

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-27860 Rev. *G

www.infineon.com 2023-08-09

"Secure Boot" SDK user guide

About this document

Scope and purpose

This document serves as a guide for using the “Secure Boot” SDK. The document explains about the SDK
overview, software installation, provisioning flow, and “CySecureTools” design.

Intended audience

The “Secure Boot” SDK is intended for the users of the PSoC™ 64 devices.

http://www.infineon.com/

User guide 2 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 4

1.1 Where to Get the “Secure Boot” SDK .. 4

1.2 Using this guide ... 4

1.3 Definition of Terms .. 4

2 Overview ... 6

2.1 Secure Boot SDK components .. 6

2.2 How does the “Secure Boot” SDK work? .. 7

2.3 What is Provisioning? .. 8

2.3.1 Transferring RoT ... 8

2.3.2 Injecting User Assets .. 11

2.3.3 Re-provisioning User Assets .. 12

2.4 Infineon Bootloader .. 12

2.5 “CySecureTools” Installation and Documentation .. 15

3 ModusToolbox™ Tools Provisioning Flow ... 17

3.1 Prerequisites .. 17

3.1.1 ModusToolbox Software Installation .. 17

3.1.2 “CySecureTools” Installation... 17

3.1.3 Create Secure Blinky LED FreeRTOS Application Project ... 17

3.2 Device Provisioning ... 18

3.2.1 A. Set Up “CySecureTools” Workspace ... 18

3.2.2 B. Generate new keys ... 19

3.2.3 C. (Optional) Run Entrance Exam .. 20

3.2.4 D. Perform Provisioning ... 21

3.3 Device Re-provisioning ... 21

3.4 ModusToolbox™ Secure Image Generation ... 22

3.5 Build and Run the Application .. 23

3.6 Debug the application ... 23

3.7 Re-provisioning after Failure .. 23

4 “CySecureTools” Design .. 24

4.1 “CySecureTools” Component Diagram .. 24

4.1.1 Creating a Provisioning Packet .. 24

4.2 Understanding the Default Policy ... 26

4.2.1 Policy and Configuration Limitations .. 27

4.2.2 Boot&Upgrade Policy ... 27

4.2.3 Debug Policy ... 32

4.2.4 External Clock Policy .. 33

4.2.5 Infineon Bootloader ... 34

4.2.6 “CySecureTools” Misc Assets ... 34

4.3 Provisioning JWT packet Reference ... 35

4.3.1 prov_cmd.jwt ... 35

4.3.2 prov_identity.jwt .. 36

4.3.3 cy_auth.jwt ... 36

4.3.4 rot_auth.jwt .. 37

4.3.5 prov_req.jwt ... 37

4.3.6 boot_upgrade.JSON .. 38

User guide 3 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Table of contents

4.3.7 debug.JSON .. 40

5 Additional resources .. 43

5.1 Application notes .. 43

5.2 Code example .. 43

5.3 Device documentation .. 43

5.4 Development kits .. 43

5.5 Libraries (on GitHub) ... 43

5.6 PSoC™ 6 Middleware (on GitHub) ... 44

5.7 Tools .. 44

6 Appendix A: Flash Memory Maps ... 45

6.1 Flash memory map for policy_single_CM0_CM4 policy files ... 45

6.2 Flash memory map for policy_multi_CM0_CM4 example policies ... 46

6.3 Flash memory map for policy_single_CM0_CM4_smif example policies ... 47

6.4 Flash memory map for policy_multi_CM0_CM4_smif example policies .. 48

Revision history... 49

Disclaimer... 50

User guide 4 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Introduction

1 Introduction

Infineon provides the “Secure Boot” SDK to simplify using the PSoC™ 64 “Secure Boot MCU” line of devices.
This SDK includes all required libraries, tools, and sample code to provision and develop applications for

PSoC™ 64 devices.

The “Secure Boot” SDK provides provisioning scripts with sample keys and policies, a pre-built Cypress
Bootloader image, and post-build tools for signing firmware images. It uses the Python programming language.

1.1 Where to Get the “Secure Boot” SDK

The main component of the SDK is a Python package called “CySecureTools.” It is available for download here:

https://github.com/cypresssemiconductorco/cysecuretools

There are other components as well, and they are described in later sections of this document. For Windows
users, all tools including “CySecureTools” are provided when installing ModusToolbox™ 2.3 or later.

1.2 Using this guide

This guide provides a high-level overview of the “Secure Boot” SDK, including details on how the provisioning
process works, as well as descriptions of the provided scripts and tools. In addition, this guide provides a
reference to the tokens/JSON structures used in the SDK.

This guide assumes you are familiar with the concept of public key cryptography, public/private key pairs, and

digital signatures. An overview of these ideas is available here:

https://en.wikipedia.org/wiki/Public-key_cryptography

1.3 Definition of Terms

• Root-of-Trust (RoT): This is an immutable process or identity used as the first entity in a trust chain. No

ancestor entity can provide a trustable attestation (in digest or other form) for the initial code and data state
of the RoT.

• Hardware Security Module (HSM): A physical computing device that safeguards and manages digital keys

for strong authentication, and that provides cryptographic processing. In the context of the PSoC™ 64
“Secure Boot MCU”, the HSM is a device programming engine placed in a physically secure facility.

• Provisioning: The process by which keys, policies and secrets are injected into the device. Once
provisioned, the device can be accessed or modified only with the keys injected adhering to the relevant

policies.

• JSON: JavaScript Object Notation (JSON) is an open-standard file format that uses human-readable text to

transmit data objects consisting of attribute–value pairs and array data types (or any other serializable
value).

• JWT: JSON Web Token (JWT) is an open, industry standard RFC 7519 method to securely represent claims

between two parties.

• JWK: JSON Web Key (JWK) is a RF7517 compliant data structure that represents a cryptographic key.

• Policies: Policies are a collection of pre-defined (name, value) pairs that describe what is and is not allowed
on the device. Most policies are enforced during boot-time by the RoT firmware in the device, some can be
interpreted and enforced by higher layers of software like Infineon Bootloader.

• “Secure Boot”: Refers to a bootup process where the firmware being run by the chip is trusted by using
strong cryptographic schemes and an immutable RoT.

https://github.com/cypresssemiconductorco/cysecuretools
https://en.wikipedia.org/wiki/Public-key_cryptography

User guide 5 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Introduction

• Immutable Boot Code: Refers to the first piece of code which is run after chip power-on before any user
application is run. In the context of the PSoC™ 6 MCU family, it refers to the ROM and Flash code which is

programmed at Infineon manufacturing and made immutable by transitioning life-cycle stages.

• SWD: Single Wire Debug, a two-wire debug port defined for Arm® Cortex® CPU’s.

• CMSIS-DAP: CMSIS-DAP is a specification and a implementation of a Firmware that supports access to the
CoreSight Debug Access Port (DAP).

• DAPLink: Arm Mbed DAPLink is an open-source software project that enables programming and debugging

application software running on Arm® Cortex® CPUs.

• KitProg3: This is Infineon’ low-level communication firmware for programming and debugging. It runs on a

PSoC™ 5LP device. It is a is a multi-functional system, which uses SWD for programming and debugging, and
provides a USB-I2C bridge, and USB-UART bridge. It supports CMSIS-DAP and DAPLink.

• Single/Multi-image: There are two different types of images that may be created, which define how the
CM0+ “secure” co-processor and CM4 binaries are generated: Single-image and Multi-image. In Single-image
mode, the CM0+ “secure” co-processor code binary is attached to the beginning of the CM4 binary to form a
single binary. With the Single-image, the CM0+ “secure” co-processor and CM4 must be updated at the same

time, requiring a single update binary. In Multi-image mode, the CM0+ “secure” co-processor and CM4

binaries are separate and therefore can be updated individually with two different update binaries. The

default is Single-image mode, since few customers need to modify the secure CM0+ “secure” co-processor
code base.

• SMIF: Serial Memory interface. In the context of this user guide, it refers to the highspeed Quad-SPI interface

on PSoC™ 6 MCU.

• Rollback Counter: Special counter accessed by secure boot code that holds the value of the latest valid
image and used in an anti-rollback protection mechanism. The goal of anti-rollback protection is to prevent

downgrading the device to an older version of its software that has been deprecated due to security
concerns.

User guide 6 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

2 Overview

The PSoC™ 64 “Secure Boot MCU” line, based on the PSoC™ 6 MCU platform, features out-of-box security

functionality. The line provides an isolated RoT with true attestation and provisioning services. In addition,
these MCUs deliver a pre-configured secure execution environment which supports system software for various
IoT platforms and provides:

• Secure provisioning

• Secure storage

• Secure firmware management

To develop with a PSoC™ 64 “Secure Boot MCU”, you first provision the device with keys and policies. You then

program the device with signed firmware. Otherwise the device will not boot up correctly. The “Secure Boot”

SDK provides development tools to demonstrate the provisioning and signing flow.

In addition, Infineon Bootloader enables “Secure Boot” and Firmware updates.

2.1 Secure Boot SDK components

The “Secure Boot” SDK is organized as a stand-alone python “CySecureTools” package, which contains all the
required scripts, default provisioning packets, and the default policy file, as follows:

Table 1 Component and its Purpose details

Component Purpose

Command line tool Allows using “CySecureTools” as command-line utility to perform all

required operations.

Provisioning Scripts Python scripts for provisioning the PSoC™ 64 “Secure Boot MCU”. Scripts

are based on Python.

Entrance Exam Scripts Runs an entrance exam on the PSoC™ 64 “Secure Boot MCU” to ensure no

tampering has occurred.

Infineon Bootloader Image The first stage bootloader based on an open source MCUBoot[1] library.

Sample Provisioning Policies Examples to be used as templates for forming provisioning tokens.

1 https://mcuboot.com/

https://mcuboot.com/

User guide 7 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

2.2 How does the “Secure Boot” SDK work?

The goal for a developer creating a design using a secure device is to ensure that the software running on it is
authorized and unchanged. The “CySecureTools” package provides the tools you use to make that happen.
This section describes what you do and how it works at the highest level. Subsequent sections in this user guide
provide details.

“CySecureTools” provides a reference implementation for the patent-pending process developed by Infineon
for securing the software on a device. It is based on industry-best practices in public-key infrastructure (PKI),
cryptography, and digital signing. From factory to bootup to remote updates, every step in the process is

signed and verified.

Every secured MCU is embedded with a Infineon-owned Root of Trust (RoT) when it comes out of the factory.
This RoT is based on a public key that is owned by Infineon.

