
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

PSoC® Creator™ to ModusToolbox®

Porting Guide

Document Number: 002-25408 Rev *B

Cypress Semiconductor

An Infineon Technologies Company

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

www.infineon.com

http://www.cypress.com/
http://www.infineon.com/

Copyrights

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 2

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and
its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced
in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated
in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the
Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress
governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without
the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify
and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to
distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and
distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use
with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is
prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without
further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, ModusToolbox, WICED, PSoC,
CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as
property of their respective owners.

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 3

Contents

1. Introduction .. 5
Overview .. 5
Before You Begin ... 5
Terminology .. 6
Expectations ... 6
Revision History ... 6

2. Getting Started ... 7
Create New ModusToolbox Application ... 7
Migrate Pin Layout ... 9

3. System Configuration ... 11
System Clocks / Other Settings .. 11
Analog Routing ... 11
Migrate Interrupts ... 12

4. Porting Components ... 14
Common Component Settings ... 15
Voltage DAC (12-bit) .. 16
Scanning SAR ADC ... 18
Low-Power Comparator.. 21
Analog Reference (AREF) .. 23
Programmable Analog .. 24
I2S 25
PDM-PCM .. 26
SCB 27
SMIF (QSPI) ... 31
TCPWM 32
MCWDT 33
RTC 34
BLE 34
Emulated EEPROM .. 35
DFU 36
USB 37
CapSense ... 38

5. Copying Code .. 39
Importing Your Code .. 39
Building project.h File ... 39

Contents

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 4

Rewriting main.c File .. 39
Rewriting Component-Specific APIs and Migrating ISRs ... 39

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 5

1. Introduction

Overview

Porting a project from PSoC Creator to ModusToolbox is a moderately tedious task and this guide aims to make the process a bit
easier. That being said the document does not cover all the corner cases. This document is a guide to the porting process and
points you towards the right documentation based on your project’s needs.

ModusToolbox provides a plethora of features that support our devices’ capabilities. Connectivity is one such example. It is also
highly customizable and configurable to suit your requirements. Your code can now be IDE independent and device agnostic!
Porting your PSoC Creator project to ModusToolbox might open up a whole new world of opportunities and possibilities.

If you have any application specific queries or you run into a problem porting your application, ask a question in the Cypress
Developer Community. We constantly strive to make ModusToolbox better to enhance the overall user experience. Your feedback
is both welcome and appreciated.

Before You Begin

This guide expects that you have read the Eclipse IDE for ModusToolbox Quick Start Guide. If not, please do that first.

ModusToolbox is a different product than PSoC Creator. Cypress has taken great care to ensure that it is ready to develop
production-quality products. However, ModusToolbox does not yet support all the Components and configuration options that are
available in PSoC Creator. As a result, there are PSoC Creator-based designs that cannot be migrated to ModusToolbox 2.1. If
you discover that your design cannot be reasonably ported to ModusToolbox, Cypress recommends that you continue to develop
with PSoC Creator, which remains a fully supported development tool.

This guide covers only those Components that can be reasonably ported to ModusToolbox. If a Component is not listed in this
guide, it likely means it is implemented differently in ModusToolbox. For example, ModusToolbox 2.1 either does not support the
following, or uses a very different approach:

◼ UDB-based content. Here are some examples of PSoC Creator Components that do not have an alternative
implementation in ModusToolbox:

□ Digital Logic Components

□ Digital Register Components

□ Digital Utility Components

◼ DSI routing. Digital signals cannot be routed through the DSI, which reduces the on-chip connectivity options available.
This is generally presented as using a non-preferred connection (yellow) in PSoC Creator.

◼ Analog multiplexing. There is no analog MUX implementation in ModusToolbox, and all connectivity choices are set up
in startup code but remain static thereafter. The only way to modify connectivity at run-time is through register writes to
control AMXUXBUS switches.

◼ CapSense. CapSense in ModusToolbox is a middleware library. It is enabled by default for build support packages
(BSPs) that support CapSense. This means that you cannot directly port a CapSense design from PSoC Creator. Instead,
you re-implement your CapSense solution using the CapSense middleware APIs. The CapSense configuration settings
however can be replicated. See CapSense.

https://community.cypress.com/welcome
https://community.cypress.com/welcome
http://www.cypress.com/ModusToolboxQSG

Introduction

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 6

◼ Component APIs. In PSoC Creator, you could either use Component APIs or the PDL (and in some cases mix the two).
ModusToolbox does not support any Component APIs, which means you must convert those calls to PDL APIs, or you
will need to copy the PSoC Creator generated code.

If your PSoC Creator design makes use of these features, and a firmware-based alternative implementation is not available, then
ModusToolbox may not be able to re-create the same functionality enabled by PSoC Creator. Please send your migration
questions to the Cypress Developer Community. Cypress wants to hear about your issues, advise where possible, and prioritize
features for future releases of ModusToolbox.

