

Programming Specification Please read the Important Notice and Warnings at the end of this document 002-15554 Rev. *O

www.infineon.com page 1 of 82 2021-04-27

PSoC 6 MCU Programming Specifications

About this document

Scope and purpose

This document provides the information necessary to program the nonvolatile memory of the PSoC™ 6 MCU

family. It describes the communication protocol required for access by an external programmer, explains the
programming algorithm, and gives a basic description of the physical connection. Pin locations and the
electrical and timing specifications of the physical connection are not a part of this document. They can be
found in the device datasheet. The programming algorithms described in the following sections are compatible

with all PSoC 6 MCUs except PSoC 64 devices, which are described in PSoC 64 Programming Specification
(Document Number: 002-31353).

Programming Specification 2 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 4
1.1 Programmer .. 4
1.2 PSoC 6 MCU family overview .. 4

2 Nonvolatile memory subsystem ... 6

2.1 Application flash .. 6

2.2 Auxiliary flash (AUXflash) .. 7
2.3 Supervisory flash (Sflash) .. 7

2.4 Electronic fuses (eFuse) .. 7
2.5 eXecute in Place (XIP) .. 8

3 Hex file... 10
3.1 Organization of the hex file ... 10

4 Protocol stack ... 13
4.1 Communication interface ... 14
4.2 Program and debug interface ... 14

4.2.1 DAP security.. 15
4.2.2 DAP power domain .. 15
4.2.3 SWD/JTAG selection ... 15

4.2.4 Hardware access commands ... 16

4.2.5 Pseudocode .. 18

4.3 Physical layer ... 20

5 Programming algorithm .. 23
5.1 High-level programming flow ... 23
5.2 Constants and subroutines used in the programming flow .. 24

5.2.1 Constants .. 24
5.2.2 Subroutines .. 26
5.3 Step 1.A – acquire PSoC 6 MCU ... 33

5.3.1 Pseudocode – Step 1.A. acquire chip ... 35

5.4 Step 1.B – acquire PSoC 6 MCU (alternate method) .. 36
5.4.1 Pseudocode – Step 1.B acquire chip (alternate method) ... 37
5.5 Step 2 – identify silicon ... 40
5.5.1 Pseudocode – Step 2. check silicon ID .. 40

5.6 Step 3 – erase application flash .. 41

5.6.1 Pseudocode – Step 3. erase application flash .. 41

5.7 Step 4 – verify blank checksum (optional) ... 42
5.7.1 Pseudocode – Step 4. verify checksum ... 42
5.8 Step 5 – program application flash ... 43

5.8.1 Pseudocode – Step 5. program application flash ... 44
5.9 Step 6 – verify application flash .. 45

5.9.1 Pseudocode – Step 6. verify application flash .. 46
5.10 Step 7 – verify checksum (optional) ... 47
5.10.1 Pseudocode – Step 7. verify checksum ... 47

5.11 Step 8 – program and verify AUXflash .. 48
5.11.1 Pseudocode. Step 8 – program and verify AUXflash ... 49
5.12 Step 9 – program and verify Sflash ... 51

Programming Specification 3 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Table of contents

5.12.1 Pseudocode. Step 9 - program and verify Sflash .. 51
5.13 Step 10 – program eFuse ... 52

5.13.1 Pseudocode – Step 10. program eFuse ... 53
5.13.2 Pseudocode – Step 10. program eFuse – subroutines .. 57

5.14 Step 11 – verify eFuse (optional) ... 63
5.14.1 Pseudocode – Step 11. verify eFuse .. 63

Appendix A: Intel hex file format ... 65

Appendix B: eFuse data mapping in file .. 67

Appendix C: Serial Wire Debug (SWD) Protocol .. 71

Appendix D: Joint Test Action Group (JTAG) protocol ... 74

Revision History .. 76

Programming Specification 4 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Introduction

1 Introduction

This document provides the information necessary to program the nonvolatile memory of the PSoC® 6 MCU

family. It describes the communication protocol required for access by an external programmer, explains the
programming algorithm, and gives a basic description of the physical connection. Pin locations and the
electrical and timing specifications of the physical connection are not a part of this document. They can be
found in the device datasheet. The programming algorithms described in the following sections are compatible

with all PSoC 6 MCUs.

1.1 Programmer

Figure 1 illustrates a high-level view of the programmer environment.

PROGRAMMER
SILICON

(CY8C6xxx)

I D E

(PSoC Creator,

ModusToolBox or

supported third party IDEs)

HEX - File

Software HardwareMiddleware

SWD/JTAG

Figure 1 Programmer in development environment

In the manufacturing environment, the integrated development environment (IDE) block is absent because its

main purpose is to produce a binary file (hex, elf, etc.). As shown in Figure 1, the programmer performs three
functions:

• Parses the binary file and extracts the necessary information

• Interfaces with the silicon as a Serial Wire Debug (SWD) or JTAG master

• Implements the programming algorithm by translating the data from binary file into SWD or JTAG signals

The structure of the programmer depends on its requirements. It can be software- or firmware-centric.

In a software-centric structure, the programmer’s hardware works as a bridge between the protocol (such as

USB) and SWD or JTAG. An external device (software) passes all SWD/JTAG commands to the hardware through
the protocol. The bridge is not involved in parsing the binary file and programming algorithm. This is the task of

the upper layer (software). Examples of such programmers are MiniProg3 and Segger J-Link.

A firmware-centric structure is an independent hardware design in which all the functions of the programmer
are implemented in one device, including storage for the binary file. Its main purpose is to act as a mass
programmer in manufacturing.

This document does not discuss the specific implementation of the programmer. It focuses on data flow,

algorithms, and physical interfacing.

1.2 PSoC 6 MCU family overview

The PSoC 6 MCU family is a dual-CPU solution, with both the ARM Cortex-M4 and Cortex-M0+ processor cores.

This MCU family supports the ARM SWJ-DP Interface for programming and debugging operations, using SWD or
JTAG protocols.

The nonvolatile subsystem of the silicon consists of a flash memory system. The flash memory system stores

the user’s program or data, as well as eFuses.

Programming Specification 5 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Introduction

The part can be programmed after it is installed in the system by way of the SWD or JTAG interface (in-system
programming).

Refer to the device datasheet for the specifications on memory size and programming frequency range.

This document focuses on the specific programming operations without referencing the silicon architecture.
Many important topics are detailed in the appendices. Other device-specific information can be found in the
device’s datasheet or technical reference manual.

This document includes the following appendices:

Appendix A: Intel hex file format

Appendix B: eFuse data mapping in file

Appendix C: Serial Wire Debug (SWD) Protocol

Appendix D: Joint Test Action Group (JTAG) protocol

Programming Specification 6 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Nonvolatile memory subsystem

2 Nonvolatile memory subsystem

This chapter describes the nonvolatile memory subsystem of the PSoC 6 MCU silicon.

...

...

...

...

Row 0

Row 1

Row 511

0x1000 0000

0x1000 0200

0x1003 FE00 S
e

c
to

r
1

...

Row 0

Row 1

Row 511

0x1004 0200

0x1007 FE00 S
e

c
to

r
2

...

Row 0

Row 1

Row 511

0x1008 0000

0x1008 0200

0x100B FE00 S
e

c
to

r
3

...

Row 0

Row 1

Row 511

0x100C 0000

0x100C 0200

0x100F FE00 S
e

c
to

r
4

...

512 bytes

Application Flash

1
 M

B

...

Auxiliary Flash (AUXflash)

Row 0

Row 1

0x1400 0000

0x1400 0200

Row 63

U
s
e

r
a

re
a

3
2

K
 a

v
a

ila
b

le
 f
o

r

fi
rm

w
a

re
 u

s
a

g
e

512 bytes

0x1400 7E00

...

Row 13

...

Row 14

...

Row 46

Row 45

...

Row 51

Row 50

...

Row 12

Row 44

Row 4

Row 5

...

Row 0

Row 3

Row 6

Row 7

Row 8

Row 62

Row 61

Row 63

Supervisory Flash (Sflash)

0x1600 0800

0x1600 0A00

0x1600 0E00

0x1600 0C00

U
s
e

r
a

re
a

S
y
s
te

m

0x1600 0000

0x1600 0FFF

0x1600 1A00

0x1600 5A00

0x1600 5C00

0x1600 6400
S

y
s
te

m
S

y
s
te

m
P

u
b

lic
 K

e
y

512 bytes

0x1600 7C00

0x1600 7E00

TOC2

RTOC2

NAR

S
y
s
te

m

0x1600 0800
0x1600 0FFF

User area

32K available for firmware usage (keys/ids)

0x1600 5A00
0x1600 19FF

NORMAL Access Restrictions (NAR)

Used for chip protection in NORMAL state

0x1600 1A00
0x1600 65FF

Public Key

Used for digital signature of the application

0x1600 7C00
0x1600 7DFF

Table Of Contents Part 2 (TOC2)

Used to locate OEM objects

0x1600 7E00
0x1600 7FFF

Reserved Table Of Contents Part 2 (RTOC2)

Used to locate OEM objects

...

eXecute In Place (XIP)

0x1800 0000

0x1FFF FFFF

...

Up to

128GB of

external

memory

mapped

space

0x100F FFFF

0x1400 7FFF

0x1600 7FFF

0x1600 65FF

0x1600 1BFF

0x1600 09FF

0x1600 0BFF

0x1600 0DFF

0x1600 5BFF

0x1600 5DFF

0x1600 7DFF

0x1400 01FF

0x1400 03FF

0x1000 01FF

0x1000 03FF

0x1003 FFFF
0x1004 0000

0x1004 03FF

0x1007 FFFF

0x1008 01FF

0x1008 03FF

0x100B FFFF

0x100C 01FF

0x100C 03FF

0x1004 01FF

...

...

...

...

...

Macro 1, Byte 9

Macro 1, Byte 8

Macro 1, Byte 7

Macro 1, Byte 10

...

Macro 1, Byte 3

Macro 1, Byte 5

Macro 1, Byte 4

Macro 1, Byte 6

Macro 0, Byte 20

Macro 1, Byte 11

0x080 Macro 4, Byte 0

Macro 3, Byte 31

Macro 1, Byte 12

Macro 0, Byte 19

Macro 0, Byte 0

Macro 1, Byte 31

Macro 2, Byte 0

Macro 15, Byte 310x1FF

...

Macro 2, Byte 170x051

Macro 2, Byte 160x050

0x07F

......

eFuse

0x014

0x023

0x000

0x02C

0x024

...

0x025

0x026

0x027

0x028

0x029

0x02A

0x02B

...

0x040

...

0x03F

...

...

...

......

S
e

c
u

re

H
A

S
H

S
y
s
te

m
S

y
s
te

m

HASH Zeros

DAR

SAR

Life-Cycle

S
y
s
te

m
C

u
s
to

m
e

r
D

a
ta

(P
S

o
C

6
A

-B
L

E
2

)*

S
y
s
te

m

C
u

s
to

m
e

r

D
a

ta

S
y
s
te

m

1 byte

Macro Size is 32 bytes

SECURE HASH

Secure objects 128 bit HASH

SECURE HASH Zeros

Number of zeros in SECURE HASH

DEAD Access Restrictions (DAR)

Access restrictions applied in DEAD stage

0x027
0x028

SECURE Access Restrictions (SAR)

Access restrictions in SECURE stage

0x029
0x02A

Life Cycle Stage

Silicon Life Cycle stage

Customer Data

Can be used for application or security purposes

Offset for PSoC6A-BLE2 devices - 0x040; for

PSoC6A-512K and PSoC6A-2M (rev. >= A1) - 0x051

0x040
0x051

0x07F

*

(P
S

o
C

6
A

-5
1

2
K

,
P

S
o

C
6

A
-2

M
)*

Figure 2 Nonvolatile subsystem

2.1 Application flash

The application flash is organized into sectors. Sector size can be either 128 KB for parts with 256 KB flash or

256 KB for all the rest. There are eight such sectors for parts with 2 MB flash on board, four and two sectors for
parts with 1 MB and 256/512 KB flash, respectively. There are 256 or 512 rows in the sector, depending on the
sector size (128 KB or 256 KB), each consisting of 512 bytes.

The programming granularity is one row at a time. The maximum number of rows during programming

depends only on the part’s flash size. The formulae are as follows:

bytes)in size row theis (L 512=L

rows) ofnumber total theis (N
L

FlashSize
N =

Programming Specification 7 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Nonvolatile memory subsystem

The flash memory is mapped directly to the CPU’s address space starting from 0x10000000. Therefore, the
firmware or external programmer can read its content directly from the given address.

2.2 Auxiliary flash (AUXflash)

In addition to the application flash, the flash macros may contain auxiliary flash. AUXflash is typically used to
store frequently-updated data; for example, AUXflash can be used to emulate EEPROM memory.

AUXflash is mapped directly to the CPU’s address space starting from 0x14000000. Therefore, the firmware or
external programmer can read its content directly from the given address.

Some devices may not have AUXflash, check its availability in the device’s datasheet.

2.3 Supervisory flash (Sflash)

In addition to the application flash and AUXflash regions, the flash macros contain supervisory flash (Sflash),
which can store various application-specific data.

Sflash memory is mapped directly to the CPU’s address space; therefore, the firmware or external programmer

can read its content directly from the given address.

These sub-regions are accessible in Sflash memory:

• 0x1600 0800 - 0x1600 0FFF - User area. Up to 32 KB can be used by the application to store arbitrary data.

• 0x1600 1A00 - 0x1600 1BFF - NORMAL Access Restrictions (NAR).

Used for chip protection in NORMAL Life Cycle stage. Be aware that the NAR sub-region cannot be overwritten
or erased if the new data is less restrictive than the existing data.

• 0x1600 5A00 - 0x1600 65FF - Public Key. Used for digital signature of the application.

• 0x1600 7C00 - 0x1600 7DFF - Table of Contents Part 2 (TOC2).

Used to locate various OEM objects such as application(s) start address(es) and format, address of SMIF

configuration structure. Also used during the boot process to apply device initial settings such as clock

frequency configuration, duration of the Listen window, SWJ pins availability and digital signature verification
(authentication).

• 0x1600 7E00 - 0x1600 7FFF - Reserved Table of Contents Part 2 (RTOC2).

Writing to listed sub-regions is not possible when the chip is in SECURE Life Cycle stage. Writing to any Sflash
address outside the specified sub-regions is not possible in any Life Cycle stage except VIRGIN, which is a

factory-only stage.

2.4 Electronic fuses (eFuse)

PSoC 6 MCUs contain Electronic Fuses (eFuses), which include up to 16 nonvolatile memory macros of 256 bits
each (4096 bits in total), with each bit being one-time programmable (OTP). These are implemented as a regular
Advanced High-performance Bus (AHB) peripheral with the following characteristics and assumptions:

• eFuses store the device life-cycle stage (NORMAL, SECURE, and SECURE_WITH_DEBUG), the protection

settings, and up to 512 bits (64 bytes) of customer data.

• eFuse memory can be programmed (eFuse bit value changed from ‘0’ to ‘1’) only once. If an eFuse bit is
blown, it cannot be cleared.

• Programming fuses requires the associated I/O supply to be at a specific level: the device VDDIO0 (or VDDIO
if only one VDDIO is present in the package) supply should be set to 2.5 V (±5%).

Programming Specification 8 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Nonvolatile memory subsystem

• The eFuse array can be read eight bits at a time using normal memory mapped AHB register reads or
corresponding system calls.

• eFuses are programmed one bit at a time using a command register.

These eFuse bytes are accessible for production programming:

• 0x014 - 0x023 - SECURE HASH. 128-bit (16 bytes) HASH used by boot code to authenticate objects in the
Table of Contents Part 2 (TOC2).

• 0x26 - SECURE HASH Zeros. The number of bits that are ‘0’ (fuses that are not blown) in the SECURE HASH

above. This guarantees that once a HASH is programmed, it cannot be changed into another valid HASH

value.

• 0x027 - 0x028 - DEAD Access Restrictions (DAR). Chip access restrictions applied in DEAD life-cycle stage:

• 0x029 - 0x02A - SECURE Access Restrictions (SAR). Chip access restrictions applied in SECURE life-cycle

stage

• 0x02B - Silicon Life-Cycle stage (NORMAL, SECURE_WITH_DEBUG, or SECURE).

• 0x040 (0x051) - 0x07F - Customer data. Can be used by customer for application or security purposes.
Offset for PSoC6A-BLE2 devices - 0x040; for PSoC6A-256K, PSoC6A-512K, and PSoC6A-2M (rev. >= A1) - 0x051

Because blowing an eFuse is an irreversible process, programming is recommended only in mass production
programming under controlled factory conditions and not prototyping stages. See Appendix B for eFuse data

mapping in the data file. For more details, refer to the “eFuse Memory” section of the technical reference
manual (TRM).

2.5 eXecute in Place (XIP)

Unlike other memory regions, the eXecute in Place (XIP) region is not associated with any physical memory in

PSoC 6 MCUs. The purpose of the XIP region is to map the address space of the external memory devices, which
are connected to PSoC 6 MCU silicon using the SMIF IP block. When the SMIF block is configured in XIP/Memory

mode, it maps the AHB bus accesses to the external memory device addresses to make it behave like internal
memory. This allows the CPU to execute code directly from external memory or use it as additional data
storage.

Programming of the external flash memory devices via the SMIF IP block can be supported using a flash loader.

A flash loader is an application compiled for a target CPU that implements programming algorithms and

follows specific rules (framework) defined by a 3rd party IDE like Keil µVision, where CMSIS-based flash
loaders are used. Such algorithms are loaded into target SRAM by programming software and executed from
there for memory bank programming. Infineon provides support of such algorithms for 3rd development tools
like Keil µVision (MDK-ARM), IAR Embedded Workbench and SEGGER J-Link Software and Documentation

Pack. Flash loaders developed by Infineon include the system and SMIF driver middleware and have the

following requirements:

• Configuration structures for the SMIF driver must be in the application flash. The Loader uses these
structures to determine the design-specific settings of the external memory devices. It also uses these
structures for the SMIF driver initialization for further read/write operations.

• The Table of Contents Part2 (TOC2) must contain the pointer to the location in flash where the configuration

structures for the SMIF driver are located. TOC2 is the predefined 512-byte-wide data structure, located at
address 0x1600 6C00 in the Sflash region.

• An external flash memory device must be write-enabled and mapped to the XIP address space in PSoC 6
MCUs (within the address range 0x1800 0000 - 0x1FFF FFFF).

• Data for the external memory device in input binary file (hex, elf, etc.) must be allocated in the exact range of
XIP address space, where the memory device is mapped.

http://www.keil.com/uvision/
https://www.keil.com/pack/doc/CMSIS/Pack/html/flashAlgorithm.html
https://www.keil.com/pack/doc/CMSIS/Pack/html/flashAlgorithm.html
http://www.keil.com/uvision/
https://www.iar.com/iar-embedded-workbench/
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

Programming Specification 9 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Nonvolatile memory subsystem

These requirements necessitate a specific order of memory bank operations:

• For program operation, the application and supervisory flash banks must be programmed first, before the
SMIF bank is programmed.

• For erase operation, SMIF bank must be erased first, before the application and supervisory flash banks are
erased.

Programming Specification 10 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Hex file

3 Hex file

This chapter describes the information that the programmer must extract from the hex file to program the
PSoC 6 MCU.

3.1 Organization of the hex file

The hexadecimal (hex) file describes the nonvolatile configuration of the project. It is the data source for the

programmer.

The hex file for the PSoC 6 MCUs follows the Intel Hex File format. Intel’s specification is very generic and
defines only some types of records that can make up the hex file. The specification allows customizing the

format for any possible silicon architecture. The silicon vendor defines the functional meaning of the records,

which typically varies for different chip families. See Appendix A for details of the Intel Hex File format.

The PSoC 6 MCU defines these data sections in the hex file:

• User’s program (code) for the application flash region

• User’s data for the AUXflash region

• User’s / OEM data for the Sflash region

• User’s data or code for the external flash memory

• Checksum

• Metadata

• Chip-level protection data (eFuses)

See Figure 3 to determine the allocation of these sections in the address space of the Intel hex file.

The address space of the hex file does not map to the physical addresses of the CPU (other than the user’s

flash). The programmer uses hex addresses (see Figure 3) to read sections from the hex file into its local buffer.
Later, this data is programmed (translated) into the corresponding addresses of the silicon.

Programming Specification 11 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Hex file

Up to 1 MB

0x1000 0000

2 bytes0x9030 0000

512 bytes

Up to 3 KB

512 bytes

Up to 2 KB

Up to 32 KB

12 bytes0x9050 0000

Up to 4096 bytes

0xFFFF FFFF

Up to 128 GB

512 bytes

Application Flash
(Program code)

Checksum
(of User’s Flash)

Metadata
(misc/integrity)

Auxiliary Flash (AUXflash)
(User’s data)

0x1400 0000

0x1600 0800

0x1600 1A00

0x1600 5A00

0x1600 7C00

0x1800 0000

0x9070 0000 eFuse
(Chip Protection and
custom OTP bits)

0x1600 7E00

User’s data

NAR

Public Key

TOC2 S
u

p
e

rv
is

o
ry

 F
la

s
h

(S
fl
a

s
h

)

RTOC2

XIP
(External memory mapped
data)

Figure 3 Hex file organization for PSoC 6 MCUs

0x1000 0000 – application flash: This is the user’s code that must be programmed. The maximum size of this

section must not exceed the flash size of the PSoC 6 MCU (up to 2 MB). The address space of this section in the

hex file is directly mapped to the physical addresses of the CPU. See 2.1 Application flash for the region

description.

