	K, L	LFBGA-292	8-bit SCR 5 V/3.3 V EVR,
TC377TX	3/3	300	6000	4208	no	12	2	eMMC, HSSL	25x SENT, 4x PSI5, 2x I ² C, 3x MSC 5x SPI, 1x FlexRay, 12x LIN,	full EVITA	K, L	LFBGA-292	8-bit SCR 5 V/3.3 V EVR,
TC377TP	3/2	300	6000	1136	no	8	1	HSSL	15x SENT, 2x PSI5, 1x I ² C, 2x MSC 5x SPI, 1x FlexRay, 12x LIN,	full EVITA	K, L	LFBGA-292	8-bit SCR 5 V/3.3 V EVR,
TC375TP	3/2	300	6000	1136	no	8	1	HSSL	15x SENT, 2x PSI5, 1x I ² C, 2x MSC 5x SPI, 1x FlexRay, 12x LIN,	full EVITA	K, L	LQFP-176	8-bit SCR 5 V/3.3 V EVR,
TC367DP	2/2	300	4000	672	no	8	1	HSSL	15x SENT, 2x PSI5, 1x I ² C, 2x MSC 4x SPI, 1x FlexRay, 12x LIN,	full EVITA	K, L	LFBGA-292	8-bit SCR 5 V/3.3 V EVR,
	·								10x SENT, 2x PSI5, 1x I ² C, 1x MSC	full			8-bit SCR
TC366DP	2/2	300	4000	672	no	8	1	HSSL	4x SPI, 1x FlexRay, 12x LIN, 10x SENT, 2x PSI5, 1x I ² C, 1x MSC	EVITA full	K, L	LFBGA-196	5 V/3.3 V EVR, 8-bit SCR
TC365DP	2/2	300	4000	672	no	8	1	HSSL	4x SPI, 1x FlexRay, 12x LIN, 10x SENT, 2x PSI5, 1x I ² C, 1x MSC	EVITA full	K, L	LQFP-176	5 V/3.3 V EVR, 8-bit SCR
TC364DP	2/2	300	4000	672	no	8	1	HSSL	4x SPI, 1x FlexRay, 12x LIN, 10x SENT, 2x PSI5, 1x I ² C, 1x MSC	EVITA full	K, L	TQFP-144	5 V/3.3 V EVR, 8-bit SCR
TC364DP	2/2	300	4000	672	no	8	1	HSSL	4x SPI, 1x FlexRay, 12x LIN, 10x SENT, 2x PSI5, 1x I ² C, 1x MSC	EVITA full	K, L	LQFP-144	5 V/3.3 V EVR, 8-bit SCR
TC357TA	3/2	300	4000	3664	2x SPU/ 8x 400 Mbit/s LVDS	8	1	no	4x SPI, 1x FlexRay, 4x LIN	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC356TA	3/2	300	4000	3664	2x SPU/ 8x 400 Mbit/s LVDS	8	1	no	4x SPI, 1x FlexRay, 4x LIN	EVITA full	K, L	LFBGA-196	5 V/3.3 V EVR, 8-bit SCR
TC337DA	2/1	200	2000	1568	1x SPU/ 4x 400 Mbit/s LVDS	8	1	еММС	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC336DA	2/1	200	2000	1568	1x SPU/ 4x 400 Mbit/s LVDS	8	1	еММС	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	LFBGA-196	5 V/3.3 V EVR, 8-bit SCR
TC337LP	1/1	200	2000	248	no	8	no	no	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC336LP	1/1	200	2000	248	no	8	no	no	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	LFBGA-196	5 V/3.3 V EVR, 8-bit SCR
TC334LP	1/1	200	2000	248	no	8	no	no	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	TQFP-144	5 V/3.3 V EVR, 8-bit SCR
TC333LP	1/1	200	2000	248	no	8	no	no	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	TQFP-100	5 V/3.3 V EVR, 8-bit SCR
TC332LP	1/1	200	2000	248	no	8	no	no	4x SPI, 1x FlexRay, 12x LIN, 6x SENT	EVITA full	K, L	TQFP-80	5 V/3.3 V EVR, 8-bit SCR
TC327LP	1/1	160	1000	96	no	8	no	no	4x SPI, 6x SENT, 6x LIN	EVITA full	K, L	LFBGA-292	5 V/3.3 V EVR, 8-bit SCR
TC324LP	1/1	160	1000	96	no	8	no	no	4x SPI, 6x SENT, 6x LIN	EVITA full	K, L	TQFP-144	5 V/3.3 V EVR, 8-bit SCR
TC323LP	1/1	160	1000	96	no	8	no	no	4x SPI, 6x SENT, 6x LIN	EVITA	K, L	TQFP-100	5 V/3.3 V EVR,
TC322LP	1/1	160	1000	96	no	8	no	no	4x SPI, 6x SENT, 6x LIN	full EVITA	K, L	TQFP-80	8-bit SCR 5 V/3.3 V EVR,
1) SPU – Sigr	nal proce	ssing unit								full			8-bit SCR

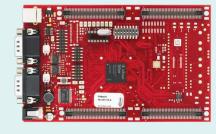
1) SPU – Signal processing unit

2) HSSL – High-speed serial link

3) 8-bit SCR – Standby controller for low power modes

4) EVR – Embedded voltage regulator

www.infineon.com/aurix


AURIX™ starter and application kits

Infineon starter kits - 32-bit microcontrollers

AURIX™ Triboards Kits

- Full evaluation board for development to write and debug your 1st programs
- Includes getting started advice, free TriCore™ entry tool chain, technical documentation, compiler and debugger
- TriBoard available for all productive silicon

www.infineon.com/aurix-kits

AURIX™ TFT Kits

- Low cost board for early evaluation with limited access to signals
- Additional touchscreen display for convenient handling
- TFT board available for every silicon

Click on the following to find/purchase the kit:

www.infineon.com/aurix-kits

Arduino AURIX™ TC275 ShieldBuddy Kit

- The Hitex TC275/TC375 ShieldBuddy follows the Arduino standard
- Compatible with hundreds of Arduino application shields
- Evaluation licenses available
- Ideal for getting started on a high-end real time embedded industrial or automotive application as well as students and hobbyists

www.infineon.com/aurixlowcostarduinokits

Arduino AURIX™ TC375 ShieldBuddy Kit

Order number: KIT_A2G_TC375_ARD_SB

- Compatible with hundreds of Arduino application shields
- Evaluation licenses available
- Ethernet
- Ideal for getting started on a high-end real time embedded industrial or automotive application as well as students and hobbyists

www.infineon.com/aurixlowcostarduinokits

AURIX™ TC275 Lite kit

- AURIX™ TC275 device in LQFP-176 package
- FTDI based debugger with micro USB
- Use of Arduino Uno/compatible platform

www.infineon.com/aurixlowcostarduinokits

AURIX™ TC375 Lite kit

- AURIX™ TC375 device in LQFP-176 package
- Ethernet PHY
- FTDI based debugger with micro USB
- Use of Arduino Uno/compatible platform

www.infineon.com/aurixlowcostarduinokits

Discover our AURIX™ kits platform for more starter and application kits

www.infineon.com/aurixkits

Infineon application kits – 32-bit microcontrollers

24 GHZ Radar

Based on the Infineon AURIX™ and MMIC BGT24A families

- BGT24A transceiver MMIC family, e.g. BGTA24ATR12,
- 2-bit radar microcontroller family, e.g. SAK-TC264DA- 40F200
- FFT acceleration engine and extended memory for radar image storage
- Ethernet as measurement interface

www.infineon.com/aurixapplicationkits

60 GHZ Radar

XENSIV™ BGT60ATR24C

- + AURIX™ TC356TA
- + OPTIREG™ TLS4120D0EPV33/TLS715B0EJV50
- Modular architecture
- Automotive qualified components
- Virtual array processing (TDM MIMO)
- Ultra-wideband operation of 4 GHz
- Optimized performance versus power with SPU

www.infineon.com/aurixapplicationkits

Motor control

Order number: KIT_AURIX_TC234_MOTORCTR

- TC234 application kit with TFT display incl. safety supply TLF35584
- Driving of a 3-phase PMSM/BLCD (12 V/max. 50 W)
- BLDC motor from Nanotec integrated
- Software available with flexible configuration

www.infineon.com/aurixapplicationkits

Motor control board AURIX™ TC387

Order number: KIT_AURIX_TC234_MOTORCTR

- TC387 Application Kit with TFT Display incl. safety supply TLF35584
- eMotor Power board: 3-phase motor control power board with TLE9180D-31QK 3-phase gate driver IC, MOSFET power stage, and auxiliary components
- Commands and monitoring via TFT touch screen
- Field oriented control (FOC) algorithm using 3-phase current sensing (EVADC) encoder as position sensor (GPT12) and AURIX™ GTM as PWM generator

www.infineon.com/aurixapplicationkits



Infineon application kits – 32-bit microcontrollers

Wireless charging: the beast 1.0

- WPC Qi v1.2.4 certified
- Support fast charging enabled devices (7.5W and 9W)
- AUTOSAR support
- Improved accuracy Foreign Object Detection (FOD)

www.infineon.com/aurixapplicationkits

Wireless charging: the beast 2.0

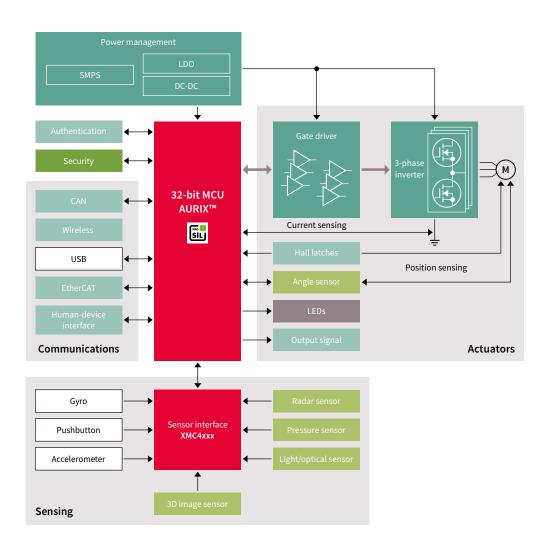
- Beast 2.0 is powered by the high-performance
 Infineon AURIX™ or Traveo™ II
- Latest WPC Qi functionality
- Supports 15W charging for Qi-certified devices
- Improved accuracy Foreign Object Detection (FOD)
- Supports future products and standards with field-upgradeable Pantheon™ software

www.infineon.com/aurixapplicationkits

Industrial robotics

Application example

Application features


- High computing performance
- High level of accuracy, integration and efficiency
- Safety management in line with current norms
- Various topologies for axis, joints and motors
- Security features that protect intellectual property from counterfeiting

Suggested products

- TC23x
 TC38x
 TC39x
 TC36x
 XMC4xxx
- TC37x

System benefits

- High computing performance: up to 6x 300 MHz
- High flexibility thanks to tailored peripherals
- Integrated safety support (EN ISO 10218 and ISO/TS15066)
- Integrated security with hardware security module
- Robust 3 V-, 5 V-, LVDS PortPins
- Large portfolio with long-term availability

500-950 V MOSFETs

Gate-driver ICs

Microcontroller PDH partner

Preferred Design Houses (PDH) and software resellers -AURIX™ Traveo and PSoC™, AURIX™ tools and software

AURIX™ Tools and Software

To enable customers to achieve optimal performance when using the powerful AURIX™ architecture, Infineon has built a network of strong partnerships with companies highly specialized in multicore software development. Infineon's multicore partners can offer the best multicore expertise and tools on the market for each stage of the software design process, covering everything from the initial multicore knowledge acquisition phase right up to final optimization of the multicore software.

AURIX™ Embedded Software

- AURIX[™] Applications software
- Autosar
- Non-Autosar OS/RTOS
- Middleware
- Communication and connectivity
- Bootloader/OTA
- Safety

AURIX™ Tools

- AURIX™ Free Tools
- Calibration/Measurement/Prototyping
- Compilers
- Debugger, Test Tools
- Flash Tools
- Simulation/Modelling
- SW Automation/Autocoding

Discover our new AURIX™ Tools and Software ecosystems where you can find everything you need within easy reach www.infineon.com/aurixtools and www.infineon.com/aurixsoftware

Classic (Free of charge)

- 1st level customer support covering
 Infineon products/solutions
- Technical interface and support to the customer
- Driving design at customer
- Basic training for design teams at customer
- 24 h response time to the customer

Premium

(Consultancy mode)

To be agreed between customers and PDH

- Project management and projectspecific application support
- Specification of general software architecture, defining required layers, control and data flow structure etc.
- Specification and implementation of custom device drivers
- Optimization of software components with regard to speed/code size

- Software testing
- Support for project-specific functional safety engineering
- Project-specific support for security solution
- Safety support
- Security support
- Multicore support

Preferred Design Houses (PDH)

The preferred design house extends the support force by specifying and customizing the know-how. Furthermore, it brings an additional value for customer service. The preferred design house supports the set up for systems using AURIX™ and XMC™, including software and other Infineon products. Our partners are trained to use AURIX™ and XMC™.

(infineon	G	LOBAL											-	EMEA													AM	IERICAS	5		CHINA		KOF	REA	
Preferred Partner	Crevavi	S FROBAS	hitex	Celiniochips	Autogramma	AVL 💥	Dinewind	MOTEON	Embedded Office	GRINN	М НІСНТЕС	Intecs	-Not	Jei	PiNTeam	MIXED	GROUP	ULMA	MigroFuzzy	INTEGRA	(4) SSt	MecTronik	⊕ OLVIA	TBS	Estrategy Strategy	10	D3 Engineering	MOTEON	NEUTRON	EWD	G-PULSE	TECHREIN		* FESCARO	Кеиптесн
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+
Autosar	•		•	•		•	•		•	•	•	•		•	•		•	•	•	•	•	•	•			•	•		•	0	•	•	•	•	•
Motor Control	•	0	•	•	•	•	•	•		•		•		•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
MOTIX™ MCU general support HW&SW			•				•	•																	•			•			•	•			
Lighting	•	•	•	•		•	•			•				•	•		•	•	•	•	•	•	•			•	•		•	•	•	•	•	•	•
PFC Power conversion	•	•	•	•		•	•			•				•	•		•	•	•	•	•	•	•			0	•		•	•	•	•	•	•	•
AURIX™ general support HW	•	•	•	•	•	•	•		•		•	•	•	•	•		•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•
AURIX™general support SW	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•
Safety Support IEC61508	•		•	•		•	•		•		•	•		•	•		•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•
Safety Support ISO26262	•		•	•		•	•		•		•	•		•	•		•	•	•	•	•	•	•	•		•	•		0	•	•	•	•	•	•
Security support /SHE+	•		•	•		•	•		•	•	•			•	•	•	•	•	•	•	•	•	•			•	0		•	•	•	•	•	•	•
XMC™ general support HW	•	•	•	•			•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
XMC™ general support SW	•	•	•	•			•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
Class B classification	0		•	•		•	•		•		•				•		•	•	•	•		•	•			•	0			•	•	•	•	•	•
Capacitive sensing with XMC	•		0	•			•			•					•		•	•		•	•	•	•			•	•		•	•	•	•	•	•	•
Secure boot for XMC™	•		•	•			•		•	•					•	•	•	•	•	•		•	•	•		•	•		•	•	•	•	•	•	•
24 GHz radar				0									•						•	•			•			•					•	•	•	•	•
77 GHz radar				•									•						•	•			•			•					•	•	•	•	•
Brochure	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
Email	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
Phone	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•

Basic

Essential principles and elementary know-how to support a customer; provision of basic training for design teams

Advanced

High-level project-specific application support/consulting

Expert

Extensive knowledge and ability to fully support development

TRAVEO™ II portfolio

Thanks to its special features the Traveo™ II family is the perfect match for industrial applications. With processing power and network connectivity built into a single Arm® Cortex®- M4F and dual Cortex®- M7F, the Traveo™ II family comes up with an enhanced performance up to 1500 DMIPS and a high-performance CPU operating up to 350 MHz.

Product type	Supply Voltage [V]	Main Core frequency [MHz]	Flash (Code + Work) [kB]	SRAM [kB]	GPIO	ADC Channels	CAN/CAN FD Channels	Ethernet 100/1000 Mbit	SCB Channel	CXPI Channel	SMIF (SPI/HyperBus)	LIN Channel	PS Channel	eMMC Channels	HSM	Temperature ranges	Packages	SIL Level
							VEO™ T	2G CYT2	B7 seri	es								
CYT2B75CADQ0AZEGS	2,7 to 5,5	160	1088 + 96	128	78	39	6	no	8	0	-	7	-	0	Yes	E	100-LQFP	ASIL-B
CYT2B78CADQ0AZEGS	2,7 to 5,5	160	1088 + 96	128	152	64	6	no	8	0	-	8	-	0	Yes	E	176-LQFP	ASIL-B
TRAVEO™ T2G CYT2B9 series																		
CYT2B95CACQ0AZEGS	2,7 to 5,5	160	2112 + 128	256	78	39	8	no	8	4	-	9	-	0	Yes	Ε	100-LQFP	ASIL-B
CYT2B98CACQ0AZEGS	2,7 to 5,5	160	2112 + 128	256	152	64	8	no	8	4	-	12	-	0	Yes	Е	176-LQFP	ASIL-B
						TRA	VEO™ T	2G CYT	4BF ser	ies								
CYT3BB8CEBQ0AESGS	2,7 to 5,5	250	4160 + 256	768	148	64	8	1	10	0	1	16	TX 3ch, RX 3ch (3 instances)	1	Yes	S	176-TEQFP	ASIL-B
CYT3BBBCEB- Q0BZEGS	2,7 to 5,5	250	4160 + 256	768	220	72	8	1	11	0	1	16	TX 3ch, RX 3ch (3 instances)	1	Yes	E	272-BGA	ASIL-B
						TRA	VEO™ T	2G CYT	4BF ser	ies								
CYT4BF8CEDQ0AEEGS	2,7 to 5,5	350	8384 + 256	1024	148	81	10	1	10	0	1	17	TX 3ch, RX 2ch (3 instances)	1	Yes	Ε	176-TEQFP	ASIL-B
CYT4BFCCJDQ0BZEGS	2,7 to 5,5	350	8384 + 256	1024	240	86	10	2	11	0	1	20	TX 3ch, RX 2ch (3 instances)	1	Yes	E	320-BGA	ASIL-B

TRAVEO™ II kits

CYTVII-B-E-BB

- The CYTVII-B-E-BB is a generic base board that can be connected to compatible Traveo™ II entry or high-end evaluation boards so as to extend its functionality
- Connects to most CYTVII-B-E-xxx and CYTVII-B-H-xxx evaluation boards www.infineon.com/cms/en/product/evaluation-boards/cytvii-b-e-bb

CYTVII-B-E-176-SO

- The CYTVII-B-E-176-SO evaluation board is based on the Traveo™ II entry family of devices.
- Traveo™ II is CYT2B78CADES

www.infineon.com/cms/en/product/evaluation-boards/cytvii-b-e-176-so

CYTVII-B-E-1M-SK

- The CYTVII-B-E-1M-SK is a low-cost easy to use evaluation board based on the Traveo™ II entry family of devices.
- Traveo™ II CYT2B75CADES MCU
- Designed in an Arduino form factor so that users can connect many off-the-shelf Arduino shields to it, to expand its functionality

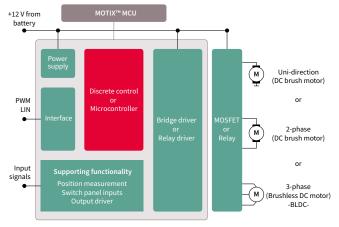
CYTVII-B-H-8M-320-CPU

- The CYTVII-B-H-8M-320-CPU evaluation board is based on the Traveo™ II
 high-end family of devices.
- Traveo™ II CYT4BFCCHCES MCU
- Audio, Ethernet, SD Card, SMIF

www.infineon.com/cms/en/product/evaluation-boards/cytvii-b-h-8m-320-cpu

MOTIX™ MCU – Embedded Power ICs

System-on-chip solution for motor control applications


Infineon's MOTIX™ Embedded Power ICs include a 32-bit Arm® Cortex®-M microcontroller, a voltage regulator, the communication interfaces, along with the driving stages for motor control applications. These system-on-chip solutions offer an unmatched level of integration of all functions required to sense, control and actuate a motor. They save space and energy, improve the overall system reliability through advanced diagnosis features and reduce the overall cost due to a minimum number of external components. They perfectly fit with a range of motor control applications where a small package form factor and a minimum number of external components are essential.

Criteria	TLE984x	TLE9845	TLE9850/1	TLE985x	TLE986x	TLE987x		
Controller		Arm® Co	rtex®-M0		Arm [®] Co	rtex®-M3		
Core frequency	25-40 MHz		40 MHz	24-40 MHz				
Flash size	36 KB – 64 KB	48 KB	48/64 KB	48 KB – 96 KB	36 KB – 256 KB			
- · ·	Relay	Half-b	oridge	H-b	ridge	B6-bridge		
Driver stage	Relay	PN FET half-bridge	NN FET half-bridge	N FET I	1-bridge	N FET B6-bridge		
HV monitor inputs	4-5	5		4	0	0-1		
Junction temperature levels	150°C	150°C	150°C and 175°C	150°C and 175°C	150°C and 175°C			
Packages	VQFN	-48-31	VQFN-48-31 VQFN-48-29	VQFN-48-31 VQFN-48-29	VQFN-48-29 and VQFN-48-31 TQFP-48-10			

Features and benefits

Key features Extensive diagnostics and protections embedded within the system-on-chip - Minimum number of external components needed - Platform based approach with compatible software between the product families - Data processing, actuation and sensing integrated into the product with 32-bit Arm® Cortex®-M - Compact package with 7x7 mm footprint (VQFN-48/TQFP-48) - Intelligent power saving modes including stop and sleep mode and energy management for external sensors (on demand)

Customer benefits High levels of system reliability Reduced cost Support multiple and flexible designs with minimal effort Space saving Energy saving

- > MOTIX™ Embedded Power ICs enable mechatronic motor control solutions for either relay, half-bridge or full-bridge DC and BLDC motor applications
- > They are supported by a complete development tool chain provided by Infineon and third party vendors. The tool chain includes compilers, debuggers, evaluation boards, LIN low level drivers and configuration tools as well as variety of example software code.

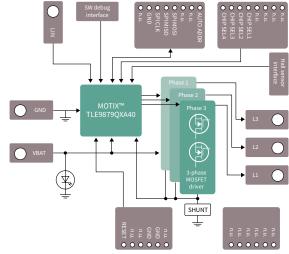
Power

BLDC Motor Control Shield for Arduino

3-phase motor control shield with MOTIX™ TLE9879QXA40

The BLDC Shield for Arduino uses TLE9879QXA40, which is a part of the MOTIX™ TLE987x family of the Infineon MOTIX™ MCU portfolio. It enables the shield to drive 3-phase BLDC motors with a variety of different features. One Arduino base board can control up to four BLDC shields via SPI. The BLDC Shield firmware provides an auto-addressing functionality. Every shield in the stack can be controlled independently and run completely different motor control algorithms if desired.

The shield implements three different advanced motor control algorithms:


- > Sensorless field-oriented control (FOC),
- Block commutation with back EMF (BEMF)
- Hall based block commutation (HALL)

The firmware can be changed using the SWD Interface Additional connectors for voltage supply, motor-phases and hall sensors speed up the evaluation.

Features and benefits

Kev features

- Implemented motor control algorithms (FOC, BEMF, Hall)
- Controlled over Arduino via SPI
- Compatible with the Arduino Uno or the Infineon XMC™ baseboard
- Up to four shields can be used simultaneously
- Each shield can be controlled independently
- Motor parameters can be set for each shield individually

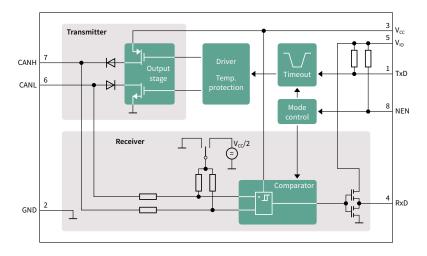
Customer benefits

- Easy to use API, allowing the user to quickly setup an application
- High performance BLDC motor control in form of the TLE987x chip

Our BLDC Shield for Arduino comes with a library which includes a collection of code that makes it easy for you to run your project. The Arduino library offers an intuitive API to quickly setup and configure an application.

CAN-FD transceivers

High- and low-speed CAN-FD Transceivers for automotive and many other applications


Recently the automotive industry newly established the CAN-FD (Flexible Data-rate) protocol for faster CAN communication up to 5Mbit/s and CAN PN (Partial Networking) for improved energy efficiency.

Dependent on the respective network architecture and the related ECU supply path, different transceiver types are used. Infineon transceivers ensure reliable communication and help minimizing the current consumption. The products provide the best value by its high performance, ruggedness and reliability.

Features and benefits

Key features	Key benefits
 Transmission rates up to 5 Mbit/s ISO11898 compliant 	– Low current consumption
 Low-power modes 	
- Receive-only mode	– Excellent EMI performance & robustness
- Standby/sleep mode	
– Bus wake up	 Pin-to-pin replacements for industry-standard parts
- Thermal protection	
- CAN FD compliance	

Block diagram TLE9250V

PG-DSO-8-65	PG-TSON-8-1
TLE9250SJ_GRN	TLE9250LE_GRN
TLE9250VSJ_GRN	TLE9250VLE_GRN
TLE9250XSJ_GRN	TLE9250XLE_GRN
TLE9251SJ_GRN	TLE9251LE_GRN
TLE9251VSJ_GRN	TLE9251VLE_GRN
	TLE9251VLE

Infineon support for industrial microcontrollers

One platform, countless solutions

Further information, datasheets and documents

www.infineon.com/xmc www.infineon.com/xmc1000 www.infineon.com/xmc4000 www.infineon.com/aurix www.infineon.com/makers

XMC SC Wireless power controller:

www.infineon.com/xmcscwirelesspowercontrollers

XMC™ MCUs ecosystem and enablement kits, board, tools and software

Boards and kits:

www.infineon.com/xmc-dev www.infineon.com/connectivitykit www.infineon.com/ethercat

Ecosystem and tools:

www.infineon.com/xmc-ecosystem

DAVE™ IDE:

www.infineon.com/dave

USB-C controllers and peripherals

- Moving to USB-C with EZ-PD™ family
 - USB-C charging port controllers
 - USB-C high voltage microcontrollers
- USB-C power delivery controllers
 - EZ-PD™ CCG8 USB-C PD controller
 - EZ-PD™ CMG2 USB-C EMCA controller
- USB-C AC-DC and DC-DC charging solutions
 - EZ-PD™ CCG7DC USB-C PD and DC-DC controller
 - EZ-PD™ PAG1 USB-C PD and DC-DC controller

- Peripheral controllers for USB 5Gbps
 - EZ-USB™ CX3 MIPI CSI-2 to USB 5Gbps camera controllers
- EZ-USB™ FX3 USB 5Gbps peripheral controllers
- EZ-USB™ SX3 FIFO to USB 5Gbps controllers
- USB 2.0 peripheral controllers
 - EZ-USB™ serial bridge controller
- USB hub and USB Type-C port controllers
 - EZ-USB™ HX3
 - EZ-USB™ HX2LP and HX2VL
 - EZ-USB™ HX3PD

Digital isolators

Moving to USB-C with EZ-PD™ family

A wide portfolio for your easy transition to the new universal connector

More and more products in consumer, industrial, and communications segments are adopting USB-C ports to source power. Infineon offers dedicated solutions to integrate USB-C ports into customers' embedded applications. Typical use cases include smart speakers, cameras, headphones, game consoles, power tools, VR headsets, and other portable electronics and home appliances. As the leader in USB-C end-to-end solutions, Infineon also provides a comprehensive portfolio of solutions for USB-C chargers and power adapters.

System approach:

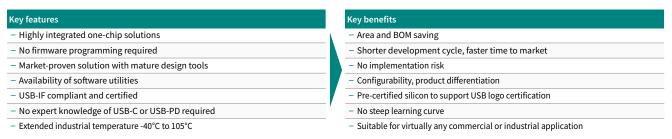
- Market-proven USB-C power delivery stack (USB-C PD)
- Complete and easy-to-use design portfolio to build robust, efficient and cost-effective system solutions
- Robust evaluation kits for quick prototyping

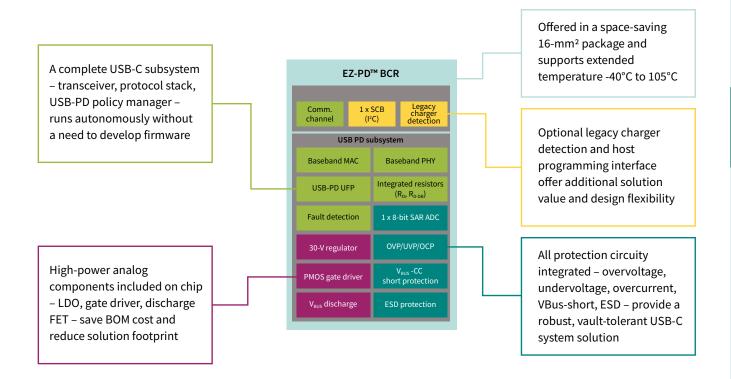
The EZ-PD™ portfolio includes two different families of solutions to help you easily integrate USB-C into your embedded application: EZ-PD™ PMG1 (Power Delivery Microcontroller Gen 1) and EZ-PD™ BCR (Barrel Connector Replacement).

Are you looking for a plug-and-play solution to replace an old barrel connector or legacy
USB connector with USB-C?

Or do you need additional control and want to add some extra functions to your device with a USB-C port controller + MCU in a single-chip solution?

Digital isolators


EZ-PD™ BCR: the easiest solution for moving to USB-C


EZ-PD™ BCR is a highly-integrated pre-programmed USB Type-C charging port controller targeting all electronic devices with legacy barrel connectors up to 100 W or USB micro-B connectors. It easily adds USB-C power consumer capability to a device, allowing it to be powered by any USB-C power source including USB-C chargers, power adapters, power banks, and in-wall or in-car charging ports.

EZ-PD™ BCR is compliant with the latest USB Type-C and USB power delivery standards, it allows designers to quickly convert their devices' power input from a barrel connector to a USB-C connector without invasive changes to their existing designs. It contains a market-proven, fully-automated USB power delivery policy manager that interoperates with virtually any USB-C power source. To safeguard against system-level fault conditions, EZ-PD BCR™ controllers integrate various protection circuitries including VBus-to-CC short, overvoltage, overcurrent and ESD.

No expert knowledge of the USB-C and power delivery standards or firmware development is required to develop a robust USB-C powered system with EZ-PD™ BCR.

Features and benefits

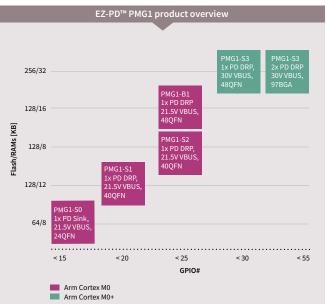
The wide portfolio offers different combinations of flash/RAMs sizes and features to address all possible needs:

Features		EZ-PD™ BCR family	
Product name	EZ-PD™ BCR-Plus	EZ-PD™ BCR	EZ-PD™ BCR-Lite
Part number	CYPD3176-24LQXQ CYPD3176-24LQXQT	CYPD3177-24LQXQ CYPD3177-24LQXQT	CYPD3178-24LQXQ CYPD3178-24LQXQT
USB PD role	UFP (power sink)	UFP (power sink)	_
Programmable power supply (PPS)	✓	-	_
USB Type-C charging (5V @ 0.5 A, 0.9 A, 1.5 A, 3 A)	✓	✓	✓
Legacy charging support (BC 1.2 and others)	✓	-	✓
USB data compatible	✓	✓	✓
VBUS gate driver	PFET	PFET	PFET
Supply voltage	3.0 V – 24.5 V	3.0 V – 24.5 V	3.0 V – 24.5 V
VBUS to CC short protection (20 V)	✓	✓	✓
OVP/UVP	✓	✓	✓
OCP	✓	-	_
ESD protection on CC, D+/D-, ±8 kV (contact), ±15 kV (air)	✓	✓	✓
I ² C Interface	1	1	1
EZ-PD BCR HPI utility	✓	✓	✓
EZ-PD configuration utility	✓	-	-

Boards

Once the preferred characteristics are identified, it is possible to get started with the product of choice by utilizing the available evaluation kits: they provide a USB Type-C receptacle to consume power from a charger and then supply it over a terminal block. A barrel connector can be attached to this block using wires to convert a barrel input to USB-C. In addition, selective GPIOs and I²C interface are available on headers to easily control or monitor the BCR chip from an external microcontroller.

EZ-PD™ BCR-Lite	EZ-PD™ BCR	EZ-PD™ BCR-Plus
EVK CY4535	EVK CY4533	EVK CY4534
Infine on Carlot	C7 4533 808 FRV2 800-80338-01 FRV2 01-85	Infineon State of the state of


USB-C high voltage microcontrollers

EZ-PD™ PMG1: the single-chip solution for moving to USB-C

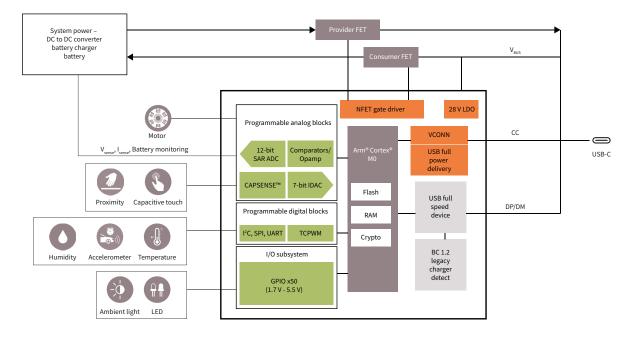
Power Delivery Microcontroller Gen 1 (EZ-PD™ PMG1) is a high-voltage USB-C power delivery microcontroller (PD MCU) targeted to any embedded system that provides/consumes power to/from a high-voltage USB-C PD port and leverages the microcontroller to provide additional control capability.

The EZ-PD™ PMG1 family of devices has a market-proven USB power delivery stack, ensuring spec compliance and interoperability. It's the only high-voltage, programmable USB power delivery solution on the market today, and comes with an integrated ARM® Cortex®-M0/M0+, up to 256 kB flash and 32 kB RAM, a USB full-speed device, and analog and digital peripherals. With an SDK supported in ModusToolbox™, EZ-PD™ PMG1 family provides customers with a unified firmware view, facilitating seamless migration between all EZ-PD™ PMG1 devices.

The wide portfolio offers different combinations of flash/RAMs sizes and features to address all possible needs:

Features > USB, Crypto, LDO NFET Gate Drivers. CAPSENSE™. 12-bit ADC. SCB, TCPWM Buck Boost, LDO, **NFET Gate Drivers** 12-bit ADC, SCB, TCPWM > USB, Crypto, LDO NFET Gate Drivers, 8-bit ADC, SCB, TCPWM) LDO, PFET Gate Drivers. 8-bit ADC, SCB, TCPWM PFET Gate Drivers, 8-bit ADC, SCB1, TCPWM2 SCB stands for Serial Communication Block TCPWM stands for Timer Counter Pulse Width Modulato

Features and benefits


Key features
– Highly-integrated single-chip solution, included high-voltage protection
- Configuration utility and wide support material available
– Market-proven solution with mature design tools
- Integrated flash/MCU
– USB-IF compliant and certified
 Extended industrial temperature -40°C to 105°C

Key benefits
– Area and BOM saving
- Faster time to market
– No implementation risk
- Programmability, product differentiation
- Interoperability
- Suitable for virtually any commercial or industrial application

Solutions

Digital isolators

Block diagram

Product portfolio

Part number	Product name	СРИ	Flash [kB]	GPI- Os	I/O Pins	Operating temperature range [°C]	Operating voltage min	Operating voltage max [V]	Serial com- munication blocks	Termination resistor	Type-C ports
CYPM1011-24LQXI	PMG1-S0	Arm [®] Cortex [®] -M0	64	12	12	-40 to 85	2,7	5,5	2	Rd, Rd-db	1
CYPM1011-24LQXIT	PMG1-S0	Arm® Cortex®-M0	64	12	12	-40 to 85	2,7	5,5	2	Rd, Rd-db	1
CYPM1111-40LQXI	PMG1-S1	Arm® Cortex®-M0	128	17	17	-40 to 85	2,7	5,5	4	Rp,Rd, Rd-db	1
CYPM1111-40LQXIT	PMG1-S1	Arm® Cortex®-M0	128	17	17	-40 to 85	2,7	5,5	4	Rp,Rd, Rd-db	1
CYPM1115-48LQXI	PMG1-B1	Arm® Cortex® -M0	128	21	21	-40 to 105	4	24	3	Rp, Rd	1
CYPM1115-48LQXIT	PMG1-B1	Arm® Cortex® -M0	128	21	21	-40 to 105	4	24	3	Rp, Rd	1
CYPM1116-48LQXI	PMG1-B1	Arm® Cortex® -M0	128	21	21	-40 to 105	4	24	3	Rp, Rd, Rd-db	1
CYPM1116-48LQXIT	PMG1-B1	Arm® Cortex® -M0	128	21	21	-40 to 105	4	24	3	Rp, Rd, Rd-db	1
CYPM1211-40LQXI	PMG1-S2	Arm® Cortex®-M0	128	20	20	-40 to 85	2,7	5,5	4	Rp,Rd, Rd-db	1
CYPM1211-40LQXIT	PMG1-S2	Arm® Cortex®-M0	128	20	20	-40 to 85	2,7	5,5	4	Rp,Rd, Rd-db	1
CYPM1211-42FNXI	PMG1-S2	Arm® Cortex®-M0	128	20	20	-40 to 85	2,7	5,5	4	Rp, Rd	1
CYPM1211-42FNXIT	PMG1-S2	Arm® Cortex®-M0	128	20	20	-40 to 85	2,7	5,5	4	Rp, Rd	1
CYPM1311-48LDXI	PMG1-S3	Arm® Cortex®-M0+	256	26	26	-40 to 85	2,7	5,5	7	Rp,Rd, Rd-db	1
CYPM1311-48LDXIT	PMG1-S3	Arm® Cortex®-M0+	256	26	26	-40 to 85	2,7	5,5	7	Rp,Rd, Rd-db	1
CYPM1321-97BZXI	PMG1-S3	Arm® Cortex® -M0+	256	50	50	-40 to 85	4	30	8	Rp, Rd, Rd-db	2
CYPM1321-97BZXIT	PMG1-S3	Arm® Cortex® -M0+	256	50	50	-40 to 85	4	30	8	Rp, Rd, Rd-db	2
CYPM1322-97BZXI	PMG1-S3	Arm® Cortex®-M0+	256	50	50	-40 to 85	2,7	5,5	8	Rp,Rd, Rd-db	2
CYPM1322-97BZXIT	PMG1-S3	Arm® Cortex®-M0+	256	50	50	-40 to 85	2,7	5,5	8	Rp,Rd, Rd-db	2

Boards

Once the preferred characteristics are identified, it is possible to get started with the product of choice by utilizing the available evaluation kits: they provide a USB Type-C receptacle to consume power from a charger and then supply it over a terminal block. A barrel connector can be attached to this block using wires to convert a barrel input to USB-C. In addition, all the GPIOs and serial interfaces (UART, I²C, SPI) are available on connectors to easily integrate external sensors and test the microcontroller functions.

EZ-PD™ PMG1-S1 CY7111 EVK	EZ-PD™ PMG1-S2 CY7112 EVK	EZ-PD™ PMG1-S3 CY7113 EVK	EZ-PD™ PMG1-B1 EVAL_PMG1_B1_DRP
	No.		

USB-C power delivery controllers

Leading the industry with over one billion USB-C devices shipped

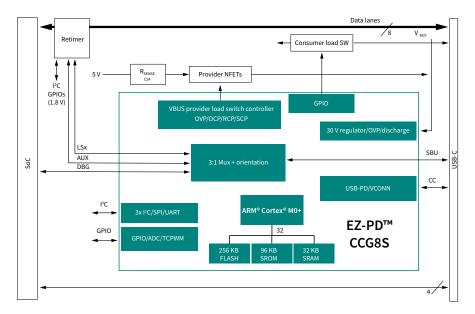
USB-C is the universal connector of choice and has gained rapid industry support thanks to its flexibility to transmit multiple data protocols such as USB4, Thunderbolt, HDMI, and simultaneously provide up to 240 Watts of power via USB PD, the possibility to enable slim industrial designs and its easy-to-use connectors and cables. Its adoption also has a significant impact on the environment, dramatically reducing the e-waste produced by the more than one million tons of proprietary chargers that get shipped every year. Infineon's EZ-PD™ portfolio is the industry's most complete portfolio of USB-C power delivery solutions, enabling more robust end-to-end power delivery and charging solutions for laptop and mobile devices. USB-C power delivery standard supports fast charging up to 240 watts, USB4 data speeds and DisplayPort connectivity over an industry-standard USB-C connector for transmitting both data and power on a single cable.

Infine on also offers AEC-Q100 certified versions of its controllers for automotive-grade performance. As the leader in USB-C end-to-end solutions, Infine on also provides a comprehensive portfolio of solutions for USB-C adapters and chargers.

Features and benefits

Key features	
– Supports latest USB-C power delivery protocols	
- Offers programmable USB-C PD solution	
– Offers firmware upgradability with in-built flash	
- Support secure firmware update with hardware crypto	
- Integrates high-voltage circuits	
- Integrates VBUS fault protections	
- Offered in QFN, BGA and WLCSP packages	

Key benefits
- Interoperability
– Easy customization using software development kit (SDK)
– Easy integration into your application
- Programmability for higher flexibility and shorter time to market
- Highly integrated dual/single port USB-C PD controllers for optimized are and BOM


Power source	Power source (auto)	Cable	Dock	Notebook/PC	Broad market electronics
USB-PD controllers:	EZ-PD™ CCG3PA USB-C PD	EZ-PD™ CCG2 USB-C port	EZ-PD™ CCG3 USB-C PD	EZ-PD™ ACG1F Dual-single	Move to USB-C:
EZ-PD™ CCG3PA	controller	controller	port controller	port USB-C PD	EZ-PD™ BCR
EZ-PD™ CCG3PA-NFET	EZ-PD™ CCG7D Dual-port	(active cable)			EZ-PD™ PMG1
	USB-C PD + DCDC cont-		EZ-PD™ CCG4 Two-port	EZ-PD™ CCG5 Two-port	
USB-PD + DC-DC	roller	EZ-PD™ CMG1 USB-C EMCA	USB-C & PD	USB-C & PD	Wireless charging:
controllers:	EZ-PD™ CCG7S Single-	controller			WLCx
EZ-PD™ CCG7DC	port USB-C PD + DCDC	EZ-PD™ CMG2 USB-C EMCA		EZ-PD™ CCG5C One-port	
EZ-PD™ CCG7SC	controller	controller with EPR	USB-C PD	USB-C PD	
		(passive cable)			
	Wireless charging:		EZ-PD™ CCG5C One-port	EZ-PD™ CCG6DF Dual-port	
controllers:	WLC1515		USB-C PD	USB-C PD	
EZ-PD™ PAG1			57.110DTH.11V0DD 40.01	57 DD74 000 005 0: 1	
EZ-PD™ PAG2			EZ-USB™ HX3PD 10 Gbps	EZ-PD™ CCG6SF Single-	
(coming soon)			hub controller with USB	port USB-C PD	
			PD	E7 DDIM CCC9 Dural single	
			EZ-PD™ PMG1-S3	EZ-PD™ CCG8 Dual-single	
			EZ-PD PMG1-53	port controller	

EZ-PD™ CCG8 – USB-C controller

USB-C power delivery solution for PC host with EPR

EZ-PD™ CCG8 is the first in the industry dual/single-port USB Type-C controller complying with the latest USB-C and power delivery (PD) specifications that offers a complete USB-C and PD port control solution for PCs and notebooks. It integrates a discrete N-channel field effect transistor (NFET) gate driver with fault protection and slew rate, a 32-bit 48 MHz Arm® Cortex®-M0 Plus processor and a complete Type-C transceiver including termination resistors Rp, Rd, and dead battery Rd. While EZ-PD™ CCG8D (dual port) is available in a 97-BGA package, EZ-PD™ CCG8S (single port) is only available in a 48-pin QFN package. Both can be requested in tray or tape and reel packing options, and support extended power range (EPR) up to 28 V without needing external components.

Block diagram

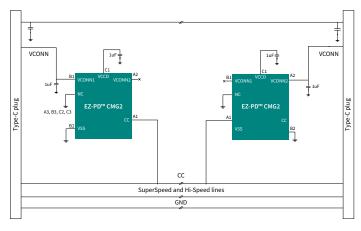
Features and benefits

Key features

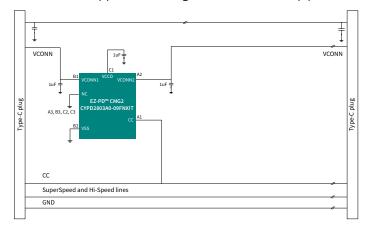
- USB-C and PD 3.1 with EPR up to 28 V supporting USB3 and USB4,
 Thunderbolt, display port alternate mode platforms
- 32-bit, 48 MHz Arm® Cortex®-M0+ processor
- Integrates a complete Type-C transceiver and a load switch controller for driving NFETs on VBus provider path
- Slew rate controller to turn on the VBUS provider path
- Configurable hardware-controlled VBus overvoltage, undervoltage, overcurrent, short circuit, reverse current protection, and thermal shutdown
- Integrated 3:1 SBU Muxes for alternate modes and closed chassis debug
- Integrated digital and analog blocks

Key benefits

- Reduced area and BOM thanks to the high degree of integration
- Ideal for EPR-based DRP solutions
- Programmable solution which allows the implementation of custom features


EZ-PD™ CMG2 – USB-C EMCA controller

EMCA controller with VBUS to CC short protection for passive USB-C cables


EZ-PD™ CMG2 is Infineon's dedicated electronically marked cable assembly (EMCA) controller targeting passive non-Thunderbolt and Thunderbolt Type-C cables. It offers integrated VBus-CC short protection up to 54 V, VBus-VCONN short protection up to 54 V, power delivery 3.1, Type-C 2.1, and ESD protection, all these in a compact 9-ball WLCSP package. EZ-PD™ CMG2 has a 47-byte storage space for vendor- and cable-specific configuration data and is designed to operate from a 2.7 to 5.5 V VCONN supply range.

Block diagram

Passive EMCA application - Single EZ-PD™ CMG2 chip per plug:

Passive EMCA application - Single EZ-PD™ CMG2 chip per cable:

Features and benefits

Key features

- Supports USB PD 3.1 specification and USB Type-C specification version 2.1
- Supports USB4, TBT4 and extended power range (EPR)
- PD protocol
- Integrated high-voltage protection on CC, VCONN1, and VCONN2 pins to protect against accidental shorts to the VBus pin on the Type-C connector up to 54 V
- Integrated 47 bytes for storing vendor- and cable-specific configuration data termination resistor RA on VCONN1 and VCONN2
- IEC ESD protection on VCONN and CC
- Package: 9-ball WLCSP

Key benefit

- No programming required
- Easy to use, faster design cycle
- Robust solution with short protection up to 54 V

The one-stop shop for charger and adapter designs

Infineon offers a one-stop shop for a wide variety of USB PD AC-DC and DC-DC conversion solutions for charger adapters from 18 W to 140 W. The portfolio includes a scalable PD controller architecture to support both single-port and multi-port charger configurations. Our reference designs allow the quick and easy development of prototypes, meaning customers can benefit from new, fast-charging adapter technology while reducing development costs and time to market. Moreover, the high degree of programmability and the ability to support custom protocols and updates enables a high degree of flexibility for customers. With decades of experience in the electronics industry, Infineon drives the trend of adapter miniaturization without compromising product efficiency and performance.

As the leader in USB-C end-to-end solutions, Infineon also provides a comprehensive portfolio of solutions for USB-C adapters and chargers.

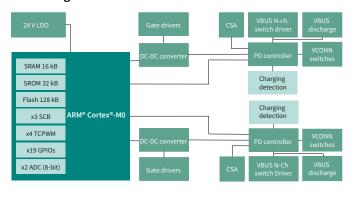
Product	Category	Product family	CPU	Flash [kB]	SRAM [kB]	GPIOs	Serial com- munication blocks	#Type-C ports	Operating temperature range [°C]
CYPAP111A3-10SXQ	Primary PWM startup controller	PAG1P	N/A	N/A	N/A	0	N/A	N/A	-40 to 105
CYPAP111A3-10SXQT	Primary PWM startup controller	PAG1P	N/A	N/A	N/A	0	N/A	N/A	-40 to 105
CYPAP112A3-10SXQ	Primary PWM startup controller	PAG1P	N/A	N/A	N/A	0	N/A	N/A	-40 to 105
CYPAP112A3-10SXQT	Primary PWM startup controller	PAG1P	N/A	N/A	N/A	0	N/A	N/A	-40 to 105
CYPAS111A1-24LQXQ	USB-PD + SR + PWM controller	PAG1S	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPAS111A1-24LQXQT	USB-PD + SR + PWM controller	PAG1S	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3184A1-24LQXQ	USB-PD + SR + PWM controller	PAG1S	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3184A1-24LQXQT	USB-PD + SR + PWM controller	PAG1S	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3135-32LQXQ	USB-PD controller	CCG3	Arm® Cortex®- M0	128	8	14	4	1	-40 to 105
CYPD3135-32LQXQT	USB-PD controller	CCG3	Arm® Cortex®- M0	128	8	14	4	1	-40 to 105
CYPD3135-40LQXI	USB-PD controller	CCG3	Arm® Cortex®- M0	128	8	20	4	1	-40 to 105
CYPD3135-40LQXIT	USB-PD controller	CCG3	Arm® Cortex®- M0	128	8	20	4	1	-40 to 105
CYPD3135-40LQXQ	USB-PD controller	CCG3	Arm® Cortex®- M0	128	8	20	4	1	-40 to 105
CYPD3135-40LQXQT	USB-PD controller	CCG3	Arm® Cortex®- M0	128	8	20	4	1	-40 to 105
CYPD3171-24LQXQ	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	12	2	1	-40 to 105
CYPD3171-24LQXQT	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	12	2	1	-40 to 105
CYPD3172-24LQXQ	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3172-24LQXQT	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3172P-24LQXQ	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3172P-24LQXQT	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3173-24LQXQ	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3173-24LQXQT	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3173P-24LQXQ	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3173P-24LQXQT	USB-PD controller	CCG3PA-NFET	Arm® Cortex®- M0	64	4	6	0	1	-40 to 105
CYPD3174-16SXQT	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	6	1	1	-40 to 105
CYPD3174-24LQXQ	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	12	2	1	-40 to 105
CYPD3174-24LQXQT	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	12	2	1	-40 to 105
CYPD3175-24LQXQ	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	12	2	1	-40 to 105
CYPD3175-24LQXQT	USB-PD controller	CCG3PA	Arm® Cortex®- M0	64	8	12	2	1	-40 to 105
CYPD7271-68LQXQ	USB-PD + DCDC controller	CCG7DC	Arm® Cortex®- M0	128	16	19	4	2	-40 to 105
CYPD7271-68LQXQT	USB-PD + DCDC controller	CCG7DC	Arm® Cortex®- M0	128	16	19	4	2	-40 to 105

EZ-PD™ CCG7DC – USB-C PD and DC-DC controller

Industry's first dual-port PD and DC-DC integrated controller

Infineon's EZ-PD™ CCG7DC is a highly integrated dual-port USB Type-C power delivery (PD) solution with built-in buck-boost controller; it is designed for multi-port consumer charging applications and complies with the most recent USB Type-C and PD specifications. With an on-chip 32-bit Arm® Cortex®-M0 processor, 128 kB flash, 16 kB RAM, and 32 kB ROM, EZ-PD™ CCG7DC is the most programmable USB-PD solution, leaving the majority of flash available for user application 's use. Custom system management features, like dynamic load sharing and temperature monitoring, can be implemented thanks to the inclusion of this fully programmable MCU with analog and digital peripherals. EZ-PD™ CCG7DC also integrates gate drivers for VBus NFET on the provider path and hardware-controlled protection features on the VBus. The high degree of integration provided by EZ-PD™ CCG7DC not only lowers the BOM, but also provides a footprint-optimized solution to support higher power density designs. A single-port USB-C PD and DC-DC controller is also available: EZ-PD™ CCG7SC.

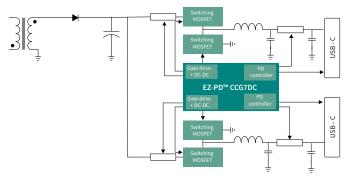
Features and benefits


Key features

- Two USB-C PD controllers + DC-DC controllers
- Supports latest USB-C PD 3.0 with PPS, QC4+, Samsung AFC, Apple 2.4 A, BCv1.2
- Arm® Cortex®-M0 with flash for custom features implementation
- Integrated VBus NFET gate drivers, buck-boost NFET gate drivers, VCONN FETs and high-side current sense amplifier (HSCSA)
- Protection features: OVP, UVP, SCP, OCP, OTP and VBus-CC short
- DC-DC controller: configurable switching frequency of 150 kHZ 600 kHZ, PSM/
 FCCM mode of operation, wide input voltage range of 4 24 V (40 V tolerant), and programmable spread spectrum frequency for low EMI
- Advanced features: dynamic load sharing, signed field firmware upgrade, and optimized buck input voltage for higher efficiency

Key benef

- Enables high power density designs by integrating two DC-DC controllers + two USB-C PD controllers in one single chip
 - Dynamic load sharing enables intelligent redistribution of power between two ports
 - Optimized buck input voltage using TL431 provides optimized efficiency for AC-DC designs
 - Supports USB-C PD3.0 with PPS and other legacy protocols including Apple 2. 4A, Samsung AFC, QC4.0, BC1.2 at no additional BOM cost


Block diagram

Application example

Two-port USB-C charger using EZ-PD™ CCG7DC

www.infineon.com/ez-pd-ccg7dc

EZ-PD™ PAG1 - USB-C PD, SR and PWM controller

USB-C PD charger and adapter complete solution

EZ-PD™ PAG1 is a complete AC-DC charger and adapter solution with integrated USB PD. It is a dual-chip solution with EZ-PD™ PAG1P and EZ-PD™ PAG1S in a secondary side controlled quasi-resonant (QR) flyback topology with ZVS. This highly integrated dual-chip power adapter solution includes SR, PD and PWM controller, all necessary protection circuitry, and FET drivers to drive the primary, SR - primary and VBus switch. This allows a reduced BOM and a better-optimized area. EZ-PD™ PAG1 solution is built with Arm® Cortex™-M0 and offers the flexibility to program the device as per the customer's needs, configure the parameters across multiple platforms as well as upgrade the firmware on the field.

EZ-PD™ PAG1P

The PAG1P is a primary start-up controller for AC-DC applications. It is designed to work with PAG1S in a secondary side-controlled AC-DC flyback converter topology where the voltage and current regulation is performed by PAG1S, and PAG1P provides the start-up function, drives the primary switch and responds to the fault condition. The PAG1P switch supports both x-cap and non x-cap discharge mode.

EZ-PD™ PAG1S

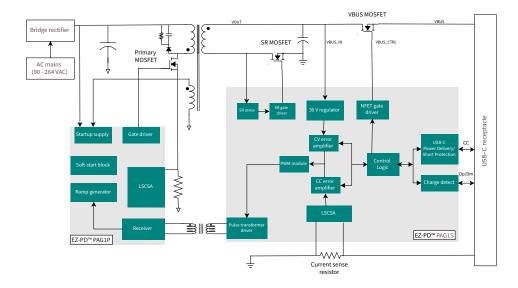
The PAG1S is a single-chip, secondary-side controller that integrates the synchronous rectification driver, PD controller, and PWM controller. The controller works as well secondary controlled flyback architecture by pairing with primary startup controller PAG1P.