Terminology

PSoC Creator uses the term Components for the various peripherals in a design. ModusToolbox uses the terms peripherals and
resources.

In PSoC Creator, you create projects in a workspace; oftentimes referred to as a design. In ModusToolbox, you create applications
in a workspace. Applications consist of one of or more related projects.

The IDE that is bundled with the ModusToolbox installer is called the Eclipse IDE for ModusToolbox. ModusToolbox is an IDE-
independent set of tools that you can use with the IDE that you prefer. It does not require the Eclipse IDE for ModusToolbox.
However, this document assumes you are using the Eclipse IDE for ModusToolbox.

Expectations

It will likely take an advanced PSoC Creator user a day or two to port a moderately complex design that uses the PDL to the
ModusToolbox environment. Moderate in this case is defined as a design that uses several Components, with about 500 lines of
application code. This time requirement should include porting and debugging the application.

In general, PSoC Creator does many things automatically that you need to do manually in ModusToolbox. Some of these are
common items and they are addressed in the common porting section. Other items are Component-specific, and they are
addressed in the appropriate section for that Component.

Revision History

Document Title: PSoC® Creator™ to ModusToolbox® Porting Guide

Document Number: 002-25408

Revision Date Description of Change

** 1/30/19 New document.

*A 4/1/19 Updated for ModusToolbox 1.1

*B 6/10/20 Updated for ModusToolbox 2.1

https://community.cypress.com/welcome

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 7

2. Getting Started

Create New ModusToolbox Application

Open the Eclipse IDE for ModusToolbox, select your workspace, and create a new application using the Project Creator tool.
Refer to the Eclipse IDE for ModusToolbox Quick Start Guide for details about the IDE, and refer to the ModusToolbox Project
Creator Guide for details about the Project Creator tool.

When creating the new application:

◼ Select the BSP for your device. If you are using a custom board, select the BSP that is closest to your device. Refer to
the “Creating a BSP for Your Board” section in the ModusToolbox User Guide.

◼ Select the application that you want to start with. If you want an empty project, you can select the Empty PSoC6 App.
You can also rename your application. Once this is done, click Create.

A Quick Tour of a ModusToolbox Application

Once you create the application, it is imported into the IDE. Use the Project Explorer to view and open various application files
and directories. The following image highlights several important files and directories:

1. This is the application directory that contains all the source code and other files required to successfully build your application.
You can have more than one application in a workspace.

2. The build directory contains the build artifacts generated after the application is built. The build artifacts for each target are
put into separate subdirectories.

3. The deps directory contains the .lib files for your application. The build system will use these files to include and update BSPs
and libraries needed for your application.

4. The libs directory stores the imported BSPs and libraries. See BSP Directory later in this section.

http://www.cypress.com/ModusToolboxQSG
https://www.cypress.com/ModusToolboxProjectCreator
https://www.cypress.com/ModusToolboxProjectCreator
https://www.cypress.com/ModusToolboxUserGuide

Getting Started

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 8

5. Your main code is in the main.c file. This has some default calls already filled in, such as initializing the BSP which in turn
configures the pins and clocks based on the generated code.

6. The project makefile consists of all the build configuration settings for your project. For more details, refer to the
“ModusToolbox Build System” section in the ModusToolbox User Guide. You can also refer to the Managing the Makefile for
ModusToolbox v2.x Knowledge Based Article.

BSP Directory

Inside the libs directory, there is at least one BSP subdirectory that begins with “TARGET_”. This subdirectory contains all the
necessary files to support the kit and devices. It also contains the design.modus file and the Generated Source files in
COMPONENT_BSP_DESIGN_MODUS, as shown in the following image:

The design.modus file is where the Device Configurator stores all the device configuration information for the selected BSP.

https://www.cypress.com/ModusToolboxUserGuide
https://community.cypress.com/docs/DOC-18994
https://community.cypress.com/docs/DOC-18994

 Getting Started

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 9

Device Configurator

The following image shows the Device Configurator, where you enable and configure peripherals, pins, clocks, etc.

You can access the Device Configurator in the Tools section of Quick Panel in the Eclipse IDE for ModusToolbox. Refer to the
Device Configurator Guide for more details.

Migrate Pin Layout

Open the Design-Wide Resources (DWR) Pin Editor in PSoC Creator and click on the Port heading to sort your pins by port/pin.
Then, open the ModusToolbox Device Configurator and select the Pins tab. Organize your windows so you can see both at the
same time.

PSoC Creator Pin Editor ModusToolbox Device Configurator Pins Tab

http://www.cypress.com/ModusToolboxDeviceConfig

Getting Started

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 10

1. Use the PSoC Creator list as a guide for which pins to enable in the Device Configurator.

2. After enabling a pin, edit the alias to match the PSoC Creator name. The names are case sensitive. There are two translations
needed while aliasing a pin based on the PSoC Creator name.

□ If you see a ‘\’ in the PSoC Creator name, ignore the pin for the alias.