0x1400 0000 –AUXflash: Can store up to 32 KB of application-specific information. The address space of the

AUXflash section in hex file is directly mapped to the physical addresses of the CPU. Availability of this section
in hex file is optional and depends on linker scripts usage in user’s project. See 2.2 Auxiliary flash (AUXflash)
for the region description.

0x1600 0000 –Sflash: Can store application-specific information in five fragmented sub-sections. The address

space of the Sflash section in hex file is directly mapped to the physical addresses of the CPU. Availability of this
section in hex file is optional and depends on linker scripts usage in user’s project. See 2.3 Supervisory flash
(Sflash) for the region description.

0x1800 0000 –XIP: Can be used to store up to 128 MB of the external memory mapped data. The address space

of the XIP section in hex file is mapped to the physical addresses of the CPU only in case the user’s program
configures SMIF block in XIP/Memory mode. Availability of this section in hex file is optional and depends on

linker scripts usage in user’s project. See 2.5 eXecute in Place (XIP) for the region description.

0x9030 0000 – Checksum (two bytes): This is the checksum of the entire application flash section—the

arithmetical sum of every byte in the user’s flash. Only two least significant bytes (LSB) of the result are saved in
this section, in big- endian format (most significant byte, or MSB, first). This must be used by the programmer to
check the integrity of the hex file and to verify the quality of the programming. In this context, “integrity” means
that the checksum and user’s flash sections must correspond in this file. At the end of programming, the

checksum of flash (two LSBs) is compared to the checksum from the hex file.

Programming Specification 12 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Hex file

0x9050 0000 – Metadata (12 bytes): This section contains data that is not programmed into the PSoC 6 MCU.
Instead, it is used to check data integrity of the hex file and the silicon ID of the PSoC 6 MCU. Table 1 lists the

fields in this section.

Table 1 Metadata in hex file

Offset Data type Length in bytes

0x00 Hex file version 2 (big-endian)

0x02 Silicon ID 4 (big-endian)

0x06 Reserved 1

0x07 Reserved 1

0x08 Internal use 4

• Hex file version: This 2-byte field in Infineon hex file defines its version (or type). The version for the PSoC 6
MCU is “5”. The programmer should use this field to make sure this file corresponds to the PSoC 6 MCU, or to

select the appropriate parsing algorithm if the file supports several families.

• Silicon ID: This 4-byte field (big endian) represents the ID of the PSoC 6 MCU silicon:

− byte[0] - Silicon ID Hi

− byte[1] - Silicon ID Lo

− byte[2] - Revision ID

− byte[3] - Family ID

During programming, the ID of the acquired device is compared to the content of this field. To start

programming, three of these fields must match. The Revision ID must be skipped because it is not essential for

programming—there are many silicon revisions possible that do not change functionality. Infineon does not
guarantee reliable programming (or data retention) if third-party programmers ignore this condition.

• Reserved: Not used by the PSoC 6 MCU

• Internal Use: This 4-byte field is used internally by the PSoC Programmer software. Because it is not related
to actual programming, this field should be ignored by third-party vendors’ tools.

0x9070 0000 – eFuse (up to 4096 bytes): eFuse memory provides security functions with far more flexibility
than exist in the Flash Protection, Write Once NVL, and Chip Protection options in prior devices. Each eFuse bit

setting is stored in the hex file as a full byte. This is done for two reasons. First, it allows the programmer to
distinguish bytes that are being set from bytes that we don’t care about, or where we don’t know the value. The
second reason is that it more accurately reflects how these bits are programmed: the SROM functions sets one

bit per call. The values are: 0x00 – Not blown; 0x01 – Blown; 0xFF – Ignore. Note: The programmer can only
perform a “not blown” to “blown” operation. The programmer should read the corresponding eFuse bit from

the device first and blow it only if the device value is 0 (not blown) and the hex value is 0x01 (blown). Consult
the device datasheet for the number of eFuse bits available on the device. See Appendix B for eFuse data

mapping in the hex file.

Programming Specification 13 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

4 Protocol stack

This chapter explains the low-level details of the communication interface. Figure 4 illustrates the stack of
protocols involved in the programming process. The programmer must implement both hardware and
software components.

Programming Algorithm

(Step 1 … Step N)

Communication Interface

(SWD/JTAG, Hardware Access

Commands)

Physical Layer

(Signals, interfacing with chip)

SWD or JTAG

Read / Write

Logical SWD or

JTAG signal

Signals on the Line

Figure 4 Programmer’s protocol stack

• The Programming Algorithm protocol, the topmost protocol, implements the whole programming flow in

terms of logical and algorithmic steps. This protocol is implemented completely in software. Its smallest

building block is the SWD or JTAG command. The whole programming algorithm is the meaningful flow of

these blocks.

• All programming algorithms are based on system API, stored in SROM (SROM API). During programming of

the flash row, the system code is executed from the SROM. It communicates with the Inter Processor
Communication (IPC) module, which “knows” how to program flash. In contrast to a write operation,

reading from flash is an immediate operation that is carried out directly from the necessary address (see
Figure 2 on page 6 for address space). Reading works on a word basis (4-byte); writing works on a row basis

(512-byte).

• The Programming Algorithm protocol is the fundamental part of this specification. For more information on

this algorithm, see Chapter 5: Programming Algorithm.

• Communication Interface layer acts as a bridge between pure software and hardware implementations.

SWJ interface implements a set of lower-level (protocol-dependent) commands. It also transforms the
software representation of these commands into line signals (digital form). The SWJ interface helps to
isolate the programming algorithm from hardware specifics, which makes the algorithm reusable.

• Physical Layer is the complete hardware specification of the signals and interfacing pins, and includes drive
modes, voltage levels, resistance, and other components.

Programming Specification 14 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

4.1 Communication interface

The external device (whether it is Infineon-supplied programmer and debugger or a third-party device that

supports programming and debugging) can access most internal resources through the Program and Debug
Interface provided in PSoC 6 MCU silicon. The Serial Wire Debug (SWD) or the JTAG interface can be used as the

communication protocol between the external device and the PSoC 6 MCU.

4.2 Program and debug interface

The main purpose of PSoC 6 MCU Program and Debug Interface is to support programming and debugging
through the JTAG or SWD interface and to provide read and write access to all memory and registers in the
system while debugging, including the Cortex-M4 and Cortex-M0+ register banks when the core is running or

halted.

The PSoC 6 MCU silicon implements a Debug Access Port (DAP), which integrates SWJ-DP (Serial Wire/JTAG
Debug Port) and complies with the ARM specification “ARM Debug Interface Architecture Specification ADIv5.0 to

ADIv5.2 (ARM IHI 0031C)”.

DAP
SWDIOTMS

SWCLKTCLK

Cortex M0+

Flash SRAM SROM
Peripheral

Modules

H
S

IO
M

TDI

1

0

2

CM4AP

Cortex M4

AHB

CM0AP

SYSAP

SWJ-DP

d
a

p
_

b
u

s

PSoC 6

TDO

nTRST

SLV

MPU MPU(APB)

SMPU/MPU

APB

SMPU SMPU

fast_infra

slow_infra

Figure 5 Top-level silicon architecture

The debug physical port pins communicate with the DAP through the high-speed I/O matrix (HSIOM). The DAP

communicates with the Cortex-M0+ CPU using the ARM-specified advanced high-performance bus (AHB)

interface. AHB is the systems interconnect protocol used inside the device, which facilitates memory and
peripheral register access by the AHB master. The PSoC 6 MCU has several AHB masters, including ARM CM4
CPU core, ARM CM0+ CPU core and DAP. The external host can effectively take control of the entire device

through the DAP to perform programming and debugging operations.

The debug port (DP) connects to the DAP bus, which in turn connects to one of three Access Ports (AP), namely:

• The CM0-AP, which connects directly to the AHB debug slave port (SLV) of the CM0+ and gives access to the

CM0+ internal debug components. This also allows access to the rest of the system through the CM0+ AHB
master interface. This provides the debug host the same view as an application running on the CM0+. This

includes access to the MMIO registers of other debug components of the Cortex M0+ subsystem. These
debug components can also be accessed by the CM0+ CPU, but cannot be reached through the other APs or

by the CM4 core.

• The CM4-AP located inside the CM4 gives access to the CM4 internal debug components. The CM4-AP also
allows access to the rest of the system through the CM4 AHB master interfaces. This provides the debug host

the same view as an application running on the CM4 core. Additionally, the CM4-AP provides access to the
debug components in the CM4 core through the External Peripheral Bus (EPB). These debug components

can also be accessed by the CM4 CPU, but cannot be reached through the other APs or by the CM0+ core.

Programming Specification 15 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

• The System-AP, which gives access to the rest of the system. This allows access to the System ROM table,
which cannot be reached any other way. The System ROM table provides the MCU ID.

4.2.1 DAP security

For security reasons, all three APs each can be independently disabled. Each AP disable is controlled by two MMIO

bits. One bit, CPUSS_DP_CTL.xxx_ENABLE (where xxx can be CM0 or CM4 or SYS), is a regular read/write bit. This
bit also resets to zero and is set to ‘1’ by either the ROM boot code or the flash boot code, depending on the life-

cycle stage. This feature can be used to block debug access during normal operation, but re-enable some debug
access after a successful authentication.

The second bit, CPUSS_DP_CTL.xxx_DISABLE, can be set during boot, before the debugger can connect, based
on eFuse settings for SECURE or DEAD life-cycle stage or based on NAR settings in Supervisory flash for NORMAL

life-cycle. After this bit is set, it cannot be cleared. This bit takes priority over the CPUSS_DP_CTL.xxx_ENABLE.

In addition, debug privileges are regulated by the platform protection mechanism using the Memory Protection

Units (MPUs), Shared Memory Protection Units (SMPUs), and Peripheral Protection Units (PPUs).

Refer to the “Device Security” and “Protection Units” sections of the technical reference manual (TRM) for more

details of the security settings for the PSoC 6 MCU.

4.2.2 DAP power domain

Almost all the debug components are part of the Active power domain. The only exception is the SWD/JTAG-DP,

which is part of the Deep-Sleep power domain. This allows the debug host to connect during Deep-Sleep mode,
while the application is 'running' or powered down. This enables infield debugging for low-power applications

in which the chip is mostly in Deep-Sleep mode.

After the debugger is connected to the chip, it must bring the chip to the Active state before any operation. For

this, the SWD/JTAG-DP has a register (DP_CTL_STAT) with two power request bits. The two bits are

CDBGPWRUPREQ and CSYSPWRUPREQ, which request for debug power and system power, respectively. These
bits must remain set for the duration of the debug session.

Note that only the two SWD pins (SWCLKTCK and SWDIOTMS) are operational during the Deep-Sleep mode –

the JTAG pins are operational only in Active mode. The JTAG debug and JTAG boundary scan are not available
when the system is in Deep-Sleep mode.

4.2.3 SWD/JTAG selection

JTAG and SWD are mutually exclusive because of ARM’s SWJ-DP implementation and because they share pins.
Therefore, an external programmer/debugger must be able to switch to the required protocol. The watcher

circuit, implemented in SWJ-DP, detects a specific 16-bit select sequence on SWDIOTMS and decides if the

JTAG or SWD interface is active. By default, JTAG operations are selected on powerup reset and therefore the

JTAG protocol can be used from reset without sending a select sequence. The protocol switching can only
occur when the selected interface is in its reset state (test-logic-reset for JTAG and line-reset for SWD).

To switch SWJ-DP from JTAG to SWD operation:

• Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in its
reset state. The JTAG interface detects only the 16-bit JTAG-to-SWD sequence starting from the test-logic-
reset state.

• Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS: 0b0111 1001 1110 0111, most significant bit

(MSb) first. This can be represented as 0x79E7, transmitted MSB first or 0xE79E, transmitted least significant
bit (LSb) first.

Programming Specification 16 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

• Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in SWD
operation before sending the select sequence, the SWD interface enters line reset state.

SWCLKTCLK

SWDIOTMS

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
At least 50

clocks with

SWDIOTMS

HIGH

JTAG-to-SWD sequence

At least 50

clocks with

SWDIOTMS

HIGH

Figure 6 JTAG-to-SWD sequence timing

To switch SWJ-DP from SWD to JTAG operation:

• Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in its
reset state. The SWD interface detects the 16-bit SWD-to-JTAG sequence only when it is in reset state.

• Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS: 0b0011 1100 1110 0111, MSb first. This can be

represented as 0x3CE7, transmitted MSb first or 0xE73C, transmitted LSb first.

• Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in JTAG
operation before sending the select sequence, the JTAG TAP enters the test-logic-reset state.

SWCLKTCLK

SWDIOTMS

0 1 1 1 1 0 0 1 1 1 0 0 1 1 1
At least 50

clocks with

SWDIOTMS

HIGH

SWD-to-JTAG sequence

At least 5

clocks with

SWDIOTMS

HIGH

0

Figure 7 SWD-to-JTAG sequence timing

For a more detailed description, see the “SWD and JTAG select mechanism” section in “ARM Debug Interface

Architecture Specification ADIv5.0 to ADIv5.2 (ARM IHI 0031C)”.

4.2.4 Hardware access commands

SWJ-DP supports several types of transactions: Interface selection, Target Selection, Read, Write, and Port
Reset. All are defined in the ARM specification. The APIs must be implemented by the Communication Interface

layer shown in Figure 4 on page 13. In addition, the upper protocol, Programming Algorithm, requires two

extra commands to manipulate the hardware: Power(state) and ToggleReset(). Table 2 lists the hardware
access commands used by the software layer.

Table 2 Hardware access commands

Command Parameters Description

DAP_JTAGtoSWD Standard ARM command to switch SWJ-DP from JTAG to
SWD operations. This sequence synchronizes the
programmer and chip; it is a first transaction in
programming flow if SWD protocol is used. See SWD/JTAG

selection for implementation details.

Programming Specification 17 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

Command Parameters Description

DAP_SWDtoJTAG Standard ARM command to switch SWJ-DP from SWD to

JTAG operations. This sequence synchronizes the
programmer and chip; it is a first transaction in

programming flow if JTAG protocol is used. See SWD/JTAG

selection for implementation details.

SWD_Write IN APnDP, IN addr, IN

data32,

OUT ack

Sends a 32-bit data to the specified register of the DAP using
SWD interface. The register is defined by the “APnDP” (1 bit)

and “addr” (2 bit) parameters. The DAP returns a 3-bit status

in “ack”.

SWD_Read IN APnDP, IN addr,

OUT data32, OUT ack,

OUT parity

Reads 32-bit data from the specified register of the DAP
using SWD interface. The register is defined by the “APnDP”

(1 bit) and “addr” (2 bit) parameters. DAP returns a 32-bit

data, status, and parity (control) bit of the read 32-bit word.

JTAG_Write IN APnDP, IN addr, IN

data32,

OUT ack

Sends a 32-bit data to the specified register of the DAP using
JTAG interface. The register is defined by the “APnDP” (1 bit)
and “addr” (2 bit) parameters. The DAP returns a 3-bit status

in “ack”.

JTAG_Read IN APnDP, IN addr,

OUT data32, OUT ack

Reads a 32-bit data from the specified register of the DAP
using JTAG interface. The register is defined by the “APnDP”

(1 bit) and “addr” (2 bit) parameters. DAP returns a 32-bit

data and status.

ToggleReset Generates the reset signal for PSoC 6 MCU. The programmer

must have a dedicated pin connected to the XRES pin of the

PSoC 6 MCU.

Power IN state If the programmer powers the PSoC 6 MCU, it must have this

function to supply power to the device.

For information on the structure of the SWD read and write packets and their waveform on the bus, see

Appendix C: Serial Wire Debug (SWD) Protocol. For information on the structure of the JTAG, see Appendix
D: Joint Test Action Group (JTAG) protocol.

The SWJ Read/Write commands allow accessing registers of the SWJ-DP module from Figure 6. The DAP
functionally is split into two control units:

• Debug Port (DP) – Is responsible for the physical connection to the programmer or debugger.

• Access Port (AP) – Provides the interface between the DAP module and one or more debug components
(such as the Cortex-M0+ CPU).

The external programmer can access the registers of these access ports using the following bits in the SWJ
packet:

• APnDP – Select access port (0 – DP, 1 - AP).

• ADDR – 2-bit field addressing a register in the selected access port

The SWJ Read/Write commands are used to access these registers. They are the smallest transactions that can
appear on the SWJ bus. Table 3 shows the DAP registers that are used during programming.

Programming Specification 18 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

Table 3 DAP registers (in ARM notation)

Register APnDP (1

bit)

Address (2-

bit)

Access (R/W) Full name

IDCODE 0 2’b00 R Identification Code Register

ABORT 0 2’b00 W AP ABORT Register

CTRL/STAT 0 2’b01 R/W Control/Status Register

SELECT 0 2’b10 W AP Select Register

RDBUFF 0 2’b11 R Data buffer register

CSW 1 2’b00 R/W Control Status/Word Register (CSW)

TAR 1 2’b01 R/W Transfer Address Register

DRW 1 2’b11 R/W Data Read/Write Register

For more information about these registers, see the ARM Debug Interface Architecture Specification ADIv5.0 to
ADIv5.2.

4.2.5 Pseudocode

This document uses easy-to-read C style pseudocode to show the programming algorithm. Pseudocode does

not include low-level algorithmic details such as variable definitions or error handling. Make sure to implement
error handling in the final code, which is typically to stop programming and return failure status if any
programming step fails.

The following two commands are used for the programming script:

Write_DAP (Register, data32)

Read_DAP (Register, OUT data32)

Where the Register parameter is an AP/DP register defined by APnDP and address bits (see Table 3). The

pseudo commands correspond to read or write SWJ transactions. Following are some examples:

Write_DAP (TAR, 0x08000000)

Write_DAP (DRW, 0x12345678)

Read_DAP (IDCODE, OUT swd_id)

The Register parameter technically can be represented as a structure in C:

struct DAP_Register {

 BYTE APnDP; // 1-bit field

 BYTE Addr; // 2-bit field

};

Programming Specification 19 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

Then, DAP registers will be defined as:

DAP_Register TAR = {1, 1},

 DRW = {1, 3},

 IDCODE = {0, 0};

The defined Write and Read pseudo commands are successful if both return the ACK status of the SWJ
transaction. For the Read transaction, the parity bit must be considered (corresponds to read data32 value). If

the status of the transaction or the parity bit is (or both are) incorrect, the transaction has failed. In this case,

depending on the programming context, programming must terminate or the transaction must be tried again.

The implementation of Write and Read pseudo commands based on the hardware access commands SWJ Read
and Write (Table 2 on page 16) is as follows.

//- DAP Read/Write subroutines --

SWJ_Status Write_DAP (Register, data32) {

 if (Interface == SWD)

 SWD_Write (Register.APnDP, Register.Addr, data32, OUT ack);

 else // Interface == JTAG

 JTAG_Write (Register.APnDP, Register.Addr, data32, OUT ack);

 return ack;

}

SWJ_Status Read_DAP (Register, OUT data32) {

 ack = ACK_FAIL;

 if (Interface == SWD) {

 SWD_Read (Register.APnDP, Register.Addr, OUT data32, OUT ack, OUT

parity);

 if (ack == 3'b001) { //ACK, then check the parity bit as well

 parityData32 = 0x00;

 for (i = 0; i < 32; i++)

 parityData32 ^= ((data32 >> i) & 0x01);

 if (parityData32 != parity)

 ack = 3'b111; //NACK

 }

 }

 else if (Interface == JTAG)

 JTAG_Read(Register.APnDP, Register.Addr, OUT data32, OUT ack);

Programming Specification 20 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

 return ack;

}

The programming code in Programming algorithm on page 23 is based mostly on the Write and Read pseudo
commands and some commands in Table 2 on page 16.

4.3 Physical layer

This section summarizes the hardware connection between the programmer and the PSoC 6 MCU for
programming. Figure 8 shows the generic connection between the PSoC 6 MCU and the programmer. See
Table 4 for pins/signals description.

Check the device datasheet for the part’s package pins location, electrical, and timing specifications.

Host

Programmer
VDD VDDD

TARGET

SWCLKTCLK

XRES

SWDIOTMS

GND

SWCLKTCLK

XRES

SWDIOTMS

VDD

GND

VSS

VBACKUP

VDDA

VDDIO0

VDDIO1

VDD_NSTDO

TDI

TDI

SWOTDO

(P6.7)

(P6.6)

(P6.5)

(P6.4)

S
W

D
J
T

A
G

VDDD

4.7K

Figure 8 Connection Schematic of Programmer

Table 4 Pins/signals description

Pin SWD JTAG Description

Signal name Mandatory Signal name Mandatory

SWCLKTC
LK

SWCLK

(Serial Wire

Clock)

YES TCLK

(Test Clock)

YES Data synchronization clock, driven
by the host

programmer/debugger.

Although the ARM specification
does not define the minimum

frequency of the SWD bus, the

minimum for the PSoC 6 MCU
family is 1.5 MHz. It is needed only

on the first step to acquire the
silicon during the boot window.
After that, programming frequency

can be as low as needed.

For SWD, the host should perform

all read or write operations on the
SWDIO line on the falling edge of
SWDCK. The PSoC 6 MCU performs

Programming Specification 21 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

Pin SWD JTAG Description

Signal name Mandatory Signal name Mandatory

read or write operations on SWDIO
on the rising edge of SWDCK.

