
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the 
company that originally developed the product. Please note that Infineon will continue 
to offer the product to new and existing customers as part of the Infineon product 
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product 
portfolio does not lead to any changes to this document. Future revisions will occur 
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the 
ordering part numbers listed in the datasheet for ordering.



PSoC 64 “Secure Boot MCU”: CYB0644ABZI-S2D44
Architecture Technical Reference Manual (TRM) PSoC

64 MCU

PSoC 64 “Secure Boot MCU”: CYB0644ABZI-S2D44 
Architecture Technical Reference Manual (TRM)

PSoC 64 MCU

Document No. 002-29169 Rev. *B

September 4, 2023

Cypress Semiconductor
An Infineon Technologies Company

198 Champion Court
San Jose, CA 95134-1709

www.cypress.com
www.infineon.com

http://www.cypress.com
https://www.infineon.com/


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 2

Copyrights

© Cypress Semiconductor Corporation, 2021-2023. This document is the property of Cypress Semiconductor Corporation, an
Infineon Technologies company, and its affiliates (“Cypress”). This document, including any software or firmware included or
referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as
specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your
organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents
that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress
hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access
to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS
PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK,
VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively,
“Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in
these materials may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document
without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly
design, program, and test the functionality and safety of any application made of this information and any resulting product.
“High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical
Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause,
directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole
or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a
Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates,
and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages,
and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage
arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published
data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii)
Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk
Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and
ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as
property of their respective owners.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 3

Content Overview

Section A: Overview 21

1. Introduction 22
1.1 Features..................................................................................................................................22
1.2 Architecture.............................................................................................................................23
1.3 CPU Subsystem (CPUSS)......................................................................................................24
1.4 System Resources Subsystem (SRSS)..................................................................................24
1.5 Analog Subsystem..................................................................................................................25
1.6 Programmable Digital .............................................................................................................26
1.7 Digital Subsystem ...................................................................................................................26

2. Getting Started 27
2.1 PSoC 6 MCU Resources ........................................................................................................27

3. Document Organization and Conventions 28

3.1 Major Sections ........................................................................................................................28
3.2 Documentation Conventions...................................................................................................28

Section B: CPU Subsystem 32

4. CPU Subsystem (CPUSS) 33
4.1 Features..................................................................................................................................33
4.2 Architecture.............................................................................................................................34
4.3 Registers.................................................................................................................................36
4.4 Operating Modes and Privilege Levels ...................................................................................38
4.5 Instruction Set.........................................................................................................................39

5. SRAM Controller 40

5.1 Features..................................................................................................................................40
5.2 Architecture.............................................................................................................................40
5.3 Wait States .............................................................................................................................41

6. Inter-Processor Communication 42

6.1 Features..................................................................................................................................42
6.2 Architecture.............................................................................................................................42
6.3 Implementing Locks................................................................................................................45
6.4 Message Passing ...................................................................................................................45

7. Fault Monitoring 47
7.1 Features..................................................................................................................................47
7.2 Architecture.............................................................................................................................48
7.3 Fault Sources..........................................................................................................................52
7.4 Register List............................................................................................................................53



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 4

Content Overview

8. Interrupts 54

8.1 Features..................................................................................................................................54
8.2 Architecture.............................................................................................................................55
8.3 Interrupts and Exceptions - Operation ....................................................................................56
8.4 Exception Sources..................................................................................................................58
8.5 Interrupt Sources ....................................................................................................................60
8.6 Interrupt/Exception Priority .....................................................................................................67
8.7 Enabling and Disabling Interrupts...........................................................................................67
8.8 Interrupt/Exception States ......................................................................................................68
8.9 Stack Usage for Interrupts/Exceptions ...................................................................................69
8.10 Interrupts and Low-Power Modes...........................................................................................69
8.11 Interrupt/Exception – Initialization/ Configuration ...................................................................69
8.12 Register List............................................................................................................................70

9. Protection Units 71

9.1 Architecture.............................................................................................................................71
9.2 PSoC 6 Protection Architecture ..............................................................................................72
9.3 Register Architecture ..............................................................................................................74
9.4 Bus Master Protection Attributes ............................................................................................76
9.5 Protection Context ..................................................................................................................77
9.6 Protection Contexts 0, 1, 2, 3 .................................................................................................78
9.7 Protection Structure ................................................................................................................79

10. DMA Controller (DW) 93
10.1 Features..................................................................................................................................93
10.2 Architecture.............................................................................................................................94
10.3 Channels.................................................................................................................................94
10.4 Descriptors..............................................................................................................................96
10.5 DMA Controller .....................................................................................................................101

11. DMAC Controller (DMAC) 104

11.1 Features................................................................................................................................104
11.2 Architecture...........................................................................................................................105
11.3 Channels...............................................................................................................................105
11.4 Descriptors............................................................................................................................107
11.5 DMAC Controller...................................................................................................................112

12. Cryptographic Function Block (Crypto) 113

12.1 Features................................................................................................................................113
12.2 Architecture...........................................................................................................................113
12.3 Definitions of Terms..............................................................................................................114
12.4 Crypto Block Functions.........................................................................................................115
12.5 Module Configuration and Initialization.................................................................................116
12.6 Software Design Considerations ..........................................................................................117

13. Program and Debug Interface 118
13.1 Features................................................................................................................................118
13.2 Architecture...........................................................................................................................118
13.3 Serial Wire Debug (SWD) Interface......................................................................................121
13.4 JTAG Interface......................................................................................................................123
13.5 Programming the PSoC 6 MCU............................................................................................126
13.6 Registers...............................................................................................................................126



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 5

Content Overview

14. Nonvolatile Memory 127

14.1 Flash Memory .......................................................................................................................127
14.2 Flash Memory Programming ................................................................................................131

15. eFuse Memory 133
15.1 Features................................................................................................................................133
15.2 Architecture...........................................................................................................................134

16. “Secure Boot” 135
16.1 Features................................................................................................................................137
16.2 Architecture...........................................................................................................................138
16.3 System Calls.........................................................................................................................148

Section C: System Resources Subsystem (SRSS) 182

17. Power Supply and Monitoring 184

17.1 Features................................................................................................................................184
17.2 Architecture...........................................................................................................................185
17.3 Power Supply........................................................................................................................186
17.4 Voltage Monitoring................................................................................................................188
17.5 Register List .........................................................................................................................190

18. Device Power Modes 191
18.1 Features................................................................................................................................191
18.2 Architecture...........................................................................................................................191
18.3 Power Mode Transitions .......................................................................................................195
18.4 Summary ..............................................................................................................................199
18.5 Register List..........................................................................................................................199

19. Backup System 201

19.1 Features................................................................................................................................201
19.2 Architecture...........................................................................................................................202
19.3 Power Supply........................................................................................................................202
19.4 Clocking ................................................................................................................................203
19.5 Reset ....................................................................................................................................204
19.6 Real-Time Clock ...................................................................................................................204
19.7 Alarm Feature .......................................................................................................................205
19.8 PMIC Control ........................................................................................................................206
19.9 Backup Registers..................................................................................................................207
19.10 Register List..........................................................................................................................207

20. Clocking System 208

20.1 Features................................................................................................................................208
20.2 Architecture...........................................................................................................................209
20.3 Clock Sources.......................................................................................................................210
20.4 Clock Generation ..................................................................................................................211
20.5 Clock Trees...........................................................................................................................218
20.6 CLK_HF[0] Distribution .........................................................................................................220
20.7 Peripheral Clock Dividers .....................................................................................................220
20.8 Clock Calibration Counters ...................................................................................................223

21. Reset System 224
21.1 Features................................................................................................................................224
21.2 Architecture...........................................................................................................................224



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 6

Content Overview

21.3 Identifying Reset Sources.....................................................................................................226
21.4 Register List..........................................................................................................................226

22. I/O System 227

22.1 Features................................................................................................................................227
22.2 Architecture...........................................................................................................................228
22.3 High-Speed I/O Matrix ..........................................................................................................233
22.4 I/O State on Power Up..........................................................................................................235
22.5 Behavior in Low-Power Modes .............................................................................................235
22.6 Interrupt ................................................................................................................................235
22.7 Peripheral Connections ........................................................................................................236
22.8 Smart I/O ..............................................................................................................................237
22.9 Registers...............................................................................................................................248

23. Watchdog Timer 249

23.1 Features................................................................................................................................249
23.2 Architecture...........................................................................................................................250
23.3 Free-running WDT ................................................................................................................250
23.4 Multi-Counter WDTs .............................................................................................................253
23.5 Reset Cause Detection.........................................................................................................259
23.6 Register List..........................................................................................................................260

24. Trigger Multiplexer Block 261
24.1 Features................................................................................................................................261
24.2 Architecture...........................................................................................................................261
24.3 Register List  ........................................................................................................................265

25. Profiler 267

25.1 Features................................................................................................................................267
25.2 Architecture...........................................................................................................................268
25.3 Using the Profiler ..................................................................................................................270

Section D: Digital Subsystem 273

26. Secure Digital Host Controller (SDHC) 274
26.1 Features................................................................................................................................274
26.2 Block Diagram ......................................................................................................................275
26.3 Clocking ................................................................................................................................276
26.4 Bus Speed Modes ................................................................................................................277
26.5 Power Modes........................................................................................................................277
26.6 Interrupts to CPU ..................................................................................................................277
26.7 I/O Interface ..........................................................................................................................278
26.8 Packet Buffer SRAM.............................................................................................................279
26.9 DMA Engine..........................................................................................................................279
26.10 Initialization Sequence..........................................................................................................280
26.11 Error Detection......................................................................................................................283

27. Serial Communications Block (SCB) 285
27.1 Features................................................................................................................................285
27.2 Architecture...........................................................................................................................286
27.3 Serial Peripheral Interface (SPI) ...........................................................................................287
27.4 UART....................................................................................................................................305
27.5 Inter Integrated Circuit (I2C) .................................................................................................319
27.6 SCB Interrupts ......................................................................................................................333



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 7

Content Overview

28. Serial Memory Interface (SMIF) 342

28.1 Features................................................................................................................................342
28.2 Architecture...........................................................................................................................342
28.3 Memory Device Signal Interface...........................................................................................348
28.4 Triggers.................................................................................................................................357
28.5 Interrupts...............................................................................................................................358
28.6 Sleep Operation....................................................................................................................358
28.7 Performance .........................................................................................................................358

29. Timer, Counter, and PWM (TCPWM) 359
29.1 Features................................................................................................................................359
29.2 Architecture...........................................................................................................................360
29.3 Operation Modes ..................................................................................................................364
29.4 TCPWM Registers ................................................................................................................394

30. Inter-IC Sound Bus 395
30.1 Features................................................................................................................................395
30.2 Architecture...........................................................................................................................396
30.3 Digital Audio Interface Formats ............................................................................................396
30.4 Clocking Polarity and Delay Options ....................................................................................400
30.5 Interfacing with Audio Codecs ..............................................................................................401
30.6 Clocking Features.................................................................................................................401
30.7 FIFO Buffer and DMA Support .............................................................................................403
30.8 Interrupt Support...................................................................................................................405
30.9 Watchdog Timer ...................................................................................................................406

31. PDM-PCM Converter 407

31.1 Features................................................................................................................................407
31.2 Architecture...........................................................................................................................408
31.3 Operating Procedure ............................................................................................................414

32. Universal Serial Bus (USB) Device Mode 416

32.1 Features................................................................................................................................416
32.2 Architecture...........................................................................................................................417
32.3 Operation ..............................................................................................................................418
32.4 Logical Transfer Modes ........................................................................................................422
32.5 USB Power Modes ...............................................................................................................430
32.6 USB Device Registers ..........................................................................................................430

33. LCD Direct Drive 432
33.1 Features................................................................................................................................432
33.2 Architecture...........................................................................................................................432
33.3 PSoC 6 MCU Segment LCD Direct Drive.............................................................................443
33.4 Register List .........................................................................................................................444

Section E: Analog Subsystem 445

34. Analog Reference Block 446

34.1 Features................................................................................................................................446
34.2 Architecture...........................................................................................................................447
34.3 Registers...............................................................................................................................448

35. Low-Power Comparator 449
35.1 Features................................................................................................................................449



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 8

Content Overview

35.2 Architecture...........................................................................................................................450
35.3 Register List .........................................................................................................................453

36. SAR ADC 454

36.1 Features................................................................................................................................454
36.2 Architecture...........................................................................................................................455
36.3 Registers...............................................................................................................................467

37. Temperature Sensor 468
37.1 Features................................................................................................................................468
37.2 Architecture...........................................................................................................................468
37.3 Temperature Sensor Configuration ......................................................................................470
37.4 Algorithm...............................................................................................................................470
37.5 Registers...............................................................................................................................471

38. CapSense 472



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 9

Contents

Section A: Overview 21

1. Introduction 22
1.1 Features..................................................................................................................................22
1.2 Architecture.............................................................................................................................23
1.3 CPU Subsystem (CPUSS)......................................................................................................24

1.3.1 CPU .......................................................................................................................24
1.3.2 DMA Controllers.....................................................................................................24
1.3.3 Flash ......................................................................................................................24
1.3.4 SRAM.....................................................................................................................24
1.3.5 SROM ....................................................................................................................24
1.3.6 OTP eFuse.............................................................................................................24
1.3.7 Program and Debug...............................................................................................24

1.4 System Resources Subsystem (SRSS)..................................................................................24
1.4.1 Power System........................................................................................................24
1.4.2 Clocking System ....................................................................................................24
1.4.3 GPIO......................................................................................................................25

1.5 Analog Subsystem..................................................................................................................25
1.5.1 12-bit SAR ADC .....................................................................................................25
1.5.2 Temperature Sensor ..............................................................................................25
1.5.3 Low-Power Comparators .......................................................................................25
1.5.4 CapSense ..............................................................................................................25

1.6 Programmable Digital .............................................................................................................26
1.6.1 Smart I/O™............................................................................................................26

1.7 Digital Subsystem ...................................................................................................................26
1.7.1 Secure Digital Host Controller (SDHC) with eMMC ...............................................26
1.7.2 Serial Communication Blocks (SCB) .....................................................................26
1.7.3 Serial Memory Interface (SMIF).............................................................................26
1.7.4 Audio Subsystem...................................................................................................26
1.7.5 Timer/Counter/PWM Block.....................................................................................26

2. Getting Started 27
2.1 PSoC 6 MCU Resources ........................................................................................................27

3. Document Organization and Conventions 28

3.1 Major Sections ........................................................................................................................28
3.2 Documentation Conventions...................................................................................................28

3.2.1 Register Conventions.............................................................................................28
3.2.2 Numeric Naming ....................................................................................................28
3.2.3 Units of Measure....................................................................................................29
3.2.4 Acronyms and Initializations ..................................................................................29



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 10

Contents

Section B: CPU Subsystem 32

4. CPU Subsystem (CPUSS) 33
4.1 Features..................................................................................................................................33
4.2 Architecture.............................................................................................................................34

4.2.1 Address and Memory Maps ...................................................................................34
4.3 Registers.................................................................................................................................36
4.4 Operating Modes and Privilege Levels ...................................................................................38
4.5 Instruction Set.........................................................................................................................39

5. SRAM Controller 40
5.1 Features..................................................................................................................................40
5.2 Architecture.............................................................................................................................40
5.3 Wait States .............................................................................................................................41

6. Inter-Processor Communication 42

6.1 Features..................................................................................................................................42
6.2 Architecture.............................................................................................................................42

6.2.1 IPC Channel...........................................................................................................42
6.2.2 IPC Interrupt...........................................................................................................43
6.2.3 IPC Channels and Interrupts..................................................................................44

6.3 Implementing Locks................................................................................................................45
6.4 Message Passing ...................................................................................................................45

7. Fault Monitoring 47

7.1 Features..................................................................................................................................47
7.2 Architecture.............................................................................................................................48

7.2.1 Fault Report ...........................................................................................................48
7.2.2 Signaling Interface .................................................................................................50
7.2.3 Monitoring ..............................................................................................................50
7.2.4 Low-power Mode Operation...................................................................................51
7.2.5 Using a Fault Structure ..........................................................................................51
7.2.6 CPU Exceptions Versus Fault Monitoring ..............................................................51

7.3 Fault Sources..........................................................................................................................52
7.4 Register List............................................................................................................................53

8. Interrupts 54
8.1 Features..................................................................................................................................54
8.2 Architecture.............................................................................................................................55
8.3 Interrupts and Exceptions - Operation ....................................................................................56

8.3.1 Interrupt/Exception Handling..................................................................................56
8.3.2 Level and Pulse Interrupts .....................................................................................57
8.3.3 Exception Vector Table ..........................................................................................57

8.4 Exception Sources..................................................................................................................58
8.4.1 Reset Exception.....................................................................................................58
8.4.2 Non-Maskable Interrupt Exception.........................................................................59
8.4.3 HardFault Exception ..............................................................................................59
8.4.4 Memory Management Fault Exception ..................................................................59
8.4.5 Bus Fault Exception ...............................................................................................60
8.4.6 Usage Fault Exception...........................................................................................60
8.4.7 Supervisor Call (SVCall) Exception .......................................................................60
8.4.8 PendSupervisory (PendSV) Exception ..................................................................60
8.4.9 System Tick (SysTick) Exception ...........................................................................60

8.5 Interrupt Sources ....................................................................................................................60



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 11

Contents

8.6 Interrupt/Exception Priority .....................................................................................................67
8.7 Enabling and Disabling Interrupts...........................................................................................67
8.8 Interrupt/Exception States ......................................................................................................68

8.8.1 Pending Interrupts/Exceptions ...............................................................................68
8.9 Stack Usage for Interrupts/Exceptions ...................................................................................69
8.10 Interrupts and Low-Power Modes...........................................................................................69
8.11 Interrupt/Exception – Initialization/ Configuration ...................................................................69
8.12 Register List............................................................................................................................70

9. Protection Units 71

9.1 Architecture.............................................................................................................................71
9.2 PSoC 6 Protection Architecture ..............................................................................................72
9.3 Register Architecture ..............................................................................................................74

9.3.1 Protection Structure and Attributes ........................................................................74
9.4 Bus Master Protection Attributes ............................................................................................76
9.5 Protection Context ..................................................................................................................77
9.6 Protection Contexts 0, 1, 2, 3 .................................................................................................78
9.7 Protection Structure ................................................................................................................79

9.7.1 Protection Violation ................................................................................................79
9.7.2 MPU.......................................................................................................................79
9.7.3 SMPU.....................................................................................................................80
9.7.4 PPU........................................................................................................................80
9.7.5 Protection of Protection Structures ........................................................................87
9.7.6 Protection Structure Types.....................................................................................89

10. DMA Controller (DW) 93

10.1 Features..................................................................................................................................93
10.2 Architecture.............................................................................................................................94
10.3 Channels.................................................................................................................................94

10.3.1 Channel Interrupts .................................................................................................95
10.4 Descriptors..............................................................................................................................96

10.4.1 Address Configuration ...........................................................................................98
10.4.2 Transfer Size..........................................................................................................99
10.4.3 Descriptor Chaining .............................................................................................100

10.5 DMA Controller .....................................................................................................................101
10.5.1 Trigger Selection..................................................................................................101
10.5.2 Pending Triggers..................................................................................................101
10.5.3 Output Triggers ....................................................................................................101
10.5.4 Status registers ....................................................................................................101
10.5.5 DMA Performance................................................................................................102

11. DMAC Controller (DMAC) 104
11.1 Features................................................................................................................................104
11.2 Architecture...........................................................................................................................105
11.3 Channels...............................................................................................................................105

11.3.1 Channel Interrupts ...............................................................................................106
11.4 Descriptors............................................................................................................................107

11.4.1 Address Configuration .........................................................................................109
11.4.2 Transfer Size........................................................................................................ 111
11.4.3 Descriptor Chaining ............................................................................................. 111

11.5 DMAC Controller...................................................................................................................112
11.5.1 Trigger Selection..................................................................................................112
11.5.2 Channel Logic ......................................................................................................112



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 12

Contents

11.5.3 Output Triggers ....................................................................................................112

12. Cryptographic Function Block (Crypto) 113

12.1 Features................................................................................................................................113
12.2 Architecture...........................................................................................................................113
12.3 Definitions of Terms..............................................................................................................114
12.4 Crypto Block Functions.........................................................................................................115

12.4.1 Symmetric Key Functions ....................................................................................115
12.4.2 Hash Functions ....................................................................................................115
12.4.3 Message Authentication Code (MAC) Functions .................................................116
12.4.4 Cyclic Redundancy Code (CRC) .........................................................................116
12.4.5 Random Number Generator (RNG) .....................................................................116

12.5 Module Configuration and Initialization.................................................................................116
12.6 Software Design Considerations ..........................................................................................117

13. Program and Debug Interface 118

13.1 Features................................................................................................................................118
13.2 Architecture...........................................................................................................................118

13.2.1 Debug Access Port (DAP)....................................................................................120
13.2.2 ROM Tables .........................................................................................................120
13.2.3 Trace....................................................................................................................120
13.2.4 Embedded Cross Triggering ................................................................................121

13.3 Serial Wire Debug (SWD) Interface......................................................................................121
13.3.1 SWD Timing Details .............................................................................................122
13.3.2 ACK Details..........................................................................................................122
13.3.3 Turnaround (Trn) Period Details ..........................................................................123

13.4 JTAG Interface......................................................................................................................123
13.5 Programming the PSoC 6 MCU............................................................................................126

13.5.1 SWD Port Acquisition...........................................................................................126
13.5.2 SWD Programming Mode Entry...........................................................................126
13.5.3 SWD Programming Routine Executions ..............................................................126

13.6 Registers...............................................................................................................................126

14. Nonvolatile Memory 127
14.1 Flash Memory .......................................................................................................................127

14.1.1 Features...............................................................................................................127
14.1.2 Configuration........................................................................................................127
14.1.3 Flash Geometry ...................................................................................................128
14.1.4 Flash Controller....................................................................................................129
14.1.5 Read While Write (RWW) Support.......................................................................130

14.2 Flash Memory Programming ................................................................................................131
14.2.1 Features...............................................................................................................131
14.2.2 Architecture..........................................................................................................131

15. eFuse Memory 133
15.1 Features................................................................................................................................133
15.2 Architecture...........................................................................................................................134

16. “Secure Boot” 135

16.1 Features................................................................................................................................137
16.2 Architecture...........................................................................................................................138

16.2.1 Life Cycle Stages and Protection States..............................................................138
16.2.2 Boot Sequence ....................................................................................................143
16.2.3 Cypress “Secure Bootloader”...............................................................................144



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 13

Contents

16.2.4 Flash Security ......................................................................................................145
16.2.5 Hardware-Based Encryption ................................................................................145
16.2.6 Dedicated Hardware ............................................................................................145

16.3 System Calls.........................................................................................................................148
16.3.1 Implementation ....................................................................................................148
16.3.2 System Call APIs .................................................................................................149
16.3.3 System Call Status...............................................................................................179

Section C: System Resources Subsystem (SRSS) 182

17. Power Supply and Monitoring 184
17.1 Features................................................................................................................................184
17.2 Architecture...........................................................................................................................185
17.3 Power Supply........................................................................................................................186

17.3.1 Regulators Summary ...........................................................................................186
17.3.2 Power Pins and Rails...........................................................................................188
17.3.3 Power Sequencing Requirements .......................................................................188
17.3.4 Backup Domain....................................................................................................188
17.3.5 Power Supply Sources.........................................................................................188

17.4 Voltage Monitoring................................................................................................................188
17.4.1 Power-On-Reset (POR) .......................................................................................188
17.4.2 Brownout-Detect (BOD) .......................................................................................188
17.4.3 Low-Voltage-Detect (LVD) ...................................................................................189
17.4.4 Over-Voltage Protection (OVP)............................................................................190

17.5 Register List .........................................................................................................................190

18. Device Power Modes 191
18.1 Features................................................................................................................................191
18.2 Architecture...........................................................................................................................191

18.2.1 CPU Power Modes ..............................................................................................193
18.2.2 System Power Modes ..........................................................................................193
18.2.3 System Deep Sleep Mode ...................................................................................193
18.2.4 System Hibernate Mode ......................................................................................194
18.2.5 Other Operation Modes .......................................................................................194

18.3 Power Mode Transitions .......................................................................................................195
18.3.1 Power-up Transitions ...........................................................................................196
18.3.2 Power Mode Transitions ......................................................................................196
18.3.3 Wakeup Transitions .............................................................................................198

18.4 Summary ..............................................................................................................................199
18.5 Register List..........................................................................................................................199

19. Backup System 201

19.1 Features................................................................................................................................201
19.2 Architecture...........................................................................................................................202
19.3 Power Supply........................................................................................................................202
19.4 Clocking ................................................................................................................................203

19.4.1 WCO with External Clock/Sine Wave Input .........................................................203
19.4.2 Calibration............................................................................................................203

19.5 Reset ....................................................................................................................................204
19.6 Real-Time Clock ...................................................................................................................204

19.6.1 Reading RTC User Registers ..............................................................................204
19.6.2 Writing to RTC User Registers.............................................................................204

19.7 Alarm Feature .......................................................................................................................205
19.8 PMIC Control ........................................................................................................................206



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 14

Contents

19.9 Backup Registers..................................................................................................................207
19.10 Register List..........................................................................................................................207

20. Clocking System 208

20.1 Features................................................................................................................................208
20.2 Architecture...........................................................................................................................209
20.3 Clock Sources.......................................................................................................................210

20.3.1 Internal Main Oscillator (IMO) ..............................................................................210
20.3.2 External Crystal Oscillator (ECO) ........................................................................210
20.3.3 External Clock (EXTCLK) ....................................................................................211
20.3.4 Internal Low-speed Oscillator (ILO) .....................................................................211
20.3.5 Watch Crystal Oscillator (WCO)...........................................................................211

20.4 Clock Generation ..................................................................................................................211
20.4.1 Phase-Locked Loop (PLL) ...................................................................................211
20.4.2 Frequency Lock Loop (FLL).................................................................................212

20.5 Clock Trees...........................................................................................................................218
20.5.1 Path Clocks..........................................................................................................218
20.5.2 High-Frequency Root Clocks ...............................................................................218
20.5.3 Low-Frequency Clock ..........................................................................................219
20.5.4 Timer Clock..........................................................................................................219
20.5.5 Group Clocks (clk_sys) ........................................................................................219
20.5.6 Backup Clock (clk_bak) .......................................................................................219

20.6 CLK_HF[0] Distribution .........................................................................................................220
20.6.1 CLK_FAST...........................................................................................................220
20.6.2 CLK_PERI............................................................................................................220
20.6.3 CLK_SLOW .........................................................................................................220

20.7 Peripheral Clock Dividers .....................................................................................................220
20.7.1 Fractional Clock Dividers .....................................................................................220
20.7.2 Peripheral Clock Divider Configuration ................................................................220

20.8 Clock Calibration Counters ...................................................................................................223

21. Reset System 224

21.1 Features................................................................................................................................224
21.2 Architecture...........................................................................................................................224

21.2.1 Power-on Reset ...................................................................................................224
21.2.2 Brownout Reset ...................................................................................................225
21.2.3 Watchdog Timer Reset ........................................................................................225
21.2.4 Software Initiated Reset.......................................................................................225
21.2.5 External Reset .....................................................................................................225
21.2.6 Logic Protection Fault Reset................................................................................225
21.2.7 Clock-Supervision Logic Reset ............................................................................225
21.2.8 Hibernate Wakeup Reset .....................................................................................225

21.3 Identifying Reset Sources.....................................................................................................226
21.4 Register List..........................................................................................................................226

22. I/O System 227
22.1 Features................................................................................................................................227
22.2 Architecture...........................................................................................................................228

22.2.1 I/O Cell Architecture .............................................................................................229
22.2.2 Digital Input Buffer ...............................................................................................229
22.2.3 Digital Output Driver.............................................................................................230

22.3 High-Speed I/O Matrix ..........................................................................................................233
22.4 I/O State on Power Up..........................................................................................................235



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 15

Contents

22.5 Behavior in Low-Power Modes .............................................................................................235
22.6 Interrupt ................................................................................................................................235
22.7 Peripheral Connections ........................................................................................................236

22.7.1 Firmware-Controlled GPIO ..................................................................................236
22.7.2 Analog I/O ............................................................................................................237
22.7.3 LCD Drive ............................................................................................................237
22.7.4 CapSense ............................................................................................................237

22.8 Smart I/O ..............................................................................................................................237
22.8.1 Overview..............................................................................................................237
22.8.2 Block Components...............................................................................................238
22.8.3 Routing.................................................................................................................245
22.8.4 Operation .............................................................................................................247

22.9 Registers...............................................................................................................................248

23. Watchdog Timer 249

23.1 Features................................................................................................................................249
23.2 Architecture...........................................................................................................................250
23.3 Free-running WDT ................................................................................................................250

23.3.1 Overview..............................................................................................................250
23.3.2 Watchdog Reset ..................................................................................................252
23.3.3 Watchdog Interrupt ..............................................................................................252

23.4 Multi-Counter WDTs .............................................................................................................253
23.4.1 Overview..............................................................................................................253
23.4.2 Enabling and Disabling WDT...............................................................................257
23.4.3 Watchdog Cascade Options ................................................................................257
23.4.4 Watchdog Reset ..................................................................................................259
23.4.5 Watchdog Interrupt ..............................................................................................259

23.5 Reset Cause Detection.........................................................................................................259
23.6 Register List..........................................................................................................................260

24. Trigger Multiplexer Block 261

24.1 Features................................................................................................................................261
24.2 Architecture...........................................................................................................................261

24.2.1 Trigger Multiplexer Group ....................................................................................262
24.2.2 One-to-one Trigger...............................................................................................262
24.2.3 Trigger Multiplexer Block .....................................................................................262
24.2.4 Software Triggers.................................................................................................264

24.3 Register List  ........................................................................................................................265

25. Profiler 267
25.1 Features................................................................................................................................267
25.2 Architecture...........................................................................................................................268

25.2.1 Profiler Design .....................................................................................................268
25.2.2 Available Monitoring Sources ..............................................................................269
25.2.3 Reference Clocks.................................................................................................269

25.3 Using the Profiler ..................................................................................................................270
25.3.1 Enable or Disable the Profiler ..............................................................................270
25.3.2 Configure and Enable a Counter .........................................................................271
25.3.3 Start and Stop Profiling ........................................................................................271
25.3.4 Handle Counter Overflow.....................................................................................271
25.3.5 Get the Results ....................................................................................................272
25.3.6 Exit Gracefully......................................................................................................272



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 16

Contents

Section D: Digital Subsystem 273

26. Secure Digital Host Controller (SDHC) 274
26.1 Features................................................................................................................................274

26.1.1 Features Not Supported.......................................................................................275
26.2 Block Diagram ......................................................................................................................275
26.3 Clocking ................................................................................................................................276

26.3.1 Clock Gating ........................................................................................................276
26.3.2 Base Clock (CLK_HF[i]) Configuration ................................................................276
26.3.3 Card Clock (SDCLK) Configuration .....................................................................276
26.3.4 Timeout (TOUT) Configuration.............................................................................276

26.4 Bus Speed Modes ................................................................................................................277
26.5 Power Modes........................................................................................................................277

26.5.1 Standby Mode......................................................................................................277
26.6 Interrupts to CPU ..................................................................................................................277

26.6.1 SDIO Interrupt......................................................................................................278
26.7 I/O Interface ..........................................................................................................................278

26.7.1 Switching Signaling Voltage from 3.3 V to 1.8 V..................................................279
26.8 Packet Buffer SRAM.............................................................................................................279

26.8.1 Packet Buffer Full/Empty .....................................................................................279
26.9 DMA Engine..........................................................................................................................279
26.10 Initialization Sequence..........................................................................................................280

26.10.1 Enabling SDHC....................................................................................................280
26.10.2 Card Detection .....................................................................................................281
26.10.3 SDHC Initialization ...............................................................................................283
26.10.4 Clock Setup..........................................................................................................283

26.11 Error Detection......................................................................................................................283

27. Serial Communications Block (SCB) 285
27.1 Features................................................................................................................................285
27.2 Architecture...........................................................................................................................286

27.2.1 Buffer Modes........................................................................................................286
27.2.2 Clocking Modes ...................................................................................................286

27.3 Serial Peripheral Interface (SPI) ...........................................................................................287
27.3.1 Features...............................................................................................................287
27.3.2 General Description .............................................................................................288
27.3.3 SPI Modes of Operation.......................................................................................289
27.3.4 SPI Buffer Modes.................................................................................................294
27.3.5 Clocking and Oversampling .................................................................................299
27.3.6 Enabling and Initializing SPI ................................................................................301
27.3.7 I/O Pad Connection..............................................................................................302
27.3.8 SPI Registers .......................................................................................................304

27.4 UART....................................................................................................................................305
27.4.1 Features...............................................................................................................305
27.4.2 General Description .............................................................................................305
27.4.3 UART Modes of Operation...................................................................................305
27.4.4 Clocking and Oversampling .................................................................................315
27.4.5 Enabling and Initializing the UART ......................................................................315
27.4.6 I/O Pad Connection..............................................................................................316
27.4.7 UART Registers ...................................................................................................318

27.5 Inter Integrated Circuit (I2C) .................................................................................................319
27.5.1 Features...............................................................................................................319
27.5.2 General Description .............................................................................................319



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 17

Contents

27.5.3 External Electrical Connections ...........................................................................320
27.5.4 Terms and Definitions ..........................................................................................321
27.5.5 I2C Modes of Operation.......................................................................................321
27.5.6 I2C Buffer Modes .................................................................................................323
27.5.7 Clocking and Oversampling .................................................................................327
27.5.8 Enabling and Initializing the I2C...........................................................................330
27.5.9 I/O Pad Connections............................................................................................331
27.5.10 I2C Registers .......................................................................................................332

27.6 SCB Interrupts ......................................................................................................................333
27.6.1 SPI Interrupts .......................................................................................................334
27.6.2 UART Interrupts ...................................................................................................336
27.6.3 I2C Interrupts .......................................................................................................340

28. Serial Memory Interface (SMIF) 342

28.1 Features................................................................................................................................342
28.2 Architecture...........................................................................................................................342

28.2.1 Tx and Rx FIFOs..................................................................................................344
28.2.2 MMIO Mode .........................................................................................................345
28.2.3 XIP Mode .............................................................................................................345
28.2.4 Cache...................................................................................................................346
28.2.5 Arbitration.............................................................................................................346
28.2.6 Deselect Delay.....................................................................................................347
28.2.7 Cryptography .......................................................................................................347

28.3 Memory Device Signal Interface...........................................................................................348
28.3.1 Specifying Memory Devices.................................................................................348
28.3.2 Connecting SPI Memory Devices ........................................................................349
28.3.3 SPI Data Transfer ................................................................................................354
28.3.4 Example of Setting up SMIF ................................................................................355

28.4 Triggers.................................................................................................................................357
28.5 Interrupts...............................................................................................................................358
28.6 Sleep Operation....................................................................................................................358
28.7 Performance .........................................................................................................................358

29. Timer, Counter, and PWM (TCPWM) 359

29.1 Features................................................................................................................................359
29.2 Architecture...........................................................................................................................360

29.2.1 Enabling and Disabling Counters in TCPWM Block ............................................360
29.2.2 Clocking ...............................................................................................................360
29.2.3 Trigger Inputs.......................................................................................................361
29.2.4 Trigger Outputs ....................................................................................................362
29.2.5 Interrupts..............................................................................................................362
29.2.6 PWM Outputs.......................................................................................................363
29.2.7 Power Modes .......................................................................................................363

29.3 Operation Modes ..................................................................................................................364
29.3.1 Timer Mode..........................................................................................................365
29.3.2 Capture Mode ......................................................................................................371
29.3.3 Quadrature Decoder Mode ..................................................................................374
29.3.4 Pulse Width Modulation Mode .............................................................................378
29.3.5 Pulse Width Modulation with Dead Time Mode ...................................................388
29.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR) ..............................391

29.4 TCPWM Registers ................................................................................................................394



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 18

Contents

30. Inter-IC Sound Bus 395

30.1 Features................................................................................................................................395
30.2 Architecture...........................................................................................................................396
30.3 Digital Audio Interface Formats ............................................................................................396

30.3.1 Standard I2S Format............................................................................................396
30.3.2 Left Justified (LJ) Format .....................................................................................399
30.3.3 Time Division Multiplexed (TDM) Format.............................................................399

30.4 Clocking Polarity and Delay Options ....................................................................................400
30.5 Interfacing with Audio Codecs ..............................................................................................401
30.6 Clocking Features.................................................................................................................401
30.7 FIFO Buffer and DMA Support .............................................................................................403
30.8 Interrupt Support...................................................................................................................405
30.9 Watchdog Timer ...................................................................................................................406

31. PDM-PCM Converter 407

31.1 Features................................................................................................................................407
31.2 Architecture...........................................................................................................................408

31.2.1 Enable/Disable Converter ....................................................................................408
31.2.2 Clocking Features ................................................................................................408
31.2.3 Over-Sampling Ratio............................................................................................409
31.2.4 Mono/Stereo Microphone Support .......................................................................409
31.2.5 Hardware FIFO Buffers and DMA Controller Support..........................................411
31.2.6 Interrupt Support ..................................................................................................412
31.2.7 Digital Volume Gain .............................................................................................413
31.2.8 Smooth Gain Transition .......................................................................................413
31.2.9 Soft Mute..............................................................................................................413
31.2.10 Word Length and Sign Bit Extension ...................................................................413
31.2.11 High-Pass Filter ...................................................................................................413
31.2.12 Enable/Disable Streaming ...................................................................................414
31.2.13 Power Modes .......................................................................................................414

31.3 Operating Procedure ............................................................................................................414
31.3.1 Initial Configuration ..............................................................................................414
31.3.2 Interrupt Service Routine (ISR) Configuration .....................................................414
31.3.3 Enabling / Disabling Streaming............................................................................415

32. Universal Serial Bus (USB) Device Mode 416
32.1 Features................................................................................................................................416
32.2 Architecture...........................................................................................................................417

32.2.1 USB Physical Layer (USB PHY) ..........................................................................417
32.2.2 Serial Interface Engine (SIE) ...............................................................................417
32.2.3 Arbiter ..................................................................................................................417

32.3 Operation ..............................................................................................................................418
32.3.1 USB Clocking Scheme.........................................................................................418
32.3.2 USB PHY .............................................................................................................418
32.3.3 Endpoints .............................................................................................................419
32.3.4 Transfer Types .....................................................................................................419
32.3.5 Interrupt Sources .................................................................................................419
32.3.6 DMA Support........................................................................................................421

32.4 Logical Transfer Modes ........................................................................................................422
32.4.1 Manual Memory Management with No DMA Access ...........................................424
32.4.2 Manual Memory Management with DMA Access.................................................424
32.4.3 Automatic DMA Mode ..........................................................................................426
32.4.4 Control Endpoint Logical Transfer........................................................................428



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 19

Contents

32.5 USB Power Modes ...............................................................................................................430
32.6 USB Device Registers ..........................................................................................................430

33. LCD Direct Drive 432

33.1 Features................................................................................................................................432
33.2 Architecture...........................................................................................................................432

33.2.1 LCD Segment Drive Overview .............................................................................432
33.2.2 Drive Modes.........................................................................................................433
33.2.3 Recommended Usage of Drive Modes ................................................................442
33.2.4 Digital Contrast Control........................................................................................442

33.3 PSoC 6 MCU Segment LCD Direct Drive.............................................................................443
33.3.1 High-Speed and Low-Speed Master Generators.................................................443
33.3.2 Multiplexer and LCD Pin Logic.............................................................................444
33.3.3 Display Data Registers ........................................................................................444

33.4 Register List .........................................................................................................................444

Section E: Analog Subsystem 445

34. Analog Reference Block 446
34.1 Features................................................................................................................................446
34.2 Architecture...........................................................................................................................447

34.2.1 Bandgap Reference Block ...................................................................................448
34.2.2 Zero Dependency To Absolute Temperature Current Generator (IZTAT).............448
34.2.3 Reference Selection Multiplexers ........................................................................448
34.2.4 Startup Modes......................................................................................................448
34.2.5 Low-Power Modes ...............................................................................................448

34.3 Registers...............................................................................................................................448

35. Low-Power Comparator 449

35.1 Features................................................................................................................................449
35.2 Architecture...........................................................................................................................450

35.2.1 Input Configuration...............................................................................................450
35.2.2 Output and Interrupt Configuration ......................................................................450
35.2.3 Power Mode and Speed Configuration ................................................................451
35.2.4 Hysteresis ............................................................................................................452
35.2.5 Wakeup from Low-Power Modes.........................................................................452
35.2.6 Comparator Clock ................................................................................................453

35.3 Register List .........................................................................................................................453

36. SAR ADC 454

36.1 Features................................................................................................................................454
36.2 Architecture...........................................................................................................................455

36.2.1 SAR ADC Core ....................................................................................................456
36.2.2 SARMUX..............................................................................................................461
36.2.3 SARREF ..............................................................................................................462
36.2.4 SARSEQ..............................................................................................................463
36.2.5 SAR Interrupts .....................................................................................................464
36.2.6 Trigger..................................................................................................................466
36.2.7 SAR ADC Status ..................................................................................................466

36.3 Registers...............................................................................................................................467

37. Temperature Sensor 468
37.1 Features................................................................................................................................468
37.2 Architecture...........................................................................................................................468



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 20

Contents

37.3 Temperature Sensor Configuration ......................................................................................470
37.4 Algorithm...............................................................................................................................470
37.5 Registers...............................................................................................................................471

38. CapSense 472



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 21

Section A:   Overview

This section encompasses the following chapters:

■ Introduction chapter on page 22

■ Getting Started chapter on page 27

■ Document Organization and Conventions chapter on page 28

Document Revision History

Revision Issue Date Description of Change

** 02/15/2021 Initial version of PSoC 64 TRM

*A 05/09/2023
Fixed typos: Sflash to SFlash, AUXflash and EE emulation to AUXFlash.

Updated PSoC 6 Programming Specification weblink.

*B 09/04/2023 Updated  PSoC 6 Protection Architecture section.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 22

1.   Introduction

The PSoC™ MCU is a scalable and reconfigurable platform architecture that supports a family of programmable embedded
system controllers with Arm® Cortex® CPUs (single and multi-core). A Cortex-M0+ is used for secure operations and by
default requires no code to be provided by the developer. For custom security configurations the developer may choose to
add code or make changes to the default operation. The CYB0644ABZI-S2D44 product family is a combination of a dual-core
microcontroller with built-in programmable peripherals. It incorporates integrated low-power flash technology, digital
programmable logic, high-performance analog-to-digital and digital-to-analog conversion, Low-Power comparators, touch
sensing, serial memory interface with encryption, secure digital host controller (SDHC), and standard communication and
timing peripherals. The PSoC 64 family features out-of-box SecureBoot functionality with a hardware-based Root of Trust
(RoT) to accelerate secure designs.

1.1 Features

The CYB0644ABZI-S2D44 product family has these characteristics:

■ 32-bit dual core (Arm Cortex-M4F and Arm Cortex M0+) CPU subsystem

■ Hardware accelerated Crypto functions

■ Secure boot system

■ Hardware-based Root of Trust

■ Integrated (on-chip) flash memory

■ Audio subsystem with I2S interface and two PDM channels

■ Serial memory interface with on-the-fly encryption and decryption

■ SDHC block that supports SD, SDIO, and eMMC interfaces

■ Low-power modes

■ Configurable digital peripherals

■ Programmable digital logic

■ High-performance analog system

■ Flexible and programmable interconnect

■ Capacitive touch sensing (CapSense®)

■ Programmable GPIOs

This document describes each function block of the CYB0644ABZI-S2D44 in detail. In this document, PSoC 6 MCU refers to
CYB0644ABZI-S2D44 unless explicitly mentioned otherwise.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation 

■ Application notes

■ Code examples

https://www.cypress.com/products/32-bit-arm-cortex-m4-psoc-6#tabs-0-bottom_side-5
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 23

Introduction

1.2 Architecture

Figure 1-1 shows the major components of the PSoC 6 MCU architecture. 

Figure 1-1.  PSoC 6 MCU Architecture Block Diagram    

The block diagram shows the device subsystems and gives a simplified view of their interconnections. The color-code shows
the lowest power mode where the particular block is still functional (for example, LP comparator is functional in Deep Sleep
and Hibernate modes).

CPU Subsystem 

Audio Subsystem

SCB

Programmable Analog

SAR ADC 12 bit

S
A

R
M

U
X

Temperature 
Sensor

D
S

I

I/O
 S

u
b

sy
s

te
m

: 
U

p 
to

 1
02

 G
P

IO
s,

 1
28

-T
Q

F
P

 P
ac

ka
ge

B
ou

nd
a

ry
 S

ca
n

2
x 

S
m

ar
t 

I/O
 P

or
ts

USB
PHY

S
ys

te
m

 I
nt

er
co

n
ne

ct
 (

M
u

lti
 L

ay
er

 A
H

B
, 

IP
C

, 
M

P
U

/S
M

P
U

)

Cortex M4F CPU
150/50 MHz, 1.1/0.9 V
SWJ, ETM, ITM, CTI

Cortex M0+ CPU
100/25 MHz, 1.1/0.9 V

SWJ, MTB, CTI

3x DMA 
Controller

Crypto
DES/TDES, AES, SHA, 
CRC, TRNG, RSA/ECC

Accelerator

Flash
2048 KB + 32 KB + 32 KB
8 KB cache for each CPU

SRAM0
512 KB

ROM
64 KB

P
er

ip
he

ra
l I

nt
er

co
nn

ec
t 

(M
M

IO
, P

P
U

)
P

er
ip

he
ra

l c
lo

ck
 (

P
C

L
K

)System Resources

Power Clocks

POR

LVD

BOD

OVP

Buck Regulator

WCORTC

IMO

WDT

2x PLL

ECO

ILO

FLL

2x MCWDT

Backup Regs

XRES Reset

PMIC Control

SRAM1
256 KB

SRAM2
256 KB

PSoC 6 Secure Boot MCU
CYB0644xxZI-S2D44

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and 

Domains



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 24

Introduction

1.3 CPU Subsystem (CPUSS)

1.3.1 CPU

The CPU subsystem in PSoC 6 MCUs consists of two
Arm Cortex cores and their associated buses and
memories: M4 with floating-point unit (FPU) and memory
protection unit (MPU), and M0+ with an MPU. The Cortex
M0+ provides a secure, uninterruptible boot function. This
guarantees that post-boot, system integrity is checked and
privileges enforced. Shared resources can be accessed
through the normal Arm multi-layer bus arbitration.
Exclusive accesses are supported by an inter-processor
communication (IPC) scheme, which implements hardware
semaphores and protection.

1.3.2 DMA Controllers

PSoC 6 MCUs have DMA controllers that support
independent access to peripherals using the multilayer
advanced high-performance bus (AHB).

1.3.3 Flash

PSoC 6 Cortex-M4 have a flash module with one block that
can be used for EEPROM emulation for longer retention. It
also has a block of flash that can be securely locked and is
accessible only via a key lock that cannot be changed (one-
time programmable). The flash block supports Read-While-
Write (RWW) operation so that flash updates may be
performed while the CPU is active.

1.3.4 SRAM

PSoC 6 MCUs have an SRAM module that can be retained
in Deep Sleep mode either fully or in increments of user-
designated blocks.

1.3.5 SROM

PSoC 6 MCUs have a supervisory ROM that contains boot
and configuration routines. This ROM guarantees secure
boot if authentication of user flash is required.

1.3.6 OTP eFuse

The OTP memory is a nonvolatile memory. When a bit is
changed from the default “0” state to “1”, it cannot be
changed back to “0”. The eFuse is not user-accessible and
is used to store system-level variables, modes, and memory
hashes used to validate the secure boot sequence.

1.3.7 Program and Debug

PSoC 6 MCUs have extensive support for programming,
testing, debugging, and tracing both hardware and firmware.
Complete debug-on-chip functionality enables full device
debugging in the final system using the standard production

device. It does not require special interfaces, debugging
pods, simulators, or emulators. Only the standard
programming connections are required to fully support
debug. The ModusToolbox integrated development
environment (IDE) provides fully-integrated programming
and debug support for PSoC 6 MCUs. The SWJ (SWD and
JTAG) interface is fully compatible with industry-standard
third-party probes. With the ability to disable debug features,
with robust flash protection, and by allowing customer-
proprietary functionality to be implemented in on-chip
programmable blocks, the PSoC 6 MCU family provides a
high level of security. Additionally, all device interfaces can
be permanently disabled (device security) for applications
concerned about phishing attacks due to a maliciously
reprogrammed device or attempts to defeat security by
starting and interrupting flash programming sequences. All
programming, debug, and test interfaces are disabled when
maximum device security is enabled. By default, a fixed
bootloader (CySecureBootloader) is programed during the
provisioning phase. This can be replaced during
provisioning by the developer, if required. Debugging is
disabled by default for the Cortex-M0+ CPU for security
reasons, but the developer may enable it, if required.

1.4 System Resources 
Subsystem (SRSS)

1.4.1 Power System

The power system confirms that voltage levels meet the
requirements for the respective mode and will either delay
mode entry (on power-on reset, for example) until voltage
levels meet requirements or generate resets (brownout
detect) when the power supply drops below specified levels.
The design guarantees safe chip operation between power
supply voltage dropping below specified levels and the
reset. The VDD power supply feeds an on-chip LDO, which
produces the core logic supply. In addition, the device
includes an on-chip buck regulator that can be used to
power the core.

1.4.2 Clocking System

The PSoC 6 MCU clock system provides clocks to
subsystems that require clocks and switches between
different clock sources without glitches. In addition, the clock
system ensures that no metastable conditions occur. The
clock system for PSoC 6 MCU consists of the internal main
oscillator (IMO), the internal low-speed oscillator (ILO), the
precision internal low-speed oscillator (PILO), the external
crystal oscillator, and the watch crystal oscillator (WCO).
Two phase-locked loops (PLL) and one frequency-locked
loop (FLL) are used to generate high-speed clocks from
either the IMO or the crystal oscillator or from an external
clock supplied from a pin. The PLLs and FLL enable
independent clock frequencies for peripherals. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 25

Introduction

1.4.2.1 IMO Clock Source 

The IMO is the primary source of internal clocking in the
PSoC 6 MCU. It is trimmed during testing to achieve the
specified accuracy. 

1.4.2.2 ILO Clock Source

The ILO is a very low-power oscillator, which may be used
to generate clocks for peripheral operation in Deep Sleep
mode. ILO-driven counters can be calibrated to the IMO to
improve accuracy. Cypress provides a software component,
which does the calibration. 

1.4.2.3 Watchdog Timer

A watchdog timer is implemented in the clock block running
from the ILO. This allows watchdog operation during Deep
Sleep and Hibernate modes, and generates a watchdog
reset if not serviced before the timeout occurs. The
watchdog reset is recorded in the Reset Cause register.

1.4.2.4 Clock Dividers

Integer and fractional clock dividers are provided for
peripheral use and timing purposes. The clock dividers are
16 and 24 bits in length to allow very fine clock control. 

1.4.2.5 Reset

PSoC 6 MCUs can be reset from a variety of sources
including a software reset. Reset events are asynchronous
and guarantee reversion to a known state. The reset cause
is recorded in a register, which allows the software to
determine the cause of the reset. An XRES pin is reserved
for external reset to avoid complications with configuration
and multiple pin functions during power-on or
reconfiguration.

1.4.3 GPIO

The GPIO pins are organized in logical entities called ports,
which are eight bits in width. During power-on and reset, the
blocks are forced to the disable state so as not to crowbar
any inputs and/or cause excess turn-on current. A
multiplexing network known as a high-speed I/O matrix
(HSIOM) is used to multiplex between various signals that
may connect to an I/O pin. Data output and pin state
registers store, respectively, the values to be driven on the
pins and the states of the pins themselves. 