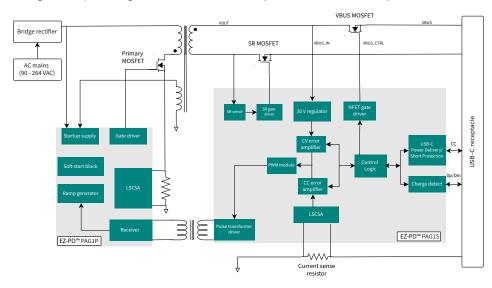
- Works across universal AC main input 85 V_{sc} to 265 V_{sc}
- Synchronizes to PWM from the secondary side using a pulse edge transformer
- Integrated low-side gate driver to drive primary side FET
- Integrated high-voltage start-up and shunt regulator
- Supports X-cap discharge mode for enhanced efficiency
- Integrated line UV, OCP, and secondary OVP
- Fixed auto-restart timer for fault recovery

www.infineon.com/ez-pd-PAG1

Programmable soft-start configurable with an external capacitor

- Works with both primary-side and secondary-side controlled flyback designs
- Integrates secondary-side regulation, synchronous rectifier (SR), and charging
- Supports quasi-resonant (QR) or critical conduction mode (CrCM), valley switching, discontinuous conduction mode (DCM), and burst mode for light load operations
- Switching frequency range of 20 kHz to 150 kHz
- Higher efficiency across the line and load levels with independent CC/CV loop
- Supports USB PD 3.0 with PPS (USB-IF certified, TID:1475), QC4+
 - Supports legacy charging protocols: BC v1.2, AFC, and Apple charging
- Integrates low-side current sense amplifier and VBUS NFET gate drivers




Digital isolators

Application diagram

Design example using EZ-PD™ PAG1S - primary-controlled flyback solution:

Design example using EZ-PD™ PAG1 secondary-side controlled QR flyback solution

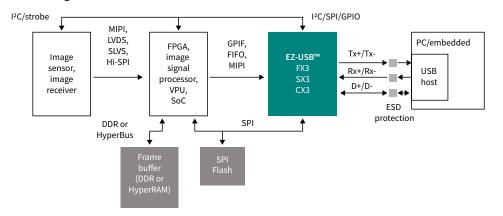
Primary PWM startup controller

Product	Product family	Fault protection	High voltage startup	Gate driver	X-cap/non X-Cap mode
CYPAP111A3-10SXQ	PAG1P	Line UV, VBUS, OVP, OCP	Yes	Low-side	Non X-cap
CYPAP112A3-10SXQ	PAG1P	Line UV, VBUS, OVP, OCP	Yes	Low-side	X-cap

Secondary USB-PD, SR, and PWM controller

Product	Product family	Fault protection	Operating voltage [V]	SR gate driver	PWM controller type	PD compliance revision
CYPAP111A1-24LQXQ	PAG1S	VBUS OCB, OVP, UVP,	3.3-21	Low-side	QR flyback	PD3.0 PPS

Peripheral controllers for USB 5Gbps

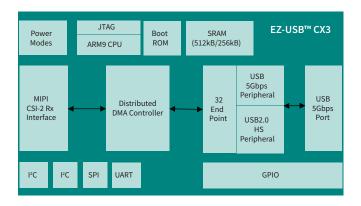

From USB 1.1 to USB 5Gbps innovation, heading towards 20Gbps

Infineon's EZ-USB™ peripheral controllers family offers the most comprehensive USB product portfolio in the industry. Since 1996, EZ-USB™ has set the industry's standard by improving the capabilities of programmable USB peripheral controllers, enabling designers to build USB devices that can handle the most demanding performance requirements in industrial and medical imaging applications. Machine vision, medical imaging, 3D scanners, biometric scanners, and many other applications requiring safe and dependable high-speed plug-and-play connectivity can benefit from the high-performance EZ-USB™ 5 Gbps controllers.

Infineon's EZ-USB™ peripheral controllers provide 5Gbps bandwidth today, and will soon move forward to 10 and then 20 Gbps.

	EZ-USB™ FX3	EZ-USB™ CX3	EZ-USB™ SX3
Function	Programmable peripheral	MIPI CSI-2 to USB3 bridge	FIFO-USB3 bridge
Part numbers	CYUSB3011 CYUSB3012 CYUSB3013 CYUSB3014	CYUSB3064 CYUSB3065	CYUSB3015 CYUSB3016 CYUSB3017
Transfer rate	5Gbps	5Gbps	5Gbps
System interface	32-bit GPIF, 100 MHz	4x MIPI CSI-2	32-bit FIFO, 100 MHz
USB-C Mux	-	-	-
Processor	ARM9	ARM9	ARM9
RAM / flash	512 KB / 0 KB	512 KB / 0 KB	512 KB / 0 KB
USB endpoints	32	2	2
Hardware DVK	SuperSpeed Explorer Kit	CX3 Camera RDK	SX3 Explorer it
SDK	EZ-USB™ FX3 SDK	EZ-USB™ FX3 SDK	-
Configuration utility	-	-	EZ-USB™ SX3 configuration utility

Block diagram


The block diagram shows a typical USB3 Vision-based machine vision camera. An image sensor using one of many different interface standards is connected to an FPGA or an image signal processor (ISP), which processes and optimizes the image and translates data into parallel data (or MIPI CSI-2) connected to an EZ-USB™ controller (FX3, SX3 or CX3). The EZ-USB™ controllers transfer uncompressed video in USB3 Vision standard to a PC or an embedded system via a standard USB cable.

EZ-USB™ CX3 - MIPI CSI-2 to **USB 5Gbps camera controllers**

Adding USB 5Gbps connectivity to image sensors with MIPI CSI-2 interface

Infineon's EZ-USB™ CX3 enables USB 5Gbps connectivity to any image sensor compliant with the mobile industry processor interface (MIPI) camera serial interface Type 2 (CSI-2) standard. It is based on the proven EZ-USB™ FX3 platform and comes with a 200 MIPS fully accessible ARM9 CPU and 512 kB SRAM. For configuring image sensors, EZ-USB™ CX3 also supports camera control interface (CCI). Pan, tilt, and zoom functions, as well as other camera control functions, can be supported by programming the EZ-USB™ CX3's numerous peripheral interfaces, including I²C, SPI, and UART.

Block diagram

Features and benefits

Key features

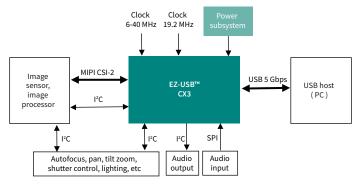
- Capable of streaming uncompressed video, including:
 - 4K UHD video at 15 fps
- 1080p video at 30 fps
- 720p video at 60 fps
- Connectivity: MIPI CSI-2 to USB 5 Gbps bridge controller with an integrated USB 5 Gbps PHY
- Bandwidth: 4x CSI-2 lanes, 1 Gbps per lane

www.infineon.com/ez-usb-cx3

- Color format support: RAW8/10/12/141, YUV422/4442, RGB888/666/5653
- Camera protocol: UVC or proprietary
- Programmability: fully accessible ARM9 CPU with 200 MHz operation and 512 kB SRAM

Key benefits

- Adds USB 5Gbps connectivity to any MIPI CSI-2 based camera
- Turnkev solutions on industrial standards
- Quick time-to-market with low development costs

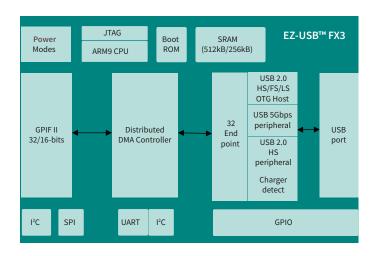


Application diagram

In the block diagram a typical EZ-USB™ CX3-based camera is depicted. The EZ-USB™ CX3 is connected to an image sensor with a MIPI CSI-2 (up to four lanes) interface. A standard USB cable is then used by the peripheral controller to transfer uncompressed video in compliance with the USB video class standard to a PC or an embedded system.

Product portfolio

Product	USB standard	USB speed [GBit/s]	I/O type	Operating tempe- rature range [°C]	Operating voltage min [V]	Operating voltage max [V]
CYUSB3064-BZXC	USB 3.0	5	2/4-Lanes MIPI CSI-2, GPIO, I ² C, SPI, I2S, UART	0 to 70	1.15	1.25
CYUSB3064-BZXI	USB 3.0	5	2/4-Lanes MIPI CSI-2, GPIO, I ² C, SPI, I2S, UART	-40 to 85	1.15	1.25
CYUSB3065-BZXC	USB 3.0	5	2/4-Lanes MIPI CSI-2, GPIO, I ² C, SPI, I2S, UART	0 to 70	1.15	1.25
CYUSB3065-BZXI	USB 3.0	5	2/4-Lanes MIPI CSI-2, GPIO, I ² C, SPI, I2S, UART	-40 to 85	1.15	1.25


EZ-USB™ FX3 - USB 5Gbps peripheral controllers

USB 5Gbps to 32-bit data bus with ARM9

Infineon's EZ-USB™ FX3 is the industry's most adaptable USB peripheral controller which can add USB 5Gbps connectivity to any system. A processor, an image sensor, an FPGA, or an ASIC can all be connected using the EZ-USB™ FX3's second-generation general programmable interface (GPIF II). Users can configure the general programmable interface (GPIF) to operate like a FIFO, an asynchronous SRAM, an address/data multiplexed interface, a CompactFlash, or a custom interface.

EZ-USB™ FX3 will enable applications like machine vision and medical imaging to achieve higher quality at a lower cost because USB 5Gbps and USB-C are now standard connectivity in all PCs.

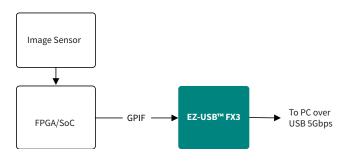
Block diagram

Features and benefits

www.infineon.com/ez-usb-fx3

Key features Full accessible 32-bits, 200 MHz, ARM9 core with up to 512 kB of embedded Hi-speed on-the-go (HS-OTG) host and peripheral compliant with on-the-go Supplement Version 2.0 - USB 2.0 OTG compliance - Compliant with USB BC v1.1 Additional connectivity to peripherals - Improved battery charging capabilities

- Adds USB 5Gbps capability to any system
- Quick time-to-market with low development costs
- Turnkey solutions on industrial standards
- Easy code development and integration
- Easy connectivity to peripherals such as I²C, I2S, UART, SPI and GPIOs



Application diagram

EZ-USB™ FX3 HD video / 3D imaging

USB 3.0 provides 5Gbps bandwidth and supports the streaming of HD video without the need for compression. EZ-USB™ FX3 connects directly with a variety of image sensors, enabling USB 5 Gbps camera and 3D imaging designs while saving bill-of-material cost and PCB footprint.

Product portfolio

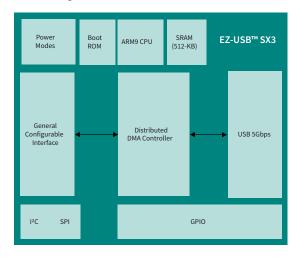
Product	USB standard	USB speed [GBit/s]	I/O type	Operating tempe- rature range [°C]	Operating voltage min [V]	Operating voltage max [V]
CYUSB3011-BZXC	USB 3.0	5	8/16-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	0 to 70	1.7	3.6
CYUSB3012-BZXC	USB 3.0	5	8/16/32-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	0 to 70	1.7	3.6
CYUSB3013-BZXC	USB 3.0	5	8/16-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	0 to 70	1.7	3.6
CYUSB3014-BZXC	USB 3.0	5	8/16/32-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	0 to 70	1.7	3.6
CYUSB3014-BZXCT	USB 3.0	5	8/16/32-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	0 to 70	1.7	3.6
CYUSB3014-BZXI	USB 3.0	5	8/16/32-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	-40 to 85	1.7	3.6
CYUSB3014-BZXIT	USB 3.0	5	8/16/32-bit GPIF, DMA, GPIO, I ² C, UART, I2S, SPI	-40 to 85	1.7	3.6

Boards

EZ-USB™ FX3 CYUSB3KIT-003 The EZ-USB™ FX3. The kit includes a MIPI CSI-2 camera module connected to an FPGA on one PCB moun-stream 4K 30 fps videos from an external HDMI source to stream 4K 30 fps videos from an external HDMI source to to any system.

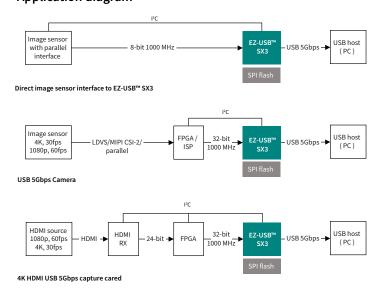
PC via USB-C interface in USB3 Vision standard.

ting on an updated EZ-USB™ FX3 Explorer kit.


EZ-USB™ SX3 - FIFO to USB 5 Gbps controllers

USB 5Gbps easily configured for UVC/UAC or USB3 Vision applications

Infineon's EZ-USB™ SX3 can be configured by tuning a wide range of parameters such as VID/PID, product strings, serial numbers, FIFO settings, GPIOs, USB endpoints and auxiliary interface via its easy-to-use Graphic User Interface (GUI) utility. The utility can also produce USB video class (UVC) and USB audio class (UAC) configurations that are specification compliant without the need for firmware development, significantly shortening the time-to-market for end products. In addition to the configurable parameters, developers can also utilize the integrated 32-bit ARM9 processor to further customize their devices, differentiating in the market and gaining a competitive advantage.


Additionally, Infineon provides a wide range of USB Type-C port controllers that can be used with the EZ-USB™ SX3 to enhance cameras, video capturing, and other data acquisition applications with USB-C and USB power delivery features.

Block diagram

Application diagram

Features and benefits

Key features

- Universal Serial Bus (USB) integration
- USB 3.2, Gen 1 and USB 2.0 peripherals compliant with USB 3.2 specification revision 1.0
- 5 Gbps PHY compliant with USB 3.2 Gen 1
- Three physical endpoints
- Supports UVC, UAC, and USB vendor class protocol
- $-\,$ 32 bit CPU ARM926EJ core with 200 MHz operation with 512 kB embedded SRAM
- General configurable interface (supports up to 100 MHz; 8-, 16-, 24-, and 32 bit data bus; slave FIFO, parallel camera interface)
- Additional connectivity to SPI boot flash and I²C slaves at 100/400 kHz and 1 MHz
- Firmware ready for USB video class (UVC), USB3 Vision, and many standard USB class applications
- Less than 60 μ A with V_{BATT} on and 20 μ A with V_{BATT} off

Key benefits

- Lowest total cost (bandwidth per dollar) solution for any high-speed system
- Turnkey solutions on industrial standards
- Quick time-to-market with low development costs
- Industry gold standard with highly integrated features
- Easy customization via configuration utility

Product portfolio

Product	USB standard	USB speed [GBit/s]	I/O type	Operating tempe- rature range [°C]	Operating voltage min [V]	Operating voltage max [V]
CYUSB3015-BZXC	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	0 to 70	1,7	3,6
CYUSB3015-BZXCT	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	0 to 70	1,7	3,6
CYUSB3015-BZXI	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	-40 to 85	1,7	3,6
CYUSB3015-BZXIT	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	-40 to 85	1,7	3,6
CYUSB3016-BZXC	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	0 to 70	1,7	3,6
CYUSB3016-BZXCT	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	0 to 70	1,7	3,6
CYUSB3016-BZXI	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	-40 to 85	1,7	3,6
CYUSB3016-BZXIT	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	-40 to 85	1,7	3,6
CYUSB3017-BZXC	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	0 to 70	1,7	3,6
CYUSB3017-BZXCT	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	0 to 70	1,7	3,6
CYUSB3017-BZXI	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	-40 to 85	1,7	3,6
CYUSB3017-BZXIT	USB 3.0	5	8/16/24/32-bit GPIF, DMA, GPIO, I ² C, SPI	-40 to 85	1,7	3,6

Boards

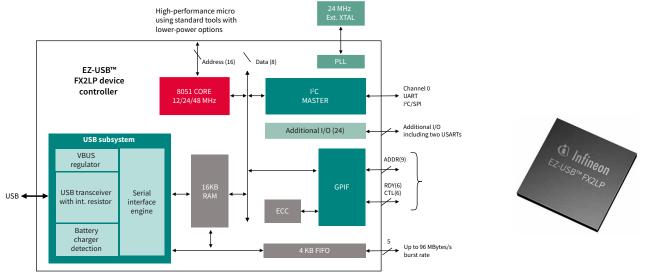
CY-SD4210 EZ-USB™ SX3 HDMI 4K to USB 5 Gbps demo kit

EZ-USB™ SX3 HDMI 4K to USB 5Gbps demonstartion kit is based on Infineon's EZ-USB™ SX3. An FPGA captures a video stream from the HDMI interface and transfers it via USB 5Gbps connection to a PC. The kit can be configured as a USB video class (UVC) device or a USB3 Vision device easily via EZ-USB™ SX3 Configuration Utility and supports up to 4K 30 frame-per-second video stream.

USB 2.0 peripheral controllers

Solutions for low-speed, full-speed and high-speed devices

Since 1996, EZ-USB™ has been setting the standard for the industry by enhancing the capabilities of programmable USB peripheral controllers, this has enabled developers to design USB devices that can meet the most stringent performance requirements in industrial and imaging applications. More significantly, Infineon's first-rate customer service and long-term supply guarantee your successful product life cycles last for more than ten years. The complete portfolio of USB programmable peripheral controllers supports low-speed and full-speed options with EZ-USB™ encore and high-speed options with EZ-USB™ FX2LP and EZ-USB™ FX2G2.


EZ-USB™ FX2LP/FX2G2 are highly integrated USB microcontrollers that serve as the basis for any USB high-speed peripheral device. To take full advantage of the USB 2.0 480-Mbps signaling rate, EZ-UBS™ FX2LP and EZ-USB™ FX2G2 contain specialized hardware to buffer USB data and to connect seamlessly to a variety of high-bandwidth external devices such as MCUs, ASICs, and FPGAs.

EZ-USB™ encore is a family of full-speed USB controllers based on Infineon's flexible PSoC™ architecture. These USB controllers have configurable analog and digital blocks, allowing you to customize the part based on your target application. Moreover, EZ-USB™ encore also integrates components such as RAM, clock generator and USB termination resistors reducing the overall system cost and area.

	EZ-USB™ encore	EZ-USB™ FX2LP	EZ-USB™ FX2G2
Function	Device controller	Device controller	Device controller
USB Spec (Speed)	USB2.0 Full speed (12 Mbps)	USB2.0 High speed (430 Mbps)	USB2.0 High speed (430 Mbps)
Interfaces	I ² C, SPI, UART, PS/2, ADC	Parallel 8/16-bit GPIF* [48 MHz) I²C, USART	Parallel 16/32-bit GPIF* (100 MHz) I ² C, UART, SIN
MCU subsystem	M8C	8051	ARM9
RAM	1 kB	16 kB	512 kB
Hardware DVK	NA	CY3539	CYUSB3KIT-003
Software SDK	SuiteUSB	SuiteUSB	EZ-USB™ FX3 SDK
Package	28-SOP/32-QFN/56-QFN/16-COLQFN	56-SSOP/VFBGA/QFN, 100-TQFP/128- TQFP	121-BGA
Temperature	0°C to 70°C -40°C to + 85°C	0°C to 70°C -40°C to + 105°C	0°C to 70°C -40°C to + 85°C

Solutions

Block diagram

Features and benefits

Key features

- USB 2.0 USB IF high speed certified (TID # 40460272)
- GPIF supports 8-bit/16-bit external data interface
- Ultra-low power: ICC no more than 85 mA in any mode
- Ideal for bus- and battery-powered applications
- Configurability for VID/PID using EPROM
- Single-chip integrated USB 2.0 transceiver, smart SIE, and enhanced 8051 microprocessor
- Integrated FIFOs, integrated I²C controller
- Commercial and industrial temperature grade

Key benefits

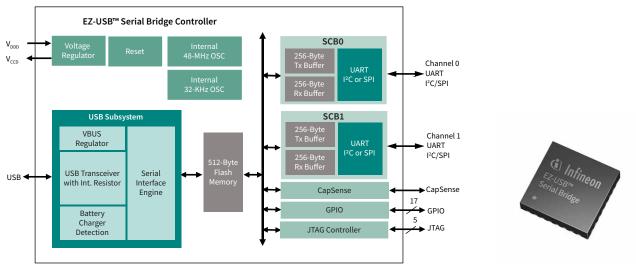
- Wide portfolio of peripheral controllers supporting low-speed, full-speed, and high-speed options
- Quick time-to-market with hardware and software development kit
- Market-proven solutions since 1996
- Premium customer support and long-term supply commitment

EZ-USB™ serial bridge controller

Discover a wide portfolio of full-speed bridge controllers with configurable and fixed functions

EZ-USB™ serial bridge controller is a family of full-speed bridge controllers offering both configurable and fixedfunction options that provides connectivity between USB and serial interfaces UART, SPI, I2C. With the lowest power consumption in standby mode (5 μA), these bridge controllers are the first in the market to offer programmable serial channels for UART/I²C/SPI interfaces. With the latest addition of fixed-function controllers, they can be easily configured to work as USB to UART, USB to I²C, or USB to SPI bridges without requiring any firmware development by the user. The EZ-USB™ Serial Bridge Controller family integrates the industry-leading CAPSENSE™ capacitive-touch sensing technology (for touch-sensitive key switches) and battery charger detection compliant with USB-IF battery charging specification ver. 1.2 to detect the source of power on the USB port.

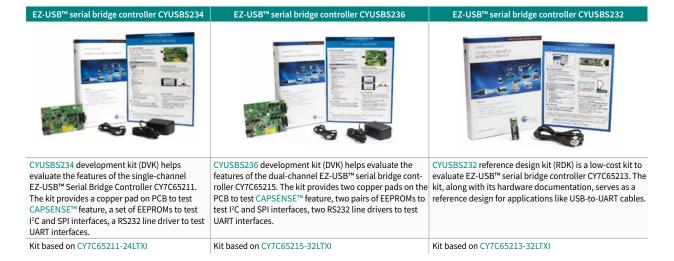
	USB-UART brid	ge controller	USB-I ² C bridge controller	USB-SPI bridge controller		igurable bridge oller	USB-billboard controller	
Features and part numbers	CY7C65213-28PVXI CY7C652133-32LTXI CY7C65213A-28PVXI CY7C65213A-32LTXI	CY7C65223 CY7C65223D	CY7C65216 CY7C65216D	CY7C652148 CY7C65214D	CY7C65211 CY7C65211A	CY7C65215 CY7C6215A	CY7C65210 CY7C6210A	CY7C65217 CY7C6217A
Function	USB UART	USB UART	USB I ² C	USB SPI	USB UART, USB SPI, USB I ² C	USB UART, USB SPI, USB I ² C	USB billboard	USB billboard
UART channels	1	2			1	2		2
UART protocols	RS232/RS422/ RS4852	RS232/RS422/ RS485			RS232/RS422/ RS4852	RS232/RS422/ RS4852		RS232/RS422
UART pins	8	4			2/4/2006	2/4/6/82		2
Speed/baud rate	3 Mbps	3 Mbps			3 Mbps	3 Mbps		3 Mbps
SPI channels	-	-	-	1/1/2002	1	2	-	-
SPI width	-	-	-	4Bit/8Bit/4Bit	4-16 bit	4-16 bit	-	-
SPI master/slave	-	-	-	Master	Master or slave	Master or slave	-	-
I ² C master/slave	-	-	Slave/master	-	Master or slave	Master or slave	Master	Master
Battery charge detection (BCD)	Yes	Yes	Yes	Yes	Yes	Yes	No	No
CAP SENSE buttons					8	5		
GPIOs	8	7	6	8	17	10	9/11	7/9
JTAG		No	No	No	No	Yes/No		
Software flow control	No	Yes			No	No	No	No
USB suspend supply current (typical)	5 μΑ	5 μΑ	5 μΑ	5 uA	5 μΑ	5 μΑ	5 μΑ	5 μΑ
Packages	32 QFN/28 SSOP	24 QFN/32 QFN	24 QFN/32 QFN	24 QFN/24 QFN/ 32 QFN	24 QFN/32 QFN	24 QFN/32 QFN	24 QFN	24 QFN
Footprint	5x5 mm/ 10x7.5x1.65 mm	4x4 mm/5x5 mm	4x4 mm/5x5 mm	4x4 mm/ 4x4 mm/ 5x5 mm	4x4 mm/5x5 mm	4x4 mm/5x5 mm	4x4 mm	4x4 mm


www.infineon.com/ez-usb-serial-bridge-controller

Solutions

Block diagram

Features and benefits


Key features
− Dual-channel UART, I²C or SPI to USB bridge
- Supports up to 8 CAPSENSE™ buttons
- Configurable and fixed function options
– BCD compliant to USB-IF battery charging revision 1.2
- Integrated regulator, oscillator and termination resistors
- Driver support for major operating systems
- Configuration utility for VID/PID and serial interfaces
- Support multiple USB device classes: CDC, PHDC, HID and vendor specific

Key benefits

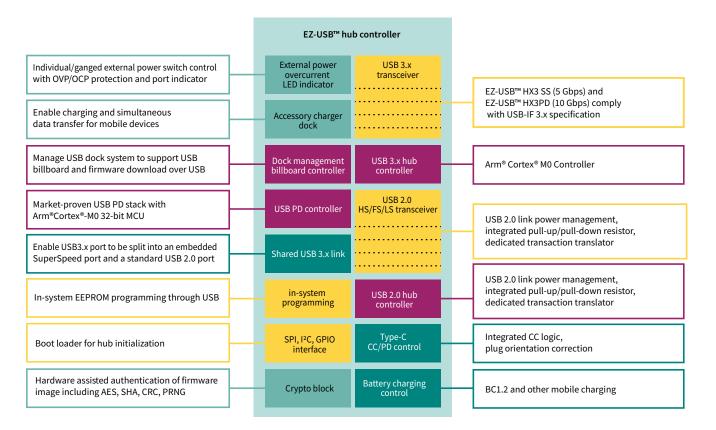
- Easy to design, without firmware nor software development
- Industry's lowest power consumption in standby mode
- Ideal for low-power devices
- Compatibility
- Minimization of switching costs

Boards

device classes

USB hubs and USB Type-C port controllers

Robust interoperability, extensive charging support, and full configurability


Infineon offers a wide portfolio of hub controllers supporting USB 2.0, USB 3.x 5 Gbps, 10 Gbps and USB Type-C ports with robust backwards interoperability with legacy USB speeds. The USB 3.x hub controllers provide advanced USB-PD and battery charging capabilities, featuring up to eight downstream ports for full configurability and flexible design.

The wide portfolio offers different combinations of features to address all possible needs for notebook PCs, docking stations, TV, STB, DVR, gaming, home gateways, Wi-Fi routers and automotive and industrial applications:

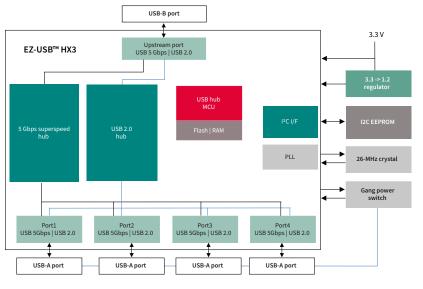
USB	hub family	EZ-USB™ HX2LP	EZ-USB™ HX2VL	EZ-USB™ HX3	EZ-USB™ HX3 automotive*	EZ-USB™ HX3PD
USB standard		USB 2.0 480 Mbps	USB 2.0 480 Mbps	USB 3.x 5 Gbps	USB 3.x 5 Gbps	USB 3.x 10 Gbps
Part numbers		CY7C6562x CY7C6563x	CY7C6563x CY7C65642	CYUSB330X CYUSB331X CYUSB332X CYUSB230X	CYUSB332x CYUSB330x	CYUSB4347 CYUSB4357
Nr. of downstre	am ports	2/4	2/4	2/4	2/4	7 (5x SS, 2x USB 2.0)
USB Type-C						✓
USB power deli	very					2 PD ports
Battery chargin	g v1.2			✓	✓	✓
ACA-dock				✓	CYUSB3324	
USB billboard						✓
Dock managem	ent controller (DMC)					✓
Multi-TT (one T	T per port)		✓	✓	✓	✓
Serial interface		SPI	SPI/I ² C	I ² C	I ² C	2x I ² C/SPI
MCU				Arm® Cortex®-M0	Arm® Cortex®-M0	Arm® Cortex®-M0
Flash						2x 128KB
Multi-TT (one T	T per port)		✓	✓	✓	✓
In system progr	ramming (ISP)	✓	✓	✓	✓	✓
Configurable U	SB PHYs			✓	✓	✓
Shared link				√	✓	✓
Vendor comma	nd			✓	✓	
Fortament.	Individual			CYUSB3326		✓
External power switch	Ganged			CYUSB330x	CYUSB3304	
control	Both			CYUSB3324	CYUSB3324	
Pin-strap				CYUSB332x	CYUSB3324	
Port indicator				CYUSB3324	CYUSB3324	
Packages		56QFN	48TQFP, 28QFN	88QFN, 68QFN	100BGA	192BGA
Temperature (-	40°C - 85°C)	√		✓	Automotive	✓

Solutions

Features

EZ-USB™ HX3

USB 3.x 5Gbps 4-port hub controller with SS/USB 2.0 PHY shared link, DS ports charging and automotive grade


EZ-USB™ HX3 is Infineon's USB-IF-certified 4-port hub controller. It has been repeatedly tested at every USB plugfest and in independent labs, demonstrating compatibility with all recognized host controllers, device classes, and operating systems. It supports most USB charging standards, including battery charging specification v1.2, Apple charging standard, YD/T 1591-2006 and ACA-dock. This last feature of the EZ-USB™ HX3 enables simultaneous use of USB devices connected to the downstream ports and charging of a smartphone or tablet that supports USB OTG. Without a host attached to the upstream port, it also supports battery charging on the downstream ports.

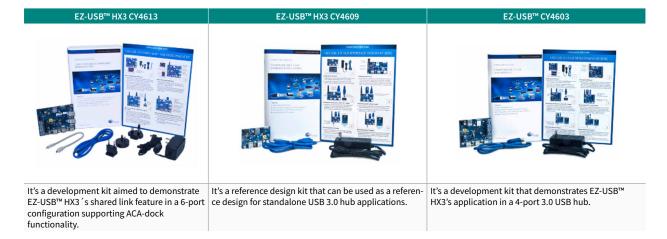
The configurable USB 5 Gbps and USB 2.0 PHY of the EZ-USB™ HX3 enhance signal quality, giving board designers more flexibility and simplifying USB-IF compliance. EZ-USB™ HX3 also supports shared USB link, a proprietary feature that doubles the number of USB ports, creating 8 ports from a 4-port hub controller.

Features/Part	CYUSB3302	CYUSB3304	CYUSB3312	CYUSB3314	CYUSB3324	CYUSB3326	CYUSB3328	CYUSB2302	CYUSB2304
Number of DS ports	2 (USB 3.0)	4 (USB 3.0)	2 (USB 3.0)	4 (USB 3.0)	4 (USB 3.0)	6 (2 USB 3.0, 2 SS, 2 USB 2.0)	8 (4 SS, 4 USB 2.0)	2 (USB 2.0)	4 (USB 2.0)
Number of shared link ports	0	0	0	0	0	2[1]	4	0	0
BC v1.2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ACA-dock	No	No	No	No	Yes	No	Yes	No	No
External power switch control	Ganged	Ganged	Individual and ganged	Individual and ganged	Individual and ganged	Individual	Individual	Ganged	Ganged
Pin-strap support	No	No	Yes	Yes	Yes	Yes	Yes	No	No
I ² C	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vendor command	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Port indicators	No	No	Yes	Yes	Yes	No	No	No	No
Packages[2]	68-QFN, 100-ball BGA	68-QFN, 100-ball BGA	88-QFN, 100-ball BGA	88-QFN, 100-ball BGA	88-QFN, 100-ball BGA	88-QFN, 100-ball BGA	88-QFN, 100-ball BGA	68-QFN, 100-ball BGA	68-QFN, 100-ball BGA
Temperature range	Industrial and commercial	Industrial (88-QFN only) and commercial	Industrial and commercial	Industrial and commercial					

Solutions

Block diagram

Features and benefits

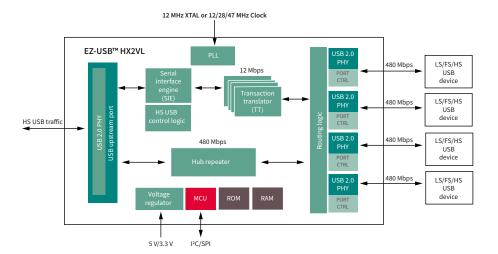

Key features

- Compliance with USB 3.2 Gen 1 (USB-IF and WHQL certified)
- Shared link feature (supports simultaneous USB 2.0 and SuperSpeed USB devices on the same port)
- Enables USB charging while the hub is disconnected from a hub host
- Supports BC v1.2 and Apple charging
- Allows firmware upgrades using I^2C EEPROM or an external I^2C master
- Integrated ARM® Cortex® M0 CPU
- LED status indicators suspend, SS, and USB 2.0 operation

Key benefits

- Supports up to 4 USB 3.0 compliant DS ports
- Enables extra downstream (DS) ports for on-board connections in embedded applications
- Enables charging of devices connected to the DS ports when no host is connected on the upstream (US) port
- Easy-to-customize configuration parameters
 - High quality and reliability

Boards



EZ-USB™ HX2LP and HX2VL hub controllers

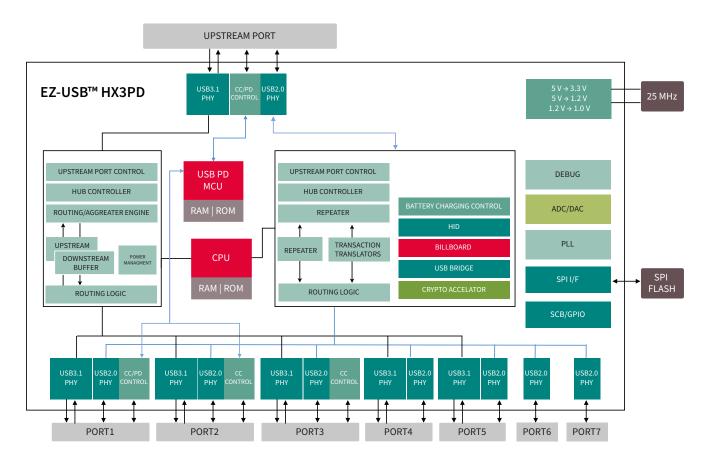
4-port single- and multi-TTs hub USB controllers

Infineon's EZ-USB™ HX2LP and HX2VL are Infineon's first-generation high-speed hub controllers available in 2-port and 4-port versions. These USB 2.0 hub controllers have integrated upstream and downstream transceivers, a USB serial interface engine (SIE), USB hub control and repeater logic, and TT logic. Many of its external passive components such as pull-ups and pull-down resistors are integrated into the chip, significantly reducing the overall bill of materials required to implement a hub design.

Family	Part number	Number of ports	Number of TTs	I/O options	Temperature grade
EZ-USB™ HX2VL	CY7C65634	2	Single	SPI, I ² C, GPIO	Commercial
	CY7C65632	4	Single		
	CY7C65642	4	Multi		
EZ-USB™ HX2LP	CY7C65620/1	2	Single	SPI	Commercial, industrial
	CY7C65630/1	4	Single		

Features and benefits

ey features	Key benefits
· Up to 4 downstream ports	 Reduced area
Very low power consumption (82 mA)	- Reduced BOM
Integrated internal regulator, pull-up and pull-down resistors for all downstream ports	
· Selectable XTAL/CLK inputs, power switch polarity, EEPROM interface	
VID, PID configurable through external EEPROM	'
Integrated ARM® Cortex® M0 CPU	
LED status indicators – suspend, SS, and USB 2.0 operation	


EZ-USB™ HX3PD

Industry's first 7-port USB 10Gbps hub controller with power delivery

EZ-USB™ HX3PD is the industry's first 7-port USB 10Gbps Type-C hub controller with power delivery, supporting two USB-C + PD ports (one upstream and one downstream), and five downstream USB 10Gbps ports.

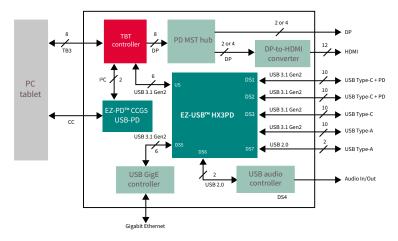
With five chips (two 4-port USB hub controllers, two USB PD controllers, and a dock management controller) integrated into one, EZ-USB™ HX3PD is the most integrated USB 10Gbps hub in the market. This leads to a significant reduction of BOM component cost and PCB footprint, which makes EZ-PD™ HX3PD a perfect fit for USB-C dongles, docks, and monitors. Configurable shared USB 10 Gbps and USB 2.0 PHY functionality can improve USB 10Gbps signal transmission quality, allowing board designers more freedom and simplifying USB-IF compliance.

Block diagram

Gate-driver ICs

Features and benefits

Key features


- Compliant with USB 3.1 gen 2
- Upstream (US): 10 Gbps; Type-A or Type-C plus PD
- Downstream (DS): 7 ports; 5x 10 Gbps, 2x 480 Mbps; 1 Type-C Plus PD, 2 Type-C only and 4 Type-A ports
- Integrated DFP (RP) and UFP (RD) termination resistors
- Integrated billboard controller
- Charging support: BC v1.24, Apple Charging standard
- PD policy engine configures power profiles dynamically
- Charging DS without US connection
- Optional signed firmware upgradable via dock management controller (DMC)

Key benefits

- USB-IF compliant 2x4-port USB hubs with 2x USB-PD 3.0
- Integrated total five chips into a single chip for BOM components and PCB board size reduction
- Integrated Crypto AES/SHA/CRC blocks for secured firmware upgrades via dock management controller
- Intel USB4 / Thunderbolt 4 Dock reference design available
- Support USB PD 3.0, BC1.2, Apple, Samsung, and QC 4.0 charging standards
- Provides USB PHY configurability to compensate signal loss over PCB traces

Application diagram

Thunderbolt4 Dock

EZ-USB™ HX3PD allows to solve several challenges in the development of Thunderbolt docs designs such as:

- Thunderbolt dock design is complex, requiring many discrete components
- Thunderbolt dock requires pre-approved
 USB-PD controller and a large BOM
- USB-C dock must support USB PD and all legacy charging standards
- USB 3.1 Gen2 signal integrity is difficult to handle at 10 Gbps
- USB 3.1 Gen2 and PD need FW upgrade to keep pace with USB spec changes

Boards

EZ-USB™ HX3PD CY6611

This evaluation kit is based on the CYUSB4347-BZXC, a 7-port evaluation kit designed to demonstrate the USB 3.1 Gen 2 hub, USB PD 3.0 and USB battery charging (BC 1.2) functionalities.

Infineon support for USB-C controllers and peripherals

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/universal-serial-bus community.infineon.com mycases.infineon.com

ion board

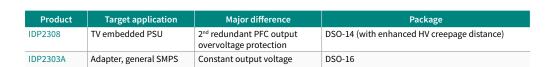
Tools

Power management ICs

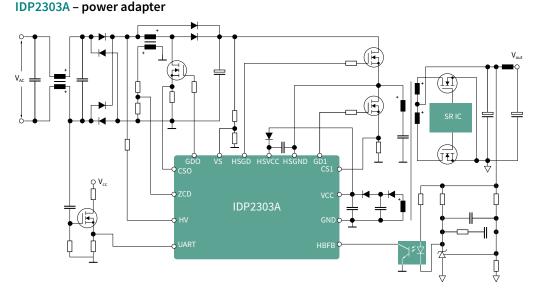
- XDP[™] SMPS controllers
- DC-DC digital multiphase controllers
- AC-DC power management ICs
- PFC controllers
- PWM controllers and climate saver systems
- Resonant LLC half-bridge controller ICs
- NFC tag-side controllers
- OptiMOS[™] integrated power stages

- Switching regulators
- Voltage regulators
- Digital power controller
- Audio amplifier ICs
- AC-DC LED driver ICs
- DC-DC LED driver ICs
- iMOTION™ integrated motor control solutions
- MOTIX[™] controllers and control ICs

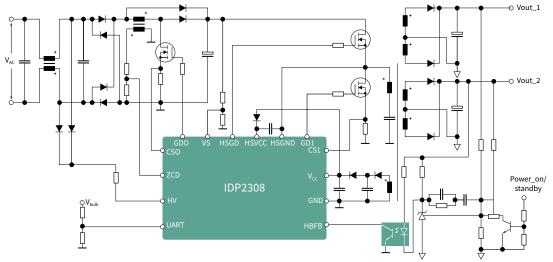
XDP™ SMPS


IDP2308 and IDP2303A – digital multimode PFC+LLC combo controller

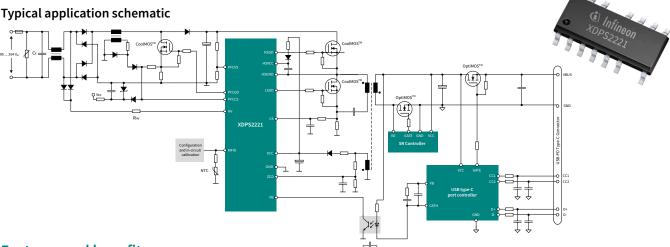
The IDP2308 and IDP2303A are high-performance digital combo controllers with integrated drivers and a 600 V depletion cell designed for boost PFC and half-bridge LLC targeting switched mode power supplies (SMPS) from 75 to 300 W.


- Support non-AUX operation with the lowest standby performance and start-up cell
- Support multimode PFC operation for optimized efficiency curve
- Configurable frequency setting for LLC soft-start and normal operation
- Synchronous PFC and LLC burst mode control with soft-start to prevent acoustic noise
- Excellent dynamic response by adaptive LLC burst mode
- Configurable and comprehensive protections for PFC/LLC/IC temperature
- IEC62368-1 certified active X-cap discharge function
- Flexible IC parameter setting with digital UART interface supports
 PSU platform approach

- Low BOM count due to high integration of digital control
- No auxiliary power supply needed
- Easy design of system schematic and PCB layout
- Small form factor design
- Higher system reliability
- Shorter development cycles and higher design and production flexibility



.


Target applications

- > LCD TV power supply
- › General SMPS
- > Power adapter

XDP™ SMPS

XDPS21081 - digital FQR flyback controller

The XDP™ digital power XDPS2221 is a highly integrated device combining both PFC boost and hybrid flyback (HFB) (asymmetrical half-bridge as from literature) conversion features. The high level of integration allows for seamless operation as well as optimal control of the two conversion stages, delivering class-leading performance. This innovative controller enables high power density designs and high system efficiency meeting international regulatory standards on power efficiency (such as EU CoC Version 5 Tier 2 and DoE Level VI) as well as an effective control of the wide output voltage for the latest USB-PD extended power range (EPR) standard V3.1. It is very well suited to drive GaN-based devices, such as Infineon's CoolGaN™ switches.

Features and benefits

	Key	/ features

- IEC62368-1 certified active X-cap discharge function
- High-performance multi-mode PFC with critical conduction mode operation
- High efficiency multi-mode hybrid-flyback topology with adaptive resonant period
- Supports USB-PD standard V3.1 extended power range (EPR) with wide output voltage up to 28 V (36 V/48 V to be covered by XDPS2222 available in Q2/2023)
- Highly integrated combo controller for the PFC and hybrid flyback topology, including a 600 V start-up cell with X-cap discharge functionality
- DSO-14 (150-mil) package

Key benefits

- Low no-load input standby power performance
- Low BOM cost and count
- Low standby and high efficiency across various line/load conditions
- High power density and high switching frequency
- Easily configurable
- Optimization via GUI tools

REF_XDPS2221_140W1

For design support material, please click here.

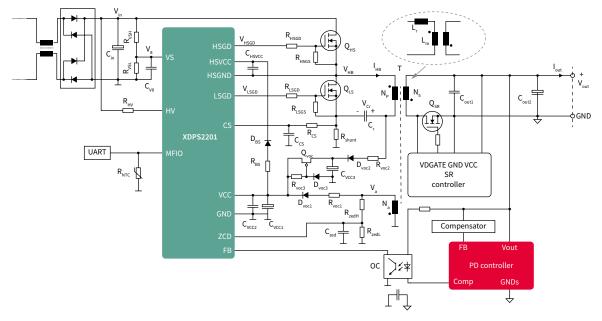
140 W reference design with PFC + hybrid flyback combo IC XDP™ XDPS2221 and CoolGaN™ GIT HEMTs:

This is a 140 W USB-PD type-C charger reference design. It demonstrates the high performance of the PFC + hybrid flyback combo controller XDP™ digital power XDPS2221 together with CoolGaN™ switches for wide input AC and wide output voltage applications. Besides the combo IC XDPS2221, it features three CoolGaN™ 600 V e-mode GIT HEMTs (IGLD60R190D1) as PFC and HFB main switches, OptiMOS™ BSC040N10NS5 as SR switch, the EZ-PD™ CCG3PA controller CYPD3175 serves as the USB-PD controller, and the HEXFET™ IRF7240 as load switch.

Ordering code: REFXDPS2221140W1TOBO1

Target applications:

- Adapters and chargers
 - with ultra-high power density
 - with extended power range (EPR)



XDP™ SMPS

XDPS2201 - digital hybrid flyback controller

XDPS2201 is a multimode, digital configurable hybrid flyback controller that combines the simplicity of a traditional flyback topology with the performance of a resonant converter. By utilizing two high-voltage MOSFETs, such as CoolMOS™, the controller can drive both high- and low-side MOSFETs in an asymmetric half-bridge flyback topology. Both zero voltage and current switching are achieved through means of regulating the polarity of the magnetizing current to increase efficiency. Also, transformer leakage energy is recycled, thereby further increasing efficiency.

Features and benefits

Key features

- Zero voltage and current switching across all line and load conditions
- Multimode operation (active burst mode, DCM, ZV-RCS, and CRM)
- Integrated high-side driver and 600 V start-up cell
- Single auxiliary transformer winding and resonant cap to supply power to IC
- Comprehensive suite of protection feature sets
- Digital platform with configurable parameters

Vov bonofi

- Reduce switching loss and achieve high efficiency
- Optimize efficiency across various line/load conditions
- Optimize light and no-load efficiency
- Save BOM count and cost with no messy external driver
- Easy to drive, low cost, and widely available off the shelf 60 V MOSFET
- Fail-safe mechanism to limit output power in the event of PD controller failure
- Avoid CCM operation and no potential of shoot-through with SR MOSFET

DEMO_XDPS2201_65W1

65 W USB-PD PPS Type-C demo board in a miniature form factor based on XDPS2201.

- > Up to 65 W output power with 31 W/in³ power density
- > Universal input range 90~264 V_△ C
- > Supported output: 5 V/3 A, 9 V/3 A, 12 V/3 A, 15 V/3 A and 20 V/3.25 A, 5~20 V/3 A
- > Peak efficiency of more than 93.8 percent
- > Low no-load standby input power of less than 75 mW OR Low no-load standby input power (less than 75 mW)

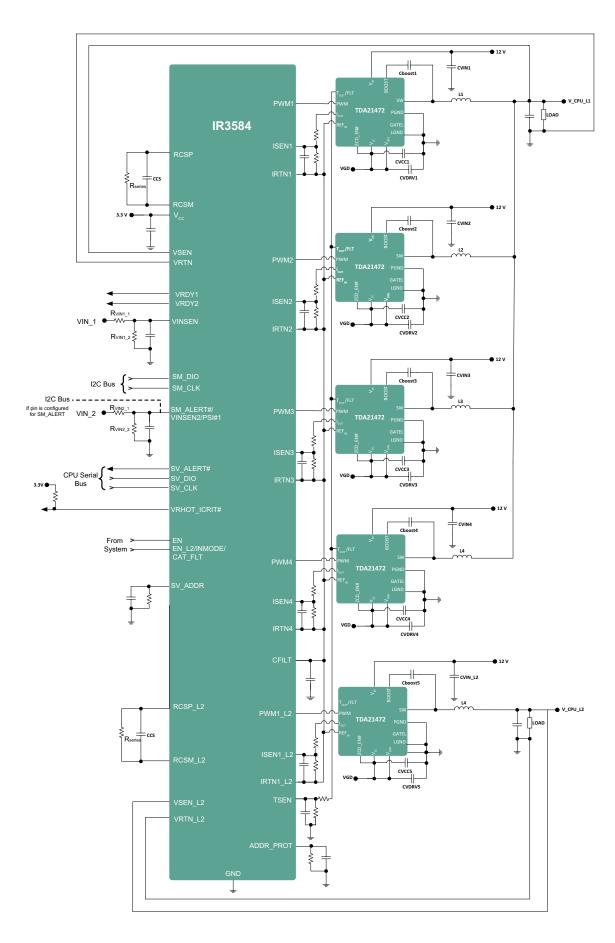
Ordering code: DEMOXDPS220165W1TOBO1

Point-of-load power management

Infineon's digital multiphase and multi-rail controllers provide power for today's medium- and high-current POL applications used in telecom/datacom, server, and storage environments. Infineon's digital controller family enables OEMs and ODMs to improve efficiency and total cost of ownership while increasing power density and optimizing the total system footprint of the voltage regulator. The products highlighted in the table below represent our fifth-generation digital controller family and support up to two rails with 1-6 phases on individual rails. The I²C/PMBus interface connects the digital controllers to the application system and provides real-time telemetry information, monitoring, and control capabilities. The digital controllers are fully configurable through our PowerCode and PowerClient graphical user interfaces that allow for easy-to-use and simplified design optimization.

DC-DC digital multiphase controllers

Multiphase configurations are supported for best power optimization


Fe	eature	Controller family							
Configural	ble output rails	Dual rail	Dual rail	Dual/single rail	Dual/single rail	Dual rail	Dual/single rail	Dual/single rail	Dual rail
Part number	PMBus	PXE1610C*	IR35212	XDPE10280B*	XDPE10281B*	IR35204MTRPBF	IR35201MTRPBF	IR35223*	XDPE132G5C*
Phase	Main	7 ph	7 ph	8 ph	8 ph	4 ph	8 ph	10 ph	16 ph
configuration	Subconfigurations	6+1	6+1	8+0, 6+2, 4+4	8+0, 6+2, 4+4	3+1	8+0, 7+1, 6+2	10+0, 5+5	8+8
V	/ out_max	2.5 V	3.3 V	3.04 V	3.04 V	3.3 V	3.3 V	3.3 V	3.3 V
Switchir	ng frequency	Up to 2 MHz	Up to 2 MHz	Up to 2 MHz	Up to 2 MHz	Up to 2 MHz	Up to 2 MHz	Up to 2 MHz	Up to 2 MHz
Operating te	Operating temperature range		- 40°C to 85°C	- 40°C to 85°C	- 40°C to 85°C	- 40°C to 85°C	- 40°C to 85°C	- 40°C to 85°C	- 40°C to 120°C
VQFN	l package	48-lead (6x6) 0.4 mm pitch	48-lead (6x6) 0.4 mm pitch	56-lead (7x7) 0.4 mm pitch	56-lead (7x7) 0.4 mm pitch	40-lead (5x5) 0.4 mm pitch	56-lead (7x7) 0.4 mm pitch	48-lead (6x6) 0.4 mm pitch	56-lead (7x7) 0.4 mm pitch
Typical application		Intel server, high-end desktop	Intel server, workstation, high-end desktop	Intel server, workstation, high-end desk- top	AMD server, workstation, high-end desk- top	AMD server, memory and SOC	AMD server, CPU	Phase redundant based server systems	AMD server, GPU, ASIC, networking ASSP

Advantages of a digital controller

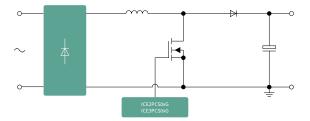
The protection features include a set of sophisticated overvoltage, undervoltage, overtemperature, and overcurrent protection. Each of the controllers in the table above also detects and protects against an open circuit on the remote sensing inputs. These attributes provide a complete and advanced protection feature set for microprocessor, DSP, FPGA, or ASIC power systems. Accurate current sense telemetry achieved through internal calibration that measures and corrects current sense offset error sources upon start-up. Programmable temperature compensation provides accurate current sense information even when using DCR current sense.

Typical multiphase application circuit

AC-DC power management ICs

Technology leadership in power supply

By offering a wide variety of highly efficient control ICs, we enable our customers to meet new demands like PFC regulations and ultralow standby power requirements in a very cost-effective way. A comprehensive array of safety features helps to minimize the number of external components, reduces design in time, and improves the reliability of the SMPS.


AC-DC power management ICs PFC controller **PWM** controller Continuous conduction mode Stand-alone PWM Fixed-frequency (FF) CoolSET™ (CCM) PFC Fixed-frequency Fixed-frequency 650 V F3/F3R CoolSET™ ICE2PCS02G (65 kHz) ICE5GSAG (125 kHz) ICE3Axx65ELJ ICE2PCS03G (100 kHz) ICE5ASAG (100 kHz) ICE3RBRxx65JZ ICE3AS03LJG (100 kHz) ICE3RBRxx65JG ICE3BS03LJG (65 kHz) Adjustable frequency ICE2PCS01G (50-250 kHz) 700 V Gen5 CoolSET™ Quasi-resonant ICE5AR4770AG ICE2PCS05G (20-250 kHz) **ICE5QSBG** ICE5AR4770BZS ICE3PCS01G (OVP+brown-out) ICE2QS02G ICE3PCS02G (OVP) ICE2QS03G ICE3PCS03G (Brown-out) 800 V CoolSET™ ICC80OSG ICE5A/GRxx80AG Half-bridge and LLC resonant ICE5xRxx80xZ ICE3A/BRxx80JZ ICF1HS01G-1 ICE3ARxx80CJZ ICE2HS01G XDPS2201 ICF3ARxx80V.I7 XDPS2221 ICE3ARxx80JG XDPS2222 950 V CoolSET™ ICF5xR3995x7 Critical conduction mode Combi (PFC+PWM) Quasi-resonant (QR) CoolSET™ (CrCM) PFC IRS2505L CrCM + LLC 650 V CoolSET™ XDP™ SMPS IDP2308 (DSO-14) ICE2QRxx65(Z)/(G) XDP™ SMPS IDP2303A (DSO-16) 800 V CoolSET™ ICE2QRxx80Z/G ICE5QRxx80BG

Continuous conduction mode (CCM) PFC ICs

High efficiency and very low system cost

Compared to the first generation of ICE1PCS01/02, the second generation of CCM PFC controller ICs, ICE2PCS01/02, have lower internal reference trimmed at 3 V. They also have other advantages such as wider $V_{\rm cc}$ operating range, an improved internal oscillator, and additional direct bulk capacitor overvoltage protection. Compared to the first and second generation of ICE1PCS0x and ICE2PCS0x, the third generation of CCM PFC has the lowest internal reference trimmed at 2.5 V and integrated digital control voltage loop. The third generation also features low peak current limit at 0.2 V, an adjustable gate switching frequency range from 21 kHz to 100 KHz, and is able to synchronize with an external frequency range from 50 kHz to 100 kHz. The third generation is now able to achieve 95 percent efficiency at full load for the entire input voltage range.