When an OEM customer purchases device, there is a secured process to transfer the RoT to the OEM. This

process replaces the Infineon public key with the OEM public key. From that point on, the OEM “owns” the
device and the secured device will only accept any further security-related interaction if it is appropriately
signed by the OEM.

For “Secure Boot” functionality, Infineon provides immutable boot code programmed on factory that launches

a Infineon Bootloader. That bootloader is itself signed, so that the boot code can verify the integrity of the

bootloader. This bootloader then verifies the OEM application firmware that should run on the device before

launching that code. Infineon provides a secured bootloader as part of “CySecureTools”, but a customer can
use their own.

To work with secure devices, the OEM provides three “things”:

• A set of cryptographic keys, the public key of which will be used for validating OEM application firmware.

• A set of security policies that define how the secure chip should behave.

• Certificates (optional) used to bind device identity or provide a chain-of-trust to a higher certifying authority.

This information, along with the bootloader, is securely injected into the device before firmware is

programmed. This process is called provisioning. This information provides the rules that the boot code

follows when launching the bootloader, and provides the resources required to verify the authenticity of the
code.

The OEM develops the software to run on the device and digitally signs the application using a private key that

corresponds to the keys provisioned in the device. With policies and keys in place, the boot code verifies the
bootloader, which verifies the signature and the integrity of any code before launching it.

User guide 8 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

Manufacture
Transfer

Root-of-Trust
Provision:

Set up chip security
Program Device

Cypress ROT
Public Key

OEM RoT
Public Key

Unique Device
Identity

OEM RoT
Public Key

Unique Device
Identity

Keys Security
Policies Certificates

Infineon Bootloader

OEM RoT
Public Key

Unique Device
Identity

Keys Security
Policies Certificates

Infineon Bootloader

User Application

PSoC 64

PSoC 64

PSoC 64

PSoC 64

Figure 1 PSoC™ 64 usage processes

“CySecureTools” includes:

• Provisioning scripts (in Python) that provide an API for tasks such as

− Creating the required keys

− Specifying security policies and debug access

− Provisioning the device

− Forming device identity certificate

− Enabling secure debug

• The Infineon Bootloader (as a binary image with an associated certificate)

• An optional entrance exam step to ensure device integrity

• Sample provisioning policies

2.3 What is Provisioning?

Provisioning is a process whereby secured assets like keys and security policies are injected into the device.

During development, a software team can manage this. During production, this step typically occurs in a secure
manufacturing environment that has a Hardware Security Module (HSM). For the PSoC™ 64 “Secure Boot MCU”,

provisioning involves the following steps:

• Transferring the RoT from Infineon to the development user (called OEM in this document).

• Injecting user assets such as image-signing keys, device security policies, and certificates into the device.

2.3.1 Transferring RoT

Every PSoC™ 64 “Secure Boot MCU” has a Infineon public key placed in the part during manufacturing. This
Infineon public key acts as the initial RoT for the device after it is manufactured.

The RoT transfer process can be represented as a series of trust claims; exchanged between the following
entities:

User guide 9 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

• Infineon – The owner of the Infineon Root private key.

• Secure Manufacturing environment HSM – The entity authorized to provision and program the PSoC™ 64

“Secure Boot MCU”.

• OEM/Developer – The user/code developer of the part.

• PSoC™ 64 “Secure Boot MCU” – The holder of the Infineon Root public key.

The following illustration shows a high-level view:

Figure 2 Infineon authoring the HSM

The series of steps to transfer the root-of-trust include:

1. Infineon authorizes the HSM to provision a part.

2. The OEM/User authorizes the same HSM to provision the part with credentials and firmware.

3. The HSM then presents the above authorization objects to the PSoC™ 64 “Secure Boot MCU.”

4. The PSoC™ 64 “Secure Boot MCU” verifies authorization signatures and claims. If all are valid, the chip
accepts the OEM RoT public key and allows the HSM to send provisioning packets.

The end result of this RoT transfer process can be represented as follows:

• The PSoC™ 64 “Secure Boot MCU” now uses the OEM RoT public key as the root key used to validate any
OEM asset (image keys, policies etc.). This permanently and irrevocably replaces the Infineon RoT.

• The PSoC™ 64 “Secure Boot MCU” now trusts the HSM public key and expects all further provisioning
packets to be signed by the corresponding HSM private key.

The actual authorization objects for the PSoC™ 64 “Secure Boot MCU” are represented using the JSON Web
Token (JWT) format. A simplified view of the flow of the Infineon and the OEM authorizing a HSM is shown in the
following diagram:

Cypress Delegates Trust to HSM OEM Delegates Trust to HSM

RoT Transfer

HSM sends delegate tokens from Cypress and OEM to PSoC64

PSoC 64 validates tokens, trusts HSM, runs integrity check

PSoC 64 accepts OEM key as new RoT

PSoC 64 generates device private key, exports public key

PSoC 64 validates packet to form immutable RoT

HSM signs device public key to form device trusted identity

Sends PSoC 64 signed identity and other secure assets signed
by OEM RoT key

HSM Attests to RoT TransferHSM Attests to RoT Transfer

PSoC 64 ships from standard inventory
MCU with Cypress class key

Device is ready to be mounted on PCB
MCU is locked by OEM key and security policies

Cypress

Hardware Security
Module (HSM)

OEM

PSoC 64

Secure Facility

User guide 10 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

Verifies and signs
HSM pub key

Signature Output

Infineon Trusts HSM

Infineon Root key pair HSM key pair OEM RoT key pair

Verifies and signs
HSM pub key

Signature Output

by OEM RoT

Infineon OEMHSM

OEM Trusts HSM

cy_auth rot_auth

Send Pub Key Send Pub Key

Auth Limits

HSM pub key

Signed by Cy Root
Private key

HSM pub key

OEM Rot pub key

Signed by OEM Rot
Private key

Figure 3 OEM/User authoring the HSM

The final output of this process generates the following JWTs:

• cy_auth.JWT: Contains the public key of the HSM to be trusted. Additional fields such as an expiration date

can be specified to limit this token’s use.

• rot_auth.JWT: Contains the public key of the HSM to be trusted as well as the OEM RoT public key to which
the RoT must be transferred.

The HSM then presents these tokens to the chip, as shown in the following diagram:

PSoC 64 at manufacturing Taking over Root-of-Trust PSoC 64 with OEM pub key Root-of-Trust

Cy Public Key

ROM, Trims etc.

PSoC 64

Cy Public Key

ROM, Trims etc.

PSoC 64

Unique Device Key-pair

ROM, Trims etc.

PSoC 64

User RoT Public Key

Mfr HSM Public Key

Also returns a device
identity blob which can
be used for Identity
generation

PSoC 64 verifies HSM
signature, accepts OEM
Key as Root-of-Trust
Provisioning key

PSoC 64 verifies Cy
signature, accepts HSM
key, validates OEM Key
as valid

Mfr HSM Public Key

User RoT Public Key

Mfr HSM Public Key

Signed, Cy Priv. Key

Signed, User RoT Priv. Key

RoT Package

Figure 4 HSM presenting the authorization to PSoC™ 64

User guide 11 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

After the root-of-trust packet is sent, the device also generates a unique device key pair and exports the
generated device public key and its unique ID. This combination can be used to chain the identity of the chip to

a Certifying Authority trusted by the OEM.

2.3.2 Injecting User Assets

After the RoT is transferred to the OEM RoT public key, the user can inject several assets into the device. These

include:

• Public Keys

− Image public key – Used by the bootloader to check the next image signature.

• Device Policies

− Boot & Upgrade policy – Specifies which regions of flash constitute a bootloader and launch image, as

well as the key associated when validating the flash area.

− Debug policy – Specifies the behavior of the device debug ports

(CM0+ “secure” co-processor/CM4/SYSAP). Also, specifies the device behavior when transitioning into
RMA mode.

• Chain-of-Trust Certificates

− Any certificates needed on the device; for example, device certificate for TLS or Identity.

Both public keys and device policies are present in a JWT token called ‘prov_req.JWT.’ They are signed by the

OEM RoT private key.

The certificates present in the chain-of-trust may be signed by the same key, but no restrictions are placed on
this field’s contents and the chain-of-trust is considered an opaque object.

PsoC 64 with OEM pub key
Root-of-Trust

Injecting User Assets Provisioned PSoC 64 device

Provisioning asset package

PSoC 64 verifies OEM signature,
Accepts policies and other OEM assets

PSoC 64 uses certificate to verify
bootloader application

PSoC 64 uses
validated HSM
signature on full
packet

Mfr HSM Pub Key

OEM RoT Pub Key

PSoC 64

PSoC 64

Unique Device Keys

Mfr HSM Pub Key

OEM RoT Pub Key

PSoC 64

Unique Device Keys

Mfr HSM Pub Key

OEM RoT Pub Key

Unique Device Keys

Image Public Key(s)

Debug Policy

Boot&Upgrade Policy

Chain-of-Trust Certs

Signed, OEM RoT
Private Key

Cypress Bootloader

Bootloader Certificate

Image Public Key(s)

Debug Policy

Boot&Upgrade Policy

Chain-of-Trust Certs

Infineon Bootloader
Binary

Signed, OEM RoT
Private Key

Bootloader Certificate

Signed, HSM Priv. Key

Figure 5 Provisioning flow

User guide 12 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

In addition to the OEM assets, Infineon Bootloader is programmed at this stage, along with the Bootloader
Certificate (called ‘image_cert.JWT’) that has the signature of the Infineon Bootloader binary. This ensures that

the bootloader itself can be verified and trusted. For more details on Infineon Bootloader, see the Cypress
Bootloader section.

For more details on the exact provisioning packets, see the Provisioning script flow details section.

2.3.3 Re-provisioning User Assets

The PSoC™ 64 “Secure Boot MCUs” also allow some user assets to be re-provisioned, if allowed by the initial
policy provisioned into the device.

The following assets are allowed to be re-provisioned

• Infineon Bootloader

• Public keys, Policies and Chain-of-trust certificate

All other assets such as the OEM RoT public key, HSM public key and device unique keys cannot be replaced
using re-provisioning.

2.4 Infineon Bootloader

The Infineon Bootloader is included as a pre-built hex image. This image acts as the first image securely
launched by the PSoC™ 64 “Secure Boot MCU” boot code. The Infineon Bootloader is based on an open source

library MCUBoot and is capable of parsing the provisioned Boot&Upgrade policy and launch next image if all
required checks pass. For more details about this open source library, refer to the MCUBoot Bootloader design
website.