Every I/O pin can generate an interrupt if so enabled and
each I/O port has an interrupt request (IRQ) and interrupt
service routine (ISR) vector associated with it. Four GPIO
pins are capable of overvoltage tolerant (OVT) operation
where the input voltage may be higher than VDD (these may
be used for I2C functionality to allow powering the chip off
while maintaining physical connection to an operating I2C
bus without affecting its functionality). 

1.5 Analog Subsystem

1.5.1 12-bit SAR ADC

PSoC 6 MCUs have a 12-bit SAR ADC. The SAR is
connected to a fixed set of pins through an eight-input
sequencer. The sequencer cycles through the selected
channels autonomously (sequencer scan) and does so with
zero switching overhead (that is, the aggregate sampling
bandwidth remains the same whether it is for a single
channel or distributed over several channels). The
sequencer switching is effected through a state machine or
through firmware-driven switching. The sequencer supports
the buffering of each channel to reduce CPU interrupt-
service requirements. To accommodate signals with varying
source impedances and frequencies, different sample times
can be programmed for each channel. Also, the signal
range specification through a pair of range registers (low-
and high-range values) is implemented with a
corresponding out-of-range interrupt if the digitized value
exceeds the programmed range; this allows fast detection of
out-of-range values without having to wait for a sequencer
scan to be completed and the CPU to read the values and
check for out-of-range values in software. 

The SAR is able to digitize the output of the on-chip
temperature sensor for calibration and other temperature-
dependent functions. The SAR is not available in Deep
Sleep and Hibernate modes because it requires a high-
speed clock.

1.5.2 Temperature Sensor

The PSoC 6 MCU has an on-chip temperature sensor. This
consists of a diode, which is biased by a current source that
can be disabled to save power. The temperature sensor is
connected to the ADC, which digitizes the reading and
produces a temperature value by using a Cypress-supplied
software that includes calibration and linearization. 

1.5.3 Low-Power Comparators 

PSoC 6 MCUs have a pair of Low-Power comparators,
which can operate in Deep Sleep and Hibernate modes.
This allows the analog system blocks to be disabled while
retaining the ability to monitor external voltage levels in
Deep Sleep and Hibernate modes. The comparator outputs
are normally synchronized to avoid metastability unless
operating in an asynchronous power mode (Hibernate)
where the system wake-up circuit is activated by a
comparator-switch event.

1.5.4 CapSense
The CapSense system, used primarily for touch sensing,
can measure the self-capacitance of an electrode or the
mutual capacitance between a pair of electrodes. CapSense
provides industry’s best-in-class signal-to-noise ratio (SNR),



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 26

Introduction

high touch sensitivity, low-power operation, and superior
EMI performance. CapSense touch sensing also supports
liquid-tolerant operation using a driven shield signal. Any
analog-capable GPIO can be used as a sensor or shield
electrode.

In addition to capacitive sensing, the CapSense system can
function as an ADC to measure voltage on any GPIO pin
that supports the CapSense functionality. Moreover, If the
CapSense block is not used for touch sensing or ADC
functionality, a CapSense comparator and the two 8-bit
IDACs can be used as general-purpose analog blocks. See
the PSoC 4 and PSoC 6 MCU CapSense Design Guide for
more details.

1.6 Programmable Digital

1.6.1 Smart I/O™ 
The PSoC 6 MCU has two Smart I/O blocks, which allow
Boolean operations on signals going to the GPIO pins from
the device subsystems or on signals coming into the device.
Operation can be synchronous or asynchronous and the
blocks operate in low-power modes, such as Deep Sleep
and Hibernate. This allows, for example, detection of logic
conditions that can indicate that the CPU should wake up
instead of waking up on general I/O interrupts, which
consume more power and can generate spurious wakeups. 

1.7 Digital Subsystem

1.7.1 Secure Digital Host Controller 
(SDHC) with eMMC 

The SDHC controller provides connectivity to IoT Wireless
devices and external storage. The SDHC controller
conforms to SDIO and eMMC specifications and have
ADMA3 engines built in.

1.7.2 Serial Communication Blocks 
(SCB) 

PSoC 6 MCU SCBs can implement communication
interfaces such as I2C, UART, or SPI.

1.7.2.1 I2C Mode

The hardware I2C block implements a full multimaster and
slave interface (it is capable of multimaster arbitration). This
block has flexible buffering options to reduce the interrupt
overhead and latency for the CPU. It also supports EzI2C,
which creates a mailbox address range in the PSoC 6 MCU
memory and effectively reduces the I2C communication to
reading from and writing to an array in the memory. In
addition, the block supports a 256-byte FIFO for receive and
transmit, which, by increasing the time given for the CPU to
read the data, reduces the need for clock stretching caused
by the CPU not having read the data on time. The FIFO

mode is available in all channels and is useful in the
absence of DMA. 

The I2C peripheral is compatible with I2C Standard-mode,
Fast-mode, and Fast-mode Plus devices as defined in the
NXP I2C-bus specification and user manual (UM10204).
The I2C bus I/O is implemented with GPIO in open-drain
modes. 

1.7.2.2 UART Mode

This is a full-feature UART that supports automotive single-
wire interface (LIN), infrared interface (IrDA), and
SmartCard (ISO7816) protocols, all of which are minor
variants of the basic UART protocol. In addition, it supports
the multiprocessor mode that allows the addressing of
peripherals connected over common Rx and Tx lines.
Common UART functions such as parity error, break detect,
and frame error are supported. A 256-byte FIFO tolerates
much greater CPU service latencies. 

1.7.2.3 SPI Mode

The SPI mode supports full Motorola SPI, TI Secure Simple
Pairing (SSP) (essentially adds a start pulse that is used to
synchronize SPI codecs), and National Microwire (half-
duplex form of SPI). The SPI block can use the FIFO and
supports an EzSPI mode in which the data interchange is
reduced to reading and writing an array in memory. 

1.7.3 Serial Memory Interface (SMIF)
A serial memory interface has selectable 1-, 2-, or 4-bit
widths. This block also supports on-the-fly encryption and
decryption to support Execute-In-Place operation.

1.7.4 Audio Subsystem

This subsystem consists of I2S and PDM blocks. The PDM
channels interface to a PDM microphone’s bit-stream
output. 

1.7.5 Timer/Counter/PWM Block
The timer/counter/PWM block consists of counters with
user-programmable period length. It has a capture register,
which records the count value of an event (such as an I/O
event), a period register, which is used to either stop or
auto-reload the counter when its count is equal to the period
register, and compare registers to generate compare value
signals, which are used as PWM duty cycle outputs. The
block also provides true and complementary outputs with
programmable offset between them to allow the use as
deadband programmable complementary PWM outputs. It
also has a kill input to force outputs to a predetermined
state; for example, this is used in motor-drive systems when
an overcurrent state is indicated and the PWMs driving the
FETs must be shut off immediately with no time for software
intervention.

http://www.cypress.com/an85951


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 27

2.   Getting Started

2.1 PSoC 6 MCU Resources

This chapter provides the complete list of PSoC 6 MCU resources that helps you get started with the device and design your
applications with them. If you are new to PSoC, Cypress provides a wealth of data at www.cypress.com to help you to select
the right PSoC device and quickly and effectively integrate it into your design. 

The following is an abbreviated list of PSoC 6 MCU resources:

■ Overview: PSoC Portfolio, PSoC Roadmap, PSoC 6 MCU webpage

■ Product Selectors: See the PSoC 6 MCU Product Selector Guide to choose a part that suits your application. In addition,
ModusToolbox includes a similar device selection tool to select devices for ModusToolbox projects.

■ Datasheets describe and provide electrical specifications for each device family.

■ Application Notes and Code Examples cover a broad range of topics, from basic to advanced level. Many of the
application notes include code examples, which can be opened from ModusToolbox.

■ Technical Reference Manuals (TRMs) provide detailed descriptions of the architecture and registers in each device family.

■ CapSense Design Guide: Learn how to design capacitive touch-sensing applications with PSoC devices.

■ Development Tools

❐ ModusToolbox enables cross platform code development with a robust suite of tools and software libraries.

❐ CY8CPROTO-062-4343W Prototyping Kit provides PSoC 6 MCU hardware support with Wi-Fi and Bluetooth connec-
tivity. Additional kits enable development for other PSoC 6 MCU devices with a variety of connectivity options.

❐ PSoC 6 CAD libraries provide footprint and schematic support for common tools.

■ Additional Resources: Visit the PSoC 6 MCU webpage for additional resources such as IBIS, BSDL models, CAD Library
Files, and Programming Specifications.

■ Training Videos: Visit www.cypress.com/training for a wide variety of video training resources on PSoC devices and
ModusToolbox, such as:

❐ Welcome to ModusToolbox

❐ PSoC 6 Bluetooth LE Pioneer Kit

❐ Introduction to Bluetooth LE

■  Technical Support

❐ Forum: See if your question is already answered by fellow developers of the PSoC 6 community.

❐ Cypress support: Visit our support page or contact a local sales representative. 

http://www.cypress.com
http://www.cypress.com/psoc
http://www.cypress.com/product-roadmaps/cypress-psoc-and-mcu-portfolio-roadmap
http://www.cypress.com/search/psg/114026#/
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A574&f%5b2%5d=field_related_products%3A114026
http://www.cypress.com/psoc6ce
http://www.cypress.com/training
http://www.cypress.com/training
http://www.cypress.com/psoccreator/
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A583&f%5b2%5d=field_related_products%3A114026
http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
http://www.cypress.com/products/modustoolbox-integrated-design-environment-ide
http://www.cypress.com/video-library/PSoC/introduction-psoc-6-ble-programmable-system-chip-bluetooth-low-energy/108231?tid=84506
https://www.cypress.com/video-library/PSoC-Software/welcome-modustoolbox-1-creating-new-applications/606471
http://www.cypress.com/psoccreator/
http://www.cypress.com/psoc6
http://www.cypress.com/support
http://www.cypress.com/about-us/sales-offices
http://www.cypress.com/psoc6
http://www.cypress.com/forum
https://community.cypress.com/community/psoc-6
http://www.cypress.com/CY8CPROTO-062-4343W
http://www.cypress.com/video-library/PSoC/bluetooth-low-energy-pioneer-kit/108271?tid=84506
http://www.cypress.com/video-library/PSoC/psoc-4-ble-101-1-intro-bluetooth-low-energy/108386?tid=84506
http://www.cypress.com/video-library/PSoC/psoc-4-ble-101-2-configuring-find-me-profile-ble/108381?tid=84506


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 28

3.   Document Organization and Conventions

This document includes the following sections:

■ Section B: CPU Subsystem on page 32

■ Section C: System Resources Subsystem (SRSS) on page 182

■ Section D: Digital Subsystem on page 273

■ Section E: Analog Subsystem on page 445

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information of the 
product.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed 
implementation and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are 
presented in bold, italic font throughout.

■ Registers Technical Reference Manual – Supplies all device register details summarized in the technical reference 
manual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
3Ah) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b or 01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 29

Document Organization and Conventions

3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms and Initializations

This table lists the acronyms and initializations used in this
document

Table 3-1.  Units of Measure

Abbreviation Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

dBm decibels-milliwatts

fF femtofarads

G Giga

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2.  Acronyms and Initializations

Acronym Definition

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

ADV advertising

AES Advanced Encryption Standard

AHB
AMBA (advanced microcontroller bus architecture) 
high-performance bus, an Arm data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BCD binary coded decimal

BESL best effort service latency

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CIC cascaded integrator comb

CMAC cipher-based message authentication code

CMP compare

CO carry out

COM LCD common signal

CPHA clock phase

CPOL clock polarity

CPU central processing unit

CPUSS CPU subsystem

CRC cyclic redundancy check

CSD CapSense sigma delta

CSX CapSense cross-point

CT cipher text

CTI cross triggering interface

CTM cross triggering matrix

ESR equivalent series resistance

DAC digital-to-analog converter

DAP debug access port

DC direct current

DES Data Encryption Standard

DFF D flip-flop



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 30

Document Organization and Conventions

DI digital or data input

DL drive level

DMA direct memory access

DMIPS Dhrystone million instructions per second

DNL differential nonlinearity

DO digital or data output

DSI digital system interconnect

DSP digital signal processing

DSM Deep Sleep mode

DU data unit

DW data wire

ECC Elliptic-curve cryptography

ECDH Elliptic-curve Diffie-Hellman

ECDSA Elliptic-curve Digital Signature Algorithm

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only 
memory

EMIF external memory interface

ETM embedded trace macrocell

FB feedback

FIFO first in first out

FPU floating point unit

FSR full scale range

GAP generic access profile

GATT generic attribute profile

GFSK Gaussian frequency-shift keying

GPIO general-purpose I/O

HCI host-controller interface 

HFCLK high-frequency clock

HMAC hashed message authentication code

HPF high-pass filter

HSIOM high-speed I/O matrix

I2C inter-integrated circuit

I2S inter-IC sound

IDE integrated development environment

ILO internal low-speed oscillator

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

IPC inter-processor communication

Table 3-2.  Acronyms and Initializations (continued)

Acronym Definition

IPTAT proportional to absolute temperature

IRES initial power on reset

IRA interrupt request acknowledge

IRK identity resolution key

IRQ interrupt request

ISA instruction set architecture

ISR interrupt service routine

ITM instrumentation trace macrocell

IVR interrupt vector read

IZTAT zero dependency to absolute temperature

JSON JavaScript object notation

JTAG Joint Test Action Group

JWT JSON web token

L2CAP logical link control and adaptation protocol

LCD liquid crystal display

LFCLK low-frequency clock

LFSR linear feedback shift register

LIN local interconnect network

LJ left justified

LL link layer

LNA low-noise amplifier

LP system low-power mode

LPCOMP Low-Power comparator

LPM link power management

LR link register

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MAC message authentication code

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MPU memory protection unit

MSb most significant bit

MSB most significant byte

MSP main stack pointer

MTB micro trace buffer

NI next instant

NMI non-maskable interrupt

NVIC nested vectored interrupt controller

OE output enable

Table 3-2.  Acronyms and Initializations (continued)

Acronym Definition



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 31

Document Organization and Conventions

OSR over-sampling ratio

OVP over-voltage protection

PA power amplifier

PC program counter

PCB printed circuit board

PCH program counter high

PCL program counter low

PD power down

PDU protocol data unit

PGA programmable gain amplifier

PHY physical layer

PLD programmable logic device

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PPU peripheral protection units

PRNG pseudo random number generator

PRS pseudo random sequence

PSA Platform Security Architecture

PSoC Programmable System-on-Chip

PSP process stack pointer

PSR program status register

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

RNG random number generator

ROM read only memory

ROT root of trust

RPA resolvable private address

RMS root mean square

RW read/write

SAR successive approximation register

SARSEQ SAR sequencer

SEG LCD segment signal

SE0 single-ended zero

SC switched capacitor

SCB serial communication block

SHA-256 Secure Hash Algorithm

SIE serial interface engine

Table 3-2.  Acronyms and Initializations (continued)

Acronym Definition

SIMO single input multiple output

SIO special I/O

SNR signal-to-noise ratio

SMPU shared memory protection units

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SRSS system resources subsystem

SSADC single slope ADC

SSC supervisory system call

SVCall supervisor call

SYSCLK system clock

SWD single wire debug

SWV serial wire viewer

TAR turn-around time

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

TDM time division multiplexed

TFF toggle flip-flop

TIA trans-impedance amplifier

TPIU trace port interface unit

TRM technical reference manual

TRNG True random number generator

UART universal asynchronous receiver/transmitter

ULB system ultra low-power mode

USB universal serial bus

USBIO USB I/O

VTOR vector table offset register

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

WIC wakeup interrupt controller

XRES external reset

XRES_N external reset, active low

Table 3-2.  Acronyms and Initializations (continued)

Acronym Definition



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 32

Section B: CPU Subsystem

This section encompasses the following chapters:

■ CPU Subsystem (CPUSS) chapter on page 33

■ SRAM Controller chapter on page 40

■ Inter-Processor Communication chapter on page 42

■ Fault Monitoring chapter on page 47

■ Interrupts chapter on page 54

■ Protection Units chapter on page 71

■ DMA Controller (DW) chapter on page 93

■ DMAC Controller (DMAC) chapter on page 104

■ Cryptographic Function Block (Crypto) chapter on page 113

■ Program and Debug Interface chapter on page 118

■ Nonvolatile Memory chapter on page 127

■ eFuse Memory chapter on page 133

■ “Secure Boot” chapter on page 135

Top Level Architecture

Figure B-1.  CPU System Block Diagram

CPU Subsystem 

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

Crypto
AES, SHA, CRC, 
TRNG, RSA, ECC

Initiator / MMIO

SWJ/ MTB/CTI

MUL, NVIC, MPU

Cortex M0+

SWJ /ETM/ITM/CTI

Cortex M4

FPU, NVIC, MPU

SONOS  
Flash

Flash Controller
8 KB 8 KB

SRAM0

SRAM Controller

ROM 

ROM Controller

SRAM1

SRAM Controller

SRAM2

SRAM Controller

 

D
W

1/
D

M
A

  
D

W
0/

D
M

A

D
M

A



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 33

4.   CPU Subsystem (CPUSS)

The CPU subsystem is based on dual 32-bit Arm Cortex CPUs, as Figure 4-1 shows. The Cortex-M4 is the main CPU. It is
designed for short interrupt response time, high code density, and high 32-bit throughput while maintaining a strict cost and
power consumption budget. A secondary Cortex-M0+ CPU implements security, safety, and protection features.

The designer will implement the application using only the Cortex-M4 CPU. The Cortex-M0+ CPU implements all secure
functions including initial boot sequence, setting up protection policy, and writing to nonvolatile memories, eFuse, and Flash.
A secure bootloader is part of the default boot sequence. It allows device firmware to be securely updated by whatever
interface the designer provides. In most cases, this does not include the device debug ports, which are usually disabled to
secure the device.

This section provides only an overview of the Arm Cortex CPUs in PSoC 6 MCUs. For details, see the Arm documentation
sets for Cortex-M4 and Cortex-M0+. Some PSoC 6 MCU parts have only one CPU. See the device datasheet for details.

4.1 Features

The PSoC 6 MCU Arm Cortex CPUs have the following features:

■ Cortex-M4 has a floating-point unit (FPU) that supports single-cycle digital signal processing (DSP) instructions, and a 
memory protection unit (MPU). Cortex-M0+ has an MPU.

■ Both CPUs have 8-KB instruction caches with four-way set associativity.1

■ Maximum clock frequency of 150 MHz for the Cortex-M4 and 100 MHz for the Cortex-M0+.

■ The Cortex-M4 implements a version of the Thumb instruction set based on Thumb-2 technology (defined in the Armv7-M
Architecture Reference Manual). The Cortex-M0+ supports the Armv6-M Thumb instruction set (defined in the Armv6-M
Architecture Reference Manual). See “Instruction Set” on page 39.

■ Both CPUs have nested vectored interrupt controllers (NVIC) for rapid and deterministic interrupt response. For details,
see the Interrupts chapter on page 54

■ Both CPUs have extensive debug support. For details, see the Program and Debug Interface chapter on page 118.

❐ SWJ: combined serial wire debug (SWD) and Joint Test Action Group (JTAG) ports

❐ Serial wire viewer (SWV): provides real-time trace information through the serial wire output (SWO) interface

❐ Breakpoints

❐ Watchpoints

1. PSoC 6 does not support cache coherency. As a result when a particular row of flash that executes instructions is written/updated, the updated information will
not be reflected in the cache. The cache should be cleared in the firmware during such instances. This is applicable for both CM4 and CM0+ cache – the ap-
propriate (CM0+ and/or CM4) cache should be invalidated.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m4/index.html#cortexm4
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m0plus/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/BABGHFIB.html
http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/ric1417175910246.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/BEHGGEIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/CIHIGCIF.html


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 34

CPU Subsystem (CPUSS)

❐ Trace: Cortex-M4: embedded trace macrocell (ETM).
Cortex-M0+: 4-KB micro trace buffer (MTB)

■ Inter-processor communication (IPC) hardware – see
the Inter-Processor Communication chapter on page 42.

4.2 Architecture

Figure 4-1.  CPU Subsystem Block Diagram   

Each CPU is a 32-bit processor with its own 32-bit datapath and a 32-bit memory interface. Each CPU has its own set of 32-
bit registers. They support a wide variety of instructions in the Thumb instruction set. They support two operating modes (see
“Operating Modes and Privilege Levels” on page 38).

The Cortex-M4 instruction set includes:

■ Signed and unsigned, 32×32  32-bit and 32×32  64-bit, multiply and multiply-accumulate, all single-cycle

■ Signed and unsigned 32-bit divides that take two to 12 cycles

■ DSP instructions

■ Complex memory-load and store access

■ Complex bit manipulation; see the bitfield instructions in Table 4-6

The Cortex-M4 FPU has its own set of registers and instructions. It is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic.

The Cortex-M0+ has a single cycle 32x32  32-bit signed multiplication instruction.

4.2.1 Address and Memory Maps

Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is
divided into the regions shown in Table 4-1. Note that code can be executed from the code and SRAM regions.

CPU Subsystem 

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

Crypto
AES, SHA, CRC, 
TRNG, RSA, ECC

Initiator / MMIO

SWJ/ MTB/CTI

MUL, NVIC, MPU

Cortex M0+

SWJ /ETM/ITM/CTI

Cortex M4

FPU, NVIC, MPU

SONOS  
Flash

Flash Controller
8 KB 8 KB

SRAM0

SRAM Controller

ROM 

ROM Controller

SRAM1

SRAM Controller

SRAM2

SRAM Controller

 

D
W

1/
D

M
A

  
D

W
0/

D
M

A

D
M

A

Table 4-1.  Address Map for Cortex-M4 and Cortex-M0+

Address Range Name Use

0x00000000 – 0x1FFFFFFF Code
Program code region. You can also put data here. It includes the exception vector 
table, which starts at address 0.

0x20000000 – 0x3FFFFFFF SRAM
Data region. You can also execute code from this region. Note that the Cortex-M4 bit-
band in this region is not supported in PSoC 6.

0x40000000 – 0x5FFFFFFF Peripheral
All peripheral registers. Code cannot be executed from this region. Note that the 
Cortex-M4 bit-band in this region is not supported in PSoC 6.

0x60000000 – 0x9FFFFFFF External RAM Not used

0xA0000000 – 0xDFFFFFFF External device Not used

0xE0000000 – 0xE00FFFFF
Private peripheral 

bus (PPB)
Provides access to peripheral registers within the CPU core.

0xE0100000 – 0xFFFFFFFF Device Device-specific system registers.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 35

CPU Subsystem (CPUSS)

The device memory map shown in Table 4-2 applies to both CPUs. That is, the CPUs share access to all PSoC 6 MCU
memory and peripheral registers.  

SRAM is located in the code region for both CPUs (see Table 4-1). This facilitates executing code out of SRAM. There is no
physical memory located in the CPUs’ SRAM region.

Note: The PSoC 6 registers CPUSS_CM0_VECTOR_TABLE_BASE and CPUSS_CM4_VECTOR_TABLE_BASE determine
the location of the vector table for each CPU. A number of LS bits in each register are set to 0. As a result, there are
restrictions on the location of vector tables – they must be on a 256-byte boundary for CM0+ and a 1024-byte boundary for
CM4.

4.2.1.1 Wait State Lookup Tables

The wait state lookup tables show the wait states for Flash, SRAM, and ROM based on the Clk_HF0 frequency and the
current power mode. SRAM and ROM have two domains for the wait states – fast clock domain (Clk_Fast) and slow clock
domain (Clk_Slow); both domains are based off Clk_HF0. The following tables show the wait states for the slow clock
domain. All wait states for the fast clock domain are zero. For more information on clocking see the Clocking System chapter
on page 208.  

Table 4-2.  PSoC 6 Memory Map

Address Range Size Name Comments

0x0000_0000 - 0x0000_FFFF 64K SROM Initial ROM boot code

0x0800_0000 - 0x0800_17FF 6K System SRAM Bootloader SRAM

0x0800_1800 - 0x080E_BFFF 938K User SRAM Available for user CM4 application

0x080E_C000 - 0x080F_FFFF 80K System SRAM Used for secure boot, secure bootloader, and system calls (CM0+)

0x1000_0000 - 0x101C_FFFF 1856K User Application Flash Available for user CM4 application

0x101D_0000 - 0x101D_FFFF 64K Bootloader Secure bootloader

0x101E_0000 - 0x101F_FFFF 128K Secure Code Flash Used for secure boot, secure bootloader, and system calls (CM0+) 

0x1400_0000 - 0x1400_7FFF 32K Auxiliary Flash EEPROM emulation (CM4)

0x1600_0000 - 0x1600_7FFF 32K Supervisory Flash Secure access (CM0+)

Ultra-Low Power 
Mode

Clk_HF0 (MHz)

Clk_HF0 25 25 < Clk_HF0  100 100 < Clk_HF0

ROM/SRAM
True 0 1 1

False 0 0 1

Ultra-Low Power 
Mode

Clk_HF0 (MHz)

Flash

True
Clk_HF0  16 16 < Clk_HF0  33 33 < Clk_HF0

0 1 2

False
Clk_HF0  29 29 < Clk_HF0  58 58 < Clk_HF0  87 87 < Clk_HF0  120 120 < Clk_HF0  150

0 1 2 3 4



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 36

CPU Subsystem (CPUSS)

4.3 Registers

Both CPUs have sixteen 32-bit registers, as Table 4-3 shows. See the Arm documentation for details.

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use – Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow. 

Table 4-3.  Cortex-M4 and Cortex-M0+ Registers

Name Typea

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Reset Value Description

R0 – R12 RW Undefined R0–R12 are 32-bit general-purpose registers for data operations.

MSP (R13)

PSP (R13)

RW [0x00000000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates the stack pointer to use: 

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from the vector address.

LR (R14) RW See noteb

b. LR reset value is 0xFFFFFFFF in Cortex-M4, undefined in Cortex-M0+.

The link register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions.

PC (R15) RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On reset,
the processor loads the PC with the value from the vector address plus 0x00000004. Bit[0] of
the value is loaded into the EPSR T-bit (see Table 4-4) at reset; it must always be 1.

PSR RW Undefined

The program status register (PSR) combines: 
Application Program Status Register (APSR). 
Execution Program Status Register (EPSR). 
Interrupt Program Status Register (IPSR).

APSR RW Undefined
The APSR contains the current state of the condition flags from previous instruction 
executions.

EPSR RO 0x01000000

On reset, the EPSR Thumb state bit is loaded with the value bit[0] of the register 
[0x00000004]. It must always be 1. 

In Cortex-M4, other bits in this register control the state of interrupt-continuable instructions 
and the if-then (IT) instruction.

IPSR RO 0 The IPSR contains the current exception number.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0

The CONTROL register controls: 

- The privilege level in Thread mode; see 4.4 Operating Modes and Privilege Levels.

- The currently active stack pointer, MSP or PSP. 

- Cortex-M4 only: whether to preserve the floating-point state when processing an exception.

FAULTMASK RW 0 Cortex-M4 only. Bit 0 = 1 prevents the activation of all exceptions except NMI.

BASEPRI RW 0
Cortex-M4 only. When set to a nonzero value, prevents processing any exception with a 
priority greater than or equal to the value.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 37

CPU Subsystem (CPUSS)

The Cortex-M4 floating-point unit (FPU) also has the following registers:

■ Thirty-two 32-bit single-precision registers, S0 to S31. These registers can also be addressed as sixteen 64-bit double-
precision registers, D0 to D15.

■ Five FPU control and status registers:

❐ CPACR – Coprocessor Access Control Register

❐ FPCCR – Floating-point Context Control Register

❐ FPCAR – Floating-point Context Address Register

❐ FPSCR – Floating-point Status Control Register

❐ FPDSCR – Floating-point Default Status Control Register

For more information on how these registers are used, see the Arm Cortex-M4 documentation.

Use the MSR and MRS instructions to access the PSR, PRIMASK, CONTROL, FAULTMASK, and BASEPRI registers.
Table 4-4 and Table 4-5 show how the PSR bits are assigned. 

Table 4-4.  Cortex-M4 PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

27 APSR Q DSP overflow and saturation flag

26 – 25 EPSR IC/IT Control interrupt-continuable and IT instructions

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0 
results in a HardFault exception.

23 – 20 – – Reserved

19 – 16 APSR GE Greater than or equal flags, for the SEL instruction

15 – 10 EPSR IC/TI Control interrupt-continuable and IT instructions

9 – – Reserved

8 – 0 IPSR ISR_NUMBER

Exception number of current ISR:

0 = thread mode

1 = reserved

2 = NMI

3 = HardFault

4 = MemManage

5 = BusFault

6 = UsageFault

7 – 10 = reserved

11 = SVCall

12 = reserved for debug

13 = reserved

14 = PendSV

15 = SysTick (see “System Tick (SysTick) Exception” on page 60)

16 = IRQ0

…

255 = IRQ240



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 38

CPU Subsystem (CPUSS)

4.4 Operating Modes and Privilege Levels

Both CPUs support two operating modes and two privilege levels:

■ Operating Modes:

❐ Thread Mode – used to execute application software. The processor enters Thread mode when it comes out of reset.

❐ Handler Mode – used to handle exceptions. The processor returns to Thread mode when it has finished all exception
processing.

■ Privilege Levels:

❐ Unprivileged – the software has limited access to the MSR and MRS instructions, and cannot use the CPSID and
CPSIE instructions. It cannot access the system timer, NVIC, or system control block. It may have restricted access to
memory or peripherals.

❐ Privileged – the software can use all the instructions and has access to all resources.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged. In Handler mode,
software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level. Unprivileged software can use the
SVC instruction to transfer control to privileged software.

In Handler mode, the MSP is always used. The exception entry and return mechanisms automatically update the CONTROL
register, which may change whether MSP/PSP is used.

In Thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack
pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute
using the new stack pointer.

Table 4-5.  Cortex-M0+ PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

27 – 25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0 results in 
a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR
Exception 
Number

Exception number of current ISR:

0 = thread mode

1 = reserved

2 = NMI

3 = HardFault

4 – 10 = reserved

11 = SVCall

12, 13 = reserved

14 = PendSV

15 = SysTick

16 = IRQ0

…

47 = IRQ31



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 39

CPU Subsystem (CPUSS)

4.5 Instruction Set

Both CPUs implement subsets of the Thumb instruction set, as Table 4-6 shows. The table does not show the large number
of variants and conditions of the instructions. For details, see one of the Arm Cortex Generic User Guides or Technical
Reference Manuals.

An instruction operand can be a register, a constant, or another instruction-specific parameter. Instructions act on the
operands and often store the result in a destination register. Many instructions have restrictions on using the PC or SP for the
operands or destination register. See the Arm documentation for details. 

Table 4-6.  Instruction Set Summary – Cortex-M4 and Cortex-M0+

Functional Group Cortex-M4 Cortex-M0+ Brief List of Instruction Mnemonics

Memory access ✔ ✔ LDR, STR, ADR, PUSH, POP

General data processing ✔ ✔

Cortex-M0+: ADD, ADC, AND, ASR, BICS, CMN, CMP, EOR, LSL, LSR, MOV, 
MVNS, ORR, REV, ROR, RSB, SBC, SUB, SXT, UXT, TST

Cortex-M4 has all of the above plus: CLZ, ORN, RRX, SADD, SAS, SSA, SSUB, 
TEQ, UADD, UAS, USA, USUB

Multiply and divide ✔ MUL only
MLA, MLS, MUL, SDIV, SMLA, SMLS, SMMLA, SMMLS, SMUA, SMUL, SMUS, 
UDIV, UMAAL, UMLAL, UMULL

Saturating ✔ –
SSAT, USAT, QADD, QSUB, QASX, QSAX, QDADD, QDSUB, UQADD, UQASX, 
UQSAX, UQSUB

Packing and unpacking ✔ – PKH, SXT, SXTA, UXT, UXTA

Bitfield ✔ – BFC, BFI, SBFX, UBFX

Branch and control ✔ ✔
Cortex-M0+: B{cc}, BL, BLX, BX

Cortex-M4 has all of the above plus: CBNZ, CBZ, IT, TB

Miscellaneous ✔ ✔
CPSID, CPSIE, DMB, DSB, ISB, MRS, MSR, NOP, SEV, SVC, WFE, WFI

Cortex-M4 has all of the above plus BKPT

Floating-point ✔ –
VABS, VADD, VCMP, VCVT, VDIV, VFMA, VFNMA, VFMS, VFNMS, VLD, VLMA, 
VLMS, VMOV, VMRS, VMSR, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VPOP, 
VPUSH, VSQRT, VST, VSUB



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 40

5.   SRAM Controller

This chapter explains the PSoC 6 MCU SRAM Controller, its features, architecture, and wait states. The SRAM controller
enables the CPU to read and write parts of the PSoC 6 SRAM.

5.1 Features

The CPUSS has up to three identical SRAM controllers; see the device datasheet for details.

The SRAM controller has the following features:

■ Consists of two AHB-Lite interfaces:

❐ An AHB-Lite bus interface on clk_fast that connects to the fast bus infrastructure

❐ An AHB-Lite bus interface on clk_slow that connects to the slow bus infrastructure

■ Supports programmable number of clk_hf wait states

■ Supports 8-, 16-, and 32-bit accesses

5.2 Architecture

The design has two AHB-Lite interfaces that connect to the AHB-Lite infrastructure. Each AHB-Lite interface is connected to
a synchronization component that translates between the interface clock (either clk_fast or clk_slow) and the high-frequency
clock (clk_hf). 

Arbitration is performed on the AHB-Lite transfers from the two ports (AHB-Lite interface). Arbitration uses device-wide bus
master specific arbitration priorities. Therefore, although two AHB-Lite interfaces are provided, only one AHB-Lite transfer is
accepted by the port arbitration component.

The AHB-Lite transfers are the origin for all SRAM accesses; that is, the write buffer and SRAM repair requests result from
AHB-Lite transfers. The SRAM controller differentiates between the following three types of AHB-Lite transfers: 

■ AHB-Lite read transfers

■ 32-bit AHB-Lite write transfers

■ 8-bit and 16-bit AHB-Lite write transfers (also referred to as partial AHB-Lite write transfers)

Each type is described in more detail here.

AHB-Lite read transfers.   An AHB-Lite read transfer is translated into an SRAM read access. If the read address matches
in the write buffer, the SRAM has stale data and the write data provides the requested read data (this functionality is provided
by the read merge component). 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 41

SRAM Controller

32-bit AHB-Lite write transfers.   A 32-bit AHB-Lite write
transfer is translated into an SRAM write access. If the write
address matches in the write buffer, the matching write
buffer entries have stale data and these entries are
invalidated.

Partial AHB-Lite write transfers.   A partial AHB-Lite write
transfer is translated into an SRAM read access and an
SRAM write access. The SRAM read access is the direct
result of the partial write transfer and the SRAM write
access is the result of a write buffer request. A partial write
transfer requires an SRAM read access to retrieve the
“missing” data bytes from the SRAM. If the read address
matches in the write buffer, the SRAM has stale data and
the write data provides the requested read data (this
functionality is provided by the read merge component). The
requested read data is merged with the partial write data to
provide a complete 32-bit data word (this functionality is
provided by the write merge component). The address and
the merged write data are written to the write buffer. A future
write buffer request results in an SRAM write access with
the merged write data. 

Only the partial AHB-Lite write transfers use the write buffer. 

Write buffer.   The write buffer is a temporary holding
station for future SRAM write accesses. 

The buffer allows SRAM write accesses to be postponed.
This allows for more performance critical AHB-Lite requests
to “overtake” write buffer requests. Memory consistency is
guaranteed by matching the SRAM access address with the
write buffer entries' addresses: a “matching” SRAM read
access uses the read merge component and a matching
SRAM write access invalidates the matching write buffer
entries. 

When the write buffer is full, an entry needs to be freed to
accommodate future partial AHB-Lite write transfers.
Therefore, a full write buffer raises the priority of the write
buffer request path. 

The write buffer is constructed as a FIFO with four entries
(the order in which entries are written is the same as the
order in which entries are read). Each entry consists of: 

■ A valid field

■ An invalidated field

■ A word address

■ A 32-bit data word

Note that the merged write data written to the write buffer 
is always a 32-bit data word. Therefore, no byte mask is 
required. 

When the write buffer is written (an entry is added): the entry
valid field is set to ‘1’ and the invalidated field is set to ‘0’. 

When the write buffer is read (an entry is removed): the
entry valid field is set to ‘0’. If the entry invalidate field is ‘1’,
the write buffer request path is selected for an SRAM write

access. If the entry valid field is ‘0’, no SRAM access is
performed. 

On an SRAM read access, a matching entry provides write
buffer merge data for the read merge component. 

On an SRAM write access resulting from a 32-bit AHB-Lite
write transfer, a matching entry invalidated field is set to ‘1’. 

The state of the write buffer is reflected by
RAMi_STATUS.WB_EMPTY. The write buffer is not retained
in Deep Sleep power mode. Therefore, when transitioning to
system Deep Sleep power mode, the write buffer should be
empty. Note that this requirement is typically met, because a
transition to Deep Sleep power mode also requires that
there are no outstanding AHB-Lite transfers. If there are no
outstanding AHB-Lite transfers, the write buffer gets SRAM
access.

5.3 Wait States

The programmable wait states represent the number of
clk_hf cycles for a read path through the SRAM memory to
flipflops in either the fast domain (CM4 CPU) or slow domain
(such as CM0+ CPU, DataWire, and DMA controller). 

As the wait states are represented in clk_hf cycles, the wait
states do not have to be reprogrammed when the fast clock
domain frequency (clk_fast) or slow clock domain frequency
(clk_slow) is changed. However, it may be necessary to
reprogram the wait states when the high-frequency clock
domain (clk_hf) is changed. This means the required
number of wait states is a function of the clk_hf frequency. 

The fast clock domain is timing closed at a higher frequency
than the slow clock domain. Therefore, the read path
through the SRAM memory to flipflops in the fast domain is
faster than the read path through the SRAM memory to
flipflops in the slow domain. In other words, the required
number of “fast” wait states (RAMi_CTL.FAST_WS) should
be less than or equal to the required number of “slow” wait
states (RAMi_CTL.SLOW_WS). 

The SRAM controller also has internal SRAM read paths.
These paths are to flipflops in the SRAM controller in the
high-frequency clock domain (clk_hf). For these SRAM
accesses (for example, an SRAM read access to support a
partial AHB-Lite write transfer), the fast wait states are used.
This is because the maximum fast domain frequency
(clk_fast) equals the high-frequency domain frequency
(clk_hf).



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 42

6.   Inter-Processor Communication

Inter-processor communication (IPC) provides the functionality for multiple processors to communicate and synchronize their
activities. The IPC interface can also be used to communicate between two separate threads or tasks on a single core. IPC
hardware is implemented using two register structures. 

■ IPC Channel: Communication and synchronization between processors is achieved using this structure.

■ IPC Interrupt: Each interrupt structure configures an interrupt line, which can be triggered by a ‘notify’ or ‘release’ event of
any IPC channel.

6.1 Features

The features of IPC are as follows:

■ Implements locks for mutual exclusion between processors

■ Allows sending messages between processors

■ Supports up to 16 channels for communication

■ Supports up to 16 interrupts, which can be triggered using notify or release events from the channels 

■ Allows a method to send messages between two or more tasks with just one or multiple processors

6.2 Architecture

6.2.1 IPC Channel

An IPC channel is implemented as six hardware registers, as shown in Figure 6-1. The IPC channel registers are accessible
to all the processors in the system. 

■ IPC_ACQUIRE: This register determines the lock feature of the IPC. The IPC channel is acquired by reading this register.
If the SUCCESS field returns a ‘1’, the read acquired the lock. 

If the SUCCESS field returns a ‘0’, the read did not acquire the lock. 

Note that a single read access performs two functions:

❐ The attempt to acquire a lock.

❐ Return the result of the acquisition attempt (SUCCESS field).

The atomicity of these two functions is essential in a CPU with multiple tasks that can preempt each other.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - IPC

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 43

Inter-Processor Communication

The register also has bitfields that provide information about the processor that acquired it. When acquired, this register is
released by writing any value into the IPC_RELEASE register. If the register was already in an acquired state another
attempt to read the register will not be able to acquire it. 

■ IPC_NOTIFY: This register is used to generate an IPC notify event. Each bit in this register corresponds to an IPC
interrupt structure. The notify event generated from an IPC channel can trigger any or multiple interrupt structures. 

■ IPC_RELEASE: Any write to this register will release the IPC channel. This register also has a bit that corresponds to
each IPC interrupt structure. The release event generated from an IPC channel can trigger any or multiple interrupt
structures. To only release the IPC channel and not generate an interrupt, you can write a zero into the IPC release
register. 

■ IPC_DATA0 and IPC_DATA1: These are two 32-bit registers with a combined size of 64 bits that are meant to hold data.
These registers can be considered as the shared data memory for the channel. Typically, these registers will hold
messages that need to be communicated between processors. If the messages are larger than the combined 64-bit size,
place pointers in one or both of these registers.

■ IPC_LOCK_STATUS: This register provides the instantaneous lock status for the IPC channel. The register provides
details if the channel is acquired. If acquired, it provides the processor’s ID, protection context, and other details. The
reading of lock status provides only an instantaneous status, which can be changed in the next cycle based on the activity
of other processors on the channel. 

Figure 6-1.  IPC Channel Structure 

6.2.2 IPC Interrupt

Each IPC interrupt line in the system has a corresponding IPC interrupt structure. An IPC interrupt can be triggered by a notify
or a release event from any of the IPC channels in the system. You can choose to mask any of the sources of these events
using the IPC interrupt registers. Figure 6-2 shows the registers in an IPC Interrupt structure. 

IPC_INTR: This register provides the instantaneous status of the interrupt sources. Note that there are 16 notify and 16
release event bits in this register. These are the notify and release events corresponding to the 16 IPC channels. When a
notify event is triggered in the IPC channel 0, the corresponding Notify0 bit is activated in the interrupt registers. A write of ‘1’
to a bit will clear the interrupt. 

IPC_INTR_MASK: The bit in this register masks the interrupt sources. Only the interrupt sources with their masks enabled
can trigger the interrupt. 

IPC_INTR_SET: A write of ‘1’ into this register will set the interrupt. 

IPC_INTR_MASKED: This register provides the instantaneous value of the interrupts after they are masked. The value in this
register is (IPC_INTR AND IPC_INTR_MASK).

IPC_ACQUIRE

M
S

[3
:0

]

S
U

C
C

E
S

S

03
1

IPC_RELEASE 03
1

03
1 IPC_NOTIFY

03
1 IPC_DATA0

IN
T

R
_

N
O

T
0

IN
T

R
_

N
O

T
1

IN
T

R
_

R
E

L
0

IN
T

R
_

R
E

L
1

D
A

T
A

[3
1

:0
]

IN
T

R
_

N
O

T
1

4

IN
T

R
_

N
O

T
1

5

IN
T

R
_

N
O

T
1

2

IN
T

R
_

N
O

T
1

3

IN
T

R
_

N
O

T
1

0

IN
T

R
_

N
O

T
1

1

IN
T

R
_

N
O

T
8

IN
T

R
_

N
O

T
9

IN
T

R
_

N
O

T
6

IN
T

R
_

N
O

T
7

IN
T

R
_

N
O

T
4

IN
T

R
_

N
O

T
5

IN
T

R
_

N
O

T
2

IN
T

R
_

N
O

T
3

IN
T

R
_

R
E

L
1

4

IN
T

R
_

R
E

L
1

5

IN
T

R
_

R
E

L
1

2

IN
T

R
_

R
E

L
1

3

IN
T

R
_

R
E

L
1

0

IN
T

R
_

R
E

L
1

1

IN
T

R
_

R
E

L
8

IN
T

R
_

R
E

L
9

IN
T

R
_

R
E

L
6

IN
T

R
_

R
E

L
7

IN
T

R
_

R
E

L
4

IN
T

R
_

R
E

L
5

IN
T

R
_

R
E

L
2

IN
T

R
_

R
E

L
3

A
C

Q
U

IR
E

D

P
C

[3
:0

]

PN
S

IPC_LOCK_STATUS

M
S

[3
:0

]

03
1

P
C

[3
:0

]

PN
S

A
C

Q
U

IR
E

D

0

D
A

T
A

[3
1

:0
]

IPC_DATA13
1



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 44

Inter-Processor Communication

Figure 6-2.  IPC Interrupt Structure

6.2.3 IPC Channels and Interrupts

The IPC block has a set of IPC interrupts associated with it. Each IPC interrupt register structure corresponds to an IPC
interrupt line. This interrupt can trigger an interrupt on any of the processors in the system. The interrupt routing for
processors are dependent on the device architecture. 

Each IPC channel has a release and notify register, which can drive events on any of the IPC interrupts. An illustration of this
relation between the IPC channels and the IPC interrupt structure is shown in Figure 6-3.

Figure 6-3.  IPC Channels and Interrupts
031

R
E

LE
A

S
E

0

R
E

LE
A

S
E

1

R
E

LE
A

S
E

14

R
E

LE
A

S
E

15

R
E

LE
A

S
E

12

R
E

LE
A

S
E

13

R
E

L
E

A
S

E
1

0

R
E

LE
A

S
E

11

R
E

L
E

A
S

E
8

R
E

L
E

A
S

E
9

R
E

L
E

A
S

E
6

R
E

LE
A

S
E

7

R
E

L
E

A
S

E
4

R
E

LE
A

S
E

5

R
E

LE
A

S
E

2

R
E

L
E

A
S

E
3

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
14

N
O

T
IF

Y
15

N
O

T
IF

Y
12

N
O

T
IF

Y
13

N
O

T
IF

Y
10

N
O

T
IF

Y
11

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

03
1

R
E

LE
A

S
E

0

R
E

LE
A

S
E

1

R
E

L
E

A
S

E
1

4

R
E

L
E

A
S

E
1

5

R
E

L
E

A
S

E
1

2

R
E

L
E

A
S

E
1

3

R
E

LE
A

S
E

10

R
E

L
E

A
S

E
1

1

R
E

L
E

A
S

E
8

R
E

LE
A

S
E

9

R
E

L
E

A
S

E
6

R
E

LE
A

S
E

7

R
E

L
E

A
S

E
4

R
E

LE
A

S
E

5

R
E

LE
A

S
E

2

R
E

L
E

A
S

E
3

IPC_INTR_SET

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
14

N
O

T
IF

Y
15

N
O

T
IF

Y
12

N
O

T
IF

Y
13

N
O

T
IF

Y
10

N
O

T
IF

Y
11

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

03
1

R
E

L
E

A
S

E
0

R
E

L
E

A
S

E
1

R
E

LE
A

S
E

14

R
E

LE
A

S
E

15

R
E

LE
A

S
E

12

R
E

LE
A

S
E

13

R
E

L
E

A
S

E
1

0

R
E

LE
A

S
E

11

R
E

LE
A

S
E

8

R
E

L
E

A
S

E
9

R
E

LE
A

S
E

6

R
E

L
E

A
S

E
7

R
E

LE
A

S
E

4

R
E

L
E

A
S

E
5

R
E

L
E

A
S

E
2

R
E

LE
A

S
E

3

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
14

N
O

T
IF

Y
15

N
O

T
IF

Y
12

N
O

T
IF

Y
13

N
O

T
IF

Y
10

N
O

T
IF

Y
11

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

03
1

R
E

LE
A

S
E

0

R
E

LE
A

S
E

1

R
E

LE
A

S
E

14

R
E

LE
A

S
E

15

R
E

LE
A

S
E

12

R
E

LE
A

S
E

13

R
E

L
E

A
S

E
1

0

R
E

LE
A

S
E

11

R
E

L
E

A
S

E
8

R
E

L
E

A
S

E
9

R
E

L
E

A
S

E
6

R
E

LE
A

S
E

7

R
E

L
E

A
S

E
4

R
E

LE
A

S
E

5

R
E

LE
A

S
E

2

R
E

L
E

A
S

E
3

IPC_INTR_MASKED

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
14

N
O

T
IF

Y
15

N
O

T
IF

Y
12

N
O

T
IF

Y
13

N
O

T
IF

Y
10

N
O

T
IF

Y
11

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

IPC_INTR IPC_INTR_MASK

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR  0

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR  1

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR  2

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR  3

INTR 0

INTR 1

INTR 3

INTR 2

Release

INTR 0

INTR 1

INTR 3

INTR 2

Notify

IPC 0

INTR 0

INTR 1

INTR 3

INTR 2

Release

INTR 0

INTR 1

INTR 3

INTR 2

Notify

IPC 1

INTR 0

INTR 1

INTR 3

INTR 2

Release

INTR 0

INTR 1

INTR 3

INTR 2

Notify

IPC N

INTR N INTR N INTR N INTR N INTR N INTR N

Interrupt to 
processors

Interrupt to 
processors

Interrupt to 
processors

Interrupt to 
processors



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 45

Inter-Processor Communication

6.3 Implementing Locks

The IPC channels can be used to implement locks. Locks
are typically used in multi-core systems to implement some
form of mutually exclusive access to a shared resource.
When multiple processors share a resource, the processors
are capable of acquiring and releasing the IPC channel. So
the processor can assume an IPC channel as a lock. The
semantics of this code is that access to the shared resource
is gated by the processor’s ownership of the channel. So the
processors will need to acquire the IPC channel before they
access the shared resource. 

A failure to acquire the IPC channel signifies a lock on the
shared resource because another processor has control of
it. Note that the IPC channel will not enforce which
processor acquires or releases the channel. All processors
can acquire or release the IPC channel and the semantics of
the code must make sure that the processor that acquires
the channel is the one that releases it. 

6.4 Message Passing

IPC channels can be used to communicate messages
between processors. In this use case, the channel is used in
conjunction with the interrupt structures. The IPC channel is
used to lock the access to the data registers. The IPC
channel is acquired by the sender and used to populate the
message. The receiver reads the message and then
releases the channel. Thus, between the sender putting
data into the channel and receiver reading it, the channel is
locked for all other task access. The sender uses a notify
event on the receiver’s IPC interrupt to denote a send
operation. The receiver acts on this interrupt and reads the
data from the data registers. After the reception is complete,
the receiver releases the channel and can also generate a
release event to the senders IPC interrupt. Note that the
action of locking the channel does not, in hardware, restrict
access to the data registers. This is a semantic that should
be enforced by software. 

Figure 6-4 portrays an example of a sender (Processor A)
sending data to a receiver (Processor B). IPC interrupt A is
configured to interrupt Processor A. IPC interrupt B is
configured to interrupt Processor B. 

1. The sender will attempt to acquire the IPC channel by
reading the IPC_ACQUIRE register. If the channel was
acquired, the sender has ownership of the channel for
data transmission. If the channel was not acquired, the
processor should wait until the channel is free for
acquisition. This can be done by polling the IPC
channel’s IPC_LOCK_STATUS register. 

2. After the IPC channel is acquired, the sender has control
of the channel for communication and places the 64-bit
message data in the IPC_DATA0 and IPC_DATA1
registers. 

3. Now that the message is placed in the IPC channel, the
sender generates a notify event on the receiver’s
interrupt line. It does this by setting the corresponding bit
in the IPC channel’s IPC_NOTIFY register. This event
creates a notify event at IPC interrupt B. If the IPC
channel’s notify event was enabled by setting the mask
bit in the IPC interrupt B, this will generate an interrupt in
the receiver. 

4. When it receives IPC interrupt B, the receiver can poll
the IPC_INTR_MASKED register to understand which
IPC channel had triggered the notify event. Based on
this, the receiver identifies the channel to read and reads
from the IPC channel’s IPC_DATA0 and IPC_DATA1
registers. The receiver has now received the data sent
by the sender. It needs to release the channel so that
other processors/processes can use it. 

5. The receiver releases the channel. It also optionally
generates a release event on the sender’s IPC interrupt
A. This will generate a release event interrupt on the
sender if the corresponding channel release event was
masked. 

On receiving the release interrupt, the sender can act on the
event based on the application requirement. It can either try
to reacquire the channel for further transmission or go on to
other tasks because the transmission is complete.