For JTAG, the host writes to the
TMS and TDI pins of the PSoC 6
MCU on the falling edge of TCK

and the PSoC 6 MCU reads data on

its TMS and TDI lines on the rising
edge of TCK. PSoC 6 MCU writes to
its TDO line on the falling edge of

TCK and the host reads from the
TDO line of the PSoC 6 MCU on the

rising edge of TCK.

SWDIOTM
S

SWDIO

(Serial Wire

Data Input/
Output)

YES TMS

(Test Mode

Select)

YES SWDIO is a bidirectional data
input/output signal.

TMS is the JTAG Test Mode Select

signal, which is sampled at the

rising edge of TCK to determine
the next state.

SWOTDO SWO

(Serial Wire

Output)

NO TDO

(Test Data

Out)

YES SWO signal (also known as
TRACESWO) is required for Serial

Wire Viewer (SWV) and not

required for SWD programming. It

provides real-time data trace
information from the PSoC 6 MCU,

via the SWO pin, while the CPU
continues to run at full speed. Data

trace via SWV is not available using
the JTAG interface.

TDO signal represents the data
shifted out of the device’s test or
programming logic and is valid on

the falling edge of TCK when the

internal state machine is in the
correct state.

TDI - - TDI

(Test Data

In)

YES TDI signal represents the data
shifted into the device’s test or
programming logic. It is sampled
at the rising edge of TCK.

XRES XRES NO [1]
 XRES

(Reset)
NO [1]

 External reset active LOW signal.
The XRES is not related to the ARM
standard. It is used to reset the

1 XRES pin is mandatory for "Reset" PSoC 6 MCU acquisition mode, but not used for "Power Cycle" mode.

Programming Specification 22 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Protocol stack

Pin SWD JTAG Description

Signal name Mandatory Signal name Mandatory

(External
Reset)

part as a first step in a
programming flow.

Note: XRES pin/signal is not TRST
(Test Reset) signal for JTAG
Interface, which is the optional pin

that asynchronously resets only

the JTAG test logic.

GND GND

(Ground)

YES GND

(Ground)

YES Negative supply voltage (Ground)

VDD VDD

(Voltage
Drain Drain)

NO [2]
 VDD

(Voltage
Drain Drain)

NO [2]
 Positive supply voltage. The PSoC

6 MCU can be powered by external

power supply or by programmer.

You can program a chip in either Reset (recommended) or Power Cycle mode. The mode affects only the first

step - how to reset the part at the start of the programming flow. All other steps are the same.

• Reset mode: To start programming, the host toggles the XRES line and then sends SWD/JTAG commands
(see Table 2 on page 16). The power on the PSoC 6 MCU board can be supplied by the host or by an external

power adapter (the VDD line can be optional).

• Power Cycle mode: To start programming, the host powers on the PSoC 6 MCU and then starts sending the

SW/JTAG commands. The XRES line is not used.

The programmer should implement PSoC 6 MCU acquisition in Reset mode. It is also the only way to acquire
the PSoC 6 MCU if the board consumes too much current, which the programmer cannot supply. Power Cycle

mode support is optional and should be used only if a) the XRES pin is not available on the part’s package; or b)

the third-party programmer does not implement the XRES line, but can supply power to the PSoC 6 MCU.

2 VDD pin is mandatory for "Power Cycle" PSoC 6 MCU acquisition mode, where programmer powers the PSoC 6 MCU and external

power is not applied. For "Reset" acquisition mode, the source of power supplier does not matter, so the pin is optional.

Programming Specification 23 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

5 Programming algorithm

This chapter describes in detail the programming flow of the PSoC 6 MCU. It starts with a high-level description
of the algorithm and then describes every step using pseudocode. All code is based on upper-level subroutines
composed of atomic SWJ instructions (see “Pseudocode” on page 18). These subroutines are defined in

section “5.2 Constants and subroutines used in the programming flow” on page 24. The ToggleReset() and
Power() commands are also used (see Table 2 on page 16).

5.1 High-level programming flow

Figure 9 shows the sequence of steps that must be executed to program the PSoC 6 MCU. These steps are
described in detail in the following sections. All the steps in this programming flow must be completed

successfully for a successful programming operation. The programmer should stop the programming flow if

any step fails. In addition, in pseudocode, it is assumed that the programmer checks the status of each SWJ
transaction (Write_DAP, Read_DAP, WriteIO, ReadIO). This extra code is not shown in the programming script. If

any of these transactions fails, then programming must be aborted.

Flash programming in the PSoC 6 MCU family is implemented using the SROM API. The external programmer

puts the parameters into the SRAM (or registers) and requests system calls, which in turn perform flash
updates.

Step 1. Acquire Chip

Step 3. Erase Application Flash

Step 4. Verify Blank Checksum (optional)

Step 5. Program Application Flash

Step 6. Verify Application Flash

Step 7. Verify Checksum (optional)

Step 9. Program Sflash

Step 10. Program eFuse

START

FINISH

Step 2. Identify Silicon

Step 11. Verify eFuse (optional)

Step 8. Program AUXflash

Figure 9 High-level programming flow of PSoC 6 MCU

Programming Specification 24 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

5.2 Constants and subroutines used in the programming flow

To make the pseudocode easier to understand, many registers and frequently-used constants are named. The
defined symbols are used in the pseudocode. Following is the complete list of constants used in the

programming steps:

5.2.1 Constants

#if defined(PSOC6ABLE2)

/* Specific for CY8C6xx6 and CY8C6xx7 devices -------------------------------

-------*/

/* Base addresses */

#define MEM_SIZE_ROM 0x00020000 // Size of System ROM

#define MEM_BASE_IPC 0x40230000 // Base address for IPC

structures

#define MEM_VTBASE 0x402102B0 // CM0_VECTOR_TABLE_BASE

#define MEM_BASE_PPU4 0x40014100 // PPU[4] base address

/* IPC and Structures definitions */

#define IPC_INTR_STRUCT 0x40231000 // IPC_INTR structure

address

#define IPC_STRUCT_LOCK_STATUS_OFFSET 0x10 // IPC lock status

#elif defined(PSOC6A2M) || defined(PSOC6A512K) || defined(PSOC6A256K)

/* Specific for CY8C6xx4, CY8C6xx5, CY8C6xx8, CY8C6xxA devices --------------

-------*/

/* Base addresses */

#define MEM_SIZE_ROM 0x00010000 // Size of System ROM

#define MEM_BASE_IPC 0x40220000 // Base address for IPC

structures

#define MEM_VTBASE 0x40201120 // CM0_VECTOR_TABLE_BASE

#define MEM_BASE_PPU4 0x40010100 // PPU[4] base address

/* IPC and Structures definitions */

#define IPC_INTR_STRUCT 0x40221000 // IPC_INTR structure

address

#define IPC_STRUCT_LOCK_STATUS_OFFSET 0x1C // IPC lock status

#endif /* End of target-specific constants definition -----------------------

-------*/

Programming Specification 25 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

/* Base addresses */

#define MEM_BASE_ROM 0x00000000 // Base address of System

ROM

#define MEM_BASE_SRAM 0x08000000 // Base address of SRAM

#define MEM_BASE_FLASH 0x10000000 // Base address of

application flash

#define MEM_BASE_AUXFLASH 0x14000000 // Base address of

auxiliary flash

#define MEM_SIZE_AUXFLASH 0x00008000 // Size of auxiliary flash

#define MEM_BASE_SFLASH 0x16000000 // Base address of

supervisory flash

#define MEM_SIZE_SFLASH 0x00008000 // Size of supervisory

flash

/* IPC and Structures definitions */

#define IPC_INTR_STRUCT_SIZE 0x20

#define IPC_STRUCT_SIZE 0x20

#define IPC_STRUCT0 MEM_BASE_IPC // CM0+

IPC_STRUCT

#define IPC_STRUCT1 IPC_STRUCT0 + IPC_STRUCT_SIZE // CM4

IPC_STRUCT

#define IPC_STRUCT2 IPC_STRUCT1 + IPC_STRUCT_SIZE // DAP

IPC_STRUCT

#define IPC_STRUCT_ACQUIRE_OFFSET 0x00 // Used to acquire a lock

#define IPC_STRUCT_NOTIFY_OFFSET 0x08 // Used for Notification events

#define IPC_STRUCT_DATA_OFFSET 0x0C // 32-bit data element

#define IPC_STRUCT_LOCK_STATUS_ACQUIRED_MSK 0x80000000 // Is lock acquired

#define IPC_STRUCT_ACQUIRE_SUCCESS_MSK 0x80000000 // Is acquired

/* SROM API masks */

#define SROMAPI_DATA_LOCATION_MSK 0x00000001 // [0]: 1 - arguments IPC.DATA;

0 – in SRAM

#define SROMAPI_STATUS_MSK 0xF0000000

#define SROMAPI_STAT_SUCCESS 0xA0000000

/* Sys call IDs (SROM API Opcodes) */

#define SROMAPI_SILID_CODE 0x00000001 // SiliconId API code

#define SROMAPI_WRITEROW_CODE 0x05000100 // WriteRow API code

#define SROMAPI_PROGRAMROW_CODE 0x06000100 // ProgramRow API code

#define SROMAPI_ERASEALL_CODE 0x0A000001 // EraseAll API code

#define SROMAPI_ERASESECTOR_CODE 0x14000100 // EraseSector API code

#define SROMAPI_CHECKSUM_CODE 0x0B000001 // Checksum API code

#define SROMAPI_CHECKSUM_DATA_MSK 0x0FFFFFFF // Checksum mask

Programming Specification 26 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

#define SROMAPI_BLOW_FUSE_CODE 0x01000001 // BlowFuse API code

#define SROMAPI_READ_FUSE_CODE 0x03000001 // ReadFuse API code

#define SROMAPI_GENERATE_HASH_CODE 0x1E000000 // GenerateHASH API code

#define SROMAPI_CHECK_FACTORY_HASH_CODE 0x27000001 // CheckFactoryHASH API

code

#define SROMAPI_TRANSITION_TO_SECURE_CODE 0x2F000000 // TransitionToSecure

API code

/* Misc. */

// 0x08003000: Address of SRAM where the API’s parameters are stored by SW.

#define SRAM_SCRATCH_ADDR MEM_BASE_SRAM + 0x00003000

#define ROW_SIZE 512 // Flash Row Size

5.2.2 Subroutines

The programming flow includes some operations that are used in all steps. These are implemented as

subroutines in the pseudocode.

Table 5 Subroutines used in programming flow

Subroutine Description

bool WriteIO(addr32, data32) Writes 32-bit data into the specified address of the CPU address space.

Returns “true” if all SWJ transactions succeeded (ACKed).

bool ReadIO(addr32, OUT data

32)

Reads 32-bit data from the specified address of the CPU address space.
Note that the actual size of the read data (8, 16, or 32 bits) depends on the

setting in the CSW register of DAP (see Table 3). By default, all accesses

are 32 bits long.

Returns “true” if all SWDJ transactions succeeded (ACKed).

bool DAP_Handshake() Performs device handshake after the reset. Uses DAP_JTAGtoSWD or

DAP_SWDtoJTAG hardware access command to set the SWJ-DP in known

state and reads the DP.IDCODE register. This sequence is repeated until

read IDCODE register request is acknowledged or until timeout.

bool DAP_Init (apNum) Initialize the Debug Port for programing operations. Accepts Access Port

number as input parameter: 0 – System AP; 1 – CM0+ AP; 2 – CM4 AP.

bool DAP_ScanAP (OUT

apNum)

Scans the Access Ports for the first available with CPU registers access.

bool Ipc_PollLockStatus (ipcId,

 isLockExpected)

Depending on isLockExpected parameter, waits until LOCK status bit of

IPC structure is released or acquired. ipcId input parameter determines
the number of IPC structure (ipcId = 0 : CM0+ IPC_STRUCT; ipcId = 1 : CM4

IPC_STRUCT; ipcId = 2 : DAP IPC_STRUCT). Timeout is 1 second.

Returns “true” (success) if LOCK status bit corresponds to desired status;

otherwise, returns “false”.

bool Ipc_Acquire (ipcId) Acquires IPC structure. Timeout is 1 second. Returns “true” (success) if IPC

structure is acquired; otherwise, returns “false”.

bool PollSromApiStatus

(addr32,

Waits until the SROM function is completed and then checks its status.
addr32 is the address, where the SROM function status word is expected

Programming Specification 27 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

Subroutine Description

 OUT data32) (IPC_STRUCT.DATA field or address in RAM if parameters for SROM

function are passed in RAM). Timeout is 1 second.

Output parameter data32 is the status/result word, provided by SROM

function.

Returns “true” (success) if the command is completed and its status is

successful; otherwise, returns “false”.

bool CallSromApi

 (callIdAndParams, OUT

data32)

Executes SROM function. Input parameter is the API OpCode and

parameters word. Output parameter data32 is the status/result word,

provided by SROM function.

Returns “true” (success) if SROM function executed and returned success

status; otherwise, returns “false”.

The implementation of these subroutines follows. It is based on the pseudocode and registers defined in
“Hardware access commands” on page 16 and “Pseudocode” on page 18. It uses the constants defined in this

chapter.

//- CPU/MMIO registers Read/Write subroutines -------------------------------

bool WriteIO (addr32, data32) {

 ackOK = (Interface == SWD)? 3b’001 /*SWD*/: 3b’010 /*JTAG*/;

 ack1 = Write_DAP (TAR, addr32);

 ack2 = Write_DAP (DRW, data32);

 return (ack1 == ackOK) && (ack2 == ackOK);

}

bool ReadIO (addr32, OUT data32) {

 ackOK = (Interface == SWD)? 3b’001 /*SWD*/: 3b’010 /*JTAG*/;

 ack1 = Write_DAP (TAR, addr32);

 ack2 = Read_DAP (DRW, OUT data32);

 ack3 = Read_DAP (RDBUFF, OUT data32);

 return (ack1 == ackOK) && (ack2 == ackOK) && (ack3 == ackOK);

}

//- DAP initialization subroutines --

bool DAP_Handshake () {

 // Timeout waiting for debug interface becomes enabled after device reset

(tboot).

 // In worst case, when the boot code performs application HASH

verification,

 // tboot is around 600ms and depends on CPU clock used by boot code.

Programming Specification 28 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 // For PowerCycle, timeout depends on the design schematic and must be

longer.

 timeout = 3000 ms;

 ackOK = (Interface == SWD)? 3b’001 /*SWD*/: 3b’010 /*JTAG*/;

 targetID = (Interface == SWD)? 0x6BA02477 /*SWD*/: 0x6BA00477 /*JTAG*/;

 // Execute connection sequence – acquire port.

 // This is used as handshake between the debugger and target device.

 // Once the target device replied on request to read the IDCODE,

 // it means that the device is already booted after reset and ready to

communicate.

 do {

 if (Interface == SWD) DAP_JTAGtoSWD(); // SWD

 else DAP_SWDtoJTAG(); // JTAG

 ack = Read_DAP (IDCODE, OUT id);

 } while ((ack != ackOK) && (TimeElapsed < timeout));

 return (TimeElapsed <= timeout) && (id == targetID);

}

bool DAP_Init (apNum) {

 // Handshake (e.g. after reset)

 if (DAP_Handshake() == false) return false;

 if (Interface == JTAG) {

 // Power up debug port using the next bits in CTRL/STAT register:

 // [30]:CSYSPWRUPREQ and [28]:CDBGPWRUPREQ - power-up requests.

 // [5]:STICKYERR, [4]:STICKYCMP and [1]:STICKYORUN – sticky errors bits

 // Note: for JTAG, sticky error bits are read-write enabled and writing

‘1’

 // to these bits clears associated sticky errors.

 // For SWD, these bits are read-only and to clean the sticky errors,

 // you should write to appropriate bits of DP.ABORT register

 Write_DAP (CTRL/STAT, 0x50000032);

 }

 else { // SWD

 // Clear any Sticky Errors which could be left from previous sessions

 // Otherwise only power-down-up cycle helps to restore DAP.

 Write_DAP (ABORT, 0x0000001E);

 // Power up DAP

 Write_DAP (CTRL/STAT, 0x50000000);

Programming Specification 29 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 }

 // Select desired Access Port and set bank 0 in APACC space

 apSelect = apNum << 24;

 Write_DAP (SELECT, apSelect);

 // Set CSW (DbgSwEnable=0, Prot=0x23, SPIDEN=0, Mode=0x0, TrInProg=0,

 // DeviceEn=0, AddrInc=Auto-increment off, Size=Word (32 bits))

 // Note: Set Prot bits in DAP CSW register, because of no access to CPU

 // registers via M4 AP without these bits

 Write_DAP (CSW, 0x23000002);

 return true;

}

bool DAP_ScanAP (OUT apNum) {

 // Try all possible Access Ports

 // Scan only three APs [0]-[3], what is sufficient for MXS40 architecture.

 for (apNum = 0; apNum < 3; apNum++) {

 // Initializes DAP and selects Access Port with provided number

 if (DAP_Init (apNum) == false) continue;

 // Try to read CPUID register

 status = ReadIO (0xE000ED00, OUT data);

 // If the CPUID Implementer is ARM the Access Port is correct

 // (we have access to the ARM registers)

 if ((status == true) && ((data & 0xFF000000) == 0x41000000))

 return true;

 }

 return false;

}

Programming Specification 30 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

JTAGSWD
Interface ?

ack == ACK_OK
{SWD: “001”, JTAG: “010”}

ID == TargetId
{SWD: 0x6BA02477
JTAG: 0x6BA00477}

Timeout >= 3000 ms

DAP_Handshake (void)

DAP_JTAGtoSWD DAP_SWDtoJTAG

ack = Read_DAP (IDCODE, OUT id)

Return PASS Return FAIL

YES

NO YES

YES NO

NO

{Initialize DAP and select current AP}
DAP_Init(apNum)

apNum < 3

status = ReadIO (0xE000ED00, OUT data);

(status == true) && ((data &
0xFF000000) == 0x41000000))

NO

If
 w

e
h

a
ve

 a
cc

es
s

to
 C

P
U

ID

re
g

is
te

r
a

n
d

 C
P

U
ID

 Im
p

le
m

en
te

r
is

A

R
M

, t
h

e
A

cc
es

s
P

o
rt

 is
 c

o
rr

ec
t

apNum++

apNum = 0

DAP_ScanAP (OUT apNum)

Return PASS

YES

YES

Return FAIL

NO

 Write_DAP(ABORT, 0x0000001E)
 Write_DAP(CTRL/STAT, 0x50000000)

Write_DAP(CTRL/STAT, 0x50000032)

{Select desired Access Port and set bank 0}
ApSelect = apNum << 24
Write_DAP(SELECT, ApSelect)

JTAGSWD

Clear sticky errors and power up debug port

{Set 32-bit access and Prot bits}
Write_DAP(CSW, 0x23000002)

{Handshake (e.g. after reset)}
DAP_Handshake

Interface ?

DAP_Init (apNum)

Return PASS

Figure 10 DAP initialization subroutines

//- SROM API usage subroutines --

bool Ipc_PollLockStatus (ipcId, isLockExpected) {

 ipcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * ipcId;

 do{

 ReadIO (ipcAddr + IPC_STRUCT_LOCK_STATUS_OFFSET, OUT status);

 isLocked = (status & IPC_STRUCT_LOCK_STATUS_ACQUIRED_MSK) != 0;

 isExpectedStatus = (isLockExpected && isLocked) || (!isLockExpected &&

!isLocked)

 }

 while ((!isExpectedStatus) && (TimeElapsed < 1 sec))

 return (TimeElapsed <= 1 sec)? true /* OK */: false /* timeout */;

}

Programming Specification 31 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

//---

bool Ipc_Acquire (ipcId) {

 ipcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * ipcId;

 do {

 // Workaround for the SROM code issue. Write to IPC_ACQUIRE register may

 // fail because IPC structure is left protected by the PPU after previous

SROM API

 // call.

 status = ReadIO (MEM_BASE_PPU4, OUT NULL); // Ignore output value

 if(status == false) {

 DAP_Init(apNum);

 }

 // To acquire the IPC[2] (IPC structure for DAP),

 // debugger must write any value to IPC[2].ACQUIRE register.

 // The write operation acquires the lock. The write value is irrelevant.

 // Note: This write is NOT required for flash loaders (running on CM0+ or

CM4)

 status = WriteIO (ipcAddr + IPC_STRUCT_ACQUIRE_OFFSET,

 IPC_STRUCT_ACQUIRE_SUCCESS_MSK);

 // To acquire the IPC[0] (CM0) or IPC[1] (CM4) (e.g. in flash loaders)

 // Master must read IPC[x].ACQUIRE register

 // If the SUCCESS field returns a '1', the read acquired the lock.

 // If the SUCCESS field returns a '0', the read did not acquire the lock.

 // Note that a single read access performs two functions:

 // - The attempt to acquire a lock.

 // - Return the result of the acquisition attempt (SUCCESS field).