□ If you see a ‘:’ in the PSoC Creator name, replace it with an underscore (‘_’) in the alias.

3. Once you have all the pins enabled and aliased correctly, it is time to start configuring the pins.

Pins that start with a ‘\’ are embedded in a Component. This means you will not be able to find their settings in your schematic.
Ignore those for now, once they are connected to their Components, the design rule checks will help you set up those pins.

4. In PSoC Creator, double-click on the name of the first pin. It will take you to the Configure Pins dialog. In this case, the pin is
set to strong drive with an initial state of low and it is a digital out.

5. Change the settings in the Device Configurator as appropriate (in this case Strong Drive, input buffer off, with an initial drive
state of 0).

PSoC Creator Configure Pins Dialog Device Configurator Pins Parameters

6. Go back to the PSoC Creator DWR Pin Editor and repeat the process with every pin.

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 11

3. System Configuration

There are various system settings in PSoC Creator that do not apply in ModusToolbox. For example, there is no UDB support in
ModusToolbox. However, there are various ModusToolbox system settings available to configure your device.

System Clocks / Other Settings

Replicate your system clocks, debugging setup, and voltage from PSoC Creator in the Device Configurator System tab. This is
straightforward and easy to do. The following image shows the System tab:

Analog Routing

PSoC Creator automatically routes and configures analog switches for all analog connections based on the schematic view and
will auto assign resources like pins if not explicitly defined. ModusToolbox also automatically routes analog connections defined
for each analog resource. There are two key areas to address when transitioning analog routing from PSoC Creator to
ModusToolbox.

For static analog connections in ModusToolbox, choose the specific source or destination from each analog resource personality’s
Connection Parameters. When the design is built, the route will be configured all the way from the source to the destination. This
includes source and destination analog resource switches, AMUXBUS switches, and connection to pins if required. The specific

System Configuration

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 12

register settings required to implement the routing can be seen in the cycfg_connectivity.c/.h files. If there is a routing resource
conflict because two or more routes requires the same resource the user must deconflict the resource usage.

The analog routing can also be edited manually in ModusToolbox using the Analog Route Editor available in the Device
Configurator. It also enables you to lock-down all or some of the resource routing. If in case any change that you make should
encounter an error the routes are automatically rolled back to the previous state. You can refer to the Analog-Routing Tab section
in the Device Configurator Guide for more information.

Dynamically changing analog connections in PSoC Creator are supported with Analog Mux Components. Analog Mux
Components support multiple analog routes dynamically changeable at runtime with PSoC Creator generated function calls.
ModusToolbox does not currently support analog multiplexers but user firmware can dynamically change analog routing switches
to duplicate the functionality. Refer to the device TRM and analog driver documentation for detailed routing and switch control
information. Analog resource switches are supported in their respective PDL drivers. AMUXBUS and GPIO analog switches are
supported in the Cy_GPIO PDL driver.

Migrate Interrupts

There is no “interrupts” customizer available in ModusToolbox 2.1. All the interrupts used in your PSoC Creator application must
be configured through code in ModusToolbox. Please follow these guidelines for porting interrupts.

Interrupts Internal to Component Code (BLE, CapSense, SCB, etc.)

Refer to the respective Component-specific migration section. Porting involves creating the interrupt structures, proxy interrupt
handler, and initializing the interrupt as part of main code. The proxy interrupt handler should call the peripheral driver’s interrupt
handler as per the guidelines recommended in the Component specific migration section.

For example, an interrupt handler for I2C SCB calls the SCB driver’s interrupt handler:

void I2C_Interrupt(void)

{

 Cy_SCB_I2C_Interrupt(I2C_HW, &I2C_context);

}

Interrupts External to Component Code (GPIO, MCWDT, etc.)

1. Create the interrupt structure in the source files where you initialize the interrupt.

Note The interrupt structure generated by the PSoC Creator code can be copied from the Generated_Source/PSoC6/Pins
and Interrupts/cyfitter_sysint_cfg.c file as well.

2. Use this structure to initialize the interrupt along with the interrupt handler. See the following table for an example
(MCWDT_STRUCT0 interrupt)

3. For the configuration of the interrupt source, refer to the Component migration section.

http://www.cypress.com/ModusToolboxDeviceConfig

 System Configuration

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 13

PSoC Creator ModusToolbox 2.1

#include "cyfitter_sysint_cfg.h"

#include "mcwdt/cy_mcwdt.h"

#include "cy_device_headers.h"

void MCWDT_Interrupt_Handler(void)

{

 /* Clear the MCWDT peripheral interrupt */

 /* Clear the CM4 NVIC pending interrupt for MCWDT

*/ NVIC_ClearPendingIRQ(MCWDT_isr_cfg.intrSrc);

 /* Interrupt processing */

}

void MCWDT_Interrupt_Init(void)