Figure 6-4.  Sending Messages using IPC

In the previous example, the size of the data being transmitted was just 64 bits. Larger messages can be sent as pointers.
The sender can allocate a larger message structure in memory and pass the pointers in the data registers. Figure 6-5 shows
the usage. Note that the user code must implement the synchronization of the message read process. 

IPC Channel

Acquire

Notify

Release

Data

Status

Sender 
(Processor A)

Receiver 
(Processor B)

(1)

(2)

(3)

IPC 
interrupt B

(3)
(3)

IPC 
interrupt A

(4)

(5)(5)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 46

Inter-Processor Communication

■ The implementation can stall the channel until the receiver has used up all the data in the message packet and the
message packet can be rewritten. This is wasteful because it will stall other inter-process communications as the number
of IPC channels is limited. 

■ The receiver can release the channel as soon as it receives the pointer to the message packet. It implements the
synchronization logic in the message packet as a flag, which the sender sets on write complete and receiver clears on a
read complete. 

Figure 6-5.  Communicating Larger Messages 

Table 6-1.  IPC Channels Used

Channel Usage

0 CM0+ System Call

1 CM4 System Call

2 DAP System Call (programming)

3 CM4 -> CM0+ RPC

4 DAP -> CM0+ RPC

5 CM0+ -> CM4 RPC

6 DAP -> CM4 RPC

7-15 Unused

Message 
Packet

              IPC

Data Registers

Sender ReceiverPointer
Interrupt

ReadWrite

Release



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 47

7.   Fault Monitoring

Fault monitoring allows you to monitor various faults generated within the device and take actions based on the fault reported.
The fault structures present in the PSoC 6 MCU monitor access violation faults at protection units (MPU, SMPU, or PPU) and
flash controller bus error/fault. In addition to reporting faults, the fault structures in PSoC 6 MCUs provide a mechanism to log
data from the fault sources and optionally perform soft reset.

The PSoC 6 MCU family supports two centralized fault report/monitoring structures that monitor faults generated within the
device. Each fault report structure can monitor and report faults from up to 96 sources.

7.1 Features

Each PSoC 6 MCU fault report structure supports:

■ Monitoring protection unit access violation faults and flash controller bus errors

■ Four 32-bit data registers to record fault information

■ Soft reset on fault detection while retaining the fault information

■ Interrupt on fault detection

■ Trigger output to DMA for fault data transfer

■ Fault detected output to a pin for external fault handling

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysLib

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 48

Fault Monitoring

7.2 Architecture

Figure 7-1.  Fault Report Structure

The PSoC 6 MCU family uses centralized fault report structures. This centralized nature allows for a system wide handling of
faults simplifying firmware development. Only a single fault interrupt handler is required to monitor multiple faults. The fault
report structure provides the fault source and additional fault specific information through a single set of registers; no iterative
search for the fault source and fault information is required.

The fault structure can be configured to capture one or more faults as listed in Table 7-2. When a fault structure is configured
to capture a specific fault, an occurrence of that fault will be recorded as a pending fault. If the fault structure has finished
processing all other faults or if there are no other pending faults, the fault data will be captured into the fault structure
registers. In addition, a successful capture can trigger an interrupt and be processed by either Cortex-M4 or Cortex-M0+
depending on the application requirement. 

It should be noted that each fault structure is capable of capturing only one fault at a time and as long as that fault is not
serviced, subsequent faults will not be captured by the fault structure. In addition to capturing faults, the fault structure can
optionally perform a soft reset while retaining the fault information. This reset results in RESET_ACT_FAULT reset cause in
the SRSS_RES_CAUSE register. 

7.2.1 Fault Report

The PSoC 6 MCU family supports two fault report structures. Each fault report structure has a dedicated set of control and
status registers. Each fault report structure captures a single fault. The captured fault information includes:

■ Fault validity bit that indicates a fault is captured (VALID bit [31] of the FAULT_STRUCTx_STATUS register). This bit is set
whenever a fault is captured. The bit should be cleared after processing the fault information. New faults are captured only
when this bit is ‘0’.

■ Fault index, as shown in Table 7-2, identifies the fault source (IDX bits [6:0] of FAULT_STRUCTx_STATUS)

■ Additional fault information describing fault specifics (FAULT_STRUCTx_DATA0 through FAULT_STRUCTx_DATA3
registers). This additional information is fault source specific. For example, an MPU protection violation provides

Fault report
Structure[1] FAULT_PENDING0

Fault report
Structure[0]

Fault report Structure [x]

INTR_FAULT

FAULT_STATUS

INTR_FAULT_SET

INTR_FAULT_MASKED

FAULT_CTL

INTR_FAULT_MASK

FAULT_DATA0

...

FAULT_DATA3

FAULT_PENDING1

FAULT_PENDING2

FAULT_MASK0

FAULT_MASK1

FAULT_MASK2

interrupt_fault[x]

tr_fault[x]

fault_out[x]

fault_reset_req[x]

Fault source 0

ذ up to 96 ... Pending faults

Retained during 
soft reset

Fault source 95

Single structure, 
used by all fault 

report structures.

Fault Data

Fault Data



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 49

Fault Monitoring

information on the violating bus address, the bus master identifier, and bus access control information in only two
FAULT_DATA registers. The details of the fault information for various faults is explained in Table 7-1.

Table 7-1.  Fault Information

Fault Source Fault Information

MPU/SMPU violation

DATA0[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.

DATA1[15:12]: Protection context identifier.

DATA1[31]: '0' MPU violation; '1': SMPU violation.

Master interface PPU violation

DATA0[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.

DATA1[15:12]: Protection context identifier.

DATA1[31]: '0': PPU violation, '1': peripheral bus error.

Peripheral group PPU violation

DATA0[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.

DATA1[15:12]: Protection context identifier.

DATA1[31:30]: ‘0’: PPU violation, ‘1’: timeout detected, ‘2’: peripheral bus error.

Flash controller bus error

FAULT_DATA0[31:0]: Violating address.

FAULT_DATA1[31]: '0': FLASH macro interface bus error; '1': memory hole.

FAULT_DATA1[15:12]: Protection context identifier.

FAULT_DATA1[11:8]: Master identifier.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 50

Fault Monitoring

7.2.2 Signaling Interface

In addition to captured fault information, each fault report
structure supports a signaling interface to notify the system
about the captured fault. The interface of fault report
structure ‘x’ supports the following:

■ A fault interrupt (interrupt_fault[x]). Use the
FAULT_STRUCTx_INTR,
FAULT_STRUCTx_INTR_SET,
FAULT_STRUCTx_INTR_MASK and
FAULT_STRUCTx_INTR_MASKED registers to monitor,
set, and mask the FAULT_STRUCTURE[x]’s interrupt.
Only a single interrupt cause is available, which
indicates that a fault is detected. The fault report
registers can be read in the interrupt handler to deduce
the fault. The FAULT bit [0] of the
FAULT_STRUCTx_INTR_MASK register provides a
mask/enable for the interrupt. The FAULT bit [0] of the
FAULT_STRUCTx_INTR register is set to ‘1’ when a
fault is captured. Setting this bit in firmware clears the
interrupt.

■ A DMA trigger (tr_fault[x]). The fault structure generates
a DMA trigger when VALID bit [31] of the
FAULT_STRUCTx_STATUS register is set. To enable
the trigger, set the TR_EN bit [0] of the
FAULT_STRUCTx_CTL register. The trigger can be
connected to a DMA controller, which can transfer
captured fault information from the fault report structure
to memory and can clear the VALID bit [31] of the

FAULT_STRUCTx_STATUS register. See the Trigger
Multiplexer Block chapter on page 261 for more details.

■ A chip output signal (fault_out[x]). The fault structure
generates an output signal, which is set when VALID bit
[31] of the FAULT_STRUCTx_STATUS register is set.
This signal can be routed out of the device through the
HSIOM (refer to the device datasheet). The output signal
is enabled by setting the OUT_EN bit [1] of the
FAULT_STRUCTx_CTL register. The output signal can
be used to communicate non-recoverable faults to off-
chip components (possibly resulting in a reset of the
chip).

■ A fault reset request signal (fault_reset_req[x]). The fault
structure generates a soft reset when VALID bit [31] of
the FAULT_STRUCTx_STATUS register is set. The
reset capability is enabled by setting RESET_REQ_EN
bit [2] of FAULT_STRUCTx_CTL. The reset request
performs a soft reset. This reset is captured as
RESET_ACT_FAULT in the SRSS_RES_CAUSE
register. The fault information in
FAULT_STRUCTx_STATUS and
FAULT_STRUCTx_DATA registers is retained through
this reset.

Because the device has a single fault_reset_req signal, the
individual fault_reset_req[x] signals from the fault structures
are combined into a single fault_reset_req signal as shown
in Figure 7-2.

Figure 7-2.  Fault Reset Request

7.2.3 Monitoring

A central structure, which is shared by all fault report
structures, keeps track of all pending faults in the system.
The FAULT_STRUCTx_PENDINGx registers reflect what
fault sources are pending and provide a single pending bit
for up to 96 fault sources. The registers are mirrored in all
the fault report structures; that is, they read the same value
in all fault structures. The bit indexing in the registers follow
the fault index captured in Table 7-2. For instance, bit [0] of
FAULT_STRUCTx_PENDING0 captures a CM0+ MPU/
SMPU violation and bit [1] of
FAULT_STRUCTx_PENDING1 captures a peripheral
group#1 PPU violation.

The pending faults are faults that are not yet captured by a
fault structure. When a pending fault is captured by a fault
structure, the associated pending bit is cleared to ‘0’.

Each fault report structure is selective in the faults it
captures. The FAULT_STRUCTx_MASK0,

FAULT_STRUCTx_MASK1, FAULT_STRUCTx_MASK2
registers of a fault structure decide the pending faults that it
captures. These faults are referred to as “enabled” faults.
The FAULT_STRUCTx_MASK registers are unique to each
fault structure. This allows for the following:

■ One fault report structure is used to capture recoverable
faults and one fault report structure is used to capture
non-recoverable faults. The former can be used to
generate a fault interrupt and the latter can be used to
activate a chip output signal and/or activate a reset
request.

■ Two fault report structures are used to capture the same
faults. The first fault is captured by the structure with the
lower index (for example, fault structure 0) and the
second fault is captured by the structure with the higher
index (for example, fault structure 1). Note that both
structures cannot capture the same fault at the same
time. As soon as a fault is captured, the pending bit is
cleared and the other structure will not be aware of the

fault_reset_req[0]

fault_reset_req[1]
fault_reset_req
(to device soft reset line)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 51

Fault Monitoring

fault. Fault structure 0 has precedence over fault
structure 1.

The fault structure captures “enabled” faults only when
VALID bit [31] of FAULT_STRUCTx_STATUS register is ‘0’.
When a fault is captured, hardware sets the VALID bit [31] of
the FAULT_STRUCTx_STATUS register. In addition,
hardware clears the associated pending bit to ‘0’. When a
fault structure is processed, firmware or a DMA transfer
should clear the VALID bit [31] of the
FAULT_STRUCTx_STATUS register. Note that fault
capturing does not consider FAULT bit [0] of
FAULT_STRUCTx_INTR register and firmware should clear
the bit after servicing the interrupt, if the interrupt is enabled.

7.2.4 Low-power Mode Operation

The fault report structure functionality is available in Active
and Sleep (and their LP counterparts) power modes only.
The interfaces between the fault sources and fault report
structures are reset in the Deep Sleep power mode.
Because the fault report structure is an active functionality,
pending faults (in the FAULT_STRUCTx_PENDING
registers) are not retained when transitioning to Deep Sleep
power mode. The fault structure’s registers can be
partitioned based on the reset domain and their retention
capability as follows:

■ Active reset domain: FAULT_STRUCTx_PENDING,
FAULT_STRUCTx_INTR,
FAULT_STRUCTx_INTR_SET, and
FAULT_STRUCTx_INTR_MASKED registers. These
registers are not retained in Deep Sleep power mode.

■ Deep Sleep reset domain: FAULT_STRUCTx_CTL,
FAULT_STRUCTx_MASK, and
FAULT_STRUCTx_INTR_MASK registers. These
registers are retained in Deep Sleep power mode but
any system reset will reset these registers to the default
state.

■ Hard reset domain: FAULT_STRUCTx_STATUS and
FAULT_STRUCTx_DATA registers. These registers are
retained through soft resets (detectable in
SRSS_RES_CAUSE registers). However, hard resets
such as XRES/POR/BOD will reset the registers.

7.2.5 Using a Fault Structure

Follow these steps to configure and use a fault structure:

1. Identify the faults from Table 7-2 to be monitored in the
system.

2. For firmware fault handling through interrupts

a. Set the FAULT bit [0] of the FAULT_STRUCTx_IN-
TR_MASK register.

b. Set the FAULT bit [0] of the FAULT_STRUCTx_INTR
register to clear any pending interrupt.

c. Enable the FAULTx interrupt to the CPU by configur-
ing the appropriate ISER register. Refer to the
Interrupts chapter on page 54.

3. For fault handling through DMA

a. Set the TR_EN bit [0] of the FAULT_STRUCTx_CTL
register.

b. Route the tr_fault[x] signal to the trigger input DMA
controller. Refer to the Trigger Multiplexer
Block chapter on page 261.

c. Configure and enable the DMA controller to transfer
FAULT_STRUCTx_STATUS and FAULT_STRUCTx-
_DATA registers to memory and write back ‘0’ to
FAULT_STRUCTx_STATUS register after the trans-
fer is complete. Refer to the DMA Controller
(DW) chapter on page 93.

4. For fault handling outside the device

a. Set the OUT_EN bit [1] of FAULT_STRUCTx_CTL
register.

b. Route the fault_out[x] signal to a pin through HSIOM.
Refer to the device datasheet.

c. Use the signal externally for processing the fault –
generate external reset, power cycle, or log fault
information.

5. Set the RESET_REQ_EN bit [2] of the FAULT_-
STRUCTx_CTL register, if a soft reset is required on any
fault detection in the structure.

6. Clear VALID bit [31] of the FAULT_STRUCTx_STATUS
register to clear any fault captured.

7. Set the fault index bits in the FAULT_STRUCTx_MASK
registers for faults that need to be captured by the fault
structure as explained in 7.2.3 Monitoring.

7.2.6 CPU Exceptions Versus Fault 
Monitoring

Some faults captured in Table 7-2 also result in bus errors or
CPU exceptions (Cortex-M4 Bus/Usage/Memory/Hard
faults). The faults can be communicated in two ways:

■ As a bus error to the master of the faulting bus transfer.
This will result in Bus, Usage, Memory, or Hard fault
exceptions in the CPU.

■ As a fault in a fault report structure. This fault can be
communicated as a fault interrupt to any processor in the
system. This allows fault handling on a processor that is
not the master of the faulting bus transfer. It is useful for
faults that cause the master of the faulting transfer to
become unresponsive or unreliable.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 52

Fault Monitoring

7.3 Fault Sources

The fault sources can vary between device families. Table 7-2 provides the list of fault sources available in PSoC 6 MCUs. 

Table 7-2.  Fault Sources

Fault Index Source Description

0 cpuss.mpu_vio[0] CM0+ MPU/SMPU violation

1 cpuss.mpu_vio[1] CRYPTO MPU/SMPU violation

2 cpuss.mpu_vio[2] DW0 MPU/SMPU violation

3 cpuss.mpu_vio[3] DW1 MPU/SMPU violation

4 cpuss.mpu_vio[4] DMAC MPU/SMPU violation

5 cpuss.mpu_vio[5] SDHC0 MPU/SMPU violation

6

7 to 15 Reserved

16 cpuss.mpu_vio[16] CM4 MPU/SMPU violation (System bus)

17 cpuss.mpu_vio[17] CM4 code error

18 cpuss.mpu_vio[18] CM4 code flash controller errors

19 to 27 Reserved

28 peri.ms_vio[0] CM0+ Peripheral Master Interface PPU violation

29 peri.ms_vio[1] CM4 Peripheral Master Interface PPU violation

30 peri.ms_vio[2] DW0 Peripheral Master Interface PPU violation

31 peri.ms_vio[3] DW1 Peripheral Master Interface PPU violation

32 peri.group_vio[0]
Peripheral group #0 (Peripheral Clock dividers, Trigger Mux etc) PPU violation 

Register address range: 0x40000000 to 0x40100000

33 peri.group_vio[1]
Peripheral group #1 (Crypto block) PPU violation 

Register address range: 0x40100000 to 0x40200000

34 peri.group_vio[2]
Peripheral group #2 (CPUSS, SRSS, EFUSE) PPU violation

Register address range: 0x40200000 to 0x40300000

35 peri.group_vio[3]
Peripheral group #3 (IOSS, LPCOMP, CSD, TCPWM, LCD, Bluetooth LE) PPU 
violation 

Register address range: 0x40300000 to 0x40400000

36 peri.group_vio[4]
Peripheral group #4 (SMIF) PPU violation 

Register address range: 0x40400000 to 0x40500000

37

38 peri.group_vio[6]
Peripheral group #6 (SCB) PPU violation 

Register address range: 0x40600000 to 0x40700000

39 Reserved

40 Reserved

41 peri.group_vio[9]
Peripheral group #9 (PASS) PPU violation 

Register address range: 0x41000000 to 0x42000000

42

43 to 47 Reserved

48 cpuss.flashc_main_bus_err Flash controller bus error

49 to 95 Reserved



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 53

Fault Monitoring

7.4 Register List

Name Description

FAULT_STRUCTx_CTL Fault control register for enabling DMA trigger, fault output, and fault reset signals

FAULT_STRUCTx_STATUS Fault status register that stores the validity and fault index of the currently captured fault

FAULT_STRUCTx_DATA0 Fault data register 0 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA1 Fault data register 1 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA2 Fault data register 2 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA3 Fault data register 3 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_PENDING0 Fault pending register 0 that stores pending (not captured) faults with fault index from 0 to 31

FAULT_STRUCTx_PENDING1 Fault pending register 1 that stores pending (not captured) faults with fault index from 32 to 63

FAULT_STRUCTx_PENDING2 Fault pending register 2 that stores pending (not captured) faults with fault index from 64 to 95

FAULT_STRUCTx_MASK0
Fault mask register 0 that enables the capture of pending faults with fault index from 0 to 31 by the 
fault structure

FAULT_STRUCTx_MASK1
Fault mask register 1 that enables the capture of pending faults with fault index from 32 to 63 by the 
fault structure

FAULT_STRUCTx_MASK2
Fault mask register 2 that enables the capture of pending faults with fault index from 64 to 95 by the 
fault structure

FAULT_STRUCTx_INTR Fault interrupt register that stores the unmasked status of the fault structure's interrupt

FAULT_STRUCTx_INTR_SET Fault interrupt set register used to set the fault structure's interrupt through firmware

FAULT_STRUCTx_INTR_MASK Fault interrupt mask register that masks fault interrupt

FAULT_STRUCTx_INTR_MASKED Fault interrupt register that stores the masked status of the fault structure's interrupt



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 54

8.   Interrupts

The PSoC 6 MCU family supports interrupts and CPU exceptions on both Cortex-M4 and Cortex-M0+ cores. Any condition
that halts normal execution of instructions is treated as an exception by the CPU. Thus an interrupt request is treated as an
exception. However, in the context of this chapter, interrupts refer to those events generated by peripherals external to the
CPU such as timers, serial communication block, and port pin signals; exceptions refer to those events that are generated by
the CPU such as memory access faults and internal system timer events. Both interrupts and exceptions result in the current
program flow being stopped and the exception handler or interrupt service routine (ISR) being executed by the CPU. Both
Cortex-M4 and Cortex-M0+ cores provide their own unified exception vector table for both interrupt handlers/ISR and
exception handlers. 

Note: Although this section describes how both the Cortex-M4 and the Cortex-M0+ operate, only the Cortex-M4 is accessible
by the developer.

8.1 Features

The PSoC 6 MCU supports the following interrupt features:

■ Supports 168 system interrupts

❐ 168 Arm Cortex-M4 interrupts

❐ Eight Arm Cortex-M0+ external interrupts and eight Arm Cortex-M0+ internal (software only) interrupts. The CPU sup-
ports up to 32 interrupts, but only 16 interrupts are used by PSoC 6 interrupt infrastructure. The eight external CPU 
interrupts support deep sleep (WIC) functionality

❐ Four system interrupts can be mapped to each of the CPU non-maskable interrupt (NMI)

❐ Up to 39 interrupt sources capable of waking the device from Deep Sleep power mode

■ Nested vectored interrupt controller (NVIC) integrated with each CPU core, yielding low interrupt latency

■ Wakeup interrupt controller (WIC) enabling interrupt detection (CPU wakeup) in Deep Sleep power mode

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels (eight levels for Cortex-M4 and four levels for Cortex-M0+) for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysInt

■ Application notes

■ Code examples



Interrupts

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 55

8.2 Architecture

Figure 8-1.  PSoC 6 MCU Interrupts Block Diagram  

Cortex M0+
Processor core

NVIC

M0+ processor

168
Interrupt sources

(Peripherals)

INT Source 1

INT Source 2

INT Source 0

Cortex M4
Processor core

NVIC

M4 processor

168

Each IRQn can be 
connected to one or 
more of the 168 
interrupt sources

IRQn is connected 
to INT source n

Register control

M0+ interrupt settings
Enable / Disable Interrupt

Set Priority
Mask Interrupt
Set NMI source
Software trigger

M4 interrupt settings
Enable / Disable Interrupt

Set Priority
Mask Interrupt
Set NMI source
Software Trigger

CPUSS_CM0_SYSTEM_INT_CTLx

INT Source 167

System Wakeup
M0+ Wakeup

M4 Wakeup

PSoC 6 Interrupt Architecture

Wakeup Interrupt 
Controller (WIC)1

Wakeup Interrupt 
Controller (WIC)1

39 (IRQ0 – IRQ38)

Available in Deep Sleep

Wakeup

Wakeup

M0+ 
Interrupt 

gen

Note1 - Input IRQn lines  to the WIC are unsynchronized



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 56

Interrupts

Figure 8-1 shows the PSoC 6 MCU interrupt architecture.
The PSoC 6 MCU has 168 system interrupts that are
generated by various peripherals. These interrupt signals
are processed by the NVIC of the individual core. In the
Cortex-M4 core, the system interrupt source ‘n’ is directly
connected to IRQn. The Cortex-M0+ interrupt architecture
uses eight CPU interrupts IRQ[7:0] out of the 32 available
IRQn lines of the core. In the Cortex-M0+ core, the system
interrupt source connection to a particular IRQn of the core
is configurable and any of the 168 system interrupts can be
mapped to any of the IRQ[7:0]. This ensures that all the
system interrupts can be mapped onto any CPU interrupt
simultaneously. Refer to Interrupt Sources on page 60 for
more details about the system interrupt to CPU interrupt
mapping. The NVIC takes care of enabling/disabling
individual interrupt IRQs, priority resolution, and
communication with the CPU core. The other exceptions
such as NMI and hard faults are not shown in Figure 8-1
because they are part of CPU core generated events, unlike
interrupts, which are generated by peripherals external to
the CPU.

In addition to the NVIC, the PSoC 6 MCU supports wakeup
interrupt controllers (WIC) for each CPU and a shared
interrupt synchronization block that synchronizes the
interrupts to CLK_HF domain (adds two CLK_HF cycles
delay for synchronization). The WIC provides detection of
Deep Sleep interrupts in the Deep Sleep CPU power mode.
Each CPU can individually be in Deep Sleep mode; the
device is said to be in Deep Sleep mode only when both the
CPUs are in Deep Sleep mode. Refer to the Device Power
Modes chapter on page 191 for details. The Cortex-M4 WIC
block supports up to 39 interrupts that can wake up the CPU
from Deep Sleep power mode. The Cortex-M0+ WIC block
supports all eight interrupts. The device exits Deep Sleep
mode (System Wakeup signal in Figure 8-1) as soon as one
CPU wakes up. The synchronization blocks synchronize the
interrupts to the CPU clock frequency as the peripheral
interrupts can be asynchronous to the CPU clock frequency.

8.3 Interrupts and Exceptions - 
Operation

8.3.1 Interrupt/Exception Handling

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt and exception signals are
initially low (idle or inactive state) and the processor is
executing the main code, a rising edge on any one of the
signals is registered by the NVIC, if the interrupt or
exception is enabled to be serviced by the CPU. The
signal is now in a pending state waiting to be serviced by
the CPU. 

2. On detecting the signal from the NVIC, the CPU stores
its current context by pushing the contents of the CPU
registers onto the stack. 

3. The CPU also receives the exception number of the
triggered interrupt from the NVIC. All interrupts and
exceptions have a unique exception number, as given in
Table 8-1. By using this exception number, the CPU
fetches the address of the specific exception handler
from the vector table. 

4. The CPU then branches to this address and executes
the exception handler that follows. 

5. Upon completion of the exception handler, the CPU
registers are restored to their original state using stack
pop operations; the CPU resumes the main code
execution.

Figure 8-2.  Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the
highest priority interrupt to the CPU. Thus, a higher priority
interrupt can block the execution of a lower priority ISR at
any time. 

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the
appropriate exception handler.

Rising Edge on Interrupt Line is 
registered by the NVIC

CPU detects the request signal 
from NVIC and stores its 

current context by pushing 
contents onto the stack

CPU receives exception 
number of triggered interrupt 

and fetches the address of the 
specific exception handle from 

vector table.

CPU branches to the received 
address and executes 

exception handler

CPU registers are restored 
using stack upon completion of 

exception handler.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 57

Interrupts

8.3.2 Level and Pulse Interrupts

Both CM0+ and CM4 NVICs support level and pulse signals
on the interrupt lines (IRQn). The classification of an
interrupt as level or pulse is based on the interrupt source.

Figure 8-3.  Level Interrupts

Figure 8-4.  Pulse Interrupts 

Figure 8-3 and Figure 8-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal

is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts: 

1. On a rising edge event of the interrupt signal, the NVIC 
registers the interrupt request. The interrupt is now in the 
pending state, which means the interrupt requests have 
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the
interrupt is cleared.

3. For pulse interrupts, when the ISR is being executed by
the CPU, one or more rising edges of the interrupt signal
are logged as a single pending request. The pending
interrupt is serviced again after the current ISR
execution is complete (see Figure 8-4 for pulse
interrupts).

4. For level interrupts, if the interrupt signal is still high after
completing the ISR, it will be pending and the ISR is
executed again. Figure 8-3 illustrates this for level
triggered interrupts, where the ISR is executed as long
as the interrupt signal is high.

8.3.3 Exception Vector Table

The exception vector tables (Table 8-1 and Table 8-2) store the entry point addresses for all exception handlers in Cortex-
M0+ and Cortex-M4 cores. The CPU fetches the appropriate address based on the exception number. 

IRQn

CPU 
Execution 

State main
ISR ISR

main
ISR

main

IRQn is still high

IRQn

CPU 
Execution 

State
main

ISR
main

ISR
main

ISR

Table 8-1.  M0+ Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA) Start_Address = 0x0000 or CM0P_SCS_VTORa

a. Start Address = 0x0000 on reset and is later modified by firmware by updating the CM0P_SCS_VTOR register.

1 Reset –3, the highest priority Start_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Start_Address + 0x08

3 HardFault –1 Start_Address + 0x0C

4-10 Reserved NA Start_Address + 0x10 to Start_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 – 3) Start_Address + 0x2C

12-13 Reserved NA Start_Address + 0x30 to Start_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 – 3) Start_Address + 0x38 

15 System Timer (SysTick) Configurable (0 – 3) Start_Address + 0x3C

16 External Interrupt (IRQ0) Configurable (0 – 3) Start_Address + 0x40

… … Configurable (0 – 3) …

31 External Interrupt (IRQ15) Configurable (0 – 3) Start_Address + 0x7C

Table 8-2.  Cortex-M4 Exception Vector Table 

Exception Number Exception Exception Priority Vector Address

– Initial stack pointer value – Start_Address = 0x0000 or CM4_SCS_VTORa

1 Reset –3, highest priority Start _Address + 0x0004

2 Non Maskable Interrupt (NMI) –2 Start _Address + 0x0008

3 Hard fault –1 Start _Address + 0x000C

4 Memory management fault Configurable (0 – 7) Start _Address + 0x0010



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 58

Interrupts

In Table 8-1 and Table 8-2, the first word (4 bytes) is not
marked as exception number zero. This is because the first
word in the exception table is used to initialize the main
stack pointer (MSP) value on device reset; it is not
considered as an exception. In the PSoC 6 MCU, both the
vector tables can be configured to be located either in flash
memory or SRAM. The vector table offset register (VTOR)
present as part of Cortex-M0+ and Cortex-M4 system
control space registers configures the vector table offset
from the base address (0x0000). The CM0P_SCS_VTOR
register sets the vector offset address for the CM0+ core
and CM4_SCS_VTOR sets the offset for the M4 core. The
VTOR value determines whether the vector table is in flash
memory (0x10000000 to 0x10100000) or SRAM
(0x08000000 to 0x08048000). Note that the VTOR registers
can be updated only in privilege CPU mode. The advantage
of moving the vector table to SRAM is that the exception
handler addresses can be dynamically changed by
modifying the SRAM vector table contents. However, the
nonvolatile flash memory vector table must be modified by a
flash memory write. Note that the exception table must be
256 byte-aligned for Cortex-M0+ and 1024 byte-aligned for
Cortex-M4.

The exception sources (exception numbers 1 to 15) are
explained in 8.4 Exception Sources. The exceptions marked
as Reserved in Table 8-1 are not used, although they have
addresses reserved for them in the vector table. The
interrupt sources (exception numbers 16 to 183) are
explained in 8.5 Interrupt Sources.

8.4 Exception Sources

This section explains the different exception sources listed
in Table 8-1 and Table 8-2 (exception numbers 1 to 15).

8.4.1 Reset Exception

Device reset is treated as an exception in PSoC 6 MCUs.
Reset exception is always enabled with a fixed priority of –3,
the highest priority exception in both the cores. When the
device boots up, only the Cortex-M0+ core is available. The
CM0+ core executes the ROM boot code and can enable
Cortex-M4 core from the application code. The reset
exception of the CM0+ core is tied to the device reset or
startup. When the Cortex-M0+ core releases the Cortex-M4
reset, the M4 reset exception is executed. A device reset
can occur due to multiple reasons, such as power-on-reset
(POR), external reset signal on XRES pin, or watchdog
reset. When the device is reset, the initial boot code for
configuring the device is executed by the Cortex-M0+ out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the Cortex-M0+ code
execution jumps to flash memory. Flash memory address
0x10000004 (Exception#1 in Table 8-1) stores the location
of the startup code in flash memory. The CPU starts
executing code out of this address. Note that the reset
exception address in the SRAM vector table will never be
used because the device comes out of reset with the flash
vector table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted. Note that the
reset exception flow for Cortex-M4 is the same as Cortex-
M0+. However, Cortex-M4 execution begins only after
CM0+ core de-asserts the M4 reset.

5 Bus fault Configurable (0 – 7) Start _Address + 0x0014

6 Usage fault Configurable (0 – 7) Start _Address + 0x0018

7–10 Reserved – –

11 Supervisory call (SVCall) Configurable (0 – 7) Start _Address + 0x002C

12–13 Reserved – –

14 Pend Supervisory (PendSV) Configurable (0 – 7) Start _Address + 0x0038

15 System Tick timer (SysTick) Configurable (0 – 7) Start _Address + 0x003C

16 External interrupt (IRQ0) Configurable (0 – 7) Start _Address + 0x0040

…. …. …. ….

182 External interrupt (IRQ166) Configurable (0 – 7) Start _Address + 0x02D8

183 External interrupt (IRQ167) Configurable (0 – 7) Start _Address + 0x02DC

a. Start Address = 0x0000 on reset and is later modified by firmware by updating CM4_SCS_VTOR register. 

Table 8-2.  Cortex-M4 Exception Vector Table  (continued)

Exception Number Exception Exception Priority Vector Address



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 59

Interrupts

8.4.2 Non-Maskable Interrupt Exception

Non-maskable interrupt (NMI) is the highest priority
exception next to reset. It is always enabled with a fixed
priority of –2. Both the cores have their own NMI exception.
There are three ways to trigger an NMI exception in a CPU
core:

■ NMI exception from a system interrupt: Both Cortex-
M0+ and Cortex-M4 provide an option to trigger an NMI
exception from up to four of the 168 system interrupts.
The NMI exception triggered due to the interrupt will

execute the NMI handler pointed to by the active
exception vector table. The CPUSS_CM4_NMI_CTLx
and CPUSS_CM0P_NMI_CTLx registers selects the
interrupt source that triggers the NMI from hardware.
The registers have a default value of 1023; that is, if the
register is set to 1023, then that particular register does
not map any interrupt source to the NMI. There are four
such registers and each can map one interrupt vector to
the NMI. NMI is triggered when any of the four interrupts
are triggered; that is, the interrupts are logically ORed.
See Figure 8-5.

Figure 8-5.  NMI Trigger

■ NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in
software by setting the NMIPENDSET bit in the interrupt
control state registers (CM0P_SCS_ICSR and
CM4_SCS_ICSR). Setting this bit will execute the NMI
handler pointed to by the active vector table in the
respective CPU cores.

■ System Call NMI exception: This exception is used for
nonvolatile programming and other system call
operations such as flash write operation and flash
checksum operation. Inter processor communication
(IPC) mechanism is used to implement a system call in
PSoC 6 MCUs. A dedicated IPC mailbox is associated
with each core (M0+ and M4) and the debug access port
(DAP) to trigger a system call. The CPU or DAP
acquires this dedicated mailbox, writes the system call
opcode and argument to the mailbox, and notifies a
dedicated IPC structure. Typically, the argument is a
pointer to a structure in SRAM. This results in an NMI
interrupt in the CM0+ core. Note that all the system calls
are serviced by Cortex-M0+ core. A Cortex-M0+ NMI
exception triggered by this method executes the NMI
exception handler code that resides in SROM. Note that
the NMI exception handler address is automatically
initialized to the system call API located in SROM (at
0x0000000D) by the boot code. The value should be
retained during vector table relocations; otherwise, no
system call will be executed. The NMI handler code in
SROM is not read/write accessible because it contains
nonvolatile programming routines that cannot be
modified by the user. The result of the system call is
passed through the same IPC mechanism. For details,

refer to the Inter-Processor Communication chapter on
page 42.

8.4.3 HardFault Exception

Both CM0+ and CM4 cores support HardFault exception.
HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. A
HardFault exception is a catch-all exception for different
types of fault conditions, which include executing an
undefined instruction and accessing an invalid memory
addresses. The CPU does not provide fault status
information to the HardFault exception handler, but it does
permit the handler to perform an exception return and
continue execution in cases where software has the ability
to recover from the fault situation.

8.4.4 Memory Management Fault 
Exception

A memory management fault is an exception that occurs
because of a memory protection-related fault. The fixed
memory protection constraints determine this fault, for both
instruction and data memory transactions. This fault is
always used to abort instruction accesses to Execute Never
(XN) memory regions. The memory management fault is
only supported by the M4 core. The priority of the exception
is configurable from 0 (highest) to 7 (lowest).

System interrupt 
sources

n <= 1023
(device 

dependent)

INT Source 1

INT Source 2

INT Source 0

INT Source n-1

0

1

2

3

n

n

n

n

CPUSS_CM4_NMI_CTLx
Or

CPUSS_CM0P_NMI_CTLx

CM4 NMI
Or

CM0+ NMI

10

0

1023

1023

1023

1023



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 60

Interrupts

8.4.5 Bus Fault Exception
A Bus Fault is an exception that occurs because of a
memory-related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in
the memory system. The bus fault is supported only by the
M4 core. The priority of the exception is configurable from 0
(highest) to 7 (lowest).

8.4.6 Usage Fault Exception

A Usage Fault is an exception that occurs because of a fault
related to instruction execution. This includes:

■ an undefined instruction

■ an illegal unaligned access

■ invalid state on instruction execution

■ an error on exception return

The following can cause a usage fault when the core is
configured to report them:

■ an unaligned address on word and halfword memory 
access

■ division by zero

The usage fault is supported only by the M4 core. The
priority of the exception is configurable from 0 (highest) to 7
(lowest).

8.4.7 Supervisor Call (SVCall) Exception

Both CM0+ and CM4 cores support SVCall exception.
Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue an
SVCall that requires privileged access to the system.

The priority of an SVCall exception can be configured to a
value between 0 and 3 for CM0+ and 0 to 7 for CM4 core by
writing to the bitfields PRI_11 of the System Handler Priority
Register 2 (CM0P_SCS_SHPR2 and CM4_SCS_SHPR2).
When the SVC instruction is executed, the SVCall exception
enters the pending state and waits to be serviced by the
CPU. The SVCALLPENDED bit in the System Handler
Control and State Register (CM0P_SCS_SHCSR and
CM4_SCS_SHCSR) can be used to check or modify the
pending status of the SVCall exception.

8.4.8 PendSupervisory (PendSV) 
Exception

Both CM0+ and CM4 cores support PendSV exception.
PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable similar to
SVCall. The PendSV exception is triggered by setting the

PENDSVSET bit in the Interrupt Control State Register
(CM0P_SCS_ICSR and CM4_SCS_ICSR). On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the
PENDSVCLR bit in the Interrupt Control State Register. The
priority of a PendSV exception can be configured to a value
between 0 and 3 for CM0+ and 0 to 7 for M4 by writing to the
bitfields PRI_14 of the System Handler Priority Register 3.
See the Armv6-M Architecture Reference Manual for more
details.

8.4.9 System Tick (SysTick) Exception

Both CM0+ and CM4 cores in PSoC 6 MCUs support a
system timer, referred to as SysTick, as part of their internal
architecture. SysTick provides a simple, 24-bit decrementing
counter for various timekeeping purposes such as an RTOS
tick timer, high-speed alarm timer, or simple counter. The
SysTick timer can be configured to generate an interrupt
when its count value reaches zero, which is referred to as a
SysTick exception. The exception is enabled by setting the
TICKINT bit in the SysTick Control and Status Register
(CM0P_SCS_SYST_CSR and CM4_SCS_SYST_CSR).
The priority of a SysTick exception can be configured to a
value between 0 and 3 for CM0+ and 0 to 7 for M4 by writing
to the bitfields PRI_15 of the System Handler Priority
Register 3 (SHPR3). The SysTick exception can always be
generated in software at any instant by writing a one to the
PENDSTSET bit in the Interrupt Control State Register.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the
Interrupt Control State Register.

8.5 Interrupt Sources

The PSoC 6 MCU supports 168 interrupts from peripherals.
The source of each interrupt is listed in Table 8-3. These
system interrupts are mapped directly to Cortex-M4 core
(IRQ0 to IRQ167 or exception 16 to 183). For Cortex-M0+
core, any of the 168 interrupts can be routed to any of the
available eight interrupts (IRQ0 to IRQ7 or exception 16 to
23). The CPUSS_CM0_SYSTEM_INT_CTLx registers are
used to make this interrupt selection in CM0+.

There are 168 CPUSS_CM0_SYSTEM_INT_CTLx
registers. The CPU_INT_IDX bits [2:0] of the register selects
which IRQn line of CM0+, the xth system interrupt is mapped
to. The CPU_INT_VALID bit [31] of the register decides
whether the xth interrupt is enabled for the core. For Cortex-
M0+, multiple system interrupts can be mapped on the
same CPU interrupt. Therefore, an active CPU interrupt may
indicate one or multiple active system interrupts. For
instance to connect Port 0 (IDX = 0) and Port 2 (IDX = 2)
GPIO interrupts to IRQ0 of CM0+, CPU_INT_IDX bits
should be set to ‘0’ and CPU_INT_VALID bit should be set
to ‘1’ in CPUSS_CM0_SYSTEM_INT_CTL0 and
CPUSS_CM0_SYSTEM_INT_CTL2 registers. Note that this

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 61

Interrupts

only connects and enables the interrupts; configuration and
masking of the interrupt to the NVIC should be done as part
of source peripheral configuration.

As a result of the reduction functionality in the Cortex-M0+
core, multiple system interrupts share a CPU interrupt
handler as provided by the CPU’s vector table. Each CPU
interrupt has an associated CPUSS_CM0_INTx_STATUS
register:

■ SYSTEM_INT_VALID bit[31] of the register specifies if 
any system interrupt is active for the CPU interrupt. This 
bit remains set until all the system interrupts connected 
to the CPU interrupts are cleared at the source.

■ SYSTEM_INT_IDX bits[9:0] of the register specifies the 
index (a number in the range [0, 1022]) of the lowest 
active system interrupt mapped to the corresponding 
CPU interrupt.

For instance, say CM0+ IRQ0 is connected to Port 0 and
Port 2 GPIO interrupts. When an interrupt in both Port 0 and
Port 2 are triggered simultaneously, IRQ0 in CM0+ will be
triggered with CPUSS_CM0_INT0_STATUS reading 0 (Port
0 interrupt) in SYSTEM_INT_IDX bit and
SYSTEM_INT_VALID bit set. After Port 0 interrupt is
serviced and cleared, IRQ0 will be triggered again with
SYSTEM_INT_IDX bit set to 2 (Port 2 interrupt) in the
CPUSS_CM0_INT0_STATUS register. Only after servicing
Port 2 interrupt and clearing, the SYSTEM_INT_VALID bit
will be cleared.

The CPU interrupt handler should use the
SYSTEM_INT_IDX field to index a system interrupt lookup
table and jump to the system interrupt handler. The lookup
table is typically located in one of the system memories. The
following code illustrates the approach:

typedef void (* SystemIntr_Handler)(void);
void CM0_CpuIntr0_Handler (void)
{
uint32_t system_int_idx;
SystemIntr_Handler handler;
if(CPUSS_CM0_INT0_STATUS.SYSTEM_INT_VALID)
{
system_int_idx = CPUSS_CM0_INT0_STATUS.SYSTEM_INT_IDX;
handler = SystemIntr_Table[system_int_idx];
handler(); // jump to system interrupt handler
}
else
{
// Triggered by SW or due to SW clear error (SW cleared a peripheral
// interrupt flag but didn't clear the Pending flag at NVIC)
}
}
…
void CM0_CpuIntr7_Handler (void)
{
uint32_t system_int_idx;
SystemIntr_Handler handler;
if(CPUSS_CM0_INT7_STATUS.SYSTEM_INT_VALID)
{
system_int_idx = CPUSS_CM0_INT7_STATUS.SYSTEM_INT_IDX;
handler = SystemIntr_Table[system_int_idx];
handler(); // jump to system interrupt handler
}
else
{
// Triggered by SW or due to SW clear error (SW cleared a peripheral
// interrupt flag but didn't clear the Pending flag at NVIC)
}
}
void CM0_SystemIntr0_Handler (void)
{
// Clear the peripheral interrupt request flag by register write
// Read back the register, to ensure the completion of register write access
// Handle system interrupt 0.
}



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 62

Interrupts

…
void CM0_SystemIntr167_Handler (void)
{
// Clear the peripheral interrupt request flag by register write
// Read back the register, to ensure the completion of register write access
// Handle system interrupt 167.
}

The interrupts include standard interrupts from the on-chip peripherals such as TCPWM, serial communication block, CSD
block, watchdog, ADC, and so on. The interrupt generated is usually the logical OR of the different peripheral states. The
peripheral interrupt status register should be read in the ISR to detect which condition generated the interrupt. These
interrupts are usually level interrupts. The appropriate interrupt registers should be cleared in the ISR to deassert the
interrupt. Usually a write '1' is required to clear the registers. If the interrupt register is not cleared in the ISR, the interrupt will
remain asserted and the ISR will be executed continuously. See the I/O System chapter on page 227 for details on GPIO
interrupts.

As seen from Table 8-3, 39 interrupts (IRQ0 to IRQ38) are capable of waking up the device from Deep Sleep power mode.
For Cortex-M4, IRQ0 to IRQ38 directly map to these sources. However, in the Cortex-M0+, all the eight IRQ lines support
Deep Sleep wakeup if they are connected to a deep sleep capable interrupt. This means the 39 Deep Sleep wakeup-capable
interrupts can be connected to any of the eight IRQ lines of Cortex-M0+, if such a wakeup is desired. Therefore, reserve and
use the first eight IRQ lines of Cortex-M0+ for Deep Sleep wakeup-capable sources.   

Table 8-3.  List of PSoC 6 Interrupts

System Interrupt
Cortex M4 Exception 

Number
Power Mode Interrupt Source

NMI 2 Active Any of the below 168 IRQ source

IRQ0 16 DeepSleep GPIO Interrupt - Port 0

IRQ1 17 DeepSleep GPIO Interrupt - Port 1

IRQ2 18 DeepSleep GPIO Interrupt - Port 2

IRQ3 19 DeepSleep GPIO Interrupt - Port 3

IRQ4 20 DeepSleep GPIO Interrupt - Port 4

IRQ5 21 DeepSleep GPIO Interrupt - Port 5

IRQ6 22 DeepSleep GPIO Interrupt - Port 6

IRQ7 23 DeepSleep GPIO Interrupt - Port 7

IRQ8 24 DeepSleep GPIO Interrupt - Port 8

IRQ9 25 DeepSleep GPIO Interrupt - Port 9

IRQ10 26 DeepSleep GPIO Interrupt - Port 10

IRQ11 27 DeepSleep GPIO Interrupt - Port 11

IRQ12 28 DeepSleep GPIO Interrupt - Port 12

IRQ13 29 DeepSleep GPIO Interrupt - Port 13

IRQ14 30 DeepSleep GPIO Interrupt - Port 14

IRQ15 31 DeepSleep GPIO Interrupt - All Ports

IRQ16 32 DeepSleep GPIO Supply Detect Interrupt

IRQ17 33 DeepSleep Low Power Comparator Interrupt

IRQ18 34 DeepSleep Serial Communication Block #8 (DeepSleep capable)

IRQ19 35 DeepSleep Multi Counter Watchdog Timer interrupt

IRQ20 36 DeepSleep Multi Counter Watchdog Timer interrupt

IRQ21 37 DeepSleep Backup domain interrupt

IRQ22 38 DeepSleep Other combined Interrupts for SRSS (LVD, WDT, CLKCAL)

IRQ23 39 DeepSleep CPUSS Inter Process Communication Interrupt #0

IRQ24 40 DeepSleep CPUSS Inter Process Communication Interrupt #1



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 63

Interrupts

IRQ25 41 DeepSleep CPUSS Inter Process Communication Interrupt #2

IRQ26 42 DeepSleep CPUSS Inter Process Communication Interrupt #3

IRQ27 43 DeepSleep CPUSS Inter Process Communication Interrupt #4

IRQ28 44 DeepSleep CPUSS Inter Process Communication Interrupt #5

IRQ29 45 DeepSleep CPUSS Inter Process Communication Interrupt #6

IRQ30 46 DeepSleep CPUSS Inter Process Communication Interrupt #7

IRQ31 47 DeepSleep CPUSS Inter Process Communication Interrupt #8

IRQ32 48 DeepSleep CPUSS Inter Process Communication Interrupt #9

IRQ33 49 DeepSleep CPUSS Inter Process Communication Interrupt #10

IRQ34 50 DeepSleep CPUSS Inter Process Communication Interrupt #11

IRQ35 51 DeepSleep CPUSS Inter Process Communication Interrupt #12

IRQ36 52 DeepSleep CPUSS Inter Process Communication Interrupt #13

IRQ37 53 DeepSleep CPUSS Inter Process Communication Interrupt #14

IRQ38 54 DeepSleep CPUSS Inter Process Communication Interrupt #15

IRQ39 55 Active Serial Communication Block #0

IRQ40 56 Active Serial Communication Block #1

IRQ41 57 Active Serial Communication Block #2

IRQ42 58 Active Serial Communication Block #3

IRQ43 59 Active Serial Communication Block #4

IRQ44 60 Active Serial Communication Block #5

IRQ45 61 Active Serial Communication Block #6

IRQ46 62 Active Serial Communication Block #7

IRQ47 63 Active Serial Communication Block #9

IRQ48 64 Active Serial Communication Block #10

IRQ49 65 Active Serial Communication Block #11

IRQ50 66 Active Serial Communication Block #12

IRQ51 67 Active CSD (Capsense) interrupt

IRQ52 68 Active CPUSS DMAC, Channel #0

IRQ53 69 Active CPUSS DMAC, Channel #1

IRQ54 70 Active CPUSS DMAC, Channel #2

IRQ55 71 Active CPUSS DMAC, Channel #3

IRQ56 72 Active CPUSS DataWire #0, Channel #0

IRQ57 73 Active CPUSS DataWire #0, Channel #1

IRQ58 74 Active CPUSS DataWire #0, Channel #2

IRQ59 75 Active CPUSS DataWire #0, Channel #3

IRQ60 76 Active CPUSS DataWire #0, Channel #4

IRQ61 77 Active CPUSS DataWire #0, Channel #5

IRQ62 78 Active CPUSS DataWire #0, Channel #6

IRQ63 79 Active CPUSS DataWire #0, Channel #7

IRQ64 80 Active CPUSS DataWire #0, Channel #8

IRQ65 81 Active CPUSS DataWire #0, Channel #9

IRQ66 82 Active CPUSS DataWire #0, Channel #10

IRQ67 83 Active CPUSS DataWire #0, Channel #11

Table 8-3.  List of PSoC 6 Interrupts

System Interrupt
Cortex M4 Exception 

Number
Power Mode Interrupt Source



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 64

Interrupts

IRQ68 84 Active CPUSS DataWire #0, Channel #12

IRQ69 85 Active CPUSS DataWire #0, Channel #13

IRQ70 86 Active CPUSS DataWire #0, Channel #14

IRQ71 87 Active CPUSS DataWire #0, Channel #15

IRQ72 88 Active CPUSS DataWire #0, Channel #16

IRQ73 89 Active CPUSS DataWire #0, Channel #17

IRQ74 90 Active CPUSS DataWire #0, Channel #18

IRQ75 91 Active CPUSS DataWire #0, Channel #19

IRQ76 92 Active CPUSS DataWire #0, Channel #20

IRQ77 93 Active CPUSS DataWire #0, Channel #21

IRQ78 94 Active CPUSS DataWire #0, Channel #22

IRQ79 95 Active CPUSS DataWire #0, Channel #23

IRQ80 96 Active CPUSS DataWire #0, Channel #24

IRQ81 97 Active CPUSS DataWire #0, Channel #25

IRQ82 98 Active CPUSS DataWire #0, Channel #26

IRQ83 99 Active CPUSS DataWire #0, Channel #27

IRQ84 100 Active CPUSS DataWire #0, Channel #28

IRQ85 101 Active CPUSS DataWire #1, Channel #0

IRQ86 102 Active CPUSS DataWire #1, Channel #1

IRQ87 103 Active CPUSS DataWire #1, Channel #2

IRQ88 104 Active CPUSS DataWire #1, Channel #3

IRQ89 105 Active CPUSS DataWire #1, Channel #4

IRQ90 106 Active CPUSS DataWire #1, Channel #5

IRQ91 107 Active CPUSS DataWire #1, Channel #6

IRQ92 108 Active CPUSS DataWire #1, Channel #7

IRQ93 109 Active CPUSS DataWire #1, Channel #8

IRQ94 110 Active CPUSS DataWire #1, Channel #9

IRQ95 111 Active CPUSS DataWire #1, Channel #10

IRQ96 112 Active CPUSS DataWire #1, Channel #11

IRQ97 113 Active CPUSS DataWire #1, Channel #12

IRQ98 114 Active CPUSS DataWire #1, Channel #13

IRQ99 115 Active CPUSS DataWire #1, Channel #14

IRQ100 116 Active CPUSS DataWire #1, Channel #15

IRQ101 117 Active CPUSS DataWire #1, Channel #16

IRQ102 118 Active CPUSS DataWire #1, Channel #17

IRQ103 119 Active CPUSS DataWire #1, Channel #18

IRQ104 120 Active CPUSS DataWire #1, Channel #19

IRQ105 121 Active CPUSS DataWire #1, Channel #20

IRQ106 122 Active CPUSS DataWire #1, Channel #21

IRQ107 123 Active CPUSS DataWire #1, Channel #22

IRQ108 124 Active CPUSS DataWire #1, Channel #23

IRQ109 125 Active CPUSS DataWire #1, Channel #24

IRQ110 126 Active CPUSS DataWire #1, Channel #25

Table 8-3.  List of PSoC 6 Interrupts

System Interrupt
Cortex M4 Exception 

Number
Power Mode Interrupt Source



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 65

Interrupts

IRQ111 127 Active CPUSS DataWire #1, Channel #26

IRQ112 128 Active CPUSS DataWire #1, Channel #27

IRQ113 129 Active CPUSS DataWire #1, Channel #28

IRQ114 130 Active CPUSS Fault Structure Interrupt #0

IRQ115 131 Active CPUSS Fault Structure Interrupt #1

IRQ116 132 Active CRYPTO Accelerator Interrupt

IRQ117 133 Active FLASH Macro Interrupt

IRQ118 134 Active Floating Point operation fault 

IRQ119 135 Active CM0+ CTI #0

IRQ120 136 Active CM0+ CTI #1

IRQ121 137 Active CM4 CTI #0

IRQ122 138 Active CM4 CTI #1

IRQ123 139 Active TCPWM #0, Counter #0

IRQ124 140 Active TCPWM #0, Counter #1

IRQ125 141 Active TCPWM #0, Counter #2

IRQ126 142 Active TCPWM #0, Counter #3

IRQ127 143 Active TCPWM #0, Counter #4

IRQ128 144 Active TCPWM #0, Counter #5

IRQ129 145 Active TCPWM #0, Counter #6

IRQ130 146 Active TCPWM #0, Counter #7

IRQ131 147 Active TCPWM #1, Counter #0

IRQ132 148 Active TCPWM #1, Counter #1

IRQ133 149 Active TCPWM #1, Counter #2

IRQ134 150 Active TCPWM #1, Counter #3

IRQ135 151 Active TCPWM #1, Counter #4

IRQ136 152 Active TCPWM #1, Counter #5

IRQ137 153 Active TCPWM #1, Counter #6

IRQ138 154 Active TCPWM #1, Counter #7

IRQ139 155 Active TCPWM #1, Counter #8

IRQ140 156 Active TCPWM #1, Counter #9

IRQ141 157 Active TCPWM #1, Counter #10

IRQ142 158 Active TCPWM #1, Counter #11

IRQ143 159 Active TCPWM #1, Counter #12

IRQ144 160 Active TCPWM #1, Counter #13

IRQ145 161 Active TCPWM #1, Counter #14

IRQ146 162 Active TCPWM #1, Counter #15

IRQ147 163 Active TCPWM #1, Counter #16

IRQ148 164 Active TCPWM #1, Counter #17

IRQ149 165 Active TCPWM #1, Counter #18

IRQ150 166 Active TCPWM #1, Counter #19

IRQ151 167 Active TCPWM #1, Counter #20

IRQ152 168 Active TCPWM #1, Counter #21

IRQ153 169 Active TCPWM #1, Counter #22

Table 8-3.  List of PSoC 6 Interrupts

System Interrupt
Cortex M4 Exception 

Number
Power Mode Interrupt Source



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 66

Interrupts

IRQ154 170 Active TCPWM #1, Counter #23

IRQ155 171 Active SAR ADC interrupt

IRQ156 172 Active I2S0 Audio interrupt

IRQ157 173 Active PDM0/PCM0 Audio interrupt

IRQ158 174 Active I2S1 Audio interrupt

IRQ159 175 Active Profiler interrupt

IRQ160 176 Active Serial Memory Interface interrupt

IRQ161 177 Active USB Interrupt

IRQ162 178 Active USB Interrupt

IRQ163 179 Active USB Interrupt

IRQ164 180 Active SDIO wakeup interrupt for mxsdhc

IRQ165 181 Active Consolidated interrupt for mxsdhc for everything else

IRQ166 182 Active EEMC wakeup interrupt for mxsdhc, not used

IRQ167 183 Active Consolidated interrupt for mxsdhc for everything else

Table 8-3.  List of PSoC 6 Interrupts

System Interrupt
Cortex M4 Exception 

Number
Power Mode Interrupt Source



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 67

Interrupts

8.6 Interrupt/Exception Priority

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. Both M4 and M0+ cores in PSoC 6 MCUs provide
flexibility in choosing priority values for different exceptions.
All exceptions other than Reset, NMI, and HardFault can be
assigned a configurable priority level. The Reset, NMI, and
HardFault exceptions have a fixed priority of –3, –2, and –1,
respectively. In PSoC 6 MCUs, lower priority numbers
represent higher priorities. This means that the Reset, NMI,
and HardFault exceptions have the highest priorities. The
other exceptions can be assigned a configurable priority
level between 0 and 3 for Cortex-M0+ and 0 to 7 for Cortex-
M4.