 ReadIO (ipcAddr + IPC_STRUCT_ACQUIRE_OFFSET, OUT status);

 status &= IPC_STRUCT_ACQUIRE_SUCCESS_MSK;

 }

 while ((status == 0) && (TimeElapsed < 1 sec))

 return (TimeElapsed <= 1 sec)? true /* OK */: false /* timeout */;

}

//---

bool PollSromApiStatus (addr32, OUT data32) {

Programming Specification 32 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 do {

 ReadIO (addr32, OUT data32);

 status = data32 & SROMAPI_STATUS_MSK;

 }

 while (status != SROMAPI_STAT_SUCCESS) && (TimeElapsed < 1 sec))

 return (TimeElapsed <= 1 sec)? true /* OK */: false /* timeout */;

}

//---

bool CallSromApi (callIdAndParams, OUT data32) {

 // Use IPC for CM0+ (IpcId = 0) if using flash loader running on CM0+ core

 // Use IPC for CM4 (IpcId = 1) if using flash loader running on CM4 core

 // Use IPC for DAP (IpcId = 2) if using external debugger

 ipcId = 2;

 ipcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * ipcId;

 // Check where the arguments for SROM function are located

 // [0]: 1 - arguments are passed in IPC.DATA. 0 - arguments are passed in

SRAM

 isDataInRam = (callIdAndParams & SROMAPI_DATA_LOCATION_MSK) == 0;

 // Acquire IPC_STRUCT[ipcId]

 if(Ipc_Acquire (ipcId) == false) return false;

 // Write one of the these to IPC_STRUCT[ipcId].DATA:

 // a) SROM function OpCode with Parameters (if all API parameters fit in

one word)

 // b) Address in SRAM, where they are located

 if (isDataInRam) WriteIO (ipcAddr + IPC_STRUCT_DATA_OFFSET,

SRAM_SCRATCH_ADDR);

 else WriteIO (ipcAddr + IPC_STRUCT_DATA_OFFSET, callIdAndParams);

 // Set IPC_INTR_STRUCT[0(CM0+)].INTR_MASK to enable notification interrupt

for

 // IPC_STRUCT[ipcId]. Read initial value first to restore other bits of

 // INTR_MASK field after system call

 intrMskDapEnabled = 1 << (16 + ipcId);

 ReadIO (IPC_INTR_STRUCT + IPC_INTR_STRUCT_INTR_MASK_OFFSET ,

&intrMskInitial);

 doWriteRestoreIntrMsk = intrMskInitial != intrMskDapEnabled;

Programming Specification 33 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 // Set just DAP enabled bit - do not OR it with initial mask, because of

other

 // enabled interrupts notifications may hurt programming if the user

application

 // running by 2nd core invokes system calls.

 if (doWriteRestoreIntrMsk)

 WriteIO (IPC_INTR_STRUCT + IPC_INTR_STRUCT_INTR_MASK_OFFSET,

intrMskDapEnabled);

 // Notify to IPC_INTR_STRUCT[0]. IPC_STRUCT[IpcId].MASK <- Notify

 // This starts SROM function execution

 WriteIO (ipcAddr + IPC_STRUCT_NOTIFY_OFFSET, 1 << 0 /*IPC_INTR_STRUCT0*/);

 // Poll lock status for released state

 if (Ipc_PollLockStatus(ipcId, false) == false) return false;

 // Poll Data word

 if (isDataInRam) status = PollSromApiStatus (SRAM_SCRATCH_ADDR, data32);

 else status = PollSromApiStatus (ipcAddr + IPC_STRUCT_DATA_OFFSET, data32);

 // Restore IPC_INTR_STRUCT[0(CM0+)].INTR_MASK if was modified

 if (doWriteRestoreIntrMsk)

 WriteIO (IPC_INTR_STRUCT + IPC_INTR_STRUCT_INTR_MASK_OFFSET,

intrMskInitial);

 return status;

}

5.3 Step 1.A – acquire PSoC 6 MCU

The first step in programming the PSoC 6 MCU is to put it into Test mode (or Programming mode). This is a
special mode in which the CPU is controlled by the external programmer, which can also access other system

resources such as SRAM and registers. The main purpose of this step is to prevent execution of user’s code from

the application flash region. After the user’s code starts, it can repurpose the SWJ pins [3] (use them as GPIO), so

the external debugger will not be able to communicate with the device. Additionally, if there is corrupted user

code in the application Flash region, CortexM0+ core may enter a lockup state. This step has strict timing

3 Application firmware is expected to follow this procedure for SWJ pin configuration:

a) Do not touch the configuration of the SWJ pins for parts that have a permanent SWD interface. They will be properly configured and

may have already connected to the SWD probe when the firmware starts.

b) For parts that repurpose their SWD pins:

• If the SWD interface is presently active (CPUSS_DP_STATUS.SWJ_CONNECTED bit is ‘1’), leave the pins in their current state; a

probe has connected during the acquire window and the pins should not be repurposed.

• If the SWD interface is not active, you may configure the pins and enable the alternate purpose.

Programming Specification 34 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

requirements that the host must meet to enter Test mode successfully. Figure 11 shows the timing diagram for
entering Test mode.

XRES

Internal

RESET

reset boot code host commandswait for port acquireCortex-M0+

SWD not connected
JTAG to

SWD

SWD

CONNECTED

set

TEST_MODE
available

TEST_MODE

txres tlite_up tboot tlisten

Setting TEST_MODE = 1

will prevent any customer

firmware from starting

Figure 11 Timing diagram for entering test mode

This diagram details the chip’s internal signals while entering Test mode. Everything starts from toggling the

XRES line (or applying power), so the chip enters Internal Reset mode for tlite_up period. After that, the system

boot code starts execution. When completed, the CPU waits during a tlisten period for a special connection

sequence on the SWJ port. If, during this time, the host sends the correct sequence of SWJ commands, the CPU
enters Test mode. Otherwise, it starts the execution of the user’s code from the application flash region. Timing
parameters may vary depending on boot code execution flow (see Table 6). Therefore, the best way to enter

Test mode is to start sending an acquire sequence immediately after XRES is toggled (or power is supplied in
Power Cycle mode). This sequence is sent iteratively until it succeeds (all SWJ transactions are ACKed and all

conditions are met).

Table 6 Boot timing parameters

Parameter Description Min Max Units

tlite_up Time from Reset release until CPU begins executing boot
code

- 250 µs

tboot Time from when boot code started execution until it opens

SWJ lines and starts waiting for TEST_MODE sequence. This
time varies depending on CPU clock, device lifecycle stage,
and amount of data for HASH verification by boot code for
SECURE application.

0.7 600 ms

tlisten Amount of time boot code waits and listens for the SWJ port
initialization sequence before starting the application

firmware execution. Note that the default duration of listen
window (tlisten) is 20 ms, but it may vary from 0 ms to 100 ms.
This can be configured by specific bits in the Table of
Contents Part 2 (TOC2).

0 100 ms

Programming Specification 35 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

Figure 12 shows the Acquire Chip procedure. It is detailed in terms of the SWD transaction. Note that the
recommended minimum frequency of the programmer is 1.5 MHz, which meets the timing requirement of this

step.

START

{Handshake, initialize DAP
and configure for System AP usage}

DAP_Init(0)

{Mandatory for acquisition in Test Mode}
XRES Toggle or Power Cycle

Success?

{Set TEST_MODE bit in TST_MODE reg.}
WriteIO(0x40260100, 0x80000000)

{Check TEST_MODE bit is set}
ReadIO(0x40260100, OUT dataOut)

data & 0x80000000

== 0x80000000

Return PASS

{Scan available Access Ports with CPU access
for further programming operations}

DAP_ScanAP(OUT ApNum)

Time critical.
Sequence must be
executed without

delays immediately
after reset

Return FAIL

NO

NO

YES

YES

{Check PC points to ROM or SFLASH}
WriteIO (0xE000EDF4, 0x0000000F);
ReadIO (0xE000EDF8, OUT pcVal);

(pcVal <= 0x1FFFF) ||
 ((pcVal >= 0x16000000) &&

(pcVal <= 0x16007FFF))

NO

YES

Figure 12 Flowchart of the acquire chip step

5.3.1 Pseudocode – Step 1.A. acquire chip

//---

// Reset Target depending on acquire mode – Reset or Power Cycle

if (AcquireMode == RESET) ToggleXRES(); // Toggle XRES pin, target must be

powered

else if (AcquireMode == POWER_CYCLE) PowerOn();// Supply power to target

// Do handshake between the debugger and target device after reset,

// Initialize the Debug Port and select System Access Port (AP[0])

DAP_Init (0);

Programming Specification 36 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// Enter CPU into Test Mode

// Set TEST_MODE bit in TST_MODE SRSS register

WriteIO (SRSS_TST_MODE, SRSS_TST_MODE_TEST_MODE_MSK);

// The steps above are very time critical and must be executed

// without delays immediately after reset.

// No hurry for further steps - target already acquired in Test Mode

// Scan for and initialize Access Port with CPU access for further operations

DAP_ScanAP (OUT ApNum);

// Check TEST_MODE bit is set

ReadIO (SRSS_TST_MODE, OUT dataOut);

if ((dataOut & SRSS_TST_MODE_TEST_MODE_MSK) == 0) return FAIL;

// Check PC – in Test Mode, it must point to address in ROM or in Sflash

WriteIO (0xE000EDF4, 0x0000000F);

ReadIO (0xE000EDF8, OUT pcVal);

if (((pcVal >= MEM_BASE_ROM) && (pcVal < (MEM_BASE_ROM + MEM_SIZE_ROM)))

 || ((pcVal >= MEM_BASE_SFLASH) && (pcVal < (MEM_BASE_SFLASH +

MEM_SIZE_SFLASH))))

 return PASS;

else return FAIL;

5.4 Step 1.B – acquire PSoC 6 MCU (alternate method)

The “Acquire Chip” sequence in the previous section is based on entering the PSoC 6 MCU test mode by

triggering a hard-reset condition, and then sending the acquire sequence within the specified time window.
The hard-reset condition is generated by toggling either the XRES pin or the power supply to the device.

Programming by entering test mode using XRES or power cycling is the recommended method for third-party
production programmers or any other general-purpose programmer.

There might be cases where the host programmer hardware or software constraints might prevent
programming of the device in test mode. These constraints can include:

• Host programmer hardware might be IO pin constrained and cannot spare an extra IO for toggling the XRES
pin or the power supply to the PSoC 6 MCU. Only the SWJ protocol pins are available for programming.

• The host programmer software application is unable to meet the timing requirements to enter PSoC 6 MCU
test mode after triggering a hard-reset condition. In such a scenario, the MCU enters the user code execution

mode after the test mode timing window elapses.

For a host programmer with any of the above constraints, the modified acquire-chip sequence provided in this
section does not require XRES/power supply toggling, and it does not have the test-mode timing requirements.
Only the SWJ protocol pins are used for programming. This modified sequence works only under the following
conditions:

Programming Specification 37 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

• The SWJ pins on the PSoC 6 MCU have not been repurposed for any other application-firmware-specific use.
If the SWJ pins are repurposed as part of the existing firmware image in flash memory, the SWJ pins are not

available for communication with the host SWJ interface to update the existing firmware image.

• The Access Restriction Properties allow SWJ access to the Access Debug Ports (Normal Access Restriction

properties are applicable if the device is in the Normal Protection state, Secure and Dead Access Restriction
properties are applicable if the device is in the Secure and Dead Protection state respectively).

Developers wanting to program devices using the modified sequence should be aware of these limitations.
Devices coming from the factory satisfy both the above-listed conditions, and hence can be programmed using
the modified acquire sequence. But if firmware not meeting any of the above conditions is programmed to the
PSoC 6 MCU, then subsequent re-programming of the device is not possible using the modified acquire

sequence. Due to this limitation, this method is not recommended for third-party programmers or general-
purpose programmers because they would generally be required to support programming under all possible

operating conditions.

Figure 13 on page 37 shows the acquire chip (alternate method) procedure.

ReadIO(MEM_VTBASE, OUT VTBase)
VTBase &= 0xFFFF0000

NO

{Optional - if debugger/protocol supports}
XRES Toggle or Power Cycle

Scan for available Access
Ports with CPU access. This

includes Handshake (wait for
device to boot after reset)

and DAP initialization

Do POR if possible

(VTBase != 0) &&
(VTBase != 0xFFFF0000)

{Get application address at reset vector}
ReadIO(VTBase+4, OUT ResetAddress)

YES

Check CPUSS_CM0_VECTOR_
TABLE_BASE. Zero or error
code there means that the

Flash is empty or TOC is
corrupted. In this case boot

code jumps to infinite loop in
ROM, what is sufficient

condition for programming.
Otherwise, application exists,

so need to do clean-up.

Halt CPU and enable debug
mode using the
DHCSR register

WriteIO(0xE000EDF0, 0xA05F0003);
ReadIO(0xE000EDF0, OUT DHCSR)

(DHCSR & 0x00000003) !=
0x00000003

NO

{ Enable Breakpoint unit }
WriteIO(0xE0002000, 0x00000003)
{ Map the address to the BP_COMP bit map }
ResetAddress &= 0x1FFFFFFC
ResetAddress |= 0xC0000001
{ Update the breakpoint comparator register }
WriteIO(0xE0002008, ResetAddress)
{ Issue software reset using the AIRCR }
WriteIO(0xE000ED0C, 0x05FA0004)

YES

Return FAIL

Set the breakpoint at reset
handler and wait for CPU to

hit the breakpoint after
software reset

Handshake (wait for device
to boot after reset), initialize
DAP and select Access Port

detected at initial steps}

Verify the debug and halt bits
are set in DHCSR. Polling is
required in order to wait till
boot code finished execution
(Listen Window closed) and

CPU halted at the user
application entry

ReadIO(0xE000EDF0, OUT DHCSR)

(DHCSR & 0x00000003) !=
0x00000003

NO

YES

{ Load infinite loop code into SRAM }
WriteIO(0x08000300, 0xE7FEE7FE)
{ Load PC with address of infinite loop
with thumb bit (bit 0) set }
WriteIO(0xE000EDF8, 0x08000301)
WriteIO(0xE000EDF4, 0x0001000F)
{ Load SP with top of SRAM address – Set for
minimum SRAM size devices (65 KB) }
WriteIO(0xE000EDF8, 0x0800FFF0)
WriteIO(0xE000EDF4, 0x00010011)
{ Read xPSR register, set the thumb bit, and
restore modified value to xPSR register }
WriteIO(0xE000EDF4, 0x00000010)
ReadIO(0xE000EDF8, OUT PsrRegVal)
PsrRegVal = PsrRegVal | 0x01000000
WriteIO(0xE000EDF8, PsrRegVal)
WriteIO(0xE000EDF4, 0x00010010)

Configure target for endless
loop execution in RAM

WriteIO(0xE0002000, 0x00000002)
WriteIO(0xE000EDF0, 0xA05F0001)

Disable the breakpoint unit
and unhalt CPU

Return PASS

NO
ResetAddress != 0

YES

A

Success?
NO

START

{Scan available Access Ports with CPU access for
further operations}

DAP_ScanAP(OUT ApNum)

Return PASS

Return FAIL

A

Return FAILSuccess?
NO

{Handshake, initialize DAP
and configure for correct AP usage}

DAP_Init(ApNum)

Timeout >= 110 ms
NO

Figure 13 Flowchart of the acquire chip step (alternate method)

5.4.1 Pseudocode – Step 1.B acquire chip (alternate method)

//---

// Reset Target depending on acquire mode – Reset or Power Cycle

Programming Specification 38 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// This step is optional – just to ensure silicon did not stuck in some error

state

if (AcquireMode == RESET) ToggleXRES(); // Toggle XRES pin, target must be

powered

else if (AcquireMode == POWER_CYCLE) PowerOn();// Supply power to target

// Scan for available Access Ports with CPU access.

// This includes Handshake (wait for device to boot after reset and DAP

initialization

success = DAP_ScanAp (OUT ApNum);

if (!success) return FAIL;

// Check CPUSS_CM0_VECTOR_TABLE_BASE. Zero or error code there means that the

Flash

// is empty or TOC is corrupted. In this case boot code jumps to infinite

loop in ROM

// or executes ‘dummy’ application, what is sufficient condition for

programming.

// Otherwise, user application exists, so need to do clean-up.

ReadIO (MEM_VTBASE, OUT vtBase);

vtBase &= 0xFFFF0000;

if ((vtBase == 0) || (vtBase == 0xFFFF0000)) return PASS;

// Get application address at reset vector

ReadIO (vtBase + 4, OUT resetAddress);

if (resetAddress == 0) return PASS;

// Enable debug, and halt the CPU using the DHCSR register

WriteIO (0xE000EDF0, 0xA05F0003);

// Verify the debug enable and CPU halt bits are set

ReadIO (0xE000EDF0, OUT DHCSR);

if ((DHCSR & 0x00000003) != 0x00000003) return FAIL;

// Enable Breakpoint unit using the BP_CTRL (Breakpoint Control Register)

// Set bits [0]: ENABLE =1, [1]: KEY=1

WriteIO (0xE0002000, 0x00000003);

// Map the address bits to the breakpoint compare register

// bit map, set the enable breakpoint bit, and the match bits

resetAddress = (resetAddress & 0x1FFFFFFC) | 0xC0000001;

//Update the breakpoint compare register

WriteIO (0xE0002008, resetAddress);

// Issue software reset using the AIRCR (Application Interrupt and Reset

Programming Specification 39 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// Control Register). Note: do not check for ACK_OK of this operation

WriteIO (0xE000ED0C, 0x05FA0004);

// Handshake (wait for device to boot after reset), initialize DAP

// and select Access Port detected at initial steps}

success = DAP_Init (ApNum);

// Verify the debug and halt bits are set in DHCSR.

// Polling is required in order to wait till boot code finished execution

// (Listen Window closed) and CPU halted at the user application entry

do {

 ReadIO (0xE000EDF0, OUT DHCSR);

} while (((DHCSR & 0x00000003) != 0x00000003)) && (TimeElapsed < 110 ms));

if (TimeElapsed >= 110 ms) return FAIL;

// Load infinite for loop code in SRAM address 0x08000300

WriteIO (0x08000300, 0xE7FEE7FE);

// Load PC with address of infinite for loop SRAM address with thumb bit (bit

0) set

WriteIO (0xE000EDF8, 0x08000301);

WriteIO (0xE000EDF4, 0x0001000F);

// Load SP with top of SRAM address – Set for minimum SRAM size devices (65

KB size)

WriteIO (0xE000EDF8, 0x0800FFF0);

WriteIO (0xE000EDF4, 0x00010011);

// Read xPSR register, set the thumb bit, and restore modified value to xPSR

register

WriteIO (0xE000EDF4, 0x00000010);

ReadIO (0xE000EDF8, OUT psrRegVal);

psrRegVal = psrRegVal | 0x01000000;

WriteIO (0xE000EDF8, psrRegVal);

WriteIO (0xE000EDF4, 0x00010010);

// Disable Breakpoint unit

WriteIO (0xE0002000, 0x00000002);

// Unhalt CPU

WriteIO (0xE000EDF0, 0xA05F0001);

return PASS;

Programming Specification 40 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

5.5 Step 2 – identify silicon

This step is required to identify the acquired PSoC 6 MCU verify that it corresponds to the input data file. It
reads the ID from the metadata section in file and compares it with the ID obtained from the PSoC 6 MCU, using

Silicon ID SROM function.

5.5.1 Pseudocode – Step 2. check silicon ID

//---

// Read “Silicon ID” from the target using SROM request

// Type 0: Get Family ID & Revision ID

opCode = SROMAPI_SILID_CODE + (0x0000FF00 & (0 << 8));

status = CallSromApi (opCode, OUT dataOut0);

if(!status) return FAIL;

// Type 1: Get Silicon ID and protection state

opCode = SROMAPI_SILID_CODE + (0x0000FF00 & (1 << 8));

status = CallSromApi(opCode, OUT dataOut1);

if (!status) return FAIL;

FamilyIdHi = (dataOut0 & 0x0000FF00) >> 8; // Family ID High

FamilyIdLo = (dataOut0 & 0x000000FF) >> 0; // Family ID Low

RevisionId = (dataOut0 & 0x00FF0000) >> 16; // Rev ID Major & Rev ID

Minor

SiliconIdHi = (dataOut1 & 0x0000FF00) >> 8; // Silicon ID High

SiliconIdLo = (dataOut1 & 0x000000FF) >> 0; // Silicon ID Low

ProtectState = (dataOut1 & 0x000F0000) >> 16; // Protection state: 0-

UNKNOWN,

 // 1- VIRGIN, 2- NORMAL, 3-

SECURE, 4- DEAD

LifeCycleStage = (dataOut1 & 0x00F00000) >> 20; // Life cycle stage: 0 -

VIRGIN,

 // 1 - NORMAL, 2- SEC_W_DBG,

3 -SECURE

// Identify Device Family:

// Device Family | Family ID | Si ID Range

// PSoC6A-BLE2 (CY8C6xx6, CY8C6xx7) | 0x100 | E200-E2FF

// PSoC6A-2M (CY8C6xx8, CY8C6xxA) | 0x102 | E400-E4FF

// PSoC6A-512K (CY8C6xx5) | 0x105 | E700-E7FF

// PSoC6A-256K (CY8C6xx4) | 0x10E | EAC0-EAFF

DeviceFamily = UNKNOWN;

if (FamilyIdHi == 0x01) {

Programming Specification 41 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 if ((FamilyIdLo == 0x00) && (SiliconIdHi == 0xE2))

 DeviceFamily = PSoC6ABLE2;

 else if ((FamilyIdLo == 0x02) && (SiliconIdHi == 0xE4))

 DeviceFamily = PSoC6A2M;

 else if ((FamilyIdLo == 0x05) && (SiliconIdHi == 0xE7))

 DeviceFamily = PSoC6A512K;

 else if ((FamilyIdLo == 0x0E) && (SiliconIdHi == 0xEA))

 DeviceFamily = PSoC6A256K;

}

if (DeviceFamily == UNKNOWN)

 return FAIL;

// Read “Silicon ID” from binary file, 4 bytes from address 0x9050 0002 (big

endian):

// fileID[0] - Silicon ID Hi

// fileID[1] - Silicon ID Lo

// fileID[2] - Revision ID

// fileID[3] - Family ID

fileID = FILE_ReadSiliconID(); // API must be implemented.