{

 /* Configure ISR connected to MCWDT interrupt

signal*/

 /* MCWDT_isr_cfg structure is defined by the

SYSINT_PDL component based on

 parameters entered in the customizer. */

 Cy_SysInt_Init(&MCWDT_isr_cfg,

&MCWDT_Interrupt_Handler);

 /* Clear CM4 NVIC pending interrupt for MCWDT */

 NVIC_ClearPendingIRQ(MCWDT_isr_cfg.intrSrc);

 /* Enable CM4 NVIC MCWDT interrupt */

 NVIC_EnableIRQ(MCWDT_isr_cfg.intrSrc);

}

#include "cy_pdl.h"

/* MCWDT_isr */

const cy_stc_sysint_t MCWDT_isr_cfg = {

 /* IRQn_Type can be found in the device

specific (cy8c6xxxxxx_xxxxx.h) header file */

 .intrSrc =

(IRQn_Type)srss_interrupt_mcwdt_0_IRQn,

 .intrPriority = 7u

 };

void MCWDT_Interrupt_Handler(void)

{

 /* Clear the MCWDT peripheral interrupt */

 /* Clear the CM4 NVIC pending interrupt for MCWDT

*/

 NVIC_ClearPendingIRQ(MCWDT_isr_cfg.intrSrc);

 /* Interrupt processing */

}

void MCWDT_Interrupt_Init(void)

{

 Cy_SysInt_Init(&MCWDT_isr_cfg,

&MCWDT_Interrupt_Handler);

 /* Clear CM4 NVIC pending interrupt for MCWDT */

 NVIC_ClearPendingIRQ(MCWDT_isr_cfg.intrSrc);

 /* Enable CM4 NVIC MCWDT interrupt */

 NVIC_EnableIRQ(MCWDT_isr_cfg.intrSrc);

}

Deprecated Functions

Note that some of the functions used as part of sysint PDL driver (v1.10 or older) have been deprecated and replaced with new
functions in the sysint v1.20 (or later). Code that uses the deprecated functions will still build and function. The deprecated
functions have been supplied as macros that call their new counterparts. It is recommended that you update your code to use the
new functions.

Deprecated functions (SysInt v1.10 or older) New functions (SysInt v1.20 or later)

Cy_SysInt_GetState N/A – Invokes call to NVIC_GetEnableIRQ

Cy_SysInt_SetIntSource Cy_SysInt_SetInterruptSource

Cy_SysInt_GetIntSource Cy_SysInt_GetInterruptSource

Cy_SysInt_SetIntSourceNMI Cy_SysInt_SetNmiSource

Cy_SysInt_GetIntSourceNMI Cy_SysInt_GetNmiSource

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 14

4. Porting Components

This chapter covers various PSoC Creator Components that can be ported to ModusToolbox, as well as common Component
settings. If a Component is not contained in this chapter, your PSoC Creator design cannot be completely ported. This chapter
covers the following:

◼ Common Component Settings

◼ Voltage DAC (12-bit)

◼ Scanning SAR ADC

◼ Low-Power Comparator

◼ Analog Reference (AREF)

◼ Programmable Analog

◼ I2S

◼ PDM-PCM

◼ SCB

◼ SMIF (QSPI)

◼ TCPWM

◼ MCWDT

◼ RTC

◼ BLE

◼ Emulated EEPROM

◼ DFU

◼ USB

◼ CapSense

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 15

Common Component Settings

Enable Component Clocks

Typically, just pick an unused clock in the Device Configurator. The correct clock rate should be set automatically the first time it
is enabled. If you make changes to a peripheral, you may need to update the clock settings. In some cases, a warning will be
generated if you use an 8-bit clock when you need a 32-bit clock to achieve the required bit rate. In those cases, change the clock
used for the hardware block.

Assign Pins

The Device Configurator has parameters for various connections. In some cases, you’ll have check boxes for both input and
output connections on a pin. You only need to select one input. When you do, a new notice may be added telling you how you
need to configure the pin. Resolve these errors as needed.

Resolve Configurator Errors, Warnings and Tasks

You can save the file, but code is not generated until you resolve all errors. You should also resolve any warnings/tasks in the
notice list of the Device Configurator. The resulting code is generated automatically.

Aliases

Just like pins, set up the alias for your peripherals so that the names match your PSoC Creator Components.

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 16

Voltage DAC (12-bit)

Follow these steps to transition the PSoC Creator Voltage DAC (12-bit) to ModusToolbox:

1. Enable the 12-bit Continuous Time DAC in the ModusToolbox Device Configurator.

2. Transition the PSoC Creator Component parameters to the ModusToolbox 12-bit Continuous Time DAC parameters as
follows:

PSoC Creator ModusToolbox Device Configurator

a. The Vref Source value [Analog reference] requires two parameter changes in the 12-bit Continuous Time DAC as well
as configuration of CTBm[0] OpAmp 1 to route and buffer the internal reference.

First set Vref Source to External and then select Reference Source as CTBm[0] OpAmp 1 out_1x. Enable CTBm[0]
OpAMp 1 and set Personality to OpAmp-[version].