Both M0+ and M4 support nested exceptions in which a
higher priority exception can obstruct (interrupt) the
currently active exception handler. This pre-emption does
not happen if the incoming exception priority is the same as
or lower than the active exception. The CPU resumes
execution of the lower priority exception handler after
servicing the higher priority exception. The CM0+ core in the
PSoC 6 MCU allows nesting of up to four exceptions; the
CM4 core allows up to eight exceptions. When the CPU
receives two or more exceptions requests of the same
priority, the lowest exception number is serviced first.

The registers to configure the priority of exception numbers
1 to 15 are explained in Exception Sources on page 58.

The priority of the 32 CM0+ and 168 CM4 interrupts can be
configured by writing to the respective Interrupt Priority
registers (CM0P_SCS_IPR and CM4_SCS_IPR). This is a
group of eight (CM0+) and 60 (CM4) 32-bit registers with
each register storing the priority values of four interrupts, as
given in Table 8-4 and Table 8-5. For CM0+, the first 16 bits
of the ISER and ICER registers are valid. Refer to Interrupt
Sources on page 60 for details on how to map a CPU
interrupt to a system interrupt in CM0+.

8.7 Enabling and Disabling 
Interrupts

The NVICs of both CM0+ andCM4 core provide registers to
individually enable and disable the interrupts in software. If
an interrupt is not enabled, the NVIC will not process the
interrupt requests on that interrupt line. The Interrupt Set-
Enable Register (CM0P_SCS_ISER and CM4_SCS_ISER)
and the Interrupt Clear-Enable Register (CM0P_SCS_ICER
and CM4_SCS_ICER) are used to enable and disable the
interrupts respectively. These registers are 32-bit wide and
each bit corresponds to the same numbered interrupt in
CM0+. For CM4 core, there are eight ISER/ICER registers.
These registers can also be read in software to get the
enable status of the interrupts. Table 8-6 shows the register
access properties for these two registers. Note that writing
zero to these registers has no effect.

For CM0+, the first 16 bits of the ISER and ICER registers
are valid. Refer to Interrupt Sources on page 60 for details
on how to map a CPU interrupt to a system interrupt in
CM0+. 

The ISER and ICER registers are applicable only for the
interrupts. These registers cannot be used to enable or
disable the exception numbers 1 to 15. The 15 exceptions
have their own support for enabling and disabling, as
explained in Exception Sources on page 58.

The PRIMASK register in the CPUs (both CM0+ and CM4)
can be used as a global exception enable register to mask
all the configurable priority exceptions irrespective of
whether they are enabled. Configurable priority exceptions
include all the exceptions except Reset, NMI, and HardFault
listed in Table 8-1. When the PM bit (bit 0) in the PRIMASK
register is set, none of the configurable priority exceptions
can be serviced by the CPU, though they can be in the
pending state waiting to be serviced by the CPU after the
PM bit is cleared.

Table 8-4.  Interrupt Priority Register Bit Definitions for 
Cortex-M0+ (CM0P_SCS_IPR)

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

Table 8-5.  Interrupt Priority Register Bit definitions for 
Cortex-M4 (CM4_SCS_IPR)

Bits Name Description

7:5 PRI_N0 Priority of interrupt number N

15:13 PRI_N1 Priority of interrupt number N+1

23:21 PRI_N2 Priority of interrupt number N+2

31:29 PRI_N3 Priority of interrupt number N+3

Table 8-6.  Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set 
Enable Register 

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear 
Enable Register 

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 68

Interrupts

8.8 Interrupt/Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0P_SCS_ICSR and CM4_SCS_ICSR) contains status bits describing the various
exceptions states.

■ The VECTACTIVE bits ([8:0]) in the ICSR store the exception number for the current executing exception. This value is
zero if the CPU does not execute any exception handler (CPU is in thread mode). Note that the value in VECTACTIVE
bitfields is the same as the value in bits [8:0] of the Interrupt Program Status Register (IPSR), which is also used to store
the active exception number.

■ The VECTPENDING bits ([20:12]) in the ICSR store the exception number of the highest priority pending exception. This
value is zero if there are no pending exceptions.

■ The ISRPENDING bit (bit 22) in the ICSR indicates if a NVIC generated interrupt is in a pending state.

8.8.1 Pending Interrupts/Exceptions

When a peripheral generates an interrupt request signal to the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts executing the corresponding exception handler routine, the
exception is changed from the pending state to the active state. The NVIC allows software pending of the 32 (CM0+) or 168
(CM4) interrupt lines by providing separate register bits for setting and clearing the pending states of the interrupts. The
Interrupt Set-Pending register (CM0P_SCS_ISPR and CM4_SCS_ISPR) and the Interrupt Clear-Pending register
(CM0P_SCS_ICPR and CM4_SCS_ICPR) are used to set and clear the pending status of the interrupt lines. These registers
are 32 bits wide, and each bit corresponds to the same numbered interrupt. In the case of CM4, there are eight sets of such
registers to accommodate all 168 interrupts. Table 8-8 shows the register access properties for these two registers. Note that
writing zero to these registers has no effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the ISER register.

Note that the ISPR and ICPR registers are used only for the
peripheral interrupts. These registers cannot be used for
pending the exception numbers 1 to 15. These 15
exceptions have their own support for pending, as explained
in Exception Sources on page 58.

Table 8-7.  Exception States

Exception State Meaning

Inactive
The exception is not active and not pending. Either the exception is disabled or the enabled exception has not been 
triggered.

Pending The exception request has been received by the CPU/NVIC and the exception is waiting to be serviced by the CPU. 

Active
An exception that is being serviced by the CPU but whose exception handler execution is not yet complete. A high-
priority exception can interrupt the execution of lower priority exception. In this case, both the exceptions are in the 
active state.

Active and Pending
The exception is being serviced by the processor and there is a pending request from the same source during its 
exception handler execution.

Table 8-8.  Interrupt Set Pending/Clear Pending Registers

Register Operation Bit Value Comment

Interrupt Set-Pending Register 
(ISPR)

Write
1 To put an interrupt to pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-Pending Register 
(ICPR)

Write
1 To clear a pending interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 69

Interrupts

8.9 Stack Usage for Interrupts/
Exceptions

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0. Both
Cortex-M4 and Cortex-M0+ have two stack pointers - MSP
and PSP. Only one of the stack pointers can be active at a
time. When in thread mode, the Active Stack Pointer bit in
the Control register is used to define the current active stack
pointer. When in handler mode, the MSP is always used as
the stack pointer. The stack pointer always grows
downwards and points to the address that has the last
pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the
current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the CPU Subsystem (CPUSS) chapter on page 33 for
details.

8.10 Interrupts and Low-Power 
Modes

The PSoC 6 MCU family allows device (CPU) wakeup from
low-power modes when certain peripheral interrupt requests
are generated. The Wakeup Interrupt Controller (WIC) block
generates a wakeup signal that causes the CPU to enter
Active mode when one or more wakeup sources generate
an interrupt signal. After entering Active mode, the ISR of
the peripheral interrupt is executed.

The Wait For Interrupt (WFI) or Wait For Event (WFE)
instruction, executed by the CPU, triggers the transition into
Sleep, and Deep Sleep modes. Both the WFI and WFE
instructions are capable of waking up on interrupts.
However, the WFE requires the interrupts to be unmasked in
the CPU’s Priority Mask register. Refer to the PRIMASK
register definition on the Arm website. In addition, the WFE
instruction puts the CPU to sleep based on the status of an
event bit and wakes up from an event signal, typically sent
by the other CPU. WFI does not require PRIMASK
unmasking and can wake up the CPU from any pending
interrupt masked to the NVIC or WIC. However, WFI cannot
wake up the CPU from event signals from other CPUs. The
sequence of entering the different low-power modes is
detailed in the Device Power Modes chapter on page 191.

Chip low-power modes have two categories of interrupt
sources:

■ Interrupt sources that are available in the Active, Sleep,
and Deep Sleep modes (watchdog timer interrupt, RTC,
GPIO interrupts, and Low-Power comparators)

■ Interrupt sources that are available only in the Active and
Sleep modes

When using the WFE instruction in CM4, make sure to call
the WFE instruction twice to properly enter and exit Sleep/
Deep Sleep modes. This behavior comes from the event
register implementation in Arm v7 architecture used in
Cortex-M4. According to the ARM V7 architecture reference
manual (Section B1.5.18 Wait For Event and Send Event): 

■ A reset clears the event register.

■ Any WFE wakeup event, or the execution of an
exception return instruction, sets the event register.

■ A WFE instruction clears the event register.

■ Software cannot read or write the value of the event 
register directly.

Therefore, the first WFE instruction puts CM4 to sleep and
second WFE clears the event register after a WFE wakeup,
which sets the event register. So the next WFE will put the
core to sleep.

Note that this behavior is not present in Arm v6 architecture
used in Cortex-M0+. Therefore, in CM0+ only one WFE
instruction is sufficient to successfully enter or exit Sleep
and Deep Sleep modes.

8.11 Interrupt/Exception – 
Initialization/ Configuration

This section covers the different steps involved in initializing
and configuring exceptions in the PSoC 6 MCU. 

1. Configuring the Exception Vector Table Location: The
first step in using exceptions is to configure the vector
table location as required - either in flash memory or
SRAM. This configuration is done as described in
Exception Vector Table on page 57. 

The vector table should be available in SRAM if the
application must change the vector addresses
dynamically. If the table is located in flash, then a flash
write operation is required to modify the vector table
contents. The ModusToolbox IDE uses the vector table
in SRAM by default.

2. Configuring Individual Exceptions: The next step is to
configure individual exceptions required in an
application, as explained in earlier sections.

a. Configure the exception or interrupt source; this
includes setting up the interrupt generation
conditions. The register configuration depends on
the specific exception required. Refer to the
respective peripheral chapter to know more about
the interrupt configuration supported by them.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/CHDBIBGJ.html#BABCHBFJ


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 70

Interrupts

b. Define the exception handler function and write the
address of the function to the exception vector table.
Table 8-1 gives the exception vector table format; the
exception handler address should be written to the
appropriate exception number entry in the table.

c. For Cortex-M0+, define and enable the additional
system interrupt handler table and functions as
explained in Interrupt Sources on page 60.

d. Set up the exception priority, as explained in
Interrupt/Exception Priority on page 67.

e. Enable the exception, as explained in Enabling and
Disabling Interrupts on page 67.

8.12 Register List

Table 8-9.  Register List

Register Name Description

CPUSS_CM0_NMI_CTLx Cortex-M0+ NMI control registers (4 registers)

CPUSS_CM0_SYSTEM_INT_CTL0x Cortex-M0+ interrupt control 0 registers for xth system interrupt (168 registers)

CPUSS_CM0_SYSTEM_INT_CTL1x_STA-
TUS Cortex-M0+ interrupt control 1 status registers for xth CPU interrupt (8 registers)

CPUSS_CM0_INT_CTL2 Cortex-M0+ interrupt control 2

CPUSS_CM0_INT_CTL3 Cortex-M0+ interrupt control 3

CPUSS_CM0_INT_CTL4 Cortex-M0+ interrupt control 4

CPUSS_CM0_INT_CTL5 Cortex-M0+ interrupt control 5

CPUSS_CM0_INT_CTL6 Cortex-M0+ interrupt control 6

CPUSS_CM0_INT_CTL7 Cortex-M0+ interrupt control 7

CPUSS_CM4_NMI_CTLx Cortex-M4 NMI control registers (4 registers)

SYSTEM_CM0P_SCS_ISER Cortex-M0+ interrupt set-enable register

SYSTEM_CM0P_SCS_ICER Cortex-M0+ interrupt clear enable register

SYSTEM_CM0P_SCS_ISPR Cortex-M0+ interrupt set-pending register

SYSTEM_CM0P_SCS_ICPR Cortex-M0+ interrupt clear-pending register

SYSTEM_CM0P_SCS_IPR Cortex-M0+ interrupt priority register

SYSTEM_CM0P_SCS_ICSR Cortex-M0+ interrupt control state register

SYSTEM_CM0P_SCS_VTOR Cortex-M0+ vector table offset register

SYSTEM_CM0P_SCS_AIRCR Cortex-M0+ application interrupt and reset control register

SYSTEM_CM0P_SCS_SHPR2 Cortex-M0+ system handler priority register 2

SYSTEM_CM0P_SCS_SHPR3 Cortex-M0+ system handler priority register 3

SYSTEM_CM0P_SCS_SHCSR Cortex-M0+ system handler control and state register

SYSTEM_CM4_SCS_ISER Cortex-M4 interrupt set-enable register

SYSTEM_CM4_SCS_ICER Cortex-M4 interrupt clear enable register

SYSTEM_CM4_SCS_ISPR Cortex-M4 interrupt set-pending register

SYSTEM_CM4_SCS_ICPR Cortex-M4 interrupt clear-pending register

SYSTEM_CM4_SCS_IPR Cortex-M4 interrupt priority registers

SYSTEM_CM4_SCS_ICSR Cortex-M4 interrupt control state register

SYSTEM_CM4_SCS_VTOR Cortex-M4 vector table offset register

SYSTEM_CM4_SCS_AIRCR Cortex-M4 application interrupt and reset control register

SYSTEM_CM4_SCS_SHPR2 Cortex-M4 system handler priority register 2

SYSTEM_CM4_SCS_SHPR3 Cortex-M4 system handler priority register 3

SYSTEM_CM4_SCS_SHCSR Cortex-M4 system handler control and state register



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 71

9.   Protection Units

Protection units are implemented in the PSoC 6 MCU to enforce security based on different operations. A protection unit
allows or restricts bus transfers. The rules are enforced based on specific properties of a transfer. The rules that determine
protection are implemented in protection structures (a register structure). A protection structure defines the protected address
space and the protection attributes. The hardware that evaluates these protection structures, to restrict or permit access, is
the protection unit. The PSoC device has different types of protection units such as MPU, SMPU, and PPU. Each have a
distinct set of protection structures, which helps define different protection regions and their attributes.

9.1 Architecture

Figure 9-1 shows a conceptual view of implementation of the PSoC protection system. 

Figure 9-1.  Conceptual View of PSoC Protection System

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - Protection Unit

■ Application notes

■ Code examples

Protection 
Unit

Flash 
Memory

SRAM
External 
Memory

Peripheral 
Memory

PSoC 6 Memory Map

CPU1 CPU2
Test 

Controller
DMA

Protection 
Structures

Bus Masters

Sets rules to 
check against

Memory 
Region

Protection 
Attribute

Bus Master’s 
Protection 
Attribute

Bus Master’s 
Protection 
Attribute

Bus Master’s 
Protection 
Attribute

Bus Master’s 
Protection 
Attribute



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 72

Protection Units

The functioning of a secure system is based on the
following: 

■ Bus masters: This term refers to the bus masters in the
architecture. In a PSoC 6 device, an example of a bus
master is a Cortex-M core, DMA, or a test controller. 

■ Protection units: Protection units are the hardware
engines that enforce the protection defined by protection
structures. There are three types of protection units,
acting at different levels of memory access with different
precedence and priority of protection – MPU, SMPU,
and PPU.

■ Protection structure: A protection structure is a register
structure in memory that sets up the rules based on
which each protection unit will evaluate a transfer. Each
protection unit associates itself to multiple protection
structures. The protection structure associated with a
protection unit are evaluated in the order starting with
the protection structure with the largest index. For
example, if there are 16 protection structures associated
with a protection unit, then the evaluation of a transfer
starts from protection structure 15 and counts down.
Physically a protection structure is a register structure in
the memory map that defines a protection rule. Each
protection structure constitutes the following:

❐ Defines a memory region on which the rule is 
applied. It designates what the bus transfer needs to 
be evaluated against this protection structure. 

- Base address

- Size of memory block

❐ A set of protection attributes

- R/W/X 

- User/privilege

- Secure/non Secure

- Protection context

■ Protection attributes: These are properties based on
which a transfer is evaluated. There are multiple
protection attributes. The set of protection attributes
available for a protection structure depends on the
protection unit it is associated with. Protection attributes
appear in two places:

❐ Protection structures: Protection attributes associ-
ated with a protection structure set the rules for 
access based on these attributes.

❐ Bus master's protection attribute: Each bus master 
has its own access attributes, which define the bus 
master's access privileges. Some of these attributes, 
such as secure/non-secure, are set for a master. 
Other attributes such as protection context and user/
privilege attribute are dynamic attributes, which 
change based on bus master's context and state.

In summary, a PSoC 6 device has protection units that act
as a gate for any access to the PSoC memory map. The
rules for protection are set by the protection structures.

Each bus master is qualified by its own protection attribute.
For every bus transfer, the protection unit compares the bus
master's protection attribute and accessed address against
the rules set in the protection structures and decides on
providing or denying access.

9.2 PSoC 6 Protection 
Architecture

When there is a memory (SRAM/flash/peripheral) access by
a bus master, the access is evaluated by a protection unit
against the protection attributes set in protection structures
for the memory location being accessed. If the bus master’s
protection attributes satisfy the protection attributes set in
the protection structures, then access is allowed by the
protection unit. If there is an access restriction, a fault
condition is triggered and a bus error occurs. Thus
protection units secure bus transfer address range either in
memory locations (SRAM/flash) or peripheral registers.
From an architectural perspective, there is no difference
between memory protection and peripheral protection.
However, from an implementation perspective, separate
memory and peripheral protection is provided.

Two types of protection units, memory protection units
(MPU) and shared memory protection units (SMPU), are
provided in the CPU subsystem (CPUSS) to protect memory
locations. A separate protection unit type is provided for
peripheral protection (PPU) in the PERI:

■ A bus master may have a dedicated MPU. In a CPU bus
master, the MPU is typically implemented as part of the
CPU and is under control of the OS/kernel. In a non-
CPU bus master, the MPU is typically implemented as
part of the bus infrastructure and under control of the
OS/kernel of the CPU that “owns or uses” the bus
master. If a CPU switches tasks or if a non-CPU
switches ownership, the MPU settings are typically
updated by OS/kernel software. The different MPU types
are:

❐ An MPU that is implemented as part of the CPU. This 
type is found in the Arm CM0+ and CM4 CPUs. 

❐ An MPU that is implemented as part of the bus infra-
structure. This type is found in bus masters such as 
crypto and test controller. The definition of this MPU 
type follows the Arm MPU definition (in terms of 
memory region and access attribute definition) to 
ensure a consistent software interface.

■ SMPUs are intended for implementing protection in a
situation with multiple bus masters. These protection
units implement a concept called Protection Context. A
protection context is a pseudo state of a bus master,
which can be used to determine access attributes across
multiple masters. The protection context is a protection
attribute not specific to a bus master. The SMPUs can
distinguish between different protection contexts; they
can also distinguish secure from non-secure accesses.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 73

Protection Units

This allows for an effective protection in a multi-core
scenario.

■ PPUs are protection units provided in the PERI register
space for peripheral protection. The PPU attributes are
similar to the SMPU, except that they are intended for
protecting the peripheral space. Refer to the registers
TRM for details. The PPUs are intended to distinguish
between different protection contexts and to distinguish
secure from non-secure accesses and user mode
accesses from privileged mode accesses. There are two
types of PPU structures.

❐ Fixed PPUs implement protection for fixed address 
regions that typically correspond to a specific periph-
eral

❐ Programmable PPUs allows the user to program the 
address region to be protected

The platform’s DMA controller does not have an MPU.
Instead, a DMA controller channel inherits the access
control attributes of the bus transfer that programmed the
channel.

The definition of SMPU and PPU follows the MPU definition
and adds the capability to distinguish accesses from
different protection contexts (the MPU does not include
support for a protection context). If security is required, the
SMPU and possibly PPUs MMIO registers must be
controlled by a secure CPU that enforces system-wide
protection.

Figure 9-2 gives an overview of the location of MPUs,
SMPUs, and PPUs in the system. Note that a peripheral
group PPU needs to provide access control only to the
peripherals within a peripheral group (group of peripherals
with a shared bus infrastructure). 

As mentioned, the MPU, SMPU, and PPU protection
functionality follows the Arm MPU definition:

■ Multiple protection structures are supported.

■ Each structure specifies an address range in the unified
memory architecture and access attributes. An address
range can be as small as 32 bytes.

A protection violation is caused by a mismatch between a
bus master’s access attributes and the protection structure
and access attributes for the memory region configured in
the protection structure.

A bus transfer that violates a protection structure results in a
bus error.

For AXI transfers, the complete address range is matched. If
a transfer references multiple 32-byte regions (the smallest
protection structure address range is 32 bytes), multiple
cycles are required for matching – one cycle per 32-byte
region.

Protection violations are captured in the fault report
structure to allow for failure analysis. The fault report
structures can generate an interrupt to indicate the
occurrence of a fault. This is useful if the violating bus
master cannot resolve the bus error by itself, but requires
another CPU bus master to resolve the bus error on its
behalf.

For a buffered mode of transfer
(CPUSS_BUFF_CTL[WRITE_BUFF]), the behavior during
protection violation is different. When
CPUSS_BUFF_CTL[WRITE_BUFF] is set to ‘1’, the write
transfers on the bus are buffered. So the transfer is first
acknowledged when the buffer receives the transfer. A
protection violation will be only evaluated when the actual
write happens at the destination register. This leads to the
write transfer not generating a bus error for buffered mode.
However, a fault will be registered as soon as the transfer
tries to write the destination location. Therefore, for buffered
writes, the user must verify the fault structure to make sure
no violations have occurred.

A protection violation results in a bus error and the bus
transfer will not reach its target. An MPU or SMPU violation
that targets a peripheral will not reach the associated
protection evaluation (PPU). In other words, MPU and
SMPU have a higher priority over PPU.

Protection unit addresses the following:

■ Security requirements. This includes prevention of
malicious attacks to access secure memory or
peripherals. For example, a non-secure master should
not be able to access key information in a secure
memory region.

■ Safety requirements. This includes detection of
accidental (non-malicious) software errors and random
hardware errors. Enabling failure analysis is important
so the root cause of a safety violation can be
investigated. For example, analyzing a flash memory
failure on a device that is returned from the field should
be possible.

To address security requirements, the Cortex M0+ is used
as a ‘secure CPU’. This CPU is considered a trusted entity.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 74

Protection Units

Figure 9-2.  PSoC 6 Protection Architecture 

The different types of protection units cater to different use cases for protection.

9.3 Register Architecture

The protection architecture has different conceptual pieces and different sets of registers correspond to each of these
concepts. 

9.3.1 Protection Structure and Attributes

The MPU, SMPU, and PPU protection structure definition follows the Arm definition. Each protection structure is defined by: 

■ An address region 

■ Access control attributes 

A protection structure is always aligned on a 32-byte boundary in the memory space. Two registers define a protection
structure: ADDR (address register) and ATT (attribute register). This structure alignment and organization allow
straightforward protection of the protection structures by the protection scheme. This is discussed later in this chapter. 

Address region: The address region is defined by: 

■ The base address of a region as specified by ADDR.ADDR. 

■ The size of a region as specified by ATT.REGION_SIZE. 

Table 9-1.  Protection Use Cases

Protection Unit Type Use
Number of 
Instances

Arm MPU
Used to protect memory between tasks within in a single Arm core. A task in one of the Arm 
cores can protect its memory from access by another task in the same core.

MPU
Same as the Arm MPU, but for other bus masters such as the test controller or crypto, 
which do not have a built-in MPU in their block IP.

SMPU Used to protect memory addresses that are shared between multiple bus masters.

Fixed PPU protection 
structures

These protect specific peripheral memory space. The protection structures have a 
preprogrammed memory region and can be used only to protect the peripheral it was 
intended for. 

Programmable PPU 
protection structures

These protect the peripheral space but the memory region is not fixed. So users can easily 
program it to protect any space in the peripheral memory region. 

CM0+
 Arm MPU

CM4
 Arm MPU

Crypto
DMA

(DataWire)

MPU

SMPU

AHB

PPU

GPIO

PPU

Fixed 
Function 
Blocks

PPU

Programmable 
Analog and Digital 

Blocks

MPU:  Memory Protection Unit
SMPU: Shared Memory Protection Unit
PPU: Peripheral Protection Unit

Bus Masters

Flash SRAM

Test 
Controller

MPU



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 75

Protection Units

■ Individual disables for eight subregions within the region, as specified by ADDR.SUBREGION_DISABLE. 

The REGION_SIZE field specifies the size of a region. The region size is a power of 2 in the range of [256 B, 4 GB]. The base
address ADDR specifies the start of the region, which must be aligned to the region size. A region is partitioned into eight
equally sized sub-regions. The SUBREGION_DISABLE field specifies individual enables for the sub-regions within a region.
For example, a REGION_SIZE of “0x08” specifies a region size of 512 bytes. If the start address is 0x1000:5400 (512-byte
aligned), the region ranges from 0x1000:5400 to 0x1000:55ff. This region is partitioned into the following eight 64-byte
subregions: 

subregion 0 from 0x1000:5400 to 0x1000:543f 

subregion 1 from 0x1000:5440 to 0x1000:547f 

… 

subregion 7 from 0x1000:55c0 to 0x1000:55ff.

If the SUBREGION_DISABLE is 0x82 (bitfields 1 and 7 are ‘1’), subregions 1 and 7 are disabled; subregions 0, 2, 3, 4, 5, and
6 are enabled. 

In addition, an ATT.ENABLED field specifies whether the region is enabled. Only enabled regions participate in the protection
“matching” process. Matching identifies if a bus transfer address is contained within an enabled subregion
(SUBREGION_DISABLE) of an enabled region (ENABLED). 

Protection attributes: The protection attributes specify access control to the region (shared by all subregions within the
region). Access control is performed by comparing against a bus master's protection attributes of the bus master performing
the transfer. The following access control fields are supported: 

■ Control for read accesses in user mode (ATT.UR field). 

■ Control for write accesses in user mode (ATT.UW field).

■ Control for execute accesses in user mode (ATT.UX field). 

■ Control for read accesses in privileged mode (ATT.PR field). 

■ Control for write accesses in privileged mode (ATT.PW field). 

■ Control for execute accesses in privileged mode (ATT.PX field). 

■ Control for secure access (ATT.NS field).

■ Control for individual protection contexts (ATT.PC_MASK[15:0], with MASK[0] always constant at 1). This protection
context control field is present only for the SMPU and PPU. 

The execute and read access control attributes are orthogonal. Execute transfers are typically read transfers. To allow
execute and read transfers in user mode, both ATT.UR and ATT.UX must be set to ‘1’. To allow data and read transfers in user
mode, only ATT.UR must be set to ‘1’. In addition, the ATT.PC_MATCH control field is supported, which controls “matching”
and “access evaluation” processes. This control field is present only for the SMPU and PPU protection structures. 

For example, only protection context 2 can access a specific address range. These accesses are restricted to read and write
secure accesses in privileged mode. The access control fields are programmed as follows: 

■ ATT.UR is 0: read accesses in user mode not allowed. 

■ ATT.UW is 0: write accesses in user mode not allowed. 

■ ATT.UX is 0: execute accesses in user mode not allowed. 

■ ATT.PR is 1: read accesses in privileged mode allowed. 

■ ATT.PW is 1: write accesses in privileged mode allowed. 

■ ATT.PX is 0: execute accesses in privileged mode not allowed. 

■ ATT.NS is 0: secure access required. 

■ ATT.PC_MASK is 0x0005: protection context 1 and 3 accesses enabled (all other protection contexts are disabled). 

■ ATT.PC_MATCH is 0: the PC_MASK field is used for access evaluation. Three separate access evaluation subprocesses
are distinguished: 

❐ A subprocess that evaluates the access based on read/write, execute, and user/privileged access attributes. 

❐ A subprocess that evaluates the access based on the secure/non-secure attribute. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 76

Protection Units

❐ A subprocess that evaluates the access based on the protection context index (used only by the SMPU and PPU 
when ATT.PC_MATCH is 0). 

If all access evaluations are successful, access is allowed. If any process evaluation is unsuccessful, access is not allowed.
Matching the bus transfer address and access evaluation of the bus transfer (based on access attributes) are two
independent processes: 

■ Matching process. For each protection structure, the process identifies whether a transfer address is contained within the
address range. This identifies the “matching” regions. 

■ Access evaluation process. For each protection structure, the process evaluates the bus transfer access attributes
against the access control attributes.

A protection unit typically has multiple protection structures and evaluates the protection structures in decreasing order. The
first matching structure provides the access control attributes for the evaluation of the transfer's access attributes. In other
words, higher-indexed structures take precedence over lower-indexed structures. 

The following pseudo code illustrates the process. 
match = 0;
for (i = n-1; i >= 0; i--)// n: number of protection regions
   if (Match (“transfer address”, “protection context”
              “MMIO registers ADDR and ATT of protection structure i”)) {
      match = 1; break;
   }
|

if (match)
   AccessEvaluate (“transfer access attributes”, “protection context” 
                   “MMIO register ATT of protection structure i”);
else
   “access allowed”

Notes: 

■ If no protection structure provides a match, the access is allowed. 

■ If multiple protection structures provide a match, the access control attributes for the access evaluation are provided by
the protection structure with the highest index. 

An example of using the PC_MATCH feature is as follows. Two SMPU structures are configured to protect the same address
range:

■ Case 1: SMPU#2: PC = 3, PC_MATCH = 0 SMPU#1: PC = 2, PC_MATCH = 0 To access the master of protection context
2, SMPU#2 has highest index and the address match, but attributes do not match; therefore, access is restricted. The
SMPU#1 is not evaluated because the PC_MATCH is 0.

■ Case 2: SMPU#2: PC = 3, PC_MATCH = 1 SMPU#1: PC = 2, PC_MATCH = 0 The SMPU#2 address matches but PC
does not match, and is skipped because PC_MATCH is 1. SMPU#1 is evaluated and the address and attributes match;
therefore, access is allowed. 

As mentioned, the protection unit evaluates the protection structures in decreasing order. From a security requirements
perspective, this is of importance: a non-secure protection context must not be able to add protection structures that have a
higher index than the protection structures that provide secure access. The protection structure with a higher index can be
programmed to allow non-secure accesses. Therefore, in a secure system, the higher programmable protection structures
are protected to only allow restricted accesses

9.4 Bus Master Protection Attributes

The protection structures set up the rules for different memory regions and their access attributes. The bus master’s own
protection attributes are used by the protection units to regulate access, based on rules set by the protection structures. Not
all bus masters provide all protection attributes that are associated with a bus transfer. Some examples are:

■ None of the bus masters has a native protection context attribute. This must be set dynamically based on the task being
executed by the bus master.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 77

Protection Units

■ The Arm Cortex M4 and Arm Cortex M0+ CPUs provide a user/privilege attribute, but do not provide a secure/non-secure
attribute natively. This must be set at a system level.

To ensure system-wide restricted access, missing attributes are provided by register fields. These fields may be set during the
boot process or by the secure CPU.

■ The SMPU MS_CTL.PC_MASK[] and MPU MS_CTL.PC[] register fields provide protection context functionality.

■ The SMPU MS_CTL.P register field provides the user/privileged attribute for those masters that do not provide their own
attribute.

■ The SMPU MS_CTL.NS register provides the secure/non-secure attribute for those masters that do not provide their own
attribute.

■ Masters that do not provide an execute attribute have the execute attribute set to ‘0’.

The DMA controller channels inherit the access control attributes of the bus transfers that configured the DMA channel.

■ All the bus masters in the system have SMPU and MPU MS_CTL registers associated with them.

■ The MPU MS_CTL.PC_SAVED field (and associated protection context 0 functionality, which is discussed later in the
chapter) is only present for the CM0+ master.

■ The SMPU MS_CTL.P, MS_CTL.NS, and MS_CTL.PC_MASK fields are not present for the DMA. The bus transfer
attributes are provided through “inheritance”: the bus transfer attributes are from the master that owns the DMA channel
that initiated the bus transfer.

■ The MPU MS_CTL register is not present for the DMA masters. The protection context (PC) bus transfer attribute is
provided through inheritance.

9.5 Protection Context

Each bus master has a MPU MS_CTL.PC[3:0] protection context field. This protection context is used as the protection
context attribute for all bus transfers that are initiated by the master. The SMPUs and PPUs allow or restrict bus transfers
based on the protection context attribute.

Multiple masters can share a protection context. For example, a CPU and a crypto controlled by the CPU may share a
protection context (the CPU and crypto PC[] fields are the same). Therefore, the CPU and crypto share the SMPU and PPU
access restrictions.

In the PSoC 64 family, the protection context levels have been pre-defined. See Table 9-2.

A bus master protection context is changed by reprogramming the master’s PC[] field. Changing a protection context is
required for CPU bus masters that may transition between multiple tasks, each catering to different protection contexts. As
the protection context allows or restricts bus transfers, changes to the protection context should be controlled and should not
compromise security. Furthermore, changes to the protection context should incur limited CPU overhead to allow for frequent
protection context changes. Consider a case in which a CPU executes two software stacks with different protection contexts.
To this end, each bus master has an SMPU MS_CTL.PC_MASK[15:0] protection context mask field that identifies what
protection contexts can be programmed for the bus master:

■ The protection context field MS_CTL.PC[3:0]. This register is controlled by the associated bus master and has the same
access restrictions as the bus master’s MPU registers.

Table 9-2.  Protection Context Assignment

PC Secure Description CPU Privileged User

0 Yes Hardware Root-of-Trust, SysCall access only CM0+ SysCall <not used>

1 Yes Cypress Trusted Environment and Functions CM0+ BootLoader/SPM/Drivers Trusted Functions

2 Yes Third-party Trusted Functions (optional) CM0+ BootLoader/SPM/Drivers Trusted Functions

3 Yes Third-party Trusted Functions (optional) CM0+ BootLoader/SPM/Drivers Trusted Functions

4 Yes Third-party Trusted Functions (optional) CM0+ BootLoader/SPM/Drivers Trusted Functions

5 No <reserved> – – –

6 No Application CM4 OperatingSystem/Drivers Application

7 No DAP SYSAP DAP <not used> Debugger/Tester



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 78

Protection Units

■ The protection context mask field MS_CTL.PC_MASK[15:0]. This register is controlled by the secure CPU and has the
same access restrictions as the SMPU registers. 

The PC_MASK[] field is a “hot-one” field that specifies whether the PC[] field can be programmed with a specific protection
context. Consider an attempt to program PC[] to ‘3’:

■ If PC_MASK[3] is ‘1’, PC[] is set to “3”.

■ If PC_MASK[3] is ‘0’, PC[] is not changed.

9.6 Protection Contexts 0, 1, 2, 3

The PSoC 6 MCU supports protection contexts to isolate software execution for security and safety purposes. Protection
contexts are used to restrict access to memory and peripheral resources.

Out of a maximum of 16 protections contexts (PCs), four PCs are treated special: the entry to special PCs 0, 1, 2, and 3 is
hardware-controlled. For each PC i, a programmable exception handler address is provided (CM0_PCi_HANDLER.ADDR
[31:0]). A CPU exception handler fetch, which returns a handler address that matches the programmed
CM0_PCi_HANDLER.ADDR[31:0] address value, causes the CM0+ PC to be changed to PC i by hardware. However, if the
current PC is already 0, 1, 2, or 3, the current PC is not changed (an attempt to change the PC results in an AHB-Lite bus
error). This ensures that CPU execution in PC 0, 1, 2, or 3 cannot be interrupted/preempted by CPU execution in another PC
0, 1, 2, or 3. In other words, CPU execution in PC 0, 1, 2, or 3 requires cooperative multi-tasking between the different PCs.
This means that hand-overs between different PCs are software-scheduled/controlled. A security implementation requires PC
software to clean/zeroize information that it wants to keep confidential from other PC software.

The following pseudo code gives a description of the hardware control over the CM0+ current PC “pc”:
if      (CM0_PC_CTL.VALID[0] & (addr == CM0_PC0_HANDLER. ADDR)) {match_new, pc_new} = {1, 0};
else if (CM0_PC_CTL.VALID[1] & (addr == CM0_PC1_HANDLER.ADDR)) {match_new, pc_new} = {1, 1};
else if (CM0_PC_CTL.VALID[2] & (addr == CM0_PC2_HANDLER.ADDR)) {match_new, pc_new} = {1, 2};
else if (CM0_PC_CTL.VALID[3] & (addr == CM0_PC3_HANDLER.ADDR)) {match_new, pc_new} = {1, 3};
else                                                            match_new          =  0;

if ("exception handler fetch")
begin
   if (match_new)
   begin
      if      (pc == pc_new)         ;
      else if (CM0_PC_CTL.VALID[pc]) "AHB-Lite bus error";
      else                           {pc, pc_saved} = {pc_new,   pc};     // "push"
   end
   else
   begin
                                     {pc, pc_saved} = {pc_saved, pc_saved};   // "pop"
   end
end

Note that each of the protection special PCs 0, 1, 2, and 3 have a dedicated CM0_PC_CTL.VALID[i] field to specify that the
PC's exception handler address is provided through CM0_PCi_HANDLER.ADDR[31:0]. If a PC's exception handler address
is not provided, the PC is treated as an ordinary PC (PCs 4, 5, ..., 15). Note that the current PC “pc” and a saved PC
“pc_saved” implement a two-entry stack. Hardware pushes the current PC to the stack upon entry of a special exception
handler. Hardware then pushes the saved PC from the stack upon entry of an ordinary exception handler. An attempt to enter
a special exception handler from a special exception handler with a different PC results in an AHB-Lite bus error (which
causes the CPU to enter the bus fault exception handler). This scenario should not occur in a carefully designed cooperative
multi-tasking software implementation.

Of the four special PCs, PC 0 is treated differently:

■ It is the default PC value after a Deep Sleep reset.

■ It has unrestricted access; that is, it is not affected by the CPUSS and PERI protection schemes. Therefore, the Cypress
boot code software always starts execution in PC 0. The boot code software initializes the protection structures and
initializes the CM0_PCi_HANDLER registers. The boot code is considered “trusted” software and its unrestricted access



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 79

Protection Units

in PC 0 is not considered a protection concern. After initialization of the protection information, the access to the
protection information itself is typically restricted for all other PCs (the boot code software deploys the restrictions) and the
protection information provides specific restricted access to the other special PCs and ordinary PCs (1, 2, ..., 15). As part
of the boot process configuration, the following things happen:

❐ The boot process sets MPUn.MS_CTL.PC_SAVED to a context that is not a special. context. This is required to pre-
vent accidental/malicious incorrect entry into a special context.

❐ If the system configuration does not use PC=0 after boot is complete, the boot process disables all future use of PC=0 
by making ineffective CPUSS.CM0_PC0_HANDLER by clearing CPUSS.CM0_PC_CTL.VALID[0]. Furthermore, the 
protection region CPUSS.BOOT is assigned to be accessible from PC=0 only, which ensures these settings can no 
longer be changed after boot.

❐ The boot process then changes the current PC by changing MPUn.MS_CTL.PC to a protection context that is not a 
special context. This is done for all currently active masters (which typically is only the CM0+).

❐ When the above is complete, the system executes a regular (not special) context and can enter into special contexts 
only through the use of interrupts using the special handler addresses.

9.7 Protection Structure

9.7.1 Protection Violation

If an MPU, SMPU, or PPU detects a not-allowed transfer, the bus transfer results in a bus error. The bus transfer does not
reach its target memory location or peripheral register. In addition, information on the violating bus transfer is communicated
to the fault report structure.

9.7.2 MPU

The MPUs are situated in the CPUSS and are associated to a single master. An MPU distinguishes user and privileged
accesses from a single bus master. However, the capability exists to perform access control on the secure/non-secure
attribute.

As an MPU is associated to a single master, the MPU protection structures do not provide protection context control
attributes.

Figure 9-3.  MPU Functionality

ATT 03
1

U
R

U
WU
X

P
R

P
WP
X

N
S

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 031

S
U

B
R

E
G

IO
N

_
D

IS
A

B
L

E

A
D

D
R

[2
3

:0
]

MPU protection
structures

MPU protection
structure 0

...

tr
an

sf
er

 a
dd

re
ss

tr
an

sf
er

 a
cc

es
s 

a
ttr

ib
ut

es

Memory 
protection 
unit (MPU)

fault_req
fault_ack

fault_data

Interface to fault 
structures

Two MMIO registers 
per protection structure

Protection structures 
are 32 B aligned

No protection 
context attributes

MPU protection
structure 1

MPU protection
structure 2



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 80

Protection Units

9.7.3 SMPU

The SMPU is situated in the CPUSS and is shared by all bus masters. The SMPU distinguishes between different protection
contexts and distinguishes secure from non-secure accesses. However, the capability exists to perform access control on the
user/privileged mode attribute. Although all SMPUs are predefined in the PSoC 64 family, the definition of how they word and
are programmed are provided to provide a better understanding of the system security.

Figure 9-4.  SMPU Functionality

Note that a single set of SMPU region structures provides the same protection information to all SMPUs in the systems.

9.7.4 PPU

The PPUs are situated in the PERI block and are associated with a peripheral group (a group of peripherals with a shared
AHB-Lite bus infrastructure). A PPU is shared by all bus masters. The PPU distinguishes between different protection
contexts; it also distinguishes secure from non-secure accesses and user mode from privileged mode accesses. Some PPUs
have been preallocated to protect secure sections of the device. The PPUs pre-allocated include:

■ Access to Flash programming control

■ Access to eFuse programming

■ Access to debug port configuration

Shared 
memory  

protection 
unit (SMPU)

Shared 
memory  

protection 
unit (SMPU)

ATT 03
1

U
R

U
W

U
X

P
R

P
WP
X

N
S

P
C

_M
A

S
K

[1
5:

1
]

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 031

S
U

B
R

E
G

IO
N

_
D

IS
A

B
LE

A
D

D
R

[2
3:

0
]

SMPU protection 
structures

...

tr
a

n
sf

er
 a

d
d

re
ss

tr
a

n
sf

er
 a

cc
e

ss
 

a
ttr

ib
u

te
s

Shared 
memory  

protection 
unit (SMPU)

fault_req
fault_ack

fault_data

Interface to fault 
structures

Two MMIO registers 
per protection structure

Protection structures 
(pairs) are 64 B aligned

Shared SMPU protection structures 
for all SMPUs in the system

P
C

_
M

A
T

C
H

SMPU protection
structure pair 0

SMPU protection
structure pair 1

SMPU protection
structure pair 2



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 81

Protection Units

Figure 9-5.  PPU Functionality 

There are two types of PPU structures: fixed and programmable. 

■ The fixed PPU structures protect fixed areas of memory and hence a specific predetermined peripheral region. In other
words, the ADDR, SUBREGION_DISABLE, and REGION_SIZE fields are fixed for a specific device. Refer to the
registers TRM for a definition of fixed PPUs and the address regions they protect. Their protection attributes can be
configured for each protection context. The following table summarizes the different fixed PPU structures in CY8C62xx
devices and details the regions they protect.  