// Compare Family ID and Silicon ID with read from the data file

// Ignore Revision ID since it is not essential for programming; there are

many

// silicon revisions possible that do not change its functionality

if ((FamilyIdHi != fileID.FamilyIdHi) || (FamilyIdLo != fileID.FamilyIdLo) ||

 (SiliconIdHi != fileID.SiliconIdHi) || (SiliconIdLo !=

fileID.SiliconIdLo)

 return FAIL;

return PASS;

5.6 Step 3 – erase application flash

Flash must be erased before programming. This step erases all rows in application flash calling the EraseAll or
EraseSector SROM functions.

5.6.1 Pseudocode – Step 3. erase application flash

//---

// Read protection state from target device

// (0: UNKNOWN, 1: VIRGIN, 2: NORMAL, 3: SECURE, 4: DEAD)

opCode = SROMAPI_SILID_CODE + (0x0000FF00 & (1 << 8));

Programming Specification 42 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

CallSromApi (opCode, OUT dataOut);

protectState = (dataOut & 0x000F0000) >> 16;

// If silicon protection state is VIRGIN or NORMAL, use 'EraseAll' SROM

function

if ((chipProt == 1) || (chipProt == 2)) {

 status = CallSromApi (SROMAPI_ERASEALL_CODE, OUT dataOut);

}

else {

 // Otherwise (SECURE, DEAD...) use 'EraseSector' SROM function to erase

 // entire application flash by:

 // - 256 KB sectors (0x10000000, 0x10040000, 0x10080000 and 0x100C0000 for

 // target devices with 1MB of application flash memory

 // - 128 KB sectors (0x10000000 and 0x10020000 for target devices with

256KB of

 // application flash memory

 totalSectors = 4; // Use 2 for devices with 256/512 KB of application flash

 sectorSize = 0x40000; // Use 0x20000 for devices with 256 KB of application

flash

 for (long i = 0; i < totalSectors; i++) {

 // SRAM_SCRATCH: EraseSector SROM function OpCode

 WriteIO (SRAM_SCRATCH_ADDR, SROMAPI_ERASESECTOR_CODE);

 // SRAM_SCRATCH + 0x04: Flash address to be erased

 sectAddr = MEM_BASE_FLASH + i * sectorSize;

 WriteIO (SRAM_SCRATCH_ADDR + 0x04, sectAddr);

 status = CallSromApi (SROMAPI_ERASESECTOR_CODE, OUT dataOut);

 if (!status) break;

 }

}

return status;

5.7 Step 4 – verify blank checksum (optional)

This step uses the Checksum SROM function to verify that the checksum of erased application flash is 0x00. This
step is considered as optional, because the EraseAll and EraseSector SROM functions (used in the Erase
Application Flash step) always performs the checksum after the erase and returns error status if a non-zero
checksum is encountered.

5.7.1 Pseudocode – Step 4. verify checksum

//---

// Bytes 1 and 2 of the parameters select whether the checksum

Programming Specification 43 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// is performed on the whole flash, or a row of flash.

// The row of flash is determined by the Row Id Lo and Row Id Hi parameters.

opCode = SROMAPI_CHECKSUM_CODE +

 (0 << 22) + // Flash region: 0 – application, 1 - AUXflash, 2 -

Sflash

 (1 << 21) + // Whole flash: 0 – page, 1 – whole flash

 ((0 & 0x1FFF) << 8); // Row id Bits[20:8]

CallSromApi(opCode, OUT dataOut);

// Get checksum bits (skip SROM function status)

checksum = dataOut & SROMAPI_CHECKSUM_DATA_MSK;

// After the user’s flash is erased, its checksum must be 0x00

return (checksum == 0)? PASS : FAIL;

5.8 Step 5 – program application flash

Flash memory is programmed in rows. Each row is 512 bytes long. The programmer must serially program each
row individually. The source data is extracted from the binary file starting from address 0x1000 0000 (see
Figure 3 on page 11). The flash size and the row size are input parameters of this step. Note that the flash size

of the acquired silicon must be equal to the size of the user’s code in the binary file, as verified in Step 2 by

comparing the silicon IDs of the file and the PSoC 6 MCU. This step uses the ProgramRow SROM function.

Figure 14 illustrates this programming algorithm.

Programming Specification 44 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 RowSize = 512

 TotalRows = FlashSize / RowSize

START

RowID = 0

Read flash row from hex-file starting

from address: (RowID * RowSize)

Load row into SRAM buffer

Program row into the Flash using

SROM API – PROGRAM_ROW

Passed?

RowID ++

RowID >= TotalRows
NO

Return PASS

YES

Return FAIL

NO

YES

Figure 14 Flowchart of the “program application flash” step

5.8.1 Pseudocode – Step 5. program application flash

//---

// Flash Size must be provided.

totalRows = FlashSize / ROW_SIZE;

// Program all rows of the application flash

for (rowID = 0; rowID < totalRows; rowID++) {

 flashStartAddr = MEM_BASE_FLASH + rowID * ROW_SIZE;

 // 1. Extract 512-byte row from the data file from address "flashStartAddr"

and put

 // into buffer. FILE_ReadData API must be implemented by Programmer.

 data[] = FILE_ReadData(flashStartAddr, ROW_SIZE);

 // 2. Prepare ProgramRow SROM funtion

Programming Specification 45 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 // SRAM_SCRATCH: OpCode

 WriteIO (SRAM_SCRATCH_ADDR, SROMAPI_PROGRAMROW_CODE);

 // SRAM_SCRATCH + 0x04: Data location/size and Integrity check

 params =

 (6 << 0) + // Data size: 6 - 512b

 (1 << 8) + // Data location: 1 - SRAM

 (0 << 16) + // Verify row: 0 - Data integrity check is not

performed

 (0 << 24); // Not used

 WriteIO (SRAM_SCRATCH_ADDR + 0x04, params);

 // SRAM_SCRATCH + 0x08: Flash address to be programmed

 WriteIO (SRAM_SCRATCH_ADDR + 0x08, flashStartAddr);

 // SRAM_SCRATCH + 0x0C: Pointer to the first data byte location

 dataRamAddr = SRAM_SCRATCH_ADDR + 0x10;

 WriteIO (SRAM_SCRATCH_ADDR + 0x0C, dataRamAddr);

 // Load row bytes into SRAM buffer

 for (i = 0; i < ROW_SIZE|| i < sizeof(data); i += 4) {

 dataWord = (data[i + 3] << 24) +

 (data[i + 2] << 16) +

 (data[i + 1] << 8) +

 (data[i] << 0);

 WriteIO (dataRamAddr + i, dataWord);

 }

 // 3. Call ProgramRow SROM function

 status = CallSromApi(SROMAPI_PROGRAMROW_CODE, OUT DataOut);

 if (!status) return FAIL;

}

return PASS;

5.9 Step 6 – verify application flash

Because the checksum is verified eventually and cannot completely guarantee that the content is written
without errors, this step should be kept in the programming flow for higher reliability.

During verification, the programmer reads a row from flash and the corresponding data from the binary file and
compares them. If any difference is found, the programmer must stop and return a failure. Each row must be
considered.

Reading from the flash is achieved by direct access to the memory space of the CPU. No SROM functions are
required; simply read the word (32 bits) from the address range 0x10000000 to 0x10000000 + FlashSize – 4. For
example:

ReadIO (0x10000000, OUT flashWord);

Programming Specification 46 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

ReadIO (0x10000004, OUT flashWord);

…

ReadIO (0x100FFFFC, OUT flashWord);

Figure 15 illustrates the verification algorithm.

 RowSize = 512

 TotalRows = FlashSize / RowSize

START

RowID = 0

Read flash row from hex-file starting

from address: (MEM_BASE_FLASH +

RowID * RowSize)

Read row from the Flash. Use direct

access to AHB – read from flash

address space by 4-byte words.

File Row == Flash Row

RowID ++

Return PASS Return FAIL

RowID >= TotalRows
NO

YES

YES

NO

Figure 15 Flowchart of the “verify application flash” step

5.9.1 Pseudocode – Step 6. verify application flash

// Flash Size must be provided.;

totalRows = FlashSize / ROW_SIZE;

// Read and Verify Flash rows

for (int rowID = 0; rowID < totalRows; rowID++) {

 //1. Read row from data file

 rowAddress = MEM_BASE_FLASH + rowID * ROW_SIZE; //line address of row in

flash

 // Extract 512-byte row from the binary file into buffer.

 // FILE_ReadData API must be implemented by Programmer.

 fileData[] = FILE_ReadData (rowAddress, ROW_SIZE);

Programming Specification 47 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 //2. Read row from chip

 for (i = 0; i < ROW_SIZE; i += 4) {

 //Read flash via AHB-interface

 ReadIO (rowAddress + i, OUT dataOut);

 chipData[i + 0] = (dataOut >> 0) & 0xFF;

 chipData[i + 1] = (dataOut >> 8) & 0xFF;

 chipData[i + 2] = (dataOut >> 16) & 0xFF;

 chipData[i + 3] = (dataOut >> 24) & 0xFF;

 }

 //3. Compare them

 for (i = 0; i < ROW_SIZE; i++)

 if (chipData[i] != fileData[i]) return FAIL;

}

return PASS;

5.10 Step 7 – verify checksum (optional)

This step validates the result of the flash programming process. It calculates the checksum of the user rows
written in Step 5 (Checksum SROM function is used) and compares this value with the 2-byte checksum from
the metadata section (if it exists) in input data file. The checksum operation cannot completely guarantee that

the data is written correctly. For this reason, the Verify Flash step is also recommended.

5.10.1 Pseudocode – Step 7. verify checksum

//---

// Use Checksum SROM function to get the checksum of whole application flash

// Bytes 1 and 2 of the parameters select whether the checksum

// is performed on the whole flash, or a row of flash.

// The row of flash is determined by the Row Id Lo and Row Id Hi parameters.

opCode = SROMAPI_CHECKSUM_CODE +

 (0 << 22) + // Flash region: 0 – application, 1 - AUXflash, 2 -

Sflash

 (1 << 21) + // Whole flash: 0 – page, 1 – whole flash

 ((0 & 0x1FFF) << 8);// Row id Bits[20:8]

status = CallSromApi (opCode, OUT dataOut);

if(!status) return FAIL;

// Get checksum bits (skip SROM function status)

checksum = dataOut & SROMAPI_CHECKSUM_DATA_MSK;

Programming Specification 48 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// Read 2-byte checksum of user code from input data file

fileChecksum = FILE_ReadChecksum(); // API must be implemented by Programmer.

// Compare silicon's vs file's checksum

return ((checksum & 0xFFFF) == fileChecksum)? PASS : FAIL;

5.11 Step 8 – program and verify AUXflash

Auxiliary flash (AUXflash) can store application-specific information and can be programmed using the same
SROM functions as the application flash. However, ProgramRow SROM function, used for the application flash
programming, requires the flash row to be in the erased state, which is satisfied by performing the Erase

Application Flash step. However, that step erases only the application flash region.

The WriteRow SROM function is used for AUXflash programming. This API includes an erase row step in its
execution flow, so does not require the flash row to be erased in advance.

AUXflash rows are not stored in the binary file by default, so if your workflow requires that the AUXflash data be
in the binary file, the linker scripts should contain an appropriate section (starting at 0x1400 0000), and the data

for this section should be properly defined. Alternatively, the user application can update the AUXflash region
whenever needed (CPU access via SROM API) - for example, to store calibration data, non-volatile parameters,
and so on.

AUXflash rows are the same size as the rows in the application flash region (512 bytes) and mapped to the

CPU’s address space in the range 0x1400 0000 - 0x1400 7FFF. Therefore, the user application can read these
rows directly from these addresses.

Figure 16 illustrates the programming algorithm for AUXflash and Sflash regions.

 RowSize = 512

 TotalRows = MEM_SIZE_<flash bank> / RowSize

START

RowID = 0

Read flash row from data file

 @ address:

MEM_BASE_<flash bank> + RowID * RowSize

Load row into SRAM buffer

Program row into the Flash using

SROM API – WRITE_ROW

NO

Return PASS

YES

Return FAIL
NO

YES

Passed ?

++RowID >= TotalRows

Figure 16 Flowchart of "program and verify AUXflash" step

Programming Specification 49 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

5.11.1 Pseudocode. Step 8 – program and verify AUXflash

//---

// This is an entry point of the “Program and Verify AUXflash” step, which

programs

// and verifies “User area” AUXflash region (sixty-four rows starting @

0x14000000)

totalRows = MEM_SIZE_AUXFLASH / ROW_SIZE;

for (int towID = 0; rowID < totalRows; rowID++) {

 address = MEM_BASE_AUXFLASH + rowID * ROW_SIZE

 status = WriteFlashRowFromFile (address);

 if (!status) return FAIL;

 status = CompareFlashRowWithFile (address);

 if (!status) return FAIL;

}

//- AUXflash and Sflash programming and verification subroutines ------------

WriteFlashRowFromFile (address) {

 // WriteFlashRowFromFile subroutine extracts 512 bytes of data (one flash

row) from

 // the input binary file and programs it to the flash bank at provided

address, using

 // the WriteRow SROM function.

 // Read flash data from binary file. Function must be implemented and

return requested

 // number of bytes starting at provided address. Missed data must be padded

to the size

 // of flash row (512 bytes) with the flash erase value (‘0’).

 data[] = FILE_ReadData(address, ROW_SIZE);

 if (sizeof(data) < ROW_SIZE) return PASS; // No data in file at given

address

 // Prepare WriteRow SROM function

 // SRAM_SCRATCH: OpCode

 WriteIO (SRAM_SCRATCH_ADDR, SROMAPI_WRITEROW_CODE);

 // SRAM_SCRATCH + 0x04: Data location/size and Integrity check

 params = (6 << 0) + // Data size: 6 - 512b

Programming Specification 50 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 (1 << 8) + // Data location: 1 - SRAM

 (0 << 16) + // Verify row: 0 - Data integrity check is not

performed

 (0 << 24); // Not used

 WriteIO (SRAM_SCRATCH_ADDR + 0x04, params);

 // SRAM_SCRATCH + 0x08: Flash address to be programmed

 WriteIO (SRAM_SCRATCH_ADDR + 0x08, address);

 // SRAM_SCRATCH + 0x0C: Pointer to the first data byte location

 dataRamAddr = SRAM_SCRATCH_ADDR + 0x10;

 WriteIO (SRAM_SCRATCH_ADDR + 0x0C, dataRamAddr);

 // Load Row bytes into SRAM buffer

 for (i = 0; i < ROW_SIZE || i < sizeof(data); i += 4) {

 dataWord = (data[i + 3] << 24) +

 (data[i + 2] << 16) +

 (data[i + 1] << 8) +

 (data[i]);

 WriteIO (dataRamAddr + i, dataWord);

 }

 // Call WriteRow SROM function

 status = CallSromApi(SROMAPI_WRITEROW_CODE, OUT dataOut);

 if (!status) return FAIL;

 return PASS;

}

CompareFlashRowWithFile (address) {

 // CompareFlashRowWithFile subroutine extracts 512 bytes (row) of data from

the

 // input binary file and compares it to the data read from target’s flash

 // Read flash data from binary file. Function must be implemented and

return requested

 // number of bytes starting at provided address. Missed data must be padded

to the size

 // of flash row (512 bytes) with the flash erase value (‘0’).

 fileData[] = FILE_ReadData(address, ROW_SIZE);

 if (sizeof(fileData) < ROW_SIZE) return PASS; // No data in file at given

address

 // Read row of data (512 bytes) from target device

 for (i = 0; i < ROW_SIZE; i += 4) {

Programming Specification 51 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 // Read word of data (four bytes) from target’s flash via AHB-interface

 ReadIO (address + i, OUT dataOut);

 chipData[i + 0] = (dataOut >> 0) & 0xFF;

 chipData[i + 1] = (dataOut >> 8) & 0xFF;

 chipData[i + 2] = (dataOut >> 16) & 0xFF;

 chipData[i + 3] = (dataOut >> 24) & 0xFF;

 }

 // Compare data byte in device with the data byte in file

 for (i = 0; i < ROW_SIZE; i++)

 if (chipData[i] != fileData[i]) return FAIL;

}

5.12 Step 9 – program and verify Sflash

The “User area” in supervisory flash region (Sflash) of the PSoC 6 MCU can store various application-specific

data such as calibration data, non-volatile parameters, etc. Sflash also includes several programmable sub-
regions (such as NAR, Public Key and TOC2) defined for usage by the boot process and user application for

device initialization, protection and data integrity validation purposes. Refer to section 2.3 for the address
ranges in Sflash region that can be programmed.

Sflash can be programmed using an approach like Auxiliary flash (AUXflash). The Sflash rows are the same

size as the rows in the application flash region (512 bytes) and mapped to the CPU’s address space. Therefore, a

user application can read these rows directly from these addresses.

Sflash rows are not stored in the binary file by default, so if your workflow requires that the Sflash data be in the
binary file, the linker scripts must contain appropriate sections and the data for these sections must be
properly defined. Alternatively, the user application can update the Sflash region whenever needed (CPU

access via SROM API). During mass production, a vendor should define the programming process—where to get

Sflash data and at which row/address to store it.

5.12.1 Pseudocode. Step 9 - program and verify Sflash

//---

// This is an entry point of the “Program and Verify Sflash” step.

// Program and verify “User area” SFlash sub-region (four rows starting @

0x16000800)

for (int towID = 0; rowID < 4; rowID++) {

 address = 0x16000800 + rowID * ROW_SIZE

 status = WriteFlashRowFromFile (address);

 if (!status) return FAIL;

 status = CompareFlashRowWithFile (address);

 if (!status) return FAIL;

}

Programming Specification 52 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// Program and verify “NAR” SFlash sub-region (one row starting @ 0x16001A00)

address = 0x16001A00 + rowID * ROW_SIZE

status = WriteFlashRowFromFile (address);

if (!status) return FAIL;

status = CompareFlashRowWithFile (address);

if (!status) return FAIL;

// Program and verify “Public Key” SFlash sub-region (six rows starting @

0x16005A00)

for (int towID = 0; rowID < 6; rowID++) {

 address = 0x16005A00 + rowID * ROW_SIZE

 status = WriteFlashRowFromFile (address);

 if (!status) return FAIL;

 status = CompareFlashRowWithFile (address);

 if (!status) return FAIL;

}

// Program and verify “TOC2”/“RTOC2” SFlash sub-regions (two rows starting @

0x16007C00)

for (int towID = 0; rowID < 2; rowID++) {

 address = 0x16005A00 + rowID * ROW_SIZE

 status = WriteFlashRowFromFile (address);

 if (!status) return FAIL;

 status = CompareFlashRowWithFile (address);

 if (!status) return FAIL;

}

5.13 Step 10 – program eFuse

At this point, the programmer writes protection and user defined data into eFuse memory: Life Cycle stage,

Secure HASH and HASH Zeros, Secure, and Dead Access restrictions and Customer Data. A warning message

should be provided when eFuses are being programmed because after they are programmed, they cannot be

changed.

eFuse memory can be logically divided into two parts: Protection settings and Customer Data. The difference is

that the Protection settings intended to govern protection of the chip, and Customer Data is dedicated for
customer usage e.g. to store cryptographic keys or part identification information. Customer Data

programming must be done before Protection settings, since eFuse programming is locked once chip is moved

to the Secure state.

eFuse memory starts in address 32’h9070 0000 in the binary file and can contain the next fields: Life Cycle stage,

Secure and Dead Access Restriction properties and Customer Data. Secure HASH and HASH Zeros are
calculated run-time right before Life Cycle stage transition.

Programming Specification 53 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

The eFuse Programming must be the last step in the programming flow, the Table of Contents and all data
included in the HASH verification must be programmed before this step. If this data is changed when the Secure

bit is blown, the PSoC 6 MCU will go to the Dead state.

Figure 17 shows the sequence to program the protection settings in eFuse.

Refer to the “Device Security” and “Protection Units” sections of the technical reference manual (TRM) for more
details of the security settings for the PSoC 6 MCU.

 (file[offset] == 0x00) ||
 (file[offset] == 0x01) ||
 (file[offset] == 0xFF)

++offset >= sizeof(file)

Verify input data
One fuse in the target device
is represented by one byte in
data file:
 0x00 - NOT BLOWN
 0x01 - BLOWN
 0xFF – IGNORE

Return FAIL

NO

YES

Verify not blown fuses
If byte value in data file
is 0x00 (NOT BLOWN),
associated eFuse in target
device must not be blown

VDDIO == 2.5V +/- 5%

Verify voltage
Programming fuses requires
the associated I/O supply to
be at a specific level: the
VDDIO0 (or VDDIO if only
one VDDIO is present in the
package) supply of the
device must be 2.5 V (±5%).

YES

YES

offset = 0

St
a

g
e

1
. R

ea
d

 a
n

d
 v

a
lid

a
te

 in
p

u
t

d
a

ta
, c

h
ec

k
vo

lt
a

g
e

Skip undesirable fuses
- Skip fuses defined in data
 file as 0xFF (IGNORE)

- Skip Protection settings
 for now.