The bootloader recognizes two memory areas for each application partition. There is the Primary Slot and a
Secondary Slot. The Primary Slot contains the Boot Image, and the Secondary Slot contains the Upgrade

Image. The Boot Image is the application code that executes. The Upgrade Image is where the code upgrade is

stored before it is copied to the Boot Image. Code cannot execute in the Secondary Slot. In the Single-image
mode, there is one Primary Slot and one Secondary Slot since the CM0+ “secure” co-processor and CM4

binaries are combined. In the Multi-image mode there are four slots, two for the CM0+ “secure” co-processor
(Primary and Secondary) and two for the CM4 (Primary and Secondary), which allows the CM4 and the CM0+

“secure” co-processor code to be upgraded individually if needed.

There are two methods supported for firmware upgrades, Replace and Swap. The Replace method simply

copies the Secondary Slot into the Primary Slot, then invalidates the Secondary Slot. The Swap method safely
swaps the Primary and Secondary slots so that you may revert to the previous version of firmware. After the

Primary Slot has been updated and validated in either method, the new firmware is executed.

Note The current version of Infineon Bootloader supports image Replace upgrades in the 512K and 1M flash

devices and image Swap for the 2M flash devices. The Swap mode requires additional 64K of internal flash if
both Primary and Secondary slots are on chip. If the Secondary slot is external, then only an additional 32K of

internal flash is used.

The Infineon Bootloader supports external memory over the PSoC™ 64 Serial Memory Interface (SMIF). The

bootloader currently only supports external memory vendors who support the Serial Flash Discovery Protocol
(SFDP).

The Infineon Bootloader is capable of independently managing up to two user images for use cases where the
Secure Processing Environment (SPE) code such as Trusted Firmware-M and Non-Secure Processing (NSPE)
code needs to be independently updated with individual Boot and Upgrade slots.

https://juullabs-oss.github.io/mcuboot/design.html

User guide 13 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

The Infineon Bootloader also enforces the protection contexts for the bootloader code, so code running on
another protection context cannot overwrite/tamper with the boot code. The following diagram shows the

launch code sequence of Infineon Bootloader:

Boot ROM +
 Secure Flashboot

Infineon Bootloader

User Image(s)

Debug Policy

Verify and launch
Address of bootloader

Boot and Upgrade
Policy + Key(s)

Provisioned Assets

Verify and launch

Signature

Signature

Address of User Image

& key for verification

Sets access ports
according to debug
policy

& key for verification

Figure 6 Bootloader launch sequence

During a normal bootup, the Infineon Bootloader performs the following operations:

• Reads the policies and parses them for further use.

• Checks if the upgrade slot is located in external memory and performs SMIF initialization correspondingly.

• Checks if the Boot Area (Primary Slot) contains an image to boot.

• Verifies that this image has the valid format.

• Verifies the image’s digital signature.

• Verifies that the image rollback counter is greater than or equal to the value saved in the rollback protection

counter of the boot code data.

• Checks if the Staging Area (Secondary Slot) has an image for upgrade.

• Boots Primary Slot if no correct image is found in the Staging Area.

If Staging area (Secondary Slot) has a new image, the Infineon Bootloader performs the following operations:

• Verifies the digital signature of the image located in Secondary Slot.

• Decrypts the image’s body and verifies the digital signature of the decrypted image (optional for the

encrypted image support).

• Checks that the corresponding policies allow upgrade.

• Checks that the image metadata matches the image in Primary Slot, then upgrades it.

• Replace Mode

− Overwrites Primary Slot with the decrypted (if needed) Secondary Slot image.

− Invalidates Secondary Slot by erasing the header and trailer (hash and signature) sections, so that at the
next reset, the Secondary Slot is ignored.

• Swap Mode

− Swaps the Primary Slot with the Secondary Slot so that the previous version may be recovered if there is
a software issue.

− The Secondary Slot is re-encrypted if it had been encrypted previously.

User guide 14 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

The following diagram shows a typical application update scenario using the Infineon Bootloader:

Keys, Policies

Immutable Boot Code

Customer
Application
(Version 1)

Signed with User Private
Key

Infineon Bootloader

New Image Available Bootloader Verifies New Image Bootloader Updates Current Image

Primary Slot

Secondary Slot
(empty)

Customer
Application
(Version 2)

Signed with User Private
Key

New
Image

Keys, Policies

Immutable Boot Code

Customer
Application
(Version 1)

Signed with User Private
Key

Cypress Bootloader

Primary Slot

Secondary Slot

Customer
Application
(Version 2)

Signed with User Private
Key

Verifies new image
content and

signature with
provisioned keys

Keys, Policies

Immutable Boot Code

Customer
Application
(Version 2)

Signed with User Private
Key

Cypress Bootloader

Primary Slot

Secondary Slot

Customer
Application (V1)

(Empty if replace

upgrade mode)

Signed with User Private
Key

Swap

Replace

Figure 7 Bootloader application update sequence

User guide 15 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

2.5 “CySecureTools” Installation and Documentation

A stand-alone python package, “CySecureTools” contains all necessary scripts, default provisioning packets,
and a set of default policy files. It implements most of the “Secure Boot” SDK functionality. “CySecureTools” is
written in the Python language and requires interpreter versions higher than 3.7.

“CySecureTools” source code is available on GitHub. Full details about the operations, commands, and APIs
available can be found on:

https://github.com/cypresssemiconductorco/cysecuretools/blob/master/README.md/

For Windows, the installation of ModusToolbox™ Software 2.3 or later provides all the tools required to build,
program and provision devices. This includes the correct version of Python as well. Windows users may skip the

remainder of this section.

Use these instructions to install and configure “CySecureTools”:

1. Install Python 3.7.4 or later on your computer. You download it from https://www.python.org/downloads/
or install it using the packet manager of host system.

2. Set up the appropriate environment variable(s) for your operating system.

If Python 2.7 is also installed, make sure that Python37 and Python37\Scripts have higher priority in the
PATH than CPython27.

Linux

Most distributions of Linux should already have python2 and python3 installed. To verify that python by
default points to python3 run:

python --version

If python3 is not set as default, run the following commands. The number at the end of each command
denotes a priority:

update-alternatives --install /usr/bin/python python /usr/bin/python2.7 1

update-alternatives --install /usr/bin/python python /usr/bin/python3.7 2

macOS

By default, ‘python’ points to /usr/bin/python, which is python2. To make ‘python’ and ‘pip’ resolve to
python3 versions, execute the following from command line:

echo 'alias python=python3' >> ~/.bash_profile

echo 'alias pip=pip3' >> ~/.bash_profile

source ~/.bash_profile

python --version

Python 3.7.4

pip --version

pip 19.0.3 from

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/

site-packages/pip (python 3.7)

Note: If you use a shell other than bash, update its profile file accordingly. For example ~/.zshrc if you use
zsh instead of ~/.bash_profile.

https://github.com/cypresssemiconductorco/cysecuretools/blob/master/README.md/
https://www.python.org/downloads/

User guide 16 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Overview

3. Installing “CySecureTools” package, but first make sure that you have the latest version of pip installed, use
the following command.

python -m pip install --upgrade pip

Install the “CySecureTools” package (part of the “Secure Boot” SDK). Run the following command in your
terminal window

python -m pip install cysecuretools

Note: During installation, you may see errors when installing colorama, protobuf and jsonschema. These

can be safely ignored.

You can use the following command to show the path to the installed package

python -m pip show cysecuretools

4. “CySecureTools” uses the pyOCD package, which has a dependency on libusb. Follow the latest instructions
in the pyOCD readme.

The following are instructions for the currently recommended version:

Linux

Use the host system packet manager to install the driver using a terminal. For example, run the following for
Ubuntu:

apt-get install libusb

This command requires sudo.

Mac OS

Use the homebrew packet manager to install the driver using terminal:

homebrew install libusb

https://github.com/mbedmicro/pyOCD#libusb-installation
https://brew.sh/

User guide 17 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

3 ModusToolbox™ Tools Provisioning Flow

This section shows how to provision the CY8CKIT-064B0S2-4343W kit in ModusToolbox™ software using

“CySecureTools.”

3.1 Prerequisites

3.1.1 ModusToolbox Software Installation

Install the ModusToolbox™ software, version 2.3 or later. Refer to the ModusToolbox™ installation guide.

Note: On Linux machines after installing ModusToolbox™ software, run the ModusToolbox/tools_<version>/

modus-shell/postinstall script.

Note: ModusToolbox™ software provides a “Secure Policy” Configurator with a graphical user interface to
modify policy tools and provision the device. This “Secure Boot” SDK user guide uses the command line option
since it defaults to a default policy file that does not need modification for basic kit and device evaluation.

3.1.2 “CySecureTools” Installation

Follow the instructions in the “CySecureTools” Installation and Documentation section.

Note: This example will use the CY8CKIT-064B0S2-4343W kit, although feel free to use any of the PSoC™ 64 kits.
The target parameter for cysecuretools may either be the kit name or the device family name. See table

below. For the example in this guide, the device family name will be used. A user with a custom board will most
likely use the device family name as well. For example, these two commands are the same:

cysecuretools -t cyb06xxa init

cysecuretools -t cy8ckit-064b0s2-4343w init

Table 2 “CySecureTools” target parameters

Kit cysecuretools Target Parameter Description

Kit name Device family name

CY8CPROTO-064S1-SB cy8cproto-064s1-sb cyb06xx7 1M Flash

CY8CPROTO-064B0S1-BLE cy8cproto-064b0s1-ble cyb06xx7 1M Flash w/Bluetooth LE

CY8CKIT-064B0S2-4343W cy8ckit-064b0s2-4343w cyb06xxa 2M Flash

CY8CKIT-064S0S2-4343W cy8ckit-064s0s2-4343w cyb06xxa 2M Flash

CY8CPROTO-064B0S3 cy8cproto-064b0s3 cyb06xx5 512K Flash

3.1.3 Create Secure Blinky LED FreeRTOS Application Project

1. Launch the Eclipse IDE for ModusToolbox™.

2. Open an existing workspace or create a new workspace.

3. Click on File > New > ModusToolbox™ IDE Application.

4. In the Project Creator, select CY8CKIT-064B0S2-4343W kit (or whichever kit you have) and click on Next >.

5. Select the “Secure Blinky LED FreeRTOS” application and click Create. This may take a while as it pulls all
required sources from respective repositories.

https://www.infineon.com/dgdl/Infineon-ModusToolbox-Installation-Guide_(Version_2.0).pdf-Software-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017e90c017db0c5f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files&redirId=file_4_1_1626

User guide 18 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

3.2 Device Provisioning

For evaluation, device provisioning can be done in your local development environment, rather than in a
secure manufacturing facility. For evaluation, a pre-signed development token is available in the SDK which
authorizes a HSM key-pair provided in the SDK.