Application diagram

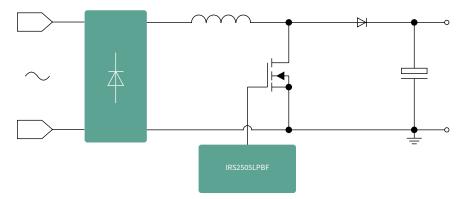
2nd generation continuous conduction mode PFC IC features

- Fulfills class D requirements of IEC 61000-3-2
- Lowest count of external components
- Adjustable and fixed switching frequencies
- Frequency range from 20 to 250 kHz
- Versions with brown-out protection available
- Wide input range supported
- Enhanced dynamic response during load jumps
- Cycle-by-cycle peak current limiting
- Integrated protections OVP, OCP
- DIP-8 and DSO-8
- Lead-free, RoHS compliant

3rd generation continuous conduction mode PFC IC features

- Fulfills class D requirements of IEC 61000-3-2
- Integrated digital voltage loop compensation
- Boost follower function
- Bulk voltage monitoring signals, brown-out
- Multi protections such as double OVP
- Fast output dynamic response during load jump
- External synchronization
- Extra-low peak current limitation threshold
- SO8 and SO-14
- Lead-free, RoHS compliant

	ICE2PCS01G ICE2PCS05G	ICE2PCS02G ICE2PCS03G	ICE3PCS03G	ICE3PCS02G	ICE3PCS01G		
Digital control voltage loop		-	✓	✓	✓		
Variable frequency	✓	-	✓	✓	✓		
Synchronous frequency		-	✓	✓	✓		
Open loop protection	✓	✓	✓	✓	✓		
Low peak current limit	-1 V	-1 V	-0.4 V	-0.4 V	-0.2 V		
Brown-out protection	-	✓	✓	-	✓		
Overvoltage protection	✓	✓	✓	✓	✓		
Second overvoltage protection		-		✓	✓		
PFC enable function		-					
Boost follower mode		-					
5 V regulator			-		√		


500-950 V MOSFETs

Critical conduction mode (CrCM) PFC

Easy design and lowest system cost

Fully compatible with the world standard, these devices are optimized to offer extremely compact and cost-effective PFC solutions for electronic ballast and offline SMPS.

Application diagram

IRS2505LPBF

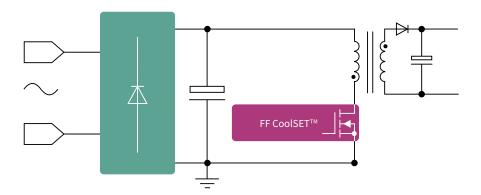
- Critical conduction mode PFC control
- High power factor and ultralow THD
- Wide load and line range
- Regulated and programmable DC bus voltage
- No secondary winding required
- MOSFET cycle-by-cycle overcurrent protection
- DC bus overvoltage protection
- Low EMI gate drive
- Ultralow start-up current
- 20.8 V internal Zener clamp on V_{cc}
- Excellent ESD and latch immunity
- RoHS compliant
- 5-pin SOT-23 package

PFC controller portfolio

Critical conduction mode (CrCM) PFC IC portfolio

Product	V _{cc} min.	V _{cc} max.	Package
IRS2505L	9 V	20.8 V	SOT-23

Continuous conduction mode PFC ICs


2nd generation continuous conduction mode PFC IC product portfolio

Product	Frequency – f _{sw}	Current drives	Package
ICE2PCS01G	50-250 kHz	2.0 A	
ICE2PCS02G	65 kHz	2.0 A	DSO-8
ICE2PCS03G	100 kHz	2.0 A	D30-6
ICE2PCS05G	20-250 kHz	2.0 A	

3rd generation continuous conduction mode PFC IC product portfolio

Product	Frequency – f _{sw}	Current drives	Features	Package	
ICE3PCS01G	Adjustable	0.75 A		OVP+brown-out	SO-14
ICE3PCS02G		0.75 A	OVP	SO-8	
ICEADCCOAC		0.75.4	D	60.0	

5th generation fixed-frequency PWM IC and CoolSET™

- Integrated CoolMOS™ in 700 V, 800 V, and 950 V MOSFETs
- Cascode configuration for brownin protection, fast and robust start-up
- Available in 65 kHz, 100 kHz, and
 125 kHz fixed switching frequency
- Frequency reduction in tandem with load reduction to increase efficiency
- Selectable active burst mode entry/ exit profile to optimize standby power and ability to disable
- Supports CCM flyback operation with built-in slope compensation
- Integrated error amplifier for direct feedback non-isolated flyback and buck
- Adjustable line input overvoltage protection (only ICE5xRxxxxAG and ICE5xRxxxxCZ)

- V_{cc} pin short-to-ground protection
- Auto restart protection mode to minimize interruption of operation
- DSO-8 package (stand-alone controller), DIP-7 and DSO-12 package for CoolSET™

5th generation fixed-frequency CoolSET™

85 V _{AC} ~	power ¹⁾ 300 V _{AC} 50°C	15 W	17 W	23 W	27 W	40 W
R _{DS(o}	n),max.	5.18 Ω	4.05 Ω	2.35 Ω	1.75 Ω	0.80 Ω
7001/	DIP-7	ICE5AR4770BZS				
700 V	DSO-12	ICE5AR4770AG				
800 V	DIP-7	ICE5AR4780BZS ICE5BR4780BZ		ICE5AR2280CZ ICE5BR2280BZ		ICE5AR0680BZS
	DSO-12	ICE5GR4780AG		ICE5GR2280AG	ICE5GR1680AG	ICE5AR0680AG
950 V	DIP-7		ICE5AR3995BZ ICE5BR3995BZ ICE5BR3995CZ			

3rd generation fixed-frequency CoolSET™

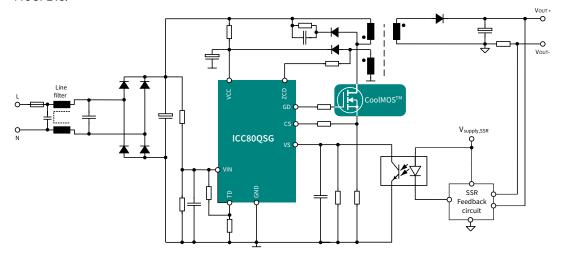
85 V _{AC} ~	power ¹⁾ 300 V _{AC} 50°C	10~15 W	19~21 W	23~26 W	30~34 W	37~41 W
R _{DS(o}	n),max.	11.1~5.44 Ω	3.42~2.62 Ω	1.96~1.71 Ω	1.11~1.05 Ω	0.75~0.71 Ω
	DIP-7	ICE3RBR4765JZ		ICE3RBR1765JZ		ICE3RBR0665JZ
650 V	DIP-8	ICE3BR4765J	ICE3A1065ELJ	ICE3BR1765J	ICE3A2065ELJ	ICE3BR0665J
	DSO-12	ICE3RBR4765JG		ICE3RBR1765JG		ICE3RBR0665JG
		ICE3AR4780JZ	ICE3AR2280JZ	ICE3AR1580VJZ	ICE3AR1080VJZ	ICE3AR0680JZ
		ICE3AR4780VJZ	ICE3BR2280JZ			ICE3BR0680JZ
800 V	800 V DIP-7	ICE3AR4780CJZ	ICE3AR2280VJZ			ICE3AR0680VJZ
		ICE3AR10080CJZ	ICE3AR2280CJZ			
	DSO-12	ICE3AR4780JG	ICE3AR2280JG		ICE3AR1080JG	

www.infineon.com/coolset

Fixed-frequency PWM IC

	Gen5		Gei	n3
FF PWM IC	ICE5ASAG	ICE5GSAG	ICE3AS03LJG	ICE3BS03LJG
Package	DSO-8		DSC	D-8
Switching frequency	100 kHz	125 kHz	100 kHz 65 kHz	
Operating temperature	-40°C~	·129°C	-25°C~	-130°C
Start-up cell	Caso	code	V	/
V _{cc} on/off threshold	16 V/	′10 V	18 V/1	10.5 V
Soft-start time	12	ms	10 ms	20 ms
Frequency jittering	٧	/	V	/
Modulated gate drive	✓		✓	
Active burst mode	✓ (3-level selectable)		✓	
Slope compensation for CCM	v	/	-	
Frequency reduction	٧	/	-	
Integrated error amplifier for direct feedback	v	/	-	
Adjustable line input overvoltage protection	√ with au	to restart	-	
Adjustable brown-in protection	√ with au	to restart	-	
V _{cc} pin short-to-ground protection	√ (no st	art-up)	-	
V _{cc} undervoltage protection	√ with au	to restart	✓ with auto restart	
V _{cc} overvoltage protection	√ with au	to restart	√ with latch–up	
Overload/open loop protection	√ with auto restart		√ with auto restart	
Overtemperature protection	√ with auto restart and hysteresis		✓ with latch-up	
External blanking time extension	-	-	✓ with auto restart	
External protection enable pin	-	-	√ with la	atch-up

Fixed-frequency CoolSET™


	700 V CoolSET™					
	Gen5	Gen3	Gen3R	Gen3R		
	ICE5ARxx70AG(BZS)	ICE3Axx65ELJ	ICE3BRxx65J	ICE3RBRxx65JZ(G)		
Package	DIP-7, DSO-12	DI	P-8	DIP-7, DSO-12		
Output power range	15 W	19 W~34 W	15 W~41 W	14 W~39 W		
Operating temperature range	-40°C~129°C	-25°C	~130°C	-40°C~130°C		
Switching frequency	100 kHz	100 kHz	65 kHz	65 kHz		
Frequency reduction	✓		-			
Integrated error amplifier	✓		-			
Slope compensation for CCM mode	✓		-			
V _{cc} on/off threshold	16 V/10 V	18 V/10.5 V				
Soft-start time	12 ms	20 ms				
Active burst mode selection	3 level	1 level				
V _{cc} pin short-to-ground protection	No start-up		-			
V _{cc} overvoltage protection	Auto restart	Latch	Auto r	estart		
Overtemperature protection	Auto restart with hysteresis	Latch	Auto r	estart		
External protection enable pin	-	Latch	Auto r	estart		
Adjustable brown-in/-out protection	Brown-in only		-			
Adjustable line input overvoltage protection	Only ICE5ARxx70AG	-				
Fast AC reset			-			
Product available	ICE5AR4770AG ICE5AR4770BZS	ICE3A1065ELJ ICE3A2065ELJ	ICE3BR4765J ICE3BR1765J ICE3BR0665J	ICE3RBR4765JZ ICE3RBR1765JZ ICE3RBR0665JZ ICE3RBR4765JG ICE3RBR1765JG ICE3RBR0665JG		

				800 V CoolSET™				950 V Co	olSET™
	Gen3R ICE3A(B)Rxx80JZ	Gen3R ICE3ARxx80CJZ	Gen3R ICE3ARxx80JG	Gen3R ICE3ARxx80VJZ	Gen5 ICE5BRxx80BZ	Gen5 ICE5ARxx80AG(BZS)	Gen5 ICE5GRxx80AG	Gen5 ICE5BRxx95xZ	Gen5 ICE5ARxx95xZ
Package		P-7	DSO-12	DIP-7	DIP-7	DIP-7, DSO-12	DSO-12	DIF	
Output power range	10 W~40 W	11 W~23 W	14 W~30 W	15 W~39 W	15 W~22 W	15 W~40 W	15 W~27 W	17	W
Non-isolated buck output current range					450 mA~700 mA			550 mA	-
Operating temperature range	-25°C	~130°C	-40°C	~130°C		-40°C~129°C		-40°C~	129°C
Switching frequency	100 kHz/65 kHz	100 kHz	100	kHz	65 kHz	100 kHz	125 kHz	65 kHz	100 kHz
Frequency reduction			_			✓		V	•
Integrated error amplifier			-		√	√ (except ICE5ARxx80CZ)		Only ICE5BRxx95BZ	√
Slope compensation for CCM mode	-			✓ ·		√			
V _{cc} on/off threshold	17 V/10.5 V			16 V/10 V		16 V/10 V			
Soft-start time	10 ms			12 ms			12 ms		
Active burst mode selection	4-level	3-level	4-1	evel	3-level			3-level	
V _{cc} pin short-to-ground protection			_	No start-up			No start-up		
V _{cc} overvoltage protection				Auto restart			Auto re	estart	
Overtemperature protection			Α	uto restart with hysteres	restart with hysteresis			Auto restart with hysteresis	
External protection enable pin	Auto restart	Latch	Auto restart		-		-		
Adjustable brown-in/-out protection		Auto restart		-	Brown-in only			Brown-in	
Adjustable line input overvoltage protection		-		Auto restart		Yes (except ICE5ARxx80BZS)	Auto restart	Only ICE5BRxx95CZ	-
Fast AC reset	-	✓			_			-	
Product available	ICE3AR10080JZ ICE3AR4780JZ ICE3AR2280JZ ICE3AR0680JZ ICE3BR2280JZ ICE3BR0680JZ	ICE3AR10080CJZ ICE3AR4780CJZ ICE3AR2280CJZ	ICE3AR4780JG ICE3AR2280JG ICE3AR1080JG	ICE3AR4780VJZ ICE3AR2280VJZ ICE3AR1580VJZ ICE3AR1080VJZ ICE3AR0680VJZ	ICE5BR4780BZ ICE5BR2280BZ	ICE5AR0680AG ICE5AR4780BZS ICE5AR2280CZ ICE5AR0680BZS	ICE5GR4780AG ICE5GR2280AG ICE5GR1680AG	ICE5BR3995BZ ICE5BR3995CZ	ICE5AR3995BZ

ICC80QSG

Single-stage flyback controller IC for battery charging

The ICC80QSG is a PWM controller for flyback topologies operating in quasi-resonant mode and valley-switching DCM, to achieve high efficiency of power transfer across wide operating range. For battery charging applications, the IC offers a wide power range as well as a comprehensive set of protections. The IC is easy to design in and requires a minimum number of external components. The gate driver current enables reasonable designs up to 130 W with state-of-the-art MOSFETs. The system performance and efficiency can be optimized using Infineon CoolMOS™ P7 power MOSFETs.

Features and benefits

Key features
Quasi-resonant mode (QRM) operation with continuous conduction mode
(CCM)-prevention and valley-switching discontinuous conduction mode (DCM)
in mid to light load

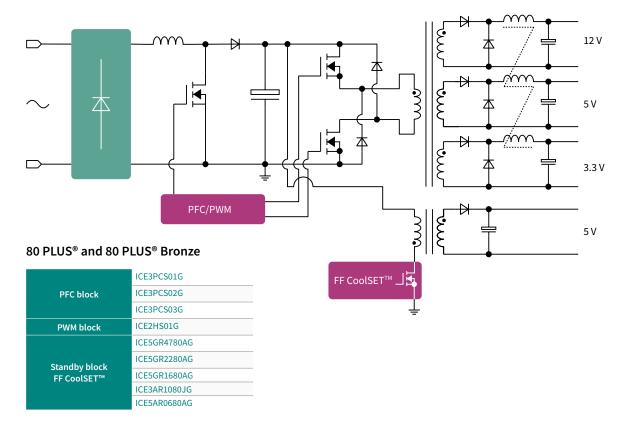
- Secondary-side regulation (SSR)
- Burst mode for very light loads
- Adjustable maximum on-time
- Comprehensive set of protections
- Externally configurable hysteresis of brown-in and brown-out
- Soft start

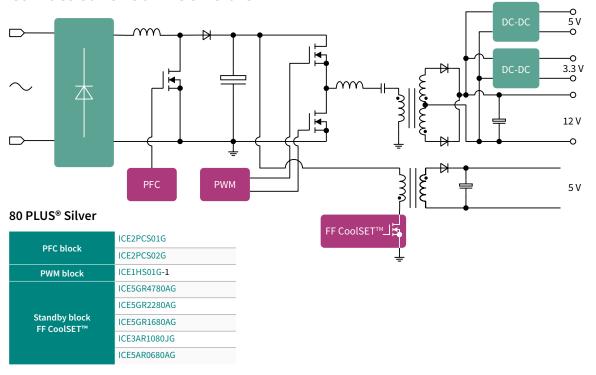
Key benefits

- Ideal for battery charging current control
- BoM cost reduction
- High efficiency and low electromagnetic interference (EMI)
- Low power consumption in stand-by mode
- Design flexibility with adjustable maximum switching frequency and configurability of brown-in and brown-out
- Protection of primary components from overheating and saturation with higher brown-out level at higher input/output power
- Safe, robust, and reliable operation

Applications

The ICC80QSG is tailored for battery charger applications up to 130 W, such as cordless appliances, e-bike chargers, power tools, consumer drones, and gardening tools.

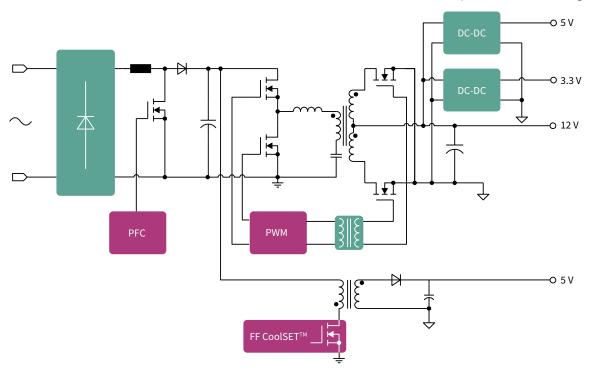




Climate saver systems

Climate saver 80 PLUS® and 80 PLUS® Bronze

Climate saver 80 PLUS® Silver



www.infineon.com/pcpower www.infineon.com/acdc www.infineon.com/coolset

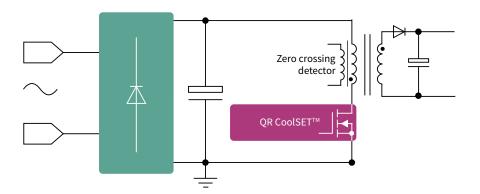
Climate saver 80 PLUS® Gold

Climate saver 80 PLUS® Platinum

Certification for Infineon's PC power reference design

80 PLUS® Gold

	_
	ICE3PCS01G
PFC block	ICE3PCS02G
	ICE3PCS03G
PWM block	ICE2HS01G
	ICE5GR4780AG
	ICE5GR2280AG
Standby block FF CoolSET™	ICE5GR1680AG
11 COULSE1	ICE3AR1080JG
	ICE5AR0680AG


80 PLUS® Platinum

Certification for Infineon's PC power reference design

	ICE3PCS01G
PFC block	ICE3PCS02G
	ICE3PCS03G
PWM block	ICE2HS01G
	ICE5QR4780BG
	ICE5QR2280BG
Standby block QR CoolSET™	ICE5QR1680BG
	ICE2QR1080G
	ICE5QR0680BG

www.infineon.com/pcpower www.infineon.com/acdc www.infineon.com/coolset

5th generation quasi-resonant PWM IC and CoolSET™

- Integrated CoolMOS™ in 800 V MOSFET with cascode configuration
- Digital frequency reduction with reduced load
- Novel quasi-resonant to minimize the spread of switching frequency between low- and high-line AC input
- Selectable active burst mode entry/exit profile
- Auto restart mode for line overvoltage protection

- Auto restart mode for brown-out protection
- Auto restart mode for V_{cc} under-/ overvoltage protection
- Auto restart mode for open loop and output overload protection
- Auto restart mode for overtemperature protection with hysteresis
- Auto restart mode for output overvoltage

- Limited charging current during V_{cc}
 pin short-to-ground protection
- Peak power limitation with input voltage compensation
- Minimum switching frequency limitation (no audible noise on power units on/off)
- DSO package (controller) and
 DSO-12 (CoolSET™)

5th generation quasi-resonant CoolSET™

85 V _{AC} ~	power ¹⁾ 300 V _{AC} 50°C	15 W	22 W	27 W	41 W~42 W
R _{DS(or}	n),max.	5.18 Ω	2.35 Ω	1.75 Ω	0.80 Ω
800 V	DSO-12	ICE5QR4780BG	ICE5QR2280BG	ICE5QR1680BG	ICE5QR0680BG

2nd generation quasi-resonant CoolSET™

85 V _{AC} ^	power ¹⁾ -300 V _{ac} 50°C	14 W~15 W	20 W~21 W	23 W~26 W	31 W	38 W~42 W
R _{DS(c}	on),max.	5.44 Ω~5.18 Ω	2.62 Ω	1.96 Ω	1.11 Ω	0.75 Ω~0.71 Ω
	DIP-7	ICE2QR4765Z		ICE2QR1765Z		ICE2QR0665Z
650 V	DIP-8	ICE2QR4765		ICE2QR1765		ICE2QR0665
	DSO-12	ICE2QR4765G		ICE2QR1765G		ICE2QR0665G
	DIP-7		ICE2QR2280Z			ICE2QR0680Z
800 V	DSO-12	ICE2QR4780G	ICE2QR2280G ICE2QR2280G-1		ICE2QR1080G	

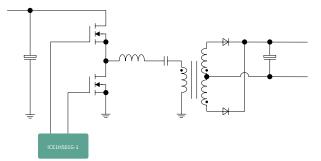
www.infineon.com/coolset

Quasi-resonant PWM IC

Feature	ICE5QSBG	ICE2QS02G	ICE2QS03G
Package	DSO-8	DSO-8	DSO-8
Switching scheme	Novel QR with 10 zero crossing counters	QR with 7 zero crossing counters	QR with 7 zero crossing counters
Operating temperature	-40°C~129°C	-25°C~130°C	-25°C~130°C
Start-up cell	Cascode	-	✓
V _{cc} on/off	16 V/10 V	12 V/11 V	18 V/10.5 V
Power saving during standby	√ active burst mode in QR switching 2-level selectable burst mode entry/exit level	-	√ active burst mode 52 kHz
Digital frequency reduction for high average efficiency	✓	✓	✓
OLP blanking time	Fixed Adjustable		Fixed
Auto restart timer	Through V _{cc} charging/discharging	Setting with external components	Through V _{cc} charging/discharging
Maximum input power limitation	V _{in} pin voltage dependent	Adjustable through ZC resistor	Adjustable through ZC resistor
V _{cc} undervoltage protection	√ with auto restart	√ with latch	√ with auto restart
Adjustable output overvoltage protection	√ with auto restart	√ with latch	√ with latch
Adjustable line input overvoltage protection	√	-	-
Brown-out feature	✓	✓	-
V _{cc} pin short-to-ground protection	✓	-	-
Target application	Home appliances, set-top-box, AUX SMPS	AUX power supply to V _{cc} eg., LCD TV multi/main, audio main, PDP TV multi/address	Self-power supply to V _{cc} eg., smart meter, industrial applications

Quasi-resonant CoolSET™

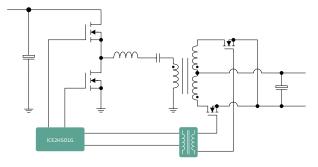
Feature	2 nd generation ICE2QRxxxxZ/G	2 nd generation ICE2QRxx80G-1	5 th generation ICE5QRxx80BG
Switching scheme	QR with 7 zero o	Novel QR with 10 zero crossing counters	
Integrated MOSFET	650 V and 800 V	800 V	800 V
High-voltage start-up cell		√ ·	Cascode
Power saving during standby	Active burst mo	ode f _{sw} at 52 kHz	2 level selectable active burst mode quasi-resonant
V _{cc} on/off threshold (typ.)	18 V/10.5 V 18 V/9.85 V		16 V/10 V
Adjustable output overvoltage protection	√ wit	h latch	√ with auto restart
V _{cc} over/undervoltage protection	√ with a	√ with auto restart	
Overload/open loop protection	√ with a	uto restart	√ with auto restart
Overtemperature protection	√ with au	uto restart	✓ (Auto restart with hysteresis)
Adjustable line input overvoltage protection			√ with auto restart
Brown-out		√ with auto restart	
V _{cc} pin short-to-ground		✓ (No start-up)	
Package	DIP-7 DIP-8 DSO-12	DIP-7 DSO-12	DSO-12


Resonant LLC half-bridge controller ICs

Best-in-class converters and controllers to support LLC HB resonant mode topology

Resonant mode power supplies are a variation over SMPS circuits where the switching losses are significantly reduced by adapting zero-voltage or zero-current switching techniques, also known as soft-switching techniques. In non-resonant mode SMPS circuits, the switches are subjected to hard switching. LLC HB resonant operates in ZVS mode, whereby switching loss is reduced to operate the converter at a higher switching frequency. In addition, the converter can be further optimized at a high input voltage. This topology allows to eliminate the secondary filter inductor, adopt better rectifier diodes, and reduce secondary conduction loss. The converter utilizes the leakage and magnetizing inductance of a transformer. With the magnetic integration concept, all the magnetic components can be built in one magnetic core.

LLC resonant (no SR)


Application diagram - LLC resonant (no SR)

- Novel and simple design (12 components + HB driver)
- Minimum operating frequency is adjustable externally
- Burst mode operation for output voltage regulation during no load and/or bus overvoltage
- Multiple protections in case of fault
- Input voltage sense for brown-out protection
- Open loop/overload fault detection by FB pin with auto restart and adjustable blanking/restart time
- Frequency shift for overcurrent protection
- Lead-free, RoHS compliant package
- DSO-8 package

Resonant LLC half-bridge controller IC with integrated synchronized rectifier control

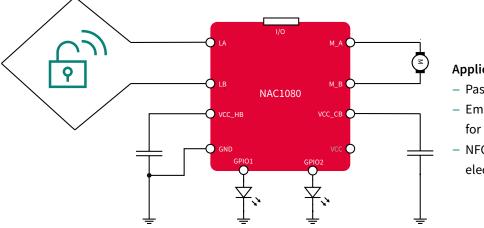
LLC resonant + SR

- Novel LLC/SR operation mode and controlled by primary-side controller controller
- Multiple protections for SR operation
- Tight tolerance control
- Accurate setting of switching frequency and dead time
- Simple system design
- Optimized system efficiency
- Multiple converter protections: OTP, OLP, OCP, latch-off enable
- External disable for either SR switching or HB switching
- Lead-free, RoHS compliant package
- DSO-20 package

www.infineon.com/acdc

Solutions

LLC half-bridge controller IC	ICE1HS01G-1	ICE2HS01G	
Package	DSO-8	DSO-20	
Switching frequency range	up to 600 kHz	up to 1 MHz	
LLC soft-start	✓	✓	
LLC burst mode	✓	✓	
Adjustable minimum frequency	✓	✓	
Overload/open loop protection	✓	✓	
Mains undervoltage protection with hysteresis	✓	✓	
Overcurrent protection	2-level	3-level	
Drive signal for synchronous rectification	-	✓	
Adjustable dead time	-	✓	
External latch-off and OTP	-	✓	
Target application	LCD-TV, audio, etc.	Server, PC, LCD-TV, etc.	


	Product	Frequency – f _{sw}	Dead time	Current drives	Package
ICE1HS01G-1	LLC resonant (no SR)	30 kHz~600 kHz	380 ns	1.5 A	DSO-8
ICE2HS01G	Resonant LLC half-bridge controller IC with integrated synchronized rectifier control (LLC resonant + SR)	30 kHz~1 MHz	100 ns~1000 ns	0.3 A	DSO-20

NAC1080 - NFC smart actuation controller

The NAC1080 is an NFC actuation controller with integrated half-bridge and energy harvesting modules, enabling cost effective development of passive smart actuators like passive locks. The low-power Arm® Cortex®-M0 based microcontroller with integrated NFC frontend, motor driver, and energy harvesting function enables customers to develop smart actuation devices with minimum system BOM requirement.

The flexible IC architecture and the smart partitioning between hardware and software enable customers to maximize software-defined functions. Furthermore, the NAC1080 includes hardware security functions such as a secure area in flash, a 128 bit AES accelerator, and a true random generator. A separate secure element can be connected via the digital interface on demand.

Users can program this NAC1080 with the industry-wide standard solutions for Cortex®-M0 processors. Especially for the smart lock application, SDK packages for firmware and mobile application development in Android and iOS systems are available to support a fast development cycle.

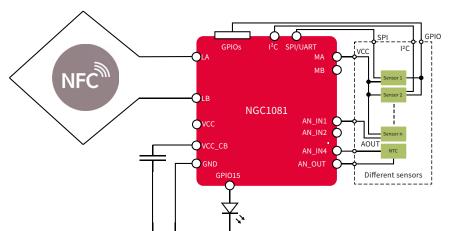
Applications

- Passive/active NFC lock
- Emergency power source for battery devices
- NFC configuration of electronic devices

Features and benefits

Kev features NFC interface compliant to ISO 14443 type A - Arm® 32 bit Cortex®-M0 microcontroller core Dual-operation mode: passive or battery mode - 60 kB NVM, 16 kB RAM, 16 kB boot ROM Integrated H-bridge - Energy harvesting output - 128-bit AES accelerator, true random number generator

- A single-chip solution to build batteryless NFC actuators, like passive lock
- Batteryless IoT devices without battery exchange efforts and costs
- Intuitive connection via smartphone to enable cloud-based business models
- Minimum system BOM for easy and cost effective implementation



NGC1081 – NFC smart sensing controller

The NGC1081 is an NFC sensing controller with an integrated temperature sensor and ADC/DAC sensing unit in addition to the features provided by NAC1080. The low-power Arm® Cortex®-M0 based microcontroller with integrated NFC connectivity, sensing unit, and energy harvesting function in one device enables customers to develop miniaturized smart edge computing/sensing devices with minimum system BOM requirement.

NGC1081 works in both passive mode and battery mode. In passive mode, it can communicate with a mobile phone wirelessly while at the same time harvesting energy from the NFC field to power the whole sensing system including the IC and its connected sensors. Working in battery mode, it simplifies the implementation of many sensing applications like temperature, humidity, and vibration tracking devices. With the smartphone as the human interaction interface, the system functions are widely extended to cloud functionalities, such as uploading data and data analysis on the cloud.

NGC1081 has a 12-bit SAR ADC and a 10-bit DAC. It provides one analog output (DAC) and four analog inputs (ADC). The ADC has three sample and hold stages, which allow parallel signal sampling. A temperature sensor is integrated as well. Users can program the NGC1081 with the industry-wide standard solutions for Cortex®-M0 processors.

Applications

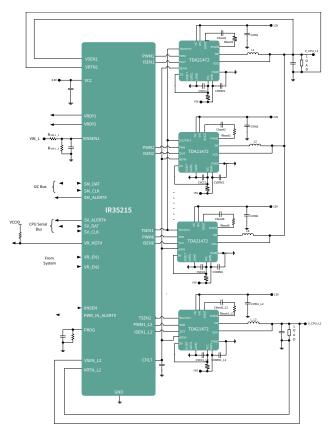
- Passive sensor device, inlay
- Medical, healthcare sensor patch
- Data logger, temperature logger
- Radiator thermostat
- Galvanic isolated sensor front end

Features and benefits

Key features NFC interface compliant to ISO 14443 type A - Arm® 32-bit Cortex®-M0 microcontroller core - Dual-operation mode: passive or battery mode 60 kB NVM, 16 kB RAM, 16kB boot ROM - 12-bit SAR ADC, 10-bit DAC Integrated temperature sensor - Integrated H-bridge Energy harvesting output - 128-bit AES accelerator, true random number generator

- A single-chip solution to build a batteryless smart sensor for miniaturized
 - Multiple power supply options for sensors: GPIO for low current or energy harvesting output for high current
- Natural galvanic isolated sensing interface for applications with direct human body contact
- Intuitive connection via smartphone to enable cloud-based business models

DC-DC converters


Highest density end-to-end power management solutions

As the innovation leader for power semiconductor and energy efficiency technologies, we are continually developing and working on the best solutions for your applications. Our DC-DC converter portfolio includes integrated power stages, switching regulators, integrated POL converters and integrated POL voltage regulators, as well as digital multiphase controllers and digital power controllers (see XDPP1100 digital power controller family).

OptiMOS™ power stage

60 A and 70 A integrated power stages with integrated current and temperature telemetry

Infineon's integrated OptiMOS™ power stage family contains a synchronous buck gate driver IC co-packed with control and synchronous MOSFETs and a Schottky diode to improve efficiency further. The package is optimized for PCB layout, heat transfer, driver/MOSFET control timing, and minimal switch node ringing when layout guidelines are followed. The paired gate driver and MOSFET combination enables higher efficiency at lower output voltages required by cutting-edge CPU, GPU, ASIC, and DDR memory designs. The TDA21472 integrated power stages internal MOSFET current sense algorithm, with integrated temperature compensation, achieves superior current sense accuracy versus best-in-class controller-based inductor DCR sense methods. Up to 1.0 MHz switching frequency enables high-performance transient response, allowing miniaturization of output inductors, as well as input and output capacitors, while maintaining industry-leading efficiency. The TDA21472 is optimized for CPU core power delivery in server applications. The ability to meet the stringent requirements of the server market also makes the TDA21472 ideally suited for powering GPU, ASIC, DDR memory, and other high current designs.

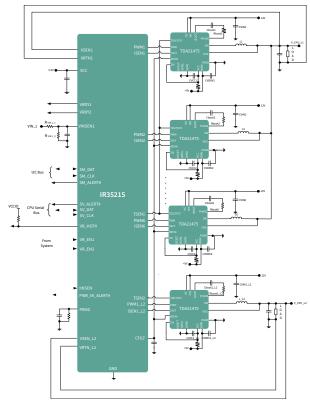
Feature

- Integrated driver, Schottky diode, control MOSFET and synchronous MOSFET
- 5 mV/A on-chip MOSFET current sensing with temperature compensated reporting
- Input voltage (V_{in}) range of 4.5 to 15 V
- $-V_{CC}$ and V_{DR} V supply of 4.5 to 7 V
- Output voltage range from 0.25 up to 5.5 V
- Output current capability of 70 A
- Operation up to 1.0 MHz
- V_{cc} undervoltage lockout (UVLO)
- 8 mV/°C temperature analog output and thermal flag pull-up to 3.3 V
- Overtemperature protection (OTP)
- Cycle-by-cycle self-preservation overcurrent protection (OCP)
- MOSFET phase fault detection and flag
- Preliminary overvoltage protection (pre-OVP)
- Compatible with 3.3 V tri-state PWM input
- Body-Braking™ load transient support through
 PWM tri-state
- Diode emulation mode (DEM) for improved light-load efficiency
- Efficient dual-sided cooling
- Small 5.0 x 6.0 x 0.9 mm PQFN package

Applications

- High-frequency, high-current, low-profile DC-DC converters
- Voltage regulators for CPUs, GPUs, ASICs, and DDR memory arrays

Part type	Package	I _{out} [A]	V _{in} [V]	V _{out} [V]	Switching frequency [MHz]
TDA21472	5x6 x 0.9 mm PQFN	70	4.5 to 15	0.25 to 5.5	1.0
TDA21462*	5x6 x 0.9 mm POFN	60	4.5 to 15	0.25 to 5.5	1.0



OptiMOS™ power stage

70 A power stage with exposed top for improved thermal performance

Infineon's TDA21475 exposed-top power stage contains a low quiescent-current synchronous buck gate driver IC co-packaged with high-side and low-side MOSFETs. The package is optimized for PCB layout, heat transfer, driver/MOSFET control timing, and minimal switch node ringing when layout guidelines are followed. The gate driver and MOSFET combination enables higher efficiency at the lower output voltages required by cutting-edge CPU, GPU, and DDR memory designs. The TDA21475 internal MOSFET current sense algorithm with temperature compensation achieves superior current sense accuracy versus best-in-class controller-based inductor DCR sense methods. Protection includes cycle-by-cycle overcurrent protection with programmable threshold, $V_{\rm cc}/V_{\rm DRV}$ UVLO protection, bootstrap capacitor undervoltage protection, phase fault detection, IC temperature reporting, and thermal shutdown. The TDA21475 also features auto replenishment of the bootstrap capacitor to prevent over-discharge. The TDA21475 features a deep-sleep power-saving mode, which greatly reduces the power consumption when the multiphase system enters PS3/PS4 mode. Operation at switching frequency as high as 1.5 MHz enables high-performance transient response, allowing a reduction of output inductance and output capacitance while maintaining industry-leading efficiency. The TDA21475 is optimized for CPU core power delivery in server applications. The ability to meet the stringent requirements of the server market also makes the TDA21475 ideally suited for powering GPU and DDR memory designs.

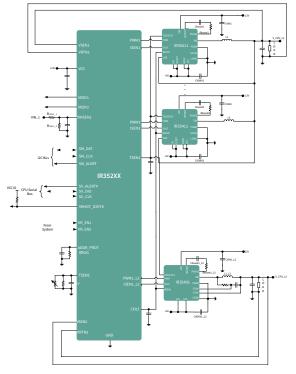
Features

- Co-packaged driver, high-side and low-side MOSFETs
- 5 mV/A on-chip MOSFET current sensing with temperature compensated reporting input voltage (V_{IN}) range of 4.25 to 16 V
- V_{cc} and V_{DRV} supply of 4.25 to 5.5 V
- Output voltage range from 0.25 up to 5.5 V output current capability of 70 A operation up to 1.5 MHz
- V_{CC}/V_{DRV} undervoltage lockout (UVLO) bootstrap capacitor undervoltage protection 8 mV/°C temperature analog output
- Thermal shutdown and fault flag
- Cycle-by-cycle overcurrent protection with programmable threshold and fault flag MOSFET phase fault detection and flag
- Auto replenishment of bootstrap capacitor
- Deep-sleep mode for power saving
- Compatible with 3.3 V tri-state PWM input Body-Braking[™]
 load transient support Small 5x6 x 0.65 mm PQFN package
- Lead-free RoHS compliant package
- Integrated driver, Schottky diode, control MOSFET and synchronous MOSFET

Applications

- High-frequency, high-current, low-profile DC-DC converters
- Voltage regulators for CPUs, GPUs, ASICs, and DDR memory arrays

Part type	Package	I _{out} [A]	V _{in} [V]	V _{out} [V]	Switching frequency [MHz]
TDA21475	5x6 x 0.9 mm PQFN	70	4.25 to 16	0.25 to 5.5	1.5



OptiMOS™ power stage

20 A power stage with integrated current sense

Infineon's IR35401 integrated power stage contains a synchronous buck gate driver IC co-packaged with control and synchronous MOSFETs and a Schottky diode to improve efficiency further. The package is optimized for PCB layout, heat transfer, driver/MOSFET control timing, and minimal switch node ringing when layout guidelines are followed. The paired gate driver and MOSFET combination enables higher efficiency at lower output voltages required by cutting-edge CPU, GPU and DDR memory designs. The IR35401 power stage features an integrated current sense amplifier to achieve superior current sense accuracy against best-in-class controller-based inductor DCR sense methods while delivering the clean and accurate current report information. The protection features inside IR35401 include V_{CC} UVLO and thermal flag. IR35401 also features an auto replenishment of the bootstrap capacitor to prevent the bootstrap capacitor from overdischarging. The IR35401 supports deep-sleep mode and consumesless than 100 μA V_{cc} bias current when the EN pin is pulled low. Up to 1.5 MHz switching frequency enables high-performance transient response, allowing miniaturization of output inductors, and input and output capacitors while maintaining industry-leading efficiency. When combined with Infineon's digital controllers, the IR35401 incorporates the Body-Braking™ feature through PWM tri-state which enables reduction of output capacitors. The IR35401 is optimized for low current CPU rails in server applications. The ability to meet the stringent requirements of the server market also makes the IR35401 ideally suited for powering GPU and DDR memory rails.

Applications

General purpose POL DC-DC converters

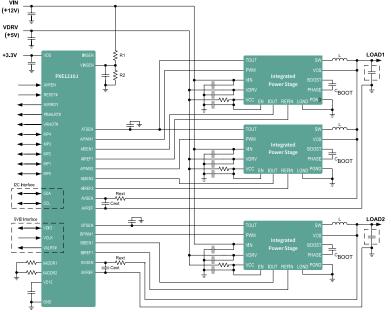
www.infineon.com/integrated-powerstages

- Voltage regulators for CPUs, GPUs, ASICs, and DDR memory arrays

Features

- Integrated driver, control MOSFET and synchronous MOSFET
- Integrated bootstrap synchronous PFET
- Inductor DCR current sensing with temperature compensation
- Input voltage (V_{IN}) range from 4.25 to 16 V
- V_{cc} supply of 4.25 to 5.5 V
- Output voltage range from 0.5 to 3 V or up to 5.5 V if the internal current sense amplifier is not used
- Local lossless inductor current sensing with improved noise immunity and accuracy
- Single reference based current reporting output
- Output current capability of 20 A
- Operation up to 1.5 MHz
- V_{cc} undervoltage lockout
- Overtemperature and V_{cc} UVLO fault communication to controller via TOUT pin
- Compatible with 3.3 V tri-state PWM input
 - Body-Braking[™] load transient support through PWM tri-state
- Auto replenishment on BOOST pin
- Low operating quiescent current and <100 µA when disabled
- Small 4 x 5 x 0.9 mm PQFN package
- Lead-free RoHS compliant package

Part type	Package	I _{out} [A]	V _{in} [V]	V _{out} [V]	Switching frequency [MHz]
IR35401	4 x 5 x 0.9 mm PQFN	20	4.25 to 16	0.5 to 5.5	1.5



OptiMOS™ power stage

25 A, 35 A, 40 A integrated power stages with highest efficiency on smallest form factor

Infineon's TDA21240 power stage is a multi-chip module that incorporates Infineon's premier MOSFET technology for a single high-side and a single low-side MOSFET coupled with a robust, high-performance, high switching frequency gate driver in a single PG-IQFN-30-2 package. The optimized gate timing allows for significant light-load efficiency improvements over discrete solutions. When combined with Infineon's family of digital multiphase controllers, the TDA21240 forms a complete core voltage regulator solution for advanced micro and graphics processors as well as point-of-load applications.

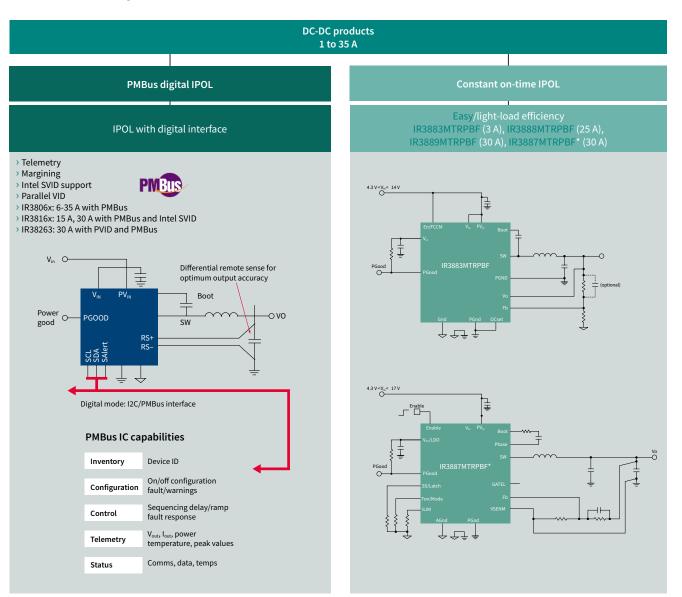
Features

- For synchronous buck converter step down voltage applications
- Maximum average current of 40 A
- Input voltage range +4.5 V to +16 V
- Power MOSFETs rated 25 V
- Fast switching technology for improved performance at high switching frequencies (> 500 kHz)
- Remote driver disable function
- Includes bootstrap diode
- Undervoltage lockout
- Shoot through protection
- +5 V high-side and low-side MOSFETs driving voltage
- Compatible to standard +3.3 V PWM controller integrated circuits
- Tri-state PWM input functionality
- Small package: PG-IQFN-30-2 (4 x 4 x 1 mm)
- RoHS compliant
- Thermal warning

Applications

- Desktop and server VR buck converter
- Single-phase and multiphase POL
- CPU/GPU regulation in notebook, desktop graphics cards, DDR memory, graphic memory
- High power density voltage regulator modules (VRM)
- Qualified for DC-DC industrial applications based on JEDEC (JESD47, JESD22, J-STD20)
- General purpose POL DC-DC converters

Part type	Package	I _{out} [A]	V _{in} [V]	Switching frequency [MHz]
TDA21242	4 x 4 x 1 mm PQFN	25	4.5 to 16	1.0
TDA21241	4 x 4 x 1 mm PQFN	35	4.5 to 16	1.0
TDA21240	4 x 4 x 1 mm PQFN	40	4.5 to 16	1.0



Integrated POL voltage regulators

Highest density high efficiency integrated POL (IPOL) for smart enterprise system

Infineon's integrated POL switching converters deliver benchmark efficiency and dramatically reduce system size. Solutions up to 35 A are available in compact PQFN packages. Target applications include server, storage, routers and switches, telecom base stations, digital home media, mobile computing, and embedded data processing. Solutions with and without PMBus digital communication are available in single output and multi-rail format.

Point-of-load products - how to choose

Ready-to-go reference designs and the on-line PowerDesk simulator simplify the task of designing regulated voltage rails. Different control topologies are available to meet an application's specific requirements.

www.infineon.com/ipol www.infineon.com/analog-ipol

Integrated point-of-load converters IR3806x series (6 A/15 A/25 A/35 A)

Digital interface IPOL voltage regulators

The digital interface IPOL devices are easy-to-use, fully integrated, and highly efficient DC-DC regulator offering I²C/PMBus, parallel VID, Intel SVID. The on-board PWM controller and MOSFETs make the family a space-efficient solution, providing accurate power delivery for low output voltage and high current applications.

The IR3806x family of PMBus enabled IR MOSFET™ IPOL based IR MOSFET™ IPOL voltage regulators offers:

- Compactness of integrated controller, driver, and MOSFETs
- High-performance analog voltage mode engine
- Flexibility of a rich PMBus interface

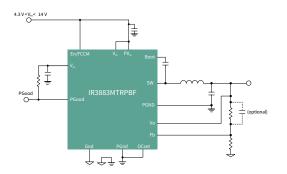
The IR381(2/3)6x family features OptiMOS[™] 5 for the highest efficiency and adds Intel SVID support (IR381(/3)6x) for Intel based systems or parallel VID (IR3826x) for voltage scaling or 8 programmable output voltages booting options to avoid programming at start up. Pin compatible options with and without PMBus are available to allow the flexibility of using PMBus only during evaluation or easily upgrade a system to PMBus without re-layout.

Features and benefits

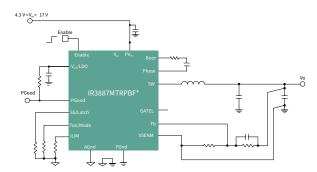
Key features	Key benefits
- PMBus revision 1.2 compliant	 Only single-chip solution with extensive PMBus, parallel VID, Intel SVID support allows 50 percent space saving versus external power competition
 - ≥ 66 PMBus commands - Wide input voltage range and single 5 to 16 V input operations 	- Intel SVID support for Intel-based systems
Differential remote sense	Parallel VID or PMBus for voltage setting and margining
– Ultralow jitter voltage mode engine	- Telemetry status via digital bus
– Operation temp: -40° to 125° C	Remote monitoring and update Parameter changes by register
	- Flexible sequencing
	- High accuracy low ripple
	- Integrated sequencing, margin, current and voltage monitoring

Digital interface IPOL

Part number	Max. current [A]	Package size [mm]	Max. V _{in}	Max. f _{sw}	Distinctive features
IR38064MTRPBF	35	5 x 7	21 V	1500 kHz	PMBus
IR38063M	25	5 x 7	21 V	1500 kHz	
IR38062M	15	5 x 7	21 V	1500 kHz	
IR38060M	6	5x6	16 V	1500 kHz	
IR38163M	30	5 x 7	16 V	1500 kHz	OptiMOS™ 5, SVID + PMBus
IR38165M	30	5 x 7	16 V	1500 kHz	OptiMOS™ 5, SVID
IR38363M	15	5 x 7	16 V	1500 kHz	OptiMOS™ 5, SVID + PMBus
IR38365M	15	5 x 7	16 V	1500 kHz	OptiMOS™ 5, SVID
IR38263M	30	5 x 7	16 V	1500 kHz	OptiMOS™ 5, PVID + PMBus
IR38265M	30	5 x 7	16 V	1500 kHz	OptiMOS™ 5, PVID
IR38164M	30	5 x 7	16 V	1500 kHz	OptiMOS™ 5, SVID + PMBus, enhanced Imon
IRPS5401M	4+4+2+2+0.5	7 x 7	14 V	1500 kHz	5 output PMIC, PMBus



OptiMOS™ IPOL voltage regulators with COT


Easy-to-use with no external compensation and smallest BOM

OptiMOS™ IR3883MTRPBF, IR3887MTRPBF*, IR3889MTRPBF, and IR3888MTRPBF integrated point-of-load DC-DC devices are easy-to-use, fully integrated, and highly efficient DC-DC regulators that operate from a wide input voltage range and provide up to 30 A continuous current. The devices increase efficiency and power density and simplify design for POL applications in server, enterprise storage, netcom router and switches, datacom and telecom base stations.

Block diagram IR3883M

Block diagram IR3887M (30 A)

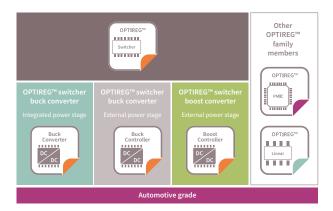
Main benefits

Main benefits

- Compensation free and stable with all ceramic caps
- Scalable solution from 3 A up to 40 A
- For designs requiring high density, low cost and easy design, the family includes a 3 A device with enhanced stability constant-on-time (COT) engine that does not require external compensation enabling easy designs and fast time to market.
- Quiescent current down to 5 μA
- $\boldsymbol{\mathsf{-}}$ Overload, overtemperature, short circuit, and reverse-polarity protection
- Low current consumption
- Extended temperature range -40°C ... +125°C

Analog interface IPOL

Part number	Max. current [A]	Package size [mm]	Max. V _{in}	Max. f _{sw}	Distinctive features
IR3883MTRPBF	3	3 x 3	14 V	800 kHz	Constant-on-time (COT)
IR3823AMTRPBF	3	3.5 x 3.5	17 V	2000 kHz	
IR3899AMTRPBF	9	4 x 5	17 V	2000 kHz	
TDA38820	20	4 x 5	17 V	2000 kHz	
IR3888MTRPBF	25	5x6	17 V	2000 kHz	
IR3447AMTRPBF	25	5x6	17 V	600 kHz	
IR3887MTRPBF	30	4 x 5	17 V	2000 kHz	
IR3889MTRPBF	30	5x6	17 V	2000 kHz	
TDA38840	40	5x6	17 V	2000 kHz	
IR3846AMTRPBF	40	5 x 7	17 V	600 kHz	



www.infineon.com/ipol

OPTIREG™ switcher power supply ICs

High-efficiency solutions for harsh environments

Infineon offers optimized DC-DC converters that are designed specifically for harsh automotive environments. Wide input voltage range, optimized feature set, and extended qualification make our DC-DC converters perfectly suitable for multiple applications. Our DC-DC portfolio contains various products that operate in step-down (buck), step-up (boost), or a combination of those(buck-boost/sepic). High integration, efficiency, and flexibility are the main benefits of our products.

Features and benefits

Key features Input voltage up to 60 V Output currents going from 500 mA up to 10 A Switching frequencies ranging from 100 kHz to 2.2 MHz Shutdown quiescent current down to below 2 µA Current limitation and overtemperature protection Enable feature

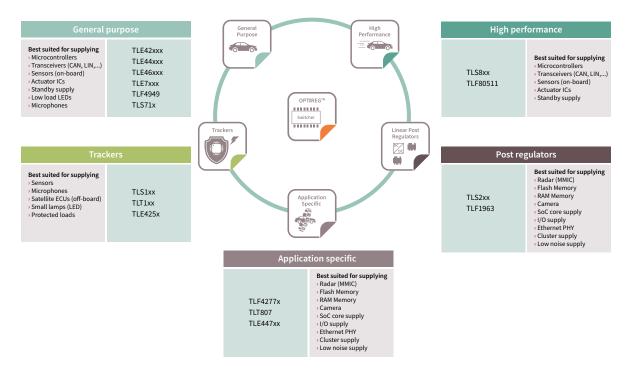
Key benefits

- High-efficiency regulation
- Only a few external components needed for stable regulation
- Perfectly suited for regulation in pre-/post-regulation power supply architectures

OPTIREG™ switcher

Product name	Input voltage V _{s(OP)} [V]	Output current [mA]	Quiescent current (EN = ON) [mA]	Output voltage V _Q [V]	Synchronous topology	Accuracy [%]	Switching frequency PWM f _{sw} [kHz]	Enable	PFM operation	Reset	Watchdog	Early warning	Package
Buck converter (i	ntegrated MOSFE	ET)											
TLE6365	8.00 40.00	400	1500	5.00		2	100			•			DSO-8
TLE8366	4.75 45.00	1800	7000	Adj., 3.30, 5.00		2(4)	200 530	•					DSO-8 EP
TLS4120D0	3.70 36.00	2000	0.032	Adj., 3.30, 5.00	•	2	380 2800	•	•	•			TSDSO-14 EP
TLS4125D0	3.70 36.00	2500	0.032	Adj., 3.30, 5.00	•	2	380 2800	•	•	•			TSDSO-14 EP
TLF50281	4.75 45.00	500	0.045	5.00		2	800 2200	•	•	•	•		SSOP-14 EP
TLF50251	4.75 45.00	500	0.045	5.00		2	800 2200	•	•	•			SSOP-14 EP
TLF50241	4.75 45.00	500	0.045	5.00		2	800 2200		•	•			SSOP-14 EP
TLF50211	4.75 45.00	500	0.045	5.00		2	800 2200	•	•				SSOP-14 EP
TLF50201	4.75 45.00	500	0.045	5.00		2	800 2200		•				SSOP-14 EP
Buck controller (external MOSFET												
TLE6389-2GV	5.00 60.00	2300	0.120	Adj.		3	250 530	•	•	•		•	DSO-14
TLE6389-2GV50	5.00 60.00	2300	0.120	5.00		3	250 530	•	•	•		•	DSO-14
TLE6389-3GV50	5.00 60.00	2300	0.120	5.00		3	250 530	•	•	•1)		•	DSO-14
TLF51801	4.75 45.00	Adj. max. 10,000	< 2.000 μA	1.20-D _{max.} *V _s	•	2	100 700	•					SSOP-14 EP
Boost controller													
TLE8386-2 ²⁾	4.75 45.00	dep.on V _Q	7000	Adj. (max. 9-times of V _s)		4	100 500	•					SSOP-14 EP

www.infineon.com/optireg-switcher


- 1) Different voltage reset hysteresis
- 2) LS-sense-booster

OPTIREG™ linear voltage regulators

Energy-efficient voltage regulators and trackers

Our linear voltage regulators and trackers help reduce energy consumption, extending operating time and minimizing operating costs across all systems. The wide supply voltage range, low quiescent current, rich protective feature set, and choice of packages make our devices the perfect fit across a broad application spectrum, apart from automation systems for health care, traffic, power tools, lighting, and many other multi-market systems. Our trackers are ideal as additional supplies for off-board loads to increase system reliability

OPTIREG™ linear voltage regulators (selection tree)

Features and benefits

Key features	Key benefits
– Input voltage up to 60 V	Pin-to-pin compatibility with industry-standard parts
- Output current up to 1.5 A	Very low dropout voltage trackers for optimized heat distribution and
Output voltage adjustable or fixed to specific values	external protection
– Quiescent current down to 5 μA	Trackers for maximum system cost reduction
Overload, overtemperature, short circuit, and reverse-polarity protection	- Small robust packages
– Low current consumption	· /
− Extended temperature range -40°C +125°C	

Infineon's microcontroller families and industrial voltage regulators

Microcontroller family	Input voltage [V]	Input current (max.) [mA]	Voltage regulator
XMC1000 family	1.8 to 5.5	<100	TLS810B1EJ, TLS810A1LD, TLE4266-2G, TLS820D3EL
XMC4000 family	3.3	<500/300	TLF80511x, TLE42764D, TLS835D2EL, TLS850FxTA
XC8xx	3.3 to 5.0	200	TLS810A1LD, TLS810B1EJ, TLE42764D, TLE4296-2G
XE166/XC2000	1.5 and 3.3 or 5.0	100	TLS810A1LD, TLS810B1EJ, TLE42764D, TLE4296-2G
TriCore™	1.5 to 3.3	>400	TLF80511TF/EJ/TC, TLE42764D, TLS850FxTA

XDPP1100

The smallest digital power controller with PMBus interface

The XDPP1100 is Infineon's highly integrated and programmable digital power supply controller. This device offers advanced power control solution for 48 V DC-DC power applications with isolated topologies. The XDPP1100 device features many optimized power-processing blocks and pre-programmed peripherals to enhance the performance of isolated DC-DC converters, reduce external components, and minimize firmware development effort. The controller also provides an accurate telementry and power management bus (PMBus 1.3) interface for system communication, advance power conversion, and monitoring. Integrated current sensing capability and compact chip size (24-pin 4 mm²) can greatly reduce the solution size by eliminating various external components. A combination of high-performance AFE, state machine-based digital control loop, and an Arm® Cortex®-M0 integrated into a single chip makes the XDPP1100 a highly integrated, fully programmable, and fastest time-to-market technology for modern high-end power systems employed in telecom infrastructure, 48 V server motherboards, data center and industrial 4.0 applications.