{Convert virtual address in data file to fuse
 byte and bit offsets in target memory}

EFUSE_FileAddrToFuseOffset(offset,
 OUT fuseByteOffset, OUT fuseBitOffset)

{Read eFuse bit from target device}
EFUSE_ReadBit(fuseByteOffset,

 fuseBitOffset, OUT bitValue)

 {Blow fuse in target device}
 EFUSE_BlowBit(
 fuseByteOffset, fuseBitOffset)

 {Read eFuse bank from the data file}
 file[] = FILE_ReadData(
 0x90700000, 0x400)

NO

YES

 (file[offset] != 0xFF) &&
 (!EFUSE_IsSecure(offset))

file[offset] == ?

bitValue == 0

NO

NO

YES

++offset >= sizeof(file)

YES

NO

St
a

g
e

2
. P

ro
g

ra
m

 a
ll

ex
ce

p
t

th
e

P
ro

te
ct

io
n

 s
et

ti
n

g
s

u
se

d
 in

 s
ta

g
e

3
.

bitValue == 0

0x00

0x01

YESNO
Blow fuse
If byte value in the data file
is 0x01 (BLOWN) and
associated eFuse in target
memory is not blown yet,
blow it

START

NO

St
a

g
e

3
. T

ra
n

si
ti

o
n

 t
o

 S
ec

u
re

 {Get Life Cycle from the data file}
 EFUSE_GetFileWord(file[],
 0x2B * 8, 8, OUT fileLifeCycleByte)
 EFUSE_ByteToLifeCycle(
 fileLifeCycleByte, OUT fileLifeCycle)

A

NO

fileLifeCycle != VIRGIN
NO

Return FAIL

YES

 chipLifeCycele != fileLifeCycle

No Life Cycle in file or it
is equal to ‘0’ - VIRGIN

Chip is already in
requested stage

chipLifeCycle == NORMAL

(fileLifeCycle == SECURE) ||
(fileLifeCycle == SECURE_D)

YES

YES

NO

NO

Verify transition path
PSoC 6 supports only
NORMAL to SECURE or
NORMAL to SECURE_WITH
_DEBUG transition. Other
transitions (including VIRGIN
to NORMAL) are not
recommended outside of
factory - when performing
such transition, device must
be trimmed and contain
valid hash arrays. Otherwise,
it will become not operable.

YES

 {Verify factory hash and factory hash zeros}
 SromApiCheckFactoryHash()
 EFUSE_CheckFactoryHashZeros()

 {Read SECURE_HASH and SECURE_HASH_ZEROS}
 SromApiGenerateHash(
 OUT hash[], OUT hashZeros[])

 {Blow SECURE_HASH: 16 bytes at offset 0x14 }
 EFUSE_BlowBytes(hash[], 0x14, 16)

 {Blow SECURE_HASH_ZEROS: 1 byte at offset 0x26}
 EFUSE_BlowBytes(hashZeros[], 0x26, 1)

fileLifeCycle == SECURE

bitOffset = 2 bitOffset = 1

YES

NO

 {Blow appropriate bit in LIFECYCLE_STAGE}
 EFUSE_BlowBit(0x2B, bitOffset)

Return PASS

 {Get DEAD_ACCESS_RESTRICT from the file}
 EFUSE_GetFileWord(file[],
 0x27 * 8, 16, OUT deadAccessRestr)

 {Get SECURE_ACCESS_RESTRICT from the file}
 EFUSE_GetFileWord(file[],
 0x29 * 8, 16, OUT secureAccessRestr)

 {Use SROM API to perform:
 1. Hash verification
 2. Blow Secure and Dead Access Restrictions
 3. Blow appropriate bit in LIFECYCLE_STAGE.}
 SromApiTransitionToSecure(fileLifeCycle,
 secureAccessRestr, deadAccessRestr)

Target ?

N
o

te
: s

to
p

 a
n

d
 r

et
u

rn
 F

A
IL

 if
 a

n
y

o
f

th
is

 o
p

er
a

ti
o

n
s

fa
ile

d

PSoC6A-2M/512KPSoC6A-BLE2

CY8C6xx6,
CY8C6xx7

CY8C6xx5,
CY8C6xx8,
CY8C6xxA

(T
h

is
 in

cl
u

d
es

 C
u

st
o

m
 D

a
ta

 f
o

r
a

ll
ta

rg
et

s
a

n
d

 a
cc

es
s

re
st

ri
ct

io
n

s
fo

r
P

So
C

6
A

-B
LE

2
 o

n
ly

)

Read eFuse data from file
Function must return 0x400
bytes in address range
0x90700000 to 0x907003FF.
Missed data must be filled
with ‘0xFF’ (IGNORE) bytes.

offset = 0

 {Read Life Cycle from target device}
 SromApiSiliconId(OUT chipLifeCycleByte)
 EFUSE_ApiResultToLifeCycle(
 chipLifeCycleByte, OUT chipLifeCycle)

 (chipLifeCycle == NORMAL) ||
 (chipLifeCycle == VIRGIN)

NO
Verify chip Life Cycle
eFuse blowing is possible in
NORMAL or VIRGIN Life Cycle

A
YES

(PSoC6A512K) ||
(PSoC6A2M rev. >= A1)

 {Set ENABLE_FLASH_BOOT_CHECK_IN_NORMAL
 bits - least significant bits (four in total) in
 FACTORY_HASH[12-15] bytes}
 EFUSE_BlowBit(0x38, 0);
 EFUSE_BlowBit(0x39, 0);
 EFUSE_BlowBit(0x3A, 0);
 EFUSE_BlowBit(0x3B, 0);

YES

NO

Figure 17 Flowchart of the “program eFuse” step

5.13.1 Pseudocode – Step 10. program eFuse

//---

// This is an entry point of the “Program eFuse” step.

// Pseudo-code is simplified for better readability - make sure to stop

execution and

// return FAIL status in case any operation failed.

Programming Specification 54 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

// --- Stage 1. Read and validate input data, check voltage and Life Cycle

stage ---

// Read eFuse data from binary file. Function must be implemented and return

0x400 bytes

// in address range 0x90700000 to 0x907003FF.

// Missed data must be filled with 0xFF (IGNORE).

file[] = FILE_ReadData (0x90700000, 0x400);

// Verify input data. One fuse in the target device is represented by one

byte in file:

// 0x00 - NOT BLOWN, 0x01 – BLOWN, 0xFF – IGNORE

for (int offset = 0; offset < sizeof(file); offset ++)

 if ((file[offset] != 0x00) && (file[offset] != 0x01) && (file[offset] !=

0xFF))

 return FAIL;

// Verify voltage. Programming fuses requires the associated I/O supply to be

at a specific

// level: the VDDIO0 (or VDDIO if only one VDDIO is present in the package)

supply of the

// device must be 2.5 V (±5%). Function must be implemented.

VerifyVddio();

// Verify chip Life Cycle. eFuse blowing is possible in NORMAL or VIRGIN Life

Cycle

CallSromApi (SROMAPI_SILID_CODE + (0x0000FF00 & (1 << 8)), OUT dataOut);

chipLifeCycleByte = (dataOut & 0x00F00000) >> 20; // Life cycle stage

EFUSE_ApiResultToLifeCycle (chipLifeCycleByte, OUT chipLifeCycle);

if ((chipLifeCycle != VIRGIN) && (chipLifeCycle != NORMAL)) return FAIL;

// --- Stage 2. Program all except the Protection settings used in stage 3. -

--

for (int offset = 0; offset < sizeof(file); offset ++) {

 // Skip fuses defined in file as 0xFF (IGNORE) and skip (for now)

Protection settings.

 if ((file[offset] == 0xFF) || EFUSE_IsSecure(offset)) continue;

 // Convert virtual address in file to fuse byte and bit offsets in target

memory and

 // read associated fuse from target device

 EFUSE_FileAddrToFuseOffset (offset, OUT fuseByteOffset, OUT fuseBitOffset);

Programming Specification 55 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 EFUSE_ReadBit (fuseByteOffset, fuseBitOffset, OUT bitValue);

 if (file[offset] == 0x00 /* NOT BLOWN */) {

 // If byte value in data file is 0, associated fuse in target device must

not be blown

 if (bitValue != 0x00) return FAIL;

 }

 else if (bitValue == 0x00) {

 // Blow fuse in target device if associated byte value in the file is

0x01 (BLOWN)

 // and the fuse is not blown yet

 EFUSE_BlowBit (fuseByteOffset, fuseBitOffset);

 }

}

// --- Stage 3. Transition to Secure ---

// Get Life Cycle from the file

EFUSE_GetFileWord (file[], 0x2B * 8, 8, OUT fileLifeCycleByte);

EFUSE_LifeCycleByteToEnum (fileLifeCycleByte, OUT fileLifeCycle);

// Skip Protection settings programming if no Life Cycle in data file or it

is equal to

// 0x00 (VIRGIN) or if chip is already in requested stage

if ((fileLifeCycle == VIRGIN)||(fileLifeCycle == chipLifeCycle)) return PASS;

// Verify transition path. PSoC 6 supports only NORMAL to SECURE or NORMAL to

SECURE_WITH

// _DEBUG transition. Other transitions (including VIRGIN to NORMAL) are not

recommended

// outside of factory and may result in not operable device.

if (chipLifeCycle != NORMAL) return FAIL;

if ((fileLifeCycle != SECURE_WITH_DEBUG)&&(fileLifeCycle != SECURE)) return

FAIL;

if (DeviceFamily == PSoC6ABLE2) { // PSoC6A-BLE2

 // Verify FACTORY_HASH and FACTORY_HASH_ZEROS. APIs returns FAIL if

verification failed.

 CallSromApi (SROMAPI_CHECK_FACTORY_HASH_CODE, OUT dataOut);

 EFUSE_CheckFactoryHashZeros();

 // Generate SECURE_HASH and SECURE_HASH_ZEROS using the SROM API

 WriteIO (SRAM_SCRATCH_ADDR, SROMAPI_GENERATE_HASH_CODE);

Programming Specification 56 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 CallSromApi (SROMAPI_GENERATE_HASH_CODE, OUT dataOut);

 for (int i = 0; i < 4; i++) {

 ReadIO (SRAM_SCRATCH_ADDR + 4*(i+1), OUT dataOut);

 hash[4*i + 0] = (dataOut >> 0) & 0xFF;

 hash[4*i + 1] = (dataOut >> 8) & 0xFF;

 hash[4*i + 2] = (dataOut >> 16) & 0xFF;

 hash[4*i + 3] = (dataOut >> 24) & 0xFF;

 }

 ReadIO (SRAM_SCRATCH_ADDR + 20, OUT dataOut);

 hashZeros = dataOut & 0xFF;

 // Blow SECURE_HASH and Blow SECURE_HASH_ZEROS

 EFUSE_BlowBytes (hash[], 0x14, 16); // 16 bytes at offset 0x14

 EFUSE_BlowBytes (hashZeros[], 0x26, 1); // 1 byte at offset 0x26

 // Blow appropriate bit in LIFECYCLE_STAGE

 bitOffset = (fileLifeCycle == SECURE)? 2 : 1 /*SECURE_WITH_DEBUG*/;

 EFUSE_BlowBit (0x2B, bitOffset);

}

else { // PSoC6A-2M/512K/256K (CY8C6xx4, CY8C6xx5, CY8C6xx8 and CY8C6xxA)

 // Applicable for PSoC6A-256K, PSoC6A-512K, and PSoC6A-2M starting at

revision A1 (*A):

 // Set ENABLE_FLASH_BOOT_CHECK_IN_NORMAL bits - least significant bits

(four in total)

 // in FACTORY_HASH[12-15] bytes just before TransitionToSecure API call.

 if ((DeviceFamily == PSoC6A256K)||(DeviceFamily == PSoC6A512K)||

((DeviceFamily == PSoC6A2M)&&(RevisionId >= 0x12)))

 for (int i = 0; i < 4; i++)

 EFUSE_BlowBit(0x3B - i; /* FACTORY_HASH15 – i */, 0);

 // Get DEAD_ACCESS_RESTRICT and SECURE_ACCESS_RESTRICT from the binary file

 EFUSE_GetFileWord(file[], 0x27 * 8, 16, OUT deadAccessRestr); // 16 bytes

@ offset 0x27

 EFUSE_GetFileWord(file[], 0x29 * 8, 16, OUT secureAccessRestr);// 16 bytes

@ offset 0x29

 // TransitionToSecure SROM function validates the FACTORY_HASH and programs

SECURE_HASH,

 // secure access restrictions and dead access restrictions into eFuse. Then

it programs

 // secure or secure with debug fuse for corresponding LifeCycle stage

transition.

Programming Specification 57 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 opCode = SROMAPI_TRANSITION_TO_SECURE_CODE;

 if (fileLifeCycle == SECURE_WITH_DEBUG) opCode |= 1 << 8;

 WriteIO (SRAM_SCRATCH_ADDR, opCode);

 WriteIO (SRAM_SCRATCH_ADDR + 0x04, secureAccessRestr);

 WriteIO (SRAM_SCRATCH_ADDR + 0x08, deadAccessRestr);

 CallSromApi (opCode, OUT dataOut);

}

5.13.2 Pseudocode – Step 10. program eFuse – subroutines

//- eFuse verification subroutines --

EFUSE_CheckFactoryHashZeros (void) {

 // Checks FACTORY_HASH_ZEROS for PSoC6A-BLE2

 // Read FACTORY_HASH_ZEROS from device (one byte at offset = 0x3C)

 EFUSE_ReadByte (0x3C, OUT hashZerosChip);

 if (hashZerosChip == 0) return PASS; // Earlier silicon revisions

 // Use ReadFuseByte SROM function to read 16 bytes of FACTORY_HASH from

device.

 hashZerosCalculated = 0;

 for (BYTE byteOffset = 0; byteOffset < 0x10; byteOffset++) {

 EFUSE_ReadByte (0x2C + byteOffset, OUT byteVal); // base offset = 0x2C

 // Calculate number of 0's in current byte

 onesInByte = 0;

 while (byteVal > 0) {

 if ((byteVal & 1) == 1) onesInByte++; // Check lower bit

 byteVal >>= 1; // Shift removing lower bit

 }

 zerosInByte = 8 - onesInByte;

 hashZerosCalculated += zerosInByte;

 }

 return (hashZerosChip == hashZerosCalculated)? PASS : FAIL;

}

EFUSE_IsSecure (offset) {

 // Defines if eFuse at given offset is related to Protection settings and

should not

 // be blown at first pass

Programming Specification 58 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 // Skip LIFECYCLE_STAGE for PSoC6A-BLE2, PSoC6A-2M, PSoC6A-512K, and

PSoC6A-256K devices

 if (offset == 0x2B) return TRUE; // LIFECYCLE_STAGE

 // Skip DEAD and SECURE Access Restrictions for PSoC6A-2M/512K/256K devices

 if ((DeviceFamily == PSoC6A2M)||(DeviceFamily == PSoC6A512K)||

(DeviceFamily == PSoC6A256K))

 if ((offset == 0x27)||(offset == 0x28)|| // DEAD_ACCESS_RESTRICT

 (offset == 0x29)||(offset == 0x2A)) // SECURE_ACCESS_RESTRICT

 return TRUE;

 return FALSE;

}

Checks FACTORY_HASH_ZEROS for PSoC6A-BLE2

EFUSE_CheckFactoryHashZeros()

 hashZerosChip = 0
 hashZerosCalculated = 0

 SromApiReadFuseByte(
 0x3C, OUT hashZerosChip)

hashZerosChip != 0

Return PASS

NO

YES

byteOffset = 0

 {Read one eFuse byte of FACTORY_HASH}
 SromApiReadFuseByte(
 0x2C + byteOffset, OUT byteVal)

byteVal > 0

onesInByte = 0
zerosInByte = 0

{Check lower bit}
(byteVal & 1) == 1

onesInByte++

{Shift removing lower bit}
byteVal >>= 1

NO

zerosInByte = 8 – onesInByte
hashZerosCalculated += zerosInByte

NO

YES

YES

++byteOffset >= 0x10
NO

C
a

lc
u

la
te

 n
u

m
b

er
 o

f
0

's
 in

 c
u

rr
en

t
b

yt
e

hashZerosChip ==
hashZerosCalculated

YES

YES

Return FAIL

NO

FA
C

TO
R

Y_
H

A
SH

_Z
ER

O
S

==
 0

 in
 e

a
rl

ie
r

si
lic

o
n

 r
ev

is
io

n
s

Defines if eFuse at given offset is related to
Protection settings and should not be blown at
first pass

EFUSE_IsSecure(offset)

Return TRUE

{LIFECYCLE_STAGE}
offset == 0x2B

Return FALSE

NO

Target ?

2M/512K

{DEAD_ACCESS_RESTRICT}
 (offset == 0x27) ||
 (offset == 0x28)

{SECURE_ACCESS_RESTRICT}
 (offset == 0x29) ||
 (offset == 0x2A)

YES

C
Y8

C
6

xx
6

, C
Y8

C
6

xx
7

CY8C6xx5,
CY8C6xx8,
CY8C6xxA

BLE2

YES

YES

NO

NO

Figure 18 eFuse verification subroutines

Programming Specification 59 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

//- Life Cycle parsing subroutines --

EFUSE_ByteToLifeCycle (lifeCycleByte, OUT lifeCycleEnum) {

 // Converts LIFECYCLE_STAGE bit-field value read directly from eFuse or

from the data

 // file to enumerable value. Note: if higher bit is set, all lower bits are

ignored

 // LIFECYCLE_STAGE [7:3] - Reserved or not used for production

 // LIFECYCLE_STAGE [2] - SECURE

 // LIFECYCLE_STAGE [1] - SECURE_WITH_DEBUG

 // LIFECYCLE_STAGE [0] - NORMAL

 if (lifeCycleByte == 0) lifeCycleEnum = VIRGIN;

 else if ((lifeCycleByte & 0xF8) != 0) lifeCycleEnum = RESERVED;

 else if ((lifeCycleByte & 0x04) != 0) lifeCycleEnum = SECURE;

 else if ((lifeCycleByte & 0x02) != 0) lifeCycleEnum = SECURE_WITH_DEBUG;

 else lifeCycleEnum = NORMAL;

}

EFUSE_ApiResultToLifeCycle (lifeCycleByte, OUT lifeCycleEnum) {

 // Converts the result of SROM function such as Silicon Id to enumerable

value

 if (lifeCycleByte == 0) lifeCycleEnum = VIRGIN;

 else if (lifeCycleByte == 1) lifeCycleEnum = NORMAL;

 else if (lifeCycleByte == 2) lifeCycleEnum = SECURE_WITH_DEBUG;

 else if (lifeCycleByte == 3) lifeCycleEnum = SECURE;

 else lifeCycleEnum = RESERVED; // Reserved or not used for production

}

Programming Specification 60 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

Converts LIFECYCLE_STAGE bit-field value read
directly from eFuse or from the data file to
enumerable value

EFUSE_ByteToLifeCycle
(lifeCycleByte, OUT lifeCycleEnum)

lifeCycleByte == 0 lifeCycleEnum = VIRGIN

(lifeCycleByte & 0xF8) != 0 lifeCycleEnum = RESERVED

(lifeCycleByte & 0x04) != 0 lifeCycleEnum = SECURE

(lifeCycleByte & 0x02) != 0 lifeCycleEnum = SECURE_D

lifeCycleEnum = NORMAL

YES

NO

If
 h

ig
h

er
 b

it
 is

 s
et

 a
ll

lo
w

er
 b

it
s

a
re

 ig
n

o
re

d

Reserved or not used for production

(lifeCycleByte & 0x01) != 0

Secure with Debug

Return PASS

YES

YES

YES

NO

NO

NO

Converts the result of SROM APIs such as Silicon
Id to enumerable value

EFUSE_ApiResultToLifeCycle
(lifeCycleByte, OUT lifeCycleEnum)

lifeCycleByte == 0 lifeCycleEnum = VIRGIN

lifeCycleByte == 1 lifeCycleEnum = NORMAL

lifeCycleByte == 2 lifeCycleEnum = SECURE_D

lifeCycleByte == 3 lifeCycleEnum = SECURE

lifeCycleEnum = RESERVED

Return PASS

Secure with Debug

Reserved or not used for production

YES

YES

YES

YES

NO

NO

NO

NO

Figure 19 Life cycle parsing subroutines

//- eFuse file parsing subroutines --

EFUSE_GetFileWord (file[], offset, bitsCount, OUT eFuseWord) {

 // Gets eFuse word from the data file. One fuse in the target device is

represented by

 // one byte in file: 0x00 – NOT BLOWN, 0x01 – BLOWN, 0xFF – IGNORE

 if (offset > 0x907003FF) return FAIL;

 if (offset >= 0x90700000) offset -= 0x90700000; // Convert absolute address

to offset

 eFuseWord = bitOffset = 0;

 while ((offset < sizeof(file)) && (bitOffset < bitsCount)) {

 if (file[offset] = 0x01 /*BLOWN*/) eFuseWord |= 1 << bitOffset;

 offset++;

 bitOffset++;

 }

 return PASS;

}

EFUSE_FileAddrToFuseOffset (addr, OUT fuseByteOffset, OUT fuseBitOffset) {

 // Convert virtual address in data file to fuse byte and bit offsets in

target memory

 if (addr > 0x907003FF) return FAIL;

 if (addr >= 0x90700000) addr -= 0x90700000; // Convert absolute address to

offset

 fuseByteOffset = addr / 8;

 fuseBitOffset = addr % 8;

Programming Specification 61 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

}

 fuseByteOffset = addr / 8
 fuseBitOffset = addr % 8

EFUSE_FileAddrToFuseOffset(addr,
OUT fuseByteOffset, OUT fuseBitOffset)