Figure 8 Provisioning flow

All the following steps should be executed from command line. The path to the policy file (if using a custom
policy) can be relative to current working directory, or absolute. All paths to keys files inside policy file are

absolute or relative to the policy path.

3.2.1 A. Set Up “CySecureTools” Workspace

Open a native command-line application and navigate to the %WORKSPACE%/Secure_Blinky_LED_FreeRTOS/
directory.

For Windows, use the command line “modus-shell” program provided in the ModusToolbox™ installation
instead of a standard Windows command line application. This shell provides access to all ModusTolbox™ tools
including “CySecureTools” that is used to provision a device. You can access modus-shell by typing “modus-

shell” in the Windows search box in the Windows menu.

The following provisioning example uses the CY8CKIT-064B0S2-4343W kit as the target. You may replace the

target parameter with either the kit name or the device family name for the kit that you are using.

Run the following command: (If you have a different kit than the CY8CKIT-064B0S2-4343W, replace the target
parameter “cyb06xxa” with the correct option for your kit for all the following commands.)

cysecuretools -t cyb06xxa init

Generate a new
key pair you want
to sign firmware
with

Generate
Image Keys

• Uses provided
development
cy_auth token

• Use provided
OEM RoT key to
sign keys, device
policies
• Sign provisioning
packet with HSM
private key

Create
Provisioning

packet

•Run Entrance
exam

•Send provisioning
packet to chip

Perform
Provisioning

User guide 19 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

What does this step do?

“CySecureTools” provides default policies and other secure assets that can be used to quickly set up the chip

with development parameters, like leaving the CM4 DAP (Debug Access Port) open to reprogram the chip.

Based on the selected target, this step sets up all the necessary files in your workspace that are used for
subsequent steps.

After running this step, you will have a choice of multiple default policies you can use to provision the chip. You
can choose which policy you want to use by the --policy/-p flag in the “CySecureTools” CLI.

For details on what each default policy means, see Understanding the Default policy.

Note: Ensure you use the same policy file when running through steps B, C, D, and E.

Note: If you are not using the CY8CKIT-064B0S2-4343W kit, the default policy file name will be

“policy_single_CM0_CM4.json”. You may look in the “policy” directory to examine the example policy files.

3.2.2 B. Generate new keys

Ensure you are in the “%WORKSPACE%/Secure_Blinky_LED_FreeRTOS/” directory.

In your command-line, copy/paste the following command:

cysecuretools -t cyb06xxa -p policy/policy_single_CM0_CM4_swap.json create-

keys

What does this step do?

“CySecureTools” reads the provided policy and generates the keys defined.

Depending on the policy chosen, there can be multiple keys generated under the /keys/ folder. By default
only one key, the USERAPP_CM4_KEY, a P-256 Elliptic curve key-pair is generated.

“CySecureTools” generates keys in two formats, PEM and JSON. Both the PEM and JSON files represent the

same key.

User guide 20 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

3.2.3 C. (Optional) Run Entrance Exam

Connect the kit to your PC.

Attention: The KitProg3 must be in DAPLink mode for performing this step. Press the ‘Mode’ button on the kit

until the Status LED blinks fast. For more details, refer to the KitProg3 user guide.

In your command-line copy/paste the following command:

cysecuretools -t cyb06xxa entrance-exam

What does this step do?

The Entrance exam is a test routine that does the following things:

• Verify that the Device is in the correct lifecycle stage.

• Verify that Boot Code has not been modified/tampered.

• Verify that User flash is empty and no code is running before any provisioning takes place.

Failing the entrance exam returns an error in the command line. If there is any firmware running on the
device, “CySecureTools” will give an option to erase the chip. Existing firmware can be erased using tools like
Infineon Programmer.

Note that the entrance exam is also run automatically before performing provisioning, so you can skip this
step if needed.

https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files&redirId=file_4_1_431

User guide 21 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

3.2.4 D. Perform Provisioning

Attention: KitProg3 must be in DAPLink mode. The kit supply voltage must be 2.5 V to perform this step. Refer
to the relevant kit user guide to find out how to change the supply voltage of your kit.

Ensure you are in the %WORKSPACE%/Secure_Blinky_LED_FreeRTOS/ directory. In your command-line
copy/paste the below command for device provisioning:

cysecuretools -t cyb06xxa -p policy/policy_single_CM0_CM4_swap.json

provision-device

What does this step do?

The “CySecureTools” provision-device API does the following steps:

• Reads the provided policy and forms the final provisioning packet, named prov_cmd.jwt.

• Performs the entrance exam.

• Provisions the device by sending the prov_cmd.jwt to the PSoC™ 64 Secure MCU.

Before running this step, you can modify the default policy to match your end use-case. For most

development use-cases, you don’t need to modify it. Please see Understanding the Default policy.

3.3 Device Re-provisioning

The default device policy templates provided in “CySecureTools” allows you to re-provision a device after
running through the provisioning steps.

To re-provision a device, follow the steps in the normal provisioning flow (see Device Provisioning) and run the
following command:

cysecuretools -t cyb06xxa -p policy/policy_single_CM0_CM4_swap.json re-

provision-device

When re-provisioning a device, the Entrance exam step is not run again. In case of failure at re-provisioning, see
Re-provisioning After Failure.

User guide 22 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

3.4 ModusToolbox™ Secure Image Generation

In ModusToolbox™ software, PSoC™ 64-based kit targets have post-build signing scripts set up in the makefile
so the output binary is formatted and signed automatically according to the provisioned policy file; for
example, policy_single_CM0_CM4_swap.json.

The post-build signing is part of the .mk file located in the target; for example, ..\mtb_shared\\
TARGET_CY8CKIT-064B0S2-4343w\latest-v2.X\CY8CKIT-064B0S2-4343W.mk

The following diagram shows the flow for signing and encryption using ModusToolbox tools:

Standard
ModusToolbox build

flow,
 output hex files

Image mode?

Merge CM0 Image with
CM4 Application

CySecureTools.sign()
on merged image

CySecureTools.sign()
CM0 Image

CySecureTools.sign()
CM4 Application

Merge CM4 and CM0
Images into one fileexample.hex

example_upgrade.hex
example.hex

example_upgrade.hex

CM0_Img.hex

CM0_Img_upgrade.hex

Signed, Boot image Primary Slot

Signed, Boot image Secondary Slot
Signed, Boot image (NSPE) Primary Slot

Signed, Boot image (NSPE) Secondary Slot

Signed, Boot image (SPE) Primary Slot

Signed, Boot image (SPE) Secondary Slot

Single-mode Multi-mode

Secure Boot mode

TARGET.mk file

Figure 9 Secure image generation

The build process outputs two binaries:

• Signed boot image hex file. This is the exact binary that can be programmed to Primary Slot for the

PSoC™ 64 device to securely launch the application.

• Signed and encrypted (policy dependent) update image hex file. This is the exact binary that can be

programmed to Secondary Slot for the PSoC™ 64 device to perform a secure update and then launch the
application.

User guide 23 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

ModusToolbox™ Tools Provisioning Flow

3.5 Build and Run the Application

If you had just completed the provisioning process, your MiniProg4 or your kit/protoboard KitProg may still be
in DAPLink mode which is required for provisioning. Be sure to change your MiniProg4 or KitProg back into
CMSIS-DAP Bulk mode before attempting to program or debug your device. The MiniProg4/KitProg status LED
should be on but not blinking to be in the CMSIS-DAP Bulk mode. To return the device to this mode, simply

press the Mode Select button on the MiniProg4 or KitProg.

Also, you may have changed the supply voltage to 2.5 volts for provisioning. You should change the supply
voltage back to your normal operating voltage prior to programming and application operation.

1. In the Project Explorer, right-click on the “Secure Blinky LED FreeRTOS” project and select Build Project.

2. Connect device to the computer over USB.

3. Right-click on “Secure Blinky LED FreeRTOS” project and select Run As > Run Configurations…

4. On the dialog, select GDB OpenOCD Debugging > “Secure Blinky LED FreeRTOS” Program (KitProg3) and
click the Run button.

3.6 Debug the application

1. Right-click on “Secure Blinky LED FreeRTOS” project and select Run As > Debug Configurations…

2. On the dialog, select GDB OpenOCD Debugging > “Secure Blinky LED FreeRTOS” Program (KitProg3) and
click the Debug button.

A breakpoint is set at main function with default launch configurations. After the first step debugger breaks at

main function.

3.7 Re-provisioning after Failure

Perform this step as needed for the following scenario:

• You provision the PSoC™ 64 device, build, sign, and program the application.

• The application is verified and started by the Infineon Bootloader, but it does not work correctly and puts

the device into a hard fault.

• You try to re-provision the device, using the default re-provisioning command.

If the Primary Slot address and user keys were not changed, the Infineon Bootloader starts the bad

application during re-provisioning process, the device becomes nonresponsive (the application does not
produce a synchronization event for the external programming tool) and the re-provisioning process fails
after timeout.

To address this failure, erase the boot slot manually before re-provisioning, or use the following option in

the re-provisioning command:

cysecuretools -t cyb06xxa -p policy/policy_single_CM0_CM4_swap.json re-

provision-device –-erase-boot

Note: The re-provisioning step may fail if the device enters Deep Sleep mode. If the application code is
putting the device into Deep Sleep mode, ensure to erase the flash before running the re-provisioning

command.

User guide 24 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

4 “CySecureTools” Design

This section provides an overview of the “CySecureTools” python package design and details on the default

policy. “CySecureTools” provides a Command-line interface over stand-alone scripts that simplifies calling
them with minimum number of arguments. Advanced users can use the scripts without wrapper and configure
each argument as they need. A Graphical User Interface (GUI) for “CySecureTools” is also provided. See the
“Secure Policy Configurator” guide. It provides both easy execution of “CySecureTools” without using a
command line and editing of the policy file without directly editing the XML policy file.

4.1 “CySecureTools” Component Diagram

The following diagram shows the high-level components of “CySecureTools”:

PSoC 64 Device

 CySecureTools
(APIs)

Figure 10 “CySecureTools” components

4.1.1 Creating a Provisioning Packet

The final prov_cmd.jwt which is required for provisioning a Secured MCU device requires several pieces of
information.

As input arguments, the tools (specifically the create-provisioning-packet API) takes:

• OEM key file

• HSM key file

• Infineon Bootloader image certificate

• Provisioning authorization certificate

https://www.infineon.com/dgdl/Infineon-ModusToolbox_Secure_Policy_Configurator_1.30_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c8386267f0183a960762a5977&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files&redirId=180699&redirId=VL152

User guide 25 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

• Policy file

• Output directory (packet by default)

• User’s keys to be used for image signing

• Chain of trust certificates

The output of the script will be added to the folder packet.