Table 9-3.  Fixed PPU Structures

Protection Structure Base Address of Protected Region Size of Protected Region Protected Peripheral/Block(s) 

PERI_MS_PPU_FX0 0x40000000 8 KB PERI

PERI_MS_PPU_FX1 0x40004010 4 B PERI_GR0

PERI_MS_PPU_FX2 0x40004030 4 B PERI_GR1

PERI_MS_PPU_FX3 0x40004050 4 B PERI_GR2

PERI_MS_PPU_FX4 0x40004060 32 B PERI_GR3

PERI_MS_PPU_FX5 0x40004080 32 B PERI_GR4

PERI_MS_PPU_FX6 0x400040C0 32 B PERI_GR6

PERI_MS_PPU_FX7 0x40004120 32 B PERI_GR9

PERI_MS_PPU_FX8 0x40004140 32 B PERI_GR10

PERI_MS_PPU_FX9 0x40008000 32 KB PERI_TR

PERI_MS_PPU_FX10 0x40100000 1 KB CRYPTO

PERI_MS_PPU_FX11 0x40101000 2 KB CRYPTO

PERI_MS_PPU_FX12 0x40102000 256 B CRYPTO

PERI_MS_PPU_FX13 0x40102100 4 B CRYPTO

PERI_MS_PPU_FX14 0x40102120 4 B CRYPTO

P
C

3_
U

R
P

C
3_

U
W

P
C

3_
P

R
P

C
3_

P
W

P
C

3_
N

S

P
C

1_
U

R
P

C
1_

U
W

P
C

1_
P

R
P

C
1_

P
W

P
C

1_
N

S

ATT0 03
1

P
C

0_
U

R
P

C
0_

U
W

P
C

0_
P

R
P

C
0_

P
W

P
C

0_
N

S

ADDR 03
1

ADDR[31:2]

PPU protection 
structures

...

tr
a

ns
fe

r 
ad

dr
es

s

tr
a

ns
fe

r 
ac

ce
ss

 
at

tr
ib

ut
es

Peripheral 
protection 
unit (PPU)

fault_req
fault_ack

fault_data

Interface to fault 
structures

Six MMIO registers per 
protection structure

PPU protection
structure pair 0

PPU protection
structure pair 1

PPU protection
structure pair 2

Size 03
1

Size [28:24]

P
C

2_
U

R
P

C
2_

U
W

P
C

2_
P

R
P

C
2_

P
W

P
C

2_
N

S

P
C

7_
U

R
P

C
7_

U
W

P
C

7_
P

R
P

C
7_

P
W

P
C

7_
N

S

P
C

5_
U

R
P

C
5_

U
W

P
C

5_
P

R
P

C
5_

P
W

P
C

5_
N

S

ATT1 03
1

P
C

4_
U

R
P

C
4_

U
W

P
C

4_
P

R
P

C
4_

P
W

P
C

4_
N

S

P
C

6_
U

R

P
C

6_
U

W
P

C
6_

P
R

P
C

6_
P

W
P

C
6_

N
S

P
C

11
_

U
R

P
C

11
_

U
W

P
C

11
_

P
R

P
C

11
_

P
W

P
C

11
_

N
S

P
C

9_
U

R
P

C
9_

U
W

P
C

9_
P

R
P

C
9_

P
W

P
C

9_
N

S

ATT2 03
1

P
C

8_
U

R
P

C
8_

U
W

P
C

8_
P

R
P

C
8_

P
W

P
C

8_
N

S

P
C

10
_

U
R

P
C

10
_

U
W

P
C

10
_

P
R

P
C

10
_

P
W

P
C

10
_

N
S

P
C

14
_

U
R

P
C

14
_

U
W

P
C

14
_

P
R

P
C

14
_

P
W

P
C

14
_

N
S

P
C

13
_

U
R

P
C

13
_

U
W

P
C

13
_

P
R

P
C

13
_

P
W

P
C

13
_

N
S

ATT3 03
1

P
C

12
_

U
R

P
C

12
_

U
W

P
C

12
_

P
R

P
C

12
_

P
W

P
C

12
_

N
S

P
C

14
_

U
R

P
C

14
_

U
W

P
C

14
_

P
R

P
C

14
_

P
W

P
C

14
_

N
S



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 82

Protection Units

PERI_MS_PPU_FX15 0x40108000 4 KB CRYPTO

PERI_MS_PPU_FX16 0x40200000 1 KB CPUSS

PERI_MS_PPU_FX17 0x40201000 4 KB CPUSS

PERI_MS_PPU_FX18 0x40202000 512 B CPUSS

PERI_MS_PPU_FX19 0x40208000 1 KB CPUSS_CM0_SYSTEM_INT

PERI_MS_PPU_FX20 0x4020A000 1 KB CPUSS_CM4_SYSTEM_INT

PERI_MS_PPU_FX21 0x40210000 256 B FAULT_STRUCT0

PERI_MS_PPU_FX22 0x40210100 256 B FAULT_STRUCT1

PERI_MS_PPU_FX23 0x40220000 32 B IPC_STRUCT0

PERI_MS_PPU_FX24 0x40220020 32 B IPC_STRUCT1

PERI_MS_PPU_FX25 0x40220040 32 B IPC_STRUCT2

PERI_MS_PPU_FX26 0x40220060 32 B IPC_STRUCT3

PERI_MS_PPU_FX27 0x40220080 32 B IPC_STRUCT4

PERI_MS_PPU_FX28 0x402200A0 32 B IPC_STRUCT5

PERI_MS_PPU_FX29 0x402200C0 32 B IPC_STRUCT6

PERI_MS_PPU_FX30 0x402200E0 32 B IPC_STRUCT7

PERI_MS_PPU_FX31 0x40220100 32 B IPC_STRUCT8

PERI_MS_PPU_FX32 0x40220120 32 B IPC_STRUCT9

PERI_MS_PPU_FX33 0x40220140 32 B IPC_STRUCT10

PERI_MS_PPU_FX34 0x40220160 32 B IPC_STRUCT11

PERI_MS_PPU_FX35 0x40220180 32 B IPC_STRUCT12

PERI_MS_PPU_FX36 0x402201A0 32 B IPC_STRUCT13

PERI_MS_PPU_FX37 0x402201C0 32 B IPC_STRUCT14

PERI_MS_PPU_FX38 0x402201E0 32 B IPC_STRUCT15

PERI_MS_PPU_FX39 0x40221000 16 B IPC_INTR_STRUCT0

PERI_MS_PPU_FX40 0x40221020 16 B IPC_INTR_STRUCT1

PERI_MS_PPU_FX41 0x40221040 16 B IPC_INTR_STRUCT2

PERI_MS_PPU_FX42 0x40221060 16 B IPC_INTR_STRUCT3

PERI_MS_PPU_FX43 0x40221080 16 B IPC_INTR_STRUCT4

PERI_MS_PPU_FX44 0x402210A0 16 B IPC_INTR_STRUCT5

PERI_MS_PPU_FX45 0x402210C0 16 B IPC_INTR_STRUCT6

PERI_MS_PPU_FX46 0x402210E0 16 B IPC_INTR_STRUCT7

PERI_MS_PPU_FX47 0x40221100 16 B IPC_INTR_STRUCT8

PERI_MS_PPU_FX48 0x40221120 16 B IPC_INTR_STRUCT9

PERI_MS_PPU_FX49 0x40221140 16 B IPC_INTR_STRUCT10

PERI_MS_PPU_FX50 0x40221160 16 B IPC_INTR_STRUCT11

PERI_MS_PPU_FX51 0x40221180 16 B IPC_INTR_STRUCT12

PERI_MS_PPU_FX52 0x402211A0 16 B IPC_INTR_STRUCT13

PERI_MS_PPU_FX53 0x402211C0 16 B IPC_INTR_STRUCT14

PERI_MS_PPU_FX54 0x402211E0 16 B IPC_INTR_STRUCT15

PERI_MS_PPU_FX55 0x40230000 64 B PROT_SMPU

PERI_MS_PPU_FX56 0x40234000 4 B PROT_MPU0

PERI_MS_PPU_FX57 0x40235400 1 KB PROT_MPU5

PERI_MS_PPU_FX58 0x40235800 1 KB PROT_MPU6

PERI_MS_PPU_FX59 0x40237800 4 B PROT_MPU14

Table 9-3.  Fixed PPU Structures

Protection Structure Base Address of Protected Region Size of Protected Region Protected Peripheral/Block(s) 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 83

Protection Units

PERI_MS_PPU_FX60 0x40237C00 1 KB PROT_MPU15

PERI_MS_PPU_FX61 0x40240000 8 B FLASHC_FLASH

PERI_MS_PPU_FX62 0x40240008 4 B FLASHC_FLASH

PERI_MS_PPU_FX63 0x40240200 256 B FLASHC

PERI_MS_PPU_FX64 0x40240400 128 B FLASHC_CM0

PERI_MS_PPU_FX65 0x40240480 128 B FLASHC_CM4

PERI_MS_PPU_FX66 0x40240500 4 B FLASHC_CRYPTO

PERI_MS_PPU_FX67 0x40240580 4 B FLASHC_DW0

PERI_MS_PPU_FX68 0x40240600 4 B FLASHC_DW1

PERI_MS_PPU_FX69 0x40240680 4 B FLASHC_DMAC

PERI_MS_PPU_FX70 0x40240700 4 B FLASHC_EXT_MS0

PERI_MS_PPU_FX71 0x40240780 4 B FLASHC_EXT_MS1

PERI_MS_PPU_FX72 0x4024F000 4 KB FLASHC_FM

PERI_MS_PPU_FX73 0x40260000 256 B PWR

PERI_MS_PPU_FX74 0x40260100 16 B

PERI_MS_PPU_FX75 0x40260180 16 B WDT

PERI_MS_PPU_FX76 0x40260200 128 B MCWDT

PERI_MS_PPU_FX77 0x40260300 256 B CLK

PERI_MS_PPU_FX78 0x40260400 1 KB CLK

PERI_MS_PPU_FX79 0x40260800 8 B RES

PERI_MS_PPU_FX80 0x40267000 4 KB PWR_TRIM, CLK_TRIM

PERI_MS_PPU_FX81 0x4026FF00 128 B PWR_TRIM, CLK_TRIM

PERI_MS_PPU_FX82 0x40270000 64 KB BACKUP

PERI_MS_PPU_FX83 0x40280000 128 B DW00

PERI_MS_PPU_FX84 0x40290000 128 B DW10

PERI_MS_PPU_FX85 0x40280100 128 B DW0_CRC

PERI_MS_PPU_FX86 0x40290100 128 B DW1_CRC

PERI_MS_PPU_FX87 0x40288000 64 B DW0_CH_STRUCT0

PERI_MS_PPU_FX88 0x40288040 64 B DW0_CH_STRUCT1

PERI_MS_PPU_FX89 0x40288080 64 B DW0_CH_STRUCT2

PERI_MS_PPU_FX90 0x402880C0 64 B DW0_CH_STRUCT3

PERI_MS_PPU_FX91 0x40288100 64 B DW0_CH_STRUCT4

PERI_MS_PPU_FX92 0x40288140 64 B DW0_CH_STRUCT5

PERI_MS_PPU_FX93 0x40288180 64 B DW0_CH_STRUCT6

PERI_MS_PPU_FX94 0x402881C0 64 B DW0_CH_STRUCT7

PERI_MS_PPU_FX95 0x40288200 64 B DW0_CH_STRUCT8

PERI_MS_PPU_FX96 0x40288240 64 B DW0_CH_STRUCT9

PERI_MS_PPU_FX97 0x40288280 64 B DW0_CH_STRUCT10

PERI_MS_PPU_FX98 0x402882C0 64 B DW0_CH_STRUCT11

PERI_MS_PPU_FX99 0x40288300 64 B DW0_CH_STRUCT12

PERI_MS_PPU_FX100 0x40288340 64 B DW0_CH_STRUCT13

PERI_MS_PPU_FX101 0x40288380 64 B DW0_CH_STRUCT14

PERI_MS_PPU_FX102 0x402883C0 64 B DW0_CH_STRUCT15

PERI_MS_PPU_FX103 0x40288400 64 B DW0_CH_STRUCT16

PERI_MS_PPU_FX104 0x40288440 64 B DW0_CH_STRUCT17

Table 9-3.  Fixed PPU Structures

Protection Structure Base Address of Protected Region Size of Protected Region Protected Peripheral/Block(s) 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 84

Protection Units

PERI_MS_PPU_FX105 0x40288480 64 B DW0_CH_STRUCT18

PERI_MS_PPU_FX106 0x402884C0 64 B DW0_CH_STRUCT19

PERI_MS_PPU_FX107 0x40288500 64 B DW0_CH_STRUCT20

PERI_MS_PPU_FX108 0x40288540 64 B DW0_CH_STRUCT21

PERI_MS_PPU_FX109 0x40288580 64 B DW0_CH_STRUCT22

PERI_MS_PPU_FX110 0x402885C0 64 B DW0_CH_STRUCT23

PERI_MS_PPU_FX111 0x40288600 64 B DW0_CH_STRUCT24

PERI_MS_PPU_FX112 0x40288640 64 B DW0_CH_STRUCT25

PERI_MS_PPU_FX113 0x40288680 64 B DW0_CH_STRUCT26

PERI_MS_PPU_FX114 0x402886C0 64 B DW0_CH_STRUCT27

PERI_MS_PPU_FX115 0x40288700 64 B DW0_CH_STRUCT28

PERI_MS_PPU_FX116 0x40298000 64 B DW1_CH_STRUCT0

PERI_MS_PPU_FX117 0x40298040 64 B DW1_CH_STRUCT1

PERI_MS_PPU_FX118 0x40298080 64 B DW1_CH_STRUCT2

PERI_MS_PPU_FX119 0x402980C0 64 B DW1_CH_STRUCT3

PERI_MS_PPU_FX120 0x40298100 64 B DW1_CH_STRUCT4

PERI_MS_PPU_FX121 0x40298140 64 B DW1_CH_STRUCT5

PERI_MS_PPU_FX122 0x40298180 64 B DW1_CH_STRUCT6

PERI_MS_PPU_FX123 0x402981C0 64 B DW1_CH_STRUCT7

PERI_MS_PPU_FX124 0x40298200 64 B DW1_CH_STRUCT8

PERI_MS_PPU_FX125 0x40298240 64 B DW1_CH_STRUCT9

PERI_MS_PPU_FX126 0x40298280 64 B DW1_CH_STRUCT10

PERI_MS_PPU_FX127 0x402982C0 64 B DW1_CH_STRUCT11

PERI_MS_PPU_FX128 0x40298300 64 B DW1_CH_STRUCT12

PERI_MS_PPU_FX129 0x40298340 64 B DW1_CH_STRUCT13

PERI_MS_PPU_FX130 0x40298380 64 B DW1_CH_STRUCT14

PERI_MS_PPU_FX131 0x402983C0 64 B DW1_CH_STRUCT15

PERI_MS_PPU_FX132 0x40298400 64 B DW1_CH_STRUCT16

PERI_MS_PPU_FX133 0x40298440 64 B DW1_CH_STRUCT17

PERI_MS_PPU_FX134 0x40298480 64 B DW1_CH_STRUCT18

PERI_MS_PPU_FX135 0x402984C0 64 B DW1_CH_STRUCT19

PERI_MS_PPU_FX136 0x40298500 64 B DW1_CH_STRUCT20

PERI_MS_PPU_FX137 0x40298540 64 B DW1_CH_STRUCT21

PERI_MS_PPU_FX138 0x40298580 64 B DW1_CH_STRUCT22

PERI_MS_PPU_FX139 0x402985C0 64 B DW1_CH_STRUCT23

PERI_MS_PPU_FX140 0x40298600 64 B DW1_CH_STRUCT24

PERI_MS_PPU_FX141 0x40298640 64 B DW1_CH_STRUCT25

PERI_MS_PPU_FX142 0x40298680 64 B DW1_CH_STRUCT26

PERI_MS_PPU_FX143 0x402986C0 64 B DW1_CH_STRUCT27

PERI_MS_PPU_FX144 0x40298700 64 B DW1_CH_STRUCT28

PERI_MS_PPU_FX145 0x402A0000 16 B DMAC

PERI_MS_PPU_FX146 0x402A1000 256 B DMAC_CH0

PERI_MS_PPU_FX147 0x402A1100 256 B DMAC_CH1

PERI_MS_PPU_FX148 0x402A1200 256 B DMAC_CH2

PERI_MS_PPU_FX149 0x402A1300 256 B DMAC_CH3

Table 9-3.  Fixed PPU Structures

Protection Structure Base Address of Protected Region Size of Protected Region Protected Peripheral/Block(s) 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 85

Protection Units

PERI_MS_PPU_FX150 0x402C0000 128 B EFUSE

PERI_MS_PPU_FX151 0x402C0800 512 B EFUSE

PERI_MS_PPU_FX152 0x402D0000 64 KB PROFILE

PERI_MS_PPU_FX153 0x40300000 8 B HSIOM_PRT0_PORT

PERI_MS_PPU_FX154 0x40300010 8 B HSIOM_PRT1_PORT

PERI_MS_PPU_FX155 0x40300020 8 B HSIOM_PRT2_PORT

PERI_MS_PPU_FX156 0x40300030 8 B HSIOM_PRT3_PORT

PERI_MS_PPU_FX157 0x40300040 8 B HSIOM_PRT4_PORT

PERI_MS_PPU_FX158 0x40300050 8 B HSIOM_PRT5_PORT

PERI_MS_PPU_FX159 0x40300060 8 B HSIOM_PRT6_PORT

PERI_MS_PPU_FX160 0x40300070 8 B HSIOM_PRT7_PORT

PERI_MS_PPU_FX161 0x40300080 8 B HSIOM_PRT8_PORT

PERI_MS_PPU_FX162 0x40300090 8 B HSIOM_PRT9_PORT

PERI_MS_PPU_FX163 0x403000A0 8 B HSIOM_PRT10_PORT

PERI_MS_PPU_FX164 0x403000B0 8 B HSIOM_PRT11_PORT

PERI_MS_PPU_FX165 0x403000C0 8 B HSIOM_PRT12_PORT

PERI_MS_PPU_FX166 0x403000D0 8 B HSIOM_PRT13_PORT

PERI_MS_PPU_FX167 0x403000E0 8 B HSIOM_PRT14_PORT

PERI_MS_PPU_FX168 0x40302000 32 B HSIOM_AMUX_SPLIT

PERI_MS_PPU_FX169 0x40302200 16 B

PERI_MS_PPU_FX170 0x40310000 64 B GPIO_PRT0

PERI_MS_PPU_FX171 0x40310080 64 B GPIO_PRT1

PERI_MS_PPU_FX172 0x40310100 64 B GPIO_PRT2

PERI_MS_PPU_FX173 0x40310180 64 B GPIO_PRT3

PERI_MS_PPU_FX174 0x40310200 64 B GPIO_PRT4

PERI_MS_PPU_FX175 0x40310280 64 B GPIO_PRT5

PERI_MS_PPU_FX176 0x40310300 64 B GPIO_PRT6

PERI_MS_PPU_FX177 0x40310380 64 B GPIO_PRT7

PERI_MS_PPU_FX178 0x40310400 64 B GPIO_PRT8

PERI_MS_PPU_FX179 0x40310480 64 B GPIO_PRT9

PERI_MS_PPU_FX180 0x40310500 64 B GPIO_PRT10

PERI_MS_PPU_FX181 0x40310580 64 B GPIO_PRT11

PERI_MS_PPU_FX182 0x40310600 64 B GPIO_PRT12

PERI_MS_PPU_FX183 0x40310680 64 B GPIO_PRT13

PERI_MS_PPU_FX184 0x40310700 64 B GPIO_PRT14

PERI_MS_PPU_FX185 0x40310040 16 B GPIO_PRT0

PERI_MS_PPU_FX186 0x403100C0 16 B GPIO_PRT1

PERI_MS_PPU_FX187 0x40310140 16 B GPIO_PRT2

PERI_MS_PPU_FX188 0x403101C0 16 B GPIO_PRT3

PERI_MS_PPU_FX189 0x40310240 16 B GPIO_PRT4

PERI_MS_PPU_FX190 0x403102C0 16 B GPIO_PRT5

PERI_MS_PPU_FX191 0x40310340 16 B GPIO_PRT6

PERI_MS_PPU_FX192 0x403103C0 16 B GPIO_PRT7

PERI_MS_PPU_FX193 0x40310440 16 B GPIO_PRT8

PERI_MS_PPU_FX194 0x403104C0 16 B GPIO_PRT9

Table 9-3.  Fixed PPU Structures

Protection Structure Base Address of Protected Region Size of Protected Region Protected Peripheral/Block(s) 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 86

Protection Units

■ The programmable PPU structures can have configurable address regions. Similar to fixed-PPU structures, the protection
attributes of programmable PPU structures can be configured for each protection context. Programmable PPU structures
are similar to SMPU structures but are intended to be used with the peripheral register space. These protection structures
are typically used to protect registers in a specific block, which are not covered by the resolution of fixed PPU structures. 

PERI_MS_PPU_FX195 0x40310540 16 B GPIO_PRT10

PERI_MS_PPU_FX196 0x403105C0 16 B GPIO_PRT11

PERI_MS_PPU_FX197 0x40310640 16 B GPIO_PRT12

PERI_MS_PPU_FX198 0x403106C0 16 B GPIO_PRT13

PERI_MS_PPU_FX199 0x40310740 8 B GPIO_PRT14

PERI_MS_PPU_FX200 0x40314000 64 B GPIO_INTR

PERI_MS_PPU_FX201 0x40315000 8 B

PERI_MS_PPU_FX202 0x40320800 256 B SMARTIO_PRT8

PERI_MS_PPU_FX203 0x40320900 256 B SMARTIO_PRT9

PERI_MS_PPU_FX204 0x40350000 64 KB LPCOMP

PERI_MS_PPU_FX205 0x40360000 4 KB CSD

PERI_MS_PPU_FX206 0x40380000 64 KB TCPWM0

PERI_MS_PPU_FX207 0x40390000 64 KB TCPWM1

PERI_MS_PPU_FX208 0x403B0000 64 KB LCD0

PERI_MS_PPU_FX209 0x403F0000 64 KB USBFS0

PERI_MS_PPU_FX210 0x40420000 64 KB SMIF0

PERI_MS_PPU_FX211 0x40460000 64 KB SDHC0

PERI_MS_PPU_FX212 0x40470000 64 KB SDHC1

PERI_MS_PPU_FX213 0x40600000 64 KB SCB0

PERI_MS_PPU_FX214 0x40610000 64 KB SCB1

PERI_MS_PPU_FX215 0x40620000 64 KB SCB2

PERI_MS_PPU_FX216 0x40630000 64 KB SCB3

PERI_MS_PPU_FX217 0x40640000 64 KB SCB4

PERI_MS_PPU_FX218 0x40650000 64 KB SCB5

PERI_MS_PPU_FX219 0x40660000 64 KB SCB6

PERI_MS_PPU_FX220 0x40670000 64 KB SCB7

PERI_MS_PPU_FX221 0x40680000 64 KB SCB8

PERI_MS_PPU_FX222 0x40690000 64 KB SCB9

PERI_MS_PPU_FX223 0x406A0000 64 KB SCB10

PERI_MS_PPU_FX224 0x406B0000 64 KB SCB11

PERI_MS_PPU_FX225 0x406C0000 64 KB SCB12

PERI_MS_PPU_FX226 0x40A00000 4 KB PDM0

PERI_MS_PPU_FX227 0x40A10000 4 KB I2S0

PERI_MS_PPU_FX228 0x40A11000 4 KB I2S1

Table 9-3.  Fixed PPU Structures

Protection Structure Base Address of Protected Region Size of Protected Region Protected Peripheral/Block(s) 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 87

Protection Units

9.7.5 Protection of Protection Structures

The MPU, SMPU, and PPU-based protection architecture is
consistent and provides the flexibility to implement different
system-wide protection schemes. Protection structures can
be set once at boot time or can be changed dynamically
during device execution. For example, a CPU RTOS can
change the CPU’s MPU settings; a secure CPU can change
the SMPU and PPUs settings. But such a system will be left
insecure if there is no way to protect the protection
structures themselves. There must be a way to restrict
access to the protection structures. 

The protection of protection structures is achieved using
another protection structure. For this reason, protection
structures are defined in pairs of master and slave. We refer
to the slave and master protection structures as a protection
pair. Note that the address range of the master protection
structure is known, that is, it is constant.

The first (slave) protection structure protects the resource
and the second (master) protection structure protects the
protection (address range of the second protection structure
includes both the master and slave protection structures).

The protection architecture is flexible enough to allow for
variations:

■ Exclusive peripheral ownership can be shared by more
than two protection contexts.

■ The ability to change ownership is under control of a
single protection context, and exclusive or non-exclusive
peripheral ownership is shared by multiple protection
contexts.

Note that in secure systems, typically a single secure CPU
is used. In these systems, the ability to change ownership is
assigned to the secure CPU at boot time and not
dynamically changed. Therefore, you must assign the
secure CPU its own, dedicated protection context.

Both PPU and SMPU is intended to distinguish between
different protection contexts and to distinguish secure from
non-secure accesses. Therefore, both PPU and SMPU
protection use protection structure pairs. In the SMPU, the
slave protection structure provides SMPU protection
information and the master protection structure provides
PPU protection information (the master and slave protection
structures are registers).

Table 9-4.  Protection Units Reserved by the System

PPU Type PPU Define Name Description Comment

Programmable PERI_PPU_PR4 PERI.PERI_GROUP_STRUCT[] Peripheral master enables  

Fixed PERI_GR_PPU_SL_PERI_GR1 PERI.PERI_GROUP[1] Peripheral interconnect Not used

Fixed PPU Defi+A1:D1 CPUSS-M4.CRYPTO Cryptography component  

Fixed PERI_GR_PPU_SL_PERI_GR2 PERI.PERI_GROUP[2] Peripheral interconnect Not used

Fixed PERI_GR_PPU_SL_CPUSS CPUSS-M4.CPUSS CPU subsystem (CPUSS)  

Programmable PERI_PPU_PR0 CPUSS-M4.CPUSS.* CPU subsystem (CPUSS)  

Programmable PERI_PPU_PR1 CPUSS-M4.CPUSS.TRIM* CPU subsystem (CPUSS)  

Fixed PERI_GR_PPU_SL_IPC CPUSS-M4.IPC IPC  

Region PERI_GR_PPU_RG_IPC_STRUCT0 IPC_STRUCT0 IPC structure protection CM0+ SysCall

Region PERI_GR_PPU_RG_IPC_STRUCT1 IPC_STRUCT1 IPC structure protection CM4 SysCall

Region PERI_GR_PPU_RG_IPC_STRUCT2 IPC_STRUCT2 IPC structure protection DAP SysCall

Region PERI_GR_PPU_RG_IPC_STRUCT3 IPC_STRUCT3 IPC structure protection CM4 -> CM0+ RPC

Region PERI_GR_PPU_RG_IPC_STRUCT4 IPC_STRUCT4 IPC structure protection DAP -> CM0+ RPC

Region PERI_GR_PPU_RG_IPC_STRUCT5 IPC_STRUCT5 IPC structure protection CM0+ -> CM4 RPC

Region PERI_GR_PPU_RG_IPC_STRUCT6 IPC_STRUCT6 IPC structure protection DAP -> CM4 RPC

Region PERI_GR_PPU_RG_IPC_INTR_STRUCT0 IPC_INTR_STRUCT0
IPC interrupt structure 
protection

CM0+ NMI

Region PERI_GR_PPU_RG_IPC_INTR_STRUCT1 IPC_INTR_STRUCT1 IPC structure protection CM0+ RPC IRQ

Region PERI_GR_PPU_RG_IPC_INTR_STRUCT2 IPC_INTR_STRUCT2 IPC structure protection CM4 RPC IRQ

Fixed PERI_GR_PPU_SL_PROT CPUSS-M4.PROT Protection  

Region PERI_GR_PPU_RG_SMPU CPUSS-M4.PROT.SMPU SMPU protection  

Region PERI_GR_PPU_RG_MPU_CM0P CPUSS-M4.PROT.MPU_CM0P MPU protection for CM0+  

Region PERI_GR_PPU_RG_MPU_CRYPTO
CPUSS-
M4.PROT.MPU_CRYPTO

MPU protection for Crypto  

Region PERI_GR_PPU_RG_MPU_TC CPUSS-M4.PROT.MPU_TC
MPU protection for test 
controller

 

Fixed PERI_GR_PPU_SL_FLASHC CPUSS-M4.FLASHC Flash controller  

Fixed PERI_GR_PPU_SL_SRSS SRSS.SRSS SRSS core registers  



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 88

Protection Units

Fixed PERI_GR_PPU_SL_BACKUP SRSS.BACKUP SRSS backup domain  

Fixed PERI_GR_PPU_SL_DW1 CPUSS-M4.DW[1] Datawire controller  

Region
PERI_GR_PPU_RG_DW1_DW_CH_STRU
CT0

DW1_DW_CH_STRUCT0
DataWire #1 channel 
protection (channels 0..3)

Can be allocated to a 
single PC in user mode 
(1/2/3/4)

Region
PERI_GR_PPU_RG_DW1_DW_CH_STRU
CT1

DW1_DW_CH_STRUCT1
DataWire #1 channel 
protection (channels 0..3)

Can be allocated to a 
single PC in user mode 
(1/2/3/4)

Region
PERI_GR_PPU_RG_DW1_DW_CH_STRU
CT2

DW1_DW_CH_STRUCT2
DataWire #1 channel 
protection (channels 0..3)

Can be allocated to a 
single PC in user mode 
(1/2/3/4)

Region
PERI_GR_PPU_RG_DW1_DW_CH_STRU
CT3

DW1_DW_CH_STRUCT3
DataWire #1 channel 
protection (channels 0..3)

Can be allocated to a 
single PC in user mode 
(1/2/3/4)

Fixed PERI_GR_PPU_SL_EFUSE EFUSE
eFuse block (only applies to 
eFuse data public region (00-
40)

Only applies to eFuse 
public data region

Programmable PERI_PPU_PR2 EFUSE.EFUSE_DATA[] eFuse control registers  

Programmable PERI_PPU_PR3 EFUSE.EFUSE_DATA[] eFuse data region private  

Fixed PERI_GR_PPU_SL_PERI_GR3 PERI.PERI_GROUP[3] Peripheral interconnect  

Fixed PERI_GR_PPU_SL_PERI_GR4 PERI.PERI_GROUP[4] Peripheral interconnect  

Fixed PERI_GR_PPU_SL_SMIF SMIF Serial memory interface  

Fixed PERI_GR_PPU_SL_PERI_GR6 PERI.PERI_GROUP[6] Peripheral interconnect  

Fixed PERI_GR_PPU_SL_PERI_GR9 PERI.PERI_GROUP[9] Peripheral interconnect  

Fixed PERI_GR_PPU_SL_PERI_GR10 PERI.PERI_GROUP[10] Peripheral interconnect  

Table 9-4.  Protection Units Reserved by the System

PPU Type PPU Define Name Description Comment



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 89

Protection Units

9.7.6 Protection Structure Types

Different protection structure types are used because some
resources, such as peripheral registers, have a fixed
address range. Protection of protection structures requires
pairs of neighboring protection structures.

Three types of protection structures with a consistent
register interface are described here:

■ Programmable protection structures. These are 32-byte
protection structures with a programmable address
range. These structures are used by the MPUs. 

■ Fixed protection structure pairs. These are 64-byte
master/slave protection structure pairs, consisting of two
32-byte protection structures. These structures are used
by the PPUs. Both structures have a fixed, constant
address region. The master structure has the UX and PX
attributes as constant ‘0’ (execution is never allowed)
and the UR and PR attributes as constant ‘1’ (reading is
always allowed). The slave structure has the UX and PX
attributes as constant ‘1’.

■ Programmable protection structure pairs. These are 64-
byte master/slave protection structure pairs, consisting
of two 32-byte protection structures. These structures
are used by the PPU and SMPU. The master structure
has a fixed, constant address region. The slave structure

has a programmable address region. The master
structure has the UX and PX attributes as constant ‘0’
(execution is never allowed) and the UR and PR
attributes as constant ‘1’ (reading is always allowed).
The PPU slave structure has the UX and PX attributes
as constant ‘1’. The SMPU slave structure has
programmable UX and PX attributes. 

Note that the master protection structure in a protection
structure pair is required only to address security
requirements. The distinction between the three protection
structure types is an implementation optimization. From an
architectural perspective, all PPU protection structures are
the same, with the exception that for some protection
structures the address range is fixed and not programmable.

As mentioned earlier, a protection unit evaluates the
protection regions in decreasing protection structure index
order. The protection structures are evaluated in the
following order:

■ Fixed protection structures for specific peripherals or
peripheral register address ranges.

■ Programmable protection structures.

In other words, fixed structures take precedence over
programmable structures.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 90

Protection Units

Figure 9-6.  PPU and SMPU Pairs

Slave Structure

Master Structure

PPU, programmable protection structure pair

ATT 03 1

U
R

U
W

U
X

P
R

P
WP
X

N
S

P
C

_M
A

S
K

[1
5

:1
]

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 03 1

S
U

B
R

E
G

I
O

N
_

D
IS

A
B

L
E

A
D

D
R

[
2

3:
0]

P
C

_M
A

T
C

H

1

Slave Structure

ATT 03 1

U
R

 =
 1

U
W

U
X

 =
 0

P
R

 =
 1

P
W

P
X

 =
 0

N
S

P
C

_M
A

S
K

[1
5

:1
]

E
N

A
B

LE
D

C
on

st
a

n
t 

R
E

G
IO

N
_

S
IZ

E

03 1

Constant
SUBREGION_DISA

BLE

Constant ADDR[23:0], encompassing 
master and slave protection structures

P
C

_M
A

T
C

H

1

Master Structure

SMPU, programmable protection structure pair

ATT0,1,2&3 03 1

ADDR 03 1

Slave Structure

Master Structure

PPU, fixed protection structure pair

Constant ADDR Encompassing Peripheral Slave MMIO Registers

03 1

Constant REGION SIZE

SIZE

Programmable PC Attributes

ATT0,1,2&3 03 1

ADDR 03 1

Constant ADDR Encompassing Peripheral Slave MMIO Registers

03 1

Constant REGION SIZE

SIZE

Programmable PC Attributes

ATT0,1,2&3 03 1

ADDR 03 1

Constant ADDR Encompassing Peripheral Slave MMIO Registers

03 1

Constant REGION SIZE

SIZE

Programmable PC Attributes

ATT0,1,2&3 03 1

ADDR 03 1

Programmable ADDR Encompassing Peripheral Slave MMIO Registers

03 1

Programmable REGION SIZE

SIZE

Programmable PC Attributes



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 91

Protection Units

Figure 9-7.  Fixed Protection Structure Pair

ATT 031

U
R

U
W

U
X

 =
 

P
R

P
W

P
X

 =
 

N
S

P
C

_M
A

S
K

[1
5:

1]

E
N

A
B

LE
D

C
on

st
a

nt
 

R
E

G
IO

N
_

S
IZ

E

ADDR 031

P
C

_M
A

T
C

H

Slave structure

ATT 031

U
R

 =
 

U
W

U
X

 =
 

P
R

 =
 

P
W

P
X

 =
 

N
S

P
C

_M
A

S
K

[1
5:

1]

E
N

A
B

LE
D

C
on

st
an

t 
R

E
G

IO
N

_
S

IZ
E

031

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing master and 
slave protection structures

P
C

_M
A

T
C

H

Master structure

PPU, fixed protection structure pair

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing peripheral 
slave MMIO registers



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 92

Protection Units

Figure 9-8.  Programmable Protection Structure Pair

ATT 03
1

U
R

U
W

U
X

 =
 

P
R

P
W

P
X

 =
 

N
S

P
C

_M
A

S
K

[1
5

:1
]

E
N

A
B

L
E

D

R
E

G
IO

N
_

S
IZ

E

ADDR 03
1

S
U

B
R

E
G

IO
N

_
D

IS
A

B
L

E

A
D

D
R

[2
3:

0
]

P
C

_
M

A
T

C
H

Slave structure

ATT 03
1

U
R

 =
 

U
W

U
X

 =
 

P
R

 =
 

P
W

P
X

 =
 

N
S

P
C

_
M

A
S

K
[1

5:
1

]

E
N

A
B

LE
D

C
on

st
a

nt
 

R
E

G
IO

N
_

S
IZ

E

03
1

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing master and 
slave protection structures

P
C

_M
A

T
C

H

Master structure

PPU, programmable protection structure pair

ATT 03
1

U
R

U
W

U
X

P
R

P
WP
X

N
S

P
C

_
M

A
S

K
[1

5
:1

]

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 03
1

S
U

B
R

E
G

IO
N

_
D

IS
A

B
L

E

A
D

D
R

[2
3:

0]

P
C

_
M

A
T

C
H

Slave structure

ATT 03
1

U
R

 =
 

U
W

U
X

 =
 

P
R

 =
 

P
W

P
X

 =
 

N
S

P
C

_
M

A
S

K
[1

5:
1

]

E
N

A
B

LE
D

C
on

st
a

nt
 

R
E

G
IO

N
_

S
IZ

E

03
1

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing master and 
slave protection structures

P
C

_M
A

T
C

H

Master structure

SMPU, programmable protection structure pair



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 93

10.   DMA Controller (DW)

The DMA transfers data to and from memory, peripherals, and registers. These transfers occur independent from the CPU.
The DMA can be configured to perform multiple independent data transfers. All data transfers are managed by a channel.
There can be up to 32 channels in the DMA. The number of channels in the DMA controller can vary with devices. Refer to
the device datasheet for the number of channels supported in the device. A channel has an associated priority; channels are
arbitrated according to their priority. 

10.1 Features

The DMA controller has the following features:

■ Supports up to 29 channels per DMA controller; see the device datasheet for details

■ Supports multiple DMA controller instances in a device 

■ Four levels of priority for each channel

■ Descriptors are defined in memory and referenced to the respective channels

■ Supports single, 1D, or 2D transfer modes for a descriptor

■ Supports transfer of up to 65536 data elements per descriptor

■ Configurable source and destination address increments 

■ Supports 8-bit, 16-bit, and 32-bit data widths at both source and destination

■ Configurable input trigger behavior for each descriptor

■ Configurable interrupt generation in each descriptor

■ Configurable output trigger generation for each descriptor

■ Descriptors can be chained to other descriptors in memory 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - DMA

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 94

DMA Controller (DW)

10.2 Architecture

Figure 10-1.  DMA Controller

A data transfer is initiated by an input trigger. This trigger
may originate from the source peripheral of the transfer, the
destination peripheral of the transfer, CPU software, or from
another peripheral. Triggers provide Active/Sleep
functionality and are not available in Deep Sleep and
Hibernate power modes.

The data transfer details are specified by a descriptor.
Among other things, this descriptor specifies:

■ The source and destination address locations and the 
size of the transfer.

■ The actions of a channel; for example, generation of 
output triggers and interrupts. See the Interrupts chapter 
on page 54 for more details.

■ Data transfer types can be single, 1D, or 2D as defined 
in the descriptor structure. These types define the 
address sequences generated for source and 
destination. 1D and 2D transfers are used for “scatter 
gather” and other useful transfer operations.

10.3 Channels

The DMA controller supports multiple independent data
transfers that are managed by a channel. Each channel

connects to a specific system trigger through a trigger
multiplexer that is outside the DMA controller.

Channel priority: A channel is assigned a priority
(CHi_CTL.PRIO) between 0 and 3, with 0 being the highest
priority and 3 being the lowest priority. Channels with the
same priority constitute a priority group. Priority decoding
determines the highest priority pending channel, which is
determined as follows. 

■ The highest priority group with pending channels is 
identified first. 

■ Within this priority group, round-robin arbitration is 
applied.

Channel state: At any given time, one channel actively
performs a data transfer. This channel is called the active
channel. A channel can be in one of four channel states.
The active channel in a DW controller can be determined by
reading the DWx_STATUS[ACTIVE] and
DWx.STATUS[CH_IDX]. 

Pending state of a channel is determined by reading the
DW_CH_STRUCT_CH_STATUS[PENDING] associated
with that channel. If a channel is enabled and is not in the
Pending or Active state, then it is considered blocked.

Trigger 
Multiplexer

System 
Triggers 

Pending 
triggers

Priority 
Decoder

Data Transfer Engine 
(active request)

Bus slave 
interface

Bus master 
interface

DMA 
registers

DescriptorsDescriptorsDescriptors

Memory

DMA 

Trigger out

Interrupt

Table 10-1.  Channel States

Channel State Description

Disabled The channel is disabled by setting CHi_CTL.ENABLED to ‘0’. The channel trigger is ignored in this state.

Blocked The channel is enabled and is waiting for a trigger to initiate a data transfer.

Pending
The channel is enabled and has received an active trigger. In this state, the channel is ready to initiate a data transfer but 
waiting for it to be scheduled.

Active
The channel is enabled, has received an active trigger and has been scheduled. It is actively performing data transfers. If 
there are multiple channels pending, the highest priority pending channel is scheduled. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 95

DMA Controller (DW)

The data transfer associated with a trigger is made up of
one or more ‘atomic transfers’ or ‘single transfers’; see
Table 10-2 for a better understanding. A single trigger could
be configured to transfer multiple “single transfers”.

A channel can be marked preemptable
(CHi_CTL.PREEMPTABLE). If preemptable, and there is a
higher priority pending channel, then that higher priority
channel can preempt the current channel between single
transfers. If a channel is preempted, the existing single
transfer is completed; the current channel goes to pending
state and the higher priority channel is serviced. On
completion of the higher priority channel's transfer, the
pending channel is resumed. Note that preemption has an
impact on the data transfer rates of the channel being
preempted. Refer to “DMA Performance” on page 102 for
these performance implications.

A channel has two access control attributes that are used by
the shared memory protection units (SMPUs) and peripheral
protection units (PPUs) for access control. These fields are
typically inherited from the master that modified the
channel’s control register. 

■ The Privileged Mode (CHi_CTL.P) attribute can be set to 
privileged or user. 

■ The Non-secure (CHi_CTL.NS) attribute can be set to 
secure or non-secure. 

A descriptor associated with each channel describes the
data transfer. The descriptor is stored in memory and
CHi_CURR_PTR provides the descriptor address
associated with channel “i” and Chi_IDX provides the
current X and Y indices into the descriptor.

A channel’s descriptor state is encoded as part of the
channel’s register state. The following registers provide a
channel’s descriptor state:

■ CH_CTL. This register provides generic channel control 
information.

■ CH_CURR_PTR. This register provides the address of 
the memory location where the current descriptor is 
located. The user firmware must initialize this register. If 
the descriptors are chained, the DMA hardware 
automatically sets this register to the next descriptor 
pointer.

■ CH_IDX. This register provides the current X and Y 
indices of the channel into the current descriptor. User 
firmware must initialize this register. DMA hardware sets 
the X and Y indices to 0, when advancing from the 
current descriptor to the next descriptor in a descriptor 
list.

Note that channel state is retained in Deep Sleep power
mode.

10.3.1 Channel Interrupts

Every DMA channel has an interrupt line associated with it.
The INTR_TYPE parameter in the descriptor determines the

event that will trigger the interrupt for the channel. In
addition each DMA channel has INTR, INTR_SET,
INTR_MASK, and INTR_MASKED registers to control their
respective interrupt lines. INTR_MASK can be used to mask
the interrupt from the DMA channel. The INTR and
INTR_SET can be used to clear and set the interrupt,
respectively, for debug purposes.

The DW_CH_STRUCT_CH_STATUS[INTR_CAUSE] field
provides the user a means to determine the cause of the
interrupt being generated. The following are different values
for this register:

■ 0: No interrupt generated

■ 1: Interrupt based on transfer completion configured 
based on INTR_TYPE field in the descriptor

■ 2: Source bus error

■ 3: Destination bus error

■ 4: Misaligned source address

■ 5: Misaligned destination address

■ 6: Current descriptor pointer is null

■ 7: Active channel is in disabled state

■ 8: Descriptor bus error

■ 9-15: Not used.

For error related interrupt causes (INTR_CAUSE is 2, 3,...,
8), the channel is disabled (hardware sets
CH_CTL.ENABLED to ‘0’).

The bus errors are typically caused by incompatible
accesses to the addresses in question. This may be due to
those addresses being protected or having read or write
restrictions. Source and destination bus errors can also
occur due to mismatch in data sizes (see “Transfer Size” on
page 99). 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 96

DMA Controller (DW)

10.4 Descriptors

The data transfer between a source and destination in a channel is configured using a descriptor. Descriptors are stored in
memory. The descriptor pointer is specified in the DMA channel registers. The DMA controller does not modify the descriptor
and treats it as read only. A descriptor is a set of up to six 32-bit registers that contain the configuration for the transfer in the
associated channel. There are three types of descriptors.

Single Transfer: 

The following pseudo code illustrates a single transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
DST_ADDR[0] = (t_DATA_SIZE) SRC_ADDR[0];

Table 10-2.  Descriptor Types

Descriptor Type Description

Single transfer

Transfers a single data element 

1D transfer

Performs a one-dimensional “for loop”. This transfer is made up of X number of single transfers

2D transfer

Performs a two-dimensional “for loop”. This transfer is made up of Y number of 1D transfers

CRC transfer

This performs a one-dimensional “for loop” similar to the 1D transfer. However, the source data is not trans-
ferred to a destination. Instead, a CRC is calculated over the source data. The CRC configuration is provided 
through a set of registers that is shared by all DMA channels. The assumption is that the DMA channels use 
the CRC functionality mutually exclusively in time. These registers are: CRC_CTL, CRC_DATA_CTL, 
CRC_POL_CTL, CRC_LFSR_CTL, CRC_REM_CTL, and CRC_REM_RESULT. Note that the CRC configu-
ration is the same as the Crypto CRC configuration.

A B

A

A+1

A+2

A+X-1

B

B+1

B+2

B+ X-1

A

A+1

A+2

A+X-1

B

B+1

B+2

B+X-1

A+X

A+X+1

A+X+2

A+2X-1

B+X

B+X+1

B+X+2

B+2X-1

A+(X*Y)-1 B+X*Y-1

1st 1D transfer

2nd 1D transfer

Yth 1D transfer



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 97

DMA Controller (DW)

1D Transfer: 

The following pseudo code illustrates a 1D transfer. Note that the 1D transfer is represented by a loop with each iteration
executing a single transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR] = 
          (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR];
}

2D Transfer: 

The following pseudo code illustrates a 2D transfer. Note that the 2D transfer is represented by a loop with each iteration
executing an inner loop, which is the 1D transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
for (Y_IDX = 0; Y_IDX <= Y_COUNT; Y_IDX++) {
    for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR + Y_IDX * DST_Y_INCR ] = 
          (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR + Y_IDX * SRC_Y_INCR];
    }
}

CRC Transfer:  

The following psuedo code illustrates CRC transfer. 
// DST_ADDR is a pointer to an address location where the calculated CRC is stored.
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
CRC_STATE = CRC_LFSR_CTL;
for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
   Update_CRC (CRC_STATE, (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR];
}
DST_ADDR = CRC_STATE;

The parameters in the descriptor help configure the different aspects of the transfers explained. 

Figure 10-2 shows the structure of a descriptor. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 98

DMA Controller (DW)

Figure 10-2.  Descriptor Structure

10.4.1 Address Configuration

Source and Destination Address: The source and
destination addresses are set in the respective registers in
the descriptor. These set the base addresses for the source
and destination location for the transfer. In case the
descriptor is configured to transfer a single element, this
field holds the source/destination address of the data
element. If the descriptor is configured to transfer multiple
elements with source address or destination address or both
in an incremental mode, this field will hold the address of the
first element that is transferred.

DESCR_TYPE: This field configures whether the descriptor
has a single, 1D, or 2D type. 

Trigger input type, TR_IN_TYPE: This field determines
how the DMA engine responds to input trigger signal. This
field can be configured for one of the following modes:

■ Type 0: A trigger results in execution of a single transfer.
Regardless of the DESCR_TYPE setting, a trigger input
will trigger only a single element transfer. For example,
in a 1D transfer, the DMA will transfer only one data
element in every trigger. 

■ Type 1: A trigger results in the execution of a single 1D
transfer. If the DESCR_TYPE was set to single transfer,
the trigger signal will trigger the single transfer specified
by the descriptor. For a DESCR_TYPE set to 1D
transfer, the trigger signal will trigger the entire 1D
transfer configured in the descriptor. For a 2D transfer,
the trigger signal will trigger only a single iteration of the
Y loop transfer. 

■ Type 2: A trigger results in execution of the current
descriptor. Regardless of DESCR_TYPE, the trigger will
execute the entire descriptor. If there was a next
descriptor configured for the current descriptor, this

trigger setting will not automatically trigger the next
descriptor.

■ Type 3: A trigger results in execution of the current
descriptor and also triggering the next descriptor. The
execution of the next descriptor from this point will be
determined by the TR_IN_TYPE setting of the next
descriptor.

Trigger out type, TR_OUT_TYPE: This field determines
what completion event will generate the output trigger
signal. This field can be configured to one of the following
modes: 

■ Type 0: Generates a trigger output for completion of
every single element transfer. 

■ Type 1: Generates a trigger output for completion of a
1D transfer

■ Type 2: Generates a trigger output for completion of the
current descriptor. This trigger output is generated
independent of the state of the DESCR_NEXT_PTR. 

■ Type 3: Generates a trigger output on completion of the
current descriptor, when the current descriptor is the last
descriptor in the descriptor chain. This means a trigger is
generated when the descriptor execution is complete
and the DESCR_NEXT_PTR is ‘0’.

Interrupt Type, INTR_TYPE: This field determines which
completion event will generate the output interrupt signal.
This field can be configured to one of the following modes: 

■ Type 0: Generates an interrupt output for completion of
every single element transfer. 

■ Type 1: Generates an interrupt output for completion of a
1-D transfer.

Descriptor

Source Address
DESCR_SRC

Destination Address
DESCR_DST

X Size
SRC_X_INR DST_X_INCR

Y Size
SRC_Y_INR DST_Y_INCR

Next Descriptor Address
DESCR_NEXT_PTR

DESCR_TYPE
DESCR_CTL

TR_IN_TYPE
SCR_TRANSFER_SIZE

TR_OUT_TYPE
DST_TRANSFER_SIZE

DATA_SIZE

WAIT_FOR_DEACTINTR_TYPE CH_DISABLE



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 99

DMA Controller (DW)

■ Type 2: Generates an interrupt output for completion of
the current descriptor. This interrupt output is generated
independent of the state of the DESCR_NEXT_PTR. 

■ Type 3: Generates an interrupt output on completion of
the current descriptor, when the current descriptor is the
last descriptor in the descriptor chain. This means an
interrupt is generated when the descriptor execution is
complete and the DESCR_NEXT_PTR is ‘0’.

WAIT_FOR_DEACT: When the DMA transfer based on the
TR_IN_TYPE is completed, the data transfer engine checks
the state of trigger deactivation. The data transfer on the
second trigger is initiated only after deactivation of the first.
The WAIT_FOR_DEACT parameter will determine when the
trigger signal is considered deactivated. The first DMA
transfer is activated when the trigger is activated, but the
transfer is not considered complete until the trigger is
deactivated. This field is used to synchronize the controller’s
data transfers with the agent that generated the trigger. This
field has four settings:

■ 0 – Pulse Trigger: Do not wait for deactivation. When a
trigger is detected, the transfer is initiated. After
completing the transfer, if the trigger is still active then it
is considered as another trigger and the subsequent
transfer is initiated immediately.

■ 1 – Level-sensitive waits four slow clock cycles after the
transfer to consider as a deactivation. When a trigger is
detected, the transfer is initiated. After completing the
transfer, if the trigger is still active then it is considered
as another trigger after waiting for four cycles. Then, a
subsequent transfer is initiated. The transfer
corresponding to the trigger is considered complete only
at the end of the four additional cycles. Even trigger
output events will be affected based on this delay. This
parameter adds a four-cycle delay in each trigger
transaction and hence affects throughput. 

■ 2 – Level-sensitive waits 16 slow clock cycles after the
transfer to consider as a deactivation. When a trigger is
detected, the transfer is initiated. After completing the
transfer, if the trigger is still active then it is considered
as another trigger after waiting for 16 cycles. Then, a
subsequent transfer is initiated. The transfer
corresponding to the trigger is considered complete only
at the end of the 16 additional cycles. Even trigger
output events will be affected based on this delay. This
parameter adds a 16-cycle delay in each trigger
transaction and hence affects throughput.

■ 3 – Pulse trigger waits indefinitely for deactivation. The
DMA transfer is initiated after the trigger signal
deactivates. The next transfer is initiated only if the
trigger goes low and then high again. A trigger signal
that remains active or does not transition to zero
between two transaction will simply stall the DMA
channel. 

The WAIT_FOR_DEACT field is used in a system to 
cater to delayed response of other parts of the system to 
actions of the DMA. Consider an example of a TX FIFO 

that has a trigger going to the DMA when its not full. 
Free space in FIFO will trigger a DMA transfer to the 
FIFO, which in turn will deactivate the trigger. However, 
there can be a delay in this deactivation by the agent, 
which may cause the DMA to have initiated another 
transfer that can cause a FIFO overflow. This can be 
avoided by using the four or 16 clock cycle delays. 

X Count: This field determines the number of single
element transfers present in the X loop (inner loop). This
field is valid when the DESCR_TYPE is set to 1D or 2D
transfer. 

Source Address Increment (X loop) (SCR_X_INCR): This
field configures the index by which the source address is to
be incremented for every iteration in an X loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or
incrementing. If the source address does not need to be
incremented, you can set this parameter to zero. 

Destination Address Increment (X loop) (DST_X_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in an X
loop. The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero. 

Y Count: This field determines the number of 1-D transfers
present in the Y loop (outer loop). This field is valid when the
DESCR_TYPE is set to 2-D transfer. 

Source Address Increment (Y loop) (SCR_Y_INCR): This
field configures the index by which the source address is to
be incremented, for every iteration in a Y loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or
incrementing. If the source address does not need to be
incremented, you can set this parameter to zero. 

Destination Address Increment (X loop) (DST_Y_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in a Y loop.
The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero. 

Channel Disable (CH_DISABLE): This field specifies
whether the channel is disabled or not after completion of
the current descriptor (independent of the value of the
DESCR_NEXT_PTR). A disabled channel will ignore its
input triggers. 

10.4.2 Transfer Size

The word width for a transfer can be configured using the
transfer/data size parameter in the descriptor. The settings



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 100

DMA Controller (DW)

are diversified into source transfer size, destination transfer
size, and data size. The data size parameter (DATA_SIZE)
sets the width of the bus for the transfer. The source and
destination transfer sizes set by SCR_TRANSFER_SIZE
and DST_TRANSFER_SIZE can have a value either the
DATA_SIZE or 32 bit. DATA_SIZE can have a 32-bit, 16-bit,
or 8-bit setting. 

The source and destination transfer size for the DMA must
match the addressable width of the source and destination,
regardless of the width of data that must be moved. The
DATA_SIZE parameter will correspond to the width of the
actual data. For example, if a 16-bit PWM is used as a
destination for DMA data, the DST_TRANSFER_SIZE must

be set to 32 bit to match the width of the PWM register,
because the peripheral register width for the TCPWM block
(and most PSoC 6 MCU peripherals) is always 32-bit wide.
However, in this example the DATA_SIZE for the destination
may still be set to 16 bit because the 16-bit PWM only uses
two bytes of data. SRAM and Flash are 8-bit, 16-bit, or 32-
bit addressable and can use any source and destination
transfer sizes to match the needs of the application.

Table 10-3 summarizes the possible combinations of the
transfer size settings and its description.

10.4.3 Descriptor Chaining

Descriptors can be chained together. The DESCR_NEXT_PTR field contains a pointer to the next descriptor in the chain. A
channel executes the next descriptor in the chain when it completes executing the current descriptor. The last descriptor in
the chain has DESCR_NEXT_PTR set to ‘0’ (NULL pointer). A descriptor chain is also referred to as a descriptor list. It is
possible to have a circular list; in a circular list, the execution continues indefinitely until there is an error or the channel or the
controller is disabled by user code.