Let all parameters be default with the exception of the following changes:

□ Set Vplus Input to AREF vref,

□ Vminus Input to CTBm[0] OpAmp 1 out_1x,

□ Output (internal only) to 12-bit Continuous Time DAC ctdrefdrive.

b. The Output Buffer values [Buffered to pin, Buffered internal] convert to Output Buffer[Buffered]. The differences
between Buffered to pin and Buffered internal are handled in the DAC output parameter based on where the output is
routed.

c. DAC Mode has been renamed to Format.

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 17

d. Sample and Hold (if visible)

e. Initial Code

f. The Update Mode values [Strobe edge sync, Strobe edge immediate, Strobe level] are not supported as they require
DSI routing to connect to the strobe source. ModusToolbox does not currently support DSI routing. One workaround for
a fixed frequency strobe is to set Update Mode to Buffered write and select a clock connection source configured for
the required strobe rate.

g. Show Trigger Output Terminal is not transferred because it only controls wire terminal visibility in PSoC Creators
schematic view.

h. Enable Deep Sleep Operation

3. PSoC Creator automatically routes the output using schematic entry. In ModusToolbox, the output is routed using
Connections parameters. From the DAC Output drop down connection list, select the direct pin CTBm OpAmp input
connections (green circles) or another connection routed through other resources (yellow circles).

If the Output Buffer parameter is set to Buffered, CTBm[0] OpAmp 0 Vplus must be selected as the output destination.
The dedicated output pin is device specific and can be referenced in the device datasheet.

4. The trigger output in PSoC Creator is automatically routed using schematic entry. In ModusToolbox, all connections other
than interrupts are selected from the Trigger Output parameter drop-down. Interrupt connections are fixed and already made
to the CPU interrupt controller. See the Interrupts section for details on transitioning the interrupt, if present.

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 18

Scanning SAR ADC

Follow these steps to transition the PSoC Creator Scanning SAR ADC to ModusToolbox:

1. Enable the 12-bit SAR ADC in the ModusToolbox Device Configurator:

2. Transition the PSoC Creator Config0 tab Component parameters to the ModusToolbox 12-bit SAR ADC parameters as
follows:

PSoC Creator ModusToolbox Device Configurator

a. Vref Select

b. Number of Channels

c. Vref Bypass

d. The Vneg for Single-Ended Channels (Vneg for S/E in PSoC Creator) parameter directly transfers values Vssa and
Vref to ModusToolbox. The PSoC Creator External option for Vneg for S/E converts to External P1/P3/P5/P7 options
for Vneg for Single-Ended Channels parameter in ModusToolbox depending on the specific pin chosen for your design.

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 19

PSoC Creator determines the specific pin automatically based on the schematic view. Refer to the Pin Editor in PSoC
Creator to determine the I/O pin used.

e. PSoC Creator Free-run scan rate (SPS) converts to ModusToolbox Target Scan Rate (sps). PSoC Creator
automatically selects and configures a clock source to generate the scan rate. In ModusToolbox you must select a Clock
Connection and configure its source and divider to generate the frequency required for the scan rate. See the SAR PDL
documentation for details on determining the correct clock frequency.

f. The ModusToolbox parameter Hardware Trigger Mode, which is enabled once the SOC Enable parameter is checked,
is derived from the PSoC Creator parameter Sample Mode located on the Common tab. If Sample Mode = Continuous
then Hardware Trigger Mode = Level sensitive. If Sample Mode = Single Shot then Hardware Trigger Mode = Edge
sensitive.

g. Differential Result Format

h. Single-Ended Result Format

i. Samples Averaged

j. Averaging Mode

k. Compare Mode

l. Low Threshold

m. High Threshold

3. For each ADC input channel, the following parameters are transferred from PSoC Creator to ModusToolbox:

□ Input mode -> Input Mode

□ Avg -> Averaging

□ Limit Interrupt -> Range Interrupt Enable

□ Sat. interrupt -> Saturation Interrupt Enable

□ Minimum acq. Time (ns) -> Minimum Acquisition Time (ns)

The En check box in PSoC Creator is not supported in ModusToolbox as all channels are automatically enabled. Dynamic
control of channel enables can be performed using PDL driver supplied APIs.

4. Transition the PSoC Creator Common tab Component parameters.

a. The Show analog clock (aclk) terminal check box does not transfer to ModusToolbox because the analog clock must
always be manually configured.

b. The Parameter Number of configs is not supported in the ModusToolbox version of the SAR ADC. If more than one
configuration is required, they must be configured in firmware. Multiple configurations are created by manually generating
multiple PDL initialization structures as detailed in the PDL driver library documentation.

c. The Parameter Sample Mode is not in the ModusToolbox parameters list. This setting has been moved to an argument
passed when calling the ADC start function provided in the PDL library.

d. The PSoC Creator Use soc terminal parameter converts to ModusToolbox SOC Enable. The SOC Input parameter
can then select the source of the SOC signal.