The prov_identity.jwt packet is used for giving the identity to the device during provisioning. The data

provisioned with this packet cannot be changed during re-provisioning.

The prov_cmd.jwt file is used during provisioning and re-provisioning. This packet contains the data that can be
changed during re-provisioning.

Figure 11 Provisioning packet structure

User guide 26 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

4.2 Understanding the Default Policy

There are four example policies provided in “CySecureTools” for each target. The devices with 2M or more Flash
implement a swap upgrade mode instead of the standard replace mode. The policy files for these devices will
contain “swap” in the name. You can see the difference in the table below for each default policy name.

Table 3 Policy files description

Policy name Description Debug Application

Memory Map

policy_single_CM0_CM4.json

policy_single_CM0_CM4_swap.json

(Default policy used in MTB)

Policy for applications
which need to have

single signature for 2
combined applications

– Secure CM0p and User

App on CM4.

Typical use-case for

simple secure boot and

upgrade systems.

CM0P “secure” co-
processor/CM4/SysAP

are enabled.

Internal

Flash only

policy_single_CM0_CM4_smif.json

policy_single_CM0_CM4_smif_swap.json

Similar to previous

policy, Enables external
memory support for

upgrade image location

CM0P “secure” co-

processor/CM4/SysAP

are enabled.

External

memory
support for

upgrade

image

policy_multi_CM0_CM4.json

policy_multi_CM0_CM4_swap.json

Policy for applications
which need
independently

updateable SPE and

NSPE code.

Typical use-case for IoT
systems which maintain
Secured code
independent of

application code.

CM0P “secure” co-
processor/CM4/SysAP

are enabled.

Internal

Flash only

policy_multi_CM0_CM4_smif.json

policy_multi_CM0_CM4_smif_swap.json

Similar to previous
policy, Enables external

memory support for

upgrade image location.

CM0P “secure” co-
processor/CM4/SysAP

are enabled

External
memory

support for

upgrade

images.

This section covers the details of the fields in the default policy_single_CM0_CM4/_swap policy provided in the
“CySecureTools.” The contents can be classified as follows:

• Boot&Upgrade Policy

• Debug Policy

• Infineon Bootloader

• “CySecureTools” miscellaneous assets

User guide 27 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

4.2.1 Policy and Configuration Limitations

The follow is a list of limitations with the policy and configuration of the PSoC™ 64 “Secure Boot MCU.”

• Only upgrade (Secondary Slot) may reside in external memory (SMIF-based). The boot (Primary Slot) must

reside in internal flash.

• Only one SMIF slave-select may be used in a system with firmware upgrades enabled. Other SMIF devices
with additional slave-selects may be used for non-code related storage.

• Secondary Slot(s) in external memory start address must start at 0x1800_000 + (X * SMIF sector_size), where
X = 0, 1, etc. The external memory devices on the PSoC™ 64 kits have a sector size of 0x40000 (256K). For

example, the external memory starts at address 0x1800_0000 and the sector size is 0x40000, then the start
address may be 0x1800_0000, 0x1804_0000, 0x1808_0000, etc.

• Only SFDP (Serial Flash Discoverable Parameter) compatible devices are supported for external memory.

• Larger sector size must be an even multiple number of the smaller sector size. In the case of the current

PSoC™ 64 development kits, the external memory sector size is 0x40000 (larger) and the internal sector size
is 0x200 (smaller), which is an even multiple of the larger.

• The same key pair must be used to sign both the boot and the upgrade images.

• The internal slot size (Primary and Secondary) for SWAP must be equal or larger of the sum of the image size

(even multiple of sector size), one move sector (512 bytes) and image trailer size (512 bytes).

• The Boot/Upgrade Image, Move_Sector, and Trailer must be on non-overlapping sectors. This means that

external memory with a sector size of 0x40000 (256K) will need to be at least 3 times the size of the sector
size. In this case it would be 0xC0000 (768K), since the Move_Sector and Trailer each have to be at least 256K
(1 sector).

• Primary and Secondary Slot sizes must be equal.

• External clocks (ECO, ALTHF, WCO, and EXTCLK) are not allowed to source CLK_HF0 if they are not defined in
the security policy.

• Devices with 2M or more of flash will only use SWAP mode for firmware upgrades and devices with less than
2M Flash will used REPLACE upgrade mode.

4.2.2 Boot&Upgrade Policy

The Boot&Upgrade (BnU) policy defines the memory regions and keys associated with images in the chip. This
JSON field has further sub-objects:

• Infineon BnU Policy

• CM0+ “Secure” co-processor Image BnU Policy

• CM4 Image BnU Policy

• Reprovisioning options

The tables on the next few pages show the Infineon Bootloader settings in the example/default
policy_single_CM0_CM4_swap.json file for the cyb06xxa family (2M Flash) devices. This example policy file is

part of the “CySecureTools” version 3.1. These fields may need to be modified, but they can be useful as a
reference.

The following figure shows the memory map of the flash defined by the policy file. See Appendix A for memory
map files for the example policy files for “CySecureTools” 3.1.

User guide 28 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

FlashBoot
(128K)

0x1000_0000

0x100E_0000

0x1020_0000

0x101E_0000

Infineon Bootloader
(64K)

0x101D_0000

cyb06xxa/cyx06xxa
(2M swap)

Swap Scratch (48K)
Swap Status (16K)

0x101C_0000

CM0 Sys & PRA
(64K)

CM4 Application
(832K)

[0x1001_0000 – 0x100E_0000]

CM0 Sys & PRA
(64K)

CM4 Application
(832K)

[0x100F_0000 – 0x101C_0000]

Primary Slot (0)

Secondary Slot (1)

Internal Flash

Figure 12 PSoC™ 64 “Secure” MCU flash memory map

Table 4 Infineon Bootloader Boot&Upgrade policy

JSON field Description

{

 "boot_auth": [5], KeyID 5 used check image signature

 "bootloader_keys": [Defines key used for Bootloader

{

 "kid": 5, Specify KeyID = 5 for the key

 "key": "../keys/oem_state.json" Path to key

}

],

"id": 0, Image Id ‘0’, Indicates Infineon Bootloader

"launch": 1, Next image to launch is identifier ‘1’, indicates CM0+

“secure” co-processor image

User guide 29 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

"upgrade_mode": "swap", This device is using “swap” mode for firmware
upgrade. The 512K and 1M flash devices use
“replace” mode which is the default if this policy is

not in the policy.

"acq_win": 100, Defines acquire window for Infineon Bootloader in

msec.

"wdt_timeout": 4000, WDT for the CM0+ “secure” co-processor set to

4000 msec.

"wdt_enable": true WDT for CM0+ “secure” co-processor is enabled.

"monotonic": 0, The counter to protect the rollback during the

upgrade process.

"clock_flags": 578, Clock flag - 0x0242; Listen window is 100 ms; CM0+
“secure” co-processor clock set to 50 MHz when

executing Infineon Bootloader.

"protect_flags": 1, Private key protection Enabled

Bit0 – Private key protection

(0 - Disabled, 1 - Enabled)

Bit1 – Any PSA API protection

(0 - Disabled, 1 - Enabled)

"upgrade": false, Bootloader is not upgradable.

"resources": [Defines Resources used by image.

{

 "type": "FLASH_PC1_SPM", Indicates Flash region to be protected at PC = 1.

 "address": 270336000, Address: 0x101D_0000

 "size": 65536 Size: 64K

},

{

 "type": "SRAM_SPM_PRIV", Indicates RAM region to be protected at PC = 1.

 "address": 135135232, Address: 0x080E_0000

 "size": 65536 Size: 64K

},

{

 "type": "SRAM_DAP", Indicates RAM reserved by DAP for debugging.

 "address": 135184384 , Address: 0x080E_C000

 "size": 16384 Size: 16K

}

{

 "type": "STATUS_PARTITION" Status partition used for SWAP firmware updates.

 "address": 270319616 0x0x101C_C000

 "size" 16384 0x4000 (16K)

}

User guide 30 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

{

 "type": "SCRATCH" Scratch flash memory used for SWAP firmware

updates.

 "address": 270270464, 0x101C_0000

 "size": 49152 0xC000 (48K)

]

},

Table 5 CM0+ “Secure” Co-processor Application image Boot&Upgrade policy

JSON field Description

{

 "boot_auth": [8], KeyID 8 used to check image signature.

 "boot_keys": [Defines key used by Infineon Bootloader.

{

"kid": 8, Specify KID = 8 for the below key.

"key": "../keys/USERAPP_CM4_KEY.json" Path to Key

}

],

 "id": 1, Image Id ‘1’, Indicates CM0+ “secure” co-processor

Image

 "launch": 16, Image id ‘16’ (CM4 App) will be launched by this

image.

 "monotonic": 0, The counter to protect the rollback during the

upgrade process.

 "smif_id": 0, No upgrade image in external memory.

 "acq_win": 100, Defines acquire window for this image in msec.

 "wdt_timeout": 4000 Set CM0+ “secure” co-processor watchdog timer to

4 seconds.

 "wdt_enable": false Do not enable watchdog timer.

 "set_img_ok": true Set to one to set current image valid.

 "upgrade": true, This image is upgradable from secondary slot (1).

 "version": "0.1", Version of image, used by “CySecureTools” to form

MCUBoot header.

 "rollback_counter:" 0, One-way version counter of zero.

 "encrypt": false, Encryption for upgrade slot is disabled.

 "encrypt_key_id": 1, Kid: 1(device private key) used for ECDH for deriving

key of encrypted update.

User guide 31 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

 "encrypt_peer":

"../keys/dev_pub_key.pem",
Path to public key to be used by “CySecureTools” to

for the key.

"resources": [Defines Resources used by image.

{

 "type": "BOOT", Indicates Primary Slot (0)

 "address": 268435456, Address: 0x1000_0000

 "size": 917504 Size: 896K, 0xE_0000

},

{

 "type": "UPGRADE", Indicates Secondary Slot(1).

 "address": 269459456, Address: 0x100E_0000

 "size": 917504 Size: 896K, 0xE_0000

}

]

},

Special Note: In the single-image use case, most fields in the M4 Boot&Upgrade image policy are placeholders.
All the required information (except CM4 Boot address) is derived from the CM0+ “Secure” co-processor policy

which has the combined firmware image for both cores.

Table 6 CM4 Application image Boot&Upgrade policy

JSON field Description

{

 "boot_auth": [8], N/A (Only valid with dual image)

 "boot_keys": [N/A (Only valid with dual image)

{

 "kid": 8, N/A (Only valid with dual image)

 "key":

"../keys/USERAPP_CM4_KEY.json"
N/A (Only valid with dual image)

}

],

"id": 16, Image Id ‘16’, Indicates CM4 Image.