The XDPP1100 device can be configured to support different DCDC topologies including:

- Hard-switched full-bridge and half-bridge
- Phase shifted full-bridge
- Active clamp forward
- Interleaved FB, HB, and ACF
- Current-doubler
- Pre-buck or post-buck configuration

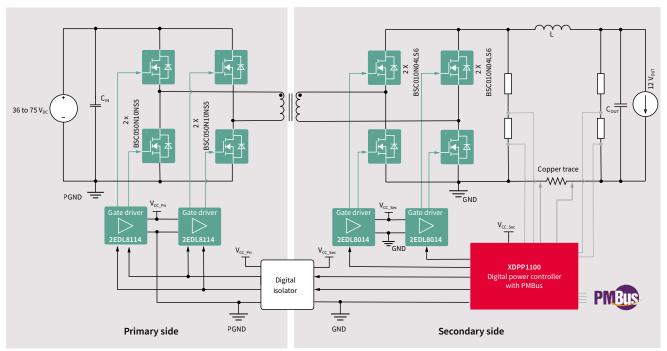
Infineon offers support tools such as a complementary graphical user interface (GUI) that allows customers to configure and monitor key parameters. In addition, developers have full control of their application and FW development process with commonly used Arm® based compilers.

Typical applications

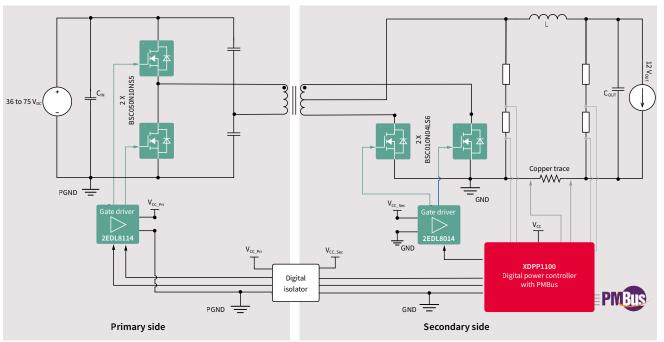
- Isolated DC-DC brick modules
- Telecom radio power
- 48 V point of loads
- Non-isolated buck boost converters
- 48 V server motherboard

Features and benefits

Key features
- State machine based digital control for up to 2 independent voltage loops
– Configurable feedback control
- Arm® Cortex®-M0 processor
– Up to 16 configurable GPIOs
– Up to 12 high resolution digital modulated PWM outputs
- Input voltage feed-forward control scheme
$-$ 3 high-speed voltage sense ADCs: 50 MHz 11-bit ADC $$ with set point accuracy within $\pm 1\%$ overtemperature range
– 2 current sense ADCs: 25 MHz, 9-bit with 100 μV and 1.45 mV LSB
– Communication: 1 MHz I ² C/PMBus,


Key benefits

- Ease of use thanks to firmware-based system configuration with GUI support
- User-specific customization and software-based design changes
- Enhanced control and excellent dynamic transient performance
- Sophisticated system level fault handling
- System housekeeping i.e., fan control, LED control, sequencing, with configurable GPIOs
- High efficiency at light-load management


Operating temperature from -40° to 125°C

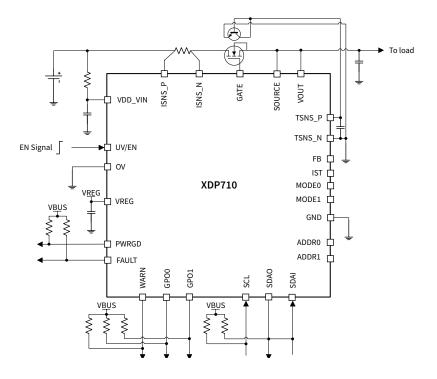
XDPP1100 implementation in 48 to 12 V full-bridge isolated DC-DC converter

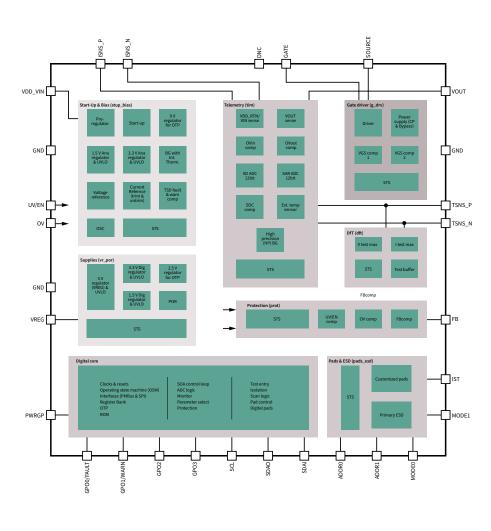
XDPP1100 implementation in 48 V to 12 V full-bridge isolated DC-DC converter

The XDPP1100 device is offered in two packages

VQFN 24-pin	VQFN 40-pin
4 x 4 mm	6 x 6 mm
6 PWM	12 PWM
Single loop	Dual loop

XDP™ XDP710


5.5 - 80 V hot swap controller with a programmable digital SOA


The XDP™ XDP710 is a wide input voltage hot-swap and system monitoring controller IC that drives a single or multiple parallel N-Channel MOSFETs. In addition to a controlled turn ON, XDP710 provides continuous system health monitoring and communication to the main MCU via PMBus interface. The high-speed communication through PMBus allows system designers to disable the downstream sub-systems fully or partially. It incorporates an extensive variety of system protections for safety operation and generates various protection responses depending on the severity of the incident. Latch off, reset, system shutdown, and retry are some examples of response types. Its SOA protection effectively ensures that the system FET always operates under safe condition.

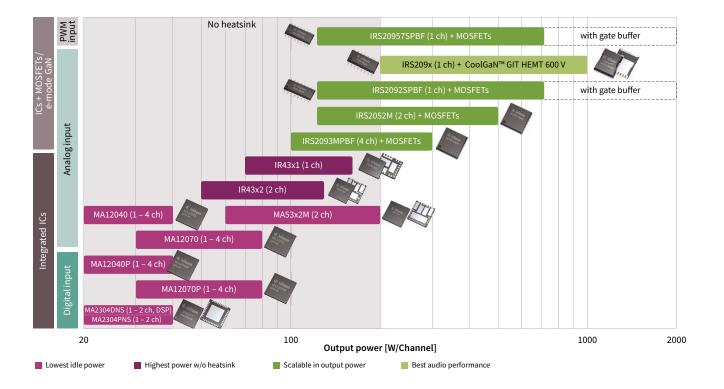
Features

Key features

- Compatible with Infineon's OptiMOS™
- Compatible with Infineon's Linear FET wide input voltage range: 5.5 to 80 V transient withstand: up to 100 V for 500 ms
- Option of external FET selection using resistor strapping
- Dedicated current and voltage ADCs: 12-bit programmable and pre-set FET active SOA protection
- Advanced closed-loop SOA control and the fully digital operating mode
- Analog-Assisted Digital Mode for support of legacy systems
- Integrated gate driver and charge pump for external N-Channel MOSFET configurable fast FET's shut down: two step turn-off or 1.5 A pull-down current
- PMBus interface: 1 MHz
- Precision input and output voltage monitoring and reporting: $\leq 1\%$ precision FET's current monitoring and reporting: $\leq 1\%$
- Precision input power monitoring and reporting: ≤ 2%
- Energy monitoring and reporting
- Programmable input OV and UV protections
- Support for external temperature sensor and OT protection
- Sequential turn-on capability
- 29-lead (6 mm x 6 mm) VQFN package
- -40° to 125°C junction temperature

Key features

- Digital configuration reduces external components
- Analog-Assisted Digital Mode for support of legacy systems
- Multiple SOA configuration profiles in NVM reduces design time
- Input transient and MOSFET SOA protection enables the use of smaller FETs
- Small package


Potential applications

- AI, ML, GPU accelerator cards
- Network router and switches
- Intelligent e-fuse
- Power distribution systems
- 24 to 48 V Industrial system

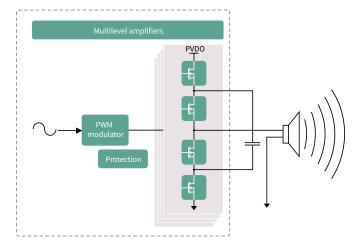
Integrated class D audio amplifier ICs

Cooler, smaller, and lighter class D audio amplifiers for great sounding products

Infineon's MERUS™ audio solutions enable audio designers to improve the performance of their products while increasing efficiency and reducing solution size. Advances in semiconductor processes, in combination with new innovative architectures, are behind a portfolio of class D technologies that allow professional, commercial/home and portable audio applications to benefit from the unparalleled performance, power density, and reliability. The broad portfolio covers power ranges from 20 W to 2 kW per channel, from the smallest single-chip devices and multi-chip modules (MCMs) to highly scalable discrete audio amplifier solutions consisting of powerful MOSFET/CoolGaN™ GIT HEMT and driver ICs combinations.

By combining our core principles, competencies, and leadership in groundbreaking power semiconductors with revolutionary audio amplifier technologies, such as MERUS™, we provide solutions that are smaller, lighter, more robust and flexible, running with less heat dissipation. In addition to outstanding quality and reliability, Infineon's amplifier solutions are designed to maximize power efficiency and dynamic range while providing best-in-class performance in product form factors that make them an optimal fit for any high-end application. These include portable/battery-powered applications, voice controlled active speakers, television sets, stereo HiFi, soundbars, monitors, power over ethernet (PoE), and multichannel systems.

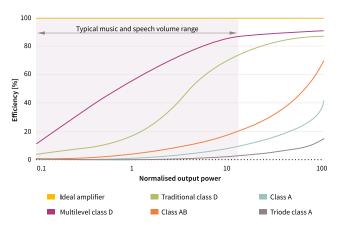
Design with Infineon's solutions to benefit from:



Integrated MERUS™ multilevel amplifier ICs for class D audio solutions

High power efficiency and density in small packages

With its revolutionary MERUS™ integrated multilevel class D audio amplifier ICs, Infineon is leading in efficiency and power density. Compared to traditional class D amplifier ICs, which produce only two voltage output levels, multilevel amplifier ICs use additional on-chip MOSFETs and capacitors to produce outputs with a higher signal ranularity, i.e., higher switching frequencies and/or multiple output signal levels – typically up to five voltage levels

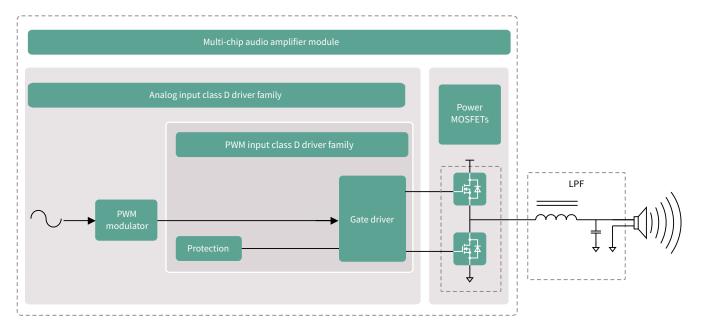

Filterless topology with "flying capacitor" of an integrated class D IC

Features and benefits

Key features	Key benefits
 Multilevel switching technology 	 Highest efficiency and power density
- Scalable signal "granularity"	- Potential LC filter removal
- Proprietary circuits architecture	- Low THD+N
	- Cooler operation
	– Low power loss
	- Virtually no switching loss measurable in idle mode

Efficiency where it matters for audio reproduction

For MERUS™ integrated multilevel audio amplifier ICs, amplifier efficiency at average output power is key. As the graph on the left shows, MERUS™ multilevel amplifier is much more effective than the traditional class D amplifier, which translates into less power consumption in AC input and in battery-powered audio applications.



MERUS™ integrated audio amplifier multi-chip modules (MCM)

Integrated components for scalable output power and superb audio performance

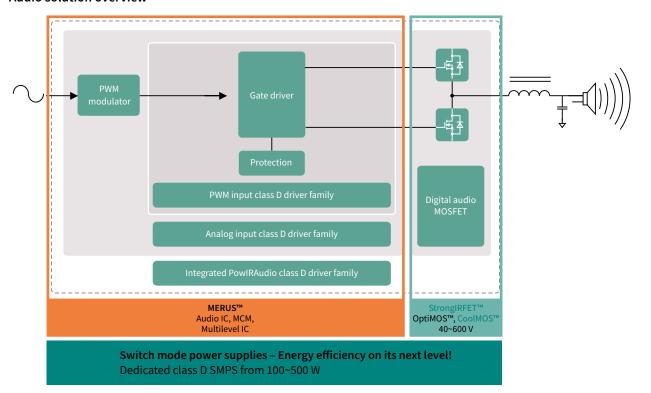
Multi-chip modules integrate PWM controller and power MOSFETs in a single package to offer a highly efficient, compact solution that reduces component count, shrinks PCB size up to 70 percent, and simplifies class D amplifier design.

Multi-chip audio amplifier module

Features and benefits

Key features	
 Single package with integrated PWM controller and audio-performance- optimized power MOSFET 	
- Overcurrent protection	
- Thermal shutdown	
- Floating differential input	
- Clip detection	
- Best-in-class power efficiency and audio performance	
- Lower component count, leading to design simplification	
- Compatible with single supply or split rail configuration	
- Click noise reduction	

Kev benefits Extended battery playback time Unrivaled audio performance Smaller solution size (BOM reduction, system level cost savings) Eliminated need for heatsink - High noise immunity Reliable operation - Thermal efficiency



Discrete MERUS™ audio amplifier driver ICs with MOSFET and gallium nitride CoolGaN™ GIT HEMT 400 V

Scalable output power with a unified design platform

Infineon's discrete audio solutions are scalable to various output power levels, simply by replacing the external MOSFETs or CoolGaNTM GIT HEMTs of the driver-transistor combinations. Key parameters for the transistors used in discrete class D audio applications include on-state resistance ($R_{DS(on)}$), gate charge (Q_G), and reverse recovery charge (Q_{rr}). Our products are specifically suitable for class D audio applications and optimized for these parameters to achieve maximized efficiency, THD, and EMI amplifier performance. The CoolGaNTM GIT HEMT 400 V portfolio is specifically built for class D audio requirements, with high-performing SMD packages to fully utilize the benefits of gallium nitride.

Audio solution overview

Features and benefits

Integrated class D audio amplifier IC portfolio

MERUS™ Gen2 integrated multilevel audio amplifier IC product portfolio

		MA2304DNS	MA2304PNS		
	Number of audio channels	2xE	BTL		
	Max. peak power at 4 Ω 10% THD	2x3	7 W		
	Supply voltage	10-20 V			
	3-level and 5-level modulation	V	V		
	Selectable power mode profiles:	Low power consumption (LPC) or high audio performance (HAP)			
	Audio input	Digital			
Specifications	HiRes audio compliant	12S/ ⁻	TDM		
	Integrated DSP	V			
	Volume and dynamic range control	√	V		
	Idle power dissipation Max. output and all channels switching	52 mW (LPC mode)			
	Audio performance (PMP2)	106 dB DNR 52 μV _{RMS} output noise <0.03% THD+N			
	Sample rates	32, 44.1, 48, 88.2,	96, 176.4, 192 kHz		
	Comprehensive protection scheme*	V	\checkmark		
	Configurable for SE or PBTL operation	V	$\sqrt{}$		
Features	I ² C communication	√	V		
	Filterless implementation	V	\checkmark		
	Package type	40-pin QFN package with exposed thermal pad			
	Evaluation boards	EVAL_AUDIO_MA2304DNS	EVAL_AUDIO_MA2304PNS		

^{*}All ICs carry a full protection scheme comprising undervoltage lockout, overtemperature warning/error, short circuit/overload protection, power stage pin-to-pin short circuit, error reporting through serial interface (I^2C), and DC protection

MERUS™ integrated audio amplifier multi-chip modules (MCMs)

		IR4301M	IR4321M	IR4311M	IR4302M	IR4322M	IR4312M	MA5332MS
	Number of audio channels	1	1	1	2	2	2	2
	Max. power per channel	160 W	90 W	45 W	130 W	100 W	40 W	200 W
Specifications	Supply voltage	~ ± 31 V or 62 V	~ ± 25 V or 50 V	~ ± 15 V or 30 V	~ ± 31 V or 62 V	~ ± 25 V or 50 V	~ ± 16 V or 32 V	~±40 V or 80 V
	Max. PWM frequency	500 kHz	500 kHz	500 kHz	500 kHz	500 kHz	500 kHz	500 kHz
	Differential audio input	✓	✓	✓	✓	✓	✓	✓
	Overcurrent protection	✓	✓	✓	✓	✓	✓	✓
	Integrated power MOSFET	✓	✓	✓	✓	✓	✓	✓
	Voltage	80 V	60 V	40 V	80 V	60 V	40 V	100 V
	PWM controller	✓	✓	✓	✓	✓	✓	✓
Features	Thermal shutdown	✓	✓	✓	✓	✓	✓	✓
	Click noise reduction	✓	✓	✓	✓	✓	✓	✓
	Clip detection				✓	√	✓	✓
	Package type	5x6 mm QFN	5x6 mm QFN	5x6 mm QFN	7 x 7 mm QFN	7 x 7 mm QFN	7 x 7 mm QFN	7 x 7 mm QFN
	Evaluation boards	IRAUDAMP12 IRAUDAMP19	IRAUDAMP21	IRAUDAMP15	IRAUDAMP16 IRAUDAMP17	IRAUDAMP22	IRAUDAMP18	EVAL_AUDAMP25 REF_ MA5332BTLSPS

MERUS™ discrete audio amplifier driver IC product portfolio

	Number of audio channels	IRS20965S	IRS20957SPBF	IRS2092SPBF	IRS2052M	IRS2093MPBF	IRS2452AM
Specifica-	Max. power per channel	500 W	500 W	500 W	300 W	300 W	500 W
tions	Supply voltage	± 100 V	± 100 V	± 100 V	± 100 V	± 100 V	± 200 V
	Gate sink/source current	2.0/2.0 A	1.2/1.0 A	1.2/1.0 A	0.6/0.5 A	0.6/0.5 A	0.6/0.5 A
	Overcurrent protection	✓	✓	✓	✓	✓	✓
	Overcurrent flag	✓					
	PWM input	✓	✓				
	Floating input	✓	✓	✓	✓	✓	✓
	Dead time		✓	✓	✓	✓	✓
	Protection control logic	✓	✓	✓	✓	✓	✓
Features	PWM controller			✓	✓	✓	✓
· cutu.co	Clip detection				✓		
	Click noise reduction			✓	✓	✓	✓
	Temperature sensor input				✓		√
	Thermal shutdown				✓		
	Clock input				✓		✓
	Package type	16-pin SOIC narrow	16-pin SOIC narrow	16-pin SOIC narrow	MLPQ48	MLPQ48	MLPQ32
	Evaluation boards		IRAUDAMP4A IRAUDAMP6	IRAUDAMP5 IRAUDAMP7S IRAUDAMP7D IRAUDAMP9	IRAUDAMP10	IRAUDAMP8	IRAUDAMP23

Recommended MOSFET (through-hole) product portfolio

Output power	Recommended discrete			
	audio driver IC	2 Ω	4 Ω	8 Ω
150 W	IRS2093MPBF	IRFB4019	IRFB4019	IRFI4020H-117P
200 W	IRS2052M	IRFB5615	IRFB4019	IRFI4020H-117P
300 W	IRS2092SPBF	IRFB4228PBF	IRFB4227	IRFB4229
500 W	IRS20957SPBF	IRFB4228PBF	IRFB4227	IRFB4229
750 W		IRFB4227	IRFB4229	
1000 W		IRFP4668	IRFB4229 x 2	

 $\ensuremath{\mathsf{IRS2093MPBF}}$ works up to 150 W and $\ensuremath{\mathsf{IRS2052M}}$ works up to 300 W.

IRS2092SPBF and IRS20957SPBF work with all power levels listed above.

Recommended MOSFET (DirectFET™) product portfolio

Output power	Recommended discrete	Speaker resistance				
	audio driver IC	2Ω	4 Ω	8 Ω		
150 W	IRS2093MPBF	IRF6645	IRF6665	IRF6775M		
200 W	IRS2052M	IRF6646	IRF6775M	IRF6775M		
300 W	IRS2092SPBF	IRF6644	IRF6775M	IRF6785		
500 W	IRS20957SPBF	IRF6643	IRF6641			

Recommended audio evaluation boards

Enabling fast time to market and device performance evaluation

MERUS™ integrated multilevel audio amplifier IC evaluation boards

EVAL AUDIO MA2304DNS*

The demonstration board EVAL_AUDIO_MA2304DNS is an evaluation and demonstration board for MERUS™ audio MA2304DNS. It contains a digital input and a variety of output and setup/selection features. It also contains an on-board power supply generator (selectable 1.8 or 3.3 V buck-converted) so only one external power supply (PVDD) is necessary. It can be controlled and programmed with its software GUI.

The board can be used for evaluating or demonstrating key features/advantages of the MERUS™ technology:

- Energy efficiency: power losses at typical audio listening levels/ultralow idle power consumption
- Adaptive power management system
- Minimum output filter components: significant cost and size reduction
- THD performance and audio quality
- Integrated MERUS™ DSP

EVAL AUDIO MA2304PNS*

The demonstration board EVAL_AUDIO_MA2304PNS is an evaluation and demonstration board for MERUS™ audio MA2304PNS. It contains a digital input and a variety of output and setup/selection features. It also contains an on-board power supply generator (selectable 1.8 or 3.3 V buck-converted) so only one external power supply (PVDD) is necessary. It can be controlled and programmed with its software GUI.

The board can be used for evaluating or demonstrating key features/advantages of the MERUS™ technology:

- Energy efficiency: power losses at typical audio listening levels/ultralow idle power consumption
- Adaptive power management system
- Minimum output filter components: significant cost and size reduction
- THD performance and audio quality
- Integrated volume and limiter processors

KIT_40W_AMPHAT_ZW

Kit board - MERUS™ audio amplifier HAT ZW class D audio amplifier 40 W for Raspberry Pi Zero W featuring MA12070P

Summary of features

- Equipped with MERUS™ MA12070P proprietary multilevel amplifier
- Compatible with Raspberry Pi Zero and Raspberry Pi Zero wireless
- Power input: 5 V/2.5 A sourced from the same single supply as the Raspberry Pi
- No need for external or extra power supplies
- Up to 40 W instantaneous peak output power with the Raspberry Pi official 5 V/2.5 A supply

Benefits

- Compatibility with major streaming applications for Raspberry Pi (Volumio, JustBoom Player, Max2Play)
- Up to 48 kHz of sample rate and 24-bit of music playback
- Full hardware control. customization, and error monitoring trough Linux Alsamixer

Potential Applications

- DIY on the go wireless speakers
- DIY intelligent home audio systems

KIT_ARDMKR_AMP_40W

Kit board MA12070P audio amplifier compatible with Arduino MKR boards

Summary of features

- Equipped with MERUS™ MA12070P proprietary multilevel amplifier
- Power input: 5 V/2.5 A sourced from the same single USB-C power supply or battery pack
- No need for external or extra power supplies
- Up to 40 W instantaneous peak output power with a USB-C power supply or battery pack

Benefits

- Compatible with Arduino MKRZERO and MKR1000 WIFI
- Full hardware control and customization
- Error monitoring through Arduino programming framework

DEMO_BASSAMP_60W_MA12070

Reference design demoboard MERUS™ MA12070 as musical instrument bass amplifier

Summary of features

- 1 x 60 W at 4 Ω speaker output
- Powered by off-the-shelf regulated wall adapter
- 12AU7 vacuum-tube preamplifier
- Stereo 3.5 mm AUX input
- XLR D.I. output with ground lift switch
- Bright switch for slap-bass sound
- Low idle power consumption

Benefits

- Superior sound quality
- Modelled after classic bass amplifier topology
- Genuine vacuum-tube preamplifier
- Small size and scalable platform
- Excellent efficiency

EVAL_AUDAMP25

Number of audio channels: 2 Output power per channel [RMS]:

200 W

Featured class D IC: MA5332MS

Input: analog

OPN: EVALAUDAMP25TOBO1

REF_MA5332BTLSPS

Number of audio channels: 1 Output power per channel [RMS]:

200 W

Featured class D IC: MA5332MS

Input: analog

OPN: REFMA5332BTLSPSTOBO1

USB-C controllers and peripherals

MERUS™ integrated audio amplifier multi-chip module (MCM) evaluation boards

IRAUDAMP12

Number of audio channels: 2 Output power per channel [RMS]: 130 W Featured class D IC: IR4301M

Input: Analog **OPN: IRAUDAMP12**

IRAUDAMP17

Number of audio channels: 2 Output power per channel [RMS]: 100 W Featured class D IC: IR4302M

Input: Analog **OPN: IRAUDAMP17**

IRAUDAMP19

Number of audio channels: 2 Output power per channel [RMS]: 100 W Featured class D IC: IR4301M

Input: Analog **OPN: IRAUDAMP19**

IRAUDAMP21

Number of audio channels: 2 Output power per channel [RMS]: 135 W Featured class D IC: IR4321M

Input: Analog **OPN: IRAUDAMP21**

IRAUDAMP22

Number of audio channels: 2 Output power per channel [RMS]: 100 W Featured class D IC:

IR4322M **Input:** Analog **OPN: IRAUDAMP22**

Discrete MERUS™ audio amplifier driver IC and MOSFET evaluation boards

IRAUDAMP4A

Number of audio channels: 2 Output power per channel [RMS]: 120 W Featured driver IC: IRS20957S **Featured MOSFET:**

IRF6645TRPbF **OPN: IRAUDAMP4A**

IRAUDAMP5

OPN: IRAUDAMP5

Number of audio channels: 2 Output power per channel [RMS]: 120 W Featured driver IC: IRS2092S **Featured MOSFET:** IRF6645TRPbF

IRAUDAMP6

Number of audio channels: 2 Output power per channel [RMS]: 250 W Featured driver IC: IRS20957S Featured MOSFET:

IRF6785MTRPbF **OPN: IRAUDAMP6**

IRAUDAMP7S

Number of audio channels: 2 Output power per channel [RMS]: 500 W Featured driver IC: IR-S2452AM

Featured MOSFET: IRFI4019H-117P **OPN: IRAUDAMP7S**

IRAUDAMP9

Number of audio channels: 1 Output power per channel [RMS]: 1700 W Featured driver IC: IRS2092S Featured MOSFET:

IRFB4227PbF **OPN: IRAUDAMP9**

IRAUDAMP10

Number of audio channels: 2 Output power per channel [RMS]: 370 W Featured driver IC: IRS2052M Featured MOSFET: IRF6775MTRPbF

OPN: IRAUDAMP10

IRAUDAMP23

Number of audio channels: 2 Output power per channel [RMS]: 500 W Featured driver IC:

Featured MOSFET: IPP60R180C7

IRS2452AM

OPN: IRAUDAMP23

Discrete audio amplifier driver IC and CoolGaN™ GIT HEMT 400 V evaluation board

EVAL AUDAMP24

Number of audio channels: 2 Output power per

channel [RMS]: 300 W at 1% Featured driver IC: IRS20957S

Featured HEMT: IGOT40R070D1 IGT40R070D1

OPN: EVAL_AUDAMP24

Power supply units for audio evaluation boards

IRAUDPS1

Input voltage: 12 V_{DC} Output voltage: ± 35 V Output power per channel

[RMS]: 100 W Featured driver IC:

IR2085 **Description:**

250-1000 W scalable audio power supply

OPN: IRAUDPS1

IRAUDPS3

Input voltage: 110/220 V_{AC} Output voltage: ± 30 V Output power per channel

[RMS]: 200 W Featured driver IC:

IRS27952S **Description:**

Power supply for class D

audio amplifier **OPN: IRAUDPS3**

www.infineon.com/merus www.infineon.com/gan

AC-DC LED driver ICs

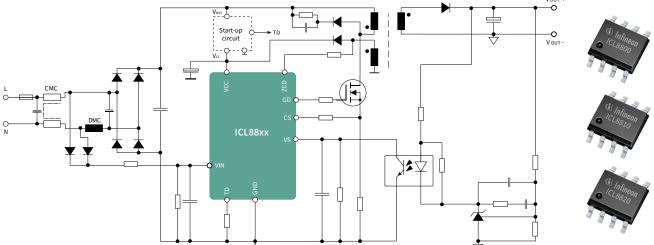
Digital and mixed-signal, single- and dual-stage high-voltage control ICs for LED drivers

XDP™ digital power – digital single- and dual-stage flyback combo controllers

The XDP™ portfolio of high-performance digital power control ICs addresses today's challenges, such as smart or connected lighting, meeting demanding LED driver requirements with unique features.

Mixed-signal control ICs for solid-state lighting luminaires

Infineon's mixed-signal control ICs for LED drivers deliver excellent power quality and high efficiency for LED lighting applications supporting dimming levels down to 1 percent. The integration of advanced functions saves external components and minimizes system cost. The wide variety of features and functions gives the option to choose the best fitting part for the application.


ICL8800/ICL8810/ICL8820

Single-stage flyback LED controllers for constant voltage output

The ICL88xx family of single-stage flyback controllers for constant voltage output is tailored for LED lighting applications to meet the required performance cost-effectively. All three ICs offer benchmarking performance for power factor correction and total harmonic distortion at full-load and at low-load conditions. Their comprehensive set of protection features (compare table below) and bottom-up design make them easy to design and require a minimum number of external components. The controllers are optimized as secondary-side regulated (SSR) constant voltage (CV) output flyback controllers and are also well suited for primary-side regulation (PSR).

Additionally, the controllers' low standby power due to the integrated BM (in ICL8810, ICL8820) is ideally suited for smart lighting systems' requirements. The jitter function (in ICL8820) eases the design of emergency lighting LED drivers without additional circuitry. It fulfills EMI requirements in DC operation and improves the EMI performance.

Typical application schematic

Features and benefits

Key benefits

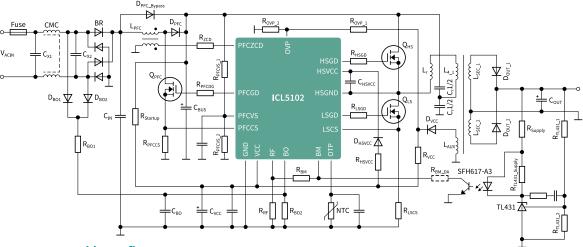
- Optimized for SSR CV output flyback operation, additionally suited for PSR
- PF > 0.9 and THD < 10% across a wide load range (AC input up to 277 V_{PMS})
- CCM and QRM with smart valley hopping
- ICL8810 also contains burst mode (BM) to ensure low standby power (< 100 mW)
- ICL8820 also contains built-in jitter function

Key advantages

- Low BOM for wide range of applications with PFC functionality where dual-stage topologies are required
- Enables platform design and window drivers
- Optimum efficiency and low EMI at low BOM without compromising light quality
- ICL8810 enables in addition: smart lighting in connection with microcontrollers (standby power < 500mW, i.e., more power budget for additional components)
 - ICL8820 **enables in addition:** Fulfillment complying with EMI regulations in DC operation at low cost and effort

Order information for ICL88xx

Board name	Description	Ordering code
ICL8800	Single-stage flyback controller for constant voltage output	ICL8800XUMA1
REF_ICL8800_LED_43W*	Demoboard with ICL8800	REFICL8800LED43W
ICL8810	Single-stage flyback controller for constant voltage output with low standby power	ICL8810XUMA1
REF_ICL8810_LED_43W_BM*	Demoboard with ICL8810 with burst mode	REFICL8810LED43WBM
REF_ICL8810_LED_42W_PSR	Demoboard with ICL8810 for primary side regulation	REFICL8810LED42WPSR
ICL8820	Single-stage flyback controller for constant voltage output with low standby power and jitter function	ICL8820XUMA1
REF_ICL8820_LED_43W_JT*	Demoboard with ICL8820 with jitter function	REFICL8820LED43WJT


www.infineon.com/offline-led-driver

ICL5102

High-performance PFC + resonant controller for LCC and LLC

With ICL5102, Infineon offers a highly integrated combo controller IC with a universal input of 70 V to 325 V. This allows manufacturers to realize global designs, keeping the cost for product variety and stock low. The highest efficiency of up to 94 percent by resonant topology, a THD factor less than 3.5 percent, and a high power factor of more than 0.95 allow for more lumen output and less thermal load, enabling cost-effective designs and keeping the cost for LEDs and heat sink low. Thanks to the high integration, there is no need for additional expensive components in PFC and LLC stage, reducing the overall BOM cost. In addition, integrated protection features complement the ICL5102 features.

Typical application schematic

Features and benefits

Key features and benefits

Small form factor LED driver and low BOM

The high level of integration assures a low count of external components, enabling small form factor designs and making them ideal for compact and slimline power supplies for lighting, such as LED driver for indoor

High performance, digital PFC, and advanced HB driver

The high-performance digital PFC stage achieves power factor of 99 percent, through operation in CrCM and DCM mode, in a frequency range of 22 to 500 kHz. This supports stable operation even at low-load conditions down to 0.1 percent of the nominal power without audible noise

- Fast time-to-light and low standby

With a start-up current of less than 100 μA the controller provides very fast time-to-light within less than 300 ms, while in standby the controller changes into active burst mode which reduces power consumption to less than 300 mW

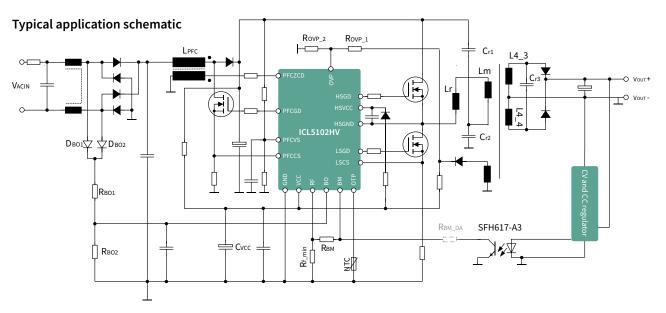
Safety first

The controller has a comprehensive set of protection features built in to increase the system safety. In run mode it monitors the complete system regarding bus over- and undervoltage, open loop, overcurrent of PFC and/or inverter, output overvoltage, overtemperature, and capacitive load operation

Order information for ICL5102

Туре	Description	Ordering code
ICL5102	PFC and resonant controller for LCC and LLC	ICL5102XUMA2
REF-ICL5102-U130W-CC	PFC/LLC-CC constant current evaluation board 130 W LED driver	REFICL5102U130WCCTOBO1
REF-ICL5102-U52W-CC	Low-cost PFC/LCC reference design 52 W LED driver, non-dimmable	REFICL5102U52WCCTOBO1
REF_ICL5102_U100W_LCC	Low-cost PFC/LCC reference design 100 W, dimmable	REFICL5102U100WLCC
REF_LLC_BUCK_4CH_320W*	Scalable 320 W multichannel high-power LED driver (using ICL5102	REFLLCBUCK4CH320WTOBO1

www.infineon.com/icl5102



ICL5102HV

High-performance PFC + resonant controller for LCC and LLC, supporting 980 V high side

ICL5102HV control IC for LED drivers offers a unique one-package solution for lighting applications up to 350 W, supporting LLC/LCC topology. It is particularly designed to deliver best performance of total harmonic distortions (THD) and power factor (PF). Compared to level-shifter technology, the integrated coreless transformer not only further reduces the loss at high operation frequency, but also enhances the capability of handling a huge negative voltage (-600 V on HSGND). Reduce the number of external components to optimize the form factor and reduce the bill of materials (BOM) with the integrated two-stage combination controller (PFC + LLC/LCC) for lighting applications. Simplify your design and shorten time-to-market.

Features and benefits

Key features and benefits

Small form factor LED driver and low BOM

The high level of integration assures a low count of external components, enabling small form factor designs and making them ideal for compact and slimline power supplies for lighting, such as LED driver for indoor and outdoor applications

High performance, digital PFC, and advanced HB driver

The high-performance digital PFC stage achieves power factor of 99 percent, through operation in CrCM and DCM mode, in a frequency range of 22 to 500 kHz. This supports stable operation even at low-load conditions down to 0.1 percent of the nominal power without audible noise

Fast time-to-light and low standby

With a start-up current of less than $100~\mu A$ the controller provides very fast time-to-light within less than 300~ms, while in standby the controller changes into active burst mode which reduces power consumption to less than 300~mW

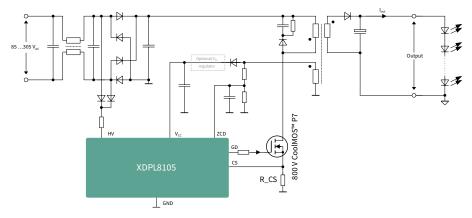
Safety first

The controller has a comprehensive set of protection features built in to increase the system safety. In run mode it monitors the complete system regarding bus over- and undervoltage, open loop, overcurrent of PFC and/or inverter, output overvoltage, overtemperature, and capacitive load operation

Order information for ICL5102HV

Туре	Description	Ordering code
ICL5102HV	PFC and resonant controller for LCC and LLC	ICL5102HVXUMA1
REF-ICL5102HV-U150W	PFC/LCC evaluation board 150 W, CC LED driver	REFICL5102HVU150WTOBO1

XDP™ LED


The IC family XDP™ is the first all-in-one package solution combining a digital controller with key power peripherals. Such integration provides exceptional flexibility and performance. The XDP™ family addresses essential features for advanced LED driver.

XDPL8105 - digital flyback controller IC for LED driver

The XDPL8105 is a digital, single-stage flyback controller with high power factor for constant current LED driver.

The device offers versatile functions for different indoor and outdoor lighting applications. The IC is available in a DSO-8 package and provides a wide feature set, requiring a minimum of external components. The advanced control algorithms in the digital core of the XDPL8105 provide multimode operation for high efficiency. Configurable parameters allow last minute changes, shorten the product development time, and reduce hardware variants. The extensive set of configurable standard and sophisticated protection mechanisms ensure a safe, reliable, and robust LED driver device for diverse use cases.

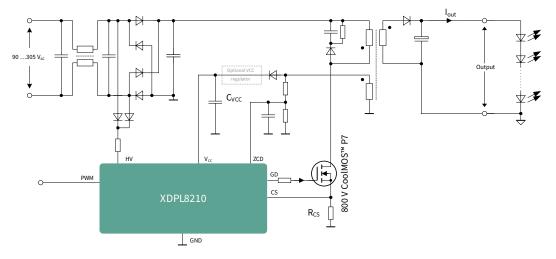
Typical application schematic

Features and benefits

Key features and benefits
Constant current with primary-side regulation
- Supports AC and DC input
− Nominal input voltage range 90-305 V _{AC} or 120-350 V _{DC}
- Integrated 600 V start-up cell
- Power factor > 0.9 and THD < 15 percent over wide load range
- Highly accurate primary-side control output current typ. ± 3 percent
- Reference board efficiency > 90 percent
– Internal temperature guard with adaptive thermal management
 Multimode operation QRM (quasi-resonant mode) DCM (discontinuous conduction mode) ABM (active burst mode)
- Digital parameters
 Relevant error conditions are monitored and protected Undervoltage

Order information for XDPL8105

OvervoltageOpen loadOutput shorted


Туре	Description	Ordering code
XDPL8105	Digital flyback constant current controller IC	XDPL8105XUMA1
REF-XDPL8105-CDM10V	40 W reference design with CDM10V isolated 0 V-10 V dimming interface	REFXDPL8105CDM10VTOBO1

XDPL8210 – digital flyback constant current controller IC for LED driver with 1 percent dimming

The XDPL8210 is a digital, single-stage, quasi-resonant flyback controller with high power factor and high precision primary-side controlled constant current output. The IC is available in a DSO-8 package and provides a wide feature set, which requires only a small number of external components. Sophisticated algorithms provide flicker-free dimming below one percent. The driver fully supports IEC61000-3-2 class C designs. The limited power mode improves functional safety, while configurable parameters allow last minute changes, shorten the product development time, and reduce hardware variants. The extensive set of configurable standard and sophisticated protection mechanisms ensure a safe, reliable, and robust LED driver for a large set of use cases.

Typical application schematic

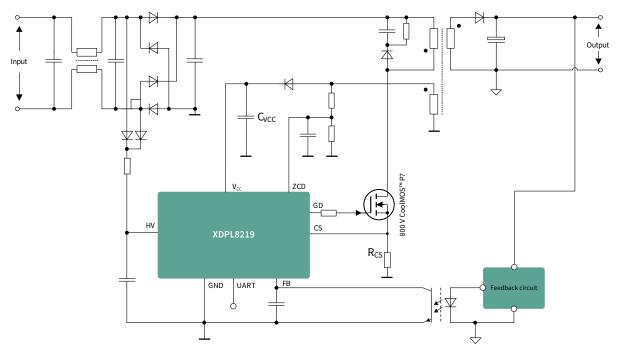
Features and benefits

(ey features and benefits
– Constant current with primary-side regulation
– Supports AC and DC input
− Nominal input voltage range 90-305 V _{AC} or 90-430 V _{DC}
- Reference board efficiency > 90 percent
– Power factor > 0.9 and THD < 15 percent over wide load range
- Standby power < 100 mW
– Internal temperature guard with adaptive thermal management
 Multimode operation QRM (quasi-resonant mode) DCM (discontinuous conduction mode) ABM (active burst mode)
– Digital parameters
 Relevant error conditions are monitored and protected Undervoltage Overvoltage Open load

Order information for XDPL8210

Output shorted

Туре	Description	Ordering code
XDPL8210	Digital flyback constant current controller IC	XDPL8210XUMA1
REF-XDPL8210-U35W	35 W reference design with CDM10V isolated 0 V-10 V dimming interface	REFXDPL8210U35WTOBO1



.

XDPL8219 - PFC/flyback controller with enhanced total harmonic distortion

The XDPL8219 is a digital high-performance secondary-side regulated flyback controller with constant voltage output. With its high power factor, the controller is the perfect fit for cost-effective, dual-stage LED drivers and enables smart lighting applications. The device operates in quasi-resonant mode (QRM) to maximize the efficiency and minimize the electromagnetic interference (EMI) over a wide load range. It enters active burst mode (ABM) at light load to prevent audible noise from being heard while achieving no-load standby power as low as <100mW. The XDPL8219 is available is available in a DSO-8 package.

Typical application schematic

Features and benefits

Key benefits

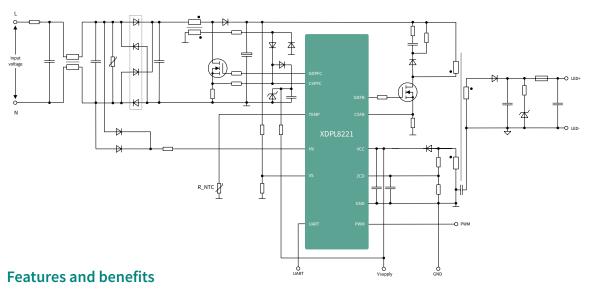
- Secondary-side-regulated (SSR) constant voltage (CV) output
- Flyback controller with power factor correction
- Depending on load condition, either quasi-resonant, discontinuous conduction mode or active burst mode (ABM)
- Integrated 600 V start-up cell

Key benefits

- Supports wide load range and fast and stable reaction to dynamic load changes
 - PF > 0.9 and THD < 10% across a wide load range (AC input up to 277 V_{pm}.)
- Optimal efficiency, power factor, and THD can be achieved by best-suited mode. In addition, DCM eases compliance with EMI at low-load condition
- Very low standby power < 100 mW can be achieved
- Integrated start-up cell enables very high efficiency

Order information for XDPL8218

Туре	Description	Ordering code
XDPL8219	Digital flyback CV output controller IC	XDPL8219XUMA1
REF-XDPL8219-U40W*	Efficient 40 W reference circuit design for XDPL8219 with high power factor and low THD. It is built for universal input voltage 120–277 V AC or 127–432 V DC	REFXDPL8219U40WTOBO1



www.infineon.com/xdpl8219

XDPL8221 - digital dual-stage multimode flyback controller for CC, CV, LP with 1 percent dimming and serial interface

The XDPL8221 is a digital, highly integrated, future-proof device combining a quasi-resonant PFC with a quasi-resonant flyback controller with primary-side regulation. A serial communication interface supports direct communication with an external microcontroller unit (MCU). The XDPL8221 is specially designed for advanced LED driver in smart lighting or IoT applications, featuring flicker-free dimming down to 1 percent of the nominal current. The device enables customizable LED driver and simplifies the generation and maintenance of different variants without increasing the number of stock keeping units. The IC is available in a DSO-16 package.

Typical application schematic

Key features and benefits

- Nominal input voltage range 100-305 V_{AC} or 90-430 V_{DC}
- Reference board efficiency > 90 percent
- Power factor > 0.9 and THD < 15 percent over wide load range
- UART interface for control and real-time monitoring
- Constant current, constant voltage, limited power with primary-side regulation
- 1 percent dimming
- Dim-to-off with low standby power < 100 mW
- Internal temperature guard with adaptive thermal management
- The UART interface and the command set enable to control the function of the XDPL8221 or inquire status information
- Multimode operation
- QRM (quasi-resonant mode)
- DCM (discontinuous conduction mode)
- ABM (active burst mode)
- Digital parameters
- Relevant error conditions are monitored and protected
- Undervoltage
- Overvoltage
- Open load
- Output shorted

Order information for XDPL8221

Туре	Description	Ordering code				
XDPL8221	Digital dual-stage multimode flyback controller for CC, CV, LP with 1 percent dimming	XDPL8221XUMA1				
REF-XDPL8221-U50W	50 W reference board with CDM10V isolated 0 V-10 V dimming interface	REFXDPL8221U50WTOBO1				
REF-XDPL8221-U100W	100 W reference board with CDM10V isolated 0 V-10 V dimming interface	REFXDPL8221U100WTOBO1				

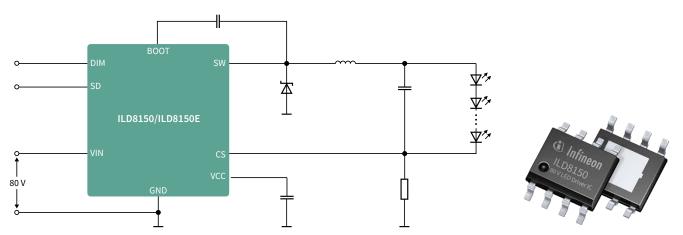
DC-DC LED driver ICs

DC-DC switch mode LED driver ICs with efficiencies up to 98 percent, dimming level down to 0.5 percent

Infineon offers highly integrated DC-DC LED driver ICs that support currents up to 1.5 A, making these drivers the ideal choice for high- and ultrahigh-power LEDs. These highly integrated DC to DC driver ICs achieve efficiency levels as high as 98 percent across a wide range of operation conditions. Integrated smart thermal protection, along with overvoltage and overcurrent protection, contribute to a longer LED lifetime.

Go for quality with Infineon's cost-efficient linear LED driver ICs

Infineon's BCR linear driver ICs are the best choice for driving LED strings supplied by a DC voltage source. The BCR regulators are suitable for driving currents from 10 to 250 mA. That is why they are the best solution for low- and mid-power LEDs. For high-power LEDs, the linear controller ICs and an external power stage allow for the greatest design flexibility.



The ILD8150 is 80 V DC-DC converter IC, designed to be used in LED applications to drive high-power LEDs. For applications operating close to safe extra low voltage (SELV) limits, it provides a high safety voltage margin. The buck LED driver IC is tailored for LEDs in general lighting applications with average currents up to 1.5 A using a high-side integrated switch. Several performance and protection features provide the right fit for professional LED lighting.

The hysteretic current control provides an extremely fast regulation and stable LED current combined with good EMI performance. The efficiency of the LED driver IC is remarkably high, reaching more than 95 percent efficiency over a wide range. A PWM input signal between 250 Hz and 20 kHz controls dimming of the LEDs current in analog mode from 100 to 12.5 percent and 12.5 to 0.5 percent in PWM mode with flicker-free modulation frequency of 3.4 kHz.

Digital PWM dimming detection with high resolution makes ILD8150/E the perfect LED driver IC for use together with microcontrollers. Precise output current accuracy from device to device under all loads and input voltage conditions makes it perfect for tunable white and flat panel designs where the current must be identical string to string.

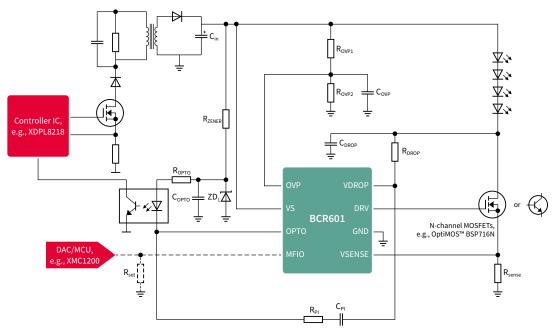
Features and benefits

Key benefits	
− Wide input voltage ranging from 8–80 V _{DC}	
– Up to 1.5 A average output current, adjustable via shunt resistor	
– Efficiency > 95 percent	
– Up to 2 MHz switching frequency	
- Soft-start	
– PWM dimming input, with 250 Hz to 20 kHz PWM dimming frequency	

Key advantages

- Hybrid dimming for flicker-free light down to 0.5 percent
 - Analog dimming 100 percent 12.5 percent
 - PWM dimming 12.5 percent 0.5 percent with $3.4\,$ kHz flicker-free modulation, dim-to-off
- Typical 3 percent output current accuracy
- Overtemperature protection
- Pull-down transistor to avoid LED glowing in dim-to-off
 - DSO-8 package to enable wave soldering
- DSO-8 with exposed pad for higher thermal performance (ILD8150E)

Туре	Description	Package	Ordering code
ILD8150	80 V DC-DC buck LED driver IC	DSO-8	ILD8150XUMA1
ILD8150E	80 V DC-DC buck LED driver IC	DSO-8 exposed pad	ILD8150EXUMA1
REF_ILD8150_DC_1.5A*	Reference design board 1.5 A with through hole inductor	Board with ILD8150E	REFILD8150DC15ATOBO1
REF_ILD8150_DC_1.5A*	Reference design board 1.5 A	Board with ILD8150E	REFILD8150DC15ATOBO1
REF_TW_ILD8150E_60V_1A*	Reference board for professional tunable white and multichannel applications	Board with 2x ILD8150E	REFTWILD8150E60V1ATOBO1
REF_ILD8150_DC_1.5A_SMD*	Reference design board 1 A with SMD inductor	Board with 2x ILD8150E	REFILD8150DC15ASMDTOBO1


www.infineon.com/ild8150

Linear current regulators 60 V linear LED controller IC with active headroom control for power- and

cost-efficient linear regulation on DC-DC side

A unique feature of BCR601 is to provide feedback to the primary side via an optocoupler to control the output voltage of the primary-side converter, e.g., XDPL8219 or ICL88xx. The integrated control loop minimizes the voltage overhead and power dissipation of the external driver transistor. This capability, coupled with the adjustment of voltage overhead by external configuration according to application needs, leads to power- and cost-efficient LED systems. AC line ripple suppression, analog dimming option, and various protection features round up this device for LED drivers allowing for flicker-free light and longevity of LEDs.

Typical application schematic

Features and benefits

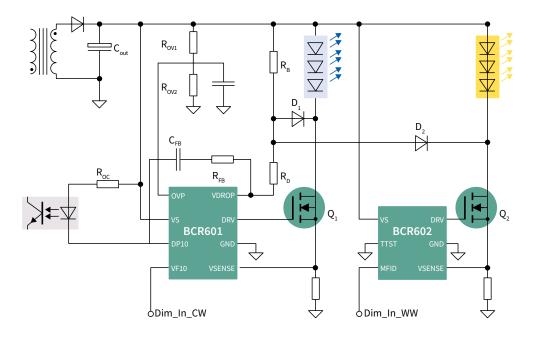
Key features and benefits
- Active headroom control (supports an optocoupler feedback loop to primary side minimizing power losses)
- Dimming in pure analog mode down to 3%
- Suppresses the voltage ripple of the power supply driving a constant LED current for high light quality
- The embedded hot-plug protection allows plug in and plug out of any LED load during operation without damaging the LEDs
- Supports wide current range depending on external driver transistor
- Supply voltage range up to 60 V
– Gate driver current 10 mA
- LED current can be adjusted by R., functionality

Order information for BCR601

order information for beroof						
Туре	Description	Ordering code				
BCR601	60 V linear LED controller IC with voltage feedback to primary side	BCR601XUMA1				
DEMO_BCR601_60V_IVCTRL*	Demonstration board BCR601 current and voltage control, 700 mA	DEMOBCR60160VIVCTRLTOBO1				
REF_TW_BCR601_55V_0.5A*	Demoboard for design evaluation of tunable white applications with cost-effective linear LED controllers, 500 mA	REFTWBCR60155V05ATOBO1				

www.infineon.com/bcr601

- Overtemperature protection and adjustable overvoltage protection



BCR601/BCR602 – 60 V linear LED controller ICs for tunable white plus active headroom control and flexible dimming

BCR601 is a linear controller that enables high efficiency at low cost as a second-stage LED controller to replace DC-DC buck converters especially in low- to mid-power LED drivers. The cost-effectiveness, especially in multichannel designs, can be further enhanced using BCR602 in a tiny SOT-23-6 package regulating the LED current for flicker-free deep dimming performance.

Features and benefits

Key benefits

- BCR601, as the master controller, controls the voltage overhead of both channels and the current of one channel
- BCR602, as slave controller, regulates current of second channel
- Input voltage up to 60 V
- Can be operated with either BJT or N-channel MOSFET
- Analog dimming down to 3%, PWM dimming down to 1% (BCR602)
- Current precision ±3%
- OTP, OVP, hot-plug protection

Key advantages

- Linear regulators give considerable cost advantage over buck topology
- Cost advantage increases with additional channels
- Efficiency can be on par with buck (depends on output ripple of first stage)
- Highest light quality, zero ripple
- Deep, full analog dimming
 - Easy to extend to additional outputs (e.g., RGBW)

Order information

Туре	Description	Ordering code		
REF_TW_BCR601_55V_0.5A*	Demoboard for design evaluation of tunable white applications with cost-effective linear LED controllers BCR601/BCR602, 500 mA	REFTWBCR60155V05ATOBO1		
BCR601	60 V linear LED controller IC with voltage feedback to primary side	BCR601XUMA1		
DEMO_BCR601_60V_IVCTRL*	Demonstration board BCR601 current and voltage control, 700 mA	DEMOBCR60160VIVCTRLTOBO1		
BCR602	60 V linear LED controller IC	BCR602XTSA1		
DEMO_BCR602_60V_ICTRL*	Demoboard for design evaluation of cost-efficient, highly reliable, dimmable LED engines/modules, 60 V, 200 mA	DEMOBCR60260VICTRLTOBO1		

www.infineon.com/cms/en/product/evaluation-boards/ref_tw_bcr601_55v_0.5a www.infineon.com/cms/en/product/power/lighting-ics/linear-led-driver-ic/bcr601 www.infineon.com/bcr602

^{*}See Plug & LEDs play, ideally to be combined with secondary-side boards

BCR43x linear LED driver ICs for low-power LEDs

The BCR3x family is the smallest and lowest-cost series of LED drivers. These products are perfectly suited for driving low-power LEDs in general lighting applications.