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__sar.html
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__sar.html

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 20

5. PSoC Creator automatically routes the output using schematic entry. In ModusToolbox the output is routed using Connections
Parameters. The Ch[n] Vplus, and Ch[n] Vminus (if Input Mode is Differential) Parameters in ModusToolbox must select
the desired analog pin connection for the channel. The dedicated input pins are device specific and can be referenced in the
device datasheet.

6. The eos output in PSoC Creator is automatically routed using schematic entry. In ModusToolbox all connections other than
interrupts are selected from the EOS Trigger Output parameter dropdown. Interrupt connections are fixed and already made
to the CPU interrupt controller. Please see the Interrupts section for details on transitioning the interrupt if present.

7. The PSoC Creator sdone signal is not supported as it requires DSI routing to connect to the sdone source. ModusToolbox
does not currently support DSI routing.

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 21

Low-Power Comparator

Follow these steps to transition the PSoC Creator Low Power Comparator to ModusToolbox:

1. Enable the Low-Power Comparator 0/1 in the ModusToolbox Device Configurator as follows:

2. Transition the PSoC Creator Component parameters to the ModusToolbox Low-Power Comparator Parameters as follows:

PSoC Creator ModusToolbox Device Configurator

a. Hysteresis

b. Output Configuration

c. Power/Speed

d. Pulse/Interrupt Configuration

e. Local VREF input

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 22

3. PSoC Creator automatically routes the inputs using schematic entry. In ModusToolbox the Positive Input and Negative
Inputs are routed using Connections Parameters. From the Positive or Negative Input drop-down connection list, select
the direct pin connections (green circles) or another connection routed through AMUXBUSA or AMUXBUSB (yellow circles).
Input pins are device specific and can be referenced in the device datasheet.

4. The comparator digital output in PSoC Creator is automatically routed using schematic entry. In ModusToolbox all connections
other than interrupts are selected from the Compare Output (dsi_comp) parameter dropdown. Interrupt connections are
fixed and already made to the CPU interrupt controller. Please see the Interrupts section for details on transitioning the
interrupt if present.

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 23

Analog Reference (AREF)

Follow these steps to transition the PSoC Creator Programable Analog settings to ModusToolbox:

1. All designs that use any analog resource must enable the Analog Reference resource.

2. In a PSoC Creator design, the analog reference settings are in the Design-Wide Resources (DWR) System tab, in the Analog
Reference section. The PSoC Creator Bandgap Value transitions to ModusToolbox Voltage Reference Source.

Current Reference Source, Deep Sleep Mode, and Voltage Reference ModusToolbox parameters are not provided in
PSoC Creator designs as they default to the values shown in ModusToolbox. These settings should typically remain in their
default state.

PSoC Creator ModusToolbox Device Configurator

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 24

Programmable Analog

Follow these steps to transition the PSoC Creator Programable Analog settings to ModusToolbox:

1. All designs that use any analog resource under Programmable Analog section must enable the Programmable Analog
resource.

2. In a PSoC Creator design, the analog reference settings are in the DWR System tab, in the Analog References section.
The PSoC Creator Opamp Reference Current transitions to ModusToolbox Opamp Reference Current. Available in Deep
Sleep parameter transitions to Deep Sleep Enable in ModusToolbox Toolbox.

Opamp Pump Clock Source ModusToolbox parameter is not provided in PSoC Creator designs as it defaults to the value
shown in ModusToolbox. This setting should typically remain in its default state.

PSoC Creator ModusToolbox Device Configurator

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 25

I2S

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 26

PDM-PCM

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 27

SCB

Personalities

For the SCB block, there are several personalities available in the Device Configurator: EZI2C, I2C, SPI, and UART. When you
enable an SCB block, a dialog displays to select the appropriate personality:

Once enabled, you can change the personality from the drop-down next to the SCB name.

How Do I Choose the Correct SCB?

SCBs have fixed connectivity to specific pins. In PSoC Creator, the tool selects the SCB automatically based on pin selection. In
ModusToolbox, you must select the correct SCB manually, based on your pins. To determine the correct SCB, find the pin and
click on the Digital InOut parameter under Internal Connection in the parameters window.

This shows you which SCB block(s) connect to this pin. Look at all the pins you’ve assigned and start with the most constrained
pin. If that pin connects to only one SCB, it is obvious which one you should enable. If that pin connects to more than one SCB,
you must create a list of the SCBs to which it connects and go to the next most constrained pin. Doing so, you should be able to
reduce your list to a definitive list of SCBs that work for your design.

In PSoC Creator, connecting and configuring clocks was automatic. In ModusToolbox, you specify clock and configuration
manually. Refer to the Device Configurator Guide for more details regarding peripheral clock settings.

http://www.cypress.com/ModusToolboxDeviceConfig

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 28

EZI2C

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

I2C

Set the mode as needed to match PSoC Creator and replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 29

SPI

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 30

UART

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 31

SMIF (QSPI)

Replicate the settings as appropriate. Refer also to the ModusToolbox QSPI Configurator Guide, as needed.