Table 10-3.  Transfer Size Settings

DATA_SIZE
SCR_TRANSFER_

SIZE
DST_TRANSFER_

SIZE
Typical Usage Description 

8-bit 8-bit 8-bit Memory to Memory No data manipulation

8-bit 32-bit 8-bit Peripheral to Memory Higher 24 bits from the source dropped

8-bit 8-bit 32-bit Memory to Peripheral Higher 24 bits zero padded at destination

8-bit 32-bit 32-bit Peripheral to Peripheral
Higher 24 bits from the source dropped and 
higher 24 bits zero padded at destination

16-bit 16-bit 16-bit Memory to Memory No data manipulation

16-bit 32-bit 16-bit Peripheral to Memory Higher 16 bits from the source dropped

16-bit 16-bit 32-bit Memory to Peripheral Higher 16 bits zero padded at destination

16-bit 32-bit 32-bit Peripheral to Peripheral
Higher 16 bits from the source dropped and 
higher 16-bit zero padded at destination

32-bit 32-bit 32-bit Peripheral to Peripheral No data manipulation



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 101

DMA Controller (DW)

10.5 DMA Controller

Figure 10-3.  DMA Controller Overview

10.5.1 Trigger Selection

Trigger signals can be generated from different sections of
the chips. A trigger multiplexer block helps route these
trigger signals to the destination. The DMA is one such
destination of triggers. The trigger multiplexer block is
outside the DMA block and is discussed in the Trigger
Multiplexer Block chapter on page 261. 

10.5.2 Pending Triggers

Pending triggers keep track of activated triggers by locally
storing them in pending bits. This is essential because
multiple channel triggers may be activated simultaneously,
whereas only one channel can be served by the data
transfer engine at a time. This component enables the use
of both level-sensitive (high/‘1’) and pulse-sensitive (two
high/‘1’ clk_slow cycles) triggers.

■ Level-sensitive triggers are associated with a certain
state, for example, a FIFO being full. These triggers
remain active as long as the state is maintained. It is not
required to track pending level-sensitive triggers in the
DMA controller because the triggers are maintained
outside the controller.

■ Pulse-sensitive triggers are associated with a certain
event, for example, an ADC sample has become
available. It is essential to track these triggers in the
DMA controller because the trigger pulse may disappear
before it is served by the data transfer engine. Pulse
triggers should be high/‘1’ for two clk_slow cycles.

The priority decoder determines the highest priority
pending channel. 

The data transfer engine is responsible for the data
transfer from a source location to a destination location.
When idle, the data transfer engine is ready to accept the

highest priority activated channel. It is also responsible for
reading the channel descriptor from memory.

Master I/F is an AHB-Lite bus master that allows the DMA
controller to initiate AHB-Lite data transfers to the source
and destination locations as well as to read the descriptor
from memory.

Slave I/F is an AHB-Lite bus slave that allows the main CPU
to access DMA controller control/status registers.

10.5.3 Output Triggers

Each channel has an output trigger. This trigger is high for
two slow clock cycles. The trigger is generated on the
completion of a data transfer. At the system level, these
output triggers can be connected to the trigger multiplexer
component. This connection allows a DMA controller output
trigger to be connected to a DMA controller input trigger. In
other words, the completion of a transfer in one channel can
activate another channel or even reactivate the same
channel. 

DMA output triggers also connect to digital system
interconnects (DSI) and some DSI signals connect to the
trigger multiplexer inputs. Trigger outputs routing to other
DMA channels or other peripheral trigger inputs is achieved
using the trigger multiplexer. Refer to the Trigger Multiplexer
Block chapter on page 261.

10.5.4 Status registers

The controller status register (DWx_STATUS) contains the
following information.

■ ACTIVE – Active channel present, yes/no.

■ P – Active channel's access control user/privileged

■ NS – Active channel's access control secure/non-secure

Trigger 
Multiplexer

System 
Triggers 

Pending 
triggers

Priority 
Decoder

Data Transfer Engine 
(active request)

Bus slave 
interface

Bus master 
interface

DMA 
registers

DescriptorsDescriptorsDescriptors

Memory

DMA 

Trigger out

Interrupt



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 102

DMA Controller (DW)

■ CH_IDX – Active channel index if there is an active 
channel

■ PRIO – Active channel priority

■ PREEMPTABLE – Active channel pre-emptable or not

■ STATE – State of the DW controller state machine. The 
following states are specified:

❐ Default/inactive state

❐ Loading descriptor: This state is when the controller 
has recognized the channel that was triggered and 
become active and is now loading its respective 
descriptor.

❐ Loading data element: Reading data from source 
address

❐ Storing data element: Writing data into the destina-
tion address

❐ Update of active channel control information

❐ Waiting for input trigger deactivation

10.5.5 DMA Performance

The DMA block works on the clk_slow domain and hence all
clocks described in this section are in clk_slow units. 

Every time a DMA channel is triggered the DMA hardware
goes through the following steps: 

■ Trigger synchronization

■ Detection, priority decoding, and making channel 
pending

■ Start state machine and load channel configuration

■ Load DMA descriptor 

■ Load next DMA descriptor pointer

■ Moving first element of data from source to destination. 

Each of these steps involve multiple cycles for completion.
Table 10-4 shows the number of cycles needed for each
step. 

For subsequent transfers on a preloaded descriptor, cycles are needed only to move the data from source to destination.
Therefore, transfers such as 1-D and 2-D, which are not preempted, incurs all the cycles only for the first transfer; subsequent
transfers will cost three cycles. 

Based on the configuration of TRIG_IN_TYPE, the trigger synchronization cycles may be incurred for each single element
transfer or for each 1-D transfer.

The descriptor is four words long for a single transfer type, five words for 1-D transfer, and six words for a 2-D transfer. Hence,
the number of cycles needed to fetch a descriptor will vary based on its type. 

Another factor to note is the latency in data or descriptor fetch due to wait states or bus latency.

The DMA performance for different types of transfers can be summarized as follows. 

■ Single transfer

❐ 14 cycles per transfer + latency due to wait states or bus latency

■ 1D transfer

❐ To transfer n data elements

Number of cycles = 12 + n * 3 + m

m is the total number of wait states seen by DMA while loading or storing descriptors or data. An additional cycle is
required for the first transfer, to load the X-Loop configuration register.

■ 2D transfer

❐ If the 2 D transfer is transferring n elements then 

Table 10-4.  DMA Steps and Performance

Operation Cycles 

Trigger Synchronization 2

Detection, priority decoding and making channel pending 1

Start state machine and load channel config 3

Load descriptors

4 for single transfer

5 for 1-D transfer 

6 for 2-D transfer

Load next pointer 1

Moving data from source to destination 3

Total 14 for single transfer



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 103

DMA Controller (DW)

Number of cycles = 13 + n * 3 + m

m is total number of wait states seen by DMA while loading or storing descriptors or data. Two additional cycles are
required for the first transfer, to load the X-loop and Y-Loop configuration register.

Note: Descriptors in memory and memory wait states will also affect the descriptor load delay.

■ Wait states: Memory accesses can have a wait state associated with them. These wait states need to be accounted into 
the calculation of throughput.

■ Channel arbitration: Some time channels are not immediately made active after reception of trigger. This is due to other 
active channels in the system. This can lead to multiple cycles being lost before the channel is even made active. 

■ Preemption: The choice of making a DMA channel preemptable impacts its performance. This is because every time a 
channel is prempted:

❐ The channel is in a pending state for as long as the higher priority channel is running

❐ On resumption, the channel descriptor needs to be fetched again. This is additional cycles for every resume. So if 
there are a large number of high-priority channels, making a low-priority channel preemptible can have adverse effects 
on its throughput. On the other hand, if there is a low-priority channel that is transferring a large amount of data, then 
not making it preemptable can starve other high-priority channels for too long. 

Sometimes, users can also distribute channels across multiple DW blocks to avoid conditions of preemption and deal with 
the contention at the bus arbitration level. 

■ Bus arbitration: Several bus masters access the bus, including the CPU cores and multiple DMA (DW) and DMAC. This 
makes any access to data movement over the bus subject to arbitration with other masters. Actions such as fetching the 
descriptor or data can be stalled by arbitration. The arbitration of the bus is based on the arbitration scheme configured in 
PROT_SMPU_MSx_CTL[PRIO]

■ Transfer width: The width of the transfer configured by the Data_size parameter in the descriptor is important in the 
transfer throughput calculation. 32-bit transfers are four times faster than 8-bit transfers. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 104

11.   DMAC Controller (DMAC)

The DMAC transfers data to and from memory, peripherals, and registers. These transfers occur independent from the CPU.
The DMAC can be configured to perform multiple independent data transfers. All data transfers are managed by a channel.
There can be up to 32 channels in the DMAC. The number of channels in the DMAC controller can vary with devices. Refer to
the device datasheet for the number of channels supported in the device. A channel has an associated priority; channels are
arbitrated according to their priority. The main difference between the DMA (DW) and DMAC relate to their usage. The DMA
(DW) is meant as a small data size, transactional DMA, which would typically be used to transfer bytes between peripherals
such as, from ADC to RAM. Using the DMA (DW) for large transaction is expensive on a system due to its relatively low
performance. The DMAC is a transitional DMA. It is more efficient than the DMA (DW) and should be used to transfer large
amounts of data. The DMAC has dedicated channel logic for all channels. Furthermore, the DMAC also includes a 12-byte
FIFO for temporary data storage. This results in increased memory bandwidth for the DMAC. The DMAC also supports an
additional transfer mode called memory copy and scatter transfer.

11.1 Features

The DMAC controller has the following features:

■ Supports up to channels per DMAC controller; see the device datasheet for details

■ Four levels of priority for each channel

■ Descriptors are defined in memory and referenced to the respective channels

■ Supports single, 1D, 2D, Memory-copy, or Scatter-transfer modes for a descriptor

■ Supports transfer of up to 2^32 data elements per descriptor

■ Configurable source and destination address increments 

■ Supports 8-bit, 16-bit, and 32-bit data widths at both source and destination

■ Configurable input trigger behavior for each descriptor

■ Configurable interrupt generation in each descriptor

■ Configurable output trigger generation for each descriptor

■ Descriptors can be chained to other descriptors in memory 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation - DMAC

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 105

DMAC Controller (DMAC)

11.2 Architecture

A data transfer is initiated by an input trigger. This trigger
may originate from the source peripheral of the transfer, the
destination peripheral of the transfer, CPU software, or from
another peripheral. Triggers provide Active/Sleep
functionality and are not available in Deep Sleep and
Hibernate power modes.

The data transfer details are specified by a descriptor.
Among other things, this descriptor specifies:

■ The source and destination address locations and the 
size of the transfer.

■ The actions of a channel; for example, generation of 
output triggers and interrupts. See the Interrupts chapter 
on page 54 for more details.

■ Data transfer types can be single, 1D, or 2D as defined 
in the descriptor structure. These types define the 
address sequences generated for source and 
destination. 1D and 2D transfers are used for “scatter 
gather” and other useful transfer operations.

11.3 Channels

The DMAC controller supports multiple independent data
transfers that are managed by a channel. Each channel
connects to a specific system trigger through a trigger
multiplexer that is outside the DMAC controller.

Channel priority: A channel is assigned a priority
(CHi_CTL.PRIO) between 0 and 3, with 0 being the highest
priority and 3 being the lowest priority. Channels with the
same priority constitute a priority group. Priority decoding
determines the highest priority pending channel, which is
determined as follows. 

■ The highest priority group with pending channels is 
identified first. 

■ Within this priority group, round-robin arbitration is 
applied. Round-robin arbitration within a priority group 
gives the highest priority to the lower channel indices in 
the priority group.

The data transfer associated with a trigger is made up of
one or more ‘atomic transfers’ or ‘single transfers’; see
Table 11-1 for a better understanding. A single trigger could
be configured to transfer multiple “single transfers”.

Channel Registers:

■ CH_CTL. This register provides generic channel control 
information.

■ CH_CURR_PTR. This register provides the memory 
location address where the current descriptor is located. 
Software needs to initialize this register. Hardware sets 
this register to the current descriptor’s next descriptor 
pointer, when advancing from the current descriptor to 
the next descriptor in a chained descriptor list. When this 
field is “0”, there is no valid descriptor.

■ CH_IDX. This register provides the current X and Y 
indices of the channel into the current descriptor. 
Software needs to initialize this register. Hardware sets 
the X and Y indices to 0, when advancing from the 
current descriptor to the next descriptor in a descriptor 
list.

■ CH_SRC. This register provides the current address of 
the source location.

■ CH_DST. This register provides the current address of 
the destination location.

■ CH_DESCR_STATUS. This register provides the validity 
of other CH_DESCR registers.

■ CH_DESCR_CTL. This register contains a copy of 
DESCR_CTL of the currently active descriptor.

■ CH_DESCR_SRC. This register contains a copy of 
DESCR_SRC of the currently active descriptor.

■ CH_DESCR_DST. This register contains a copy of 
DESCR_DST of the currently active descriptor.

■ CH_DESCR_X_INCR. This register contains a copy of 
DESCR_X_INCR of the currently active descriptor.

■ CH_DESCR_X_SIZE. This register contains a copy of 
DESCR_X_SIZE of the currently active descriptor.

■ CH_DESCR_Y_INCR. This register contains a copy of 
DESCR_Y_INCR of the currently active descriptor.

■ CH_DESCR_Y_SIZE. This register contains a copy of 
DESCR_Y_SIZE of the currently active descriptor.

■ CH_DESCR_NEXT_PTR. This register contains a copy 
of DESCR_NEXT_PTR of the currently active descriptor.

■ INTR. This register contains the interrupts that are 
currently activated for this channel 

■ INTR_SET. Writing ‘1’ to the appropriate bit in this 
register sets the corresponding INTR field to 1.

■ INTR_MASK. Mask for corresponding field in the INTR 
register.

■ INTR_MASKED. Logical AND of corresponding INTR 
and INTR_MASK fields.

Note that channel state is retained in Deep Sleep power
mode.

A channel has three access control attributes that are used
by the shared memory protection units (SMPUs) and
peripheral protection units (PPUs) for access control. These
fields are typically inherited from the master that modified
the channel’s control register. 

■ The Privileged Mode (CHi_CTL.P) attribute can be set to 
privileged or user. 

■ The Non-secure (CHi_CTL.NS) attribute can be set to 
secure or non-secure. 

■ The Protection context (CHi.CTL.PC) attribute can be 
set to one of the protection contexts.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 106

DMAC Controller (DMAC)

11.3.1 Channel Interrupts

Every DMAC channel has an interrupt line associated with it. The INTR_TYPE parameter in the descriptor determines the
event that will trigger the interrupt for the channel. In addition, each DMAC channel has INTR, INTR_SET, INTR_MASK, and
INTR_MASKED registers to control their respective interrupt lines. INTR_MASK can be used to mask the interrupt from the
DMA channel. The INTR and INTR_SET can be used to clear and set the interrupt, respectively, for debug purposes.

The DMAC_CHx_INTR registers allow the user to set different interrupt causes. The following causes are available to
configure:

■ bit 0: Interrupt based on transfer completion configured based on INTR_TYPE field in the descriptor

■ bit 1: Source bus error

■ bit 2: Destination bus error

■ bit 3: Misaligned source address

■ bit 4: Misaligned destination address

■ bit 5: Current descriptor pointer is null

■ bit 6: Active channel is in disabled state

■ bit 7: Descriptor bus error

For error-related interrupt causes (every state other than Completion), the channel is disabled (hardware sets
CH_CTL.ENABLED to ‘0’).



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 107

DMAC Controller (DMAC)

11.4 Descriptors

The data transfer between a source and destination in a channel is configured using a descriptor. Descriptors are stored in
memory. The descriptor pointer is specified in the DMAC channel registers. The DMAC controller does not modify the
descriptor and treats it as read only. A descriptor is a set of up to six 32-bit registers that contain the configuration for the
transfer in the associated channel. There are three types of descriptors.

Table 11-1.  Descriptor Types

Descriptor Type Description

Single transfer

Transfers a single data element 

1D transfer

Performs a one-dimensional “for loop”. This transfer is made up of X number of single transfers

2D transfer

Performs a two-dimensional “for loop”. This transfer is made up of Y number of 1D transfers

Scatter transfer

This descriptor type is intended to write a set of 32-bit data elements, whose addresses are “scattered” 
around the address space.

The size of the descriptor is four 32-bit words. DESCR_CTL, DESCR_SRC, DESCR_X_SIZE, and 
DESCR_NEXT_PTR.

A B

A

A+1

A+2

A+X-1

B

B+1

B+2

B+ X-1

A

A+1

A+2

A+X-1

B

B+1

B+2

B+X-1

A+X

A+X+1

A+X+2

A+2X-1

B+X

B+X+1

B+X+2

B+2X-1

A+(X*Y)-1 B+X*Y-1

1st 1D transfer

2nd 1D transfer

Yth 1D transfer



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 108

DMAC Controller (DMAC)

Single Transfer: 

The following pseudo code illustrates a single transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
DST_ADDR[0] = (t_DATA_SIZE) SRC_ADDR[0];

1D Transfer: 

The following pseudo code illustrates a 1D transfer. Note that the 1D transfer is represented by a loop with each iteration
executing a single transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR] = 
          (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR];
}

2D Transfer: 

The following pseudo code illustrates a 2D transfer. Note that the 2D transfer is represented by a loop with each iteration
executing an inner loop, which is the 1D transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
for (Y_IDX = 0; Y_IDX <= Y_COUNT; Y_IDX++) {
    for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR + Y_IDX * DST_Y_INCR ] = 
          (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR + Y_IDX * SRC_Y_INCR];
    }
}



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 109

DMAC Controller (DMAC)

The parameters in the descriptor help configure the different aspects of the transfers explained. 

Figure 11-2 shows the structure of a descriptor. 

Figure 11-1.  Descriptor Structure

11.4.1 Address Configuration

Source and Destination Address: The source and
destination addresses are set in the respective registers in
the descriptor. These set the base addresses for the source
and destination location for the transfer. In case the
descriptor is configured to transfer a single element, this
field holds the source/destination address of the data
element. If the descriptor is configured to transfer multiple
elements with source address or destination address or both
in an incremental mode, this field will hold the address of the
first element that is transferred.

DESCR_TYPE: This field configures whether the descriptor
has a single, 1D, 2D type, memory copy, or scatter transfer.

Source data prefetch, DATA_PREFETCH: When enabled,
source data transfers are initiated as soon as the channel is
enabled; the current descriptor pointer is not “0” and there is
space available in the channel's data FIFO. When the input
trigger is activated, the trigger can initiate destination data
transfers with data that is already in the channel's data
FIFO. This effectively shortens the initial delay of the data
transfer.

Note: Data prefetch should be used with care to ensure that
data coherency is guaranteed and that prefetches do not
cause undesired side effects.

Trigger input type, TR_IN_TYPE: This field determines
how the DMAC engine responds to input trigger signal. This
field can be configured for one of the following modes:

■ Type 0: A trigger results in execution of a single transfer.
Regardless of the DESCR_TYPE setting, a trigger input

will trigger only a single element transfer. For example,
in a 1D transfer, the DMAC will transfer only one data
element in every trigger. 

■ Type 1: A trigger results in the execution of a single 1D
transfer. If the DESCR_TYPE was set to single transfer,
the trigger signal will trigger the single transfer specified
by the descriptor. For a DESCR_TYPE set to 1D
transfer, the trigger signal will trigger the entire 1D
transfer configured in the descriptor. For a 2D transfer,
the trigger signal will trigger only a single iteration of the
Y loop transfer. If the descriptor type is “memory copy”,
the trigger results in the execution of a memory copy
transfer.

■ Type 2: A trigger results in execution of the current
descriptor. Regardless of DESCR_TYPE, the trigger will
execute the entire descriptor. If there was a next
descriptor configured for the current descriptor, this
trigger setting will not automatically trigger the next
descriptor.

■ Type 3: A trigger results in execution of the current
descriptor and also triggering the next descriptor. The
execution of the next descriptor from this point will be
determined by the TR_IN_TYPE setting of the next
descriptor.

Descriptor

Source Address
DESCR_SRC

Destination Address
DESCR_DST

X Size
SRC_X_INR DST_X_INCR

Y Size
SRC_Y_INR DST_Y_INCR

Next Descriptor Address
DESCR_NEXT_PTR

DESCR_TYPE
DESCR_CTL

TR_IN_TYPE
SCR_TRANSFER_SIZE

TR_OUT_TYPE
DST_TRANSFER_SIZE

DATA_SIZE

WAIT_FOR_DEACTINTR_TYPE CH_DISABLE



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 110

DMAC Controller (DMAC)

Trigger out type, TR_OUT_TYPE: This field determines
what completion event will generate the output trigger
signal. This field can be configured to one of the following
modes: 

■ Type 0: Generates a trigger output for completion of
every single element transfer. 

■ Type 1: Generates a trigger output for completion of a
1D transfer. If the descriptor type is “memory copy”, the
output trigger is generated after the execution of a
memory copy transfer. If the descriptor type is “scatter”,
the output trigger is generated after the execution of a
scatter transfer.

■ Type 2: Generates a trigger output for completion of the
current descriptor. This trigger output is generated
independent of the state of the DESCR_NEXT_PTR. 

■ Type 3: Generates a trigger output on completion of the
current descriptor, when the current descriptor is the last
descriptor in the descriptor chain. This means a trigger is
generated when the descriptor execution is complete
and the DESCR_NEXT_PTR is ‘0’.

Interrupt Type, INTR_TYPE: This field determines which
completion event will generate the output interrupt signal.
This field can be configured to one of the following modes: 

■ Type 0: Generates an interrupt output for completion of
every single element transfer. 

■ Type 1: Generates an interrupt output for completion of a
1-D transfer. If the descriptor type is “memory copy”, the
interrupt is generated after the execution of a memory
copy transfer. If the descriptor type is “scatter” the
interrupt is generated after the execution of a scatter
transfer.

■ Type 2: Generates an interrupt output for completion of
the current descriptor. This interrupt output is generated
independent of the state of the DESCR_NEXT_PTR. 

■ Type 3: Generates an interrupt output on completion of
the current descriptor, when the current descriptor is the
last descriptor in the descriptor chain. This means an
interrupt is generated when the descriptor execution is
complete and the DESCR_NEXT_PTR is ‘0’.

WAIT_FOR_DEACT: When the DMAC transfer based on
the TR_IN_TYPE is completed, the data transfer engine
checks the state of trigger deactivation. The data transfer on
the second trigger is initiated only after deactivation of the
first. The WAIT_FOR_DEACT parameter will determine
when the trigger signal is considered deactivated. The first
DMAC transfer is activated when the trigger is activated, but
the transfer is not considered complete until the trigger is
deactivated. This field is used to synchronize the controller’s
data transfers with the agent that generated the trigger. This
field has four settings:

■ 0 – Pulse Trigger: Do not wait for deactivation.

■ 1 – Level-sensitive waits four SYSCLK cycles: The
DMAC trigger is deactivated after the level trigger signal
is detected for four cycles. 

■ 2 – Level-sensitive waits 16 SYSCLK cycles: The DMAC
transfer is initiated if the input trigger is seen to be
activated after 16 clock cycles.

■ 3 – Pulse trigger waits indefinitely for deactivation. The
DMAC transfer is initiated after the trigger signal
deactivates. The next transfer is initiated only if the
trigger goes low and then high again. 

X Size: This field determines the number of single element
transfers present in the X loop (inner loop). This field is valid
when the DESCR_TYPE is set to 1D or 2D transfer. For the
“memory copy” descriptor type, (X_COUNT + 1) is the
number of transferred Bytes. For the “scatter” descriptor
type, ceiling (X_COUNT/2) is the number of (address, write
data) initialization pairs processed.

Source Address Increment (X loop) (SCR_X_INCR): This
field configures the index by which the source address is to
be incremented for every iteration in an X loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or
incrementing. If the source address does not need to be
incremented, you can set this parameter to zero. 

Destination Address Increment (X loop) (DST_X_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in an X
loop. The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero. 

Y Size: This field determines the number of 1-D transfers
present in the Y loop (outer loop). This field is valid when the
DESCR_TYPE is set to 2-D transfer. 

Source Address Increment (Y loop) (SCR_Y_INCR): This
field configures the index by which the source address is to
be incremented, for every iteration in a Y loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or
incrementing. If the source address does not need to be
incremented, you can set this parameter to zero. 

Destination Address Increment (X loop) (DST_Y_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in a Y loop.
The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero. 

Channel Disable (CH_DISABLE): This field specifies
whether the channel is disabled or not after completion of
the current descriptor (independent of the value of the
DESCR_NEXT_PTR). A disabled channel will ignore its
input triggers. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 111

DMAC Controller (DMAC)

11.4.2 Transfer Size

The word width for a transfer can be configured using the
transfer/data size parameter in the descriptor. The settings
are diversified into source transfer size, destination transfer
size, and data size. The data size parameter (DATA_SIZE)
sets the width of the bus for the transfer. The source and
destination transfer sizes set by SCR_TRANSFER_SIZE
and DST_TRANSFER_SIZE can have a value either the
DATA_SIZE or 32 bit. DATA_SIZE can have a 32-bit, 16-bit,
or 8-bit setting. 

The source and destination transfer size for the DMAC must
match the addressable width of the source and destination,
regardless of the width of data that must be moved. The
DATA_SIZE parameter will correspond to the width of the

actual data. For example, if a 16-bit PWM is used as a
destination for DMAC data, the DST_TRANSFER_SIZE
must be set to 32 bit to match the width of the PWM register,
because the peripheral register width for the TCPWM block
(and most PSoC 6 MCU peripherals) is always 32-bit wide.
However, in this example the DATA_SIZE for the destination
may still be set to 16 bit because the 16-bit PWM only uses
two bytes of data. SRAM and Flash are 8-bit, 16-bit, or 32-
bit addressable and can use any source and destination
transfer sizes to match the needs of the application.

Table 11-2 summarizes the possible combinations of the
transfer size settings and its description.

11.4.3 Descriptor Chaining

Descriptors can be chained together. The DESCR_NEXT_PTR field contains a pointer to the next descriptor in the chain. A
channel executes the next descriptor in the chain when it completes executing the current descriptor. The last descriptor in
the chain has DESCR_NEXT_PTR set to ‘0’ (NULL pointer). A descriptor chain is also referred to as a descriptor list. It is
possible to have a circular list; in a circular list, the execution continues indefinitely until there is an error or the channel or the
controller is disabled by user code.

Table 11-2.  Transfer Size Settings

DATA_SIZE SCR_TRANSFER_SIZE DST_TRANSFER_SIZE Description 

8-bit 8-bit 8-bit No data manipulation

8-bit 32-bit 8-bit Higher 24 bits from the source dropped

8-bit 8-bit 32-bit Higher 24 bits zero padded at destination

8-bit 32-bit 32-bit
Higher 24 bits from the source dropped and higher 24 bits 
zero padded at destination

16-bit 16-bit 16-bit No data manipulation

16-bit 32-bit 16-bit Higher 16 bits from the source dropped

16-bit 16-bit 32-bit Higher 16 bits zero padded at destination

16-bit 32-bit 32-bit
Higher 16 bits from the source dropped and higher 16-bit 
zero padded at destination

32-bit 32-bit 32-bit No data manipulation



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 112

DMAC Controller (DMAC)

11.5 DMAC Controller

Figure 11-2.  DMAC Controller Overview

11.5.1 Trigger Selection

Trigger signals can be generated from different sections of
the chips. A trigger multiplexer block helps route these
trigger signals to the destination. The DMAC is one such
destination of triggers. The trigger multiplexer block is
outside the DMAC block and is discussed in the Trigger
Multiplexer Block chapter on page 261. 

11.5.2 Channel Logic

The channel logic keeps track of pending triggers for each
channel and initiates the transfer corresponding to the active
descriptor, based on availability of the bus and arbitration by
priority decoder.

The priority decoder determines the highest priority
pending channel. 

Master I/F is an AHB-Lite bus master that allows the DMAC
controller to initiate AHB-Lite data transfers to the source
and destination locations as well as to read the descriptor
from memory.

Slave I/F is an AHB-Lite bus slave that allows the main CPU
to access DMAC controller control/status registers.

11.5.3 Output Triggers

Each channel has an output trigger. This trigger is high for
two slow clock cycles. The trigger is generated on the
completion of a data transfer. At the system level, these
output triggers can be connected to the trigger multiplexer
component. This connection allows a DMAC controller
output trigger to be connected to a DMAC controller input
trigger. In other words, the completion of a transfer in one
channel can activate another channel or even reactivate the
same channel. 

DMAC output triggers routing to other DMAC channels or
other peripheral trigger inputs is achieved using the trigger
multiplexer. Refer to the Trigger Multiplexer Block chapter
on page 261.

DMA controller

Pending trigger

Channel0 logic

Priority 
decoder

Bus master 
interface

Data transfer engine

Bus slave 
interface 

DMAC registers

Channel2 logic

Channel31 logic

� ...

Memory
Memory holds channel 
descriptor structure

Trigger 
multiplexers

tr_out[]
System Triggers

tr_in[0]

tr_in[1]

tr_in[CH_NR-1]

Channel state



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 113

12.   Cryptographic Function Block (Crypto)

The Cryptographic block (Crypto) provides hardware implementation and acceleration of cryptographic functions.
Implementation in hardware takes less time and energy than the equivalent firmware implementation. In addition, the block
provides True Random Number generation functionality in silicon, which is not available in firmware.

12.1 Features
■ Symmetric key encryption and decryption

■ Hashing

■ Message authentication

■ Random number generation (pseudo and true)

■ Cyclic redundancy checking

■ Utility functions such as enable/disable, interrupt settings, and flags

12.2 Architecture

The Crypto block is implemented as a secure block and access to it is through inter-processor calls (IPC); direct access at a
register level is not permitted for security reasons. A client-server model is used to access Crypto functions. The client will call
a server running on the M0+. User tasks (clients) may run on either the M4 or M0+; the function calls will effectively call a
proxy server, which will call the security server (providing Crypto functions) running on the M0+. 

The IPC (see the Inter-Processor Communication chapter on page 42) mechanism is used to implement a remote procedure
call (RPC) model that will be used to make calls to the security server code. Conceptually, the scheme is as follows.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - Crypto

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 114

Cryptographic Function Block (Crypto)

Figure 12-1.  Crypto Block Architecture

This model provides security for Crypto tasks that may
otherwise expose or compromise key material. An API, as
documented in the Peripheral Driver Library (PDL)
documentation, will provide access to Crypto functions for
general user code.

12.3 Definitions of Terms

The following terms are used in the description of this block:

■ Plaintext: An unencrypted message 

■ Ciphertext: An encrypted message

■ Block cipher: An encryption function for fixed-size blocks
of data. This function takes a fixed-size key and a block
of plaintext data from the message and encrypts it to
generate ciphertext. Block ciphers are reversible, the
function performed on a block of encrypted data will
decrypt it.

■ Block cipher mode: A mode of encrypting a message
using block ciphers for messages of arbitrary length. The
message is padded so that its length is an integer
multiple of the block size. Electronic Code Book (ECB),
Cipher Block Chaining (CBC), and Cipher Feedback
(CFB) are all modes of using block ciphers to create an
encrypted message of arbitrary length.

■ Data Encryption Standard (DES): A block cipher that is
now obsolete but supported for legacy reasons. It uses a
56-bit key and a 64-bit message block size.

■ 3DES (or TDES): Triple DES uses the DES operation
and three DES encryptions in sequence-encrypt with
DES with one 56-bit key, decrypt with a second 56-bit
key, and then encrypt again either with the first key or a
third 56-bit key. The block size is 64-bits.

■ Advanced Encryption Standard (AES): This block cipher
was designed to replace DES and 3DES. It is the block
cipher standard used currently. It uses keys that can be
128, 192, or 256 bits in length and the message block

size is 128 bits. This is the U.S. government standard.
AES is also used for message authentication.

■ Secure Hash Algorithm (SHA): This function takes a
message of arbitrary length and reduces it to a fixed-
length residue or message digest after performing a
series of mathematically-defined operations, which
guarantees that any change in the message will change
the hash value. It is used for message authentication by
transmitting a message with a hash value appended to it
and recalculating the message hash value using the
same algorithm at the recipient’s end. If the hashes differ
then the message is corrupted. 

■ Message Authentication Code (MAC): MACs are used to
verify that a received message has not been altered.
This is done by first computing a MAC value at the
sender’s end and appending it to the transmitted
message. When the message is received, the MAC is
computed again and checked against the MAC value
transmitted with the message. If they do not match, the
message has been altered. Either a hash algorithm
(such as SHA) or a block cipher (such as AES) can be
used to produce the MAC value. Keyed MAC schemes
use a secret key along with the message, thus the key
value must be known to be able to compute the MAC
value.

■ Hash Message Authentication Code (HMAC): This
method uses a key along with the message to compute
the MAC value using a hash algorithm.

■ Cipher-based Message Authentication Code (CMAC):
This method uses a key along with the message to
compute the MAC value using the AES block cipher
algorithm.

■ Pseudo Random Number Generator (PRNG): This is
based on Linear Feedback Shift Registers, which
generate a sequence starting from a non-zero seed.

■ True Random Number Generator (TRNG): A block that
generates a number that is statistically random and

Client Task 1 Client Task n

Proxy Server

IPC Library

Server

Proxy Client

IPC Library

Send Receive Receive Send

M4 or M0+
M0+ Only

Security
Task



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 115

Cryptographic Function Block (Crypto)

based on some physical random variation, cannot be
duplicated by running the process again.

■ Symmetric key cryptography: Refers to using a common
known key to encrypt and decrypt messages (a shared
secret between sender and receiver). An efficient
method used for encrypting and decrypting messages
when the authenticity of the other party has been
established. DES (now obsolete), 3DES, and AES
(currently used) are well-known symmetric cryptography
methods.

■ Asymmetric key cryptography: Also referred to as Public
and Private key methods. If you want to receive a
message, you must publish a public key (can be up to
4096 bits). Anyone wishing to send a message to the
publisher of the public key encrypts the message with
the public key; this message can now only be decrypted
with the private key (the other prime factor held secret by
the recipient). The message is now sent over any
channel to the recipient who can decrypt it with the
private, secret key. The same process is used to send
messages to the sender of the original message.
Asymmetric cryptography relies on the mathematical
impracticality (usually related to the processing power
available at any given time) of factoring the keys.
Common, computationally intensive, asymmetric
algorithms are RSA and ECC.

12.4 Crypto Block Functions

The following is a list of currently supported (at an API level)
functions.

12.4.1 Symmetric Key Functions

Data Encryption Standard (DES):  DES is a block cipher,
an encryption function that works on fixed-size blocks of
data. The DES block size is 64 bits and it uses a 56-bit key.
DES is now considered obsolete, but is retained for
compatibility with legacy systems. With block ciphers,
encryption is considered a forward cipher; block ciphers
have a complementary operation called decryption (inverse
cipher), which has the same parameters as encryption and
uses either the same key or a transform of that key.

DES is described in FIPS 46-3, which is archived at http://
csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf. Note

that DES is not recommended for use anymore and support
is provided only for legacy and compatibility reasons.

Triple DES:  TDES (also known as Triple-DES or 3DES) is
the DES algorithm invoked thrice with three different keys;
the first pass encrypts with one key, the second pass
decrypts with the second, and the third pass encrypts with
the third key.

TDES is specified in http://csrc.nist.gov/publications/
nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf. 

Advanced Encryption Standard (AES):  The AES
operation works on a 128-bit block size and uses keys of
128, 192, or 256 bits in length. The block cipher modes
supported are ECB, CBC, CFB, and CTR. 

The ECB mode is invoked by calling a function, which takes
the following parameters: a pointer to the key, the function
mode (forward/encryption or inverse/decryption), a pointer
to the source block, and a pointer to the result block.

The CBC function is more secure than EBC; it relies on an
“Exclusive-Or” of each plaintext block with the previous
ciphertext block. Thus, block-sized plaintext patterns cannot
be used to derive information about cipher characteristics as
with EBC. The CBC function is invoked with the same
parameters as EBC, with the addition of a pointer to an initial
value.

The four modes supported are in the Arm mbed TLS library.
AES is specified in FIPS 197: http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf. Operating modes for
the block cipher are described in Special Publication 800-
38A at http://csrc.nist.gov/publications/nistpubs/800-38a/
sp800-38a.pdf.

12.4.2 Hash Functions

Secure Hash Algorithm (SHA):  The SHA produces a
message digest from a message of arbitrary size. It takes as
arguments pointers to the message, the size of the
message, a pointer to the initial digest value, and the mode.
The mode specifies which SHA algorithm to use. Note that
SHA does not use a key but starts with a pre-defined hash
value. It supports the following message sizes and produces
the stated message digest size. 

Table 12-1.  SHA Message Size

Algorithm Message Size (bits) Block Size (bits) Word Size (bits) Message Digest Size (bits)

SHA-1 < 2^64 512 32 160 

SHA-224 < 2^64 512 32 224 

SHA-256 < 2^64 512 32 256 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 116

Cryptographic Function Block (Crypto)

SHA is specified in FIPS 180-4, Secure Hash Standard, at http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

12.4.3 Message Authentication Code 
(MAC) Functions

Hashed Message Authentication Code (HMAC)

This function produces a message digest from a message of
arbitrary size, but also uses a private key so that the hash
cannot be calculated without the knowledge of the private
key. HMAC is implemented using SHA described earlier; in
addition to the parameters described in Table 12-1, it takes
two additional parameters: a pointer to the key and the
length of the key. 

HMAC is specified in FIPS 198-1 at http://csrc.nist.gov/
publications/fips/fips198-1/FIPS-198-1_final.pdf.

Cipher-based Message Authentication Code (CMAC)

This is a block-based message authentication algorithm that
uses the AES block cipher to produce a message digest
(analogous to HMAC, which uses a hash function). This
function uses a key to encrypt the first block of the message
after which the encrypted block produced is XOR-ed with
the second message block and encrypted. The result of that
operation is XOR-ed with the third message block and so
on. The last message block is mixed with sub-keys derived
from the encryption key, XOR-ed with the preceding
encryption value, and encrypted to produce the
authentication output.

The function implementing CMAC using AES is called with a
pointer to the key, the key length, and pointers to the
message block, a constant used for sub-key generation, and
a pointer to temporary storage. 

CMAC is specified at http://csrc.nist.gov/publications/
nistpubs/800-38B/SP_800-38B.pdf.

12.4.4 Cyclic Redundancy Code (CRC)

The CRC block generates a CRC remainder with a
programmable polynomial of up to 32 bits. The CRC
function considers the following as arguments: the
polynomial, the initial state of the LFSR, data byte reversal
and XOR-ing with a pattern in a register, remainder reversal
and XOR-ing with a pattern in a register, the data size, and a
pointer to the data block. It returns the CRC remainder
value.

12.4.5 Random Number Generator 
(RNG)

Pseudo Random Number Generator (PRNG):  The
PRNG generates pseudo random numbers based on three
Linear Feedback Shift Registers (LFSRs). The three
registers are initialized to non-zero seed values. The
function takes as argument the length of the argument to be
returned and returns a pseudo-random number.

True Random Number Generator (TRNG):  The TRNG
generates true random numbers with programmable bit
size. It uses up to size polynomial generators with fixed and
programmable polynomials. The function takes as argument
the length of the argument to be returned and returns a true
random number.

12.5 Module Configuration and 
Initialization

The Crypto module can be enabled or disabled using the
Enable and Disable functions that take no arguments. The
operational mode of the block is through a command (and
parameters as required) FIFO, which is written with a
command and parameters as required. Execution of the
command invokes the appropriate operation such as DES,
TDES, and SHA.

The interrupt model is based on four registers that contain
interrupt flags resulting from various causes, bits for
masking interrupts, software writable interrupt flags, and
interrupt state bits (logical AND of mask and interrupt flag
bits).

An initialization function is provided for setting interrupt
flags, which must be responded to, to set interrupt flags in
software, masking interrupts, and reading interrupt state.

Details of APIs provided are in the Peripheral Driver Library
(PDL) documentation.

SHA-384 < 2^128 1024 64 384 

SHA-512 < 2^128 1024 64 512 

SHA-512/224 < 2^128 1024 64 224 

SHA-512/256 < 2^128 1024 64 256 

Table 12-1.  SHA Message Size

Algorithm Message Size (bits) Block Size (bits) Word Size (bits) Message Digest Size (bits)

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 117

Cryptographic Function Block (Crypto)

12.6 Software Design 
Considerations

Some system calls use the crypto block to perform the
requested function. Care should be taken not to access the
crypto block from the CM4 when it is in use by the secure
CM0+. System calls are executed by the secure CM0+.
Table 16-4 lists all the system calls and indicates which use
the crypto block.   It is good practice to use a mutex or
semaphore so that an application with multiple tasks can
prevent two or more tasks attempting to access the crypto
block at the same time whether by direct access or a system
call.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 118

13.   Program and Debug Interface

The PSoC 6 MCU Program and Debug interface provides a communication gateway for an external device to perform
programming or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party
device that supports programming and debugging. The serial wire debug (SWD) or the JTAG interface can be used as the
communication protocol between the external device and PSoC 6 MCUs. During the provisioning process, the developer can
set the level of access to the Cortex-M4, M0+, memory, and MMIO registers to the level required. During the development
phase, the debug ports may be open to all resources; however, when the product is ready for shipment, the debug ports may
be totally disabled.

13.1 Features
■ Supports programming and debugging through the JTAG or SWD interface.

■ CM4 supports 4-bit ETM tracing, serial wire viewer (SWV), and printf() style debugging through the single-wire output 
(SWO) pin. CM0+ supports Micro Trace Buffer (MTB) with 4 KB dedicated RAM.

■ Supports Cross Triggering Interface (CTI) and Cross Triggering Matrix (CTM).

■ CM0+ supports four hardware breakpoints and two watchpoints. CM4 supports six hardware breakpoints and four 
watchpoints.

■ Provides read and write access to all memory and registers in the system while debugging, including the Cortex-M4 and 
Cortex-M0+ register banks when the core is running or halted.

13.2 Architecture

Figure 13-1 shows the block diagram of the program and debug interface in the PSoC 6 MCU. The debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the “host”,
communicates with the DAP of the PSoC 6 MCU “target” using either the SWD or JTAG interface. The debug physical port
pins communicate with the DAP through the high-speed I/O matrix (HSIOM). See the I/O System chapter on page 227 for
details on HSIOM.

The debug infrastructure is organized in the following four groups:

■ DAP (provides pin interfaces through which the debug host can connect to the chip) 

■ Cortex-M0+ core debug components (The Cortex-M0+ CPU debug port is disabled by default.)

■ Cortex-M4 core debug components 

■ Other debug infrastructure (includes the CM4 tracing, the CTM, and the System ROM table)

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 119

Program and Debug Interface

Figure 13-1.  Program and Debug Interface 

The DAP communicates with the Cortex-M0+ CPU using the Arm-specified advanced high-performance bus (AHB) interface.
AHB is the systems interconnect protocol used inside the device, which facilitates memory and peripheral register access by
the AHB master. The PSoC 6 MCU has six AHB masters – Arm CM4 CPU core, Arm CM0 CPU core, Datawire0, Datawire1,
Crypto, and DAP. The external host can effectively take control of the entire device through the DAP to perform programming
and debugging operations.

The following are the various debug and trace components:

■ Debug components

❐ JTAG and SWD for debug control and access

■ Trace source components

❐ Micro trace buffer (MTB-M0+) for tracing Cortex-M0+ program execution

❐ Embedded trace macrocell (ETM-M4) for tracing Cortex-M4 program execution

■ Trace sink components

❐ Trace port interface unit (TPIU) to drive the trace information out of the chip to an external trace port analyzer

■ Cross-triggering components

❐ Cross-trigger interface (CTI)

❐ Cross-trigger matrix (CTM)

■ ROM tables

Cortex-M0+

PSoC 6 

S
W

D
/J

T
A

G

CM0 Access 
Port

System 
Access Port

D
A

P
 B

U
S

DAP

Arm Cortex-M4 subsystem

Arm Cortex-M0+ subsystem

CM0+ AHB decoder

Micro Trace Buffer (MTB)

Cross Trigger 
Interface (CTI)

CM0 external 
ROM table

SLV

AHB SRAM

Cortex-M4

CM4 APB decoder

Embedded Trace Macro (ETM)

Cross Trigger 
Interface (CTI)

CM4 
ROM table

AHB

CM4 AP

D
A

P
D

A
P

ITM

Debug APB 
decoder

Debug 
ROM table

Cross Trigger 
Interface (CTI)

Cross Trigger 
Matrix (CTM)

Trace Port 
Interface Unit 

(TPIU)P
or

t 
P

in
s

System 
ROM table



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 120

Program and Debug Interface

13.2.1 Debug Access Port (DAP)

The DAP consists of a combined SWD/JTAG interface
(SWJ) that also includes the SWD listener. The SWD
listener decides whether the JTAG interface (default) or
SWD interface is active. Note that JTAG and SWD are
mutually exclusive because they share pins.

The debug port (DP) connects to the DAP bus, which in turn
connects to one of three Access Ports (AP), namely:

■ The CM0-AP, which connects directly to the AHB debug 
slave port (SLV) of the CM0+ and gives access to the 
CM0+ internal debug components. This also allows 
access to the rest of the system through the CM0+ AHB 
master interface. This provides the debug host the same 
view as an application running on the CM0+. This 
includes access to the MMIO of other debug 
components of the Cortex M0+ subsystem. These 
debug components can also be accessed by the CM0+ 
CPU, but cannot be reached through the other APs or by 
the CM4 core.The CM0-AP is disabled with the default 
provisioning script, but may be changed by the 
developer.

■ The CM4-AP located inside the CM4 gives access to the 
CM4 internal debug components. The CM4-AP also 
allows access to the rest of the system through the CM4 
AHB master interfaces. This provides the debug host the 
same view as an application running on the CM4 core. 
Additionally, the CM4-AP provides access to the debug 
components in the CM4 core through the External 
Peripheral Bus (EPB). These debug components can 
also be accessed by the CM4 CPU, but cannot be 
reached through the other APs or by the CM0+ core.

■ The System-AP, which through an AHB mux gives 
access to the rest of the system. This allows access to 
the System ROM table, which cannot be reached any 
other way. The System ROM table provides the chip ID 
but is otherwise empty.

13.2.1.1 DAP Security

Although there are three debug access ports (CM4, CM0+,
and SYS) only two of them (CM4 and SYS) are available to
the user in the Secure Boot devices, by default. The CM0+
access port may be enabled if required for development
purposes, but needs to be closed when the product is in
production. The CM4 access port is open by default to allow
users to develop their application. After the code
development cycle is complete and the product is moved to
manufacturing, both the CM4 and SYS access ports may be
totally disabled by configuring the proper Debug Policy. See
the “Secure Boot” chapter on page 135 for more information
on security and security policies.

13.2.1.2 DAP Power Domain

Almost all the debug components are part of the Active
power domain. The only exception is the SWD/JTAG-DP,

which is part of the Deep Sleep power domain. This allows
the debug host to connect during Deep Sleep, while the
application is ‘running’ or powered down. This enables in-
field debugging for low-power applications in which the chip
is mostly in Deep Sleep.

After the debugger is connected to the chip, it must bring the
chip to the Active state before any operation. For this, the
SWD/JTAG-DP has a register (DP_CTL_STAT) with two
power request bits. The two bits are CDBGPWRUPREQ
and CSYSPWRUPREQ, which request for debug power
and system power, respectively. These bits must remain set
for the duration of the debug session.

Note that only the two SWD pins (SWCLKTCK and
SWDIOTMS) are operational during the Deep Sleep mode –
the JTAG pins are operational only in Active mode. The
JTAG debug and JTAG boundary scan are not available
when the system is in Deep Sleep mode. JTAG functionality
is available only after a chip power-on-reset.

13.2.2 ROM Tables

The ROM tables are organized in a tree hierarchy. Each AP
has a register that contains a 32-bit address pointer to the
base of the root ROM table for that AP. For PSoC 6 MCUs,
there are three such root ROM tables. 

Each ROM table contains 32-bit entries with an address
pointer that either points to the base of the next level ROM
table. Each ROM table also contains a set of ID registers
that hold JEDEC compliant identifiers to identify the
manufacturer, part number, and major and minor revision
numbers. For all ROM tables in PSoC 6 MCUs, these IDs
are the same. Each ROM table and CoreSight compliant
component also contains component identification registers.

13.2.3 Trace

The micro trace buffer (MTB-M0+) component captures the
program execution flow from Cortex-M0+ CPU and stores it
in a local SRAM memory. This information can be read by
an external debug tool through JTAG/SWD interface to
construct the program execution flow.

The embedded trace macro (ETM) component connected to
Cortex-M4 captures the program execution flow from
Cortex-M4 CPU and generates trace output on its advanced
trace bus (ATB) interface. The instrumentation trace
macrocell (ITM), which is inside Cortex-M4, also generates
trace output on its ATB interface. These two ATB interfaces
(from ETM-M4 and ITM) are connected a trace port interface
unit (TPIU). 

The TPIU drives the external pins of a trace port (through
IOSS interface), so that the trace can be captured by an
external trace port analyzer (TPA). For more details, refer to
the Arm Debug Interface Architecture Specification ADIv5.0
to ADIv5.2.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 121

Program and Debug Interface

13.2.4 Embedded Cross Triggering

The Arm CoreSight includes Embedded Cross Triggering
(ECT) to communicate events between debug components.
These events are particularly useful with tracing and
multicore platforms. For example trigger events can be used
to:

■ Start or stop both CPUs at (almost) the same time

■ Start or stop instruction tracing based on trace buffer 
being full or not or based on other events

CoreSight uses two components to support ECT, namely a
CTI and a CTM, both of which are used in PSoC 6 MCUs. 

The CTI component interfaces with other debug
components, sending triggers back and forth and
synchronizing them as needed. The CTM connects several
CTIs, thus allowing events to be communicated from one
CTI to another.

The PSoC 6 MCU has three CTIs, one for each CPU and
one for the trace components in the debug structure. These
three CTIs are connected together through the CTM. The
CM4 CTI is located in the fast clock domain and the other
two CTIs and the CTM are all located in the same slow-
frequency clock domain. For more details, refer to the Arm
documentation.

13.3 Serial Wire Debug (SWD) 
Interface

The PSoC 6 MCU supports programming and debugging
through the SWD interface. The SWD protocol is a packet-
based serial transaction protocol. At the pin level, it uses a
single bidirectional data signal (SWDIO) and a unidirectional
clock signal (SWDCK). The host programmer always drives
the clock line, whereas either the host or the target drives
the data line. A complete data transfer (one SWD packet)
requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a 
request to the PSoC 6 MCU target.

■ Target Acknowledge Response Phase – The PSoC 6 
MCU target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to 
the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the
target, or vice versa, there is a turnaround period (Trn)
where neither device drives the line and it floats in a high-
impedance (Hi-Z) state. This period is either one-half or one
and a half clock cycles, depending on the transition.

Figure 13-2 shows the timing diagrams of read and write
SWD packets.

Figure 13-2.  SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The AP not DP (APnDP) bit determines whether the 
transfer is an AP access – 1b or a DP access – 0b.

S
ta

rt
 (

1)

A
P

n
D

P

R
n

W
 (

0)

A[2:3]

P
ar

ity

S
to

p 
(0

)

P
ar

k 
(1

)

T
rn

 (
H

i-Z
)

1

w
da

ta
[0

]

P
ar

ity

ACK[0:2]

0 0
w

da
ta

[1
]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK Phase Host Data Transfer Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

n
D

P

R
n

W
 (

1)

A[2:3]

P
ar

ity

S
to

p 
(0

)

P
ar

k 
(1

)

T
rn

 (
H

i-Z
)

1

rd
a

ta
[0

]

P
ar

ity

ACK[0:2]

0 0

rd
a

ta
[1

]

rd
a

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK and Data Transfer Phases

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 122

Program and Debug Interface

c. The Read not Write bit (RnW) controls which 
direction the data transfer is in. 1b represents a ‘read 
from’ the target, or 0b for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for 
AP or DP, depending on the APnDP bit value. 
Note: Address bits are transmitted with the LSb first.

e. The parity bit contains the parity of APnDP, RnW, 
and ADDR bits. It is an even parity bit; this means, 
when XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by 
the PSoC 6 MCU; there is no ACK response (ACK = 
111b). The programming operation should be 
aborted and retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven 
by the target

a. The ACK[2:0] bits represent the target to host 
response, indicating failure or success, among other 
results. See Table 13-1 for definitions. Note:  ACK 
bits are transmitted with the LSb first.