{In case of absolute address passed to function}
addr -= 0x90700000

YES

Convert virtual address in binary file to fuse byte
and bit offsets in target memory

addr >= 0x90700000
NO

addr <= 0x907003FF

YES

Return FAIL

NO

Return PASS

 eFuseWord = 0
 bitOffset = 0

eFuseWord |= 1 << bitOffset

offset < sizeof(file)

{0x01 == BLOWN}
file[offset] == 0x01

++bitOffset >= bitsCount
NO

NO

YES

offset++

EFUSE_GetFileWord (file[], offset,
bitsCount, OUT eFuseWord)

NO

offset >= 0x90700000

{In case of absolute address passed to function}
offset -= 0x90700000

NO

YES

YES

Gets eFuse word from the data file. One fuse in
the target device is represented by one byte in
file: 0x00 – NOT BLOWN, 0x01 – BLOWN,
0xFF – IGNORE

YES

Return PASS Return FAIL

offset <= 0x907003FF
NO

YES

Figure 20 eFuse file parsing subroutines

//- eFuse Read/Write subroutines --

EFUSE_BlowBytes (data[], eFuseByteOffset, bytesCount) {

 // Blows array of eFuse bytes and checks if the eFuses were blown correctly

 for (dataOffset = 0; dataOffset < bytesCount); dataOffset++)

 for (bitOffset = 0; bitOffset < 8); bitOffset++)

 if ((data[dataOffset] >> bitOffset) & 1 == 1)

 EFUSE_BlowBit (eFuseByteOffset + dataOffset, bitOffset);

}

EFUSE_BlowBit (byteOffset, bitOffset) {

 // Blows the addressed eFuse bit and checks if eFuse was blown correctly

 // Check initial value first and skip blowing if fuse has already been

blown

 EFUSE_ReadBit(byteOffset, bitOffset, OUT bitValue);

Programming Specification 62 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 if (bitValue == 0) {

 // Calculate macro address and update byte address appropriately

 macroOffset = 0;

 while (byteOffset >= 32 /* eFuse macro size */) {

 byteOffset -= 32;

 macroOffset++;

 }

 // Call BlowFuseBit SROM function to blow the fuse

 opCode = SROMAPI_BLOW_FUSE_CODE +

 (0x00FF0000 & (byteOffset << 16)) + // Byte offset in macro

 (0x0000F000 & (macroOffset << 12)) + // Macro Address

 (0x00000700 & (bitOffset << 8)); // Bit position in Byte

 CallSromApi (opCode, OUT dataOut);

 // Verify the fuse is successfully blown

 EFUSE_ReadBit(byteOffset, bitOffset, OUT bitValue);

 return (bitValue == 1)? PASS : FAIL;

}

EFUSE_ReadByte (byteOffset, OUT byteValue) {

 // Uses ReadFuseByte SROM function to read eFuse byte (eight fuses) from

target device

 opCode = SROMAPI_READ_FUSE_CODE + (byteOffset << 8);

 CallSromApi (opCode, OUT byteValue);

}

EFUSE_ReadBit (byteOffset, bitOffset, OUT bitValue) {

 // Reads fuse from target device

 EFUSE_ReadByte (byteOffset, OUT byteValue);

 bitValue = (byteValue >> bitOffset) & 0x01;

}

Programming Specification 63 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

EFUSE_BlowBit(
byteOffset, bitOffset)

Blows the addressed eFuse bit
and checks if eFuse was blown correctly

{Check initial value first}
 EFUSE_ReadBit(byteOffset, bitOffset,
 OUT bitValue)

Return PASS

bitValue == 0
NO

Th
e

fu
se

 h
a

s
a

lr
ea

d
y

b
ee

n
 b

lo
w

n

 {Call SROM API to blow the fuse}
 SromApiBlowFuseBit(byteOffset, bitOffset)

 {Verify the fuse is successfully blown}
 EFUSE_ReadBit(byteOffset, bitOffset,
 OUT bitValue)

bitValue == 1

Return FAIL

NO

YES

EFUSE_BlowBytes(
data[], eFuseByteOffset, bytesCount)

Blows array of eFuse bytes and checks if the
eFuses were blown correctly

 dataOffset = 0
 bitOffset = 0

++bitOffset >= 8

++dataOffset >= bytesCount

(data[dataOffset] >> bitOffset)
 & 1 == 1

 EFUSE_BlowBit(eFuseByteOffset +
 dataOffset, bitOffset)

YESYES

YES

YES

NO

Return PASS

NO

Figure 21 eFuse Read/Write subroutines

5.14 Step 11 – verify eFuse (optional)

This step compares the eFuse data in input binary file with the eFuse values in target device and returns FAIL
status in case of mismatch. It is optional to perform eFuse verification step just after programming – eFuse

programming step includes all required validation. Verification step may be useful before programming if initial
eFuse state in target device is unknown.

Note that eFuse memory is not accessible in the Secure or Dead Protection states. This means that the Verify
eFuse step can be performed only when the target device is in NORMAL or VIRGIN state.

5.14.1 Pseudocode – Step 11. verify eFuse

//---

// This is an entry point of the “Verify eFuse” step.

// Read eFuse data from binary file. Function must be implemented and return

0x400 bytes

// in address range 0x90700000 to 0x907003FF. Missed data must be filled with

0xFF (IGNORE).

file[] = FILE_ReadData(0x90700000, 0x400);

for (int offset = 0; offset < sizeof(file); offset ++) {

 // Skip fuses defined in file as 0xFF (IGNORE)

 if (file[offset] == 0xFF) continue;

 // Convert virtual address in file to fuse byte and bit offsets in target

memory and

 // read associated fuse from target device

Programming Specification 64 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Programming algorithm

 EFUSE_FileAddrToFuseOffset (offset, OUT fuseByteOffset, OUT fuseBitOffset);

 EFUSE_ReadBit (fuseByteOffset, fuseBitOffset, OUT bitValue);

 if (file[offset] != bitValue) return FAIL;

}

return PASS;

Programming Specification 65 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix A: Intel hex file format

Appendix A: Intel hex file format

Intel hex file records are a text representation of hexadecimal-coded binary data. Only ASCII characters are

used, so the format is portable across most computer platforms. Each line (record) of Intel hex file consists of
six parts, as shown in Figure 22.

Start Code

(Colon

Character)

Byte Count

(1 byte)

Address

(2 bytes)

Record Type

(1byte)

Data

(N bytes)

Checksum

(1 byte)

Figure 22 Hex file record structure

Start code, one character - an ASCII colon (:)

• Byte count, two hex digits (1 byte) - specifies the number of bytes in the data field.

• Address, four hex digits (2 bytes) - a 16-bit address of the beginning of the memory position for the data.

• Record type, two hex digits (00 to 05) - defines the type of the data field. The record types used in the hex
file generated by Infineon are as follows.

• 00 - Data record, which contains data and 16-bit address.

• 01 - End of file record, which is a file termination record and has no data. This must be the last line of the file;

only one is allowed for every file.

• 04 - Extended linear address record, which allows full 32-bit addressing. The address field is 0000, the byte

count is 02. The two data bytes represent the upper 16 bits of the 32-bit address, when combined with the
lower 16-bit address of the 00-type record.

• Data, a sequence of ‘n’ bytes of the data, represented by 2n hex digits.

• Checksum, two hex digits (1 byte), which is the least significant byte of the two's complement of the sum of

the values of all fields except fields 1 and 6 (start code ‘:’ byte and two hex digits of the checksum).

Examples for the different record types used in the hex file generated for the PSoC 6 MCU are as follows.

Consider that these three records are placed in consecutive lines of the hex file (chip-level protection and end
of hex file).

:0200000490600A

:0100000002FD

:00000001ff

For the sake of readability, “record type” is highlighted in red and the 32-bit address of the chip-level protection

is in blue.

The first record (:0200000490600A) is an extended linear address record as indicated by the value in the Record

Type field (04). The address field is 0000, the byte count is 02. This means that there are two data bytes in this
record. These data bytes (0x9060) specify the upper 16 bits of the 32-bit address of data bytes. In this case, all
the data records that follow this record are assumed to have their upper 16-bit address as 0x9060 (in other

words, the base address is 0x90600000). 0A is the checksum byte for this record:

http://en.wikipedia.org/wiki/ASCII

Programming Specification 66 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix A: Intel hex file format

0x0A = 0x100 – (0x02+0x00+0x00+0x04+0x90+0x60).

The next record (:0100000002FD) is a data record, as indicated by the value in the Record Type field (00). The
byte count is 01, meaning there is only one data byte in this record (02). The 32-bit starting address for these

data bytes is at address 0x90600000. The upper 16-bit address (0x9060) is derived from the extended linear
address record in the first line; the lower 16-bit address is specified in the address field of this record as 0000.
FD is the checksum byte for this record.

The last record (:00000001FF) is the end-of-file record, as indicated by the value in the Record Type field (01).
This is the last record of the hex file.

Note: The data records of the following multibyte region in the hex file are in big-endian format (MSB in
lower address): checksum data at address 0x9030 0000, metadata at address 0x9050 0000. The
data records of the rest of the multibyte regions in the hex file are all in little-endian format (LSB in
lower address).

Programming Specification 67 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix B: eFuse data mapping in file

Appendix B: eFuse data mapping in file

eFuse bits are stored in the data file using the address range 0x90700000 to 907003FF. This range is virtual and
cannot be used for direct AHB Read or Write operations. Refer to Table 7 and Table 8 for eFuse data mapping in

file.

Table 7 eFuse data mapping in binary file

eFuse byte address in

memory
eFuse byte address in file

PSoC6A-BLE2,

PSoC6A-2M rev. < A1

PSoC6A-256K,

PSoC6A-512K,

PSoC6A-2M rev. >= A1 Offset
Macro

Byte

in

macro

[bit 0] [bit 7]

0x000 0 0 0x90700000 0x90700007

System or Reserved System or Reserved … … … … …

0x013 0 19 0x90700098 0x9070009F

0x014 0 20 0x907000A0 0x907000A7 SECURE_HASH0 SECURE_HASH0

… … … … … … …

0x023 1 3 0x90700118 0x9070011F SECURE_HASH15 SECURE_HASH15

0x024 1 4 0x90700120 0x90700127
System or Reserved System or Reserved

0x025 1 5 0x90700128 0x9070012F

0x026 1 6 0x90700130 0x90700137 SECURE_HASH_ZEROS SECURE_HASH_ZEROS

0x027 1 7 0x90700138 0x9070013F DEAD_ACCESS_RESTRICT0 DEAD_ACCESS_RESTRICT0

0x028 1 8 0x90700140 0x90700147 DEAD_ACCESS_RESTRICT1 DEAD_ACCESS_RESTRICT1

0x029 1 9 0x90700148 0x9070014F

SECURE_ACCESS_RESTRICT

0
SECURE_ACCESS_RESTRICT0

0x02A 1 10 0x90700150 0x90700157

SECURE_ACCESS_RESTRICT

1
SECURE_ACCESS_RESTRICT1

0x02B 1 11 0x90700158 0x9070015F LIFECYCLE_STAGE LIFECYCLE_STAGE

0x02C 1 12 0x90700160 0x90700167 FACTORY_HASH0 FACTORY_HASH0

… … … … … … …

0x037 1 23 0x907001B8 0x907001BF FACTORY_HASH11 FACTORY_HASH11

0x038 1 24 0x907001C0 0x907001C7
FACTORY_HASH12

FACTORY_HAS

H12

ENABLE_FLA

SH_BOOT_C

HECK_IN_NO

RMAL

0x039 1 25 0x907001C8 0x907001CF
FACTORY_HASH13

FACTORY_HAS

H13

0x03A 1 26 0x907001D0 0x907001D7
FACTORY_HASH14

FACTORY_HAS

H14

0x03B 1 27 0x907001D8 0x907001DF
FACTORY_HASH15

FACTORY_HAS

H15

0x03C 1 28 0x907001E0 0x907001E7 FACTORY_HASH_ZEROS FACTORY_HASH_ZEROS

0x03D 1 29 0x907001E8 0x907001EF

System or Reserved System or Reserved … … … … …

0x03F 1 31 0x907001F8 0x907001FF

0x040 2 0 0x90700200 0x90700207

CUSTOMER_DATA

CY_ASSET_HASH0

… … … … … …

0x04F 2 15 0x90700278 0x9070027F CY_ASSET_HASH15

Programming Specification 68 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix B: eFuse data mapping in file

eFuse byte address in

memory
eFuse byte address in file

PSoC6A-BLE2,

PSoC6A-2M rev. < A1

PSoC6A-256K,

PSoC6A-512K,

PSoC6A-2M rev. >= A1 Offset
Macro

Byte

in

macro

[bit 0] [bit 7]

0x050 2 16 0x90700280 0x90700287 CY_ASSET_HASH_ZEROS

0x051 2 17 0x90700288 0x9070028F

CUSTOMER_DATA … … … … …

0x07F 3 31 0x907003F8 0x907003FF

 - Used by the system or reserved. Put “ignore” (0xFF) to the data file or skip this range.

 - User-programmable security data (blown during life-cycle transition from NORMAL).

- Security data blown at the factory. Cannot be programmed by the customer. Validated during the life-

cycle transition from NORMAL. Put “ignore” (0xFF) to the data file or skip this range.

 - Custom data

, where:

eFuse Area Name Purpose

SECURE_HASH 128-bit (16 bytes) HASH used by boot code to authenticate objects in the

Table of Contents, Part 2 (TOC2).

SECURE_HASH_ZEROS The number of bits that are “0” (fuses that are not blown) in the

SECURE_HASH above. This guarantees that once a HASH is programmed,

it cannot be changed into another valid HASH value.

DEAD_ACCESS_RESTRICT Chip access restrictions applied at the DEAD life-cycle stage.

SECURE_ACCESS_RESTRICT Chip access restrictions applied at the SECURE life-cycle stage.

LIFECYCLE_STAGE Silicon Life-Cycle stage. Note Only NORMAL to SECURE or NORMAL to

SECURE_WITH_DEBUG life-cycle transitions are supported by Infineon

tools. If you were supplied with the silicon at a life-cycle stage other than

NORMAL, please contact Infineon.

FACTORY_HASH 128-bit (16 bytes) HASH (VIRGIN Factory objects).

FACTORY_HASH_ZEROS The number of bits that are “0” (fuses that are not blown) in the

FACTORY_HASH above.

ENABLE_FLASH_BOOT_CHECK_IN_NORMAL The field is stored in the least significant bits of last four FACTORY_HASH

bytes for PSoC6A-256K, PSoC6A-512K, and PSoC6A-2M (revision id >= A1)

devices. If all four bits are blown, boot code validates CY_ASSET_HASH

and FACTORY_HASH in NORMAL life-cycle stage. All four bits must be

blown before life-cycle transition to SECURE. All the four bits must be in

same state (blown or not blown), otherwise the device will go to DEAD

state.

CY_ASSET_HASH 128-bit (16 bytes) HASH of Infineon objects such as Flash Boot, TOC1,

RTOC1, etc. Introduced for PSoC6A-256K, PSoC6A-512K and PSoC6A-2M

(revision id >= A1) devices.

Programming Specification 69 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix B: eFuse data mapping in file

eFuse Area Name Purpose

CY_ASSET_HASH_ZEROS The number of bits that are “0” (fuses that are not blown) in the

CY_ASSET_HASH above.

CUSTOMER_DATA Can be used by the customer for application or security purposes

Table 8 Security Fuses bit mapping in the data file

eFuse Byte offset in memory,

Area Name

eFuse

Bit[#]

Associated

Byte in file
Bit Field Name

0x27

DEAD_ACCESS_RESTRICT0

0 0x90700138 CM0_DISABLE

1 0x90700139 CM4_DISABLE

2 0x9070013A SYS_DISABLE

3 0x9070013B SYS_AP_MPU_ENABLE

4 0x9070013C
SFLASH_ALLOWED

5 0x9070013D

6 0x9070013E
MMIO_ALLOWED

7 0x9070013F

0x28

DEAD_ACCESS_RESTRICT1

0 0x90700140

FLASH_ALLOWED 1 0x90700141

2 0x90700142

3 0x90700143

SRAM_ALLOWED 4 0x90700144

5 0x90700145

6 0x90700146 UNUSED. Put “ignore” (0xFF) to the data file.

7 0x90700147 DIRECT_EXECUTE_DISABLE

0x029

SECURE_ACCESS_RESTRICT0

0 0x90700148 CM0_DISABLE

1 0x90700149 CM4_DISABLE

2 0x9070014A SYS_DISABLE

3 0x9070014B SYS_AP_MPU_ENABLE

4 0x9070014C
SFLASH_ALLOWED

5 0x9070014D

6 0x9070014E
MMIO_ALLOWED

7 0x9070014F

0x02A

SECURE_ACCESS_RESTRICT1

0 0x90700150

FLASH_ALLOWED 1 0x90700151

2 0x90700152

3 0x90700153

SRAM_ALLOWED 4 0x90700154

5 0x90700155

6 0x90700156 SMIF_XIP_ALLOWED

7 0x90700157 DIRECT_EXECUTE_DISABLE

0 0x90700158 NORMAL

Programming Specification 70 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix B: eFuse data mapping in file

eFuse Byte offset in memory,

Area Name

eFuse

Bit[#]

Associated

Byte in file
Bit Field Name

0x2B

LIFECYCLE_STAGE

1 0x90700159 SECURE_WITH_DEBUG

2 0x9070015A SECURE

3 0x9070015B

Infineon use only. Put “ignore” (0xFF) to the data file.

4 0x9070015C

5 0x9070015D

6 0x9070015E

7 0x9070015F

, where:

Bit Field Name Purpose

CM0_DISABLE Disable the debug access to CM0+ CPU.

CM4_DISABLE Disable the debug access to CM4.

SYS_DISABLE Disable the debug access to the System access port.

SYS_AP_MPU_ENABLE Enable the system access port MPU.

SFLASH_ALLOWED

Allow the SYS AP MPU protection of SFlash. Only a portion of SFlash starting

at the bottom of the area is exposed: “0” - entire region; “1” - 1/2; “2” - 1/4th;

“3” – nothing.

MMIO_ALLOWED

Allow the SYS AP MPU protection of MMIO: “0” - All MMIO registers are

accessible; “1” – Only IPC MMIO registers accessible (system calls); “2”, “3” –

No MMIO access.

FLASH_ALLOWED

Allow the SYS AP MPU protection of Flash. Only a portion of application flash

starting at the bottom of the area is exposed: “0” – the entire region; “1” –

7/8th; “2” – 3/4th; “3” – 1/2;

“4” – 1/4th; “5” – 1/8th; “6” – 1/16th; “7” – nothing.

SRAM_ALLOWED
Allow the SYS AP MPU protection of SRAM. Only a portion of SRAM starting at
the bottom of the area is exposed. Encoding is the same as

FLASH_ALLOWED.

SMIF_XIP_ALLOWED
Allow the SYS AP MPU protection of SMIF XIP: “0” – the entire region is

accessible; “1” – nothing.

DIRECT_EXECUTE_DISABLE Disable the "direct execute" system call.

NORMAL
The life-cycle stage of a device after trimming and testing is complete at the

factory.

SECURE_WITH_DEBUG

The same as the SECURE life-cycle stage, except the device allows for
debugging. Prior to transitioning to this stage, the SECURE_HASH must be

programmed in eFuse and valid application code must be programmed in

the application flash.

SECURE
The life-cycle stage of a secure device. Prior to transitioning to this stage,
the SECURE_HASH must be programmed in eFuse and valid application

code must be programmed in the application flash.

Programming Specification 71 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix C: Serial Wire Debug (SWD) Protocol

Appendix C: Serial Wire Debug (SWD) Protocol

The SWD protocol is a packet-based serial transaction protocol. At the pin level, it uses a single bidirectional
data connection (SWDIO) and a clock connection (SWDCK). The host programmer always drives the clock line,

while either the programmer or the PSoC 6 MCU drives the data line. A complete data transfer (one SWD
packet) requires 46 clocks and consists of three phases:

• Packet Request – The host programmer issues a request to the PSoC 6 MCU (silicon).

• Acknowledge Response – The PSoC 6 MCU (silicon) sends an acknowledgement to the host.

• Data Transfer Phase – The data transfer is either from the PSoC 6 MCU to the host, following a read request
(RDATA), or from the host to the PSoC 6 MCU, following a write request (WDATA). This phase is present only

when a packet request phase is followed by a valid (OK) acknowledge response.

Figure 23 shows the timing diagrams of the read and write SWD packets.

S
ta

rt

 (

1
)

A
P

n
D

P

R
n

W

(0

)

A[2:3]

P
a

ri
ty

S
to

p

 (

0
)

P
a

rk

 (

1
)

T
rN 1 0 0

ACK[0:2]

w
d

a
ta

[0
]

w
d

a
ta

[1
]

w
d

a
ta

[3
1

]

P
a

ri
ty

SWDIO driven by:

Host Target Device Host

SWDCK

(Driven by Host)

SWDIO

(Bidirectional)

T
rN

zz

SWD Write Packet (46 clocks)

SWD Read Packet (46 clocks)

S
ta

rt

 (
1
)

A
P

n
D

P

R
n

W
 (

1
)

A[2:3] P
a
ri
ty

S
to

p

 (
0
)

P
a
rk

 (
1
)

T
rN 1 0 0

ACK[0:2]

rd
a
ta

[0
]

rd
a
ta

[1
]

rd
a
ta

[3
0
]

rd
a
ta

[3
1
]

P
a
ri
ty

T
rN

SWDIO driven by: Host Target Device

SWDCK

(Driven by Host)

SWDIO

(Bidirectional)

a) Host Write Cycle – host sends data on the SWDIO line on falling edge of SWDCK and target will read that data on next SWDCK

 rising edge (for example, 8-bit header data).

b) Host Read Cycle – target sends data on SWDIO line on rising edge of SWDCK and the Host should read that data on next

 SWDCK falling edge (for example, ACK phase (ACK[2:0]), Read Data (rdata[31:0])).

c) The Host should not drive the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, target

 starts driving the ACK data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent

 falling edge of SWDCK. The second TrN phase is 1.5 clock cycles as shown in figure above. Both target and host will not drive

 the line during the entire second TrN phase (indicated as ‘z’). Host should start sending the Write data (wdata) on next falling

 edge of SWDCK after second TrN phase.