The advantages over resistor biasing are:

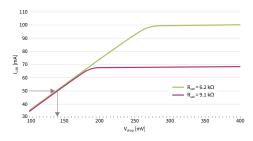
- Long lifetime of LEDs due to constant current in each LED string
- Homogenous LED light output independent of LED forward voltage binning, temperature increase, and supply voltage variations

The advantages over discrete semiconductors are:

- Reduced part count and assembly effort
- Pretested output current
- Defined negative temperature co-efficient protection

Need more details on replacing resistors?

Download now the application note


"Driving low power LEDs from 10 to 65 mA LED driver ICs"

Features and benefits

Output current from 8 to 100 mA (adjustable by external resistor)
Supply voltage up to 40 V (BCR430U, BCR431U*)
Reduction of output current at high temperature, contributing to long lifetime LED systems
Extra low voltage drop for more voltage headroom and flexibility in designs (BCR430U, BCR431U
Excellent ESD performance on device and system level for BCR43xU
Very small form factor packages with up to 600 mW max. power handling capability

LED current versus voltage drop (V_s = 24 V)

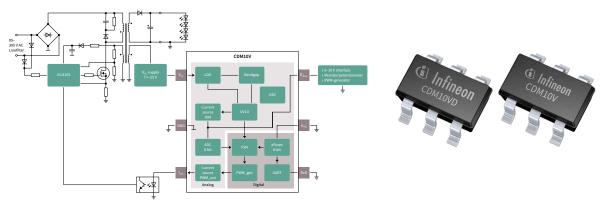
The voltage drop at the integrated LED driver stage can go down to 135 mV at 50 mA and less, improving the overall system efficiency and providing extra voltage headroom to compensate for tolerances of LED forward voltage or supply voltage. With the BCR430U and BCR431U, additional LEDs can be added to lighting designs, or longer LED strips can be created without changing the supply voltage.

Low-power LED driver ICs (5-100 mA)

Туре	Group	Topology	V _s (min.) [V]	V _s (max.) [V]	I _{out} (typ.) [mA]	I _{out} (max.) [mA]	Dimming	Package	P _{tot} (max.) [mW]	Ordering code
BCR430U*	LED drivers for low-power LEDs	Linear	6	42	Defined by R _{set}	100	PWM by	SOT-23	600	BCR430UXTSA2
BCR431U**	LED drivers for low-power LEDs	Linear	6	42	Defined by R _{set}	42	external	SOT-23	600	BCR431UXTSA1

Туре	Description	Ordering code
BCR430U LED BOARD	Low-power demoboard with 8 LEDs, 50 mA	BCR430ULEDBOARDTOBO11
DEMO_BCR431U_LVDROP	Low-power demoboard with 8 LEDs, 15 mA	DEMOBCR431ULVDROPTOBO1

www.infineon.com/bcr


- * Ultralow voltage drop version BCR430U with only 135 mV at 50 mA
- ** Ultralow voltage drop version BCR431U with only 115 mV at 15 mA

CDM10V and CDM10VD – most flexible dimming interface ICs for 0-10 V input

Infineon's fully integrated dimming solutions

Infineon's CDM10V and CDM10VD are the industry's first single-chip lighting interface ICs. They are capable of transforming an analog 0–10 V input into a PWM or dimming input signal, required by a lighting controller IC. CDM10V and CDM10VD devices are dedicated for commercial and industrial LED lighting applications. The compact and highly integrated devices allow designers to replace up to 25 discrete components, used in conventional 0–10 V dimming schemes, with a single device. Supplied in an ultra-miniature 6-pin SOT package, the CDM10Vx and CDM10VDx perfectly match small PCBs with high component densities.

Typical application schematic using CDM10V

Features and benefits

LOV	her	nefit	

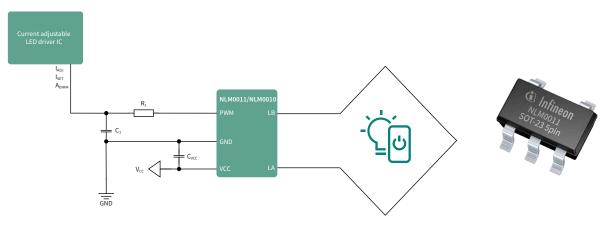
- Active dimming (0–10 V) and passive dimming (resistor)
- Embedded digital signal processing which maintains minimum variations from device to device
- PWM input
- One-time configurable device: CDM10V and preconfigured devices with various feature sets

Key advantages

- Single-device solution leading to low BOM and PCB savings
 - Dimming ICs in small SOT-23 package for high power density designs
- Granular portfolio for highest flexibility and easy design-in
- Wide input V_{cc} range 11–25 V, extended range down to 6 V for CDM10V
- Attractive pricing and faster time to market

Product type	l _{out} [mA]	Min. duty cycle [%]	PWM output frequency [kHz]	Dimmer/resistor bias current [μΑ]	Dimm-to-off	Ordering code
CDM10V	5	1/2/5/10	0.2/0.5/1/2	50/100/ 200 /500	Disabled/enabled	CDM10VXTSA1
CDM10V-2	5	n.a.	1	200	Enabled	CDM10V2XTSA1
CDM10V-3	5	1	1	200	Disabled	CDM10V3XTSA1
CDM10V-4	5	n.a.	2	100	Enabled	CDM10V4XTSA1
CDM10VD	5	5	1	120	Enabled	CDM10VDXTSA1
CDM10VD-2	5	10	1	120	Enabled	CDM10V2DXTSA1
CDM10VD-3	1	5	1	120	Enabled	CDM10V3DXTSA1
CDM10VD-4	1	10	1	120	Enabled	CDM10V4DXTSA1

Board name	Description	Ordering code
REF-XDPL8105-CDM10V	40 W single-stage PFC FB digital power reference design with CDM10V	REFXDPL8105CDM10VTOBO1



NFC-PWM configuration ICs

Dual-mode NFC wireless configuration ICs with CLO function and pulse-width modulation (PWM) output for lighting applications

The NLM0011 is a dual-mode NFC wireless configuration IC with PWM output. It is compatible with existing analog LED driver designs and with the NFC-programming specification from the module-driver interface special interest group (MD-SIG). This device is primarily designed for LED applications to enable NFC programming. IIn addition, advanced features, such as the constant lumen output (CLO) and the on/off counting, are integrated, and there is no need for an additional microcontroller. Since the NLM0011 is designed to work together with mainstream analog driver ICs, there are no firmware development efforts needed. It can be easily adapted into existing designs to replace the "plug-in resistor" current configuration concept. The NLM0010 is a light version without CLO function.

Typical example of NFC lighting application

Features and benefits

Key benefits - Configurable pulse-width modulation (PWM) output - NFC contactless interface compliant to ISO/IEC 18000-3 mode 1 (ISO/IEC 15963) - Constant light output (CLO) with 8 configurable points - Integrated operation-time counter (OTC) and on/off counter

Non-volatile memory (NVM) including UID and 20 bytes free memory for user data

Key advantages

- Fast and cost-effective implementation of NFC programming and CLO without the need of an additional microcontroller
- Compatible with most analog LED driver designs using the "plug-in resistor" method
- Stable PWM output with fixed 2.8 V amplitude and ±0.1% duty cycle accuracy
- Internal voltage regulator (LDO) to avoid influence of instable external supply voltage

EVAL_NLM0011_DC - evaluation board demo kit

This evaluation board not only enables fast demonstration of NFC-PWM configuration ICs with NLM0011 through the NFC-PWM mobile app, but also accelerates the development of the NFC-reader software. EVAL_NLM0011_DC does not require a full system, but allows NFC configuration for existing LED driver boards.

Ordering code: EVALNLM0011DCTOB01

Туре	Description	Package	Ordering code
NLM0011	Dual-mode NFC configuration IC with PWM output and CLO function	SOT-23-5	NLM0011XTSA1
NLM0010	Dual-mode NFC configuration IC with PWM output, without CLO function	SOT-23-5	NLM0010XTSA1

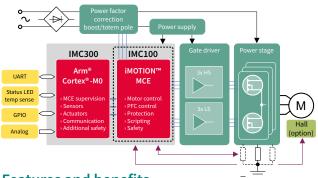
iMOTION™ integrated motor control solutions

A family of highly integrated products for the control of a variable speed drive

iMOTION™ products are offered in several integration levels including hardware as well as software. The hardware integration comprises stand-alone motor controllers (iMOTION™ controller), motor controllers with integrated gate drivers (iMOTION™ driver), and fully integrated inverters-in-a-package (iMOTION™ IPM). In terms of software, Infineon offers full turnkey solutions as well as freely programmable modules.

Infineon's field-proven Motion Control Engine (MCE) eliminates software coding from the motor control development process reducing the effort to the configuration for the respective motor and power stage.

The MCE implements highly efficient control of the motor and an optional power factor correction (PFC) and integrates all necessary protections and a flexible scripting engine. Assisted by powerful tools like the iMOTION™ Solution Designer (iSD), it is possible to have the motor up and running in less than an hour. Integrated support for functional safety for home appliances paves the way to meet regulations in the global market


Infineon provides complete solutions for motor control with its combined offering of iMOTION™ together with EiceDRIVER™ gate drivers, TRENCHSTOP™ IGBTs, CoolMOS™ MOSFETs, and CIPOS™ IPMs.

iMOTION™ controller

Motor/PFC controller plus optional MCU for maximum flexibility

The iMOTION™ controllers consist of two different families: iMOTION™ IMC100 is a series of highly integrated ICs for the control of variable speed drives. By integrating both the required hardware and algorithm to perform control of a three-phase motor they provide the shortest time to market for any motor system at the lowest system and development cost. By combining the iMOTION™ IMC100 with an additional microcontroller based on the Arm® Cortex®-M0 core, iMOTION™ IMC300 series is the perfect fit for applications requiring application flexibility beyond pure motor and PFC control.

Infineon's field-proven Motion Control Engine (MCE) implements field-oriented control (FOC) using single or leg shunt current feedback and uses space vector PWM with sinusoidal signals to achieve highest energy efficiency. The MCE can run sensorless as well as using Hall sensors for low speed operation. It also integrates multiple protection features like over- and undervoltage, overcurrent, rotor lock etc. The integrated scripting engine grants flexibility for a wide range of applications. The IMC100/300 series are offered in several device variants. All devices can be used in applications requiring functional safety acc. to IEC/UL 60730 ('Class B'). With this wide application scope the iMOTION™ controller is the perfect choice for any highly efficient variable speed drive - from low to high voltage.

Features and benefits

Key features - Completely self-sustaining Motion Control Engine - Option for boost or totem pole PFC - Integrated protection features - Scripting engine for application flexibility - Additional independent microcontroller - Support for IEC 60335-1 ('Class B')

REF-Vacuum_CIOI_2ED VIO

Key benefits

- Easy motor parametrization and tuning
- Low BOM cost for active PFC applications
- Safeguard power stage and motor
- Maximum flexibility for customer functions
- Full flexibility for custom functions or communication
- Support for functional safety integrated

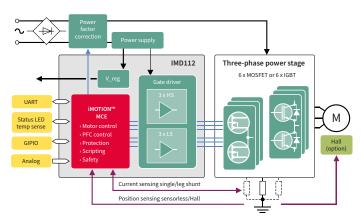
The REF-VACUUM_C101_2ED is a reference design kit featuring IMC101T iMOTION™ controller, 2ED2304 SOI half-bridge gate driver, and BSC030N04NS OptiMOS™. It demonstrates our thin-film-SOI and advanced MCE technologies for low-voltage, permanent-magnet motor drives up to 120 KRPM speed, and inverter section rating of 30 V and 25 A. It is optimized for major low-voltage home appliances like vacuums, fans, pumps, and compressors.

www.infineon.com/IMC www.infineon.com/iMOTION

Gate-driver ICs

Intelligent power switches and modules

USB-C controllers and peripherals


iMOTION™ driver

Motor/PFC controller with gate driver and voltage regulator

The iMOTION™ IMD110 is a series of highly integrated ICs for the control of three-phase motors. The IMD110 drivers are an optimal combination of a ready-to-use motor and (optional) PFC controller with a high-voltage three-phase SOI gate driver and a voltage regulator. They can be combined with almost any low- to high-voltage MOSFET or IGBT to create a very compact yet still highly flexible drive solution. The full set of protections, improved clearance, and creepage makes the IMD110 a highly robust and reliable driver family.

The family implements the identical field-proven Motion Control Engine (MCE) as the iMOTION™ controller family. The scripting engine that executes customer scripts with access to the MCE, a high number of GPIOs, analog inputs, and a configurable UART grants flexibility for a wide range of applications. Based on Infineon's latest SOI technology, the three-phase gate driver exhibits market-leading robustness and lowest failure rates. The very low level-shift losses reduce thermal stress and allow high-frequency operation, while the built-in bootstrap diodes help to reduce PCB space and cost. Protections like over- and undervoltage lockout and cross conduction prevention safeguard the power stage during erroneous conditions. All IMD110 devices support the functional safety requirements according to the IEC/UL 60730-1 ('Class B').

Block diagram

Features and benefits

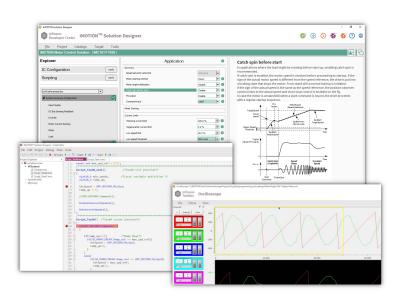
Key features

- Completely self-sustaining Motion Control Engine with identical feature set as the IMC100 series
- Option for boost or totem pole PFC
- High-voltage three-phase gate driver and built-in bootstrap diodes
- Single layer design possible
- Support for IEC 60335-1 ('Class B')

Key benefits

- Fastest time to market with easy parametrization and tuning of motor and PFC
- Low BOM cost for active PFC applications
- Reducing BOM and PCB space
- Reducing PCB and production costs
- Support for functional safety integrated

www.infineon.com/IMD www.infineon.com/iMOTION The REF_FRIDGE_D111T_MOS board is a ready-to-use three-phase inverter designed for refrigerator compressors featuring the iMOTION™ driver. The 600 V CoolMOS™ PFD7 super junction MOSFET demonstrates market-leading light-load efficiency. The board provides a single-phase AC-connector, rectifier, and three-phase output for the motor. Targeting low-cost applications, the motor is run with sensorless field-oriented control (FOC) using single shunt current sensing. The direct sensing of all voltages and currents does not require any OpAamp.



iMOTION™ tools and development support

The easy way to get started with motor control

The iMOTION™ Solution Designer is the new all-in-one PC tool supporting the iMOTION™ products in all stages of a motor control project. A new project can be started by choosing one of the preconfigured applications or by selecting an evaluation board or a specific device. Solution Designer offers individual views for all design steps from configuration up to the final tuning of the control loop.

Drive configuration is assisted by the integrated help describing all parameters in detail. After downloading the parameter sets into the iMOTION™ device, customer configurable dashboards help with starting and running the motor and tuning the control loop parameters to the desired behavior. All relevant parameters like voltages, currents, torque, speed can be visualized in real time on the 8-channel oscilloscope. Going one step beyond the configuration of the motor and PFC, the integrated editor, compiler, and debugger help develop scripts for the iMOTION™ script engine.

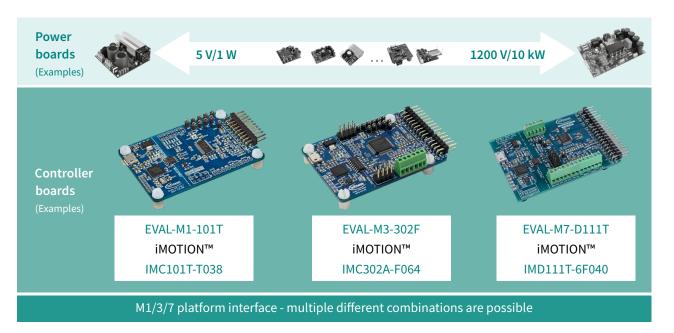
Features and benefits

features	Key benefits
Integrated PC tool for all devices in all project phases	 One common tool and consistent workflow for all iMOTION™ products
- Configuration wizard for motor and PFC parameter sets	– Easy handling of parameter sets with fully integrated help system
– Dashboards for typical design steps, customer configurable	Fully configurable for individual testing and tuning stages
Oscilloscope with 8 channels	Real-time insight into all motor and PFC parameters
- Full IDE for editing, compiling, and debugging of scripts	Assisted creation of scripts and live debugging including breakpoints
Programmer for firmware, parameter sets, and scripts	Unified data handling from project to device
Catalogs for devices, boards, loads, and projects	Project centric work and ease of creating derived projects

iMOTION2Go

Getting familiar with iMOTION™ firmware, features and tools

www.infineon.com/iMOTION2go www.infineon.com/iMOTION-software www.infineon.com/MCE The iMOTION2go kit contains a complete motor control system on a small form factor board and is powered via USB. It is particularly useful for a first evaluation of the iMOTION™ firmware and tools like the iMOTION™ Solution Designer. This combination of the IMC101 motor control IC with the Solution Designer supports all project stages from drive configuration up to optimization and tuning using dashboards and oscilloscope. Scripting can be practiced by downloading and debugging via the IDE integrated in the Solution Designer.



iMOTION™ Modular Application Design Kit

Get a motor running in less than 1 hour!

The iMOTION™ Modular Application Design Kit (MADK) is an evaluation platform targeting variable speed-drive applications up to 10 kW. The platform offers a modular and scalable system solution with different control board options and a wide range of power boards. Using the iMOTION™ MADK standardized platform interfaces, different control and power boards can be combined into a system that perfectly meets the requirements of the final application. This modular approach allows developers the maximum flexibility and scalability during the evaluation and development phase at affordable costs.

While the M1 platform provides control of a permanent magnet synchronous motor (PMSM), the M3 platform additionally includes an active power factor correction (PFC) implemented as a CCM boost PFC.

The M7 platform is based on the iMOTION™ driver series IMD110. The gate driver is contained on the control board, and the power boards use different types of discrete power devices, thus covering a wide voltage range from 20 to 600 V with either MOSFETs or IGBTs. Boards with M7 connector are available with and without active PFC.

iMOTION™ Link Isolated debug interface for final application boards

www.infineon.com/iMOTION-link www.infineon.com/MADK iMOTION™ Link is an isolated debug probe for all iMOTION™ motor control products. It connects to the user's target board (final application board) or any other evaluation or reference board via a galvanically isolated interface. iMOTION™ Solution Designer is then used for configuring, parameterizing, and tuning of the respective iMOTION™ device. In addition to the serial interface iMOTION™ Link also provides a standard Arm® SWD debug connection for programming the MCU core in devices like the IMC300 series.

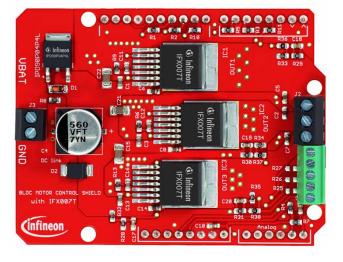
BLDC motor control shield with IFX007T for Arduino

The BLDC motor control shield is a high-current motor control board compatible with Arduino and Infineon's XMC4700 boot kit. It is equipped with three smart IFX007T half-bridges. The BLDC motor control shield is capable to drive one BLDC motor. Alternatively, it can be used to drive one or two bidirectional DC motors (H-bridge configuration, cascaded to support second motor) or up to three unidirectional DC motors (half-bridge configuration). The implemented integrated NovalithIC™ IFX007T half-bridges can be controlled by a PWM via the IN-pin.

Features

Key features
– Capable of high-frequency PWM, e.g., 30 kHz
- Adjustable slew rates for optimized EMI by changing external resistor
- Driver circuit with logic level inputs
- Diagnosis with current sense

Target applications


- Brushed DC motor control up to 250 W continuous load
- 24 V nominal input voltage (max. 6 40 V)
- Average motor current 30 A restricted due to PCB (IFX007T current limitation at 55 A min.)

BLDC-SHIELD_IFX007T

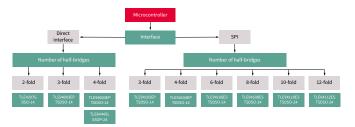
BLDC motor control with half-bridge IFX007T

Infineon's shields for Arduino are compatible with microcontroller boards using the Arduino-compatible form factor, e.g., Infineon's XMC™ microcontroller kits.

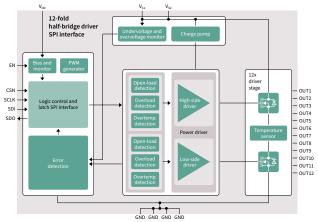
Ordering code: BLDCSHIELDIFX007TTOBO1

Gate-driver ICs

Digital isolators


USB-C controllers and peripherals

MOTIX™ multi half-bridge ICs


Extensive offering ranging from two-fold half-bridge ICs to twelve-fold half-bridge ICs

The MOTIX™ TLE94xyz products are protected half-bridge drivers designed for 12 V motion control applications such as small DC motors for heating, ventilation, and air conditioning (HVAC), as well as automotive mirror adjustment and fold. The family offers two-, three-, four-, six-, eight-, ten-, and twelve-fold integrated half-bridge driver. All devices can drive DC motor loads up to 0.9 A per output, or the outputs can be used stand-alone or combined with increasing driving capability up to 3.6 A. They provide diagnosis of short circuit, open load, power supply failure, and overtemperature for each half-bridge to ensure safe operation in HVAC or other systems. The TLE94xyz offers enhanced EMC performance, which in combination with the low quiescent current and a small package, makes the product attractive for a wide range of 12 V automotive and industrial applications. In addition to TLE94xyz, Infineon's multi half-bridge offerings include a dual-half-bridge driver, TLE4207G.

Infineon's portfolio of MOTIX™ multi half-bridge ICs

Block diagram MOTIX™ TLE94112ES

Features and benefits

Key features and benefits

- Three-, four-, six-, eight-, ten-, and twelve-fold half-bridges with integrated output stages and
- 16-bit SPI or direct inputs for control and diagnosis
- Voltage supply range: 5.5-20 V
- Variable driving schemes for up to 11 motors

Key applications

- 12 V automotive and industrial applications
- Flap motors in HVAC systems
- Mirror adjustment and fold
- Small DC motors (≤ 0.9 A/output)
- Bistable relays
- Bipolar stepper motors in full-step and half-step mode

Product name	Config.	I _{L(NOM)} [A]	I _{L(lim)} [A]	Ι _α [μΑ]	V _{s(OP)} [V]	Protection	Diagnostic interface	Highlights	$V_{\text{DS(on)}}/R_{\text{DS(on)}}^{\text{CE(sat)}}/R$	Package
TLE94003EP	3 x half-bridge	3 x 0.30	3 x 0.90	0.6	5.5 to 20	OC, OT, VS, UV/OV	Error flag	TLE94xyz family concept + small package	850/switch	TSDSO-14-
TLE94103EP	3 x half-bridge	3 x 0.30	3 x 0.90	0.6	5.5 to 20	OC, OT, OL, VS, UV/OV	16-bit SPI	TLE94xyz family concept + small package		TSDSO-14-
TLE94004EP	4 x half-bridge	4 x 0.30	4 x 0.90	0.6	5.5 to 20	OC, OT, VS, UV/OV	Error flag	TLE94xyz family concept + small package		TSDSO-14-
TLE94104EP	4 x half-bridge	4 x 0.30	4 x 0.90	0.6	5.5 to 20	OC, OT, OL, VS, UV/OV	16-bit SPI	TLE94xyz family concept + small package		TSDSO-14-
TLE94106ES	6 x half-bridge	6 x 0.30	6 x 0.90	0.6	5.5 to 20	OC, OT, OL, VS, UV/OV	16-bit SPI	TLE94xyz family concept + backwards compatible to TLE84106EL		TSDSO-24
TLE94108ES	8 x half-bridge	8 x 0.30	8 x 0.90	0.6	5.5 to 20	OC, OT, OL, VS, UV/OV	16-bit SPI	TLE94xyz family concept		TDSO-24
TLE94110ES	10 x half-bridge	10 x 0.30	10 x 0.90	0.6	5.5 to 20	OC, OT, OL, VS, UV/OV	16-bit SPI	TLE94xyz family concept + backwards compatible to TLE84110		TDSO-24
TLE94112ES	12 x half-bridge	12 x 0.30	12 x 0.90	0.6	5.5 to 20	OC, OT, OL, VS, UV/OV	16-bit SPI	TLE94xyz family concept + 12 outputs in one package		TDSO-24
TLE4207G	2 x half-bridge	2 x 0.80	2 x 1.50	20	8 to 18	OC, OT, VS, UV/OV	Status flag	Error detection		DSO-14

Digital isolators

DC motor control HAT with MOTIX™ TLE94112ES

Complies with Raspberry Pi HAT specification

The Infineon motor control HAT with MOTIX™ TLE94112ES complies with Raspberry Pi HAT specification and provides you with unique evaluation experience. It is equipped with 12-fold half-bridge driver TLE94112ES and comes with a ready-to-use software library. The HAT is also equipped with an Infineon TLS4125D0EP V50, a synchronous step-down converter which can power the Raspberry Pi.

Features and benefits

Key features

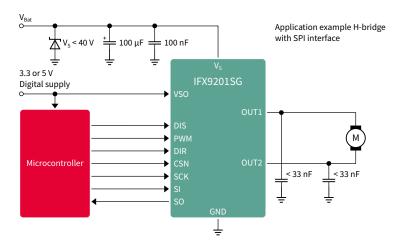
- Twelve half-bridge power outputs, 0.9 A each (combinable to up to 3.6 A)
- Wide input voltage range of 5.5 V to 20 V
- Powering of Raspberry Pi by TLS4125D0EP V50
- Reverse polarity protection
- Driver is protected against overtemperature, overcurrent, overvoltage, undervoltage, and enables diagnosis of overcurrent, overvoltage, undervoltage
- SPI interface with zero clock diagnosis
- Enhanced EMC performance
- Integrated PWM generator with 3 different frequencies (80 Hz, 100 Hz, 200 Hz)

Benefi

- Compact design for multi-motor applications
- Quick and easy setup for evaluation and demo applications
- Wide range of applications

Target applications

- Automotive motor control: HVAC flap control
- Multi-motor applications
- DC motors and voltage controlled bipolar stepper motors
- Toys


Ordering code: TLE94112ESRPIHATTOBO1

www.infineon.com/makers www.infineon.com/raspTLE94112ES

General purpose 6 A H-bridges

MOTIX™ IFX9201SG is a general-purpose 6 A H-bridge for industrial applications, home appliance and building automation, power tools battery management, and medical applications, designed to control small DC motors and inductive loads. The outputs can be pulse-width modulated at frequencies up to 20 kHz, which enables operation above the human sonic range by means of PWM/DIR control. While the signal at the DIR input defines the direction of the DC motor, the PWM signal controls the duty cycle. For load currents above the current limitation threshold (8 A typically), the H-bridges switch into chopper current limitation mode.

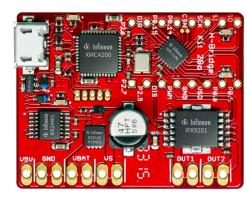
Applications examples

Features

Key features	
– Up to nominal 36 V supply voltage	
- Short circuit, overtemperature protection, and undervoltage shutdown	
– Detailed SPI diagnosis or simple error flag	
- Simple design with few external components	
- Small and robust DSO-12-17 (IFX9201SG) and DSO-36-72 (IFX9202ED) packages	s S

Product number	Operating voltage	Current limit (min.) [A]	Quiescent current (typ.) [μΑ]	Operating range [V]	$R_{_{DS(on)}}$ (typ./switch) [m Ω]	Package	R _{thJC} (max.) [K/W]
IFX9201SG	4.5 to 36 V	6.0	19.0	5 to 36	100	PG-DSO-12 (power)	2.0

USB-C controllers and peripherals


H-BRIDGE KIT 2GO with MOTIX™ IFX9201SG

Build your own DC motor control with the H-bridge Kit 2GO, a ready-to-use evaluation kit. It is fully populated with all electronic components equipped with the H-bridge MOTIX™ IFX9201 combined with XMC1100 microcontroller based on Arm® Cortex®-M0 CPU. It is designed for the control of DC motors or other inductive loads up to 6 A or up to 36 V of supply.

Target applications

- DC motor control for industrial applications
- Home and building automation
- Power tools battery management
- Industrial robotic applications
- Electric toys applications

Ordering code: HBRIDGEKIT2GOTOBO1

KIT_XMC1300_IFX9201 Stepper motor control shield with MOTIX™ IFX9201SG and XMC1300 for Arduino

The stepper motor control shield from Infineon is one of the first high-current stepper motor control boards being compatible to Arduino as well as to Infineon's XMC1100 boot kit. The stepper motor control shield is capable to drive the two coils in a stepper motor featuring dual-half-bridge configuration. The implemented integrated MOTIX™ IFX9201 half-bridges can be controlled by a STEP-signal via the STEP pin. Interfacing to a microcontroller is made easy by the integrated XMC1300 microcontroller that holds the peripherals to allow high-speed current control. Microstepping of the stepper motor can be achieved using the internal comparators, while operational amplifiers are installed to adapt the motor current sense signal to the microcontroller's input levels.

Features and benefits

Kev features

- Compatible with microcontroller boards using the Arduino form factor, e.g., Infineon's XMC™ microcontroller kits
- Capable of high-frequency PWM, e.g., 30 kHz
- Adjustable slew rates for optimized EMI by changing external resistor
- Driver circuit with logic level inputs
- Diagnosis with current sense

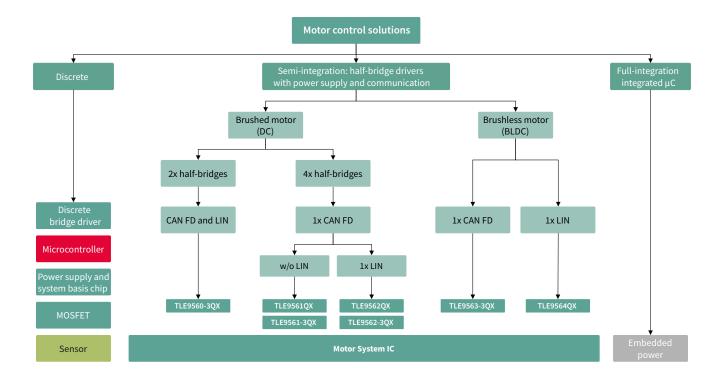
Key benefits

- Fast and inexpensive prototyping of stepper motor control
- Simple testing of microstepping algorithms
- Diagnose pin to allow hardware feedback during development
- Overtemperature shutdown with latch behavior and undervoltage shutdown of the power section

Target applications

- Stepper motors up to 5 A phase current
- 24 V nominal input voltage for the power stage
- Average motor current 3 A without additional cooling effort, 5 A possible with proper cooling

Ordering code: KITXMC1300IFX9201TOBO1


www.infineon.com/h-bridge-kit-2go www.infineon.com/kit-xmc1300-ifx9201 www.infineon.com/makers

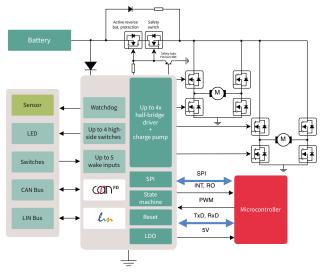
MOTIX™ SBC

(BL)DC motor system IC combines power supply, communication, and multiple half-bridge MOSFET drivers

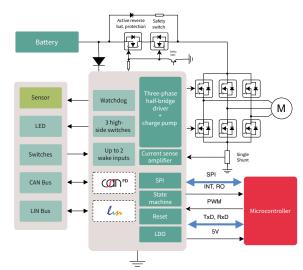
Infineon's MOTIX™ SBC family offers high integration and high performance with optimized system cost for DC and BLDC motor control applications. All devices of the motor system IC family feature a low-dropout voltage regulator with an output current of 250 mA/5 V. The communication interface incorporates a CAN FD transceiver up to 5 Mbit/s according to ISO 11898-2:2016 (including partial networking (PN) option) and/or a LIN transceiver.

Features

Features


- 5 V linear regulator up to 250 mA
- CAN FD up to 5 Mbps CAN PN and FD tolerant ("-3" variants)
- LIN2.2B/J2602
- MOTIX™ TLE9560/1/2: up to 4 half-bridge gate drivers with adaptive MOSFET control up to 100 mA constant gate charge
- MOTIX™ TLE9563/4: three-phase gate driver with CSA and adaptive MOSFET control up to 150 mA constant gate charge
- Up to 4 high-side switches (with 7 on-resistance) Up to 5 wake inputs
- Up to 6 PWM inputs

Benefits


- PCB savings up to 50 percent due to unique integration approach
- Lower switching losses and EMC optimization due to adaptive MOSFET control
- Automatic regulation of MOSFET pre-charge currents diminish need for production MOSFET calibration
- VS monitoring in sleep mode activates MOSFET to prevent from ECU damage when motor is in generator mode

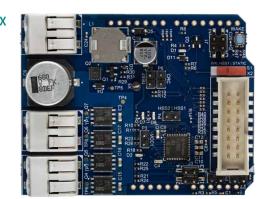
Solutions

Application diagram MOTIX™ TLE9560/1/2 for DC motor control

Application diagram MOTIX™ TLE9563/4 for BLDC motor control

Product table

Product variant	V _{cc} 1	CAN FD	CAN PN	LIN	HS switches	PWM input	Driver
TLE9560-3QX	5 V up to 250 mA	✓	✓	✓	4	1	2x half-bridges (100 mA const.)
TLE9561QX	5 V up to 250 mA	✓	-	-	4	4	4x half-bridges (100 mA const.)
TLE9561-3QX	5 V up to 250 mA	✓	✓	_	4	4	4x half-bridges (100 mA const.)
TLE9562QX	5 V up to 250 mA	✓	-	✓	4	2	4x half-bridges (100 mA const.)
TLE9562-3QX	5 V up to 250 mA	✓	✓	✓	4	2	4x half-bridges (100 mA const.)
TLE9563-3QX	5 V up to 250 mA	✓	✓	-	3	6	3x half-bridges (150 mA const.)
TLE9564QX	5 V up to 250 mA	-	_	✓	3	6	3x half-bridges (150 mA const.)


DC and BLDC motor control shields and evaluation boards with MOTIX™ TLE9562-3QX and with MOTIX™ TLE9563-3QX

The purpose of these boards is to provide a quick evaluation solution for lab assessments. The evaluation boards offer a unique two-in-one solution: they can be connected via a UIO stick with the computer to evaluate features via config wizard (a graphical user interface) which can be found in the Infineon Developer Center. In addition, the evaluation boards feature an Arduino shield interface for rapid prototyping.

Summary of features BLDC motor control shield with MOTIX™ TLE9563-3QX

- Operating voltage range 5.5-28 V with 5 V compatible logic input
- Integrated reverse polarity protection with on-board EMC filter
- Three integrated half-bridges MOSFET (2-in-1 MOSFET package)
- 5 mΩ low-side current sense
- High-power RGB LED driven by integrated high-side switches
- On-board back-EMF detection circuit and connector for Hall-sensor
- Arduino example codes available

Summary of features DC motor control shield with MOTIX™ TLE9562-3QX

- Operating voltage range 5.5-28 V with 5 V compatible logic input
- Integrated reverse polarity protection with on-board EMC filter
- Four integrated half-bridge MOSFETs (2 in 1 MOSFET package)
- Easy interfacing of CAN and LIN transceiver
- Miniaturization/shrink of the PCB area
- Arduino example codes available

Sales product name: DC SHIELD_TLE956X Ordering code: DCSHIELDTLE956XTOBO1

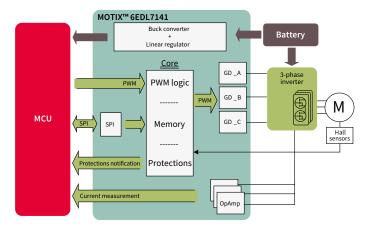
Benefits of DC and BLDC motor control shields

- 2-in-1 board with GUI and Arduino interface for evaluation and rapid prototyping
- 50 percent reduced internal operating current consumption
- Simplified and cost efficient ground network
- Smaller package size for area savings
- Very low guiescent current in sleep-mode

MOTIX™ 6EDL7141

Three-phase smart gate drive controller IC

The MOTIX™ 6EDL7141 is Infineon's latest three-phase motor control gate driver IC that enables development of high-performance-battery-operated products using BLDC or PMSM motors. Ideal applications include cordless power tools, gardening products, and automated guided vehicles. With over 50 programmable parameters using built-in digital SPI interface, the MOTIX™ 6EDL7141 is fully configurable to drive a wide range of MOSFET's to yield the best possible system efficiency. The MOTIX™ 6EDL7141 is also designed for maximum flexibility. With an operating voltage from 5.5-70 V and configurable gate drive sink and source current up to 1.5 A, it can drive a wide range of MOSFETs effectively to best fit the application. It has an adjustable gate driver supply voltage setting between 7 V, 10 V, 12 V, and 15 V even at low battery voltage thanks to built-in dual charge pumps. The MOTIX™ 6EDL7141 also has adjustable gate driver parameters to enable control of the slew rate to minimize system EMI. All of the MOTIX™ 6EDL7141 settings can be quickly changed with the available easy-to-use GUI. The integrated buck regulator requires only an external capacitor and inductor to provide power for both the microcontroller and the Hall sensors in the motor, further reducing fault conditions.

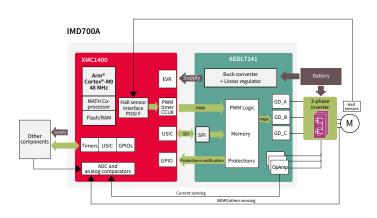

EVAL_6EDL7141_TRAP_1SH

- Single shunt evaluation board for trapezoidal commutation of BLDC motors with 40 V OptiMOS™ 5 PQFN and XMC1404 MCU
- On-board programming dongle
- Featured IC: MOTIX™ 6EDL7141

Features and benefits

Key features	Key benefits
 Integrated power supplies 	 Reduced external components and PCB area
– Adjustable slew rate	Optimized efficiency and EMI
- Programmable gate drive parameters	Maximum flexibility to use diff erent inverter FETs
- 3x current shunt amplifier	Highly accurate current sense while saving external components
- Complete dedicated motor control protection suite	Higher dynamic range to increase signal resolution
	- Improve reliability and fault detection

Block diagram


Product portfolio

Part number	Package	Voltage [V]	$R_{_{DS(on),max}}$, [$m\Omega$]
6EDL7141	PG-VQFN-48-78	5.5 – 70 V	2.2

MOTIX™ IMD700A/IMD701A integrated controller

Fully programmable motor controller combining microcontroller and gate driver IC

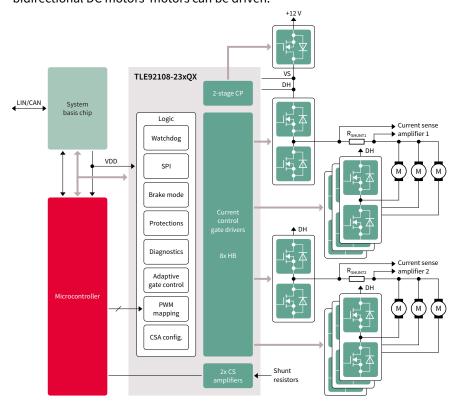
Today's newest battery-operated motor drive applications require increased power density and longer run-time, which needs higher efficiency. MOTIX ™ IMD700A and IMD701A are Infineon's latest fully programmable motor controllers integrating XMC1404 microcontroller with MOTIX™ 6EDL7141 3-phase gate driver IC in one package to enable the development of nextgeneration battery-operated products using BLDC or PMSM motors. These controllers are ideal for applications such as professional cordless power tools, gardening products, e-bikes, and automated guided vehicles. With integrated precision power supply and current shunt amplifiers, much of the peripheral circuitry is no longer necessary, reducing PCB space and improving system packaging possibilities. XMC1404, Arm® Cortex®-M0 based microcontroller incorporates dedicated features to improve motor drive control. A hardware MATH Co-Processor clocked at 96 MHz, enhances calculations including division and trigonometric functions commonly used in Field Oriented Control of PMSM. Additionally, XMC1404 inherits most of the high-end peripherals found in the XMC4000 family (ARM® Cortex®-M4), including PWM timers -CCU8 and CCU4-, position interface (POSIF) or serial communication modules including CAN, ensuring best in class control. The integrated 3-phase gate driver (6EDL7141) includes configurable gate drive sink and source currents up to 1.5 A, it enables the ability to drive a wide range of MOSFETs effectively to minimize losses and increase efficiency. It has adjustable gate driver supply voltage settings between 7 V, 10 V, 12 V, and 15 V even at low battery voltage thanks to built-in high and low side charge pumps. The 6EDL7141 also has dynamically adjustable gate driver parameters to enable control of the slew rate to minimize system EMI and voltage overshoots. In addition, with a full suite of system protection features such as OCP, UVLO, over-temperature, and locked rotor detection, this dedicated motor controller will increase reliability and robustness in severe operating fault conditions.

Features and benefits

- Integrated power supplies	
- Adjustable slew rate	
– Programmable gate drive parameters	
- 3x current shunt amplifier	

K	Gey benefits
-	- Reduced external component count and PCB area
-	- Lower voltage overshoots and EMI reduction
-	- Maximum flexibility to use different inverter MOSFETs
-	- Highly accurate integrated current sense saves external components
-	- Improved reliability and fault detection

Part number	Package	Voltage [V]	D _{vpp} regulator output [V]
IMD700A-Q064X128-AA	PG-VQFN-64-8 9 x 9 mm	5.5 – 60 V	3.3 V
IMD701A-Q064X128-AA	PG-VQFN-64-8 9 x 9 mm	5.5 – 60 V	5.0 V



Multiple half-bridge drivers designed to control up to eight half-bridges

Infineon's MOTIX™ TLE9210x is a family of multi-MOSFET drivers, designed to control up to eight half-bridges (up to 16 N-channel MOSFETs) with one packaged device. Having only one device for several half-bridges enables further savings, such as less pick and place costs and less required PCB area compared to discrete solutions.

The MOTIX™ TLE92108 and MOTIX™ TLE92104 multiple MOSFET driver offer a reliable and cost-optimized solution with state-of-the-art diagnostic and protection. The devices of the MOTIX™ TLE9210x family are pin and software compatible. Furthermore, the product family allows motor cascading: with TLE92108 (8 half-bridges), up to 7 bidirectional DC motors motors can be driven.

Product table

Туре	Description	Brake mode	Package	Ordering code
TLE92108-231QX	8-fold multi-MOSFET driver IC	No	PG-VQFN-48	TLE92108231QXXUMA1
TLE92108-232QX	8-fold multi-MOSFET driver IC	Yes	PG-VQFN-48	TLE92108232QXXUMA1
TLE92104-131QX	4-fold multi-MOSFET driver IC	No	PG-VQFN-48	TLE92104131QXXUMA1
TLE92104-232OX	4-fold multi-MOSFET driver IC	Yes	PG-VOFN-48	TLE92104232OXXUMA1

MOTIX™ TLE92104-23QX APPKIT and MOTIX™ TLE92108-23QX APPKIT

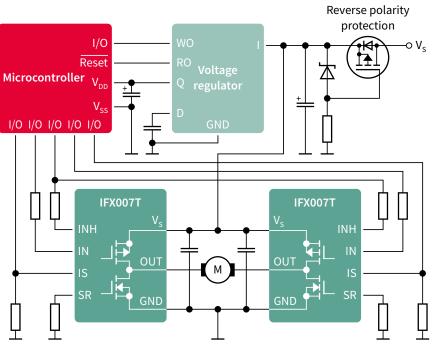
Infineon's evaluation boards to measure and evaluate the hardware and software functionalities of the MOTIX™ multi-MOSFET driver family

The TLE92104-23QX APPKIT contains the multi-MOSFET driver IC TLE92104-232QX, and a typical application circuit, including 4 MOSFET half-bridges (OptiMOS™ 40 V MOSFETs in S308 package) to drive up to 3 bidirectional DC motors.

The TLE92108-23QX APPKIT contains the multi-MOSFET driver IC the TLE92108-232QX and a typical application circuit, including 8 MOSFET half-bridges (OptiMOS™ 40 V in S308 package) to drive up to 7 bidirectional DC motors.

The application boards can be connected via a UIO stick with the computer to evaluate their features via config wizard (a graphical user interface) which can be found in the Infineon Developer Center.

Ordering code: TLE9210423QXAPPKITTOBO1 Ordering code: TLE9210823QXAPPKITTOBO1



Single half-bridge IC

Protected high-current half-bridge for industrial applications

The NovalithICTM provides a complete, low-ohmic protected half-bridge in a single package (typical path resistance at 25°C down to 10 m Ω). It can also be combined with an additional NovalithICTM to create an H-bridge or three-phase bridge. The NovalithICTM family has the capability to switch high-frequency PWM while providing overcurrent, overvoltage, and overtemperature protection. The NovalithICTM family offers cost-optimized, scalable solutions for protected high-current PWM motor drives with very restrictive board space. Due to the P-channel high-side switch the need for a charge pump is eliminated thus minimizing EMI. The latest addition to the NovalithICTM family is the IFX007T, which is optimized for industrial applications.

Application example for high-current PWM motor drives

High-current H-bridge

Features

Basic features	Protection features	Diagnostic features
– Low quiescent current	 Overtemperature shutdown 	 Overtemperature
- Capable for high PWM frequency	- Overvoltage shutdown	- Overvoltage
– Logic level input	Undervoltage	- Current sense and status
- Adjustable slew rate	- Overcurrent	
- Cross-current protection		

Product number	Operating range [V]	R _{DS(on)} path (typ.) [mΩ]	I _{D(lim)} (typ.) [A]	Ι _q (typ.) [μΑ]	Switch time (typ.) [µs]	Diagnosis	Protection	Package	Qualification
IFX007T	5.5 40.0	10.0	70	7	0.25	OT, OC, CS	UV, OT, OC	PG-TO-263-7	JESD471

www.infineon.com/novalithic

Infineon support for power ICs

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/acdc www.infineon.com/coolset www.infineon.com/integrated-powerstages www.infineon.com/digital-controller www.infineon.com/lighting-ics www.infineon.com/isoface www.infineon.com/eicedriver www.infineon.com/novalithic www.infineon.com/shields-for-arduino www.infineon.com/ipol

www.infineon.com/analog-ipol www.infineon.com/xdp www.infineon.com/motix www.infineon.com/madk www.infineon.com/optireg-linear www.ifineon.com/optireg-switcher www.infineon.com/motor-control-ics www.infineon.com/imotion

Support

Wide bandgap semiconductors

Gallium nitride (GaN)

- CoolGaN™ GIT HEMTs
- CoolGaN™ GIT HEMTs 600 V
- CoolGaN™ IPS half-bridge 600 V
- CoolGaN™ product portfolio

Silicon carbide (SiC)

- CoolSiC[™] MOSFETs 650 V overview and portfolio
- CoolSiC[™] MOSFETs 1200 V overview and portfolio
- CoolSiC™ MOSFETs 1700 V overview and portfolio
- CoolSiC™ MOSFETs 2000 V overview and portfolio
- CoolSiC[™] Schottky diodes
- CoolSiC[™] Schottky diodes 650 V
- CoolSiC™ Schottky diodes 1200 V
- CoolSiC[™] diodes product portfolio
- CoolGaN™ and CoolSiC™ nomenclature

Wide bandgap semiconductors

Gallium nitride (GaN) and silicon carbide (SiC)

The key to the next essential step towards an energy-efficient world is the use of new materials, such as wide bandgap semiconductors that allow for greater power efficiency, smaller size, lighter weight, lower overall cost – or all of these together. As the leading and trusted power supplier, Infineon offers the broadest product and technology portfolio of silicon (Si) and wide bandgap (WBG) solutions with more than 40 years of heritage in silicon, and several decades of heritage in wide bandgap technology development.

CoolGaN™ – ultimate efficiency and reliability

Compared to silicon (Si) MOSFETs, the breakdown field of Infineon's CoolGaN™ gate injection transistor (GIT) enhancement mode (e-mode) HEMTs is ten times higher, and the electron mobility is double. Both the output charge and gate charge are ten times lower than with Si and the reverse recovery charge is almost zero, which is key to high-frequency operations. GaN is the best-suited technology in hard-switching and resonant topologies, enabling new approaches in current modulation. Infineon's GaN solution is based on the market's most robust and performing concept in – the enhancement-mode concept - offering fast turn-on and turn-off speed. CoolGaN™ products focus on high performance and robustness, and add significant value to a wide variety of systems across many applications such as server, telecom, hyperscale data centers, wireless charging, adapter/charger, and audio. CoolGaN™ switches are easy to design-in with the matching EiceDRIVER™ gate driver ICs optimized for CoolGaN™ 600 V from Infineon.

CoolSiC™ - revolution to rely on

Silicon carbide (SiC) has a wide bandgap of 3 electronvolts (eV) and a much higher thermal conductivity compared to silicon. SiC-based MOSFETs are best-suited for high-breakdown, high-power applications that operate at higher frequencies compared to traditional IGBTs. CoolSiC™ MOSFETs come along with a fast internal freewheeling diode, thus making hard commutation without additional diode chips possible. Due to its unipolar character, the MOSFETs show very low temperature-independent switching and low conduction losses, especially under partial load conditions. Based on proven, high-quality volume manufacturing, Infineon's silicon carbide solutions combine revolutionary technology with benchmark reliability – for our customers' success today and tomorrow. The offering is completed by EiceDRIVER™ SiC MOSFET gate driver ICs based on Infineon's successful coreless transformer technology.

CoolGaN™ GIT HEMTs

Tailor-made for the highest efficiency and power density in switch-mode power supplies

Compared to the next best silicon alternative, CoolGaN™ enables higher power density and the highest efficiency, especially in the partial load range, through novel topologies such as the CCM totem-pole PFC stage. GaN e-mode HEMT performance features a low reverse recovery charge and excellent dynamic performance in reverse conduction compared to silicon FET solutions. This characteristic enables more efficient operation at established frequencies and much higher frequency operation, improving power density by shrinking the size of passive components. CoolGaN™ enables doubled output power in a given energy storage slot size, freeing up space and realizing higher efficiency simultaneously. Infineon's CoolGaN™ comes with industry-leading reliability. During the quality management process, it is not only the device that is thoroughly tested but also its behavior in the application environment. The performance of CoolGaN™ goes beyond other GaN products in the market.

Features

- Low output charge and gate charge
- > No reverse recovery charge

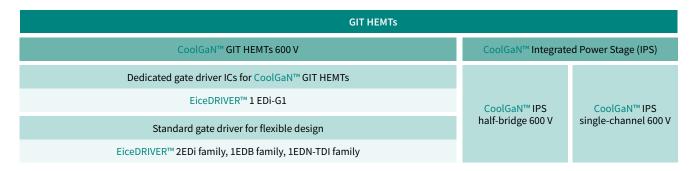
Design benefits

- High power density, small and light design
- > High efficiency in resonant circuits
- New topologies and current modulation
- Fast and (near-)lossless switching

Advantages

- Operational expenses (OPEX) and capital expenditure (CAPEX) reduction
- > BOM and overall cost savings

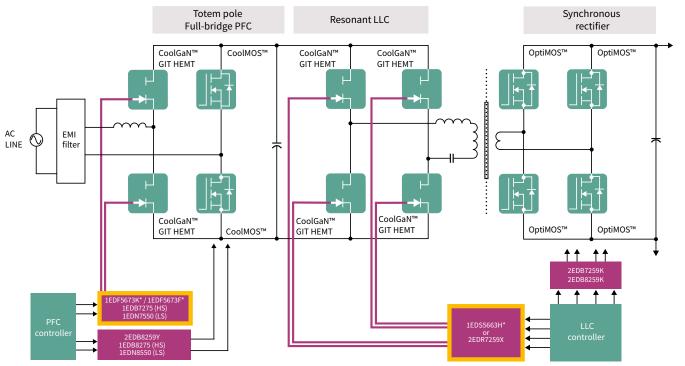
Infineon's high- and low-voltage MOSFETs, gate-driver ICs and digital controllers complement the CoolGaN™ offering to fully exploit the benefits of GaN technology in systems.


The highest quality

The qualification of GaN switches requires a dedicated approach, well above existing silicon standards

- Infineon qualifies GaN devices well beyond industry standards
- Application profiles are an integral part of the qualification process
- Failure models, based on accelerated test conditions, ensure target lifetime and quality are met
- > Infineon sets the next level of wide bandgap quality

CoolGaN™ GIT HEMTs overview


CoolGaN™ GIT HEMTs – bringing GaN technology to the next level

Infineon's CoolGaN™ GIT e-mode HEMTs enable more than 98 percent system efficiency and help customers make their end products smaller and lighter. Driving enhancement-mode devices requires additional features when choosing the correct gate driver IC. With the EiceDRIVER™ 1EDx56x3x family, Infineon offers dedicated single-channel galvanically isolated gate driver ICs, which are a perfect fit for e-mode GaN HEMTs with non-isolated gate (diode input characteristic) and low threshold voltage, such as CoolGaN™. However, CoolGaN™ technology does not require customized ICs, and in many applications, CoolGaN™ can be driven by standard gate drivers when coupled to an RC interface.

Complete support of all requirements specific to e-mode GaN HEMTs operation:

- > Low driving impedance (on-resistance 0.85 Ω source, 0.35 Ω sink)
- > Resistor programmable gate current for steady on-state (typically 10 mA)
- > Programmable negative gate voltage to completely avoid spurious turn-on in half-bridges

Block diagram: high-efficiency GaN switched-mode power supply (SMPS)

^{*}Single-channel EiceDRIVER™ ICs dedicated for CoolGaN™ GIT HEMTs

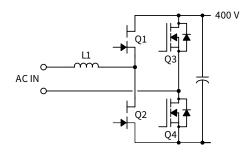
CoolGaN™ GIT HEMTs 600 V

The highest efficiency and power density with reduced system costs

The e-mode concept offers fast turn-on and turn-off speed, as well as a better path towards integration. CoolGaN™ GIT HEMTs 600 V enable simpler and more cost-effective half-bridge topologies. As e-mode based products reach maturity, CoolGaN™ GIT HEMTs 600 V are gaining growing prominence thanks to their potential. Infineon manufactures their CoolGaN™ 600 V series according to a specific, GaN-tailored qualification process that goes far beyond the standard for silicon power devices. CoolGaN™ GIT HEMT 600 V is designed for datacom and server SMPS, telecom rectifiers, as well as mobile chargers and adapters, and can be used as a general switch in many other industrial and consumer applications. It is the most rugged and reliable solution in the market. The CoolGaN™ portfolio is built around highperforming SMD packages to fully exploit the benefits of GaN.

CoolGaN™ GIT HEMTs for PFC

CoolGaN™ enables the adoption of simpler half-bridge topologies (including the elimination of the lossy input bridge rectifier). The result is record efficiency (>99%) with a potential for BOM savings.