Since this is a single image the eight values below are

ignored. See id: 1 above for settings.

"monotonic": 8, N/A (Not valid with single image)

"smif_id": 0, N/A (Not valid with single image)

"upgrade": false, N/A (Not valid with single image)

"version": "0.1", N/A (Not valid with single image)

rollback_counter: 0, N/A (Not valid with single image)

"encrypt": false, N/A (Not valid with single image)

User guide 32 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

"encrypt_key_id": 1, N/A (Not valid with single image)

"encrypt_peer":

"../keys/dev_pub_key.pem",
N/A (Not valid with single image)

"resources": [Defines Resources used by image

{

 "type": "BOOT", Indicates Launch address of CM4 part of single

image.

 "address": 268500992, Address: 0x10010000

 "size": 884736 N/A (Not valid with single image)

}

],

Table 7 Reprovisioning options

JSON field Description

{

 "boot_loader": true, Bootloader can be re-provisioned.

 "keys_and_policies": true Keys and Policies can be re-provisioned.

}

4.2.3 Debug Policy

The Debug policy specifies how various access ports are configured for the part.

Table 8 Infineon Debug policy

JSON field Description

{

"m0p": { Defines CM0P “secure” co-processor DAP Port

behavior.

 "permission": "enabled", DAP Port enabled

 "control": "firmware", N/A (Only valid if permission set to Allowed)

 "key": 5 N/A (Only valid if permission set to Allowed)

 },

"m4": { Defines CM4 DAP Port behavior.

 "permission": "allowed", DAP Port enabled

 "control": "firmware", N/A (Only valid if permission set to Allowed)

 "key": 5 N/A (Only valid if permission set to Allowed)

 },

"system": { Defines CM4 DAP Port behavior.

 "permission": "enabled", DAP Port enabled

 "control": "firmware", N/A (Only valid if permission set to Allowed)

User guide 33 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

 "key": 5, N/A (Only valid if permission set to Allowed)

 "flashw": true, Allow Flash Writes using SysAP port.

 "flashr": true Allow Flash Reads using SysAP port.

 },

"rma": { Defines RMA behavior.

 "permission": "allowed", RMA mode is allowed.

 "destroy_fuses": [Indicates eFuse region to be destroyed if entering

RMA mode.

 {

 "start": 888, Start address of efuses to be destroyed.

 "size": 136 Size in bits to be destroyed.

 }

],

 "destroy_flash": [Indicates Flash region to be destroyed if entering

RMA mode.

 {

 "start": 268435456, Start Address of flash to be destroyed (0x10000000).

 "size": 512 Size in bytes of flash to be destroyed.

 }

],

 "key": 5 KeyID used to validate a RMA request.

 }

}

4.2.4 External Clock Policy

The External Clock policy specifies the port/pins and frequency of an external clock.

Table 9 External Clock policy

JSON field Description

{

"custom_data_sections": ["extclk",

"srampwrmode"],

 "extclk": { Defines external clock options.

 "extClkEnable": 0, Enable extClk = 1, Disable extClk = 0

 "extClkFreqHz": 4000000, extClk clock frequency = 4.00 MHz

 "extClkPort": 0, extClk port 0

 "extClkPinNum": 5, extClk pin 5 P0[5]

 "ecoEnable": 0, Enable ECO = 1, Disable ECO = 0

 "ecoFreqHz": 24000000, ECO frequency = 24.00 MHz

User guide 34 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

 "ecoLoad": 20, ECO Load 20 pF (See TRM)

 "ecoEsr": 30, ECO ESR 30 (See TRM)

 "ecoDriveLevel": 100, ECO Drive Level 100 (See TRM)

 "ecoInPort": 12, ECO input port 12

 "ecoOutPort": 12, ECO output port 12

 "ecoInPinNum": 6, ECO input pin P12[6]

 "ecoOutPinNum": 7, ECO output pin P12[7]

 "bypassEnable": 0, Clock port bypass to External sine wave or crystal

(See TRM).

 "wcoEnable": 1, Enable WCO = 1, Disable WCO = 0

 "wcoInPort": 0, WCO input port 0

 "wcoOutPort": 0, WCO output port 0

 "wcoInPinNum": 0, WCO input pin P0[0]

 "wcoOutPinNum": 1 WCO output pin P0[1]

}

4.2.5 Infineon Bootloader

"cy_bootloader":

{

 "mode" : "debug", -> CySecureBootloader will emit debug logs over UART

}

4.2.6 “CySecureTools” Misc Assets

Table 10 “CySecureTools” Misc Assets

JSON field Description

"provisioning": { Defines provisioning packet paths.

"packet_dir": "../packets", Relative path of the packets folder used for

provisioning.

"chain_of_trust": [] No chain-of-trust certificate objects.

},

"pre_build": { Defines pre-build asset locations needed for

provisioning.

"oem_public_key":

"../keys/oem_state.json",
Relative path for OEM root public key location.

"oem_private_key":

"../keys/oem_state.json",
Relative path for OEM root private key location.

User guide 35 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

JSON field Description

"hsm_public_key":

"../keys/hsm_state.json",
Relative path for HSM public key location.

"hsm_private_key":

"../keys/hsm_state.json",
Relative path for HSM private key location.

"provision_group_private_key": false, No group private keys provisioned.

"group_private_key":

"../keys/grp_priv_key.json",
Relative path for group private key location.

"provision_device_private_key":

false,
No device private key provisioned.

"device_private_key":

"../keys/dev_priv_key.json",
Relative path for device private key location.

"cy_auth":

"../packets/cy_auth_1m_b0_sample.jwt"
Relative path for cy_auth location.

}

4.3 Provisioning JWT packet Reference

4.3.1 prov_cmd.jwt

The prov_cmd.jwt is the final packet sent to the PSoC™ 64 “Secure Boot MCU” to finalize provisioning. The
following shows this JWT structure:

Structure:

{

 {

 "cy_auth": "………",

 "rot_auth": "………",

 "image_cert": "………",

 "prov_req": "………",

 "chain_of_trust": [],

 "complete": Boolean Value,

 "type": "HSM_PROV_CMD"

} sig: HSM_PRIV_KEY

Table 11 prov_cmd.jwt parameters description

Object Description

cy_auth Infineon Authorization JWT, authorizes the HSM public key.

rot_auth OEM/User authorization JWT, authorizes the HSM public key.

User guide 36 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

Object Description

image_cert Infineon Bootloader image JWT, used for sending a Infineon Bootloader

signature.

chain_of_trust Holds an array of X.509 certificates.

complete True - indicates if complete provisioning process must be complete and move

chip life-cycle.

type Specifies the JWT type as a string.

4.3.2 prov_identity.jwt

The prov_identity.jwt is the initial token which is sent to the chip to create a unique identity.

Structure:

{

 {

 "create_identity": Boolean Value,

 "cy_auth": "………",

 "rot_auth": "………",

 "type": "HSM_PROV_CMD"

} sig: HSM_PRIV_KEY

Table 12 prov_identity.jwt parameters description

Object Description

create_identity If true, chip will form a unique identity and export the public key.

cy_auth Infineon Authorization JWT, authorizes the HSM public key.

rot_auth OEM/User authorization JWT, authorizes the HSM public key.

type Specifies the JWT type as a string.

4.3.3 cy_auth.jwt

Structure:

{

 "auth": {},

 "cy_pub_key": {Cypress root pub key},

 "hsm_pub_key": {HSM pub key},

 "exp": {Expiry time},

 "type": "CY_AUTH_HSM"

User guide 37 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

} sig: CYPRESS_ROOT_PRIV_KEY

Table 13 cy_auth.jwt parameters description

Object Description

auth Can specify authorization limits based on device die_id.

cy_pub_key Infineon Root Public key in the JWK format.

hsm_pub_key HSM Root Public key in the JWK format.

exp Specifies when the token expires in UNIX time.

type Specifies the JWT type as a string.

4.3.4 rot_auth.jwt

Structure:

{

 "hsm_pub_key": {HSM pub key},

 "oem_pub_key": {OEM RoT pub key},

 "iat": {Issue time},

 "prod_id": {Product Name},

 "type": "OEM_ROT_AUTH"

} sig: OEM_RoT_PRIV_KEY

Table 14 rot_auth.jwt parameters description

Object Description

hsm_pub_key HSM Root Public key in the JWK format.

oem_pub_key OEM RoT Public key in the JWK format.

iat Specifies when the token was issued.

prod_id The product string, specified by the user. Note that this MUST match prod_id in

the prov_req.JWT.

type Specifies the JWT type as a string.

4.3.5 prov_req.jwt

Structure:

{

 "custom_pub_key": [{Key1}, …],

User guide 38 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

 "boot_upgrade": {…},

 "debug": {…}

 "prod_id": "my_thing",

 "wounding": {}

} sig: OEM_RoT_PRIV_KEY

Table 15 prov_req.jwt parameters description

Object Description

custom_pub_key The array of customer public keys to be injected in the JWK format.

boot_upgrade Boot and Upgrade Policy JSON

debug Debug policy JSON

prod_id The product string, specified by the user. Note that this MUST match prod_id in

the rot_auth.JWT.

wounding Reserved

4.3.6 boot_upgrade.JSON

Structure:

{

 "title": "upgrade_policy"

 "firmware": [

 {

 "boot_auth": [Integer Value],

 "bootloader_keys": [

 "kid": [Integer Value],

 "key": [String Path to key],

 "id": [Integer Value],

 "launch": Integer Value,

 "monotonic": [Integer Value],

 "resources": [

 {

 "address": Integer Value,

 "size": Integer Value,

 "type": [STRING VALUE]

 },

],

 "smif_id": Integer Value,

User guide 39 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

 "upgrade": Boolean Value,

 "upgrade_auth": [Integer Value]

 }, …

],

}

Table 16 boot_upgrade.JSON parameters description

Object Description Range of valid values

id Image id. (0-16: Cypress reserved,

>16: customer specific)
A range of integers can be specified,

“0”: The first firmware image started from

RomBoot/FlashBoot (i.e. the boot loader).

“1”: CM0+ “secure” co-processor Image

“2”: CM0+ “secure” co-processor Infineon

trusted functions

“3”: OEM trusted functions

“4”: CM4 Boot Image (direct from flashboot,

not used)

“16”: CM4 Image

boot_auth Specifies key index to use for

validating the signature. These

signatures are all verified during

boot.

Can be any integer public key >3.

For Infineon Bootloader, the auth is “3”.