Packet Request - Header Acknowledgement Data (32+1 bit)

Packet Request - Header Acknowledgement Data (32+1 bit)

Figure 23 Write and Read SWD packet timing diagrams

The SWD packet is transmitted in this sequence:

• The start bit initiates a transfer; it is always logical ‘1’.

• The APnDP bit determines whether the transfer is an AP access (indicated by ‘1’), or a DP access (indicated

by ‘0’).

• The next bit is RnW, which is ‘1’ for read from the MCU or ‘0’ for a write to the MCU.

The ADDR bits (A[3:2]) are register select bits for the access port or debug port. See Table 3 on page 18 for

register definition.

• The parity bit contains the parity of APnDP, RnW, and ADDR bits. This is an even parity bit. If the number of
logical 1s in this bits is odd, then the parity must be ‘1’, otherwise it is ‘0’.

Programming Specification 72 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix C: Serial Wire Debug (SWD) Protocol

• If the parity bit is not correct, the PSoC 6 MCU ignores the header, and there is no ACK response. From the
host standpoint, the programming operation should be aborted and retried by doing a device reset.

• The stop bit is always logic ‘0’.

• The park bit is always logic ‘1’ and should be driven high by the host.

The ACK bits are device-to-host response. Possible values are shown in Table 9. Note that ACK in the current

SWD transfer reflects the status of the previous transfer. OK ACK means that the previous packet was
successful. WAIT response requires a data phase, as explained in the following list. For a FAULT status, the
programming operation should be aborted immediately.

• For a WAIT response, if the transaction is a read, the host should ignore the data read in the data phase. The
PSoC 6 MCU does not drive the line and the host must not check the parity bit as well.

• For a WAIT response, if the transaction is a write, the data phase is ignored by the PSoC 6 MCU. However, the

host must still send the data to be written from the standpoint of implementation. The parity data parity bit
corresponding to the data should also be sent by the host.

• For a WAIT response, it means that the PSoC 6 MCU is processing the previous transaction. The host can try
for a maximum four continuous WAIT responses to see if an OK response is received. If it fails, then the

programming operation should be aborted and retried.

• For a FAULT response, the programming operation should be aborted and retried by doing a device reset.

Table 9 ACK response for SWD transfers

ACK[2:0] SWD

OK 001

WAIT 010

FAULT 100

NACK 111

• The data phase includes a parity bit (even parity)

• For a read packet, if the host detects a parity error, then it must abort the programming operation and try

again.

• For a write packet, if the PSoC 6 MCU detects a parity error in the data sent by the host, it generates a FAULT
ACK response in the next packet.

Turnaround (TrN) phase: There is a single-cycle turn-around phase between the packet request and the ACK
phases, as well as between the ACK and data phases for write transfers as shown in Figure 23. According to the

SWD protocol, both the host and the PSoC 6 MCU use the TrN phase to change the drive modes on their

respective SWDIO lines. During the first TrN phase after packet request, the PSoC 6 MCU starts driving the ACK

data on the SWDIO line on the rising edge of SWDCK in the TrN phase. This ensures that the host can read the
ACK data on the next falling edge. Thus, the first TrN cycle lasts for only a half-cycle duration. The second TrN
cycle of the SWD packet is one and one-half cycle long. Neither the host nor the PSoC 6 MCU should drive the
SWDIO line during the TrN phase, as indicated by ‘z’ in in Figure 23.

• The address, ACK, and read and write data are always transmitted LSB first.

• According to the SWD protocol, the host can generate any number of SWD clock cycles between two packets
with the SWDIO low. You should generate several dummy clock cycles (three) between two packets or make
the clock free running in IDLE mode.

Programming Specification 73 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix C: Serial Wire Debug (SWD) Protocol

Note: The SWD interface can be reset by clocking 50 or more cycles with the SWDIO kept high. To return
to the idle state, SWDIO must be clocked low once.

Programming Specification 74 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix D: Joint Test Action Group (JTAG) protocol

Appendix D: Joint Test Action Group (JTAG) protocol

The PSoC 6 JTAG interface complies with the IEEE 1149.1 specification and provides additional instructions.
There are two TAPs in the silicon. One is in the IOSS for boundary scan and the other is in the CPUSS DAP

(IDCODE 0x6BA00477), which is used for device debug and programming. The two TAPs are connected in series,
where the TDO of the IOSS TAP is connected to the TDI of the DAP TAP. This is illustrated in Figure 24.

TDI

[17:0]

Instruction Reg

[34:0]

Data Reg

IOSS TAP

TDI

[3:0]

Instruction Reg

[34:0]

Data Reg

CPUSS DAP TAP

TDO TDO

Figure 24 IOSS/DAP TAP connection

Each TAP consists of a 35-bit data register (called DP/AP access register). The size of the instruction register is 4-

bits for DAP TAP and 18-bits for IOSS TAP. The important instructions to program the device through JTAG are

listed in Table 10.

Table 10 PSoC6 JTAG Instructions

Bit Code

[3:0]

Instruction PSoC 6 Function

1110 IDCODE Connects TDI and TDO to the device 32-bit JTAG ID code.

1010 DPACC Connects TDI and TDO to the DP/AP access register (35-bit), for access to the
Debug Port registers.

1011 APACC Connects TDI and TDO to the DP/AP access register (35-bit), for access to the

Access Port registers.

1111 BYPASS Bypasses the device, by providing 1-bit latch (bypass register) connected
between TDI and TDO.

Table 10 also lists which instructions are applicable for each TAP. If an instruction that is not applicable is
shifted into a TAP, the TAP goes into bypass mode. In bypass mode, the data register is only 1 bit long with the

contents of 0. The bypass mode is used to isolate the PSoC 6 MCU TAP. For example, if targeting the IOSS TAP,

the DAP TAP is put in bypass mode by shifting in the BYPASS instruction into its instruction register and if

targeting the DAP TAP, the IOSS TAP will be placed in bypass mode. See the examples of TAPs configuration in
Figure 25.

Programming Specification 75 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Appendix D: Joint Test Action Group (JTAG) protocol

TDI

Instruction Regs.

18-bits 4-bits

IOSS DAP

TDI 0

Data Regs. {bypass, apacc}, read_data = data_reg[34:3]

35-bits

IOSS DAP

TDO

TDO

TDI 0

Data Regs. {apacc, bypass}, read_data = data_reg[35:4]

35-bits

DAPIOSS

TDO

a.

b.

c.

Figure 25 OSS/DAP TAP configuration examples

a. Instructions registers combined. 22 bits total.

b. Access the DAP’s APACC registers for device debug and programming. IOSS TAP in bypass mode. 36 bits

total.

c. Access the IOSS APACC registers for enabling test modes. DAP TAP in bypass mode. 36 bits total.

Programming Specification 76 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Revision History

Revision History

Revision Date of release Description of change

** 2016-08-10 New specification. This is preliminary version of PSoC 6000 BLE2
programming specification, created for PR3 milestone of the product. It

contains To Be Defined (TBD) items, which will be filled/resolved in further

revisions of this specification.

*A 2017-03-06 Chapter 1: Removed ‘TBD’ notice.

Chapter 2: Added eFuse memory to Nonvolatile Subsystem

Section 3.1: Organization of the Hex File. Added eFuse description

Sections 3.1and 5.5: Added more Silicon Id information (CDT 235611, CDT

227304)

Section 4.1Reworked Communication Interface and daughter sections:

Added Program and Debug Interface description

Added description of AP resource access possibilities, DAP security and DAP

power domain (taken from TRM: 002-18176 Rev. **).

Reworked “Top-Level Silicon Architecture” diagram

Added SWD<->JTAG switching description and diagrams

Section 4.34.2.5: Reworked Physical layer connection diagram, pin and

acquisition modes description.

Section 4.2.5: Added note that the C style pseudo code is used in document

Section 5.2:

Modified “Ipc_Acquire” subroutine: added write to IPC.ACQUIRE to be

compatible with CFR bit file (per CDT 251547)

Added missed constants (defines) for IPC_xxx subroutines

Modified “ProgramRow” API OpCode to use blocking mode (CDT 260497)

Added “WriteRow” OpCode for WFLASH/SFLASH operations

Modified “Ipc_PollLockStatus” and ‘CallSromApi’ subroutines to poll for

correct status. (CDT 259104)

Modified “CallSromApi” subroutine to use correct IPC for DAP. Added

comments for flash loader use cases. Updated interrupt notification steps.

Modified parameters and usage of “CallSromApi” “PollSromApiStatus”
subroutines to return the status/result word (required for Silicon Id SROM

API).

Modified “Ipc_Acquire” subroutine to poll for lock status

Fixed some issues with capitalization of variables names in pseudo-code

Section 5.3:

Correct AP selection code and block scheme (synced with PP

implementation)

Reworked timing diagram and description

Section 5.6: Removed TBD, slightly modified description

Section 5.7: Changed title to “Step 4 – Verify Blank Checksum” to highlight

difference with step #9 (checksum verification after program)

Section Figure 16: Program Protection Settings

Appendix C: Added Joint Test Action Group (JTAG) Protocol information

Programming Specification 77 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Revision History

Revision Date of release Description of change

Overall:

Added WFLASH and extended SFLASH description and diagram

Removed appendixes about electrical/timing specifications: one source of

truth – per email discussion and, as result, comment #12 in CDT 239146)

Renamed (title, footer and across document) from “PSoC 6000 BLE2” to

“PSoC® 6” to be common for whole family

More comments and format corrections for pseudo-code

Formatting and corrections per CDT 233048 and CDT 239146

Updated copyrights

Updated logo and added Confidential note in the footer

Section 5.14: Added section Verify Protection Settings

*B 2017-08-21 - Title changed to - "PSOC 6 MCU PROGRAMMING SPECIFICATIONS".

- Removed registered trade-mark across document.

Section 1. Rephrased target audience.

Section 1.1

- Removed useless sentence about programmer environment

- Figure 1 1: Removed PSoC Creator version, added 3rd party debuggers

Section 2. Figure 2 1: Updated Nonvolatile Subsystem map:

- Added public SFlash regions in *A silicon

- Added XIP region

- Minor correction in eFuse region description

- Added end address for each used row

Section 2.2: Removed statement about optional programming of WFLASH

region

Section 2.3:

- Added *A silicon public SFlash regions and description

- Added notes about SFlash regions accessibility

- Removed statement about optional programming of SFLASH region

Section 2.4: Added more description for eFuse memory usage, layout and

limitations

Section 2.5: Added new section for XIP address space description (SMIF)

Section 3.1:

- Combined sections 3.1 and 3.2

- Added SFlash, WFlash and XIP to the list of regions in the hex file

- Removed device features description, which is not relevant to programming

- Reworked Figure 3 1 with WFLASH, SFLASH and XIP

- Corrected Main Flash description

- Added description of WFLASH, SFLASH and XIP regions

- Corrected hex file version for target family

Section 4.1.1:

- Removed debug features description (not relevant with programming)

- Removed excessive sentence about JTAG availability

- Added a not about priority of DAP secure bits

Programming Specification 78 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Revision History

Revision Date of release Description of change

- Reworked Top-Level Architecture figure

- Simplified DAP security section, added reference to TRM for protection

settings

Section 4.1.2: Removed ‘parity’ for JTAG command

Section 5.3: Figure 5 3:

- Increased timeout from 2ms up to 1000ms (for secure applications). The

same is increased in pseudo-code in sections 5.3 and 5.4

- Corrected ACK value for SWD

- Corrected SWD/JTAG IDCODE verification

Section 5.2: Added CheckFactoryCMAC SROM API code.

Section 5.3:

- Updated timings for SECURE application

- Updated statement about M0+ possible lockup state

- Renamed “Tsrss_up” to “Tlite_up” per SAS

- Added a note about check for CPUSS.SWD_CONNECTED before repurposing

pins

- Added note about configurable TListen parameter

- Minor corrections

Section 5.4:

- Added Figure 5-4 with the Acquire Chip (Alternate Method) procedure.

- Increased timeout from 100ms up to 600ms (for secure applications)

- Removed excessive ID check after reset

- Added address verification at reset vector for the case of empty flash or

secure application (CDT 281851, CDT 282643)

Section 5.5: Added Life Cycle stage to SiliconID SROM API.

Section 5.12: Corrected SFLASH region description for *A silicon

Section 5.13: Updated Program Protection Settings section per VENN-39*C.

Fixed footer for JTAG appendix

Initial public release

*C 2017-11-27 Section 2, Figure 2-1:

- Renamed CMAC to HASH;

- Added customer data eFuse region and extended eFuse area

Section 2.4:

- Extended description of eFuse memory organization

- Added customer data eFuse region

- Minor text corrections

Section 3.1:

- Corrected eFuse size in HEX file – up to 4096 bytes;

- Added custom data eFuse area;

- Corrected size of user data in SFLASH memory

Section 4.1.1: Removed excessive and uncomplete sentence about SYS-AP.

Section 4.1.2:

- Added SWDtoJTAG to Table 4-1

Programming Specification 79 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Revision History

Revision Date of release Description of change

- Added DP.RDBUFF register to Table 4-2

Section 4.1.3: Minor correction in pseudo-code

Section 4.2: Renamed debug pins in Figure 4-5 to not use subscript

Section 5.2:

- Replaced DRW with RDBUFF register in ReadIO subroutine;

- Added DAP_Handshake, DAP_Init and DAP_ScanAP subroutines with

pseudo code and flow charts

- Added missing bracket and minor formatting correction in pseudo-code

Section 5.3:

- Changed font for time periods

- Reworked pseudo-code and flow chart to use DAP_Init and DAP_ScanAP

subroutines

- Removed verification for lockup state from pseudo-code and Figure 5-3

Section 5.4

- Reworked pseudo-code and flow chart to use DAP_Init and DAP_ScanAP

subroutines

- Added CM0_VECTOR_TABLE_BASE register verification instead of flash

value

- Added polling for halt status (CDT 287776)

- Fixed using logical instead of bitwise operation checking DHCSR register

Section 5.13

- Renamed CMAC to HASH in flow chart

Overall:

- Replaced all instances of CMAC or cmac with HASH or hash

- Minor corrections in pseudo-code across document

- Changed line width in flow charts

*D 2018-01-29 Section 5.2:

- Added ROM and SFLASH definitions used in Test Mode verification (CDT

298216)

- Removed DHCSR register definitions as not used in document

- Added EraseSector SROM API code used in section 5.3

Section 5.3:

- Pseudo code and flow diagram updated with PC verification (CDT 298216)

- Do AP scanning before TEST_MODE read (sync with PP implementation)

Section 5.6:

- Use EraseSector SROM API for SECURE and DEAD state (CDT 275601)

Section 5.13:

- Added check in Figure 5-12 that Dead Access Restrictions match hex file

- Updated pseudo-code due to changes done per CDT 296534

Overall:

- Comments in flow chart placed before operation, not after

*E 2018-07-13 Section 5.2:

- Added constants definition for CY8C6xx8, CY8C6xxA devices

Programming Specification 80 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Revision History

Revision Date of release Description of change

*F 2018-12-14 Section 5.13:

- Updated Figure 5-12 to include Customer Data eFuse programming steps

- Updated pseudo-code to reflect changes made in Figure 5-12

*G 2019-02-13 - Optimized Figure 5-1 High-level programming flow in Section 5.1

- Modified alternative acquisition sequence to use correct address for

CM0_VECTOR_TABLE_BASE register in 2M devices in Sections 5.2, 5.4

- Optimized constants definition in Section 5.2

- Corrected issues in pseudo-code for DAP_Init and DAP_Handshake

subroutines in Section 5.2.2

- Added FACTORY_HASH_ZEROS validation for BLE devices in Section 5.13

- Added Appendix B: eFuse Data Mapping in Hex

- Format corrected and simplified names for SROM API constants in pseudo-

code

- Optimized pseudo-code for smaller size and better readability

- Corrected headers and numbering across the document

*H 2019-04-16 - Section 5.2.1: Added PSOC6A-512K definition

- Section 5.2.2: Updated IPC structure handling for system calls to

backup/restore interrupt mask

- Section 5.4: Updated error mask for VTBASE to reflect changes in latest boot

code

- Section 5.11: Fixed typo in pseudo-code for WFLASH verification step

*I 2019-06-04 - Terminology updates throughout using terms “application flash, auxiliary

flash, supervisory flash, and eFuse.

- Reworked eFuse programming and verification steps. Included specific

steps for PSoC2A-2M devices.

- Reworked AUXflash and Sflash programming and verification steps.
Included NAR, Public Key and TOC2 sub-regions programming/verification.

Used common subroutines for AUXflash and Sflash regions.

- Format and style corrections in pseudocode across the document.

- Corrections and clarifications across the document.

*J 2019-07-30 Updated eFuse memory mapping and programming flow for PSoC6A-512K

and PSoC6A-2M (starting at revision A1 (*A) devices:

- Updated Figure 2-1 in Section 2 with differences in Customer Data eFuse

bytes offsets

- Updated Figure 5-1 in Section 5.1 with Step 2 renamed from “Check Silicon

ID” to “Identify Silicon”

- Renamed Step 2 in Section 5.5 from “Check Silicon ID” to “Identify Silicon”.

Added family identification pseudocode.

- Updated flow chart and pseudo code in Section 5.13 to blow the
ENABLE_FLASH_BOOT_CHECK_IN_ NORMAL eFuse field before transition to

SECURE life-cycle stage.

- Updated Table B-1 in Appendix B with Customer Data offset changes and

new eFuse fields.

Programming Specification 81 of 82 002-15554 Rev. *O

 2021-04-27

PSoC 6 MCU Programming Specifications

Revision History

Revision Date of release Description of change

*K 2019-11-23 - Section 5.2.2, Ipc_Acquire() function – described a workaround for SROM

issue which leads to IPC acquisition failures

- Updated phrasing “SROM API” to “SROM function” wherever appropriate

- Fixed usage of apIndex variable in DAP_ScanAP() function

*L 2020-03-12 - Section 5.2.2, Ipc_Acquire() function – updated workaround code to read

PPU unconditionally

*M 2020-05-13 Updated with CY8C6xx4 device

*N 2020-10-06 - Section 5.4: Updated error mask for VTBASE

*O 2021-04-27 Added note to scope to exclude PSoC 64 devices

Updated to Infineon template

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2021 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.cypress.com/support

Document reference

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

 Edition 2021-04-27

002-15554 Rev. *O

https://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Programmer
	1.2 PSoC 6 MCU family overview

	2 Nonvolatile memory subsystem
	2.1 Application flash
	2.2 Auxiliary flash (AUXflash)
	2.3 Supervisory flash (Sflash)
	2.4 Electronic fuses (eFuse)
	2.5 eXecute in Place (XIP)

	3 Hex file
	3.1 Organization of the hex file

	4 Protocol stack
	4.1 Communication interface
	4.2 Program and debug interface
	4.2.1 DAP security
	4.2.2 DAP power domain
	4.2.3 SWD/JTAG selection
	4.2.4 Hardware access commands
	4.2.5 Pseudocode

	4.3 Physical layer

	5 Programming algorithm
	5.1 High-level programming flow
	5.2 Constants and subroutines used in the programming flow
	5.2.1 Constants
	5.2.2 Subroutines

	5.3 Step 1.A – acquire PSoC 6 MCU
	5.3.1 Pseudocode – Step 1.A. acquire chip

	5.4 Step 1.B – acquire PSoC 6 MCU (alternate method)
	5.4.1 Pseudocode – Step 1.B acquire chip (alternate method)

	5.5 Step 2 – identify silicon
	5.5.1 Pseudocode – Step 2. check silicon ID

	5.6 Step 3 – erase application flash
	5.6.1 Pseudocode – Step 3. erase application flash

	5.7 Step 4 – verify blank checksum (optional)
	5.7.1 Pseudocode – Step 4. verify checksum

	5.8 Step 5 – program application flash
	5.8.1 Pseudocode – Step 5. program application flash

	5.9 Step 6 – verify application flash
	5.9.1 Pseudocode – Step 6. verify application flash

	5.10 Step 7 – verify checksum (optional)
	5.10.1 Pseudocode – Step 7. verify checksum

	5.11 Step 8 – program and verify AUXflash
	5.11.1 Pseudocode. Step 8 – program and verify AUXflash

	5.12 Step 9 – program and verify Sflash
	5.12.1 Pseudocode. Step 9 - program and verify Sflash

	5.13 Step 10 – program eFuse
	5.13.1 Pseudocode – Step 10. program eFuse
	5.13.2 Pseudocode – Step 10. program eFuse – subroutines

	5.14 Step 11 – verify eFuse (optional)
	5.14.1 Pseudocode – Step 11. verify eFuse

	Appendix A: Intel hex file format
	Appendix B: eFuse data mapping in file
	Appendix C: Serial Wire Debug (SWD) Protocol
	Appendix D: Joint Test Action Group (JTAG) protocol
	Revision History