CoolGaN™ GIT HEMTs for resonant topologies

- ightarrow In resonant applications, ten times lower Q_{oss} and Q_{g} enables high-frequency operations (>1 MHz) at the highest efficiency levels
- > Linear output capacitance leads to 8 to 10 times lower dead time
- Devices can be easily paralleled
- > Power density can be pushed even further by optimizing the thermal performance
- CoolGaN™ enables to push the efficiency forward, thus enabling high power density e.g., in low-power chargers/adapters

Applications

- Telecom
- Server
- Datacom
- Adapter and charger
- Wireless charging
- > SMPS

Full-bridge totem pole

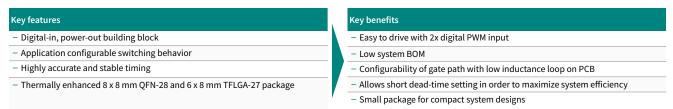
Demonstration board 2.5 kW totem-pole PFC board:

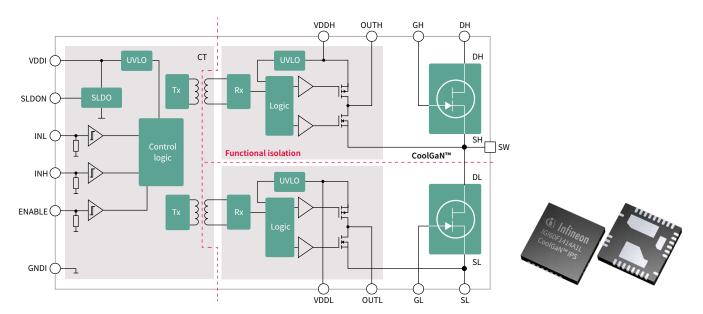
EVAL_2500W_PFC_GAN_A

- > 2 x 70 mΩ CoolGaN™ GIT HEMT in DSO-20-85
- > 2 x 33 mΩ CoolMOS™

CoolGaN™ IPS half-bridge 600 V

Ease of use with integrated drivers for highest efficiency and power density


The CoolGaN™ IPS half-bridge 600 V combines a half-bridge power stage consisting of two CoolGaN™ GIT HEMTs and a dedicated gate driver IC in one thermally enhanced 8 x 8 mm QFN-28 package. The CoolGaN™ IPS HB family is available in $R_{_{DS(on),typ}} \ of \ in \ 2x \ 140/200/270/500 \ m\Omega, in \ a \ thermally \ enhanced \ 8 \ x \ 8 \ mm \ QFN-28 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ TFLGA-27 \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ 2x500 \ m\Omega \ in \ 6x8 \ mm \ package \ and \ and$ package. It is thus ideally suited to support the design of compact appliances in the low-to-medium power area. Infineon's CoolGaN™ power switches provide a very robust gate structure. When driven by a continuous gate current of a few mA in the on-state, a minimum on-resistance R_{DS(on)} is always guaranteed, independent of temperature and parameter variations.


Due to the GaN-specific low threshold voltage and the fast switching transients, a negative-gate drive voltage is required in certain applications to avoid spurious turn-on effects. This can be achieved by the well-known RC interface between the driver and the switch. A few external SMD resistors and capacitors allow for easy adaptation to different applications (low/medium power, hard/soft switching).

The built-in driver utilizes an on-chip coreless transformer (CT) technology to achieve level-shifting to the high side. Besides, CT technology guarantees excellent robustness even for extremely fast switching transients above 150 V/ns.

The CoolGaN™ IPS 600 V family, is available in various configurations such as half-bridge and single-channel.

Features and benefits

CoolGaN™ GIT HEMTs 600 V

Package R _{DS(on),max.}	DSO-20-85 Bottom-side cooling	DSO-20-87 Top-side cooling	HSOF-8-3 TO-Leadless	LSON-8-1 DFN 8x8	TSON-8-3 ThinPAK 5x6
42 mΩ	IGO60R042D1	IGOT60R042D1	IGT60R042D1		
70 mΩ	IGO60R070D1	IGOT60R070D1	IGT60R070D1	IGLD60R070D1	
190 mΩ			IGT60R190D1	IGLD60R190D1	IGLR60R190D1
260 mΩ					IGLR60R260D1
340 mΩ					IGLR60R340D1

EiceDRIVER™ family optimized for CoolGaN™ GIT HEMTs 600 V

C())
Audio am	plifier

Draduct	Dockogo	Input to output isolation			Propagation	Typ. high level	Typ. low level	
Product	Package	Isolation class	Rating	Surge testing	Certification	delay accuracy	(sourcing) output resistance	(sinking) output resitance
1EDF5673K	LGA, 13-pin, 5x5 mm	functional	$V_{IO} = 1.5 \text{ kV}_{DC}$	n.a.	n.a.	-6 ns/+7ns	0.85 Ω	0.35 Ω
1EDF5673F	DSO, 16-pin, 150 mil	functional	$V_{IO} = 1.5 \text{ kV}_{DC}$	n.a.	n.a.	-6 ns/+7ns	0.85 Ω	0.35 Ω
1EDS5663H	DSO, 16-pin, 300 mil	reinforced	$V_{IOTM} = 8 \text{ kV}_{pk}$ $V_{ISO} = 5.7 \text{ kV}_{pus}$	V _{ISOM} > 10 kV _{pk}	EN 62368-1 UL1577	-6 ns/+7ns	0.85 Ω	0.35 Ω

EiceDRIVER™ standard gate drivers

							relecom Server	Adapter Urives	charging Audio amplifier
Product		Input to output isolation		Output UVLO 1)	Output peak	CMTI (min.)	Propagation	Propagation	
Floudet	Package	Isolation class	Rating	Certification		source/sink current	CMTT (IIIII.)	dealy (typ.)	delay accuracy
2EDR7259X	DSO, 14-pin,	reinforced	$V_{ISO} = 5.7 \text{ kV}_{RMS}$	UL1577,	4 V	5 A/9 A	150 V/ns	38 ns	-5 ns/+9 ns
2EDR8259X ²⁾	300 mil		$V_{IOTM} = 8 \text{ kV}_{pk}$ VDE 0884	VDE 0884-11	8 V				
2EDB7259Y	DSO, 14-pin,	single protection	$V_{ISO} = 3.0 \text{ kV}_{RMS}$	UL1577	4 V				
2EDB8259Y	150 mil				8 V				
1EDB7275F	DSO, 8-pin, 150	single protection	$V_{ISO} = 3.0 \text{ kV}_{RMS}$	UL1577	4 V		300 V/ns	45 ns	-4 ns/+6 ns
1EDB8275F	mil				8 V				
1EDN7550B	SOT23, 6-pin	non-isolated	n.a.	n.a.	4 V		n.a.	45 ns	-7 ns/+10 ns
1EDN8550B					8 V				

CoolGaN™ IPS 600 V half-bridge/single-channel

Package R _{DS(on),max.}	8x8 mm QFN-28	8x8 mm QFN-21	6x8 mm LGA-27
100 mΩ		IGI60F100A1L*	
140 mΩ	IGI60F1414A1L	IGI60F140A1L*	
200 mΩ	IGI60F2020A1L	IGI60F200A1L*	
270 mΩ	IGI60F2727A1L	IGI60F270A1L*	
500 mΩ	IGI60F5050A1L		IGI60L5050A1M

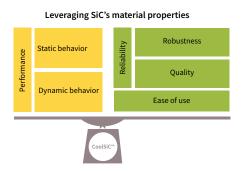
www.infineon.com/hemt

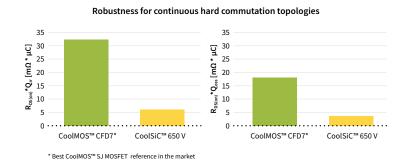
www.infineon.com/gan-ips

www.infineon.com/driver-gan

Silicon carbide

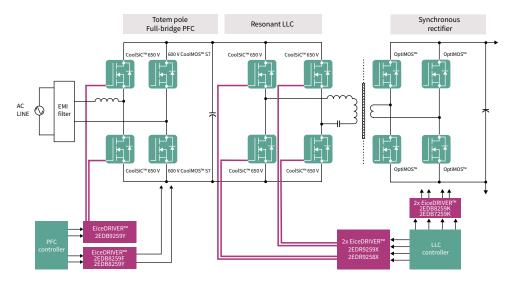
Revolution to rely on


Silicon carbide (SiC) devices belong to the so-called wide bandgap semiconductor group, which offers many attractive characteristics for high voltage power semiconductors compared to commonly used silicon (Si). In particular, the much higher breakdown field strength and thermal conductivity of silicon carbide allow developing devices which by far outperform the corresponding silicon-based ones, and enable efficiency levels unattainable otherwise. Infineon's portfolio of SiC devices covers 600 V to 1200 V Schottky diodes as well as the revolutionary CoolSiC™ MOSFETs 650 V, 750 V, 1200 V, 1700 V and 2000 V.


EiceDRIVER™ SiC MOSFET gate-driver ICs are well-suited to drive SiC MOSFETs, especially Infineon's ultra-fast switching CoolSiC™ SiC MOSFETs. These gate drivers incorporate the most important key features and parameters for driving SiC, such as tight propagation delay matching, precise input filters, wide output-side supply range, negative gate voltage capability, active Miller clamp, DESAT protection, and extended CMTI capability.

CoolSiC™ MOSFETs discrete 650 V

Delivering reliable and cost-effective top performance


Silicon carbide physical characteristics, from wide bandgap to electron mobility and thermal conductivity, provide the basis to engineer high-performance semiconductor technologies and products. The CoolSiC™ MOSFETs from Infineon maximize the advantages of silicon carbide, offering a high-performance product that also meets power electronics design requirements, like reliability and ease of use. As per performance, the CoolSiC™ MOSFETs show low R_{DS(on)} dependency with temperature and low switching losses. The reliability is built on technological strengths and on flawless quality processes. Some aspects of Infineon's SiC technology, like superior gate oxide reliability, excellent thermal behavior, advanced avalanche ruggedness and short circuit capabilities, contribute to the robustness of the device. Infineon's benchmark quality was further improved for silicon carbide, with an application-focused qualification scope exceeding standards, complemented by SiC-specific screening measures. Additional unique features, like 0 V turn-off V_{GS}, wide V_{GS} range, and the use of silicon MOSFET drivers and driving schemas make CoolSiC™ MOSFETs 650 V easy to integrate and use.

CoolSiC™ MOSFETs can enable streamlined and cost-optimized system designs with fewer components, weight and size, reaching high energy efficiency and power density. For instance, the CoolSiC™ MOSFETs boast a low level of Q_{rr}, roughly 80% less of the best CoolMOS™ reference in the market, the CoolMOS™ CFD7. This ensures the robustness of the body diode, making the CoolSiC™ MOSFETs suitable for topologies with continuous hard commutation, like the high-efficiency totem-pole PFC, a topology that enables > 99% of efficiency.

High-efficiency CoolSiC™ totem-pole PFC in server SMPS (switched-mode power supply)

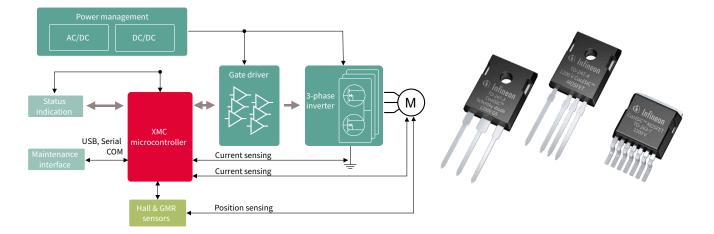
www.infineon.com/coolsic-mosfet-discretes www.infineon.com/SiCgd

امتداءده

CoolSiC™ MOSFET 650 V/750 V

$R_{DS(on)}$ max. [$m\Omega$]	$R_{DS(on)}$ typ. [$m\Omega$]	TO-247 4-pin	TO-247	D ² PAK-7	TOLL	QDPAK TSC
11	8					IMDQ75R008M1H*
22	16					IMDQ75R016M1H*
30/34	22/27	IMZA65R027M1H	IMW65R027M1H	IMBG65R022M1H	IMT65R022M1H	
52	40					IMDQ75R040M1H*
42	30	IMZA65R030M1H	IMW65R030M1H	IMBG65R030M1H	IMT65R030M1H	
50	39	IMZA65R039M1H	IMW65R039M1H	IMBG65R039M1H	IMT65R039M1H	
64	48	IMZA65R048M1H	IMW65R048M1H	IMBG65R048M1H	IMT65R048M1H	
74	57	IMZA65R057M1H	IMW65R057M1H	IMBG65R057M1H	IMT65R057M1H	
94	72	IMZA65R072M1H	IMW65R072M1H	IMBG65R072M1H	IMT65R072M1H	
111	83	IMZA65R083M1H	IMW65R083M1H	IMBG65R083M1H	IMT65R083M1H	
141	107	IMZA65R107M1H	IMW65R107M1H	IMBG65R107M1H	IMT65R107M1H	
182	140					IMDQ75R140 M1H*
217	163			IMBG65R163M1H	IMT65R163M1H	
346	260			IMBG65R260M1H	IMT65R260M1H	

CoolSiC[™] Automotive MOSFET 750 V


_	=	
-	+	
Bat lisco	tery nnect	

$R_{ extsf{DS(on)}}$ max. [mΩ]	R _{DS(on)} typ. [mΩ]	QDPAK TSC	D²PAK-7
11	8	AIMDQ75R008M1H*	
22	16	AIMDQ75R016M1H*	AIMBG75R016M1H
52	40	AIMDQ75R040M1H*	AIMBG75R040M1H
182	140	AIMDQ75R140M1H*	AIMBG75R140M1H

CoolSiC™ MOSFETs discrete 1200 V

Infineon's CoolSiC™ technology enables radically new product designs

Silicon carbide (SiC) opens up new degrees of freedom for designers to harness unseen levels of efficiency and system flexibility. Compared to traditional silicon-based switches like IGBTs and MOSFETs, SiC MOSFETs offer many advantages. These include the low switching losses, the very low reverse recovery losses of the internal commutation-proof body diode, temperature-independent low switching losses, and threshold-free on-state characteristics. Based on volume experience and compatibility know-how, Infineon presents the revolutionary CoolSiC™ technology which enables radically new product designs with high performance and high reliability. CoolSiC™ MOSFET products are targeted for automotive, photovoltaic inverters, battery charging, EV-charging, industrial drives, UPS, SMPS, and energy storage.

Features and benefits

Key features	Key benefits
– Very low switching losses	Best-in-class system performance
- Superior gate-oxide reliability	Efficiency improvement and reduced cooling effort
- Threshold-free on-state characteristic	– Longer lifetime and higher reliability
- Wide gate-source voltage range	– Enables higher frequency operation, allowing the increase in power density
 Benchmark gate threshold voltage, V_{GS(th)} = 4.5 V 	- Reduction in system cost
– Fully controllable dV/dt	– Ease of use
- Commutation robust body diode, ready for synchronous rectification	

The TO-247 4-pin package contains an additional connection to the source (Kelvin connection) used as a reference potential for the gate driving voltage, thereby eliminating the effect of voltage drops over the source inductance. The result is even lower switching losses than for the TO-247 3-pin version, especially at higher currents and higher switching frequencies.

The gate-source pin of the TO-263 7-pin package, similar to the TO-247 4-pin, eliminates the effect of voltage drops over the source inductance, further reducing turn-on switching loss. TO-263 7-pin package minimizes the leakage inductance between drain and source, reducing the risk of high turn-off voltage overshoot.

CoolSiC™ MOSFET 1200 V

Package R _{DS(on)}	TO-247	TO-247-4	D ² PAK 7-pin TO-263 7-pin	Gate-driver IC	s for CoolSiC™
7 mΩ	IMW120R007M1H	IMZA120R007M1H		EiceDRIVER™	EiceDRIVER™
14 mΩ	IMW120R014M1H	IMZA120R014M1H		Compact:	Enhanced: 1ED3322MC12N 1ED3491MC12M 1ED3890MC12M 2ED020l12-F2
20 mΩ	IMW120R020M1H	IMZA120R020M1H		1EDI20I12MF 1EDI60I12AF	
30 mΩ	IMW120R030M1H	IMZ120R030M1H IMZA120R030M1H	IMBG120R030M1H	1ED3124MU12F 1ED3125MU12F	
40/45 mΩ	IMW120R040M1H	IMZA120R040M1H	IMBG120R045M1H	1ED3122MC12H	
60 mΩ	IMW120R060M1H	IMZ120R060M1H	IMBG120R060M1H	1ED3124MC12H	
90 mΩ	IMW120R090M1H	IMZ120R090M1H	IMBG120R090M1H	1ED3241MC12H	
140 mΩ	IMW120R140M1H	IMZ120R140M1H	IMBG120R140M1H		
220 mΩ	IMW120R220M1H	IMZ120R220M1H	IMBG120R220M1H		
350 mΩ	IMW120R350M1H	IMZ120R350M1H	IMBG120R350M1H		

-(≣)

CoolSiC™ MOSFETs discrete 1700 V

Best efficiency and reduced complexity for high voltage auxiliary power supplies

The CoolSiC™ 1700 V MOSFET in a TO-263-7 high-creepage package is optimized for flyback topologies that are used in auxiliary power supplies connected to DC-link voltages ranging from 600 V up to 1000 C. This makes it ideal for numerous power applications.

Features and benefits

Key features
- Optimized for flyback topologies
- Extremely low switching loss
- 12 V/0 V gate source voltage compatible with fly-back controllers
- Fully controllable dV/dt for EMI optimization
- SMD package with enhanced creepage and clearance distances, >7 mm

Key benefits The CoolSiC™ 1700 V MOSFET enables simple single-ended flyback topology at high

- efficiency level for use in auxiliary power supplies SMD package enables direct integration into PCB, with natural convection cooling
- Reduced isolation efforts due to extended creepage and clearance distance of package
- Reduced system complexity
- High power density

CoolSiC™ MOSFET 1700 V

	aners
Package	D ² PAK 7-pin
R _{DS(on)}	TO-263-7
450 mΩ	IMBF170R450M1
650 mΩ	IMBF170R650M1
1000 mO	IMBF170R1K0M1

CoolSiC™ MOSFETs discrete 2000 V in TO-247-PLUS-4-HCC package

The CoolSiC™ 2000 V MOSFET in TO-247-4-PLUS-HCC package has been designed to offer increased power density without compromising the system's reliability even under demanding high voltage and switching frequency conditions. The low power losses of CoolSiC™ technology provide increased reliability thanks to the .XT interconnection technology in a 2000 V optimized package, enabling top efficiency in applications such as string inverters, solar power optimizer, EV-charging and energy storage systems. The CoolSiC™ MOSFET 2000 V product family will be accompanied by the matching CoolSiC™ Schottky diodes 2000 V in TO-247PLUS-4-HCC (10 A - 80 A).

Features and benefits

Key features
- V _{DSS} = 2000 V for high DC-link systems up to 1500 V _{DC}
- Very low switching losses
Innovative HCC package with 14 mm creepage and 5.5 mm clearance distances
– Benchmark gate threshold voltage, V _{GS(th)} = 4.5 V
Robust body diode for hard commutation
– .XT interconnection technology for best-in-class thermal performance
- Improved humidity robustness proved through H3HVTRB stress tests

CoolSiC™ MOSFET 2000 V

Package R _{DS(on)}	TO-247PLUS-4-HCC
12 mΩ	IMYH200R012M1H
24 mΩ	IMYH200R024M1H
50 mΩ	IMYH200R050M1H
75 mΩ	IMYH200R075M1H
100 mΩ	IMYH200R100M1H

CoolSiC™ Schottky diodes

The differences in material properties between silicon carbide and silicon limit the fabrication of practical silicon unipolar diodes (Schottky diodes) to a range up to 100-150 V, with a relatively high on-state resistance and leakage current. With SiC, Schottky diodes can reach a much higher breakdown voltage. With more than 20 years of field experience in SiC, Infineon is the world's first SiC discrete power supplier. Infineon offers products up to 1700 V in discrete packages and up to 2000 V in modules.

The long market presence and experience enable Infineon to deliver highly reliable, industry-leading SiC performance. With over ten years of pioneering experience in developing and manufacturing SiC diodes, Infineon's latest CoolSiC™ Schottky diode generation 6 family sets a benchmark in quality, efficiency and reliability.

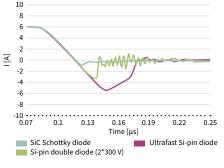
Features

- > No reverse recovery charge
- Purely capacitive switching
- > High operating temperature (T_{i, max} 175°C)

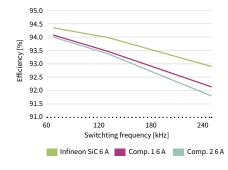
Advantages

> Low turn-off losses

> Switching losses


- Reduction of CoolMOS™ or IGBT turn-on loss
- independent from load current, switching speed and temperature

Benefits


- System efficiency improvement compared to Si diodes
- > Reduced cooling requirements
- **Enabling higher** frequency/increased power density
- Higher system reliability due to lower operating temperature
- Reduced EMI

Applications

- Server
- Telecom
- Solar
- UPS
- **EV-charging**
- **Energy storage**
- PC power
- Motor drives
- Lighting
- > CAV

T=125°C, V_{sc}= 400 V, I_c=6 A, di/dt=200 A/us

Reverse-recovery charge of SiC Schottky diodes versus Si-pin diodes

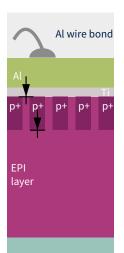
The majority of carrier characteristics imply no reverse recovery charge and the only contribution to the switching losses comes from the tiny displacement charge of capacitive nature. In the same voltage range, silicon devices have a bipolar component resulting in much higher switching losses. The graph shows the comparison between various 600 V devices.

Improved system efficiency (PFC in CCM mode operation, full load, low line)

The fast switching characteristics of the SiC diodes provide clear efficiency improvements at a system level. The performance gap between SiC and high-end silicon devices increases with the operating frequency.

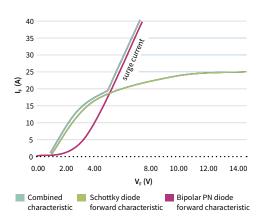
CoolSiC™ Schottky diodes 650 V

CoolSiC[™] Schottky diodes 650 V G6 and G5

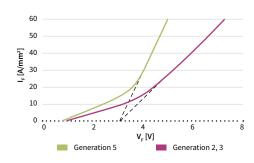

The CoolSiC™ Schottky diode 650 V G6 product family is built over the strong characteristics of the previous G5 generation, fully leveraging technology and process innovation to propose the best efficiency and price/performance products to date.

Foundation technology – CoolSiC™ Schottky diodes 650 V G5

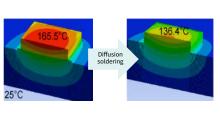
The established CoolSiC™ Schottky diodes G5 product family has been optimized after all key aspects including junction structure, substrate and die attach. It represents a well-balanced product family which offers state-of-the-art performance and high surge current capability at a competitive cost level.


Innovation: optimized junction, substrate and die attach

Infineon's SiC Schottky diode generation 5 is optimized with regard to all key aspects relevant for high-power and high-efficiency SMPS applications.


Junction: merged PN structure

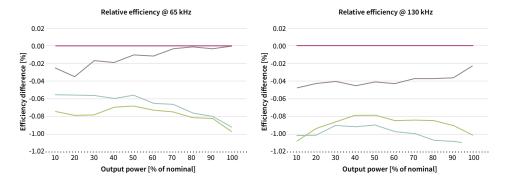
On the junction level, it has an optimized merged PN structure. Compared to competitors, Infineon's SiC diode has an additional P-doped area, which, together with the N-doped EPI layer, forms a PN junction diode. Thus, it is a combination of Schottky diode and PN junction diode. Under normal conditions it works like a standard Schottky diode. Under abnormal conditions such as lighting, AC line drop-out, it works like a PN junction diode. At high current level, the PN junction diode has a significantly lower forward voltage (V_c) than the Schottky diode, which leads to less power dissipation, thus significantly improving the surge current capability.


Substrate: thin wafer technology

On the substrate level, Infineon introduced the thin wafer technology. At the later stage of our SiC diode production, the thin wafer process is used to reduce the wafer thickness by about two-thirds, which significantly reduces the substrate resistance contribution, thus, improving both forward voltage (V_r) and thermal performance.

Die attach: diffusion soldering

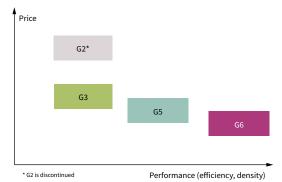
On the backside, package level diffusion soldering is introduced, which significantly improves the thermal path between the lead frame and the diode, enhancing the thermal performance. With the same chip size and power dissipation, the junction temperature is reduced by 30°C.


Backside and

110 μm

Latest development - CoolSiC™ Schottky diodes 650 V G6

The CoolSiC™ Schottky diodes G6 product family introduces a novel and proprietary Schottky metal system. This contributes to reducing the forward voltage (VF) to challenging levels, determining a measurable decrease of conduction losses. Infineon's CoolSiC™ Schottky diodes enable optimum efficiency and ruggedness. Lower forward voltage (V_{r.}) means lower conduction loss, and lower capacitive charge (Q_z) means lower switching loss. $Q_z \times V_z$ is the figure of merit for efficiency, and comparison indicates that the latest generation 6 products have the lowest Q_x x V_r on the market. Infineon's CoolSiC™ Schottky diodes offer a surge current robustness far better than the one offered by the most efficient products. Thus, under abnormal conditions, this surge current capability offers excellent device robustness.


Efficiency comparison

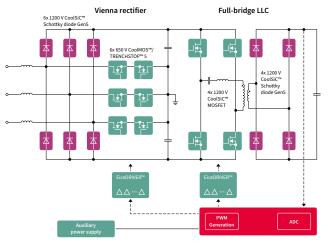
In terms of efficiency, the 8 A G6 device has been tested in CCM PFC. The maximum output power is 3.5 kW. The left figure shows the relative efficiency at 65 kHz, while the figure on the right shows the relative efficiency at 130 kHz. This shows that Infineon's CoolSiC™ Schottky diode G6 delivers better efficiency over the full load range, keeping this advantage even at 130 kHz, therefore meeting the needs of designers who want to increase the switching frequencies in their designs to attain more power density.

The best price performance

CoolSiC™ Schottky diodes G6 are the outcome of Infineon's continuous technological and process improvements, which enable the design and development of SiC-based products, making them more price-competitive and increasing performance across generations. As a result, G6 is Infineon's best price/performance CoolSiC™ Schottky diode generation, offering the highest efficiency. In addition, Infineon offers the reliability of collaborating with the industry leader. Customers can leverage Infineon's proven quality and supply chain reliability. They can benefit from "onestop-shop" advantages and maximize system performance, combining CoolSiC[™] Schottky diodes with the SJ MOSFETs of the CoolMOS[™] 7 family, such as 600 V C7, 650 V C7, 600 V G7, 650 V G7 and 600 V P7.

A comprehensive portfolio

The combined G6 and G5 CoolSiC™ Schottky diode 650 V diode portfolio offers a wide choice of packages and ampere class granularity to allow the best fit to applications. G6 comes in double DPAK, the first top-side cooled surface mount package, which allows thermal decoupling of PCB to chip junction and enables higher power dissipation and improved system lifetime thanks to the reduced board temperature.

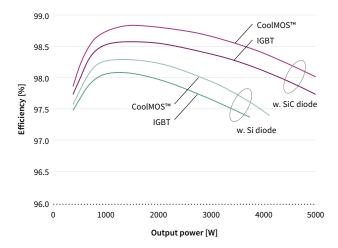

www.infineon.com/sic-diodes

CoolSiC™ Schottky diodes 1200 V

A new level of system efficiency and reliability

By using hybrid Si power switch/SiC diode sets, industrial application designers will gain flexibility for system optimization compared to purely silicon-based solutions. SiC diodes enable system improvements such as higher output power, greater efficiency or higher switching frequency. By implementing CoolSiC™ diodes generation 5, for example, in Vienna rectifier topology, in combination with Infineon's 650 V TRENCHSTOP™ IGBTs and 650 V CoolMOS™ MOSFETs, designers can achieve outstanding system-level performance and reliability.

One of the most commonly used topologies for EV DC charging


Features and benefits

Key features Zero Q_r, leading to no reverse recovery losses - High surge current capability up to fourteen times of the nominal current - Tight forward voltage distribution Temperature-independent switching behavior Low forward voltage (V_F = 1.4 V) even at high operating temperature - Available in both through-hole and SMD packages - Up to 40 A rated diode

Key benefits

- System efficiency improvement over Si-based diodes
- Enabling higher frequency/increased power density solutions
- High system reliability by extended surge current
- Reduced cooling requirements through lower diode losses and lower case
- System size/cost saving due to reduced heatsink requirements and smaller magnetics

650 V Si IGBT/Si SJ MOSFET and 1200 V SiC diode/ultrafast Si diode in a Vienna rectifier topology, f ... = 48 kHz

- 650 V SJ MOSFET + 1200 V SiC diode (IPW65R045C7 + IDW15G120C5B)
- 650 V IGBT + 1200 V SiC diode (IKW50N65EH5 + IDW15G120C5B)
- 650 V SJ MOSFET + 1200 V Si diode (IPW65R045C7 + Vendor A)
- 650 V IGBT + 1200 V Si diode

SiC vs. Si diode

- > +0.8% higher efficiency
- > Increased output power is possible

CoolSiC[™] Schottky diodes 650 V G6

I _F [A]	TO-220 R2L	Double DPAK
4	IDH04G65C6	
6	IDH06G65C6	
8	IDH08G65C6	IDDD08G65C6
10	IDH10G65C6	
12	IDH12G65C6	IDDD12G65C6
16	IDH16G65C6	IDDD16G65C6
20	IDH20G65C6	

TO-247

IDW10G65C5

IDW12G65C5

IDW16G65C5

IDW20G65C5

IDW30G65C5 IDW40G65C5

CoolSiC[™] Schottky diodes 650 V G5

IDH02G65C5

IDH04G65C5

IDH06G65C5

IDH08G65C5

IDH10G65C5

IDH12G65C5

IDH16G65C5

IDH20G65C5

TO-220 R2L

IF [A]

2

4

8

10

12

16

20 24 30/32

40

D²PAK R2L

IDK02G65C5

IDK04G65C5

IDK06G65C5

IDK08G65C5

IDK10G65C5

IDK12G65C5

IDL04G65C5

IDL06G65C5

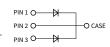
IDL08G65C5

IDL10G65C5 IDL12G65C5

ThinPAK 8x8

Power management ICs

*For more information on the product, contact our product support


TO-247

Dual Die

IDW20G65C5B

IDW32G65C5B

IDW40G65C5B

Digital isolators

CoolSiC[™] Schottky diodes 600 V G3

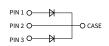
I _F [A]	TO-220 R2L	DPAK R2L
3		IDD03SG60C
4	IDH04SG60C	IDD04SG60C
6	IDH06SG60C	IDD06SG60C
8	IDH08SG60C	IDD08SG60C
10	IDH10SG60C	IDD10SG60C
12	IDH12SG60C	

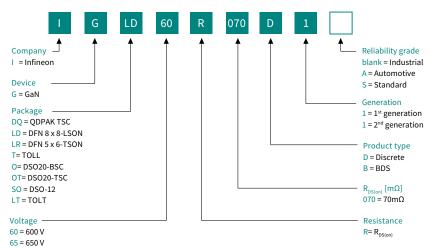
CoolSiC[™] Schottky diodes 1200 V G5

92	
CAV	

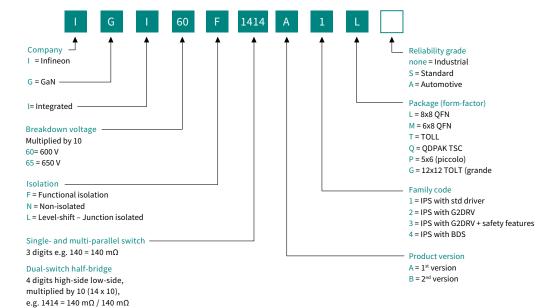
I _F [A]	TO-220 R2L	TO-247 Dual Die	TO-247 R2L	DPAK R2L	D²PAK R2L
2	IDH02G120C5			IDM02G120C5	IDK02G120C5
5	IDH05G120C5			IDM05G120C5	IDK05G120C5
8	IDH08G120C5			IDM08G120C5	IDK08G120C5
10	IDH10G120C5	IDW10G120C5B	IDWD10G120C5	IDM10G120C5	IDK10G120C5
15/16	IDH16G120C5	IDW15G120C5B	IDWD15G120C5		IDK16G120C5
20	IDH20G120C5	IDW20G120C5B	IDWD20G120C5		IDK20G120C5
30		IDW30G120C5B	IDWD30G120C5		
40		IDW40G120C5B	IDWD40G120C5		

CoolSiC[™] Schottky diodes 2000 V G5

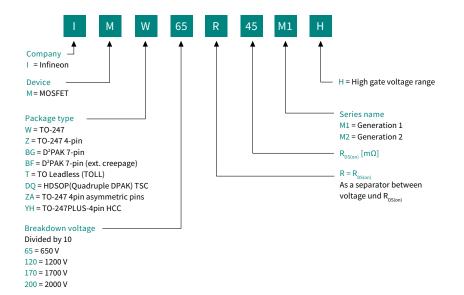


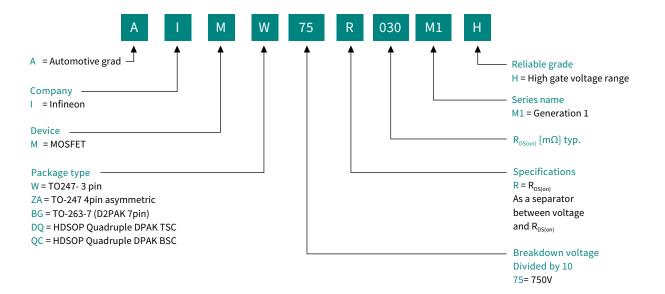


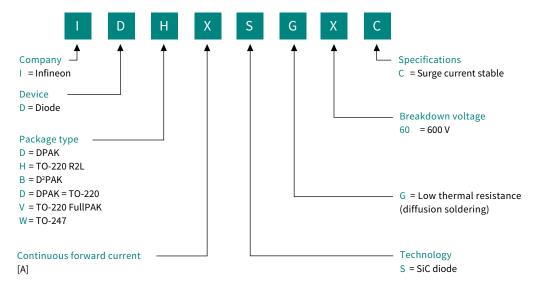
ا _ب [A]	TO-247PLUS-4 HCC
10	IDYH10G200C5*
25	IDYH25G200C5*
40	IDYH40G200C5*
50	IDYH50G200C5*
80	IDYH80G200C5*

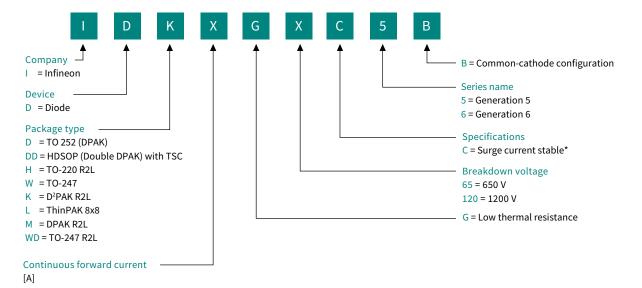


Nomenclature


CoolGaN™ GIT HEMTs


CoolGaN™ IPS


CoolSiC™ MOSFET nomenclature


CoolSiC™ Automotive MOSFET discrete 750 V nomenclature

CoolSiC[™] Schottky diodes G2 and G3

CoolSiC™ Schottky diodes G5 and G6

Infineon support for wide bandgap semiconductors

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/gan www.infineon.com/gan-ips www.infineon.com/driver-gan www.infineon.com/sic www.infineon.com/sic-diodes www.infineon.com/SiCgd community.infineon.com

luation board

XENSIV™ sensor technologies for automotive, industrial, consumer and IoT applications

- Infineon Developer Community
- Barometric (BAP) and Manifold (MAP) sensors
- Current sensors
- Magnetic position sensors
- Magnetic speed sensors
- MEMS microphones for automotive
- Intuitive sensing
- MEMS microphone for consumer applications
- Pressure sensors for IoT
- PAS CO2 sensor
- 60 GHz radar sensor ICs
- 24 GHz radar sensor ICs

Design support

- Connected sensor kit
- Shield2Go
- Sensor 2GO kits
- Add ons for Sensor 2GO kits and Shield2Go

Join the XENSIV™ Developer Community

The Infineon Developer Community offers 24/7 self-service and lightning fast responses to customer demands. Any user, anywhere, anytime – any subject. The community is well-organized due to its multi-channel strategy. Unlike unmoderated forums, the developer community is based on high quality content that is professionally moderated and reviewed.

Check it out and be part of the XENSIV™ sensor community.

Infineon XENSIV™ – sensing the world

From a world leader in sensing technology, XENSIV™ sensors smartify lives by enabling things to "see", "hear", "feel", and "smell" and therefore intuitively "understand" their environment. As a result of proven quality and outstanding reliability, customers can count on XENSIV™ for system stability, durability and integrity. Providing high accuracy and best-in-class measurement performance, XENSIV™ sensors add great value to customer applications. More than 40 years of experience in sensing solutions and a deep-rooted system understanding result in the broadest portfolio of ready-to-use sensor solutions on the market. Ecosystem partners and our customers partner with us for leading technologies, perfect-fit solutions and continuous innovation.

In the Internet of Things, sensors are omnipresent and mark the starting point of each and every IoT system. They collect all kinds of data on their surroundings, providing the entry point for all subsequent functions and features. Building on its well-founded systems expertise, Infineon's broad portfolio in the XENSIV™ family contains ready-to-use solutions to enable a fast time-to-market and reliable functionality for applications in the area of smart home and smart building, smart things, smart factory or smart cars.

We inspire the next generation of smart environments, capable of understanding and responding to human communication. Infineon's semiconductors are at the very heart of machine-to-machine (M2M), human-machine interface (HMI), mobile and wireless infrastructure technologies. As the technological boundary between humans and machines gradually disappears, these devices need even more advanced intelligence, enriched with voice assistance capabilities and the latest sensor fusion innovations, not to mention robust security technologies to protect personal data. Infineon's sensors and microphones already deliver this intelligent functionality and inspiring the next step in mobile connectivity.

Barometric (BAP) and Manifold (MAP) sensors

Infineon's pressure sensors offer the highest quality and accuracy for automotive, industrial, or consumer applications. Our XENSIV™ family includes integrated pressure sensors that tick all these boxes with anlalog or digital SPI interface. Our absolute pressure sensors (MAP and BAP) provide highest accuracy and precision on the smallest footprint and energy bill.

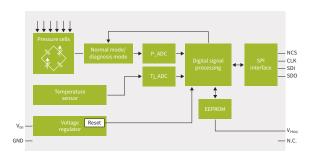
KP21x/KP22x – Analog manifold air pressure sensor family (MAP + turbo MAP)

Features

- Manifold air pressure measurement –
 MAP and turbo MAP
- Excellent accuracy of up to 1.0 kPa over a large temperature range
- Ratiometric analog voltage output proportional to the applied pressure
- Output signal fully compensated over pressure and temperature

- Pressure range from 10 to 400 kPa
- Temperature range from -40 to +140°C
- Output clamping (optional)
- Complete product family available with multiple transfer functions
- Reverse polarity protection
- Green SMD package

KP464/KP464E and KP466/KP466P – Digital barometric air pressure (BAP) sensor family

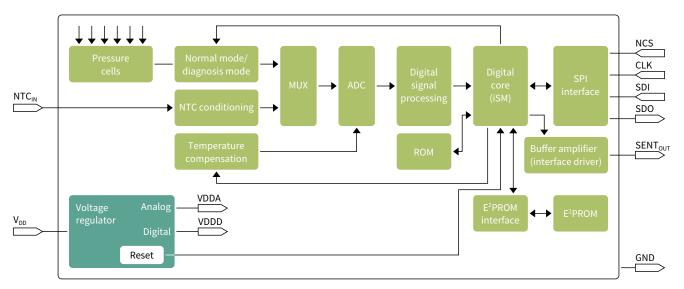

Infineon KPAGX

Features

- High-accuracy pressure sensing
- Integrated and highly accurate temperature sensor (chip temperature)
- 10-, 12- or 14-bit resolution pressure and temperature values via SPI Interface
- SPI interface with 4-wire full-duplex SPI
- Self-diagnosis features
- Low power consumption: supply current down to 3.5 mA without SPI communication, in power down mode: 10 μA)
- Green and small 8-pin DFN package (4.5 x 5.1 x 1.75 mm³)
- Small five holes to prevent intrusion of small parts or animals
- High operating temperature range from -40°C to 125°C

- Pressure range from 40 to 165 kPa (wider ranges technically possible)
- AEC-Q103-002 qualified
- Backwards compatible to existing BAP
- Temperature transfer function from -40°C to 125°C
- KP466P with increased accuracy and faster start-up time

Block diagram



KP276 Media robust MAP sensor with digital interface

Features

- > Media robustness for current automotive requirements
- Digital single edge nibble transmission (SENT) interface (282 clock ticks)
- > Excellent accuracy of up to of ±0.77 percent FSS
- Green SMD package
- Temperature range -40 to +170°C
- > Integrated NTC temperature sensor functionality with fast start up time (typ. 10ms)

Block diagram

Integrated pressure sensors for manifold and barometric air pressure

Product	Max. accuracy [kPa]	Max. operating temperature [°C]	Automotive	Industrial	ISO 26262	Pressure range [kPa]
KP21x	1.0	140	✓	✓	-	10150
KP22x	2.5	140	✓	✓	-	10400
KP23x	1.0	125	✓	✓	_	15115
KP236N6165	1.0	125	✓	✓	_	60165
KP276x	3.0	150 (170 time limited)	√	✓	_	10400

Product	Max. accuracy [kPa]	Max. operating temperature [°C]	Automotive	Industrial	Pressure range [kPa]
KP464	Digital SPI	40115	-40 to 125	±1	powertrain
KP464E					
KP466		60165			seat comfort
KP466P ¹⁾					advanced seat comfort and BMS satellite

XENSIV™ – high-precision coreless current sensors for automotive and industrial

Used to measure both AC and/or DC currents, Infineon's current sensors provide accurate and stable current measurement up to 120 A or 31 mT respectively. Our magnetic current sensors include either an integrated current rail in the package for low currents or measure the magnetic field of an external current rail for medium to high currents. The products are intended for use in 48 V, as well as high voltage and/or wide bandgap applications such as traction inverters, industrial drives, photovoltaic inverters, or EV-charging systems.

Infineon's XENSIV™ family of high-precision coreless open-loop current sensors are less bulky, and cost less compared to core-based current sensors. Based on Infineon's precise and stable Hall effect current sensor IC technology, the current sensor analog output signal is highly linear over temperature and lifetime. Due to lacking an iron core or a

flux concentrator, the sensor signal shows neither hysteresis nor does it suffer from saturation.

The differential current sensor measurement with two Hall cells ensures high accuracy even in a noisy environment like crosstalk from adjacent current lines or magnetic stray fields. System designers can program the sensitivity of the sensor as well as the threshold levels

of the two dedicated overcurrent signals and therefore adapt them to individual requirements without any external components. The contactless current sensor IC also provides a warning signal in case of an over- or under-voltage condition for the supply voltage.

Product Portfolio

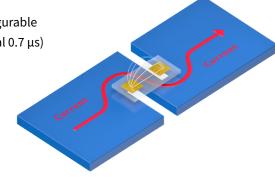
Infineon's product portfolio includes wide bandgap current sensors for both industrial and automotive application needs. Our current sensors achieve high accuracy using the Hall effect, which enables current measurements from DC to AC with an internal bandwidth of up to 240 kHz without being disturbed by external magnetic fields.

On the one hand, we have the current sensors with an integrated current rail. The sensors in the TISON package allow the accurate measurement with high frequencies and small impact on the phase shift of the current signal. On the other hand, our current sensors for external current rails are non-invasive Hall effect current sensors and provide safe and reliable solutions for power electronics since there is no additional power dissipation. Our selection of isolated, non-contact current sensors can be used for current detection and monitoring in SiC and GaN applications, including motor control applications.

High-precision coreless sensors for industrial applications

Features

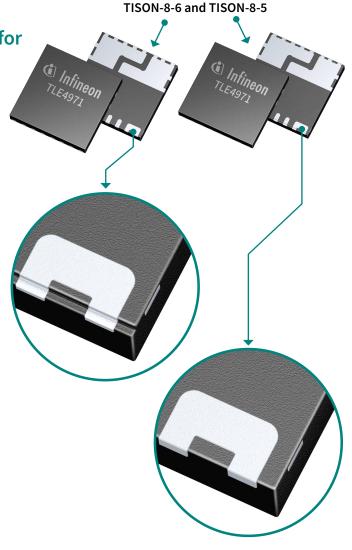
TLI4971


- Integrated current rail with typical 220 $\mu\Omega$ insertion resistance enables ultralow power loss
- Small form factor, 8x8 mm SMD, for easy integration and board area saving
- Highly accurate, scalable, DC and AC current sensing
- Bandwidth of 240 kHz enables wide range of applications
- Very low sensitivity error over temperature (< 2.0%)
- Excellent stability of offset over temperature and lifetime
- Galvanic functional isolation up to 1150 V peak VIORM, partial discharge 3500 V_{RMS} , 4 mm clearance and creepage
- Differential sensor principle ensures superior magnetic stray field suppression

 Two independent fast over-current detection (OCD) pins with configurable thresholds enable protection mechanisms for power circuitry (typical 0.7 µs)

Pre-calibrated sensor

- Energy storage systems
- Electrical drives (up to 975 Vpk)
- Photovoltaic inverter
- General purpose & GaN-based inverters
- Chargers
- Power supplies



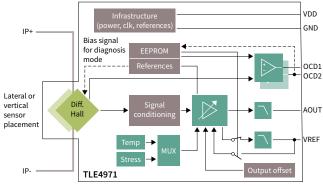
TLE4971

High-precision coreless current sensor for automotive and industrial applications

The Infineon TLE4971 is a high-precision current sensor for bi-directional AC and DC measurements. The device has an analog interface and two fast overcurrent detection outputs that support the power circuitry's protection. Galvanic isolation is provided due to magnetic sensing principle.

Infineon's well-established and robust monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to 120 A. Negative effects, like saturation and hysteresis, commonly known from corebased sensor techniques, are not present in the Infineon open loop, coreless sensors principle. The smart current rail design (double U-shape) combined with a differential signal sensing makes the current sensor robust against stray fields. The sensor is shipped as a fully calibrated product without requiring any customer end-of-line calibration. It comes in a small 8x8 mm TISON-8 leadless package, which allows standard SMD assembly. The sensor can be reprogrammed for many parameters enabling the customer to achieve maximal adaption for his application requirements, such as industrial drives, xEV auxiliary drives, PV inverter, DC fast charger and on-board-charger (OBC).

Difference between

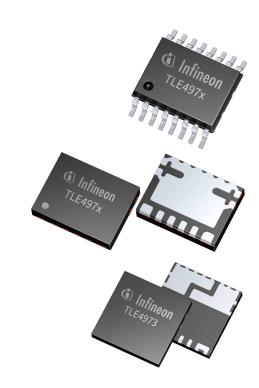

Features and benefits

Key features Measurement up to 70 A_{RMS} at 690 V_{RMS} Typical error at 25°C < 2 percent - Current rail resistance at 220 μΩ and inductance <1 nH specified typical - Analog output signal (with typ. 210 kHz) bandwidth - Fast (<0.7 μs) overcurrent detection up to 2 x IFSR - AEC-Q100 Grade 1 qualified

Key benefits

- Ultra-low power loss due to minimal resistance of current rail
 - Reliable current measurement over lifetime (no re-calibration)
 - Functional isolation for high-voltage application
- Easy and compact package allows high-power density design
- Pre-programmed variants for 25 A, 50 A, 75 A and 120 A
- High accuracy, low noise analog output

Block diagram

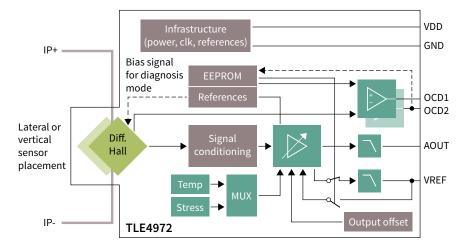

www.infineon.com/current-sensors

The integrated primary conductor (current rail) with very low insertion resistance and inductance minimizes the power loss and enables miniaturization of the sensing circuit. The analog output (AOUT) can be configured in single-ended, semi-differential, and fully-differential mode together with the voltage reference pin (VREF) Two separate overcurrent pins (OCD1/OCD2) provide a fast output signal in case the current exceeds a pre-set threshold.

High-precision coreless current sensors for automotive and industrial applications

The Infineon TLE4972 product family of coreless magnetic current sensors specifically addresses requirements for current sensing in automotive applications. The well-established and robust Hall technology enables accurate and highly linear current measurements of the magnetic field induced by the current. With its compact design and diagnosis modes, the TLE4972 is ideal for xEV applications like traction inverters used in hybrid and battery-driven vehicles, as well as for battery main switches.

Infineon will expand the sensor portfolio with an new family of 5 V current sensors TLE4973. The new sensors will be available in three different packages to cover a wide range of applications in the automotive and industrial market. Target applications include traction inverter for xEV, auxiliary drives, PV inverter and on-board-charger (OBC).



Features and benefits

Key features - Hall based coreless magnetic current sensor - AC and DC sensing - Two dedicated pins for overcurrent detection - Scalable sensitivity - ISO 26262 compliant - ASIL B as SEooC - Typical bandwidth of 210 kHz

Key benefits

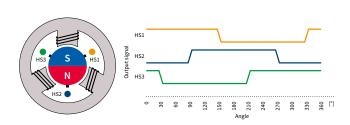
- High accuracy up to 2 kA
- Very low error over temperature and lifetime
- Protection against overcurrent events for fast switching technologies, e.g. SiC
- No saturation or hysteresis effects
- Very low power losses through sensing structure
- Ideal for platform designs
- Fast reaction time of analog sensor output
- Simplified functional safety assessment

Current sensors – overview

Product	Current range [A]	Bandwidth typ. [kHz]	Sensitivity [mV/A]	Accuracy [%]	Output noise density [μΑ/√Hz]	Certification	Indust- rial	ATV	Supply voltage [V]	Current rail	Package
				TL1497	1 family →						
TLI4971-A025T5-U-E0001	25	240	48	< 2	350	UL1577/ IEC 62368-1	✓	-	3.3	Internal	TISON-8-5
TLI4971-A025T5-E0001	25	240	48	< 2	350	IEC 62368-1	✓	-	3.3	Internal	TISON-8-5
TLI4971-A050T5-U-E0001	50	240	24	< 2	350	UL1577/ IEC 62368-1	√	-	3.3	Internal	TISON-8-5
TLI4971-A050T5-E0001	50	240	24	< 2	350	IEC 62368-1	√	-	3.3	Internal	TISON-8-5
TLI4971-A075T5-U-E0001	75	240	16	< 2	350	UL1577/ IEC 62368-1	✓	-	3.3	Internal	TISON-8-5
TLI4971-A075T5-E0001	75	240	16	< 2	350	IEC 62368-1	√	-	3.3	Internal	TISON-8-5
TLI4971-A120T5-U-E0001	120	240	10	< 2	350	UL1577/ IEC 62368-1	✓	-	3.3	Internal	TISON-8-5
TLI4971-A120T5-E0001	120	240	10	< 2	350	IEC 62368-1	√	-	3.3	Internal	TISON-8-5
	TLE4971 family →										
TLE4971-A025N5-U-E0001	25	210	48	< 2	260		✓	✓	3.3	Internal	TISON-8-5
TLE4971-A025N5-E0001	25	210	48	< 2	260		√	✓	3.3	Internal	TISON-8-5
TLE4971-A050N5-U-E0001	50	210	24	< 2	260		√	√	3.3	Internal	TISON-8-5
TLE4971-A050N5-E0001	50	210	24	< 2	260		√	✓	3.3	Internal	TISON-8-5
TLE4971-A075N5-U-E0001	75	210	16	< 2	260		✓	✓	3.3	Internal	TISON-8-5
TLE4971-A075N5-E0001	75	210	16	< 2	260		✓	✓	3.3	Internal	TISON-8-5
TLE4971-A120N5-U-E0001	120	210	10	< 2	260		✓	✓	3.3	Internal	TISON-8-5
TLE4971-A120N5-E0001	120	210	10	< 2	260	AEC-Q100/	√	✓	3.3	Internal	TISON-8-5
TLE4971-A025T5-U-E0001	25	210	48	< 2	260	UL1577/ IEC 62368-1	√	✓	3.3	Internal	TISON-8-6
TLE4971-A025T5-E0001	25	210	48	< 2	260		✓	✓	3.3	Internal	TISON-8-6
TLE4971-A050T5-U-E0001	50	210	24	< 2	260		✓	✓	3.3	Internal	TISON-8-6
TLE4971-A050T5-E0001	50	210	24	< 2	260		√	✓	3.3	Internal	TISON-8-6
TLE4971-A075T5-U-E0001	75	210	16	< 2	260		√	✓	3.3	Internal	TISON-8-6
TLE4971-A075T5-E0001	75	210	16	< 2	260		√	✓	3.3	Internal	TISON-8-6
TLE4971-A120T5-U-E0001	120	210	10	< 2	260		✓	✓	3.3	Internal	TISON-8-6
TLE4971-A120T5-E0001	120	210	10	< 2	260		√	✓	3.3	Internal	TISON-8-6

Current sensors – overview

Product	Current range	Bandwidth typ. [kHz]	Sensitivity	Accuracy [%]	Output noise density	Certifica- tion	Industrial	Automo- tive	Supply voltage [V]	Current rail	Package
TLE4973-A025T5-S0001	27.5 [A]	210	65.5 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	√	✓	5.0	Internal	TISON-8-6
TLE4973-A050T5-S0001	55 [A]	210	32.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	√	√	5.0	Internal	TISON-8-6
TLE4973-A075T5-S0001	82.5 [A]	210	21.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	√	√	5.0	Internal	TISON-8-6
TLE4973-A120T5-S0001	132 [A]	210	13.7 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R025T5-S0001	27.5 [A]	210	65.5 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R050T5-S0001	55 [A]	210	32.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R075T5-S0001	82.5 [A]	210	21.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R120T5-S0001	132 [A]	210	13.7 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R025T5-S0010	27.5 [A]	210	65.5 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R050T5-S0010	55 [A]	210	32.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	√	5.0	Internal	TISON-8-6
TLE4973-R075T5-S0010	82.5 [A]	210	21.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	√	√	5.0	Internal	TISON-8-6
TLE4973-R120T5-S0010	132 [A]	210	13.7 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100	✓	✓	5.0	Internal	TISON-8-6
TLE4973-R025T5-U-S0010	27.5 [A]	210	65.5 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100 UL 1577	√	√	5.0	Internal	TISON-8-6
TLE4973-R050T5-U-S0010	55 [A]	210	32.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100 UL 1577	✓	✓	5.0	Internal	TISON-8-6
TLE4973-R075T5-U-S0010	82.5 [A]	210	21.8 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100 UL 1577	√	√	5.0	Internal	TISON-8-6
TLE4973-R120T5-U-S0010	132 [A]	210	13.7 mV/A]	< 2	290 [μA/√Hz]	AEC-Q100 UL 1577	✓	✓	5.0	Internal	TISON-8-6
TLE4973-AE35D5-S0001	34 [mT]	210	53 ¹⁾ [mV/mT]	1	70 [nT/√Hz]	AEC-Q100	✓	✓	5.0	external	TDSO-16
TLE4973-RE35D5-S0001	34 [mT]	210	53 ¹⁾ [mV/mT]	1	70 [nT/√Hz]	AEC-Q100	✓	✓	5.0	external	TDSO-16
TLE4973-RE35D5-S0010	34 [mT]	210	53 ¹⁾ [mV/mT]	1	70 [nT/√Hz]	AEC-Q100	✓	√	5.0	external	TDSO-16
TLE4973-AE35S5-S0001	34 [mT]	210	53 ¹⁾ [mV/mT]	1	70 [nT/√Hz]	AEC-Q100	√	✓	5.0	external	VSON-6
TLE4973-RE35S5-S0001	34 [mT]	210	53 ¹⁾ [mV/mT]	1	70 [nT/√Hz]	AEC-Q100	✓	✓	5.0	external	VSON-6
TLE4973-RE35S5-S0010	34 [mT]	210	53 ¹⁾ [mV/mT]	1	70 [nT/√Hz]	AEC-Q100	✓	✓	5.0	external	VSON-6


Magnetic switches

Broadest energy saving portfolio of high precision magnetic switches for automotive, industrial and consumer applications

TLE/TLI/TLV4961, TLE/TLI/TLV4964, TLE/TLI/TLV4968
Energy-efficient magnetic switches family for up to 32 V

The TLE/TLI/TLV496x-xM/L family of magnetic switches saves energy and enables designers to create precise and compact systems. With an operational current consumption of just 1.6 mA, TLE/TLI/TLV496x-xM/L products can cut energy consumption by up to 50 percent, compared with similar competitor products. Thanks to its small magnetic hysteresis, the family paves the way for precise switching points in systems. The integrated temperature profile compensates magnetic drifts and enables stable performance over temperature and lifetime.