PSoC Creator ModusToolbox Device Configurator

https://www.cypress.com/ModusToolboxQSPIConfig

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 32

TCPWM

Personalities

Like the SCB block, the TCPWM block includes several personalities in the Device Configurator: PWM, Quadrature Decoder, and
Timer. When you enable a TCPWM block, a dialog displays to select the appropriate personality:

Assign Inputs and Outputs

For the TCPWM block, the biggest change between PSoC Creator and ModusToolbox is routing into and out of the TCPWM. In
PSoC Creator, you could connect wires between the TCPWM inputs and outputs and various other Components on the schematic.
ModusToolbox does not have a schematic, so it requires a different mechanism.

1. To assign inputs and outputs in ModusToolbox, go to the Device Configurator Parameters pane for the TCPWM personality
and scroll down to Inputs and Outputs sections, as shown:

2. For Inputs, select the type of input required: Rising Edge, Falling Edge, Either Edge, Or Level (if available). A new row
appears where you can choose the source of the input from a drop-down menu.

3. After choosing the input, click the link icon to jump to the Parameters pane for the peripheral connected to the TCPWM.

4. You also need to assign a clock input to the TCPWM from one of the many programmable clock dividers.

5. For the TCPWM Outputs, use the “...” to select multiple locations to route the TCPWM output.

Each TCPWM has specific outputs to which the PWM and PWM_n signals are connected. In PSoC Creator, if you connect a
Pin Component to the PWM or PWM_n outputs and choose a pin, the appropriate TCPWM is selected automatically.

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 33

In ModusToolbox, you must select the correct TCPWM for your application. The easiest way to do this is:

□ Go to the Pins tab in the Device Configurator.

□ Enable the pin you want to use for a TCPWM output.

□ Click on the digital output selection choose the TCPWM you want.

□ Then, use the to open the Parameters pane for that TCPWM.

For each TCPWM personality (PWM, Timer Counter, Quadrature Decoder), copy the configuration information from the PSoC
Creator Component to the Device Configurator.

MCWDT

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 34

RTC

Replicate the settings as appropriate.

PSoC Creator ModusToolbox Device Configurator

BLE

Replicate all settings from the PSoC Creator Component customizer to the ModusToolbox Bluetooth Configurator. Refer also to
the ModusToolbox Bluetooth Configurator Guide, as needed.

PSoC Creator ModusToolbox Bluetooth Configurator

For a detailed explanation regarding how to configure the correct BLE middleware appropriate for your project, refer to the BLE
Middleware API Reference Manual.BLE

https://www.cypress.com/ModusToolboxBLEConfig
https://cypresssemiconductorco.github.io/bless/ble_api_reference_manual/html/index.html
https://cypresssemiconductorco.github.io/bless/ble_api_reference_manual/html/index.html

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 35

Emulated EEPROM

Unlike most ModusToolbox peripherals, the Emulated EEPROM is not configured by the Device Configurator. Use the Library
Manager to enable the middleware. Refer to the Library Manager User Guide for more details.

PSoC Creator ModusToolbox Library Manager

The Emulated EEPROM does not have a configuration dialog in ModusToolbox. Refer to the Em_EEPROM Middleware API
Reference Manual to learn how to configure the Emulated EEPROM middleware. There is no a way to alias it, so all the PSoC
Creator API calls must be renamed to use the middleware API directly.

https://www.cypress.com/ModusToolboxLibraryManager
https://cypresssemiconductorco.github.io/emeeprom/em_eeprom_api_reference_manual/html/index.html
https://cypresssemiconductorco.github.io/emeeprom/em_eeprom_api_reference_manual/html/index.html

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 36

DFU

The Bootloader was renamed to Device Firmware Update (DFU) tool. In PSoC Creator, the DFU SDK is enabled in the project
Build Settings under Peripheral Driver Library. In ModusToolbox, use the Library Manager to enable the dfu middleware. Refer to
the Library Manager User Guide for more details.

PSoC Creator ModusToolbox Library Manager

Refer to the Device Firmware Update Host User Guide and the DFU Middleware API Reference Manual to learn how to configure
the DFU middleware.

https://www.cypress.com/ModusToolboxLibraryManager
https://www.cypress.com/ModusToolboxDFUHostTool
https://cypresssemiconductorco.github.io/dfu/dfu_sdk_api_reference_manual/html/index.html

 Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 37

USB

A USB application can use the USB PDL driver directly or the USB middleware in ModusToolbox. Use the Library Manager to
enable the middleware. Refer to the Library Manager User Guide for more details.

The PSoC Creator USB Configurator settings can be replicated to the ModusToolbox USB Configurator. For USB Configurator
details, refer to the ModusToolbox USB Configurator Guide.