3. Data Transfer Phase: SWDIO driven by either target or 
host depending on direction

a. The data for read or write is written to the bus, LSb 
first.

b. The data parity bit indicates the parity of the data 
read or written. It is an even parity; this means when 
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective 
action should be taken. For a read packet, if the host 
detects a parity error, it must abort the programming 
operation and restart. For a write packet, if the target 
detects a parity error, it generates a FAULT ACK 
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. Three or more dummy clock cycles should be
generated between two SWD packets if the clock is not free-
running or to make the clock free-running in IDLE mode. 

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

13.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response phase and, if the target is reading

out data, during the Data Transfer phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 13-1 and Figure 13-2 illustrate the timing of SWDIO bit
writes and reads.

13.3.2 ACK Details

The acknowledge (ACK) bitfield is used to communicate the
status of the previous transfer. OK ACK means that previous
packet was successful. A WAIT response requires a data
phase. For a FAULT status, the programming operation
should be aborted immediately. Table 13-2 shows the ACK
bit-field decoding details.

Details on WAIT and FAULT response behaviors are as
follows:

■ For a WAIT response, if the transaction is a read, the 
host should ignore the data read in the data phase. The 
target does not drive the line and the host must not 
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the 
data phase is ignored by the PSoC 6 MCU. But, the host 
must still send the data to be written to complete the 
packet. The parity bit corresponding to the data should 
also be sent by the host.

■ A WAIT response means that the PSoC 6 MCU is 
processing the previous transaction. The host can try for 
a maximum of four continuous WAIT responses to see 
whether an OK response is received. If it fails, then the 
programming operation should be aborted and retried 
again.

■ For a FAULT response, the programming operation 
should be aborted and retried again by doing a device 
reset.

Table 13-1.  SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request
Host Write Target Read

Host Data Transfer

Target Ack Response
Host Read Target Write

Target Data Transfer

Table 13-2.  SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 001b

WAIT 010b

FAULT 100b

NO ACK 111b



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 123

Program and Debug Interface

13.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 13-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This action ensures that the host can read the ACK data on
the next falling edge. Thus, the first Trn period lasts only
one-half cycle. The second Trn period of the SWD packet is
one and a half cycles. Neither the host nor the PSoC 6 MCU
should drive the SWDIO line during the Trn period.

13.4 JTAG Interface

In response to higher pin densities on ICs, the Joint Test
Action Group (JTAG) proposed a method to test circuit

boards by controlling the pins on the ICs (and reading their
values) via a separate test interface. The solution, later
formalized as IEEE Standard 1149.1-2001, is based on the
concept of a serial shift register routed across all of the pins
of the IC – hence the name “boundary scan.” The circuitry at
each pin is supplemented with a multipurpose element
called a boundary scan cell. In PSoC 6 MCUs, most GPIO
port pins have a boundary scan cell associated with them
(see the GPIO block diagrams in the I/O System chapter on
page 227). The interface used to control the values in the
boundary scan cells is called the Test Access Port (TAP)
and is commonly known as the JTAG interface. It consists of
three signals: Test Data In (TDI), Test Data Out (TDO), and
Test Mode Select (TMS). Also included is a clock signal
(TCK) that clocks the other signals. TDI, TMS, and TCK are
all inputs to the device and TDO is the output from the
device. This interface enables testing multiple ICs on a
circuit board, in a daisy-chain fashion, as shown in
Figure 13-3.

Figure 13-3.  JTAG Interface to Multiple ICs on a Circuit Board

The JTAG interface architecture within each device is shown in Figure 13-4. Data at TDI is shifted in, through one of several
available registers, and out to TDO.

TMS

TCK

TDI TDO

TMS

TCK

TDI

TDO

Device 1 TMS

TCK

TDI TDO

Device 2 TMS

TCK

TDI TDO

Device 3



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 124

Program and Debug Interface

Figure 13-4.  JTAG Interface Architecture

The TMS signal controls a state machine in the TAP. The state machine controls which register (including the boundary scan
path) is in the TDI-to-TDO shift path, as shown in Figure 13-5. The following terms apply:

■ IR - the instruction register

■ DR - one of the other registers (including the boundary scan path), as determined by the contents of the instruction 
register

■ capture - transfer the contents of a DR to a shift register, to be shifted out on TDO (read the DR)

■ update - transfer the contents of a shift register, shifted in from TDI, to a DR (write the DR)

Instruction Register

Core
Logic

BYPASS Register

ID Register

Other Register

Test Access Port 
Controller

Boundary Scan Path

IO Pads

Boundary
Scan Cells

TDI

TCK

TMS

TRST

TDO



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 125

Program and Debug Interface

Figure 13-5.  TAP State Machine

The registers in the TAP are: 

■ Instruction – Typically two to four bits wide, holds the current instruction that defines which data register is placed in the 
TDI-to-TDO shift path. 

■ Bypass – one bit wide, directly connects TDI with TDO, causing the device to be bypassed for JTAG purposes. 

■ ID – 32 bits wide, used to read the JTAG manufacturer/part number ID of the device. 

■ Boundary Scan Path (BSR) – Width equals the number of I/O pins that have boundary scan cells, used to set or read the 
states of those I/O pins. 

Other registers may be included in accordance with the device manufacturer specifications. The standard set of instructions
(values that can be shifted into the instruction register), as specified in IEEE 1149, are: 

■ EXTEST – Causes TDI and TDO to be connected to the BSR. The device is changed from its normal operating mode to a 
test mode. Then, the device’s pin states can be sampled using the capture dr JTAG state, and new values can be applied 
to the pins of the device using the update dr state. 

■ SAMPLE – Causes TDI and TDO to be connected to the BSR, but the device remains in its normal operating mode. 
During this instruction, the BSR can be read by the capture dr JTAG state to take a sample of the functional data entering 
and leaving the device.

■ PRELOAD – Causes TDI and TDO to be connected to the BSR, but the device is left in its normal operating mode. The 
instruction is used to preload test data into the BSR before loading an EXTEST instruction. 

Optional, but commonly available, instructions are:

■ IDCODE – Causes TDI and TDO to be connected to an IDCODE register. 

■ INTEST – Causes TDI and TDO to be connected to the BSR. While the EXTEST instruction allows access to the device 
pins, INTEST enables similar access to the corelogic signals of a device

For more information, see the IEEE Standard, available at www.ieee.org.

test logic reset

run test idle

select dr scan

capture dr

shift dr

exit 1 dr

pause dr

exit 2 dr

update dr

select ir scan

capture ir

shift ir

exit 1 ir

pause ir

exit 2 ir

update ir

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 0TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 0

http://www.ieee.org


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 126

Program and Debug Interface

13.5 Programming the PSoC 6 
MCU

The PSoC 64 MCU is programmed using the industry-
standard SWD port. Refer to the PSoC 6 MCU
Programming Specifications for complete details on the
programming algorithm, timing specifications, and hardware
configuration required for programming. Direct from the
factory, only the CM4 can be programmed until the device is
provisioned. Refer to the PSoC 64 Secure MCU Secure
Boot SDK User Guide and the “Secure Boot” chapter on
page 135 for more details.

13.5.1 SWD Port Acquisition

13.5.1.1 SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target’s SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. 

The debug access port must be reset using the standard
Arm command. The DAP reset command consists of more
than 49 SWDCK clock cycles with SWDIO asserted high.
The transaction must be completed by sending at least one
SWDCK clock cycle with SWDIO asserted low. This
sequence synchronizes the programmer and the chip.

Read_DAP() refers to the read of the IDCODE register in
the debug port. The sequence of line reset and IDCODE
read should be repeated until an OK ACK is received for the
IDCODE read or a timeout (2 ms) occurs. The SWD port is
said to be in the acquired state if an OK ACK is received
within the time window and the IDCODE read matches with
that of the Cortex-M0+ DAP.

13.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device
programming mode. Timing specifications and pseudo code
for entering the programming mode are detailed in the
PSoC 6 MCU Programming Specifications document.

13.5.3 SWD Programming Routine 
Executions

When the device is in programming mode, the external
programmer can start sending the SWD packet sequence
for performing programming operations such as flash erase,
flash program, checksum verification, and so on. The
programming routines are explained in the Nonvolatile
Memory chapter on page 127. The exact sequence of
calling the programming routines is given in the PSoC 6
MCU Programming Specifications document.

13.6 Registers

Table 13-3.  List of Registers

Register Name Description

CM0P_DWT Cortex M0+ Data Watchpoint and Trace (DWT) registers

CM0P_BP Cortex M0+ BreakPoint (BP) registers

CM0P_ROM Cortex M0+ CPU Coresight ROM table

CM0P_CTI Cortex M0+ Cross-Trigger Interface (CTI) registers

CM0P_MTB Cortex M0+ Micro Trace Buffer (MTB) registers

CM4_ITM Cortex M4 Instrumentation Trace Macrocell (ITM) registers

CM4_DWT Cortex M4 Data Watchpoint and Trace (DWT) registers

CM4_FPB Cortex M4 Flash Patch and Breakpoint (FPB) registers

CM4_SCS Cortex M4 System Control Space (SCS) registers

CM4_ETM Cortex M4 Embedded Trace Macrocell (ETM) registers

CM4_CTI Cortex M4 Cross-Trigger Interface (CTI) registers

CM4_ROM Cortex M4 CPU Coresight ROM table

TRC_TPIU System Trace Coresight Trace Port Interface Unit (TPIU) registers

https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 127

14.   Nonvolatile Memory

Nonvolatile memory refers to the flash and SROM memory in the PSoC 6 MCU. This chapter explains the geometry and
capability of the flash memory. It also lists the SROM API functions that are used to program the flash memory. 

14.1 Flash Memory

The PSoC 6 flash offers high bulk program performance and supports ultra-low-power operation. Flash is typically used to
store CPU instructions and data when the device power is off. Flash may be written, but the process is much slower and more
restrictive than for SRAM.

14.1.1 Features 

This section lists the features of PSoC 6 flash.

■ 512-byte row size; minimum programmable unit

■ Supports the Read While Write (RWW) feature with a sector size of 256KB

■ 10-year retention

■ Endurance of 10 k program cycles

14.1.2 Configuration

14.1.2.1 Block Diagram

Flash is part of the CPU subsystem. The Cortex-M4 and Cortex M0+, as well as other bus masters, can access flash via the
AHB. 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 128

Nonvolatile Memory

Figure 14-1.  Block Diagram

14.1.3 Flash Geometry

The flash is divided into three regions: the application region, the supervisory flash (SFlash) region, and the auxiliary flash
(AUXFlash) region. The flash has an Erase Disturb mechanism in which writes to rows affect the endurance of other rows in
the same sector. It is recommended that the AUXFlash region is used for frequently-updated data. For data that changes
infrequently or code images, the application flash region can be used.

The SFlash region is used to store trim parameters, system configuration parameters, protection and security settings, boot
code, and other Cypress proprietary information. Read access to this region is permitted, but program/erase access is limited.
The application region is used to store code images or data. The AUXFlash is typically used for EEPROM emulation.

Each region divides into sectors and rows. The sector is the largest division of the region and consists of a number of 512
byte rows.

Figure 14-2.  Flash Geometry Organization  

Table 14-1.  Flash Geometry

Application Flash SFlash and AUXFlash

Read 
Width

KB Sectors KB/Sector
Rows/
Sector

KB/Row KB Sectors KB/Sector
Rows/
Sector

KB/Row

128 2048 8 256 512 0.5 64 2 32 64 0.5 

System Interconnect (AHB, IPC)

System 
Resources

Peripherals

CM4 CM0+ Flash SRAM0-4
DataWire/

DMA
Crypto ROM

Peripheral Interconnect (MMIO)

S
er

ia
l M

em
or

y 
In

te
rf

a
ce

 (
Q

S
P

I)

2x
 S

D
H

C

I/O Subsystem

U
S

B
F

S

SFlash

Application 
flash

Flash

S7

R0

R511

S0

8 Sectors (256 kB) 512 Rows (0.5 kB)

S0
R0

R632 Sectors (32 kB)

64 Rows (0.5 kB)

S0 R0

R63
2 Sectors (32 kB) 64 Rows (0.5 kB)

S1

S1

AUXFlash



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 129

Nonvolatile Memory

14.1.4 Flash Controller

Access to the flash memory is enabled through the flash controller. The flash controller interfaces with the AHB-Lite bus and
provides flash access for the CM0+, CM4, Crypto, DataWire, and debug. The flash controller generates a bus error if:

■ A flash read access to a sector that is currently being programmed/erased

■ A read access to a memory hole in the flash memory region. A memory hole is defined as a location that is not occupied 
by the application flash, AUXFlash, or SFlash. Note that the AUXFlash space and SFlash space can be non-powers of 2 
for some flash macros

The flash controller also provides the registers which support configuration of flash accesses.

14.1.4.1 Wait State Count

FLASHC_FLASH_CTL supports configuration of flash wait cycles. If clk_hf is greater than the maximum operating frequency
of the flash memory, it is necessary to insert wait cycles when accessing the flash memory by setting the appropriate value in
the FLASHC_FLASH_CTL.MAIN_WS register. Set the wait cycles as follows.

14.1.4.2 Power Modes

FLASHC_FLASH_PWR_CTL provides enable bits for the flash memory. Software can turn off all regions of the flash memory
by setting the ENABLE and ENABLE_HV fields to 0. 

The wakeup time of flash memory is 10 µs. Software should wait at least 10 µs before reading from flash after it is re-enabled
through the FLASHC_FLASH_PWR_CTL register.

The flash controller provides functionality down to the Deep Sleep power mode. In the Deep Sleep power mode, the following
flash controller information is retained:

■ The retention MMIO registers (listed in Table 14-2)

■ The cache data structure

Note that buffer information (in the AHB-Lite buffer interfaces and in the synchronization logic) is not retained. Losing buffer
information after Deep Sleep transition has limited performance impact.

Table 14-2.  Flash Controller Retention Registers

Register Name Description

FLASHC_FLASH_CTL Flash controller control register

FLASHC_FLASH_PWR_CTL Flash enable control

FLASHC_FLASH_CMD Flash commands for cache/buffer invalidation

FLASHC_CM0/CM4_STATUS CM0/4 Interface status

FLASHC_CM0/CM4_CA_CTL CM0/4 Cache control

FLASHC_*Peripheral*_BUFF_CTL
Buffer control register where *peripheral* may be Crypto, DMA, DWx (DataWire x = 0, 1), 
or EXT_MSx (External master; x = 0, 1)

HF Clock Frequency FLASH_CTL.MAIN_WS[3:0] 

clk_hf  33 MHz 0

33 < clk_hf  66 MHz 1

66 < clk_hf  99 MHz 2

99 < clk_hf  133 MHz 3

133 < clk_hf  150 MHz 4



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 130

Nonvolatile Memory

14.1.4.3 CPU Caches

The flash controller provides 8 kB caches for both the CM0+ and CM4 CPUs. Each cache is a four-way set associative with a
least recently used (LRU) replacement scheme. These caches can be enabled/disabled through the FLASHC_CM0/
4_CA_CTL.CA_EN registers. 

The cache supports faster flash memory reads when enabled. On a read transfer “miss”, however, a normal flash controller
access will occur.

Cache Prefetch 

The caches support pre-fetching through the CM0/4_CA_CTL.PREF_EN register. 

If prefetch is enabled, a cache miss results in a 16 B refill for the missing data and a 16 B prefetch for the next sequential
data. The prefetch data is stored in a temporary buffer and is only copied to the cache when a read transfer “misses” and
requires that data. 

14.1.5 Read While Write (RWW) Support

The PSoC 6 MCU supports read operations on one area while programming/erasing in another area. This is implemented to
support firmware upgrades and parallel tasks in the dual-core system. The application flash contains eight sectors, each
256KB in size. The AUXFlash and SFlash are additional sectors apart from the main flash.

The RWW feature is available between sectors – you can read/execute from one sector while there is an ongoing write/erase
operation in another sector. However, when the code execution/read is in the last 16 bytes of a given sector (say sector 0)
and the flash write/erase operation is in the next sector (sector 1), an RWW violation may occur if prefetch is enabled. This is
because prefetch will fetch the next 16 bytes of data, which is part of sector 1 while a write operation is underway in the same
sector. This will result in a fault and should be considered during firmware design. Firmware can be designed to place dead
code in the last 16 bytes of every sector making sure the last 16 bytes of a sector are never accessed or can disable prefetch
during a flash write/erase operation.

Register Bit Field and Bit Name Description

CM0_CA_CTL[32:0] CA_EN[31]

Cache enable: 

0: Disabled

1: Enabled

CM4_CA_CTL[32:0] CA_EN[31]

Cache enable: 

0: Disabled

1: Enabled

Table 14-3.  CM0/4 Cache Control Prefetch Enable Register Values and Bit Field

Register Bit Field and Bit Name Description

CM0_CA_CTL[32:0] PREF_EN[30]

Prefetch enable: 

0: Disabled

1: Enabled

CM4_CA_CTL[32:0] PREF_EN[30]

Prefetch enable:

0: Disabled

1: Enabled



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 131

Nonvolatile Memory

14.2 Flash Memory Programming

14.2.1 Features

■ SROM API library for flash management through system calls such as Program Row and Erase Flash

■ System calls can be performed using CM0+, CM4, or DAP

14.2.2 Architecture

Flash programming operations are implemented as system calls. System calls are executed out of SROM in Protection
Context 0. System calls are executed inside CM0+ NMI. The system call interface makes use of IPC to initiate an NMI to
CM0+.

System calls can be performed by CM0+, CM4, or DAP. Each of them have a reserved IPC structure (used as a mailbox)
through which they can request CM0+ to perform a system call. Each one acquires the specific mailbox, writes the opcode
and argument to the data field of the mailbox, and notifies a dedicated IPC interrupt structure. This results in an NMI interrupt
in CM0+. The following diagram illustrates the system call interface using IPC.

Figure 14-3.  System Call Interface Using IPC

The PSoC 6 MCU’s IPC component carries only a single 32-bit argument. This argument is either a pointer to SRAM or a
formatted opcode or argument value that cannot be a valid SRAM address. The encoding used for DAP and the CM4 or
CM0+ is slightly different. 

DAP

If (opcode + argument) is less than or equal to 31 bits, store them in the data field and set the LSb of the data field as ‘1’.
Upon completion of the call, a return value is passed in the IPC data register. For calls that need more argument data, the
data field is a pointer to a structure in SRAM (aligned on a word boundary) that has the opcode and the argument. So it is a
pointer if and only if the LSb is 0. 

CM4 or CM0+

A pointer is always used to structure SRAM. Commands that are issued as a single word by DAP can still be issued by CM0+
or CM4, but use an SRAM structure instead. 

The NMI interrupt handler for system calls works as follows. 

■ If the ROM boot process code is not initialized in the protection state (PROTECTION is still at its default/reset value 
UNKOWN), the NMI calls have no effect and the handler returns. 

■ A jump table is used to point to the code in ROM or flash. This jump table is located in ROM or flash (as configured in 
SFlash).

The IPC mechanism is used to return the result of the system call. Two factors must be considered. 

■ The result is to be passed in SRAM: CM0+ writes the result in SRAM and releases the IPC structure. The requester 
knows that the result is ready from the RELEASE interrupt. 

IPC Structure 0

IPC Structure 1

IPC Structure 2

IPC Interrupt 
Structure 0

M0+ NMI

Reserved for M0+ Access

Reserved for M4 Access

Reserved for DAP Access

Control

Data (32 bytes)

Control

Data (32 bytes)

Control

Data (32 bytes)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 132

Nonvolatile Memory

■ The result is scalar ( 32 bits) and there is no SRAM to pass the result: in this case, the CM0+ writes the result to the data 
field of the IPC structure and releases it. The requester can read the data when the IPC structure lock is released. The 
requester polls the IPC structure to know when it is released. 

External programmers program the PSoC 6 MCU flash memory using the JTAG or SWD protocol by sending the commands
to the DAP. The programming sequence for PSoC 6 MCUs with an external programmer is given in PSoC 6 MCU
Programming Specifications. Flash memory can also be programmed by the CM4/CM0+ CPU by accessing the IPC interface.
This type of programming is typically used to update a portion of the flash memory as part of a bootload operation, or other
application requirement, such as updating a lookup table stored in the flash memory. All write operations to flash memory,
whether from the DAP or from the CPU, are done through the CM0+.

https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 133

15.   eFuse Memory

The eFuse memory consists of a set of eFuse bits. When an eFuse bit is programmed, or “blown”, its value can never be
changed. Some of the eFuse bits are used to store various unchanging device parameters, including critical device factory
trim settings, device life cycle stages (see the “Secure Boot” chapter on page 135), DAP security settings, and encryption
keys.

The eFuse memory is not directly accessible in the PSoC 64 devices, by the CM4 application. It is used to store hash codes
and other security information.

15.1 Features

The PSoC 6 MCU eFuses have the following features:

■ A total of 1024 eFuse bits. All bits are reserved by the Secure Boot system and are not available to the user.

■ The eFuse bits are programmed one at a time, in a manufacturing environment. The eFuse bits cannot be programmed in 
the field.

■ Multiple eFuses can be read at the bit or byte level through a PDL API function call or an SROM call. An unblown eFuse 
reads as logic 0 and a blown eFuse reads as logic 1. There are no hardware connections from eFuse bits to elsewhere in 
the device.

■ SROM system calls are available to program and read eFuses. See the Nonvolatile Memory chapter on page 127. For 
detailed information on programming eFuses, see the PSoC 6 MCU Programming Specifications.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - eFuse

■ Application notes

■ Code examples

https://www.Infineon.com/PSoC6ProgrammingSpec


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 134

eFuse Memory

15.2 Architecture

The PSoC 6 MCU eFuses can be programmed only when VDDIO0 is at 2.5 V. Since eFuses are programmed during
provisioning, VDDIO0 must be at 2.5 V during that time as well. For more information, see the PSoC 6 MCU Programming
Specifications.

Table 15-1 shows the usage of the PSoC 6 MCU eFuse bytes.

Table 15-1.  PSoC 6 MCU eFuse Byte Assignments

Offset
No. of 
Bytes

Name Description

0 20 Reserved Reserved for PSoC 6 MCU system usage

20 16 SECURE_CMAC Secure objects 128-bit CMAC

36 2 FLASH_BOOT_SIZE Flash boot image size

38 1 SECURE_CMAC_ZEROS Number of zeros in SECURE_CMAC

39 2 DEAD_ACCESS_RESTRICT Access restrictions in DEAD life cycle stage

41 2 SECURE_ACCESS_RESTRICT Access restrictions in SECURE life cycle stage

43 1 LIFECYCLE_STAGE Life cycle state

44 8 Reserved Reserved for PSoC 6 MCU system usage

52 12 Unused Not used

64 64 CUSTOM_DATA Custom data

64 17 ASSET_HASH
The HASH and HASH ZEROS from objects filled in TOC1 except 
DIE_ID and Trim Table – Secure Flashboot image and Cypress 
public key.

81 13 SECURE_HASH2
12 bytes of HASH and HASH zero count from device identity – 
device public and private key 

94 17 SECURE_HASH3
The HASH and HASH zero count from provisioning data objects 
filled in TOC3 – Cypress Bootloader image and provisioning JWT 
packet.

111 17 UDS Unique Device Secret and Zero count.

https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 135

16.   “Secure Boot”

The PSoC 64 family has a fully integrated security system built into the device. There is no need for the customer to write a
custom secure boot or secure bootloader. The multi-stage boot process requires that each step must be signed by an
authorized source. The PSoC 64 family provides a means to implement a full Root-of-Trust (RoT) secured system. This RoT
is initially owned by Cypress/Infineon and is transferred to the user/OEM during the provisioning process, using a Cypress
signed JSON Web Token (JWT). Provisioning uses the SWD interface to communicate the signed JWTs to the device, which
include transfer of security keys, debug policies, and so on. Refer to the PSoC 64 Secure MCU Secure Boot SDK User Guide
for more information on provisioning and format of JWT packets.

The PSoC 64 family devices contain two CPUs, a CM0+ and a CM4. The CM0+ is designated the secure processor and
performs all security policy evaluations and system calls. The CM4 executes only the user (unsecure) application. Protection
units are used to divide and isolate the system memory resources, such as Flash and SRAM between the secure and un-
secure CPUs. Any register access that may compromise the security of the device is protected by one of the many PPUs
(Peripheral Protection Units). This includes registers that control Flash writes, system clock tree, protection unit configuration
registers, power levels, etc.

Basic Definitions

Before continuing, you must understand some terms that will be used throughout this document. Many of these terms will be
discussed in more detail within this section.

■ Chain of Trust (CoT): The root of trust begins with the Cypress code residing in ROM, which cannot be altered. Chain of 
Trust is established by validating the blocks of software starting from the root of trust located in ROM.

■ Code Signing: The process of calculating a hash of the code binary and encrypting the hash with a private key.

■ Debug Access Port (DAP): Interface between an external debugger/programmer and PSoC 6 MCU for programming 
and debugging. This allows connection to one of three access ports (AP), CM0_AP, CM4_AP, and System_AP. The 
System_AP can only access SRAM, Flash, and MMIOs, not the CPUs.

■ Entrance Exam: A test used just prior to provisioning to verify the device has not been tampered with and contains ONLY 
the code and data that was programmed at the device factory.

■ Digest: A digest is computed by applying a hash function on a data set, such as the binary of an application. This digest is 
then encrypted with a private key to form a digital signature.

■ Digital Signature: Encrypting of the digest (hash of a data set). For example, the encrypted hash of the user application.

■ Flash (User): This is the flash memory that is used to store your application code.

■ Flashboot: This is part of the boot system that performs three basic tasks:

❐ Sets up the debug port based on the lifecycle stage. 

❐ Validates the user application before executing it.

❐ Validate and execute the device policy.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 136

“Secure Boot”

■ HAL: (Hardware Abstraction Layer) High level driver library that is independent of underlying hardware.

■ Hash: A crypto algorithm that generates a repeatable but unique signature for a given block of data. This function is non-
reversible.

■ HSM: (Hardware Security Module) This is a physical computing or programming device that protects and manages digital 
keys, it can perform digital software signing and encryption as well as other cryptographic functions. In the context of the 
PSoC 64 Secure MCU, the HSM is a device programming engine placed in a physically secure facility.

■ IPC: Inter-Processor Communication hardware used to facilitate communication between the two CPU cores.

■ JSON: An open standard file format to store value pairs and array data types.

■ JWT: JSON Web Token format used to transmit and store provisioning information to the device.

■ Lifecycle: This is the security mode in which the device is operating.

■ Memory Protection Unit (MPU): Used to isolate memory sections from different bus masters.

■ MMIO: Memory-Mapped Input/Output, usually refers to registers that control the hardware I/O.

■ PC: Protection Context, although PC most often refers to a Program Counter, in this document it refers to the Protection 
Context state. This parameter allows each bus master a security state level from 0 to 15. A bus master can be assigned a 
PC value that stays static or that is changed during application execution. PC provides a more precise way of applying 
memory restrictions. PC=0 is a special case which allows any bus master to have full access to the entire memory space 
including registers. The PC state works together with protection units.

■ PDL: (Peripheral Driver Library) Low level driver library that supports all hardware blocks for the PSoC 64. It is provided 
as part of ModusToolbox.

■ Peripheral Protection Unit (PPU): PPUs are used to restrict access to a peripheral or set of peripherals to only one or a 
specific set of bus masters.

■ Protection Units: These hardware blocks are used to limit bus master access to memory (SRAM, ROM, flash) or 
hardware (peripheral) registers. They include MPU, PPU, and Shared Memory Protection Unit (SMPU).

■ Provisioning: The process by which keys, policies and secrets are injected into the device. Once provisioned, the device 
can be accessed or modified only with the keys injected adhering to the relevant policies.

■ PSA: (Platform Security Architecture) The PSoC 64 devices include a subset of the PSA Cryptographic API (Crypto API) 
that provides a portable interface to cryptographic operations. These functions are performed by the secured CM0+ CPU 
but are accessible by the non-secure CM4 CPU for user applications.

■ Public-Key Cryptography (PKC): Otherwise known as asymmetrical cryptography. Public-key cryptography is an 
encryption technique that uses a paired public and private key (or asymmetric key) algorithm for secure data. It is used to 
secure a message or block of data. The private key is used to encrypt data and must be kept secure, and the public key is 
used to decrypt but can be disseminated widely. 

❐ Public Key: The public key can be shared, but it should be authenticated or secure so it cannot be modified. 

❐ Private Key: The private key must be kept in a secure location, so it cannot be viewed or stolen. It is used to encrypt 
a block of data that will be decrypted using an associated public key.

■ RMA: Return Merchandise Authorization

■ Rollback Counter: Special counter accessed by secure boot code that holds the value of the latest valid image and used 
in an anti-rollback protection mechanism. The goal of anti-rollback protection is to prevent downgrading the device to an 
older version of its software that has been deprecated due to security concerns.

■ RSA-nnnn: An asymmetric encryption system that uses two keys. One key is private and should not be shared and the 
other is public and can be read without loss of security. The encryption/decryption is controlled by a key that is commonly 
1024, 2048, or 4096 bits in length (RSA-1024, RSA-2048, or RSA-4096).

■ SALT: A salt is a random number or data that is added to data to be hashed so that devices with identical data, will have a 
different hash value.

■ Security Policy: This is the set of rules that the designer imposes to determine what resources are protected from 
outside tampering or between the internal CPUs.

■ Serial Memory Interface (SMIF): A SPI (Serial Peripheral Interface) communication interface to serial memory devices, 
including NOR Flash, SRAM, and non-volatile SRAM. 

■ SFlash: Supervisor flash memory. This memory partition in flash contains several areas that include system trim values, 
flash boot executable code, public key storage, etc. After the device transitions into a secure mode, it can no longer be 
changed.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 137

“Secure Boot”

■ SHA-256: A cryptographic hash algorithm used to create a signature for a block of data or code. This hash algorithm 
produces a 256-bit unique signature of the data no matter the size of the data block.

■ Shared Memory Protection Unit (SMPU): SMPUs are used to allow access to a specific memory space (flash, SRAM, or 
registers) to only one or a specific set of bus masters. 

■ SYS-AP: System Access Port which is part of the Serial Wire Interface for programming and debugging. This port is used 
for transferring the provisioning packets to the device.

■ System Calls: Functions such as flash write functions that are executed by the Arm® Cortex® M0+ CPU (CM0+) from 
ROM.

■ Table of Contents 1: (TOC1) This is an area in SFlash that is used to store pointers to the trim values, flash boot entry 
points, etc. It is used only by boot code in ROM and is not editable by the designer.

■ Table of Contents 2: (TOC2) This table contains only a fixed value and the CRC of itself. It is of little value in PSoC 64 
devices, but may be used for future derivations. 

■ Trusted Function: Secure functions that run on the Secure CPU. These functions may be created either by the chip 
vender or the OEM.

■ TFM: (Trusted Firmware-M) It is a Trusted Execution Environment for the CM0+ CPU which provide secure runtime 
services like secure storage, cryptography, and attestation.

■ UDS: (Unique Device Secret) A code that is unique to each device. Generated by hashing data in a device that is different 
for each device manufactured.

16.1 Features

The PSoC 64 MCU provides the following device security features:

■ Built-in immutable key storage area that can be loaded with required OEM keys and other user keys.

■ Secure method to transfer Root-of-Trust to OEM public/private key.

■ Policy interpreter that allows the user to program key usage, debug access, and hardware/firmware wounding.

■ Protection units that provide protection and isolation of flash, SRAM, and registers between the secure (CM0+) and 
nonsecure (CM4) CPU.

■ Cryptographic hardware block that provides encryption and decryption of data and code.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 138

“Secure Boot”

16.2 Architecture

16.2.1 Life Cycle Stages and Protection States

PSoC 64 MCUs have configurable, nonvolatile life cycle stages. Life cycle stages follow a strict, irreversible progression
governed by writing to eFuse - a 1024-bit nonvolatile memory area with each bit being one time programmable (OTP). The
eFuse is used to store Life Cycle Stage information, security configuration, and several HASH signatures to validate the
secure trim values, flashboot code, secure data structures, etc. The secure boot system uses all the eFuse bits and they are
not usable by the users main (non-secure) application. See the eFuse Memory chapter on page 133 for more details of the
eFuse.

Figure 16-1.  PSoC 6 MCU Life Cycle Stage Transitions

The life cycle stages can move only from one stage to the next and cannot be reversed. For example, when the life cycle has 
moved from Secure Unclaimed to Secure Claimed, it cannot be moved back to Secure Unclaimed. It may remain in the 
Secure Claimed mode or move to RMA (Returned Merchandise Authorization) by the OEM. Once the device has been 
moved to the RMA state, it can never be changed to the Secure Unclaimed or Secure Claimed state which makes it unusable 
in a production product. The OEM would only advance to the RMA state if the device needed to be evaluated for failure 
analysis.

Virgin

Normal

Secure
Unclaimed

RMA

Secure
Claimed

States Only Valid
At Factory

Customer 
Valid States

Reprovision
(Optional)

Provisioned



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 139

“Secure Boot”

16.2.1.1 Usage of hashing

The PSoC 64 devices use hashing extensively to authenticate data and code stored in the device. Below is a summary of 
each of the hashes generated and stored in the device. The code/data that cannot change throughout the life of the device is 
stored directly in eFuse. Hashes for items that can change are encrypted with the device private key and stored in flash 
memory. 

All hashes are generated with the SHA-256 algorithm, but the ones stored in eFuse, only the most significant 128 bits are 
stored with additional 8-bits stored that contains the number of zeros in the 128-bits of hash. Hashes stored in flash use the 
full 256-bits.

FACTORY_HASH: This hash covers objects from TOC1 which includes Trim values, Die ID, FlashBoot code, etc. It is created 
during the transition from Virgin to Normal mode and verified by ROMBoot before the transition from Normal to Secure mode. 
After the transition to Secure mode, it is no longer used. The FACTORY_HASH will be different for each part because it 
contains both the unique trim values and unique die ID.

ASSET_HASH: This hash mainly covers FlashBoot and the CY Public Key. It is generated during the transition from Virgin to 
Normal mode. This hash is used by the entrance exam to verify the device has not been tampered with prior to provisioning. 
The ASSET_HASH is the same for all parts with the same version and part number.

SECURE_HASH: This hash covers objects from TOC1 and TOC2. It is generated during the transition from Normal to Secure 
mode. Once the device is in Secure mode, it is used to validate FlashBoot by ROMBoot before FlashBoot is executed.

SECURE_HASH2: This hash covers the Device and Group Private/Public keys. It is created and stored at the end of the 
identity creation step when the device changes from the Secure_Unclaimed state to the Secure_Claimed state. This hash is 
used to validate the keys and certificates stored on the device.

SECURE_HASH3: This hash is for the OEM public key, Product ID, and optionally for the bootloader and provisioned packets 
if the “reprovisioning” policy is not enabled. It is calculated and written in eFuse at the end of the provisioning when the 
“complete” flag is set true.

SECURE_HASH4: This is an optional hash for the Bootloader and provisioned packets if the reprovisioning policy is set to 
true. It is calculated and signed by the Device Private key and stored in flash at the end of the provisioning.

16.2.1.2 VIRGIN Stage

This stage is valid only at the Cypress factory. When a device is powered up for the first time at Cypress/Infineon factory, it will
be in VIRGIN mode. The following steps take place while the device is in VIRGIN mode before the transition to NORMAL
mode: 

1. Device Testing

2. Trim (calibration) values stored in SFlash

3. Unique ID (DIE_ID) written to eFuse

4. Flashboot written in SFlash and Main Flash

5. Cypress public key is stored in the device.

6. Generate FACTORY_HASH based on the TOC1 table and write to eFuse 

7. Generate ASSET_HASH which includes FlashBoot and Cy Pub Key, then write it to eFuse

8. Transition to NORMAL mode by writing NORMAL flag in eFuse 

16.2.1.3 NORMAL Stage

The Normal life cycle stage is valid only in the Cypress factory. The device hardware can be fully tested in this mode since
there are no code restrictions. Before the device leaves the factory, it is moved to Secure mode. Just prior to moving a device
to Secure mode, the SECURE_HASH is created based on elements in TOC1 and TOC2 and is stored in eFuse. The
SECURE_HASH will be used once the device is in Secure mode during the boot up procedure. The final step to transition to
Secure mode is to set the SECURE eFuse bit. After this bit is set and the device is rebooted, it can never revert back to
Normal or Virgin modes.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 140

“Secure Boot”

16.2.1.4 SECURE UNCLAIMED

There are two sub-states in the SECURE state, SECURE_UNCLAIMED and SECURE_CLAIMED. The
SECURE_UNLCAIMED state is entered when the device transitions from NORMAL to SECURE. The device leaves the
Cypress factory in this state. When the device is in the SECURE_UNCLAIMED mode, both the SECURE_HASH2 and
SECURE_HASH3 are equal to 0 and have not been stored in eFuse.

When the device leaves the Cypress factory, it is in the SECURE (Unclaimed) mode with the following configuration:

■ Secure life-cycle mode with HRoT (Hardware Root ofTrust) (PC=0) protection settings applied

■ Contains CY Public key

■ CM0+ AP disabled

■ CM4 core available to run code starting at 0x1000_0000 for basic hardware (PCB) testing.

■ CM4 AP enabled

■ Secure Hash 2 and Secure Hash 3 values are all zeros (un programmed)

Devices directly from Cypress are “owned” by Cypress/Infineon (SECURE_UNCLAIMED) until they are provisioned by the
OEM. To transfer the ownership to the OEM, a JWT (JSON Web Token) with the OEMs public key is signed by Cypress, then
loaded into the device. This transfers the root of trust (RoT) from Cypress to the OEM. From this point on, only code, keys,
and policies signed by the OEM can execute on the device. The policies, keys, and OEM boot code (first code executed after
Flashboot) are hashed and the hash stored in eFuse. This puts the device in SECURE_CLAIMED mode.

The Serial Wire Debugger (SWD) interface is used to transfer provisioning information to the device, as well as for firmware
programming and debug. JWT provisioning structures are used to transfer policies and keys to the PSoC 64 devices. The
JWTs need to be signed by the proper authority (OEM) to be accepted by the device. The actual format of the JWTs is defined
in the PSoC 64 Secure MCU Secure Boot SDK User Guide.

The Sys-AP interface will be open, but with restricted access to any CM0+ area such as Flashboot, SROM, and stack space
used by that code. The CM4 debug port defaults as open, and the CM0+ debug port will be closed by default. While in the
SECURE_UNCLAIMED state, developers may download and debug code only in the CM4 for evaluation and test purposes
without transferring the ownership to the OEM. Unsecure CM4 test code may be downloaded into user flash space with the
CM4's vector table starting at the default location of 0x1000_0000. When the device boots in this mode, it will check for a valid
reset vector and stack location only. If these vectors are valid, it will start the CM4 at the location pointed to by the reset
vector. The CM4 will have access to only nonsecure memory and register space. Memory areas that contain the private key,
control writing and reading Flash and eFuse, protection unit configuration, and so on are all secured with protection units, so
they cannot be modified by unsecure firmware. Systems calls provide access to flash memory writing, but only in user flash
area that is not protected.

16.2.1.5 SECURE CLAIMED

After the provisioning process is complete, the device is now in the SECURE_CLAIMED mode and owned by the OEM and
will only run authenticated code from the OEM. It will no longer recognize application code signed by Cypress or anyone else
for that matter. During provisioning the OEM has the option to enable the device to be reprovisioned, so that the bootloader,
keys, and policies may be changed. When the device is in the SECURE_CLAIMED mode, both the SECURE_HASH2 and
SECURE_HASH3 will be non-zero and stored in eFuse.

When the OEM is ready to ship the product, the devices will most likely be provisioned so that the debug ports are disabled
for security reasons. The debug port settings are just one of the several security parameters that can be configured with the
policy file. A method in the user's code should be provided to transfer code upgrades into the code update staging area, if
code updates are required. The default Cypress Secure Bootloader will evaluate the code in the staging area with the code
that is currently in the execution area. If the code in the staging area has been validated and is more recent, it will be copied
into the execution area, where it will be authenticated and executed.

16.2.1.6  Provisioning and Reprovisioning

The provisioning process of the PSoC 64 secure parts achieves the following goals:

■ Transfer RoT from Cypress to the user/OEM

■ Transfer of secure assets such as keys, certificates, and secure bootloader into the device

■ Set up policies that govern the debug and boot-up behavior of the device

https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 141

“Secure Boot”

■ Device generates its own Private and Public Key pair

■ This is achieved by sending a series of signed JSON Web Tokens (JWTs) to the part. The high-level flow of provisioning is 
shown in the following diagram.

Figure 16-2.  Provisioning Scheme

Provisioning may occur at any time in the SECURE_UNCLAIMED mode with the ProvisionKeysAndPolicies system call.
Production provisioning should be performed in a secure facility. The OEM may choose to allow the device to be
reprovisioned at a later time, or not allow the device provisioning properties to be altered. Once the device provisioning allows
re-provisioning, it cannot be changed to disallow re-provisioning. Also, once a device is provisioned with the re-provisioning
option disabled, the device can never be re-provisioned. The diagram below shows the flow for provisioning and
programming of the device.

The OEM application should be programmed into the device before the transition from SECURE_UNCLAIMED to
SECURE_CLAIMED if the device is provisioned for manufacturing and has its debug ports closed. If the device is provisioned
for development with the debug ports open, the OEM code does not have to be loaded into the device at this time. The first
code executed after Flashboot, such as Cypress “Secure Bootloader” needs to be programmed into the device before the
transition to SECURE_CLAIMED mode, since it will be hashed and cannot be reprogrammed.

A sample of the provisioning policies in JWT format is provided as part of the PSoC 64 Secure MCU Secure Boot SDK User
Guide. CySecureTools Python scripts are provided to perform the initial provisioning and as an example of how the
communication is performed between the development computer and the PSoC 64 device. Cypress partners such as Data I/
O, can provide the provisioning services and key management required for production, using a secure Hardware Security
Module (HSM). Customers are free to implement their own HSM as well. A key will need to be generated by the customer and
signed by Cypress to perform the initial RoT transfer to the OEM.

Trims, FlashBoot, unique 
device keys, hashes, etc.

Cy Root Public Key

PSoC 64

OEM Public Key

PSoC 64

Trims, FlashBoot, unique 
device keys, hashes, etc.

Trims, FlashBoot, unique 
device keys, hashes, etc.

OEM Public Key

Other Public key(s)

Debug Policy

Boot & Upgrade Policy

Cypress Secure 
Bootloader

Bootloader Certificate

Chain-of-Trust Certs

PSoC 64

(SECURE_UNCLAIMED) (SECURE_UNCLAIMED)

(SECURE_CLAIMED)

Transfer Root of Trust to OEM
(Package signed by Cypress and HSM) Inject User Assets 

(Package signed by OEM)

Generated Device Public 
and Private Keys



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 142

“Secure Boot”

Figure 16-3.  OEM Provisioning and Programming Flow

The last step of the provisioning process is dependent on whether or not reprovisioning has been enabled in the policy.
Enabling reprovisioning is achieved by setting one or more of the parameters in the “reprovision” policy to true in the policy
json file. The reprovisioning parameters include “keys_and_policies” and “boot_loader”.

Once provisioned, specific memory objects are hashed to secure the configuration. The objects hashed to create the
SECURE_HASH3 are dependent on which if any of the reprovision params are set to true or false. The following is a list of
objects that are hashed for SECURE_HASH3.

■ OEM Pub Key

■ Product ID

■ Provisioned JWT (If reprovision->keys_and_policies is false)

■ Chain of Trust JWT (If reprovision->keys_and_policies is false)

■ Image Cert JWT (If reprovision->boot_loader is false)

■ Bootloader image object included in “image_address” and “image_size” values in the “image_cert” provisioned packet (if 
reprovision->boot_loader is false)

The SECURE_HASH4 is only generated if one of more of the reprovision parameters is set to true. The following is the list of
objects that may be included in the SECURE_HASH4 hash.

■ Provisioned JWT (If reprovision->keys_and_policies is true)

■ Chain of Trust JWT (If reprovision->keys_and_policies is true)

■ Image Cert JWT (If reprovision->boot_loader is true)

Cysecuretools

Generate Keys

Modify Policy

Run Provisioning
(or ReProvisioning)

Check/modify
UserApp Parameters

Build and Sign
UserApp

Program UserApp Image

Download Upgrade
Image

Cypress
Bootloader Hex

Keys

Policy JSON

UserApp 
Image Hex

Upgrade Image
Hex

Secure
FlashBoot

Policy

Cypress
“Secure

Bootloader”

ROM
Boot

PSoC 64 Device

JWT Cert

Hex

Keys

User App
(Primary)

Upgrade
User App

(Secondary)

User
Flash



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 143

“Secure Boot”

■ Bootloader image object included in “image_address” and “image_size” values in the “image_cert” provisioned packet (if 
reprovision->boot_loader is true)

If the SECURE_HASH4 is generated, it is signed by the Device Private Key (Internally generated during provisioning) and
stored in Flash. SECURE_HASH3 and SECURE_HASH4 are validated each time the device comes out of reset. If the
calculated hash does not match the stored hash the device will not continue to the user application and will loop forever in the
Dead mode.

Because SECURE_HASH4 is placed in the flash it can be re-calculated and re-signed each time valid ProcessProvisionCmd
request is used to reprovision the device.

Note: “reprovision” policy configuration cannot be changed after first provisioning. When device is originally provisioned with
“reprovision” enabled, it cannot be reprovisioned with “reprovision” feature disabled.

The CM0+ (secure processor) is by default set to a Protection Context (PC) equal to 0 at reset. This is effectively super user
mode in which the CM0+ can read, write, or execute all code and data. When the device finishes executing the boot code, it
switches the PC to “1” before jumping to the bootloader or first executable from the OEM.

16.2.1.7 RMA

Customers can transition the device to the RMA mode (from SECURE_CLAIMED) when they want Cypress to perform failure
analysis on the device. Before provisioning, the RMA section of the Debug policy should be updated in the provisioning JWT
file. This policy should include any areas of Flash that may contain proprietary code or sensitive data. This area will be erased
automatically when the device transitions into RMA mode. See the PSoC 64 Secure MCU Secure Boot SDK User Guide for
more information on the format of the JWT file.

To place a device into the RMA mode, the internal code must execute the TransitionToRMA system call. A JWT packet that
contains the DIE_ID that is signed by a specified installed public key is passed as a parameter to the system call. The OEM
has the option to pre-generate this packet and store it in flash, or to provide a method to generate and transfer it to the device
through an OEM defined interface. The TransistionToRMA system call is only valid when the device is in the
SECURE_CLAIMED mode. 

After the device is moved into RMA mode, when it boots, it does not attempt to execute any code in user flash; instead, it
waits for the OpenRMA system call through the debug port. The OpenRMA system call requires the same signed packet as a
parameter that was used to place it into the RMA mode in the first place. When the OEM sends the part to Cypress for failure
analysis, the signed JWT packet that contains the device DIE_ID would also need to be supplied. The JWT packet will only
work for the part with the corresponding DIE_ID. 

In RMA mode, the chip accessibility is similar to that in the SECURE_UNCLAIMED mode with the following exceptions: 

■ Device can no longer be provisioned

■ CM4 debug port will be open

■ CM0p debug port will be closed

■ Only CM4 can run code

■ No system calls can be made by the CM4

■ CM4 code vector table will start at 0x1000_0000

16.2.2 Boot Sequence

A high-level view of the boot sequence is as follows. ROM boot does the basic trimming and initializing of hardware. It
validates that Flashboot has not been altered in any way before it jumps to execute it. Flashboot validates all the policies and
the bootloader by verifying SECURE_HASH2, SECURE_HASH3 and SECURE_HASH4. SECURE_HASH4 is only validated
if reprovisioning was enabled. Next, the bootloader determines if the user application is valid or whether it needs to be
updated. After the user application is validated, the CM4 is enabled and starts to execute the application. The CM0+ stays in
a low-power mode until a system call is executed or it is reset. 

https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 144

“Secure Boot”

Figure 16-4.  Boot Sequence

16.2.3 Cypress “Secure Bootloader”

The Cypress “Secure Bootloader” is a port of the industry-standard MCU Boot. The available Flash is divided into 4 sections,
Bootloader (the actual code), Flash Scratch area, and two application areas, primary and secondary. The Primary and
Secondary sections are of equal size and consume most of the Flash area. Originally the Primary and Secondary areas were
referred to as Slot 0 and Slot 1 respectively. The bootloader itself is executed by the CM0+ CPU. The user (non-secure)
application is only executed by the CM4.

The application code only executes in the Primary section. The Secondary section is used to hold the application firmware
upgrade. The CM4 updates the Secondary section when updated firmware is received from a local host or via a wireless
connection. It will not be verified until the device resets and the bootloader will execute. If the firmware is validated, it will be
copied into the Primary section where it will be executed. The firmware update may be encrypted for transport and stored in
the Secondary area as such. If the code in the Secondary location is encrypted, the bootloader will decrypt it prior to copying
it to the Primary location. The boot upgrade policy determines if the firmware update will be encrypted and what key is used to
decrypt it. The code in the Primary location is never encrypted.

Figure 16-5.  Cypress Secure Bootloader

“Secure
Flashboot”

Cypress
“Secure 

Bootloader”

CM0+

ROM
Boot

User
Application

CM4

“Secure
Bootloader”

Device Flash

User
Application
(Primary)

User
Application
(Secondary)

MCU Boot
Scratch Area



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 145

“Secure Boot”

The user application (CM4) is responsible for transferring the updated firmware via whatever interface the application uses,
into the Secondary memory location. Updates may come through a serial port, I2C, SD Card, Wi-Fi, Bluetooth LE, etc. The
bootloader (CM0+) has nothing to do with the transfer of the upgraded firmware to the Secondary location.

16.2.4 Flash Security

PSoC 6 MCUs include a flexible flash-protection system that controls access to flash memory. This feature is designed to
secure proprietary code, but it can also be used to protect against inadvertent writes to the bootloader or other protected
areas of flash. 

Flash protection is provided by a Shared Memory Protection Unit (SMPU). The SMPU is intended to distinguish between
different protection contexts and to distinguish secure from non-secure accesses. The system function that performs flash
programming first looks at the SMPU settings and will not allow to programming or erasing flash blocks protected by the
SMPUs. All SMPUs have been configured or reserved during the boot process. The CM4 user code cannot modify any of
these settings since they are protected with PPUs. For more details, see the Protection Units chapter on page 71.

16.2.5 Hardware-Based Encryption

The PSoC 6 MCU has a cryptographic block (Crypto) that provides hardware implementation and acceleration of
cryptographic functions. It implements symmetric key encryption and decryption, hashing, message authentication, random
number generation (pseudo and true), and cyclic redundancy checking. It can work with internal as well as external memory.
See the Cryptographic Function Block (Crypto) chapter on page 113 and Serial Memory Interface (SMIF) chapter on
page 342 for more details.

The Crypto Block is accessible either via System calls or directly by the CM4, but not both at the same time. Care should be
taken not to make a System call that requires Crypto functions while using the crypto block hardware directly from the CM4.
System calls are executed by the secure processor (CM0+). They will always take priority and will block access to the crypto
block from the CM4 or any other bus master until the system call is complete. If the CM4 attempts to access the crypto block
when in use by the CM0+ because of a system call, or a system call takes control of the crypto block while the CM4 is using
it, a hard fault will occur. 