For the M4 image, this can be any number

depending on key_id specified in the JWK

format in the custom_pub_key fields.

launch Specifies next image ‘id’ being

launched

“4” is the only valid value for Infineon
Bootloader and the Single image bootloader

case.

monotonic Indicates the monotonic counter
number associated with this image.

During secure boot this counter
value is compared with the
current_version code in the image
being booted. During upgrade this

counter is incremented to the value

from the image header of the

upgrade image.

0~15. Counters can be rolled up by the system

firmware using SysCalls.

resources:

address
Specifies the start address of the

image.

The valid flash range address. Only decimal
values are allowed, e.g.: 268435456 ->

0x10000000

resources: size Specifies the size of the image. The valid flash range size in bytes. Only
decimal values are allowed, e.g.: 327680->

0x50000 -> 320 KB

User guide 40 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

Object Description Range of valid values

resources: type Specifies type of image. Only “BOOT” and “UPGRADE” are user-

modifiable fields for the M4 image.

“BOOT” -> Slot#0

“UPGRADE” -> Slot#1

smif_id Specifies if external memory is used

for placing Slot#1 image.

“0” – SMIF is disabled.

“1” – If the CY8CPROTO_064_SB target is used.

upgrade Specifies if updating is allowed for

this image id.

‘true’ -> Upgrades are allowed.

‘false’ -> Upgrade is not allowed.

upgrade_auth Specifies key index to use for

validating the signature of the

upgrade. Allows upgrades to be
checked by a different key if

necessary.

Can be any integer public key >3.

For Infineon Bootloader, the auth is “3”.

For the M4 image, this can be any number
depending on key_id specified in the JWK

format in the custom_pub_key fields.

4.3.7 debug.JSON

Structure:

{

 "m0p" : {

 "permission" : " STRING VALUE ",

 "control" : " STRING VALUE ",

 "key" : [Integer Value]

 },

 "m4" : {

 "permission" : " STRING VALUE ",

 "control" : " STRING VALUE ",

 "key" : [Integer Value]

 },

 "system" : {

 "permission" : " STRING VALUE ",,

 "control" : " STRING VALUE ",,

 "key" : [Integer Value],

 "flashw": Boolean Value,

 "flashr": Boolean Value,

 },

 "rma" : {

 "permission" : "STRING VALUE ",

 "destroy_fuses" : [

User guide 41 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

 {

 "start" : Integer Value,

 "size" : Integer Value

 }

],

 "destroy_flash" : [

 {

 "start" : Integer Value,

 "size" : Integer Value

 },

],

 "key" : Integer Value

 }

}

Table 17 debug.JSON parameters description

Object Description Range of valid values

m0p/m4/system:

permission
Specifies the permission level for

the associated DAP port.

“Enabled” – The DAP port is open after bootup.

“Allowed” – The DAP port can be opened after

bootup, see the “control” field.

“Disabled” – The DAP port is closed after

bootup.

m0p/m4/system:

control
Specifies how the DAP port can be
opened after bootup. The field is

only valid if “permission” is

“Allowed”.

“firmware” – The code the user can choose to
open the DAP port depending on some custom

code.

“certificate” – A signed token must be

presented using a SysCall to open the DAP

port.

m0p/m4/system:

key
Specifies which Key Id to use for

certificate validation in “control”

field.

The key ID must be >3, point to the key

provisioned in the custom_pub_key field.

system:

flashr/flashw
Specifies which regions the SysAP

port is allowed to access.

“true” -> Flash reads/writes via SysAP allowed.

“false” -> Flash reads/writes via SysAP not

allowed.

rma: permission Specifies if RMA is allowed. “Disabled” – RMA is not allowed.

“Allowed” – The RMA stage is available and can
be entered by presenting a certificate using
key> to a SysCall API. The system will destroy

fuse and flash contents as specified in
<destroy_fuses> and <destroy_flash> before

transitioning to RMA stage.

User guide 42 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

“CySecureTools” Design

Object Description Range of valid values

rma:

destroy_fuses:

start

Starting fuse bit number for region. 0~65536. Check the part datasheet for the

eFuse allowed address.

rma:

destroy_fuses:

size

Number of fuse bits in region. 0~65536. Check the part datasheet for the

eFuse allowed size.

rma:

destroy_flash:

start

Starting byte address of region (will

be rounded down to nearest

program/erase boundary).

0~0xFFFFFFFF. Check the part datasheet for

the flash allowed address.

rma:

destroy_flash:

size

Size in bytes of region (will be

rounded up so region is integral

number of program/erase units).

0~0xFFFFFFFF. Check the part datasheet for

the flash allowed size.

rma: key The key slot number of the key used
to validate authorization to enter

RMA stage.

The key ID must be >3, point to the key

provisioned in the custom_pub_key field.

User guide 43 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Additional resources

5 Additional resources

This chapter contains various links to additional resources that can be useful when working with the “Secure

Boot” SDK.

5.1 Application notes

Table 18 Application notes

Number/Link Title Description

AN228571 Getting started with PSoC™ 6 MCU

on ModusToolbox™

Describes PSoC™ 6 MCU devices and how to

build your first application with

ModusToolbox™.

AN210781 Getting started with PSoC™ 6 MCU
with Bluetooth Low Energy

connectivity on PSoC™ Creator

Describes PSoC™ 6 MCU with Bluetooth LE
connectivity devices and how to build your first

application with PSoC™ Creator.

5.2 Code example

• Using ModusToolbox™

5.3 Device documentation

• PSoC™ 6 MCU datasheets

• PSoC™ 6 Technical reference manuals

5.4 Development kits

• CY8CKIT-064B0S2-4343W PSoC™ 64 “Secure Boot” Wi-Fi pioneer kit

• CY8CPROTO-064S1-SB PSoC™ 64 “Secure Boot” prototyping kit

• CY8CPROTO-064B0S1-BLE PSoC™ 64 Bluetooth LE “Secure Boot” prototyping kit

• CY8CPROTO-064B0S3 PSoC™ 64 “Secure Boot” prototyping kit

5.5 Libraries (on GitHub)

Table 19 Libraries (on GitHub)

Name/Link Description Documentation

mtb-pdl-cat1 PSoC™ 6 peripheral driver library (PDL) API Reference

mtb-hal-cat1 Hardware Abstraction Layer (HAL) Library API Reference

retarget-io Retarget-IO - A utility library to retarget the
standard input/output (STDIO) messages to a

UART port

API Reference

p64_utils PSoC™ 64 “Secure Boot” Utilities Middleware

Library

API Reference

https://www.infineon.com/dgdl/Infineon-AN228571_Getting_started_with_PSoC_6_MCU_on_ModusToolbox_software-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d36de1f66d1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink&redirId=AN_VL726
https://www.infineon.com/dgdl/Infineon-AN210781_Getting_Started_with_PSoC_6_MCU_with_Bluetooth_Low_Energy_(BLE)_Connectivity_on_PSoC_Creator-ApplicationNotes-v05_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d311f536528&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink&redirId=AN_VL554
https://www.infineon.com/cms/en/design-support/software/code-examples/psoc-6-code-examples-for-psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-code_example&redirId=CE447
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/?utm_source=cypress_search&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-doc_search&redirId=DocSearch2015#!details
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-doc_search&redirId=DocSearch2020#!details
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-064b0s2-4343w/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=VL1513
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-064s1-sb/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=VL1532
https://www.infineon.com/cms/en/design-support/finder-selection-tools/product-finder/evaluation-board/?redirId=59313&utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-064b0s3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=VL1531
https://github.com/Infineon/mtb-pdl-cat1
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/index.html
https://github.com/Infineon/mtb-hal-cat1
https://infineon.github.io/mtb-hal-cat1/html/index.html
https://github.com/Infineon/retarget-io
https://infineon.github.io/retarget-io/html/index.html
https://github.com/Infineon/p64_utils
https://infineon.github.io/p64_utils/p64_utils_api_reference_manual/html/index.html

User guide 44 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Additional resources

5.6 PSoC™ 6 Middleware (on GitHub)

The following link opens a GitHub page to the section for PSoC™ 6 middleware:

• https://github.com/Infineon/modustoolbox-software#psoc-6-middleware-libraries

5.7 Tools

The following link opens the ModusToolbox™ Software and Tools webpage:

• https://www.infineon.com/modustoolbox-software

The following link opens the “CySecureTools” page on pypi.org"

• https://pypi.org/project/cysecuretools/

https://github.com/Infineon/modustoolbox-software#psoc-6-middleware-libraries
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families&redirId=Product401
https://pypi.org/project/cysecuretools/

User guide 45 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Appendix A: Flash Memory Maps

6 Appendix A: Flash Memory Maps

6.1 Flash memory map for policy_single_CM0_CM4 policy files

policy_single_CM0_CM4.json
policy_single_CM0_CM4_swap.json

FlashBoot
(128K)

0x1000_0000

0x100E_0000

0x1020_0000

0x101E_0000

Cypress Bootloader
(64K)

0x101D_0000

cyb06xxa/cyx06xxa
(2M swap)

Swap Scratch (48K)
Swap Status (16K)

0x101C_0000

CM0 Sys & PRA
(64K)

CM4 Application
(832K)

[0x1001_0000 – 0x100E_0000]

CM0 Sys & PRA
(64K)

CM4 Application
(832K)

[0x100F_0000 – 0x101C_0000]

Primary Slot (0)

Secondary Slot (1)

Internal Flash

FlashBoot
(128K)

0x1000_0000

0x1006_8000

0x1010_0000

0x100E_0000

Cypress Bootloader
(64K)

0x100D_0000

cyb06xx7 (1M)

CM0 Sys & PRA
(64K)

CM4 Application
(352K)

[0x1001_0000 – 0x1006-8000]

CM0 Sys & PRA
(64K)

CM4 Application
(352K)

[0x1006_8000 – 0x100D_0000]

Primary Slot (0)

Secondary Slot (1)

Internal Flash

FlashBoot
(64K)

0x1000_0000

0x1003_0000

0x1008_0000

0x1007_0000

Cypress Bootloader
(64K)

0x1006_0000

cyb06xx5 (512K)

CM0 Sys & PRA
(64K)

CM4 Application
(128K)

[0x1001_0000 – 0x1003_0000]

CM0 Sys & PRA
(64K)

CM4 Application
(128K)

[0x1004_0000 – 0x1006_0000]

Primary Slot (0)

Secondary Slot (1)

Internal Flash

Figure 13 Flash memory map for policy_single_CM0_CM4 policy files

User guide 46 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Appendix A: Flash Memory Maps

6.2 Flash memory map for policy_multi_CM0_CM4 example policies

policy_multi_CM0_CM4.json
policy_multi_CM0_CM4_swap.json

FlashBoot
(128K)