PSoC Creator ModusToolbox USB Configurator

Refer to the USB Middleware API Reference Manual to learn how to configure the USB peripheral. The USB middleware in turn
uses the USB PDL driver. If your PSoC Creator project uses the USB PDL driver, then you should be able to port the project
following the guidelines mentioned in this document for a normal PDL driver.

https://www.cypress.com/ModusToolboxLibraryManager
https://www.cypress.com/ModusToolboxUSBConfig
https://cypresssemiconductorco.github.io/usbdev/usbfs_dev_api_reference_manual/html/index.html

Porting Components

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 38

CapSense

CapSense is delivered as a middleware library in ModusToolbox. Use the Library Manager to enable the middleware. Refer to the
Library Manager User Guide for more details.

CapSense middleware is enabled by default for BSPs that support CapSense. CapSense configuration settings can be replicated
from the PSoC Creator Component customizer to the ModusToolbox CapSense Configurator.

PSoC Creator ModusToolbox CapSense Configurator

Instead of setting the clock frequency, you now set the clock frequency divider in the CapSense Configurator. The Tx clock
source settings and the Sense clock source settings are now in the Widget Details subtab under Advanced tab. Gestures are
also in the Widget Details tab for the Linear Sliders.

The CapSense ADC is a middleware library in ModusToolbox called CSDADC. Enable this middleware like any other middleware
using the Library Manager Tool.

For information on designing your CapSense applications, refer to the PSoC 4 and PSoC 6 MCU CapSense Design Guide. For
CapSense Configurator specific details you can refer to the CapSense Configurator Guide.

https://www.cypress.com/ModusToolboxLibraryManager
https://www.cypress.com/documentation/application-notes/an85951-psoc-4-and-psoc-6-mcu-capsense-design-guide
https://www.cypress.com/ModusToolboxCapSenseConfig

PSoC Creator to ModusToolbox Porting Guide, Document Number: 002-25408 Rev *B 39

5. Copying Code

Importing Your Code

If you’ve used other files beyond the main.c file in PSoC Creator to build your application, you can simply drag and drop those
files into the application directory and they will be included in your application. This also works for directories. Build your application
and start working on the errors. (The following sections will help with resolving some of these errors.)

Building project.h File

The files you copy from a PSoC Creator project likely reference the project.h file to pull in the specific component settings.
ModusToolbox doesn’t have a project.h file. You should create this file as it is a convenient place to put headers, defines, and
constants that you might need elsewhere in your project. To get started, put the following in your project.h file:

#include "cy_pdl.h"

#include "cybsp.h"

Rewriting main.c File

If you copy the main.c file from your PSoC Creator design, nothing will work. Pins and clocks are not initialized automatically in
ModusToolbox software. Add the following calls to your main.c file so that everything is initialized correctly:

cy_rslt_t result;

/* Initialize the device and board peripherals */

result = cybsp_init() ;

if (result != CY_RSLT_SUCCESS)

{

 CY_ASSERT(0);

}

enable_irq();

Rewriting Component-Specific APIs and Migrating ISRs

There are two approaches to this:

◼ Inspect your code, find all Component-specific APIs, and look up the correct PDL call to do the same thing.

◼ Alternatively, you can simply build the application and look at the errors to help find all the component API calls.

Additionally, if you go to the same code in PSoC Creator, you can right-click on the call and use the “Go to Definition” command
to find the code. In most cases, you can copy the component-specific API code and replace the API call with it. Or you can copy
the code into a file and prototype into a header file to quickly move the call over.

As for ISRs, follow the same techniques described above.

	Contents
	1. Introduction
	Overview
	Before You Begin
	Terminology
	Expectations
	Revision History

	2. Getting Started
	Create New ModusToolbox Application
	A Quick Tour of a ModusToolbox Application
	BSP Directory
	Device Configurator

	Migrate Pin Layout

	3. System Configuration
	System Clocks / Other Settings
	Analog Routing
	Migrate Interrupts
	Interrupts Internal to Component Code (BLE, CapSense, SCB, etc.)
	Interrupts External to Component Code (GPIO, MCWDT, etc.)
	Deprecated Functions

	4. Porting Components
	Common Component Settings
	Enable Component Clocks
	Assign Pins
	Resolve Configurator Errors, Warnings and Tasks
	Aliases

	Voltage DAC (12-bit)
	Scanning SAR ADC
	Low-Power Comparator
	Analog Reference (AREF)
	Programmable Analog
	I2S
	PDM-PCM
	SCB
	Personalities
	How Do I Choose the Correct SCB?
	EZI2C
	I2C
	SPI
	UART

	SMIF (QSPI)
	TCPWM
	Personalities
	Assign Inputs and Outputs

	MCWDT
	RTC
	BLE
	Emulated EEPROM
	DFU
	USB
	CapSense

	5. Copying Code
	Importing Your Code
	Building project.h File
	Rewriting main.c File
	Rewriting Component-Specific APIs and Migrating ISRs