TLE/TLI/TLV496x-xM products come in the smallest SOT23 package, thus reducing height by 10 percent compared with predecessor products. The sensors also feature an integrated functionality test for better system control.

Features

- Current consumption of just 1.6 mA
- 3 to 32 V supply voltage range (over voltage up to 42 V)
- 7 kV ESD protection (HBM)
- Overtemperature and overcurrent protection
- Temperature compensation
- Smallest SOT23 package
- Dedicated products for industrial applications (TLI496x) and consumer applications (TLV496x)
- AEC-Q100 qualified

- Window lifter
- Power closing
- Gear stick
- Seat belt
- BLDC commutation(e.g. wiper, seat belt pretensioner, pump, seating)
- Service robots
- Power tools
- White goods

Product	Туре	Operating point B _{OP} [mT]	Release point B _{RP} [mT]	Hysteresis ΔΒ _{ΗΥ} [mT]	Automotive	Industrial	Consumer	Package
TLE4961-1M/L	Latch	2.0	-2.0	4.0	✓	✓	✓	SOT23/SSO-3-2
TLE4961-2M	Latch	5.0	-5.0	10.0	✓	✓	✓	SOT23
TLE4961-3M/L	Latch	7.5	-7.5	15.0	✓	✓	✓	SOT23/SSO-3-2
TLE4961-4M	Latch	10.0	-10.0	20.0	✓	✓	✓	SOT23
TLE4961-5M	Latch	15.0	-15.0	30.0	✓	✓	✓	SOT23
TLE4964-1M	Switch	18.0	12.5	5.5	✓	✓	✓	SOT23
TLE4964-2M	Switch	28.0	22.5	5.5	✓	✓	✓	SOT23
TLE4964-3M	Switch	12.5	9.5	3.0	✓	✓	✓	SOT23
TLE4964-4M	Switch	10.0	8.5	1.5	✓	✓	✓	SOT23
TLE4964-6M	Switch	3.5	2.5	1.0	✓	✓	✓	SOT23
TLE4964-5M	Switch	7.5	5.0	2.5	✓	✓	√	SOT23
TLE4968-1M/L	Bipolar	1.0	-1.0	2.0	✓	✓	✓	SOT23/SSO-3-2
TLI4961-1M	Latch	2.0	-2.0	4.0	-	✓	√	SOT23/SSO-3-2
TLV4961-1M	Latch	2.0	-2.0	4.0	-	-	✓	SOT23
TLV4961-3M	Latch	7.5	-7.0	15.0	-	-	✓	SOT23
TLV4964-1M	Switch	18.0	12.5	5.5	_	_	√	SOT23
TLV4964-2M	Switch	28.0	22.5	5.5	-	-	✓	SOT23

TLE/TLI4963/65-xM 5 V high-precision harsh environment/industrial Hall-effect sensors

By offering an excellent magnetic behavior Infineon's switches are ideally suited for:

- > Index counting application with a pole wheel
- > Rotor position detection (BLDC motors)
- > Open/close detection

Features

- 3.0 to 5.5 V operating supply voltage
- > Low current consumption 1.4 mA
- > ESD protection 4 kV HBM
- Active error compensation (chopped)
- > High stability of magnetic thresholds
- > Low jitter (typ. 0.35 μs)

- > Operating temperature range:
 - from -40 to +170°C (TLE496x-xM)
 - from -40 to +125°C (TLI496x-xM)
- > Small SMD package SOT23
- > TLE: AEC-Q100 qualified
- > TLI: JESD47 qualified

Product	Туре	Operating point B _{OP} [mT]	Release point B _{RP} [mT]	Hysteresis ΔΒ _{ΗΥ} [mT]	Harsh environment	Industrial	Package
TLE4963-1M	Latch	2.0	-2.0	4.0	✓	✓	SOT23
TLE4963-2M	Latch	5.0	-5.0	10.0	✓	✓	SOT23
TLE4965-5M	Unipolar switch	7.5	5.0	2.5	✓	✓	SOT23
TLI4963-1M	Latch	2.0	-2.0	4.0	-	✓	SOT23
TLI4963-2M	Latch	5.0	-5.0	10.0	-	✓	SOT23
TLI4965-5M	Unipolar switch	7.5	5.0	2.5	_	✓	SOT23

TLV496x-xTA/B Precision Hall-effect sensor for consumer applications in leaded package

Features

- > 3.0 to 26 V operating supply voltage
- > Low current consumption 1.6 mA
- > ESD protection 4 kV HBM
- > Operating temperature range from -40 to +125 °C
- > Leaded package TO92S

- BLDC motor commutation for consumer devices (e.g. e-bikes, fans, aircons)
- Position detection e.g. flaps and control buttons

4	© lationes Transferring	•	C letineau Turinicata
1			
	4//		

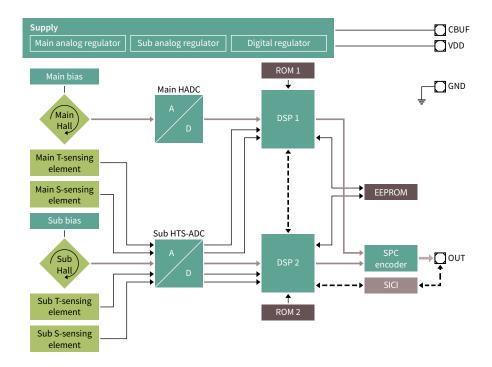
Product	Туре	Operating point B _{OP} [mT]	Release point B _{RP} [mT]	Hysteresis ΔΒ _{Ην} [mT]	Consumer	Package
TLV4961-1TA	Latch	2.0	-2.0	4.0	✓	T092S-3-1
TLV4961-1TB	Latch	2.0	-2.0	4.0	✓	T092S-3-2
TLV4961-3TA	Latch	7.5	-7.5	15.0	✓	T092S-3-1
TLV4961-3TB	Latch	7.5	-7.5	15.0	✓	T092S-3-2
TLV4964-4TA	Unipolar switch	10.0	8.5	1.5	✓	T092S-3-1
TLV4964-4TB	Unipolar switch	10.0	8.5	1.5	✓	T092S-3-2
TLV4964-5TA	Unipolar switch	7.5	5.0	2.5	✓	T092S-3-1
TLV4964-5TB	Unipolar switch	7.5	5.0	2.5	✓	T092S-3-2
TLV4968-1TA	Latch	1.0	-1.0	2.0	✓	T092S-3-1
TLV4968-1TB	Latch	1.0	-1.0	2.0	✓	T092S-3-2

TLx4966 Two-in-one double Hall sensor

Features

- > Two Hall probes for information on speed and direction
- > Excellent matching between the two Hall probes
- > Hall plate distance of 1.45 mm
- High resistance to mechanical stress by Active Error Compensation
- > TSOP6 package
- > TLE: AEC-Q100 qualified
- > TLI: JESD47 qualified

- Window lift
- Sunroof
- Automatic tailgate
- Automated doors
- > Sun blinds
- Garage doors


Product	Туре	Output	Operating point B _{OP} [mT]	Release point B _{RP} [mT]	Hysteresis ΔΒ _{ΗΥ} [mT]	Automotive	Industrial	Consumer	Package
TLE4966G	Double Hall, speed and direction output	Speed and direction	7.5	-7.5	15	✓	✓	✓	TSOP6/SSO-4-1
TLE4966L	Double Hall, speed and direction output	Speed and direction	7.5	-7.5	15	✓	√	✓	TSOP6/SSO-4-1
TLE4966-2G	Double Hall, two independent outputs	2 x speed	7.5	-7.5	15	√	√	✓	TSOP6
TLE4966-3G	Double Hall, speed and direction output	Speed and direction	2.5	-2.5	5	√	✓	√	TSOP6
TLE4966V-1G	Vertical double Hall, speed and direction output	Speed and direction	2.5	-2.5	5	√	✓	✓	TSOP6
TLI4966G	Double Hall, speed and direction output	Speed and direction	7.5	-7.5	15	-	√	√	TSOP6

Linear sensors

Programmable dual-channel linear Hall sensor with fast SPC interface for high-precision applications

Infineon's TLE4999C8 is a programmable dual channel linear Hall sensor designed to meet the requirements of safety critical automotive and industrial applications. It is developed in full compliance with ISO 26262 by means of two sensor elements included within one monolithic silicon design. In order to fulfill the state-of-the-art safety requirements on system level and enable ASIL D system developments the sensor cells are designed in a complementary way. Their signals follow two independent analog paths. Each signal path has its own digital signal processing unit to ensure maximum independency - redundancy, respectively. The sensor offers a multi-point calibration with up to 9 selectable set points for enhanced linearization of the output signal. For an easy and flexible adaptation to non-linearity of magnetic circuit design, the chip provides 5 different calibration characteristics.

TLE4999C features a digital Short-PWM-Code (SPC) interface, with a buscapability for up to 4 sensor ICs on a single data output. The communication interface with min. 0.5 µs unit time guarantees a fast transmission of complete 2 channel data signal in less than 500 μs. The additionally implemented frame holder circuit enables the synchronicity of multiple sensors (e.g., in combination of angle sensors) via a SPC bus. The chip offers a 12, 14 and 16-Bit resolution of the output signal, ensuring highest flexibility and superior noise performance. Highest accuracy over a wide temperature range and lifetime is achieved by an integrated digital temperature- and stresscompensation. The chip is available in a thin 8-pin SMD single sensor package.

Small home

Features

- Fully ISO 26262 compliant, supports ASIL D systems
- < 2% sensitivity drift, < 100 μT offset drift</p> over temperature and life time
- Integrated digital temperature- and stress-compensation
- Fast digital SPC interface (unit time 0.5 3.0 μs)
- Multi-point calibration with up to 9 linearization set points

Key benefits

- High diagnostic coverage, ISO 26262-compliancy and dual sensor cell integration enable development of fail operational systems
- Multi-point calibration for better fit into various magnetic circuit designs
- Easy system integration due to programmability of several sensor parameters

Applications

Automotive safety critical applications

- Electric power steering
- Linear movement position sensing
- Pedal position
- Electric throttle control
- Seat rail adjustment
- Headlight adjustment

Industrial applications

- Small home appliances
- Joystick applications

Sales name	Interface	Magnetic linear range [mT]	Sensitivity	Sensitivity drift [%]	Gain	Magnetic offset drift [μΤ] ¹⁾	ISO 26262	Ordering code	Package
TLE4997A8D	Analog ratiometric	50, 100, 200	±60 mV/mT default for 100 mT range, with gain 1.5	±3	±4	< ±400	Ready	SP000902760	TDSO-8
TLE4998P8D	Digital interface PWM	50, 100, 200	±48 LSB ₁₂ /mT default for 100 mT range, with gain 1.5	±2	±4	< ±400	Ready	SP000902776	TDSO-8
TLE4998S8D	Digital interface SENT	50, 100, 200	±48 LSB ₁₂ /mT default for 100 mT range, with gain 1.5	±2	±4	< ±400	Ready	SP000902784	TDSO-8
TLE4998C8D	Digital interface SPC	50, 100, 200	±48 LSB ₁₂ /mT default for 100 mT range, with gain 1.5	±2	±4	<±400	Ready	SP000902768	TDSO-8
TLE499913	Digital interface PSI5	12.5, 25	±147.5 LSB ₁₃ /mT default for 25 mT range, with gain 1.5	±2	±5	< ±100/ < ±200 ²⁾	Compliant	SP001689862	SSO-3
TLE4999C8 (TLE4999C8-S0001)	Digital interface SPC	25, 50	±36.875 LSB ₁₂ /mT default for in 50 mT range, with gain 1.0	±2	±5	< ±100/ < ±2002 ²⁾	Compliant ASIL D (ASIL C)	SP002662500 (SP005727371)	TDSO-8
TLE4999C4 (TLE4999C4-S0001)	Digital interface SPC	25, 50	±36.875 LSB ₁₂ /mT default for in 50 mT range, with gain 1.0	±2	±5	< ±100/ < ±200 ²⁾	Compliant ASIL D (ASIL C)	SP003420076 (SP005727375)	SSO-4

- 1) Maximum drift over temperature and life time
- 2) Main channel/sub channel

TLE499x family

Programmable analog/digital single-channel linear Hall sensor family

Infineon's family of TLE499x linear Hall ICs is tailored to the needs of highly accurate angular and linear position detection and current measurement applications. Each product measures the vertical component of a magnetic field and outputs a signal that is directly proportional to the magnetic field. These programmable linear Hall sensors come with different interface options: TLE4997 features ratiometric analog output, while TLE4998P comes with pulse width modulation (PWM), TLE4998S with single edge nibble transmission (SENT), and TLE4998C with short PWM codes (SPC). These high-precision 12-bit resolution linear Hall sensors feature EEPROM memory for flexible programming across a wide range of parameters. Thanks to digital signal processing based on a 20-bit DSP architecture plus digital temperature compensation, these sensors deliver outstanding temperature stability compared with similar compensation methods. TLE4998 also includes stress compensation to withstand stress effects from the package, such as moisture, thus ensuring best-in-class accuracy over the device's lifetime.

Features

- Best-in-class accuracy with low drift of output signal (including stress compensation in TLE4998)
- Programmable transfer function (gain, offset),
 clamping, bandwidth, and temperature characteristics
- AEC-Q100 qualified
- Available in various packages including SSO-3-9 with two integrated capacitors to improve ESD and ESC behavior
- > TLE4997, TLE4998 ISO 26262 ready

Applications

- Detecting linear and angular position
- > Detecting pedal and throttle position
- > Steering torque measurement
- > Headlight leveling
- High-current sensing
- Seat position and occupant detection
- Suspension control
- > Detecting gear stick/lever positions
- Detecting fuel tank levels
- > Current sensing e.g. for battery management

Product	Programm- able	Number of pins	Sensitivity (programmable range)	Magnetic offset	Supply voltage (extended range)	Automotive	ISO 26262	Interface	Package
TLE4997	EEPROM	3/Single die SMD 8	±12.5 to ±300 mV/mT	< ±400 μT	5 V ±10% (7 V)	✓	_	Analog	SSO-3-10 TDSO-8
TLE4998P	EEPROM	3/4/Single die SMD 8	±0.2 to ±6%/mT	<±400 μT	5 V ±10% (16 V)	✓	Ready	PWM	SSO-3 SSO-4 SSO-3 (2 capacitors) TDSO-8
TLE4998S	EEPROM	3/4/Single die SMD 8	±8.2 to ±245 LSB ₁₂ /mT	<±400 μT	5 V ±10% (16 V)	√	Ready	SENT	SSO-3 SSO-4 SSO-3 (2 capacitors) TDSO-8
TLE4998C	EEPROM	3/4/Single die SMD 8	±8.2 to ±245 LSB ₁₂ /mT	<±400 μT	5 V ±10% (16 V)	√	Ready	SPC	SSO-3 SSO-4 SSO-3 (2 capacitors) TDSO-8

1) 147.44 ${\rm LSB}_{\scriptscriptstyle 13}$ converts to 294.88 ${\rm LSB}_{\scriptscriptstyle 12}$

Angle sensors

Compact designs in small outline packages

Highest variety - low-end to high-end, standardized and specialized in all four magnetic technologies: Hall, GMR, AMR and TMR

Infineon's magnetic sensor products TLE5501, are fast analog TMR-based angle sensors dedicated to automotive applications. Their fields of use range from steering angle applications, with the highest functional safety requirements, to motors for wipers, pumps and actuators, and electric motors in general. They are also ready to be used in industrial and consumer applications like robotics or gimbal. Angle sensors detect the orientation of an applied magnetic field by measuring sine and cosine angle components with monolithically integrated magnetoresistive elements.

Infineon's iGMR sensors are ideal for applications with a wide-angle range, such as BLDC motors or steering sensors. They are pre-calibrated and ready to use. Different levels of signal processing integration enable designers to optimize system partitioning. The XENSIV™ iAMR sensors also perfectly fit applications with the highest accuracy requirements, as they offer the best performance over temperature, lifetime, and magnetic field range.

iGMR, iAMR and iTMR based angle sensors

Diverse redundant sensor with analog and digital interface

Product	Technology	Die configuration	Sin/cos output	Angle output	Second interface	Accuracy	ISO 26262	Package
TLE5009	GMR	Single die	Analog sin/cos	-	-	0.9°	Ready	DSO-8
TLE5009A16(D)	GMR	Dual die	Analog sin/cos	_	_	1.0°	Ready	TDSO-16
TLE5011	GMR	Single die	SSC (SPI)	_	-	1.6°	Ready	DSO-8
TLI5012B	GMR	Single die	SSC (SPI)	SSC (SPI)	PWM/IIF/SPC/HSM	1.9°	QM	DSO-8
TLE5012B(D)	GMR	Single & dual die	SSC (SPI)	SSC (SPI)	PWM/IIF/SPC/HSM	1.0°	Ready	DSO-8/TDSO-16
TLE5014C16(D)	GMR	Single & dual die	-	SPC	-	1.0°	Compliant	TDSO-16
TLE5014P16(D)	GMR	Single & dual die	-	PWM	-	1.0°	Compliant	TDSO-16
TLE5014S16(D)	GMR	Single & dual die	-	SENT	-	1.0°	Compliant	TDSO-16
TLE5014SP16(D)	GMR	Single & dual die	-	SPI	-	1.0°	QM/Compliant	TDSO-16
TLE5109A16(D)	AMR	Single & dual die	Analog sin/cos	_	_	0.5°	Ready	TDSO-16
TLE5309D	AMR + GMR	Dual die	Analog sin/cos	_	-	AMR 0.5°, GMR 1.0°	Ready	TDSO-16
TLE5501	TMR	Single die	Analog sin/cos	-	_	1.0°	Compliant	DSO-8

SPI = Serial peripheral interface
IIF = Incremental interface
PWM = Pulse width modulation
SENT = Single Edge Nibble Transmission
HSM = Hall Switch Mode

iTMR based angle sensors

Tunneling Magneto Resisitive (iTMR) technology is offering high sensing sensitivity with a high output voltage, reducing the need for an internal amplifier. Thus, the sensor can be connected directly to the microcontroller without any further amplification. In addition, iTMR technology shows a very low temperature drift, reducing external calibration and compensation efforts. The iTMR technology is also well known for its low current consumption.

TLE5501

With the TLE5501 products, Infineon is currently launching the first angle sensor products based on iTMR technology. TLE5501 is available in two versions.

TLE5501 - product versions with different pinout:

- TLE5501 E0001: pin-compatible to TLE5009 automotive qualified acc. AEC-Q100
- TLE5001 E0002: decoupled bridges for redundant external angle calculation and highest diagnostic coverage, realizing ISO 26262-compliant development ASIL D

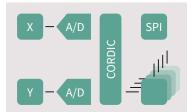
Features

- Large output signals of up to 0.37 V/V for direct microcontroller connection
- Discrete bridge with differential sine and cosine output
- Very low supply current: ~2 mA
- Magnetic field range (20-100 mT)
- Typ. angle error ~ 1.0° (over temperature and lifetime)
- DSO-8 package
- AEC-Q100, grade 0: TA = -40°C to 150°C (ambient temperature)
- For TLE5501 E0002:
 - Reaching ASIL D with just one single sensor chip
 - ISO 26262-compliant development ASIL D

- Steering angle sensor
- BLDC motor commutation e.g. wipers, pumps and actuators
- Angular position sensing for e.g. robotics or gimbal
- Electric motors
- Industrial automation
- Safety applications

iGMR based angle sensors TLE5014(D)

Digital iGMR sensor with an easy-to-use plug-and-play concept for the highest functional safety applications


All XENSIV™ TLE5014 angle sensors are available as single and dual die products. The products come pre-configured and pre-calibrated as plug-and-play sensors and are easy to use. Customers can choose between the interfaces SENT, PWM, SPC, and SPI. On top of those protocol options, the sensors can be adapted to any kind of application setup via their programmable E²PROM interfaces. TLE5014 magnetic angle sensors meet ISO 26262 ASIL C for the single die and ISO 26262 ASIL D for the dual die versions. All products are ready for applications with the highest functional safety requirements. The sensors show an extremely small angle error of less than 1° across the entire temperature profile and lifetime. This is particularly helpful in applications with the need for very accurate position sensing such as steering angle sensing or motor commutation. Further application areas range from rotor position measurement, electric power steering (EPS), pedal position to any other kind of position measurement.

Features

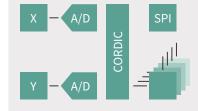
- Easy-to-use, plug-and-play sensors, pre-configured and pre-calibrated
- Offering high flexibility:
 - Available as single and dual die products
 - 12 bit digital interface with protocol options PWM, SENT, SPC and SPI
 - E2 PROM and look-up table for customer configuration and calibration
- High angle accuracy: max. 1.0° over temperature and lifetime
- High voltage capability up to 26 V
- Development fully compliant with ISO 26262
 - Developed acc. ASIL D level
 - Dual die sensors reaching ASIL D, single die sensors ASIL C metrics

- Safety manual and safety analysis summary report available on request
- Applications
- Steering angle sensing (SAS)
- Motor commutation
- Rotor position measurement
- Pedal position
- Safety applications
- Any other kind of high-accuracy position measurement

459

iGMR based angle sensors

iGMR


TLE5012B, TLE5012B(D)

iGMR sensor with integrated angle calculation and multiple interfaces

Features

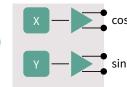
- Integrated angle calculation with CORDIC algorithm
- 15-bit representation of calculated angle value
- High update rate up to 43 μs (23 kHz)
- Range of selectable interfaces
- SPI compatible Synchronous Serial Communication (SSC)
- Bi-directional communication up to 8 Mbit/s
- Pulse Width Modulation (PWM)
- Hall Switch Mode (HSM) for motor commutation
- Incremental Interface (IIF)
- Temperature compensation and auto-calibration algorithm
- Diagnostic function for sensor elements and circuitry with PRO-SIL™ support
- Dual die SMD package (redundancy)
- ISO 26262 ready
- Available as single and dual die product

Applications

- Steering angle
- Brushless DC motor commutation (for example electric power steering (EPS))
- Rotary switches
- General angular sensing
- Incremental or absolute magnetic encoders
- Gimbals, drones, robots

iAMR based angle sensors TLE5109A16(D)

Analog iAMR sensor with temperature compensation



Features

- > Features a differential or single-ended analog interface for sine and cosine values
- > Internal temperature drift compensation for gain and offset
- Also available as a dual-sensor package
- > ISO 26262-ready
- > Typical 0.1° angle error over lifetime and temperature range after compensation (max 0.5°)
- > Available as single and dual die product

3D magnetic sensors for industrial and consumer markets

The TLx493D-x2Bx sensor realizes accurate three-dimensional sensing with extremely low power consumption in a small package. Capable of detecting the magnetic field in the x, y, and z-direction, the sensor is ideally suited for the measurement of linear, rotation, or 3-dimensional movements. Thanks to its small package and low power consumption, the TLx493D-x2Bx can be used in new applications, replacing potentiometer and optical solutions. Featuring contactless position sensing and high-temperature stability of the magnetic measurement, the sensor allows systems to get smaller, more accurate, and more robust.

Features

- 3D magnetic sensing
- Integrated temperature sensing
- Low current consumption
 - 7 nA in power-down mode
- 2.8 to 3.5 V operating supply voltage
- Digital output via a 2-wire standard I²C interface
- B_x, B_y and B_z linear field measurement up to ±160 mT
- JESD47 qualified
- 12-bit data resolution for each measurement direction
- Various resolution options from 32 μT/LSB to 130 μT
- Operating temperature range from -40 to +125°C

Product	Temperature range	Classification	Linear magnetic range	Sensitivity	I _{DD}	Update rate	Package	Ordering code
TLI493D-A2B6	-40105°C	JESD47	±160 mT (min) ±100 mT (min)	7.7 or 15.4 LSB ₁₂ /mT	7 nA - 3.4 mA	10 Hz – 8.4 kHz	TSOP6	SP001689844
TLI493D-W2BW A0 TLI493D-W2BW A1 TLI493D-W2BW A2 TLI493D-W2BW A3	-40125°C	JESD47	±50, ±100 or ±160 mT	7.7, 15.4 or 30.8 LSB ₁₂ /mT	7 nA – 3.4 mA	0.05 Hz - 11.6 kHz	WLB-5	SP005409964 SP005409966 SP005409968 SP005409970
TLV493D-A1B6	-40125°C	JESD47	±130 mT (typ)	10.2 LSB ₁₂ /mT	7 nA – 3.7 mA	10 Hz – 3.3 kHz	TSOP6	SP001286056
TLV493D-A2BW	-20°C85°C	JESD47	±50, ±100 or ±160 mT	7.7, 15.4 or 30.8 LSB ₁₂ /mT	7 nA – 3.4 mA	6 Hz – 11,6 kHz	WLB-5	SP005542151

New features

- Advanced operation modes to provide high flexiblitity
- Short mode range setting, focusing on the half of the magnetic range, ensuring higher accuracy
- Higher update frequency allows for an application field that requires faster update speed
- Angular mode (for x and y read-out only)

Applications

- Anti tempering protection in smart meters
- Control elements e.g. white goods multifunction knobs
- Ergonomic push and control buttons on domestic appliances and power tools
- Position control in robotics
- Smart lock position detection

461

3D magnetic sensors for automotive applications

Infineon's XENSIV™ TLE493D-x2B6 enables all kind of automotive control element applications within the passenger compartment or under the hood with a temperature range of -40 to +125°C, with linear magnetic range requirements up to ±160 mT.

Features

- 3D magnetic sensing
- Integrated temperature sensing
- 2.8 to 3.5 V operating supply voltage
- Low current consumption
 - 0.007 μA in power-down mode
 - 10 μA in ultralow power mode
 - Up to 10 power modes

- Digital output via a 2-wire standard I²C interface
- B, B, and B, linear field measurement ±160 mT
- AEC-Q100 qualified/ISO 26262-ready
- 12-bit data resolution for each measurement direction
- Various resolution options from 65 μT/LSB to 130 μT
- Operating temperature range from -40 to +125°C

Product	Temperature range	Qualification	Linear magnetic range	Resolution	l _{DD}	Update rate XYZ measurements	Wake-up	Package	Ordering code
TLE493D-A2B6	-40 125°C	AEC-Q100	±160 mT ±100 mT	130 μT/LSB 65 μT/LSB ¹⁾	7 nA – 3.4 mA	up to 7.8 kHz	No	TSOP6	SP001689848
TLE493D-W2B6 A0 TLE493D-W2B6 A1 TLE493D-W2B6 A2 TLE493D-W2B6 A3	-40 125°C	AEC-Q100 ISO 26262 ready	±160 mT ±100 mT	130 μT/LSB 65 μT/LSB ¹⁾	7 nA – 3.4 mA	up to 7.8 kHz	Yes	TSOP6	SP001655334 SP001655340 SP001655344 SP001655348
TLE493D-P2B6 A0 TLE493D-P2B6 A1 TLE493D-P2B6 A2 TLE493D-P2B6 A3	-40 125°C	AEC-Q100/ ISO 26262 ready	±160 mT ±100 mT	130 μT/LSB 65 μT/LSB ¹⁾	7 nA – 3.4 mA	up to 7.8 kHz	Yes	TSOP6	SP005557415 SP005557413 SP005557411 SP005557408

1) Short range mode

The XENSIV™ sensor TLE493D-A2B6 features include a sensor address read-back feature for additional communication verification, a half-range mode focusing to half of the magnetic range, ensuring higher accuracy, and an angular mode (for x and y readout only).

With the TLE493D-W2B6/P2B6 A0-A3, a 3D sensor family with an enhanced dynamic wake-up feature was developed. Four pre-programmed address options (A0-A3) are available, enabling for a fast start-up initialization when used in I²C bus configurations. Our sensors include enhanced test options, and safety documentation is available to enable the usage of this sensor in the context of ASIL B systems.

Compared to the previous products of this family the new TLE493D-P2B6 A0-A3 family offers enhance precision in x-, y-, z- sensing direction, while otherwise featuring the same dynamic wake-up features, programmability, and test options like TLE493D-W2B6 A0-A3. We provide safety documentation on request for usage of the sensor in the context of ASIL B systems.

- Control elements for infotainment/navigation systems, air conditioners, multifunctional steering wheels, seat controls
- Top column modules e.g. direction indicator, wiper control
- Gear stick position sensing
- Multi-function knobs
- Pedal/valve position sensing

Magnetic speed sensors

Easy-to-use, robust and cost-effective sensors for speed measurement

Infineon's Hall and GMR-based magnetic speed sensors are designed to measure speed in safety and powertrain applications such as speedometers, ABS, camshafts, crankshafts, and automatic transmissions. They are also used in similar applications in the industrial sector. The sensors use a ferromagnetic gear tooth or encoder structure to measure linear or rotational speed and position. Hall sensor measuring rotational speed with a gear tooth and a magnetic encoder wheel. The majority of sensors also feature additional benefits such as integrated capacitors for high EMC robustness and the highest levels of ESD protection.

TLE4922

Highly robust, easy-to-use mono-Hall speed sensor with twist-independent mounting

This sensor is specially designed to provide an easy-to-use, robust and cost-effective solution for vehicle or industrial speed sensing applications. The TLE4922 can, therefore, be back-biased using a simple, low-cost bulk magnet, while providing a good air gap performance and switching accuracy. Its hidden adaptive hysteresis and calibration algorithm enable good accuracy over air gap jumps and immunity to vibration and run-out events.

Features

- Large operating air gap capability
- Flexible mounting (also known as Twist-independent mounting)
- Hidden adaptive hysteresis
- Low current consumption
- Reverse magnetic polarity capability
- Advanced protection technology
 - Reverse voltage protection at VS-pin
 - Short-circuit protection
 - Overtemperature protection
- Wide operating temperature ranges of -40°C ≤ Tj ≤ ±150°C
- High ESD robustness up to ±4 kV HBM
- 3-wire PWM voltage interface

- Industrial applications
- Two-wheeler and automotive vehicle speed

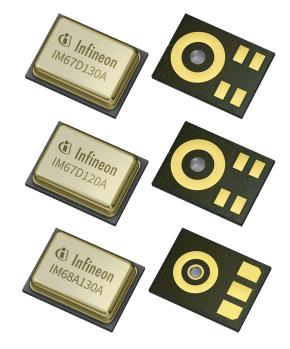
TLE4929

Fully programmable crankshaft sensor

The TLE4929 is an active differential Hall sensor ideally suited for crankshaft applications and similar industrial applications, such as a speedometer or any speed sensor with excellent accuracy and low jitter capabilities. It as well addresses new requirements for crankshaft speed sensing from hybrid powertrains. An advanced vibration detection algorithm ensures valid sensor data for any hybrid powertrain traction. This improves efficiency of the engine start and helps to avoid misfiring or ECU error messages caused by wrongly calibrated sensor data. Also, the compatible 3-pin-package allows a one-to-one replacement of the former generation of crankshaft sensors without direction detection, TLE4924/25/26/27/28, widely backward compatible functionality through flexible EEPROM configuration of parameters, means former TLE492x-family can be mimicked.

Features

- Differential Hall speed sensor to measure speed and position of tooth/pole wheels
- Ease of use single chip solution in SSO-3-52
- Switching point in the middle of the tooth enables backward compatibility
- Robustness over magnetic stray-field due to the differential sensing principle
- Precise miss fire detection through excellent jitter performance
- Dedicated hybrid engine algorithm keeps combustion engine calibrated during an electric drive cycle
- Digital output signal with programmable output-protocol including diagnosis interface
- Direction detection and stop-start-algorithm
- High accuracy and low jitter
- High sensitivity enables large air gap
- End-of-line programmable to adapt engine parameters
- Can be used as a differential camshaft sensor
- Pre-programmed version TLE4929C-XAN available, TLE4929C-X2A available for 2-wheeler applications
- Automotive operating temperature range


Product	Sensor technology	AEC-Q100 qualified	Direction detection	Automotive	Industrial	Protocol	RoHS
TLE4922	Mono-Hall	✓	-	✓	✓	Single pulse	✓
TLE4929	Differential Hall	✓	✓	✓	√	PWM, Single pulse	✓

MEMS microphones for automotive applications

Qualified according to automotive standard, AEC-Q103-003

As part of our comprehensive XENSIV[™] sensor family, we also offer high-performance MEMS microphones, qualified according to the state-of-the-art automotive quality standard AEC-Q103-003. These microphones close the gap in the automotive industry, providing the best possible fit for automotive applications.

These automotive XENSIV™ MEMS microphones combine our proven expertise in the automotive industry with our technical leadership in high-end MEMS microphones. They are suited to all applications inside and outside the car, where the best audio performance in harsh automotive environments is required.

Customer benefit

- Automotive qualification according to AEC-Q103, together with long term availability reduces design-in risk and effort
- Increased operating temperature range allows flexible usage in automotive environment up to +105°C
- Best in class audio performance (SNR, AOP, THD) for optimum speech quality and capture of distortion-free audio signals in loud environments such as inside a car
- Narrow sensitivity matching for enhanced performance of beam-forming (noise suppression) arrays
- Flat frequency and stable phase response to < 10 Hz for optimal fit in acoustic noise cancellation use cases (for IM66D130A and IM68A130A, best fit for ANC/RNC automotive applications)

Parametrics	IM66D130A	IM67D120A	IM67D130A	IM68A130A
Acoustic overload point	130 dBSPL	120 dBSPL	130 dBSPL	130 dBSPL
Current consumption	1.300 μΑ	980 μΑ	980 μΑ	105 μΑ
Interfaces	PDM	PDM	PDM	Analog single-ended output
Sensitivity	-36 dBFS	-26 dBFS	-36 dBFS	-39 dBFS
Signal to noise	66 dB(A)	> 67 dB(A)	> 67 dB(A)	68 dB(A)
Supply voltage	-	1.62-3.6 V	1.62-3.6 V	-
LFRO	< 10 Hz	28 Hz	28 Hz	< 10 Hz
Ordering code	Coming soon	SP005550431	SP005582032	SP005738297

Typical applications for automotive MEMS microphones in-cabin and outside of the vehicle

Speech: Hands free/e-call/ICC

Enabling distortion free audio capturing for all speech related application thanks to their high SNR and low distortions.

Speech: Microphone arrays - beamforming voice command

Making possible to operate infotainment systems with voice commands due to their narrow sensitivity matching for enhanced performance of beam-forming arrays.

Interior

₽ ANC

Active and road noise cancellation

Enabling a quite environment for comfortable travels, the microphones are a good fit for ANC applications thanks to their flat frequency and stable phase response. IM68A130A and IM66D130A: dedicated product family for ANC with superior performance with analog and digital interface.

- Event sound detection/sirens detection/contact detection
- Road condition detection

Contributing to road safety, by detecting sounds like sirens from emergency vehicles or even dangerous road conditions thanks their large dynamic range and acoustic overload point.

Voice recognition/external interaction

Allowing external interaction e.g. for controlling certain functions via voice commands due to their good suitability for voice recognition use cases.

www.infineon.com/mems-automotive

Exterior

XENSIV™ sensors for consumer and IoT applications

Intuitive sensing: Giving things human-like senses for a better contextual awareness

Imagine a world where technology is unobtrusive and seamlessly integrated into our lives. Where intentional and deliberate communication between people and devices is no longer necessary. In this world, there is no need to push buttons or issue commands in order to activate devices because technology is capable of interpreting implicit intentions and context. This enhances the user experience and makes it more natural – it would seem as if the devices around us intuitively understand what we want them to do. At Infineon, this future is already becoming reality. We develop sensor solutions that enable simple and effortless user interactions with all kinds of smart devices. Bridging the gap between the real and digital worlds, our technology

is developed to make life easier, safer, greener and more efficient. Our intuitive sensing solutions are at the very core of this mission. Reflecting our belief that the essential value of sensor technology lies in making our lives more convenient through seamless, natural interactions between people and sensing devices, our aim is to leave you free to focus on what really matters in life.

Choose your type of sense

Thanks to industry-leading technologies Infineon, XENSIV™ sensors are exceptionally precise. They are the perfect fit for various customer applications in automotive, industrial and consumer markets.

Pressure sensors

Our digital barometric pressure sensors give designers the best choice when it comes to small form factors, highest precision and accuracy over a wide temperature range, fast read-out speeds and low power consumption.

Radar sensors

Radar supports existing applications while providing features that enable completely new use cases. It measures velocity, range and angle, both horizontal and vertical, for precise position mapping and 3D tracking.

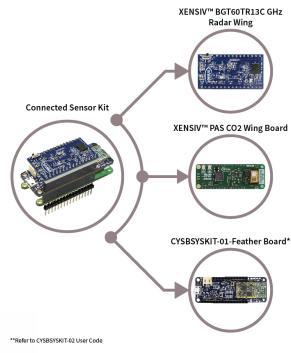
MEMS microphones

MEMS microphones overcome existing audio chain limitations and are designed for applications where low self-noise (high SNR), wide dynamic range, low distortions and a high acoustic overload point are required.

PAS CO2 sensor

Leveraging photoacoustic spectroscopy (PAS), Infineon has developed an exceptionally small CO₂ sensor that overcomes existing size, cost and performance challenges.

Today, sensors already enable interactions between people and devices

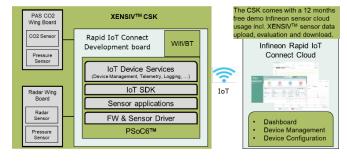

This interaction often depends on the interpretation and merging of information from different sources. Machines cannot yet read our minds and do not always have the information necessary to correctly evaluate a given situation. So, we sometimes have to explicitly tell devices what we want them to do. This can be inconvenient and time-consuming. Inspired by human nature, Infineon intuitive sensing solutions are designed to take the complexity out of our interaction with devices.

Reflecting a holistic approach, we combine different sensors with state-of-the-art software to create a comprehensive picture of the world around us. By fusing several smart sensors into one coherent intelligent system, our intuitive sensing solutions simplify complex technical processes and enable people to effortlessly interact with devices. These smart devices intuitively sense the world around them, determining what is expected and needed from them.

XENSIV™ connected sensor kit

Rapid IoT prototyping experience enabled by XENSIV™ sensors

The XENSIV[™] connected sensor kit enables rapid development of a custom solution built on Infineon products. The CSK supports customers in testing sensor-driven IoT products and use cases as well as in prototyping. It offers a real-time sensor evaluation with custom configurations and cloud-based sensor data visualization with sensor fusion. The development kit supports use cases based on XENSIV[™] 60 GHz radar and PAS CO2 with DPS368 pressure sensor (Sense), PSoC[™] 6 microcontroller embedded processing (Compute), connectivity via Infineon AIROC[™] CYW43012 Wi-Fi and Bluetooth® Combo (Connect) and hardware security with OPTIGA[™] Trust M (Secure). Code examples and sensor libraries are available in the Infineon software ecosystem ModusToolbox[™] to help customers create use case-specific application codes for new product offerings.

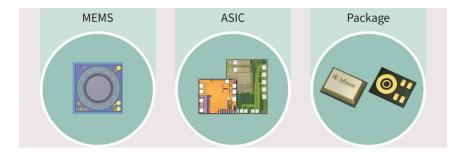

Features and benefits

- FCC and CE certified

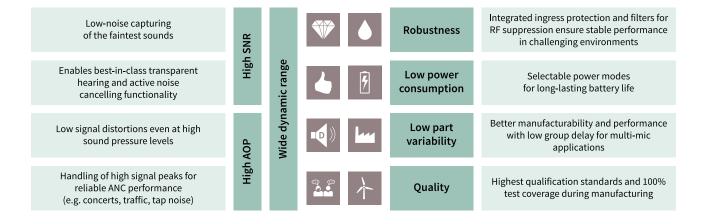
Key features - Small form-factor (22.5 mm x 63 mm x 30 mm) Adafruit feather compatible design - Wi-Fi and Bluetooth 5.0-compliant combo radio module - Power optimized design, deployable with battery - Interchangeable sensor wings − 60 GHz radar, PAS CO2 - Seamless integration into ModusToolbox™

Key benefit

- Ideal for prototyping battery-powered IoT devices due to optimized power consumption. Suited for customer field trials.
- Rapid development and deployment via code examples in ModusToolbox™ for presence detection, entrance counter, air quality measurements. Enabler for Multisensor data fusion.
- Secure cloud device onboarding and management with OPTIGA™ Trust M. Secure kit provisioning (unique user ID).

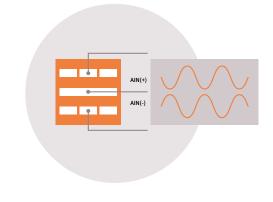


The Infineon Rapid IoT Connect SOM platform deployed on the XENSIV™ CSK provides hardware, firmware, and cloud artifacts to enable rapid onboarding to the Internet of Things. Bidirectional XENSIV™ sensor to cloud data communication is securely enabled. The XENSIV™ CSK is a pre-implemented Infineon Prototyping Sensor System that makes it possible to provision, monitor and manage Infineon hardware remotely. Sensor2cloud kit set up takes 10 minutes with 12 months free user access to a dedicated cloud demo platform for sensor data collection and interpretation as well as sensor data download.


XENSIV™ MEMS microphones for consumer

High-performance analog and digital MEMS microphones for consumer electronics

Infineon's XENSIV™ MEMS microphones are designed for capturing audio signals with unprecedented precision and quality. The microphones are comprised of Infineon's MEMS microphone chips and ASICs which are not without reason the world's best-selling microphone components.



XENSIV™ MEMS microphones feature ultra-low self-noise (high SNR), extremely low distortions (THD) even at high sound pressure levels (SPL), very tight part-to-part phase and sensitivity matching, a flat frequency response with a low LFRO (low frequency roll-off) and an ultra-low group delay. Combined with selectable power modes and their very small package size, Infineon XENSIV™ MEMS microphones are a perfect match for consumer electronics with excellent audio capturing functionalities and also for selected industrial applications such as predictive maintenance and security.

Infineon's Sealed Dual Membrane (SDM) MEMS technology

Infineon's latest Sealed Dual Membrane MEMS technology delivers high ingress protection (IP57) at a microphone level. The sealed MEMS design prevents water or dust from entering between membrane and backplate, preventing mechanical blockage or electric leakage issues commonly observed in MEMS microphones. Microphones built with the Sealed Dual Membrane technology can be used to create IP68 devices, requiring only minimal mesh protection.

Product portfolio

	Infineon Model	Main Features	Interface	Package size	SNR	AOP (1/10%THD)	Current	Sensitivity	LFRO
	IM69D130	High SNR and high AOP	PDM	4.00 x 3.00 x 1.20 mm	69 dB(A)	128/130 dBSPL	980 μA @ 3.072 MHz	-36 dBFS	28 Hz
	IM69D120	High SNR and sensitivity	PDM	4.00 x 3.00 x 1.20 mm	69 dB(A)	118/120 dBSPL	980 μA @ 3.072 MHz	-26 dBFS	28 Hz
=	IM69D127	High performance in small size	PDM	3.60 x 2.50 x 1.00 mm	69 dB(A)	123/127 dBSPL	980 μA @ 3.072 MHz	-34 dBFS	40 Hz
igital	IM69D128S NEW	Ultra-low current consumption	PDM	3.50 x 2.65 x 1.00 mm	69 dB(A)	125/128 dBSPL	520 μA @ 3.072MHz	-37 dBFS	30 Hz
	IM70D122 NEW	High SNR and sensitivity	PDM	3.50 x 2.65 x 1.00 mm	70 dB(A)	120/122 dBSPL	980 μA @ 3.072MHz	-26 dBFS	30 Hz
	IM72D128 NEW	Ultra-high SNR	PDM	4.00 x 3.00 x 1.20 mm	72 dB(A)	126/128 dBSPL	980 μA @ 3.072MHz	-36 dBFS	20 Hz
	IM73D122 NEW	Ultra-high SNR & sensitivity	PDM	4.00 x 3.00 x 1.20 mm	73 dB(A)	120/122 dBSPL	980 μA @ 3.072MHz	-26 dBFS	20 Hz
ρū	IM68A130 NEW	Small package and low LFRO	Single Ended	3.35 x 2.50 x 0.98 mm	68 dB(A)	118/130 dBSPL	110 μA @ 2.75 V	-38 dBV	10 Hz
nalog	IM70A135 NEW	High SNR & high AOP	Differential	3.50 x 2.65 x 1.00 mm	70 dB(A)	132/135 dBSPL	170 μA @ 2.75 V	-38 dBV	37 Hz
Ā	IM73A135 NEW	Ultra-high SNR & high AOP	Differential	4.00 x 3.00 x 1.20 mm	73 dB(A)	132/135 dBSPL	170 μA @ 2.75 V	-38 dBV	20 Hz

All XENSIV™ consumer microphones have bottom port. Due to SDM (Sealed Dual Membrane) XENSIV™ microphone deliver IP57 ingress protection on the component level for better manufacturability and robustness against water and dust.

Features, applications and use cases

Features
– Ultra-low self-noise / ultra-high SNR
- Selectable power modes for longer battery life
- Sealed Dual Membrane (SDM) technology with ingress protection at microphone level
- Extremely low distortions (THD) even at high sound pressure levels
- High dynamic range and very high acoustic overload points (AOP)
- Very tight part-to-part phase and sensitivity matching
– Flat frequency response with a low LFRO (low frequency roll-off)
- Ultra-low group delay for multi-mic applications
- Very small package sizes for various applications

Typical applications

- TWS earbuds
- ANC headphones
- Smart speakers
- Conference speakers
- Laptops / tablets
- Wearables
- AR/VR devices

Emerging applications

- Cameras
- Video doorbells
- Smart home
- Smart infrastructure
- Home appliances
- Industrial applications
- Medical applications

Typical use cases

- Studio quality audio capturing for communication devices
- Low latency wide band audio signal capturing for Active Noise Cancellation (ANC) and transparent hearing functionality
- Small form factor & current consumption for battery and size constraint devices
- Multi-microphone (array) based beamforming and source separation for audio zoom features and multi user audio capturing
- High range, far field voice pickup for multi room applications
- Capturing of audio signals in loud environments, such as outdoor
- Audio pattern detection for predictive and preventive maintenance and security

Product	Description
IM69D130	IM69D130 is a high-performance digital MEMS microphone making use of Infineon's Dual Backplate MEMS technology to deliver 105 dB dynamic range and high output linearity up to 130 dBSPL. The application benefits are crystal clear audio signals, extended pick-up distance and sensitivity to both soft and loud signals - from whispered speech to rock concerts.
IM69D120	IM69D120 is a high-performance digital MEMS microphone making use of Infineon's Dual Backplate MEMS technology to deliver 95 dB dynamic range and high output linearity up to 120 dBSPL. If IM69D130 is used in a 16 bit audio signal chain, the full SNR performance would not be realized as the noise floor will be limited by the system dynamic range. IM69D120 has been specifically designed to preserve 69 dB(A) SNR in a 16 bit system. This is achieved by increasing the microphone sensitivity to -26 dBFS, and reducing the acoustic overload point to 120 dBSPL.
IM69D127	IM69D127 is a digital high-performance MEMS microphone based on Infineon's new Sealed Dual Membrane MEMS technology which delivers high ingress protection (IP57) at a microphone level. Its small size of only 3.60 x 2.50 x 1.00 mm³ makes it a perfect match for compact audio devices, such as TWS earbuds.
IM69D128S	Great signal-to-noise ratio (SNR) of 69 dB(A) enables crystal clear audio experience without compromising on battery life. Enabled by a revolutionary digital microphone ASIC, the IM69D128S sets a new benchmark by cutting current consumption to 520 µA – almost the half of what models with similar performance on the market can offer. Additionally, IM69D128S masters the art of switching between different power & performance profiles without any audible artifacts, i.e. glitches that the user can hear.
IM70D122	High performance digital XENSIV TM MEMS microphone IM70D122 makes the most out of Infineon's Sealed Dual Membrane technology to meet a very high signal-to-noise ratio of 70 dB(A) and a very high sensitivity of -26 dBFS. Especially thanks to its high sensitivity and high SNR the IM70D122 is perfectly tailored for advanced audio capturing which can uplift the audio experience for laptops, tablets, cameras and conference systems.
IM72D128	The IM72D128V01 is an ultra-high-performance digital microphone designed for applications which require a very high SNR (low self-noise) and low distortions (high AOP). The flat frequency response (20 Hz low-frequency roll-off) and tight manufacturing tolerance improve performance of multi-microphone (array) applications. The digital microphone ASIC contains an extremely low-noise preamplifier and a high-performance sigma-delta ADC. Different power modes can be selected in order to suit clock frequency and current consumption requirements.
IM73D122	Ultra-low noise digital XENSIV™ MEMS microphone IM73D122 is designed for applications which require a very high SNR (low self-noise) and a high sensitivity. The flat frequency response (20 Hz low-frequency roll-off) and tight manufacturing tolerance improve performance of multi-microphone (array) applications. The powerful mix of ultra-high SNR and high sensitivity empowers high quality audio capturing for voice user interface applications in laptops, tablets or conferencing devices.
IM68A130 (i) Infineon IM68A130A	The IM68A130 is a high performance, single-ended, analog MEMS microphone designed for applications which require a low LFRO (10 Hz), a high SNR (low self-noise), and low distortion (high AOP). The high signal-to-noise ratio (SNR) of 68 dB(A) enables far field and low volume audio pick-up. The flat frequency response and tight manufacturing tolerance improve the performance of Active Noise Cancellation (ANC) and multi-microphone array applications.
IM70A135	Infineon's XENSIV™ MEMS analog microphone IM70A135 is a compact high performance microphone with a very high acoustic overload point of 135 dBSPL and a size of only 3.50 x 2.65 x 1.00 mm³. This microphone is based on Infineon's new Sealed Dual Membrane MEMS technology which delivers high ingress protection (IP57) at a microphone level. The small size makes this microphone especially suited for TWS earbud applications.
IM73A135	Infineon's XENSIV™ MEMS analog microphone IM73A135 sets a new performance benchmark in MEMS microphones. A best-in-class signal to noise ratio (SNR) of 73 dB and a high acoustic overload point of 135 dBSPL enable clear audio pick up of the quietest and the loudest sounds. This microphone is based on Infineon's new Sealed Dual Membrane MEMS technology which delivers high ingress protection (IP57) at a microphone level. The IM73A135 allows designers to reach a level of high audio performance that was previously only achievable by ECMs while at the same time reaping the benefits inherent in MEMS technology.

XENSIV™ MEMS microphone partners

Building upon the superior XENSIV™ MEMS microphone performance, Infineon's extensive network of global partners offers customers a comprehensive portfolio of XENSIV™ MEMS microphone-based reference designs, as well as Infineon inside MEMS microphones that will propel audio performance to the next level even for the most demanding applications. Click on the buttons below to learn more about our partner solutions.

Microphone flex evaluation kits

The flex evaluation kits allow simple and easy evaluation of XENSIV™ MEMS microphones. One microphone of the respective type is mounted on each flex board. A flex board can be easily connected to an audio testing setup with the included adapter board via a 6-position ZIF connector. Each kit includes five flex boards and one adapter board.

Product	Kit	Features
	EVAL_IM69D130_FLEXKIT SP: SP002153022 EVAL_IM69D120_FLEXKIT SP: SP002153026 KIT_IM69D127V11_FLEX SP: SP005403891 KIT_IM73A135V01_FLEX SP: SP005415695 KIT_IM72D128V01_FLEX SP: SP005429924 KIT_IM70A135V10_FLEX SP: SP005728204 KIT_IM68A130V01_FLEX SP: SP005728206 KIT_IM69D128SV01_FLEX SP: SP005744505 KIT_IM70D122V01_FLEX SP: SP005826638	 Quick and easy connection to evaluation system Small size: 25 mm x 4.5 mm Pre-soldered MEMS microphone Configurable select pin configuration for digital microphones

The Infineon Audiohub Nano

The Infineon Audiohub Nano enables better the evaluation of Infineon microphones. The kit includes an Infineon Audiohub Nano and four microphones on flex board. Up to two additional Infineon XENSIV™ MEMS microphones can be connected to the evaluation board in mono or stereo output. The evaluation board provides a USB audio interface to stream audio data from the microphone with any audio recording and editing software. Board comes in two different interfaces – analog and digital.

EVAL AHNB ANALOGV01

Analog XENSIV™ MEMS microphones evaluation board SP: SP005568087

EVAL AHNB IM69D130V01

Analog XENSIV™ MEMS microphones evaluation board SP: SP005285852

Summary of features

- Audio interface for analog XENSIVTM MEMS microphones
- Audio streaming over USB interface
- 48 kHz sampling rate
- 24-bit audio data (stereo)
- Dynamic range 120 dB
- LED indication for the configured gain level in normal mode and low power mode
- Volume unit meter display with onboard LEDs
- Powered through Micro-USB

Summary of features

- Audio streaming over USB interface
- 48 kHz sampling rate
- 24-bit audio data (stereo)
- Mode switch for toggling between normal mode and low power mode with 4 pre-defined gain configurations
- LEDs indication for the configured gain level in normal mode and low power mode
- Volume unit meter display with on board LEDs
- Powered through Micro-USB

XENSIV™ digital barometric pressure sensor

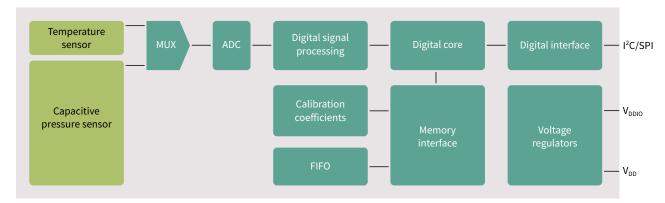
for mobile and wearable devices

Infineon's digital barometric pressure sensor family is the best choice for mobile and wearable devices due to its small form factor, high precision, and low power consumption. Pressure sensing is based on capacitive technology, which guarantees ultrahigh precision (±2 cm) and excellent relative accuracy (±0.06 hPa) over a wide temperature range. The sensor's internal signal processor converts the output from the pressure and temperature sensor elements to 24-bit results. Each pressure sensor has been calibrated individually and contains calibration coefficients. The coefficients are used in the application to convert the measurement results to true pressure and temperature values. All sensors have a FIFO that can store the last 32 measurements. Since the host processor can remain in a sleep mode for a longer period between readouts, a FIFO can reduce the system power consumption. Sensor measurements and calibration coefficients are available via the serial I²C/SPI interface.

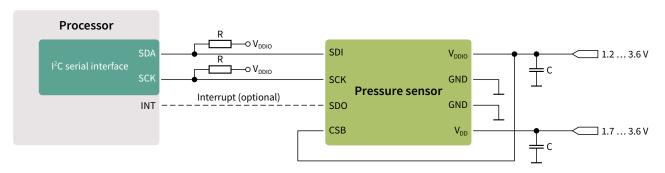
DPS310

A barometric pressure sensor with very low power consumption is recommended for applications where power consumption is critical and the highest precision in pressure metering is required.