0x1000_0000

0x1007_0000

0x1020_0000

0x101E_0000

Cypress Bootloader
(64K)

0x101D_0000

cyb06xxa/cys06xxa
(2M swap)

Swap Scratch (32K)
Swap Status (32K)

0x101C_0000

CM0 Application
(448K)

CM0 Application
(448K)

CM0 Primary Slot (0)

CM0 Secondary Slot (1)

CM4 Application
(448K)

CM4 Application
(448K)

CM4 Primary Slot (0)

CM4 Secondary Slot (1)

0x100E_0000

0x1015_0000

Internal Flash

cyb06xx7 (1M)

FlashBoot
(128K)

0x1000_0000

0x1003_0000

0x1010_0000

0x100E_0000

Cypress Bootloader
(64K)

CM0 Application
(192K)

CM0 Application
(192K)

CM0 Primary Slot (0)

CM0 Secondary Slot (1)

CM4 Application
(224K)

CM4 Application
(224K)

CM4 Primary Slot (0)

CM4 Secondary Slot (1)

0x1006_0000

0x1009_8000

0x100D_0000

Internal Flash

cyb06xx5 (512K)

FlashBoot
(64K)

0x1000_0000

0x1001_0000

0x1008_0000

0x1007_0000

Cypress Bootloader
(64K)

CM0 Application
(64K)

CM0 Application
(64K)

CM0 Primary Slot (0)

CM0 Secondary Slot (1)

CM4 Application
(128K)

CM4 Application
(128K)

CM4 Primary Slot (0)

CM4 Secondary Slot (1)

0x1002_0000

0x1004_0000

0x1006_0000

Internal Flash

Figure 14 Flash memory map for policy_multi_CM0_CM4 example policies

User guide 47 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Appendix A: Flash Memory Maps

6.3 Flash memory map for policy_single_CM0_CM4_smif example policies

policy_single_CM0_CM4_smif.json
policy_single_CM0_CM4_smif_swap.json

FlashBoot
(128K)

0x1000_0000

0x1020_0000

0x101E_0000

Cypress Bootloader
(64K)

0x101D_0000

cyb06xxa/cys06xxa
(2M swap)

Swap Status (32K)

0x101C_8000

CM0 Sys & PRA
(64K)

CM4 Application
(1760K)

[0x1001_0000 – 0x101C_8000]

Primary Slot (0)

CM0 Sys & PRA
(64K)

CM4 Application
(1760K)

[0x1804_8400 – 0x1820_0400]

Secondary Slot (1)

Internal Flash

External Flash

Swap Scratch (768K)

0x1803_8400

0x1820_0400

0x1824_0000

0x1830_0000

cyb06xx7 (1M)

FlashBoot
(128K)

0x1000_0000

0x1010_0000

0x100E_0000

Cypress Bootloader
(64K)

0x100D_0000

CM0 Sys & PRA
(64K)

CM4 Application
(768K)

[0x1001_0000 – 0x100D_0000]

Primary Slot (0)

CM0 Sys & PRA
(64K)

CM4 Application
(758K)

[0x1801_0000 – 0x180D_0000]

Secondary Slot (1)

External Flash

0x1800_0000

0x180D_0000

Internal Flash

FlashBoot
(64K)

0x1000_0000

0x1006_0000

0x1008_0000

0x1007_0000

Cypress Bootloader
(64K)

cyb06xx5 (512K)

CM0 Sys & PRA
(64K)

CM4 Application
(320K)

[0x1001_0000 – 0x1006_0000]

Primary Slot (0)

CM0 Sys & PRA
(64K)

CM4 Application
(320K)

[0x1801_0000 – 0x1006_0000]

Secondary Slot (1)
0x1800_0000

0x1806_0000

External Flash

Internal Flash

Figure 15 Flash memory map for policy_single_CM0_CM4_smif example policies

User guide 48 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Appendix A: Flash Memory Maps

6.4 Flash memory map for policy_multi_CM0_CM4_smif example policies

policy_multi_CM0_CM4_smif.json
policy_multi_CM0_CM4_smif_swap.json

FlashBoot
(128K)

0x1000_0000

0x1020_0000

0x101E_0000

Cypress Bootloader
(64K)

0x101C_8000

cyb06xxa/cys06xxa
(2M swap)

Swap Status (32K)

0x1830_0000

CM0 Application
(912K)

CM0 Application
(912K)

CM0 Primary Slot (0)

CM0 Secondary Slot (1)

CM4 Application
(912K)

CM4 Application
(912K)

CM4 Primary Slot (0)

CM4 Secondary Slot (1)

Swap Scratch (32K)

0x100E_4000

0x101D_0000

0x1801_C200

0x1810_0200

0x1828_0000

0x1824_0200

0x1815_C200

Internal Flash

External Flash

cyb06xx7 (1M)

FlashBoot
(128K)

0x1000_0000

0x1004_0000

0x1010_0000

0x100E_0000

Cypress Bootloader
(64K)

CM0 Application
(256K)

CM0 Application
(256K)

CM0 Primary Slot (0)

CM0 Secondary Slot (1)

CM4 Application
(576K)

CM4 Application
(576K)

CM4 Primary Slot (0)

CM4 Secondary Slot (1)

0x100D_0000

0x1800_0000

0x1804_0000

0x180D_0000

External Flash

Internal Flash

cyb06xx5 (512K)

Internal Flash

FlashBoot
(128K)

0x1002_0000

0x1008_0000

0x1007_0000

Cypress Bootloader
(64K)

CM0 Application
(128K)

CM0 Application
(128K)

CM0 Primary Slot (0)

CM0 Secondary Slot (1)

CM4 Application
(256K)

CM4 Application
(256K)

CM4 Primary Slot (0)

CM4 Secondary Slot (1)

0x1006_0000

0x1802_0000

0x1808_0000

External Flash

0x1000_0000

0x1800_0000

0x1804_0000

Figure 16 Flash memory map for policy_multi_CM0_CM4_smif example policies

User guide 49 002-27860 Rev. *G

 2023-08-09

"Secure Boot" SDK user guide

Revision history

Revision history

Document

revision

Date Description of changes

** 2019-07-19 New document.

*A 2019-09-18 Updated Mbed OS – Provisioning Flow:

Updated almost entire chapter (to change to CySecureTools flow).

Updated Provisioning Script Flow Details:

Added “Provisioning JWT packet Reference”.

*B 2019-12-04 Updated Overview:

Removed “Installing CySecureTools”.

Added “CySecureTools Installation and Documentation”.

Updated Mbed OS – Provisioning Flow:

Updated almost entire chapter (to include ModusToolbox 2.0 flow).

Added “ModusToolbox 2.0 – Provisioning Flow”.

Removed “Provisioning Script Flow Details”.

Added “CySecureTools Design”.

*C 2020-05-18 Updated for production silicon.

Removed “Mbed OS – Provisioning Flow”.

*D 2020-07-23 Added “Mbed OS – Provisioning Flow”.

General cleanup of the document.

*E 2020-12-10 Updates to include ModusToolbox 2.2 and CySecureTools flow.

Fixed several typos and policy updates.

Updated “CySecureTools” Design:

Updated Understanding the Default Policy:

Added “Policy and Configuration Limitations”.

*F 2021-04-16 Updated Document Title to read as ‘“Secure Boot”, SDK User Guide’.

Updated Mbed OS path name for kit CY8CKIT064B0S2_4343W due to

character limit.

Updated several diagrams for correct terminology.

Added more description for policy file definition.

Updated provisioning procedure to sync with “CySecureTools” 3.1.

Added “Additional Resources”.

Added “Appendix A, Flash Memory Maps”.

*G 2023-08-09 Updated ModusToolbox™ Tools Provisioning Flow:

Updated Prerequisites:

Updated “CySecureTools” Installation:

Updated Table 2.

Removed “Mbed OS Provisioning Flow”.

Migrated to Infineon template.

Completing Sunset Review.

 Important notice Warnings

Edition 2023-08-09

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-27860 Rev. *G

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”)

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Where to Get the “Secure Boot” SDK
	1.2 Using this guide
	1.3 Definition of Terms

	2 Overview
	2.1 Secure Boot SDK components
	2.2 How does the “Secure Boot” SDK work?
	2.3 What is Provisioning?
	2.3.1 Transferring RoT
	2.3.2 Injecting User Assets
	2.3.3 Re-provisioning User Assets

	2.4 Infineon Bootloader
	2.5 “CySecureTools” Installation and Documentation

	3 ModusToolbox™ Tools Provisioning Flow
	3.1 Prerequisites
	3.1.1 ModusToolbox Software Installation
	3.1.2 “CySecureTools” Installation
	3.1.3 Create Secure Blinky LED FreeRTOS Application Project

	3.2 Device Provisioning
	3.2.1 A. Set Up “CySecureTools” Workspace
	3.2.2 B. Generate new keys
	3.2.3 C. (Optional) Run Entrance Exam
	3.2.4 D. Perform Provisioning

	3.3 Device Re-provisioning
	3.4 ModusToolbox™ Secure Image Generation
	3.5 Build and Run the Application
	3.6 Debug the application
	3.7 Re-provisioning after Failure

	4 “CySecureTools” Design
	4.1 “CySecureTools” Component Diagram
	4.1.1 Creating a Provisioning Packet

	4.2 Understanding the Default Policy
	4.2.1 Policy and Configuration Limitations
	4.2.2 Boot&Upgrade Policy
	4.2.3 Debug Policy
	4.2.4 External Clock Policy
	4.2.5 Infineon Bootloader
	4.2.6 “CySecureTools” Misc Assets

	4.3 Provisioning JWT packet Reference
	4.3.1 prov_cmd.jwt
	4.3.2 prov_identity.jwt
	4.3.3 cy_auth.jwt
	4.3.4 rot_auth.jwt
	4.3.5 prov_req.jwt
	4.3.6 boot_upgrade.JSON
	4.3.7 debug.JSON

	5 Additional resources
	5.1 Application notes
	5.2 Code example
	5.3 Device documentation
	5.4 Development kits
	5.5 Libraries (on GitHub)
	5.6 PSoC™ 6 Middleware (on GitHub)
	5.7 Tools

	6 Appendix A: Flash Memory Maps
	6.1 Flash memory map for policy_single_CM0_CM4 policy files
	6.2 Flash memory map for policy_multi_CM0_CM4 example policies
	6.3 Flash memory map for policy_single_CM0_CM4_smif example policies
	6.4 Flash memory map for policy_multi_CM0_CM4_smif example policies

	Revision history
	Disclaimer