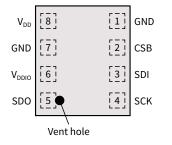
DPS368


DPS368 offers the best-in-class resolution (±2 cm), a very fast read-out speed, and low current consumption. The sensor can be used in harsh environments, as it is robust against water (IPx8 - 50 m underwater for 1 hour), dust and humidity. The small package size saves up to 80 percent of the space and makes the DPS368 ideal for mobile applications and wearable devices.

Typical applications


- Drones: altitude detection and height stability
- Health and fitness: accurate elevation gain and step counting (e.g. for smartwatches)
- Outdoor Navigation: GPS start-up time/accuracy improvement; dead reckoning (e.g. in tunnels)
- Indoor navigation: floor detection e.g. in shopping malls and parking garages
- Smart home: micro weather forecasting; room temperature control; intruder detection
- Airflow control: Smart filter replacement alarm (e.g. in home appliances); predictive maintenance
- Health care: fall detection; respiratory devices; smart inhalers

Key product features	G Infineon ready 1	(i) Infineon			
Package size	2.0 x 2.5 x 1.0 mm ³ 2.0 x 2.5 x 1.1 mm ³				
Operating pressure range	300 1200 hPa				
Operating temperature range	perating temperature range -40 85°C				
Pressure level precision	± 0.002 hPa (or ±0.02 m)				
Relative accuracy	± 0.06 hPa (or ±0.5 m)				
Absolute accuracy	± 1 hPa (or ±8 m)				
Temperature accuracy	erature accuracy 0.5°C				
Pressure temperature sensitivity	0.5 Pa/K				
Measurement time	3.6 ms (low precision); 27.6 ms (standard mode)				
Average current consumption @ 1 Hz sampling rate	1.7 μA pressure measurement, 1.5 μA temp. measurement, standby 0.5 μA				
Supply voltage	V _{DDIO} : 1.2 – 3.6 V; V _{DD} : 1.7 – 3.6 V				
Operating modes	Command (manual), background (automatic), standby				
Interface	I ² C and SPI, both with optional interrupt				


Functional block diagram

Application circuit example (in I²C configuration)

Pin configuration (top view)

Pin	Name	Function
1	GND	Ground
2	CSB Chip select	
3	SDI	Serial data in/out
4	SCK	Serial clock
5	SDO	Serial data out
6	V _{DDIO}	Digital interface supply
7	GND	Ground
8	V _{DD}	Analog supply

Infineon inside pressure sensor partners

Building upon its best-in-class technology, Infineon offers a full range of barometric pressure sensors as chipsets. Infineon's network of global partners offers customers a comprehensive portfolio of Infineon inside pressure sensors that will propel performance to the next level even for the most demanding applications.

Visit www.infineon.com/pressure-sensor-partners to learn more and purchase our partner solutions.

XENSIV™ PAS CO2

High performance, small size and compliance with air quality standards - Introducing a disruptive CO₂ sensor based on photoacoustic spectroscopy (PAS)

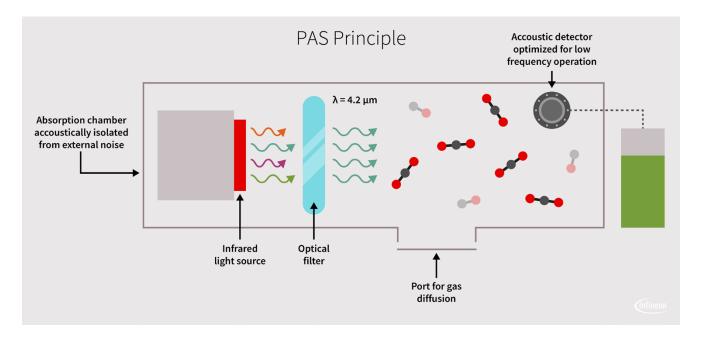
Infineon's XENSIV[™] PAS CO2 breaks the boundaries of CO₂ sensing with its exceptionally small form factor, state-of-the-art accuracy and compliance with the requirements of the international green building certification systems WELL and LEED.

Measure what matters with our XENSIV™ PAS CO2 sensor

CO₂ measurement contributes to improvements in health, comfort and productivity as well as energy efficiency. Even at moderate levels, CO₂ can have a negative impact on health and productivity, causing drowsiness and headaches. Fortunately, smart indoor air quality sensors can "smell" rising levels of CO₂ and either alert the user or trigger a system response. Given the correlation between CO₂ and aerosol concentration, CO₂ sensors can contribute to mitigating the transmission of not only COVID-19 but also other airborne illnesses such as the common cold and influenza. Moreover, as part of the global effort to pursue decarbonization, methods for improving the energy efficiency of buildings are being widely adopted. Continuous and accurate measurement of CO₂ concentrations are key to ensure compliance with the highest air quality standards such as WELL, LEED and ASHRAE and to enable significant reductions in energy demand and utility costs through Demand Control Ventilation (DCV).

Accurate, real-time CO₂ measurement thanks to superior MEMS technology

Widespread adoption of real CO₂ sensors has so far been hampered by size, performance and cost constraints. Infineon's XENSIV™ PAS CO2 sensor leverages photoacoustic spectroscopy (PAS) technology to provide an exceptionally small, real CO₂ sensor that is both highly accurate and cost-effective. Infineon's leading position in MEMS technology is the foundation for this unique and accurate CO₂ detection approach. Reliable CO₂ measurement enables smart monitoring of indoor air quality, facilitating improvements in health, productivity and overall well-being. These features make the XENSIV™ PAS CO2 sensor ideal for demand-controlled ventilation and air conditioning applications (HVAC) as well as for integration into consumer IoT devices such as air purifiers, thermostats, baby monitoring devices, wake-up alarms and smart speakers.


Disruptive environmental sensor technology from Infineon

XENSIV™ PAS CO2 integrates on the PCB a photoacoustic transducer, including an acoustic detector, infrared source and optical filter; a microcontroller for signal processing and a MOSFET chip to drive the infrared source. The exceptional sensitivity of the acoustic detector coupled with the integrated PCB design reduce space requirements by more than 75 percent compared to nowadays state-of-the-art NDIR CO₂ sensors.

www.infineon.com/CO2

The PAS (photoacoustic spectroscopy) principle

The sensor is characterized by a disruptive measurement principle called PAS (photoacoustic spectroscopy). It works as follows: pulses of infrared light pass through an optical filter tuned to the CO_2 absorption wavelength. The CO_2 molecules absorb the filtered light, causing them to shake and generate a pressure wave with each pulse. This is called the photoacoustic effect. The sound is then detected by an acoustic detector optimized for low frequency operation and converted to a CO_2 concentration reading by the microcontroller.

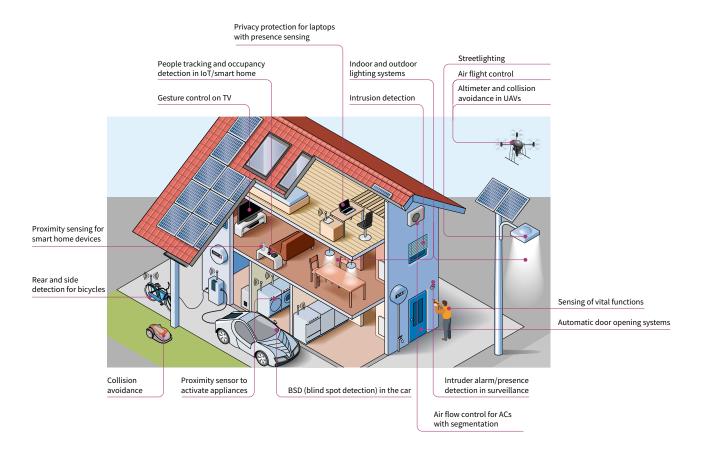
Features and benefits

Key features	Key benefits	
- Exceptionally small form factor (14 x 13.8 x 7.5 mm³)	– Space savings in customers' end products	
- High accuracy (±30 ppm ±3% of reading)	High quality data, energy and cost savings, compliance with green building standards Cost-effective high-volume assembly and easy system integration	
– SMD package delivered in tape and reel		
Advanced compensation and self-calibration algorithms		
Various configuration options (e.g. sampling rate, baseline calibration) and	 Plug & play for fast design-to-market 	
interfaces (UART 12C PWM)	- Customer flexibility	

Applications

- HVAC (Heating, Ventilation and Air Conditioning) systems
- Smart home appliances such as thermostats, air conditioners and air purifiers
- Consumer devices for air quality monitoring such as smart speakers, personal assistants and CO₂ traffic lights
- Smart indoor lighting and conference systems

Digital isolators


XENSIV™ radar sensors for consumer and IoT applications

As market leader in radar chips, we offer a wide portfolio of mmWave radar sensors as part of our XENSIV™ sensor family – including Doppler radar as well as FMCW radar systems. This portfolio includes the smallest 24 GHz MMIC in the market as well as the most integrated and largest 24 GHz radar transceiver family currently available. These radar chips are designed to support different industrial, smart home, and consumer applications. In addition, we also offer radar sensors in the 60 GHz range, which are used in consumer products such as the Google Pixel 4 smartphone.

Motion detection with radar offers significant advantages over PIR and other motion-sensing technologies

With our 24 and 60 GHz radar sensors, we cover a wide range of applications. Many of them are based on motion detection triggering systems like lighting solutions, automatic doors, camera and security systems, or smart home devices. In contrast to other motion detection technologies like PIR, radar technology offers significant advantages. These include smaller system sizes, greater accuracy, and more precise measurements of detected objects. In addition, radar can also determine the direction of a moving object, speed of an object, distance, and depending on the antenna configuration, even the position of a moving object.

Applications for Infineon's radar sensors

Key benefits of radar sensing

- Direction, proximity, and speed detection
- Segmentation and tracking functionalities
- Target positioning
- Detection through non-conductive materials
 - Product design flexibility
 - Anonymous sensing
- Maintains operation through harsh environmental conditions such as rain, snow, fog, dust, etc.
- Sensitive enough to capture breathing and heartbeat
 - Radar can feel presence & vital functions
- Radar performance parameters can be adjusted
 - Adaptable to different application requirements

New application or simple PIR replacement? Radar has it covered.

Radar, used in motion detection applications, increases accuracy when compared to passive infrared (PIR) technology, allowing more precise measurement of object detection, and providing new capabilities such as the detection of speed and the direction of moving objects. Radar is also superior to camera-based systems by allowing detection of the objects while keeping identities anonymous.

Applications

Example applications that can benefit from radar technology

Direction of travel to remove false opening

Privacy protection, and increased accuracy

Indoor and outdoor Resistant to harsh weather

Small, hidden, sensitive

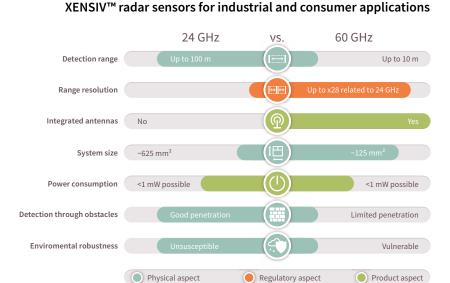
Activate displays based on presence around

Track people to move the airflow away from them

Eliminate keyword based activation

Safe energy & OLED lifetime by turning off

Enhance gaming experience



Digital isolators

When to use 24 GHz or 60 GHz radar technology

In the 24 GHz range, the bandwidth for FMCW radar operations covers 250 MHz within the regulated ISM band. In the 60 GHz regime, an unlicensed ultrawideband of up to 7 GHz can be used for short-range applications. Consequently, 60 GHz FMCW radar systems can offer a better resolution and therefore allow additional use cases such as human tracking and segmentation. Even gesture control, material classification, or the monitoring of various vital functions (respiration, heartbeat, or even blood pressure) is possible with radar technology due to micromotion detection.

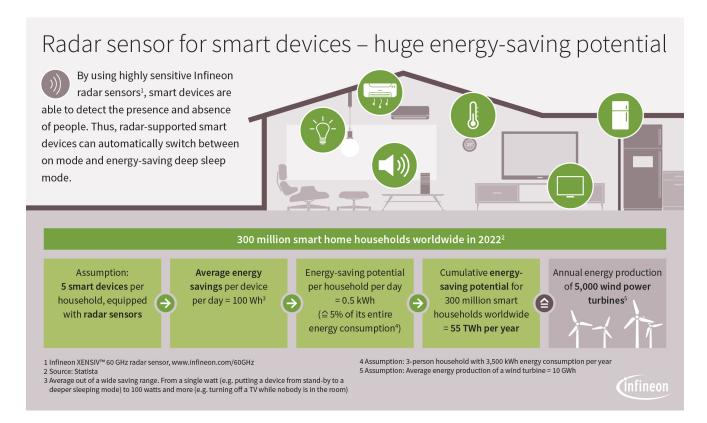
Partners

Click this link to view our network of partners who provide modules and design support for all 24 GHz industrial applications:

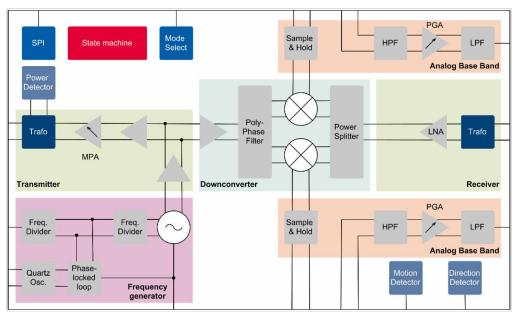
Have questions?

Visit our Community to inquire, share, and connect:

XENSIV™ 60 GHz radar sensor ICs


Infineon's innovative XENSIV™ 60 GHz radar chip enables things to see and revolutionizes the human-machine interface.

BGT60LTR11AIP for consumer and IoT applications


The BGT60LTR11AIP is a fully integrated microwave motion sensor including Antennas in Package (AIP) as well as builtin detectors for motion and direction of motion. A state machine enables operation of the device without any external microcontroller. In this autonomous mode, it detects a human target up to 7 m with a low power consumption of less than 2 mW. The BGT60LTR11AIP enables radar technology for everyone, since it does not require know-how in RF, antenna design, or radar signal processing. These features make the small-sized radar solution a compelling smart and cost-effective replacement for conventional PIR sensors in low power or battery-powered applications. Also, with its small form factor, Infineon's highly integrated radar sensor solutions bring innovative, intuitive sensing capabilities to many applications.

Radar has been demonstrated to be a powerful sensor for short-range motion detection. Through reliable presence and absence detection, smart devices equipped with radar sensors become more energy efficient and therefore smart and more sustainable. Users can also benefit from vacancy detection in applications such as televisions. For example BGT60LTR11AIP has been implemented in Samsung's Frame TV 2021, which puts the TV from art mode into sleep mode when there is no person nearby for a user-specified time. This function not only saves energy, but also displays lifetime. BGT60LTR11AIP has a high sensitivity and can detect if a person is present and if the device needs to be ready – similar to a screensaver that deactivates the PC monitor after a certain time without mouse or keyboard input and reactivates it as soon as new input is noticed.

Through this reliable presence and absence detection, Infineon's 60 GHz radar powers the design of truly smart, energysaving devices. Find out more at: www.infineon.com/green-energy

Block diagram of the BGT60LTR11AIP

Key features

- 3.3 x 6.7 x 0.56 mm³ package size
- 1Tx 1Rx Antennas in Package (AIP) with 80 ° field of view
- Built-in motion detector
- Built-in direction of motion detector
- Multiple modes of operation including. a completely autonomous mode
- Adjustable performance parameters: detection sensitivity, hold time and frequency of operation
- FR4 material for PCB design is sufficient

Target application

- Smart building and smart home
- Home appliances
- Smart home security
- Room air conditioners
- Automated door openers
- Smart entrance counter solutionDisplays such as TVs, monitors, laptops or tablets
- Lighting systems and lighting control

Key benefits

- Autonomous mode:
 - Up to 7 m detection range
 - Less than 2 mW power consumption
- Requires minimal external circuitry incl. crystal, LDO and some resistors capacitors

Adding a M0 MCU extends flexibility

- Up to 14 m detection range (SPI mode)
- Less than 2 mW power consumption possible

Product portfolio

Product	SP	OPN	Package	Description	Status
BGT60LTR11AIP	SP005537624	BGT60LTR11AIPE6327XUMA2	PG-UF2BGA-42-1	Chip samples	Available
DEMO BGT60LTR11AIP	SP005422969	DEMOBGT60LTR11AIPTOBO1		Demonstration Kit (Shield + 60 GHz baseboard)	Available
SHIELD_BGT60LTR11AIP	SP005422968	SHIELDBGT60LTR11AIPTOBO1		Shield fitting on 60 GHz baseboard	Available
SHIELD_AUTONOM_BGT60	SP005630363	SHIELDAUTONOMBGT60TOBO1		Shield for autonomous operation of BGT60LTR11AIP; directly fits on Arduino MKR board	Available
REF_60LTR11_AUTO	SP005636053	REFBGT60LTR11AIPTOBO1		Reference design (autonomous mode)	Upcoming
S2GO RADAR BGT60LTR11	SP005594890	S2GORADARBGT60LTR11TOBO1		Shield2Go version	Upcoming
REF_BGT60LTR11AIP_M0	SP005894766	REFBGT60LTR11AIPM0TOBO1		Reference design (with M0 MCU)	Upcoming

DEMO BGT60LTR11AIP

For evaluation of the completely autonomous 60 GHz radar sensor MMIC for motion sensing

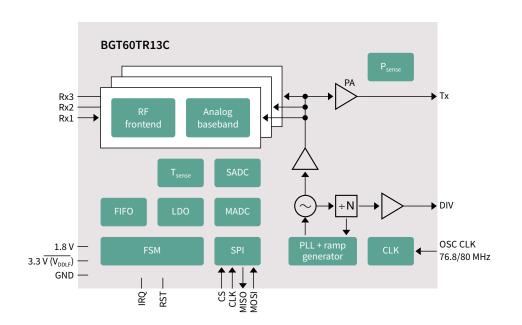
This demo features Infineon's first completely autonomous radar sensor – the BGT60LTR11AIP. The 60 GHz radar MMIC is a fully integrated microwave motion sensor including Antennas in Package (AIP) as well as integrated detectors for motion and direction of motion. A state machine enables operation of the device without any external microcontroller. In this autonomous mode, it detects a human target up to 7 m with a low-power consumption of less than 2 mW. These features make the small-sized radar solution a compelling, smart and cost-effective replacement for conventional PIR sensors in low-power or battery-powered applications.

For evaluation of the BGT60LTR11AIP MMIC, this demo includes the BGT60LTR11AIP shield as well as the Infineon Radar Baseboard MCU7.

The BGT60LTR11AIP shield can be attached to an Arduino MKR board or the included Infineon Radar Baseboard MCU7. Infineon's Toolbox supports this platform with a demonstration software and a Radar GUI to display and analyze acquired data in time and frequency domain. It further enables to change various performance parameters of the BGT60LTR11AIP in order to evaluate this radar sensor.

BGT60TR13C - XENSIV™ 60 GHz radar sensor for advance sensing

Enablement of horizontal and vertical angular measurement


The BGT60TR13C MMIC is a 60 GHz radar sensor with integrated antennas and comes with one transmitting and three receiving antennas. Thanks to the Antennas in Package (AIP) concept, the antenna design complexity at the user end can be eliminated and the PCB designed with standard FR4 materials.

BGT60TR13C offers innovative and intuitive sensing capabilities

With its small form factor and low power consumption, BGT60TR13C MMIC brings innovative, intuitive sensing capabilities to many applications. Based on the developed algorithm the MMIC can serve established as well as new applications and use cases without intruding on privacy. Thanks to its feature-set, the MMIC can measure velocity, angle, horizontal as well as vertical.

BGT60TR13C has been demonstrated to be a powerful sensor for:

- Presence detection/segmentation/tracking: BGT60TR13C enables human presence detection, tracking, and segmentation while providing extremely high accuracy in detecting micro and macro motions
- Gesture Sensing: BGT60TR13C ensures detection of submillimeter motions
- Vital sensing: BGT60TR13C is able to track vital signs in consumer electronics, healthcare as well as industrial applications

Target applications

Digital isolators

Features and benefits

Key features	
 Integrated Finite-State-Machine (FSM) 	
– Ramp up speed of 400 MHz/μs	_
– High Signal-To-Noise Ratio (SNR)	_
- High bandwith >5 GHz	
- High sensitivity	
– Package: 6.5 x 5.0 x 0.9 mm ³	
- <5 mW (duty cycling according to released FCC waiver)	_

Key benefits
 FSM for flexible configuration of the radar sensor to manage modulation and power modes
- Achievement of higher doppler velocity
– Detection of people up to 15 m (front facing)
– Very good range resolution of down to ∼3 cm

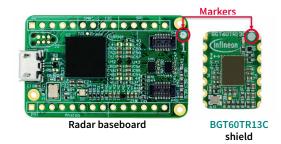
- Detection of sub-milimeter movements
- Thanks tot the small package size, PCB area can be saved and the design-in process simplified
- Lowest power consumption, thanks to optimized power modes during sensor operation. Further reduction of average power consumption ensured via DC duty cycling

Product portfolio

Product	SP No.	OPN No.	
DEMO BGT60TR13C	SP005728718	DEMOBGT60TR13CTOBO1	
BGT60TR13C	SP002262606 BGT60TR13CE6327XUMA1		

DEMO BGT60TR13C Getting started with the XENSIV™ 60G Hz demo board for advanced sensing

BGT60TR13C offers innovative and intuitive sensing capabilities


This demo board features Infineon's XENSIV™ 60 GHz radar sensor BGT60TR13C and consists of a radar baseboard as well as a BGT60TR13C shield.

The radar baseboard is a 40.64 x 25.4 mm² printed circuit board (PCB). Its main purpose is to provide a generic sensor interface for BGT60TR13C MMIC. The central microcontroller unit (MCU) can perform radar data processing or forward the sensor data to a USB interface or an Arduino MKR interface.

The BGT60TR13C shield presents a minimized form factor of 17 x 12.7 mm² and comes with an integrated BGT60TR13C Antenna-in-Package (AIP) radar chip of 6.5 x 5.0 x 0.85 mm³. Moreover, the shield contains a digital interface for configuration and transfer of the acquired radar data to a microcontroller board. The shield is optimized for fast prototyping designs and system integrations as well as initial product feature evaluations. In addition, it offers developers the flexibility to choose their own platform depending on their preferred use cases.

Several benefits come along with the BGT60TR13C demoboard:

- Flexible platform selection
- Variable connector options, and option to solder onto other PCBs
- Highly flexible configuration on FMCW modulation
- Power consumption can be optimized according to use case

Automotive radar 60 GHz

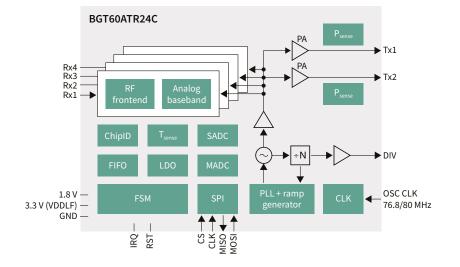
XENSIV™ 60 GHz radar sensor for automotive enables highly reliable in-cabin monitoring systems

XENSIV™ BGT60ATR24C, an automotive 60 GHz radar sensor, enables ultra-wide bandwidth FMCW operation in a small package. Sensor configuration and data acquisition are enabled with a digital interface and the integrated state machine enables independent data acquisition with power mode optimization for lowest power consumption.

Summary of features

- 60 GHz radar sensor for FMCW operation
- 4 GHz bandwidth
- 2Tx/4Rx channels
- Digital interface for chip configuration and radar data acquisition
- Optimized power modes for low-power operation
- Integrated state machine for independent operation
- AEC-Q100/101 qualified

Benefits


- Low power consumption
- Accurate and robust performance
- Excellent thermal management
- Size and space optimized solution

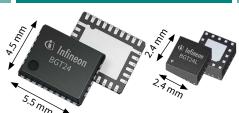
Potential applications

- Radar frontend for gesture sensing
- High resolution FMCW radars
- Short range sensing operations
- Hidden sensing applications behind radome

60 GHz – Product overview

Product	Frequency [GHz]	SP number	Packages
BGT60ATR24C	58 - 62	SP005350514	VFWLB-76-1
SHIELD_60ATR24ES_01	58 – 62	SP005448216	VFWLB-76-1

Digital isolators

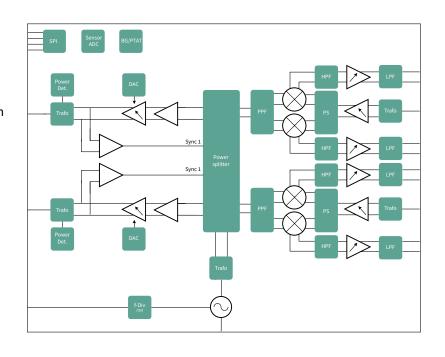

XENSIV™ 24 GHz radar sensor ICs

Infineon BGT24M/L family of MMIC chips

Infineon's range of 24 GHz industrial radar chips provides five configurations of transmit and receiver channels, ensuring that there is a chip to support your specific application. From basic applications such as motion detection in security systems, which only requires one transmit and one receive channel, to more complex applications like 3D positioning, which requires two or more receive channels, our range of radar chips supports all of your requirements.

Features Infineon MMIC Benefits

- 24 GHz ISM band operation for motion, speed, direction movement and distance measurements
- Five 24 GHz chips available
- Highly integrated MMICs



- Long-range distance detection of moving objects up to 50 m
- Wide range speed detection up to ±100 km/h
- Low BOM costs

Product	Configuration	Features
BGT24MTR11	1Tx + 1Rx	
BGT24MR2	2Rx	 Measures, not just motion, but also speed, direction, and distance Small form factor Resistance to moisture, dirt, and temperature
BGT24MTR12	1Tx + 2Rx	 Increased area coverage Discrete design Low power MMICs for energy saving
BGT24LTR11N16	1Tx + 1Rx	Privacy protection Adaptable to different application requirements Highly integrated chips eliminating costly external components
BGT24LTR22	2Tx + 2Rx	riighty integrated chips eliminating costly external components

The BGT24LTR22 key features

- 24 GHz transceiver MMIC
- Fully integrated low phase noise VCO
- Integrated analog base band stage with programmable gain and filter settings
- Bi-directional pin for synchronization
- Built in temperature compensation circuit for VCO stabilization, no PLL needed
- Low power consumption
- Fully ESD protected device
- Single ended RF and IF terminals
- Single supply voltage 1.5 V

24 GHz evaluation and demonstration boards

In addition to the BGT24M/L family of MMIC chips, Infineon provides a continuously expanding range of evaluation and demonstration boards to support the testing and development of radar in multiple applications of our customers. All boards are provided with base-level software to support the ease of use and faster time-to-market integration.

Features

Infineon development kit

Benefit

- Four system boards available
- All include 24 GHz radar chip and XMC™ microcontroller
- Kit contains user manual, GUI,
 MATLAB compiler and Gerber files
- Software available via Infineon Toolbox

Demonstrator with SW support

- Capability to detect motion, speed and direction of movement (approaching or retreating) distance and angle of arrival based on hardware
- Fast prototyping with available software

Sense2GoL Pulse (BGT24LTR11 +)	Distance2GoL (BGT24LTR11 +)
 Capability to detect motion, speed, and direction of movement (approaching or retreating) Detection range of 18 m for a human target at a power consumption < 5 mW High sensitivity of detection in comparison to PIR Arduino compatible microcontroller board (Arduino standard connectors) Modulation parameters can be changed to suit the application requirements Multiple current sensors for current consumption monitoring and optimization Integrated multiple-element patch antennas 	- Capability to detect the distance of the closest human target - Capability to detect motion, speed, and direction of movement (approaching or retreating) - Very low power consumption due to duty cycling options - Operates in harsh environments and detects through non-metallic materials - BGT24LTR11 - 24 GHz highly integrated RF MMIC - XMC4700 Arm® Cortex®-M4 -32-bit industrial microcontroller - Debug over Cortex 10 pin debug connector - Microstrip patch antennas with - 10 dBi gain and 29°/80° field of view
 Main applications Security Indoor and outdoor lighting Smart home Automatic door opener Intelligent switches Speed measurement 	Main applications Smart Home devices Indoor and outdoor lighting systems Unmanned aerial vehicles (UAV) Security systems from commercial surveillance to low-power IP cameras HVAC products like smart air conditioners Smart sanitary facilities (eg Smart Toilets)
 Board dimensions Board 55 mm x 85 mm Shield: 55 mm x 66 mm 	- Board dimensions - Board 55 mm x 85 mm - Shield: 55 mm x 66 mm
- Kit contents - RF radar shield: SHIELD_BGT24LTR11 - Programmed controller board: RADAR BB XMC4700 - Micro USB cable - SW GUI to operate kit - Doppler FW and SW 1) - Schematic and bill-of-materials of module	- Kit contents - RF radar shield: SHIELD_BGT24LTR11 - Programmed controller board: RADAR BB XMC4700 - Micro USB cable - SW GUI to operate kit - Doppler FW and SW 1)

www.infineon.com/24GHz

Digital isolators

24 GHz modules

Partnering with the leading radar solution providers enables Infineon to connect our customers looking for turnkey solutions and design support for a complete range of applications. Utilizing our strong network of partners, the radar portfolio is extended to include a range of easy-to-integrate modules. Each of them contains Infineon's 24 GHz MMIC.

Features

 Complete module, including radar MMIC, antenna options, MCU signal processing options, and SW options (Doppler, FSK and FMCW versions available)

Partner modules using Infineon chips

Module (RF module; RF module + MCU including SW)

Benefits

- Ease of design
- Turnkey solution, no need for test and certification

By integrating Infineon's 24GHz MMIC chip into the partners easy-to-use and simple-to-integrate modules the complexity and time to market for a range of applications such as smart home automation, camera & security systems, air conditioners, UAVs, robotics, and smart lighting, are reduced.

Smallest, fully featured, budget-priced evaluation boards

Shield2Go

Security

Product name: OPTIGA™ Trust E Security Shield2Go

Sales name: S2GO_Security_OPTIGA_E

Ordering code: SP001820138

Product name: OPTIGA™ Trust X Security Shield2Go

Sales name: S2GO SECURITY OPTIGA X

Ordering code: SP002349576

Product information

Product information

Sensors

Product name: IM69D130 Microphone Shield2Go

Sales name: S2GO MEMSMIC IM69D

Ordering code: SP002851544

Product name: PASCO2V01 Shield2Go Sales name: SHIELD PASCO2 SENSOR

Ordering code: SP002851544

Product information

Product information

Product name: S2GO Pressure Sensor DPS310
Sales name: S2GO_PRESSURE_DPS310

Ordering code: SP001777630

Product name: S2GO Pressure Sensor DPS368
Sales name: S2GO PRESSURE DPS368

Ordering code: SP005338022

Product information

Product name: TLE493DW2B6 3DSense Shield2Go

Sales name: S2GO_3D_TLE493DW2B6-A0

Ordering code: SP004308594

Product information

Product name: TLE4964-3M Hall Sense Shield2Go

Sales name: S2GO_HALL_TLE4964-3M

Ordering code: SP004308590

Product information

Product information

www.infineon.com/sensors2go www.infineon.com/makers

Digital isolators

Shield2Go

Sensors

Product name: TLE4966K Double Hall Shield2Go

S2GO_2_HALL_TLE4966K Sales name:

SP004308598 Ordering code:

Product name: TLI493D-W2BW 3D Sense Shield2Go in

small WLB-5 package

(1.13 mm x 0.93 mm x 0.59 mm) S2GO_3D_TLI493DW2BW-A0

Ordering code: SP005410385

Product information

Product information

Sales name:

TLI4971 Current Sense Shield2Go Product name: Sales name: S2GO_CUR-SENSE_TLI4971

SP005345472 Ordering code:

Product name: TLV493D 3D Sense Shield2Go Sales name: S2GO_3D-SENSE_TLV493D

MyIoT Adapter

SP002434972

MYIOTADAPTERTOBO1

SP001823678 Ordering code:

Product information

Product information

MyIoT - Adapter

Microcontroller

Product name: XMC 2Go Kit

Sales name: KIT_XMC_2GO_XMC1100_V1

Ordering code: SP001199544

Product name:

Sales name: Ordering code:

Product information

Product information

Sensor 2GO kits

Automotive pressure sensor 2GO kit

Product name: KP215F1701-PS2GO-KIT/

KP229E3518-PS2GO-KIT/

KP236-PS2GO-KIT/KP254-PS2GO-KIT/

KP275-PS2GO-KIT

Ordering code: SP002676652/SP002676656/

SP002676664/SP002676664/

SP002676648

3D magnetic sensor 2GO kit Product name:

TLE493D-A2B6 MS2GO/

TLE493D-W2B6 MS2GO/ TLV493D-A1B6 MS2GO

Ordering code: SP001707582/SP001707578/

SP001707574

Product information

TLI4971 current sensor 2GO kit TLI4971_MS2GO Product name: Ordering code: SP005345474

Product information

Speed sensor 2GO kit

Product name: TLE4922 MS2GO Ordering code: SP003029974

Product information

Angle sensor 2GO kit

Product name: TLE5012B_E1000_MS2GO/

> TLI5012B_E1000_MS2GO/ TLE5012B_E5000_MS2GO/ TLE5012B_E9000_MS2GO

Ordering code: SP002133956/

> SP002133960/ SP002133964/ SP002133968

Product information

Microphone flex evaluation kits

Product name: EVAL_IM69D130_FLEXKIT/

> EVAL_IM69D120_FLEXKIT/ EVAL_IM69D127_FLEXKIT/ EVAL_IM73D135_FLEXKIT/ EVAL_IM72D128_FLEXKIT/ EVAL_IM70A135_FLEXKIT/ EVAL_IM67D120_FLEXKIT/ EVAL_IM67D130_FLEXKIT

Ordering code: SP002153022/SP002153026/SP005403891/

SP005415695/SP005429924/SP005728204/

SP005560671/SP005537489

Product information

XENSIV™ - TLE4966 Hall switches 2GO kit Product name: **TLE4966 MS2GO** Ordering code: SP005406992

Product information

Product information

Add ons for Sensor 2GO kits and Shield2Go

Joystick for all 3D Magnetic Sensor 2GO kits and Shield2Go

Product name: JOYSTICK FOR 3D 2 GO KIT

SP001491834 Ordering code:

Rotate knob for all 3D Magnetic Sensor 2GO kits, Angle Sensor 2GO kits and 3D Magnetic Sensor Shield2Go

Product name: ROTATE KNOB 3D 2 GO KIT

Ordering code: SP001504602

Product information

Product information

Linear slider for

all 3D Magnetic Sensor 2GO kits and Shield2Go

Product name: LINEAR-SLIDER 2GO Ordering code: SP002043034

Out of shaft adapter for all

3D magnetic sensor 2GO kits and Shield2Go Product name: OUT OF SHAFT FOR 3D 2 GO

Ordering code: SP003475178

Product information

Product information

Linear control trigger for all

3D magnetic Sensor 2GO Kits and Shield2Go

Product name: POWER_DRILL2GO SP005350194

Ordering code:

Human Machine Interface (HMI) direction indicator for all 3D magnetic sensor 2GO Kits and Shield2Go

Product name: DIR_INDICATOR2GO Ordering code: SP005350196

Product information

Product information

HMI mini control with 4 directions and 360° rotation for all 3D magnetic sensor 2GO Kits and Shield2Go

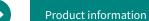
Product name: MINI_CONTROL2GO SP005350192 Ordering code:

OpenClose Adapter for Hall switch Shield2Go Product name: OPENCLOSE2GOHSTOBO1

Product information

Product information

Product information


and Shield2Go

Play2Go for 3D magnetic sensor Product name: PLAY2GO Ordering code:

SP005731811

Contactless switch array for all 3D magnetic sensor 2GO kits

www.infineon.com/sensors2go www.infineon.com/makers

Infineon support for sensors

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/sensors www.infineon.com/microphones www.infineon.com/magnetic-sensors www.infineon.com/current-sensor www.infineon.com/hall-switches www.infineon.com/angle-sensors www.infineon.com/3dmagnetic www.infineon.com/pressuresensor www.infineon.com/24GHz www.infineon.com/60GHz www.infineon.com/pressure www.infineon.com/CO2

2GO evaluation kits

www.infineon.com/sensors2go

Online simulation tools

www.infineon.com/cms/en/product/sensor/#!simulation

lav

Packages

- Surface mount device (SMD) technology
- Through-hole device (THD) technology

Packages

Surface mount device (SMD) technology

DDAK (TO SES S)	DDAK (TO 252)	DDAK E =:= (TO 252)	DDDAK (TO 252)	ODDAY TCC	ODDAY DCC
DPAK (TO-252-2) 2 9.9 x 6.5 x 2.3	DPAK (TO-252) 3 9.9 x 6.5 x 2.3	DPAK 5-pin (TO-252) 5 9.9 x 6.5 x 2.3	DDPAK (TO-252) 10 20.96 x 6.5 x 2.3	QDPAK TSC 22 20.96 x 15.0 x 2.3	QDPAK BSC 22 0.96 x 15.0 x 2.3
2 3.3 x 0.3 x 2.3	3.3 A 0.3 A 2.3	3.3 A 0.3 A 2.3	20.55 x 0.5 x 2.5	20.50 A 15.0 A 2.5	22 0.50 X 15.0 X 2.5
CO.	Co	Co.			G he
# F		24 AL			Salar Control of the
D2PAK (TO-263)	D2PAK (TO-263-2)	T0263-7-11	T0263-7-12	T0263-7-13	D2PAK 7-pin (TO-263)
3 15.0 x 10.0 x 4.4	2 15.0 x 10.0 x 4.4	7 15.0 x 10.0 x 4.4	7 15.0 x 10.0 x 4.4	7 15.0 x 10.0 x 4.4	7 15.0 x 10.0 x 4.4
G	Gi	Station 1	O Internet 1	G Interest	G
		Million Park	William Property	William Property	Mo
7 7	7 /~	Allin Allin	4/1/11/2011	Allen Miller	101 157
TO-Leadless (TOLL)	TOLT (top-side cooling)	TOLG (Gullwing leads)	sTOLL	SC59	SOT-23
8 11.7 x 9.9 x 2.3	16 15.0 x 9.9 x 2.3	8 11.7 x 9.9 x 2.3	5 8.0 x 7.0 x 2.3	3 3.0 x 2.8 x 1.1	3 2.9 x 2.4 x 1.0
	Mar. Herr.		A .		
(i)	The same of the sa	C Influence /	0 100	(i)	Ġ,
RORDI	William Citizen	William Billion			" 7
4 44	4000	-448 -44	- W		
SOT-23-5	SOT-23-6	SOT-89	SOT-223	SOT223-3-1	SOT-323
5 2.9 x 1.6 x 1.3	6 2.9 x 1.6 x 1.3	3 4.5 x 4.0 x 1.5	4 6.5 x 7.0 x 1.6	3 7.0 x 6.5 x 1.6	3 2.0 x 2.1 x 0.9
-	A				
(i)					(i)
17	1 1 m				5 3
			₹	4	
SOT-363	TSOP6	PQFN 2x2	PQFN 2x2 dual	PQFN 3.3x3.3	SuperSO8
6 2.0 x 2.1 x 0.9	6 2.9 x 2.5 x 1.1	6 2.0 x 2.0 x 0.9	6 2.0 x 2.0 x 0.9	8 3.3 x 3.3 x 1.0	8 5.15 x 6.15 x 1.0
					- Pro-
(i)	(1)	GIAT	G AY	GIL'I	0/27
" 8" g"	" F F				
SuperSO8 dual	SuperSO8 fused leads	SuperSO8 DSC (dual-side cooling)	LSON-8-1	TDSON-8-47	TDSON-10-2
	0	0 000500075	0 0000135/	0	10 202000
8 5.15x6.15 x 1.0	8 5.15 x 6.15 x 1.0	8 6.0 x 5.0 x 0.75	8 8.0 x 8.0 x 1.35 (max.)	8 5.15 x 6.15 x 1.0	10 3.0 x 3.0 x 0.9
8 5.15x6.15 x 1.0	8 5.15 x 6.15 x 1.0	8 6.0 x 5.0 x 0.75	8 8.0 x 8.0 x 1.35 (max.)	8 5.15 x 6.15 x 1.0	10 3.0 x 3.0 x 0.9
8 5.15x6.15 x 1.0	8 5.15 x 6.15 x 1.0	8 6.0 x 5.0 x 0.75	8 8.0 x 8.0 x 1.35 (max.)	8 5.15 x 6.15 x 1.0	3.0 x 3.0 x 0.9
8 5.15x6.15 x 1.0	8 5.15×6.15×1.0	8 6.0 x 5.0 x 0.75	8 8.0 x 8.0 x 1.35 (max.)	8 5.15 x 6.15 x 1.0	10 3.0 x 3.0 x 0.9
			••		
TDSON-10-7	TSDSON-8-25 fused leads	TISON-8	TISON-8-5/TISON-8-6	TISON-8 (power stage 5x6)	TISON-8-4 (Power Block)
			••		
TDSON-10-7	TSDSON-8-25 fused leads	TISON-8	TISON-8-5/TISON-8-6	TISON-8 (power stage 5x6)	TISON-8-4 (Power Block)
TDSON-10-7	TSDSON-8-25 fused leads	TISON-8	TISON-8-5/TISON-8-6	TISON-8 (power stage 5x6)	TISON-8-4 (Power Block)
TDSON-10-7	TSDSON-8-25 fused leads	TISON-8	TISON-8-5/TISON-8-6	TISON-8 (power stage 5x6)	TISON-8-4 (Power Block)
TDSON-10-7	TSDSON-8-25 fused leads	TISON-8	TISON-8-5/TISON-8-6	TISON-8 (power stage 5x6)	TISON-8-4 (Power Block)
TDSON-10-7 10 3.0 x 3.0 x 0.9	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0	TISON-8 8 7.0×7.0×1.0	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0	TISON-8 (power stage 5x6) 8 5.0 x 6.0 x 1.0	TISON-8-4 (Power Block) 8 5.0 × 6.0 × 1.0
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8)	TISON-8-5/TISON-8-6 8 8.0 × 8.0 × 1.0	TISON-8 (power stage 5x6) 8 5.0 x 6.0 x 1.0 TSON-10	TISON-8-4 (Power Block) 8 5.0 x 6.0 x 1.0 TDSO-16-30
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8)	TISON-8-5/TISON-8-6 8 8.0 × 8.0 × 1.0	TISON-8 (power stage 5x6) 8 5.0 x 6.0 x 1.0 TSON-10	TISON-8-4 (Power Block) 8 5.0 x 6.0 x 1.0 TDSO-16-30
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8)	TISON-8-5/TISON-8-6 8 8.0 × 8.0 × 1.0	TISON-8 (power stage 5x6) 8 5.0 x 6.0 x 1.0 TSON-10	TISON-8-4 (Power Block) 8 5.0 x 6.0 x 1.0 TDSO-16-30
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8)	TISON-8-5/TISON-8-6 8 8.0 × 8.0 × 1.0	TISON-8 (power stage 5x6) 8 5.0 x 6.0 x 1.0 TSON-10	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8)	TISON-8-5/TISON-8-6 8 8.0 × 8.0 × 1.0	TISON-8 (power stage 5x6) 8 5.0 x 6.0 x 1.0 TSON-10	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0	Tison-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13	Tison-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4)	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13	Tison-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4)	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13	Tison-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4)	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13	Tison-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4)	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13	Tison-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4)	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31 8 4.9 x 1.15 x 3.9	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13 6 1.5 x 1 x 0.375	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4) 4 8.0 x 8.0 x 1.0	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8 8 4.0 x 4.0 x 0.9	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31 8 4.9 x 1.15 x 3.9 DFN-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13 6 1.5 x 1 x 0.375 DSOSP-14-82	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4) 4 8.0 x 8.0 x 1.0 WSON-6-1	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8 8 4.0 x 4.0 x 0.9 WSON-8-3	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31 8 4.9 x 1.15 x 3.9 DFN-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13 6 1.5 x 1 x 0.375 DSOSP-14-82	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4) 4 8.0 x 8.0 x 1.0 WSON-6-1	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8 8 4.0 x 4.0 x 0.9 WSON-8-3	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31 8 4.9 x 1.15 x 3.9 DFN-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13 6 1.5 x 1 x 0.375 DSOSP-14-82	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4) 4 8.0 x 8.0 x 1.0 WSON-6-1	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8 8 4.0 x 4.0 x 0.9 WSON-8-3	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8
TDSON-10-7 10 3.0 x 3.0 x 0.9 TSON-8-1 8 3.0 x 3.0 x 1.0 PG-TDSO-08-31 8 4.9 x 1.15 x 3.9 DFN-8-1	TSDSON-8-25 fused leads 8 3.3 x 3.3 x 1.0 TSON-8-3 8 5.0 x 6.0 x 1.0 TSNP-6-13 6 1.5 x 1 x 0.375 DSOSP-14-82	TISON-8 8 7.0 x 7.0 x 1.0 ThinPAK 5x6 (TSON-8) 8 6.15 x 5.33 x 1.0 ThinPAK 8x8 (VSON-4) 4 8.0 x 8.0 x 1.0 WSON-6-1	TISON-8-5/TISON-8-6 8 8.0 x 8.0 x 1.0 LLGA-5-4 5 4.0 x 3.0 x 1.2 VDSON-8 8 4.0 x 4.0 x 0.9 WSON-8-3	TISON-8 (power stage 5x6) 8	TISON-8-4 (Power Block) 8

Solutions

Packages

HSOF-8-1 (TOLL)	IQFN-27-2	IQFN-30 (DrMOS 4x4)	IQFN-31 (DrMOS 5x5)	IQFN-36	IQFN-39
8 10.375 x 9.9 x 2.3	27 3.3 x 6.0 x 0.9	30 4.0 x 4.0 x 1.0	31 5.0 x 5.0 x 0.8	36 7.5 x 6.0 x 0.9	39 5.0 x 6.0 x 0.9
				(i)	0
IQFN-40	TIQFN-21-1	TIQFN-28-1	SO8/SO8 dual	SO-16/12	SO-14
40 6.0 x 6.0 x 0.8	21 8.0 x 8.0 x 1.15	28 8.0 x 8.0 x 1.15	8 5.0 x 6.0 x 1.75	12 10.0 x 6.0 x 1.75	14 8.75 x 6.0 x 1.75
			(1)		(I)
SO-16	SO-18	DSO-12	DSO-14 150 mil	DSO-14 300 mil	DSO-16-30 (300 mil)
16 10.0 x 6.0 x 1.75	18 12.8 x 10.3 x 2.65	12 10.3 x 7.8 x 2.6 (max)	14 9.9 x 3.9 x 1.75	14 10.3 x 7.5 x 2.65	16 10.3 x 7.5 x 2.35
			(i) Inlineon		
DSO-20-85	DSO-20-87	DSO-24	SSOP-24	TDSO-16	SO-19
20 15.9 x 11.0 x 3.25	20 15.9 x 11.0 x 3.25	24 10.5 x 15.6 x 2.65 (max)	24 6 x 8.65 x 1.75 (max)	16 5.0 x 6.0 x 1.2	19 12.8 x 10.3 x 2.65
		THE STREET	G G	mmm mmm	THE PARTY OF THE P
SO-20	DSO-28	SO-36	TSSOP-28	TSSOP-48	LFBGA-516-5
20 12.8 x 10.3 x 2.65	28 18.1 x 10.3 x 2.65	36 15.9 x 11.0 x 3.5	28 9.7 x 6.4 x 1.2	48 12.5x6.1 x 1.1	516 25.3 x 25.3 x 2.8
	The state of the s				
LFBGA-292-6	BGA-416-26	TFLGA-13-1	LQFP-176-22	LQFP-144-22	TQFP-144-27
292 17.3 x 17.3 x 2.35	416 27.3 x 27.3 x 3.2	13 5 x 5 x 0.96	176 26.7 x 26.7 x 2.1	144 22.4 x 22.4 x 2.2	144 18.7 x 18.7 x 1.6
		In in		(i) I	
TQFP-100-23	TQFP-80-7	VQFN-40-13	VQFN-48-60	VQFN-48-78 (LTI)	VQFN-56-5/-6
100 14.5 x 14.5 x 1.5	80 12.6 x 12.6 x 1.5	40 5 x 5 x 0.85	48 6 x 6 x 0.85	48 7 x 7 x 0.85	56 7 x 7 x 0.9
			& Influence of the Control of the Co	O Manager of the Control of the Cont	
VFWLB-76-1	Package (JEITA-code)				
4217x2315	X L x W x H pin-count V = Variable number of pins All dimensions in mm				

Through-hole device (THD) technology

IPAK (TO251)	IPAK SL (TO251 SL)	IPAK short lead with ISO standoff	12PAK (TO262)	TO-220 real 2-pin	TO-220 2-pin
3 16.5x6.5 x 2.3	3 10.5x6.5 x 2.3	3 9.5x6.6 x 2.3	3 23.3 x 10 x 4.4	2 29.15 x 10.0 x 4.4	2 29.1 x 9.9 x 4.4
(1)	(i)	(1)		0	
TO-220 3-pin	TO-220 FullPAK	TO-220 FullPAK Narrow Lead	TO-220 FullPAK Wide Creepage	TO-220-6-46	TO-220-6-47
3 28.8 x 10 x 4.4	3 29.2 x 10.3 x 4.7	3 29.6 x 10.5 x 4.7	3 28.85 x 11 x 4.7	6 21.7 x 9.9 x 4.4	6 26.1 x 9.9 x 4.4
(i)	G		(g)	(I)	0
TO-247	TO-247-3-AI	TO-247 4-pin	DIP-7	DIP-8	DIP-14
3 41 x 16 x 5	3 41.3 x 10.9 x 5.18	4 40.15 x 15.9 x 5.0	7 9.52 x 8.9 x 4.37	8 9.52 x 8.9 x 4.37	14 19.5 x 8.9 x 4.37
				(a)	MANA
DIP-20	Super220	Super247	SSO-3-9	SSO-3-9	SSO-3-10
20 24.6 x 9.9 x 4.2	3 28.25 x 10.5 x 4.5	3 34.6 x 15.6 x 5	3 A: 3.71 x 5.34 x 1 B: 2.68 x 5.34 x 1.2	3 5.34 x 1.0 x 3.71	3 4.06 x 1.5 x 4.05
MANA	G		A	7	
SSO-4-1	T092S-3-1	T092S-3-2	SSO-2-1	SSO-2-51	SSO-2-53
4 5.34 x 1.0 x 3.71	3 4.0 x 1.52 x 3.15	3 4.0 x 1.52 x 3.15	5.34 x 1.0 x 3.71	5.34 x 1.0 x 3.71	5.34 x 1.0 x 3.71
					7
SSO-2-4	SSOA22-2-51	SSOA32-2-51	SSO-3-41	Package (JEITA-code)	
5.34 x 1.0 x 3.71	6 x 4 x 7.85	7 x 5.4 x 4.4	6 x 1.2 x 7	X LxWxH	
7	F			 pin-count V = Variable number of pins All dimensions in mm	

Infineon support for packages

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/packages

Infineon powerful support

Useful links and helpful information

General support

www.infineon.com/support www.infineon.com/wheretobuy www.infineon.com/quality www.infineon.com/packages www.infineon.com/green www.infineon.com/opn

Request reliability (FIT) data http://infineon-community.com/FIT_1

Tools, desks and more

www.infineon.com/solutionfinder www.infineon.com/lightdesk www.infineon.com/evaluationboards www.infineon.com/webinars

Register for the Newsletter4Engineers

http://infineon-community.com/Newsletter4Engineers

Infineon Customized Solutions

Your specific needs, realized.

A customized solution (commonly known in the industry as an ASIC - Application Specific IC or CSP - Customer Specific Product) is one that is designed, planned, developed and used for a specific purpose with the mission of being optimized, efficient, and having all the required functionalities and features to be used in a specific application for a single customer.

Working with Infineon from design through to delivery

Infineon as a market leader in customized solutions believes innovation comes through collaboration and exploring new paths. Working closely with our customers, understanding their needs, and combining them with our cutting edge solutions we know there is always a benefit for every customer and application. Whether the challenge is related to IP, BOM constraints, or simply required higher integration – an ASIC can be the solution.

More than just a product

A customized solution enabled by Infineon's extensive knowledge, experience, and partner network provides several more advantages such as IP protection, trusted Infineon quality and supply guarantee.

A process streamlined through efficiency, expertise, and experience

The journey starts with you and a focus on feasibility - we match your needs early on with our 40 years expertise in building world-class industry leading semiconductors and ensure successful implementation of your requirements.

From technology advantage to supply stability

Whether it's digital, analog, mixed signal devices an embedded processor or integrated sensors. We have the experience and product know-how. Being one of the largest semiconductor companies, we also have a vast array of IPs. We can integrate almost anything into your chip from the vast variety of our sensors, discrete devices, drivers, and many more, including support for higher voltage levels. Our in-house fabrication facilities and design centers around the globe are known for highest quality standards. We also have well established partnerships with all major silicon foundries and assembly test fabs to complement our in-house technologies. At every step along the way we take pride in the highest quality Infineon is known for.

Interested to learn more?

Visit our web page: www.infineon.com/asic where you can find further information about our customized solutions, videos, and if intereste use the "contact us" feature to connect with us.

The Infineon Partner Program

Together we win

Find solutions from our partners to accelerate your business of tomorrow. Infineon's global network of partners are experts in designing products, solutions or services leveraging Infineon components in 5 key areas: software, hardware, services, tools & end-applications.

The Infineon partner program is a global ecosystem of qualified companies, offering knowledge and experience to enable and implement Infineon products. Partners from the Infineon partner ecosystem help design your device and application based on our components. They have been selected by us on the basis of their competence and ability to design and deliver strong and trustworthy solutions, especially for new technologies and use cases.

Hardware

Partners manufacturing electronic components, demo boards and turnkey modules

... jointly we create and commercialize value added solutions, while reaching new buyers

Software

Partners programming various types of software, algorithms and operating systems

... jointly we enhance our portfolio with complementary components and expand technology know-how

Tools

Partners designing computer programs for the development of embedded systems

... jointly we enable a complete and immersive development experience for customers

Services

Partners providing cloud and engineering services, application support or trainings

... jointly we build up engineering capabilities and offer it to a world class customer network

End application

Partners creating end products and related applications

... jointly we provide customers with state of the art solutions and innovative use cases

Find out more information about the partner program and the latest news around our partners at Infineon Partner Ecosystem Website.

Looking for a specific partner solution in your region? Our partner finder provides an overview of our partners and their offerings. Simply specify your search in the dropdown menu and browse through the texts, company logos, and partner signets to navigate directly to the respective website for further information.

Additionally, use the "partner tab" on our product and application pages to find out more about Infineon's partner solutions.

Where to buy

Infineon distribution partners and sales offices:

www.infineon.com/wheretobuy

Service hotline

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

- Germany 0800 951 951 951 (German/English)
- China, mainland 4001 200 951 (Mandarin/English)
- India 000 800 4402 951 (English)
- USA 1-866 951 9519 (English/German)
- Other countries 00* 800 951 951 951 (English/German)
- Direct access +49 89 234-0 (interconnection fee, German/English)
- * Please note: Some countries may require you to dial a code other than "00" to access this international number.

Please visit www.infineon.com/service for your country!

www.infineon.com

Published by Infineon Technologies Austria AG 9500 Villach, Austria

© 2023 Infineon Technologies AG. All Rights Reserved.

Please note!

This Document is for information purposes only and any information given herein shall in no event be regarded as a warranty, guarantee or description of any functionality, conditions and/or quality of our products or any suitability for a particular purpose. With regard to the technical specifications of our products, we kindly ask you to refer to the relevant product data sheets provided by us. Our customers and their technical departments are required to evaluate the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given herein at any time.

Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.