16.2.6 Dedicated Hardware

Some of the PSoC 64 hardware is reserved by the secure boot system and is not accessible from the user’s (non-secure)
application. Attempting to access memory or peripherals reserved by the secure boot system will cause the system to hard
fault. Some of the flash and SRAM is used by the secure boot code as well. See the device datasheet for the specific memory
map that documents the system memory map. The following sections document the other resources reserved by the secure
boot system.

16.2.6.1 IPC Channels and IPC Interrupts

The PSoC 64 devices have 16 IPC channels. Channels 0 thru 9 are used or reserved by the system. The table below shows

the usage of each of these channels. 

Table 16-1.  IPC Channels Usage

IPC Channels Name Usage

0 CY_IPC_CHAN_SYSCALL_CM0 System calls for the CM0 processor. PyOCD and OpenOCD.

1 CY_IPC_CHAN_SYSCALL_CM4 System calls for the CM4 processor. PyOCD and OpenOCD.

2 CY_IPC_CHAN_SYSCALL_DAP System calls for the DAP (programming, OpenOCD)

3 CY_IPC_CHAN_SEMA
Reserved for CM4 -> CM0+ RPC: not used by Secure FW and 
Debugger.

4 PRA Used for Protected Register Access

5 CY_IPC_CHAN_CYPIPE_EP0
Reserved for CM0+ -> CM4 RPC: not used by Secure FW and 
Debugger.

6 CY_IPC_CHAN_CYPIPE_EP1 Reserved for DAP -> CM4 RPC

7 Reserved Reserved for future use



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 146

“Secure Boot”

16.2.6.2 Protection Context

Although Protection Context (PC) is not one specific block of hardware, it is used for all the protection units such as SMPU
and PPUs. Multiple protection contexts are used to isolate the different security levels within the PSoC 64. The CM0+ makes
use of several of them during the boot sequence, bootloading, system calls, etc. Protection context 6 is used for the user
application code that runs on the CM4 CPU. The non-secure (CM4) application cannot change this value. The following table

details how each of the protection contexts is used.

*Note: Future releases of the device firmware may allow for 3rd party trusted functions, not available at this time.

16.2.6.3 SMPUs

SMPUs are used to protect areas of memory (flash, sflash, and ROM) between multiple bus masters. The secure boot system
reserves all the available 16 SMPUs.

8 TFM Reserved PSoC 64

9 TFM Reserved PSoC 64

10 Unused -

11 Unused -

12 Unused -

13 Unused -

14 Unused -

15 Unused -

Table 16-2.  IPC Interrupt Usage

IPC Interrupt Usage

0,1,2 SysCalls (#0 for CM0+, #1 for CM4, and #2 for DAP)

3,4 CM0/CM4 Pipe communications

5 PRA Driver

6 TFM

7 SysPm

8 TFM

9-15 Unused

Table 16-1.  IPC Channels Usage

IPC Channels Name Usage

Table 16-3.  Protection Contexts

PC Secure Description CPU Privileged User

0 Yes
Hardware Root-of-Trust, SysCall access 
only

CM0+ SysCall <not used>

1 Yes Cypress Trusted Environment & Functions CM0+ BootLoader/SPM/Drivers Trusted Functions

2 Yes 3rd Party Trusted Functions (optional*) CM0+ BootLoader/SPM/Drivers Trusted Functions

3 Yes 3rd Party Trusted Functions (optional*) CM0+ BootLoader/SPM/Drivers Trusted Functions

4 Yes 3rd Party Trusted Functions (optional*) CM0+ BootLoader/SPM/Drivers Trusted Functions

5 No <reserved> - - -

6 No Application CM4 OperatingSystem/Drivers Application

7 No DAP SYSAP DAP <not used> Debugger/Tester



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 147

“Secure Boot”

16.2.6.4 Protected Register Access (PRA)

PSoC 64 devices use Peripheral Protection Units (PPU) to protect the system from invalid configurations that could
potentially cause the system to be unstable or indirectly allow access to registers and memory that are protected. In some
cases, the unsecure application running on the CM4 still must access these registers for several system functions. The
Protected Register Access (PRA) driver provides a secure method in which to access these registers, but at the same time
protect the system from register combinations that could compromise the security of the device.

The PRA driver implements a bridge between the CM4 and the CM0+ via IPC. Several PDL drivers that access the protected
registers have been modified specifically for the PSoC 64 to allowed controlled access to these registers. Some of these
registers do not pose any security risk, but due to the coarseness of the fixed protection register blocks, may have protected
the register. In this case the PRA library provides a virtual direct access via an IPC channel. The functions that access these
registers have been updated to automatically use the PRA driver for access.

In the case where more control is required to protect a register due to specific values or sequence of operations, the entire
function runs on the secure CM0+. When the non-secure user application calls one of these functions, the parameters are
passed to the CM0+ through the IPC channel and the code is executed by the CM0+.

■ The PRA driver is not intended to be used by developers directly.

■ The supplied PDL and HAL drivers have incorporated the PRA functions so that little or no code changes are required.

■ How the PRA deals with registers can be summarized in 6 cases.

❐ DIRECT: This means that the CM4 has full direct access to this register and the PRA driver is not used to access this 
register. This is the case for most registers that are not accessed by the listed driver libraries.

❐ UNCONSTRAINED: Register that fall under this case have been protected because of the coarseness of the fixed 
PPU that secures the block containing that register. The register itself should have full access by the CM4 CPU. The 
PRA driver passes any read/write data directly from/to this register without any restrictions.

❐ REGISTER_POLICY: Data written to a register in this group will be checked for proper range and bit settings. If the 
data is outside this range an error will be generated and returned to the CM4.

❐ SECURE_ONLY: Register in this group can only be accessed with a PDL function, that use the PRA driver. This PDL 
function will be executed on the CM0+. The CM4 function call will use the IPC interface to transfer the parameters of 
the function call to the CM0+ where it will be executed by the CM0+ with parameter checking and proper sequence rel-
ative to writing to other registers. Any errors will be passed back to the CM4 via the IPC interface.

❐ FUNCTION_ POLICY: Register that fall under this classification are primarily those used to set the frequency and 
clock source for CLK_HF0 (CPU clock). An entire configuration of CLK_HF0 is evaluated for correctness before set-
ting any registers. Also, wait states and system voltages are evaluated to verify that the device is operating per speci-
fication.

❐ NO ACCESS: The few registers that fall into this category are inaccessible by the CM4 in any way. These registers 
have been protected during the boot process and cannot be modified by the CM4 with or without the PRA driver. Any 
attempt to access these registers will cause a page fault.

The register TRM will tag any of the registers that are affected by the PRA driver. This will appear at the top of the register
definition with a “Protected Register Access:” label. The type of PRA used for that register will be shown after the label. For
example, if a register is of type “SECURE_ONLY”, the label will show “Protected Register Access: SECURE_ONLY”.

Most PDL drivers are not affected or use the PRA driver. Only the following PDL driver libraries are affected by this driver:

■ LVD (Low-Voltage-Detect)

❐ UNCONSTRAINED register policy is used for the (LVD).

■ GPIO (General Purpose Input/Output)

❐ The GPIO ports are only affected if that port is used for an external clock such as an ECO or WCO. When an external 
clock or oscillator is enabled, the remaining pins on that port that aren’t used by the clock or oscillator, are affected by 
the PRA driver. This means that any access to these pins in firmware incur an access penalty because the PRA driver 
must be invoked. For example, if the WCO is used on port pin P0[0] and P0[1], access to pins P0[7:2] in firmware will 
be significantly slower. This is because the CM4 CPU cannot have direct access to these pins and must communicate 
with the CM0+ secure CPU to read and write to these pins. The PRA driver takes care of this automatically when using 
the standard PDL GPIO library. Any attempt to access this port directly without the use of the PDL GPIO library will 
cause a CPU fault. This restriction also includes the HSIOM register associated with the port. The only ports affected 
by this is Port 0 (External Clock and WCO) and Port 12 (External Crystal Oscillator), and only if the security policy 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 148

“Secure Boot”

defines an oscillator or external clock on that port. This is done to make sure that unsecure software cannot directly 
affect the clock that affects the operation of the secure CPU (CM0+).

■ SysLib (System Library)

❐ REGISTER_POLICY is used for the Cy_SysLib_ClearFlashCacheAndBuffer() and Cy_SysLib_ClearResetReason() 
functions.

❐ The Cy_SysLib_SetWaitStates() implementation was made empty for PSoC64. The wait states are automatically 
updated on any clock and power configuration changes.

■ SysClk (System Clock)

❐ Access to SysClk driver is via the FUNCTION_POLICY

■ SysPm (System Power Management)

❐ When calling the function Cy_SysPm_BuckSetVoltage1() it uses the PRA driver to enable the buck register.

■ SysTick (ARM System Timer)

❐ SysTick has the option of having an alternate clock source. This alternate clock source is common for both the CM4 
and the CM0+. The option of selecting this clock source is up to the each of the CPUs which is not a security issue. 
Selecting the source of the alternate clock source may be a security issue. If the CM4 was able to set the alternate 
systick clock source it could affect the operation of the CM0+ code execution. All other systick functions are not 
affected by the PRA.

■ WDT (Watch Dog Timer)

❐ Access policy is UNCONSTRAINED for the WDT registers.

■ Flash (Flash System Routine)

❐ The registers associated with programming of Flash and eFuses are restricted. eFuses cannot be programmed 
directly by the CM4. To access Flash programming, the CM4 must use standard system calls.

A list of affected register and functions is provided in the cy_pra.h file located at PROJECT_DIRECTORY\libs\mtb-pdl-
cat1\include. Each register name has a prefix of “CY_PRA_INDX” or “CY_PRA_INDEX”. Driver functions that are executed
by the Secure CM0+ instead of the CM4, such as defined by the “FUNCTION_POLICY”, or “SECURE_ONLY” are listed in the
same header file. These functions will have a prefix “CY_PRA_driver_FUNC” where “driver” is the driver PLD library. For
example, “CY_PRA_CLK_FUNC_ECO_ENABLE” is for the “Cy_SysClk_EcoEnable” function.

The execution time of the functions that access the protected registers is increased on the PSoC 64 devices. This is because
the affected library function is merely a wrapper that sends the function parameters to the CM0+ and is executed by the
CM0+. The parameters are transferred to the CM0+ using an IPC channel and shared SRAM. The result is then passed back
through the IPC channel to the CM4. For more complicated functions the additional overhead may not be notable, but for
simpler functions such as those that just set register values the overhead will be more noticeable.

■ The access to the protected register may take around by 20 times longer compared to unprotected one.

■ The initial device configuration based on the device configuration depends on actual configuration, but may take up to 40 
times longer.

■ The transition Active to DeepSleep may take 2 times longer.

For more information about the PRA driver and how it works, see the PSoC 6 Peripheral Driver Library documentation for the
PRA driver.

16.3 System Calls

16.3.1 Implementation

16.3.1.1 System Call via CM0+ or CM4

System calls can be made from the CM0+ or CM4 during code execution. CM0+ or CM4 should acquire the IPC_STRUCT
reserved for them and provide arguments in either of the methods described above and notify IPC interrupt 0 to trigger a
system call. Although the CM0+ is the security processor, it can perform a system call to itself. However, after the bootup
sequence has completed and the CM4 is up and running, the CM0+ will not make system calls, but will only execute them.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 149

“Secure Boot”

16.3.1.2 System Call via DAP

If the device is acquired, then the boot ROM enters “busy-wait loop” and waits for commands issued by the DAP. For a
detailed description on acquiring the device see the PSoC 6 MCU Programming Specifications.

16.3.1.3 Exiting from a System Call

When the API operation is complete, CM0+ will release the IPC structure that initiated the system call. If an interrupt is
required upon release, the corresponding mask bit should be set in IPC_INTR_STRUCT.INTR_MASK.RELEASE[i]. The exit
code must also restore the CM0+ protection context (MPU.MS_PC_CTL.MS_PC) to the one that was backed up in
MPU.MS_PC_CTL.MS_PC_SAVED.

16.3.1.4 SRAM Usage

2KB of SRAM [TOP_OF_SRAM – 2KB, TOP_OF_SRAM] is reserved for system calls and 1KB of SRAM [TOP_OF_SRAM –
3KB, TOP_OF_SRAM – 2KB] is used by SROM boot and should not be part of noinit RAM. TOP_OF_SRAM is the last
address of SRAM.

16.3.2 System Call APIs

SROM has two categories of APIs:

There are three main categories of System Calls:

■ Flash management APIs (FLS) - These APIs provide the ability to program, erase, and test the flash macro.

■ System management APIs (SYS) - These APIs provide the ability to perform system tasks such as checksum and blowing 
eFuse.

■ Provisioning APIs (PROV) - These APIs are used for the process of provisioning the device.

Table 16-4 shows a summary of the APIs.

Table 16-4.  List of System Calls

System Call Opcode Description
API 

Category
Access Allowed

Crypto 
Block Used

Cypress ID 0x00 Returns die ID, major/minor ID, and protection state SYS CM0+, CM4, DAP No

Read eFuse Byte 0x03 Reads addressed eFuse byte SYS CM0+, DAP No

Write Row 0x05 Pre-program, erase, and program the addressed flash row FLS CM0+, CM4, DAP No

Program Row 0x06 Programs the addressed flash row FLS CM0+, CM4, DAP No

Erase All 0x0A
Erases full flash memory. When part of flash sector is protected by 
protection settings, this patch verify permission and clears flash first 
sector by sector, then row by row.

FLS CM0+, CM4, DAP No

Checksum 0x0B
Reads either the whole flash or a row of flash, and returns the sum of 
each byte read

FLS CM0+, CM4, DAP No

FmTransitionToLpUlp 0x0C Configures FLASH macro as per desired low power mode SYS CM0+, CM4, DAP No

Compute Basic Hash 0x0D Computes the hash value of a given flash region SYS CM0+, CM4, DAP Yes

Erase Sector 0x14
Erases Sector in flash memory. If part of flash sector is protected by 
secure protection settings, flash is cleared row by row.

FLS CM0+, CM4, DAP No

Soft Reset 0x1B Provides system reset to either or both cores. SYS DAP No

Erase Row 0x1C Erases the addressed flash row FLS CM0+, CM4, DAP No

Erase Subsector 0x1D Erases the addressed flash subsector FLS CM0+, CM4, DAP No

ReadUniqueID 0x1F Returns the unique ID of the die from SFlash SYS CM0+, CM4, DAP No

ReadFuseByteMargin 0x2B Marginally reads eFuse SYS CM0+, CM4, DAP No

AcquireResponse 0x32
Sets or clears response expected by the programming tools to the 
second word of PUB RAM.

SYS DAP No

https://www.Infineon.com/PSoC6ProgrammingSpec


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 150

“Secure Boot”

Note: The provisioning system calls are meant to be executed during factory programming and provisioning. They are not
allowed to be called by the CM4 user application. They are documented in the PSoC 64 Secure MCU Secure Boot SDK User
Guide.

The following sections provide detailed information on each system call.

16.3.2.1 Cypress ID

This function returns a 12-bit family ID, 16-bit silicon ID, 8-bit revision ID, and the current device protection mode. These
values are returned to the IPC_STRUCT.DATA register if invoked with IPC_STRUCT.DATA[0] set to ‘1’. Parameters are
passed through the IPC_STRUCT.DATA register.

PSACrypto 0x35

Wraparound function to call PSA Crypto APIs with PC0 from 
Bootloader, SPM or any other application. PC of CRYPTO block is 
changed to PC=0 during this call to have access to the Key storage for 
different cryptographic operations. After operation complete, PC of 
CRYPTO is returned to default value. Device Private Key is still 
protected from export by PSA Crypto interface.

SYS CM4, DAP Yes

RollBackCounter 0x36
This system call is used to update and read rollback counter. Updates 
the rollback counter to higher value only.

SYS CM4, DAP

GetProvDetails 0x37
Syscall returns provisioning packet (JWT), templates, or public keys 
strings in JSON format.

SYS DAP No

Provisioning System Calls: The following systems calls are intended for provisioning and are not meant to be called from the CM4.

Region Hash 0x31 This function is used to compute the Hash of a given region. PROV DAP YES

ProcessProvisionCmd 0x33

This function is used to inject various keys and policies, including the 
OEM RoT key. These keys and policies are certified by CY and the 
OEM and verified by this function. A certificate chain is used in the 
verification of the CY and OEM signatures. For CY, the initial 
certificate is signed by the HSM using a private key generated by 
HSM. The second certificate certifies the corresponding public key. 
The second certificate is signed by CY whose public key is stored in 
the device. A similar scheme is used for the OEM certificate. This 
function converts the device from SECURE UNCLAIMED to SECURE 
CLAIMED life cycle.

PROV DAP Yes

EncryptedProgramming 0x34

This function is used to request an encrypted firmware images 
programming during firmware programming on the production line. 
The data is transferred in the encrypted form and is decrypted on the 
device. Application developers can use this process to protect their 
firmware from theft in the supply chain.

PROV DAP Yes

Debug Port Control System Call

DAPControl 0x3A This function controls DAP access if it is “allowed” by the debug policy. SYS CM0+, CM4 No

RMA System Calls

TransitionToRMA 0x3B Converts parts from SECURE to RMA lifecycle stage. SYS DAP Yes

OpenRMA 0x29
Enables full access to device in RMA lifecycle stage upon successful 
execution

SYS DAP Yes

Attestation

Attestation 0x3C
Implements attestation service - calculates memory hashes and signs 
a certificate with a device information

SYS CM0+, CM4, DAP Yes

Table 16-4.  List of System Calls (continued)

System Call Opcode Description
API 

Category
Access Allowed

Crypto 
Block Used

https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 151

“Secure Boot”

Note that only 32 bits are available to store the return value in the IPC structure. Therefore, the API takes a parameter ID type
based on which it will return family ID and revision ID if the ID type is set to ‘0’, and silicon ID and protection state if the ID type
is set to ‘1’.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Return if DAP Invoked the System Call

Table 16-5.  Cypress ID

Cypress IDs Memory Location Data

Family ID [7:0] 0xF0000FE0 Part Number [7:0]

Family ID [11:8] 0xF0000FE4 Part Number [3:0]

Major Revision 0xF0000FE8 Revision [7:4]

Minor Revision 0xF0000FEC Rev and Minor Revision Field [7:4]

Silicon ID SFlash Silicon ID [15:0]

Protection state MMIO Protection [3:0]

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x00 Silicon ID opcode.

Bits [15:8]
0 - returns 0. Read family ID and revision ID from SFlash

1 - returns 16-bit silicon ID and protection state
ID type.

Bits [0] 0x1 Indicates that all the arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. 
This must be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x00 Silicon ID opcode.

Bits [15:8]
0 - returns 12-bit family ID and revision ID

1 - returns 16-bit silicon ID and protection state
ID type.

Bits [0] Not used (don't care).

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care).



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 152

“Secure Boot”

Return if CM0+/CM4 Invoked the System Call

16.3.2.2 Read eFuse Byte

This function returns the eFuse contents of the addressed byte. The read value of a blown eFuse bit is ‘1’ and that of an
unblown eFuse bit is ‘0’. These values are returned to the IPC_STRUCT.DATA register. Parameters are passed through the
IPC_STRUCT.DATA register.

Bits [23:20]

If ID Type = 0 Major Revision ID

If ID Type = 1 Life-cycle stage

0: VIRGIN

1: NORMAL

2: SEC_W_DBG

3: SECURE

4: RMA
See the device datasheet for these values.

Bits [19:16]

If ID type = 0, Minor Revision ID

If ID type = 1, Protection state

0: UNKNOWN

1: VIRGIN

2: NORMAL

3: SECURE

4: DEAD

Bits [15:8]
If ID type = 0, Family ID Hi

If ID type = 1, Silicon ID Hi See the device datasheet for silicon ID values for different part 
numbers.

Bits [7:0]
If ID type = 0, Family ID Lo

If ID type = 1, Silicon ID Lo

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS 

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care).

Bits [23:20]

If ID Type = 0 Major Revision ID If ID 
Type = 1 Life-cycle stage 0: VIRGIN

1: NORMAL

2: SEC_W_DBG

3: SECURE

4: RMA
See the PSoC 6 MCU Programming Specifications for these values.

Bits [19:16]

If ID type = 0, Minor Revision ID If ID type 
= 1, Protection state 0: UNKNOWN

1: VIRGIN

2: NORMAL

3: SECURE

4: DEAD

Bits [15:8]
If ID type = 0, Family ID Hi

If ID type = 1, Silicon ID Hi See the device datasheet for silicon ID values for different part 
numbers.

Bits [7:0]
If ID type = 0, Family ID Lo

If ID type = 1, Silicon ID Lo

Address Return Value Description

https://www.Infineon.com/PSoC6ProgrammingSpec


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 153

“Secure Boot”

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

16.3.2.3 Write Row

This function is used to program the flash. You must provide data to be loaded and the flash address to be programmed. The
WriteRow parameter performs pre-program and erase, and then programs the flash row with contents from the row latch.

The PSoC 6 MCU supports the Read While Write (RWW) feature, which allows flash to be read from a sector that is not
programmed/erased during a program/erase of another sector. Each row is of 512 bytes in size.

The API is implemented in three phases to make it non-blocking. The first phase sets up the flash for pre-program and erase
operations and returns to the user code by exiting from NMI without releasing the IPC structure that invoked the API. Now,
user code and interrupts can be handled but no NMI can be invoked.

Upon completion of the erase, an interrupt is generated by the flash macro, which will invoke the second phase of the
WriteRow API to complete the ongoing erase operation successfully and start the program operation. API returns from NMI to
user code after it sets up for program operation.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x03 Read eFuse bit opcode.

Bits [23:8] eFuse Address Refer to the eFuse Memory chapter on page 133 for more details.

Bits [0] 0x1 Indicates all arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x03 Read eFuse bit opcode.

Bits [23:8] eFuse Address Refer to the eFuse Memory chapter on page 133 for more details.

Bits [7:0] 0xXX Not used (don't care).

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care).

Bits [23:0] eFuse byte Byte read from eFuse if status is success; otherwise, error code.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care).

Bits [23:0] eFuse byte Byte read from eFuse if status is success; otherwise, error code.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 154

“Secure Boot”

Upon completion of the program, an interrupt is generated by the flash macro, which will invoke the third phase of the
WriteRow API to complete the ongoing program operation successfully; this completes the WriteRow API. SROM API will
now return the pass or fail status and releases the IPC structure.

This API can also be called in blocking mode by setting the blocking parameter as ‘1’, in which case the API will return only
after all flash operation completes. 

The API returns a fail status if you do not have write access to flash according to SMPU settings. See the CPU Subsystem
(CPUSS) chapter on page 33 for more details. After flash program operation is complete, the API will optionally compare the
flash row with the contents in row latch for data integrity check. The function returns 0xF0000022 if the data integrity check
fails.

Note: To perform flash writes, the device must be configured such that VCCD is greater than 0.99 V. You must use the
Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in the
PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is used
to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to attacks. 

Parameters if DAP/CM0+/CM4 is Master

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x05 Write Row opcode.

Bits [23:16] 0xXX Not used

Bits [15:8]
Blocking: 0x01 – API blocks CM0+

Other values - Non-blocking

Bit [2]

0 - Read operation is allowed on the 
sector that is not being erased/
programmed

1 - Read operation is stalled until the 
erase/program operation is complete 

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH + 0x04

Bits [23:16]

Verify row:

0 - Data integrity check is not performed

1 - Data integrity check is performed

Bits [31:24], Bits [15:0] 0xXX Not used (don't care).

SRAM_SCRATCH + 0x08

Bits [31:0]
Flash address to be programmed. This should be provided in 32-bit 
system address format. For example, to program the second half-
word, provide either of the byte address 0x1000003 or 0x1000004.

SRAM_SCRATCH + 0x0C

Bits [31:0]
Data word 0 (data provided should be 
proportional to the data size provided, 
data to be programmed into LSbs)

SRAM_SCRATCH + 0x0C + n*0x04

Bits [31:0] Data word n (data to be programmed)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 155

“Secure Boot”

Return if DAP/CM0+/CM4 Invoked the System Call

16.3.2.4 Program Row

This function programs the addressed flash row. You must provide the data to be loaded and flash address to be
programmed. The flash row should be in the erased state before calling this function.

The function is implemented in two phases to make it non-blocking. The first phase sets up the flash for program operation
and returns to user code by exiting from NMI without releasing the IPC structure that invoked the API. Now user code and
interrupts can be handled but no NMI can be invoked.

Upon completion of the program operation, an interrupt is generated by the flash macro, which will invoke the second phase
of the ProgramRow API to complete the ongoing program operation successfully. The SROM API will return the pass or fail
status and releases the IPC structure.

After flash program operation is complete, the API will optionally compare the flash row with the contents in the row latch for
data integrity check. It returns STATUS_PL_ROW_COMP_FA if data integrity check fails. The values are returned to the
IPC_STRUCT.DATA register. Parameters are passed through the IPC_STRUCT.DATA register.

Note: To perform flash writes, the device must be configured such that VCCD is more than 0.99 V. You must use the

Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in the
PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is used
to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to attacks. 

Parameters if DAP/CM0+/CM4 is Master

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS /Program ongoing in 
background

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error code (if any) See System Call Status for details.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x06 Program Row opcode.

Bits [23:16]

Skip blank check: 

0x01 – Skips the blank check step

Other – Perform blank check

Bits [15:8]
Blocking: 0x01 – API blocks CM0+

Other values - Non-blocking

Bit [2]

0 - Read operation is allowed on the 
sector that is not being erased/
programmed

1 - Read operation is stalled until the 
erase/program operation is complete 

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH + 0x04

Bits [23:16]

Verify row:

0 - Data integrity check is not performed

1 - Data integrity check is performed



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 156

“Secure Boot”

Return if DAP/CM0+/CM4 Invoked the System Call

16.3.2.5 Erase All

This function erases all the user Flash area, not the secured memory. The API returns fail status if user does not have write
access to FLASH. API will check if all data is 0 to confirm if erase successful. API will return CHECKSUM_NON_ZERO error
status if a non-zero word is encountered in the available flash.

The values are returned to the IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA
register. 

Note: To perform flash writes (or erase), the device must be configured such that VCCD is greater than 0.99 V. You must use

the Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in
the PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is
used to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to
attacks. 

Parameters if DAP is Master

Bits [15:8]

Data location: 

0 - row latch

1 - SRAM

Bits [7:0] 0xXX Not used (don't care).

SRAM_SCRATCH + 0x08

Bits [31:0]
Flash address to be programmed. This should be provided in 32-bit 
system address format. For example, to program the second half-
word, provide either of the byte address 0x1000003 or 0x1000004.

SRAM_SCRATCH + 0x0C

Bits [31:0]
Data word 0 (data provided should be 
proportional to data size provided, data 
to be programmed into LSbs)

SRAM_SCRATCH + 0x0C + n*0x04

Bits [31:0] Data word n (data to be programmed)

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS /Program ongoing in 
background

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error code (if any) See System Call Status for details.

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x0A Erase All opcode.

Bits [2]

0 - Read operation is allowed on the 
sector that is not being erased/ 
programmed 

1 - Read operation is stalled until the 
erase/program operation is complete

Bits [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

Bits [0] 1 Indicates that all the arguments are passed in DATA.

Address Value to be Written Description



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 157

“Secure Boot”

Parameters if CM0+/CM4 is Master

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

16.3.2.6 Checksum

This function reads either the entire flash or a row of flash, and returns the sum of each byte read. Bytes 1 and 2 of the
parameters select whether the checksum is performed on the entire flash or on a row of flash. This function will inherit the
identity of the master that called the function. Hence if a non-secure master requests for either the whole or page checksum
of a secured flash, then the fault exception will be raised by the hardware.

The values are returned to the IPC_STRUCT.DATA register. Parameters are passed through the IPC_STRUCT.DATA
register.

Parameters if DAP is Master

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x0A Erase All opcode

Bits [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS 

0xF = ERROR

If error Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care)

Bits [23:0] Checksum Checksum if status is SUCCESS

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS 

0xF = ERROR

If error Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care)

Bits [23:0] Checksum Checksum if status is SUCCESS

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x0B Checksum opcode.

Bits [23:22]

0 - application

1 - AUXFlash

other - supervisory

Flash region.

Bits [21]
0 - row

1 - whole flash
Whole flash.

Bits [20:8] Row ID.

Bits [0] 1 Indicates that all the arguments are passed in DATA.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 158

“Secure Boot”

Parameters if CM0+/CM4 is Master

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

16.3.2.7 FmTransitionToLpUlp

This system call configures the required flash macro from trim bits when transitioning from LP to ULP mode or vice-versa.
This function takes approximately 20 µs; reads from flash are stalled during this time.

Parameters if DAP/CM0+/CM4 is Master and SRAM is used

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x0B Checksum opcode.

Bits [23:22]

0 - application

1 - AUXFlash

2 - supervisory

Flash region.

Bits [21]
0 - row

1 - whole flash
Whole flash.

Bits [20:8] Row ID.

Bits [0] 0

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don’t care)

Bits [23:0] Checksum Checksum if status is SUCCESS

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don’t care)

Bits [23:0] Checksum Checksum if status is SUCCESS

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 159

“Secure Boot”

Parameters if DAP/CM0+/CM4 is Master and SRAM is not used

Return if DAP/CM0+/CM4 Invoked the System Call and SRAM is used

Return if DAP/CM0+/CM4 Invoked the System Call and SRAM is not used

16.3.2.8 Compute Basic Hash

This function generates the hash of the flash region provided using the formula:

H(n+1) = {H(n)*2+Byte}% 127; where H(0) = 0

This function returns an invalid address status if called on an out-of-bound flash region. Note that CM0+ will inherit the
protection context of the master, which invoked it before performing hash. The values are returned to the IPC_STRUCT.DATA
register. Parameters are passed through the IPC_STRUCT.DATA register.

Bits [31:24] 0x0C Opcode for FmTransitionToLpUlp.

Bits [23:2] 0xXX Not used (don't care)

Bits [1]
0 - Transition To LP

1 - Transition to ULP
Transition mode

Bits [0] 0xXX Not used (don't care)

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x0C Opcode for FmTransitionToLpUlp.

Bits [23:2] 0xXX Not used (don't care)

Bits [1]
0 - Transition To LP

1 - Transition to ULP
Transition mode

Bits [0]
0 - Parameters are in address pointed to 
by IPC_DATA

1 - Parameters are in IPC_DATA
Parameter location

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details

Address Value to be Written Description



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 160

“Secure Boot”

Parameters if DAP/CM0+/CM4 is Master

Return if DAP/CM0+/CM4 Invoked the System Call

16.3.2.9 Erase Sector

This function erases the specified sector. Each sector consists of 512 rows. The values are returned to the
IPC_STRUCT.DATA register. Parameters are passed through the IPC_STRUCT.DATA register.

Note: To perform flash writes (or erase), the device must be configured such that VCCD is more than 0.99 V. You must use
the Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in
the PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is
used to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to
attacks. 

Parameters if DAP/CM0+/CM4 is Master

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x0D Compute hash opcode.

Bits [23:16] 0xXX Not used (don't care).

Bits [15:8]
0x01 - CRC8 SAE

others - Basic hash
Type

Bits [7:0]  0xXX Not used (don't care)

SRAM_SCRATCH + 0x04

Bits [31:0] Start address (32-bit system address of the first byte of the data).

SRAM_SCRATCH + 0x08

Bits [31:0]
0 – 1 byte

1 – 2 bytes, and so on
Number of bytes.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR

If error, Bits [27:0] contain error status

Status code (see System Call Status for details).

Bits [27:24] 0xXX Not used (don't care).

Bits [23:0] Hash of the data Hash of data if status is SUCCESS.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x14 Erase Sector opcode.

Bits [23:16]
0x01 - Set FM interrupt mask

Other - Do not set FM interrupt mask
Interrupt mask



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 161

“Secure Boot”

Return if DAP/CM0+/CM4 Invoked the System Call

16.3.2.10 Soft Reset

This function resets the system by setting CM0+ AIRCR system reset bit. This will result in a system-wide reset, except debug
logic. This API can also be used for selective reset of only the CM4 core based on the ‘Type’ parameter. The values are
returned to the IPC_STRUCT.DATA register. Parameters are passed through the IPC_STRUCT.DATA register.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Bits [15:8]
Blocking: 0x01 – API blocks CM0+

Other values – Non-blocking

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH + 0x04

Bits [31:0] Flash Address

Flash address to be erased. Should be provided in 32-bit system 
address format. For example, to erase the second sector you need to 
provide the 32-bit system address of any of the bytes in the second 
sector.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error code (if any) See System Call Status for details.

Address Value to be Written Description

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x1B Soft Reset opcode.

Bits [7:1]
0 - System reset

1 - Only CM4 resets
Type of reset

Bits [0] 0x1 Indicates all arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x1B Soft Reset opcode.

Bits [7:1]
0 - System reset

1 - Only CM4 resets
Type of reset

Bits [0] 0xXX Not used (don't care).



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 162

“Secure Boot”

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

16.3.2.11 Erase Row

This function erases the specified row. You must provide the address of the row that needs to be erased. The values are
returned to the IPC_STRUCT.DATA register. Parameters are passed through the IPC_STRUCT.DATA register.

Note: To perform flash writes (or erase), the device must be configured such that VCCD is greater than 0.99 V. You must use
the Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in
the PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is
used to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to
attacks. 

Parameters if DAP/CM0+/CM4 is Master

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error code (if any) See System Call Status for details.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error code (if any) See System Call Status for details.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be 
a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x1C Erase row opcode.

Bits [23:16] 0xXX

Bits [15:8]
0x01 - API blocks CM0+

Other - Non-blocking

Bit [2]

0 - Read operation is allowed on the sector 
that is not being erased/programmed

1 - Read operation is stalled until the erase/
program operation is complete 

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH + 0x04

Bits [31:0] Address

Flash address to be erased. This should be provided in the 32-bit 
system address format. For example, to erase the second row you 
need to provide the 32-bit system address of any of the bytes in the 
second row.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 163

“Secure Boot”

Return if DAP/CM0+/CM4 Invoked the System Call

16.3.2.12 Erase Subsector

This function erases the specified subsector, which consists of 8 rows. The values are returned to the IPC_STRUCT.DATA
register. Parameters are passed through the IPC_STRUCT.DATA register.

Note: To perform flash writes (or erase), the device must be configured such that VCCD is greater than 0.99 V. You must use
the Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in
the PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is
used to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to
attacks. 

Parameters if DAP/CM0+/CM4 is Master

Return if DAP/CM0+/CM4 Invoked the System Call

16.3.2.13 ReadUniqueID

This function returns the unique ID of the die from SFlash.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error code (if any) See System Call Status for details.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a 
32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x1D Erase subsector opcode.

Bits [23:16] 0xXX Not used (don't care).

Bits [15:8]
0x01- API blocks CM0+

Other - Non-blocking

Bit [2]

0 - Read operation is allowed on the 
sector that is not being erased/
programmed

1 - Read operation is stalled until the 
erase/program operation is complete 

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH + 0x04

Bits [31:0] Address

Flash address to be erased. This should be provided in 32-bit system 
address format. For example, to erase the second subsector you 
need to provide the 32-bit system address of any of the bytes in the 
second subsector.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [23:0] Error code (if any) See System Call Status for details.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 164

“Secure Boot”

Parameters if DAP/ CM0+/CM4 is Master

Return if DAP/ CM0+/CM4 Invoked the System Call

16.3.2.14 ReadFuseByteMargin

This API returns the eFuse contents of the addressed byte read marginally. The read value of a blown bit is ‘1’ and of a not
blown bit is ‘0’.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x1F Opcode for ReadUniqueID

Bits [15:0] Not Used (Don't care)

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS 

0xF = ERROR
Status code (see System Call Status for details)

Bits [27:0]
Die Lot if success

Error status if failed

If error, Bits [27:0] contain error status

See System Call Status for details

SRAM_SCRATCH + 0x04

Bits [31:0] DIE_ID0

SRAM_SCRATCH + 0x08

Bits [31:0] DIE_ID1

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x2B Opcode for ReadFuseByteMargin

Bits [23:20]

0 - Low resistance, –50% from nominal

1 - Nominal resistance 
(default read condition)

2 - High resistance (+50% from nominal) 
Other - 100% from nominal

Margin control

Bits [19:8] eFuse address (0, 1… 511)

Bit [0]
1 - Indicates all arguments are passed 
from DATA

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 165

“Secure Boot”

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

16.3.2.15 AcquireResponse

This system call sets or clears response expected by the programming tools to the second word of PUB RAM.

Parameters

Return

Bits [31:24] 0x2B Opcode for ReadFuseByteMargin

Bits [23:20]

0 - Low resistance, –50% from nominal 

1 - Nominal resistance 
(default read condition)

2 - High resistance (+50% from nominal)

Other - 100% from nominal

Margin control

Bits [19:8] eFuse address (0, 1… 511)

Bit [0]
1 - Indicates all arguments are passed 
from DATA

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Byte read from eFuse See System Call Status for details.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Byte read from eFuse or Error status
If error, Bits [27:0] contain error status

See System Call Status for details.

Address Value to be Written Description

Address  Value to be written

IPC_STRUCT.DATA Register

Bits [31:24] 0x32 Acquire Response opcode

Bits [23:16] 0x00 Not used

Bits [15:8] Mode Clear = 0, Set 1-255

Bits [7:0] 0x01

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 166

“Secure Boot”

16.3.2.16 PSACrypto

This syscall is implemented to expose some Mbed Crypto library functions. These functions can be used by Cypress
Bootloader (or any other bootloader instance) to optimize memory footprint.

Key Slots in FB Mbed Crypto Key Storage

Provisioned Secure Flashboot initializes keys of Mbed Crypto key storage located in the internal protected RAM. Their slot
numbers are available in the following table for use as a parameter for Mbed Crypto API system calls. 

PsaCrypto System Call

The PsaCrypto system calls adhere to the ARM PSA PSA (Platform Security Architecture) Cryptography API. During each
syscall, the Crypto MMIOs are protected and accessible only by PC = 0. Programmable PPU
MS_PPU_PROG_STRUCT_NR-6 is used with ROM boot syscalls. When the syscall is complete, the Crypto hardware is
cleaned and disabled.

Slot # Key Usage Key Algorithm Key Description

1

PSA_KEY_USAGE_DERIVE

PSA_KEY_TYPE_ECC_KEYPAIR

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDH 
PSA_ALG_HKDF 
PSA_ALG_SHA_256

Device Private Key for ECDH Key agreement by 
psa_key_agreement() API.

2

PSA_KEY_USAGE_SIGN

PSA_KEY_USAGE_VERIFY

PSA_KEY_TYPE_ECC_KEYPAIR

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDSA 
PSA_ALG_SHA_256

Device private key for signing (attestation service). This 
is a copy of the key slot 1.

MBed Crypto does not allow using the same key slot for 
key derivation and signature generation/verification.

3

PSA_KEY_USAGE_VERIFY 
PSA_KEY_USAGE_EXPORT

PSA_KEY_TYPE_ECC_PUBLIC_KEY

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDSA 
PSA_ALG_SHA_256

Cypress public key

4

PSA_KEY_USAGE_VERIFY 
PSA_KEY_USAGE_EXPORT

PSA_KEY_TYPE_ECC_PUBLIC_KEY

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDSA 
PSA_ALG_SHA_256

HSM public key

5

PSA_KEY_USAGE_VERIFY 
PSA_KEY_USAGE_EXPORT

PSA_KEY_TYPE_ECC_PUBLIC_KEY

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDSA 
PSA_ALG_SHA_256

OEM public key

6-10

PSA_KEY_USAGE_VERIFY 
PSA_KEY_USAGE_EXPORT

PSA_KEY_TYPE_ECC_PUBLIC_KEY

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDSA 
PSA_ALG_SHA_256

Custom public keys provisioned during 

ProvisionKeysAndPolicies SysCall

11
PSA_KEY_USAGE_DERIVE

PSA_KEY_TYPE_DERIVE

PSA_ALG_HKDF

PSA_ALG_SHA_256
AES 256-bit key derived from 128-bit UDS for Key 
Derivation by psa_key_derivation() API 

12

PSA_KEY_USAGE_DERIVE

PSA_KEY_TYPE_ECC_KEYPAIR

(PSA_ECC_CURVE_SECP256R1)

PSA_ALG_ECDH

PSA_ALG_HKDF

PSA_ALG_SHA_256

Device Group Key for ECDH Key agreement by 
psa_key_agreement() API.

13-16 Reserved



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 167

“Secure Boot”

Arguments

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
(Address of SRAM where the API parameters are stored. 
Must be a 32-bit aligned address)

SRAM_SCRATCH

Bits [31:24] 0x35 PSA opcode

Bits [23:16] 0xXX NA

Bits [15:8]

 1: psa_export_public_key

2: psa_get_key_attributes

3: psa_key_derivation_input_key

4: psa_key_derivation_input_bytes

5: psa_key_derivation_abort

6: psa_key_derivation_key_agreement

7: psa_key_derivation_output_bytes

8: reserved

9: psa_import_key

10: psa_destroy_key

11: psa_cipher_decrypt_setup

12: psa_cipher_set_iv

13: psa_cipher_update

14: psa_cipher_finish

15: psa_generate_random

16: psa_hash_setup

17: psa_hash_update

18: psa_hash_finish

19: psa_asymmetric_sign

20: reserved

21: Cy_FB_Keys_CreateKey

22: Cy_FB_Keys_LoadKeyHandle

23: Cy_FB_Keys_CloseKey

24: psa_key_derivation_output_key

25: psa_generate_key

26: psa_export_key

27: Cy_FB_Get_Keys_Count

28: reserved

29: psa_key_derivation_setup

30: psa_mac_verify_setup

31: psa_mac_verify_update

32: psa_mac_verify_finish

33: Cy_FB_memcpy

 PSA Crypto Function#:

Bit [7:0] 0x00

SRAM_SCRATCH + 0x04

Bits [31:0] Address
SRAM_SCRATCH2_ADDR (Address of SRAM where the 
extended set of API parameters are stored. Must be a 32-bit 
aligned address)

SRAM_SCRATCH2

Bits [31:0] * N PSA function parameters
Parameters in order of how they are described in the PSA 
Crypto specification. Each parameter has a 4-byte size.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 168

“Secure Boot”

Return

16.3.2.17 RollBackCounter

Updates the rollback counter to a higher value only. This function never erases flash, only writes ‘1’s to empty flash bits (OTP
emulation) to minimize time of operation and failure risk.

This syscall is used by Cypress Bootloader to prevent firmware reversion during firmware update.

Arguments

Return

16.3.2.18 GetProvDetails

Syscall returns provisioning packet (JWT), templates, or public keys strings in JSON format.

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] Address
SRAM_SCRATCH_ADDR (Address of SRAM where the API 
parameters are stored. Must be a 32-bit aligned address)

SRAM_SCRATCH

Bits [31:24] 0x36 Rollback Counter opcode

Bits [23:8] 0-15 Counter index

Bits [15:8] Mode: Read/Write
0 = Read

1-255 = Write

Bits [7:0] 0x00 Not used

Bit [7:0] 0x00

SRAM_SCRATCH + 0x04

Bits [31:0] Address
SRAM_SCRATCH2_ADDR (Address of SRAM where the 
extended set of API's parameters are stored. Must be a 32-bit 
aligned address)

SRAM_SCRATCH2

Bits [31:0] New Counter Value
Counter Value (In or Out parameter depend on Mode. Decrease 
is not supported for write operation)

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.

SRAM_SCRATCH + 0x04

Bits [31:0] Address of SRAM_SCRATCH2 Address to where counter value is located

SRAM_SCRATCH2

Bits [31:0] Counter Value Result of read or updated counter



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 169

“Secure Boot”

Arguments

Return

16.3.2.19 Region Hash

Generates the hash of the provided region. When byte 1 of the SRAM_SCRATCH parameter is set to Compare, this API
compares the provided region to the provided Compare value in byte 2 of SRAM_SCRATCH and returns
CY_FB_INVALID_FLASH_OPERATION error if procedure fails.

API returns invalid address status if called on out of bound Flash region.

This API checks if the client has read access to the requested memory region by looking into DAP MPU and SMPUs. If the
client does not have read access, then CY_FB_SYSCALL_ADDR_PROTECTED status is returned.

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH ADDR
Address of SRAM where the API parameters are stored. Must be 
a 32-bit aligned address

SRAM_SCRATCH

Bits [31:24] 0x37 GetProvDetails opcode

Bits [23:8] 0xXXXXXX Not used

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2 ADDR
Address of SRAM where the API parameters are stored. Must be 
a 32-bit aligned address

SRAM_SCRATCH2

Bits [31:0] KeyID

Supports KeyID from PSACrypto section above.

Other IDs:

    0x100 - FB_POLICY_JWT

    0x101 - FB_POLICY_TEMPL_BOOT

    0x102 - FB_POLICY_TEMPL_DEBUG

    0x2xx - FB_POLICY_CERTIFICATE, where xx is a certificate 
index in the “chain_of_trust” array of the provisioned packet. 

    0x300 - FB_POLICY_IMG_CERTIFICATE

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status See System Call Status for details.

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2_ADDR
Address of SRAM where the extended set of API response is 
stored

SRAM_SCRATCH2

Bits [31:0] Length Length of string returned

SRAM_SCRATCH2+ 0x04

Bits [31:0] Address Address of response string



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 170

“Secure Boot”

Arguments

Return

16.3.2.20 ProcessProvisionCmd

The ProcessProvisionCmd system call injects RoT credentials (when complete parameter is set to 0) and changes the device
life-cycle mode from SECURE UNCLAIMED to SECURE CLAIMED (when complete parameter is set to 1). Setting the
complete parameter to 0 can also be used to verify that the JWT packet is syntactically correct, without making the transition
to SECURE_CLAIMED. Also, with the complete parameter set to 0, the response packet, which includes the device, die,
product IDs, device public key, and OEM key, will still be returned before the transition.

Note: Before calling this syscall with the complete parameter set to 1, ensure that the Cypress Bootloader image and TOC3
are programmed to FLASH.

Syscall handler receives rot_cmd.jwt or prov_cmd.jwt packet, and performs following the tasks. Refer to the PSoC 64 Secure
MCU Secure Boot SDK User Guide for format and definition of all JWT packets used for provisioning.

This system call receives JWT packet, and performs following tasks:

cy_auth

■ Validates input packet 

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH ADDR
Address of SRAM where the API parameters are stored. Must be 
a 32-bit aligned address

SRAM_SCRATCH

Bits [31:24] 0x31 Region Hash opcode

Bits [23:16] Compare value
Type: 0x02 - SHA256

          0xFF - Compare

Bits [15:8] Mode
0x02  -> Compute SHA256 Hash

0xFF ->  Perform compare function

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2 ADDR
Address of SRAM where the extended set of API's parameters 
are stored. Must be a 32-bit aligned address

SRAM_SCRATCH2

Bits [31:0] Length Number of bytes to compare or compute Hash

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2_ADDR
(Address of SRAM where the extended set of API parameters 
are stored. Must be a 32-bit aligned address) (not used when 
Type = Compare)

SRAM_SCRATCH2

Bits [31:0] Size Size in bytes of the Hash (not used when Type = Compare)

SRAM_SCRATCH2+ 0x04

Bits [31:0] Address
Address where Hash of the data are stored (not used when Type 
= Compare)

https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 171

“Secure Boot”

❐ Verifies CY signature of cy_auth packet

❐ Verifies CY public key in cy_auth packet

❐ Import HSM public key

❐ Verifies HSM signature of full a provisioning JWT packet.

❐ Verifies DIE_ID and DEV_ID range in packet with device identity 

create_identity = true:

■ Generates UDS, Device Public and Private key (if not received in same packet) 

❐ Encrypts Device and received Group Key by derived from UDS key and stores to flash. AES-CBC with PKCS7 pad-
ding is used for encryption.

❐ Stores UDS to eFuses, protected by PPU from read and write.

■ Calculates and blows SECURE_HASH2 from encrypted package.

rot_auth

■ Validates input packet 

❐ Import OEM public key

❐ Verifies OEM signature of rot_auth packet

❐ Compares HSM public key in cy_auth and rot_auth packet

❐ Verifies that Expiration time of cy_auth is not less than Expiration time of the rot_auth packet.

■ Store OEM public key and prod_id in flash

prod_id

■ Verifies prod_id with the stored in flash during rot_auth packet process

chain_of_trust, prov_req

■ Stores JWT packet to flash when OEM signature is correct.

image_cert

■ Verifies OEM signature of input packet and store to flash.

■ Extracts “image_address” and “image_size” values of Bootloader image

■ Verifies hash for the Bootloader image with hash value from Bootloader FW Image Distribution packet

■ Bootloader image must be programmed to FLASH before this token execution. 

complete = true

■ Verifies policies against templates (only min/max values and types).

■ Calculates and blows SECURE_HASH3 from:

❐ OEM Public Key

❐ Product ID

❐ provisioning JWT packet (prov_cmd and chain_of_trust) if “reprovision”->”keys_and_policies” = false

❐ Bootloader image and image certificate if “reprovision”->”boot_loader” = false

■ Calculates SECURE_HASH4, sign it by Device Private key and store to flash from:

❐ provisioning JWT packet (prov_cmd and chain_of_trust) if “reprovision”->”keys_and_policies” = true

❐ Bootloader image and image certificate if “reprovision”->”boot_loader” = true

Generates JWT response packet signed by Device Private Key with: 

■ Device ID (silicon ID, family ID)

■ DIE ID (lot, wafer, xpos, ypos, day, month, year)

■ Device Public Key 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 172

“Secure Boot”

■ Group Public Key

■ OEM Public Key

■ Product ID

■ Complete status

Note: Secure FlashBoot in SECURE CLAIMED mode validates SECURE_HASH3 during every boot before transferring
control to the Cypress Bootloader.

Note: Secure FlashBoot applies Bootloader flash protection region during every boot to avoid unexpected clearing of this
image.

Note: Secure FlashBoot validates signature of SECURE_HASH4 during every boot if “reprovision”->”keys_and_policies” =
true or “reprovision”->” boot_loader” = true

Note: VDDIO0 must be at 2.5 volts in order to complete this command.

Arguments

Return

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x33 Opcode for ProcessProvisionCmd

Bits [23:0] 0xXXXXXX Not used

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2 ADDR
Address of SRAM where the extended set of API's parameters 
are stored. Must be a 32-bit aligned address

SRAM_SCRATCH2

Bits [31:0] Length Number of bytes (including itself)

SRAM_SCRATCH2 + 0x04

Array [Length-4]

The JWT packet, signed by HSM Private Key, should contain:

     1. JWT packet(cy_auth) signed by Cypress Private key with: 

          1. HSM Public Key

           2. Cypress Public Key

      2. Optionally JWT packet(rot_auth) signed by OEM private key with:

           1. HSM Public Key

            2. OEM Public Key

When complete parameter is set to true:

       3. JWT packet (prov_req) signed by OEM Private Key for provisioning with policies

       4. JWT packet (image_cert) signed by any Private Key referenced and provisioned in prov_req- 
           >boot_upgrade->firmware->boot_auth with Bootloader image hash.

       5. Optionally Certificates (chain_of_trust)

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.

SRAM_SCRATCH + 0x04



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 173

“Secure Boot”

16.3.2.21 EncryptedProgramming

The EncryptedProgramming syscall consist of three parts:

1. Init 

■ Validates the programming request.

■ Decrypts the decryption key. 

❐ ECDH key agreement by using Device or Group Private/Public keys and HSM or OEM public key, shared secret is 
generated.

❐ Generate key material from the shared secret, salt and info: AES key and IV

❐ Import AES key to the key storage.

❐ Init cipher decrypt setup.

❐ Set Initialization Vector to be used with AES decryption Key.

❐ Import decryption AES key to the key storage.

■ Sets up for encrypted programming

2.   Data 

■ Sets Initialization Vector, decrypts the data and programs it to flash

3.   Finish 

■ Cleans the initialized data 

Note: To perform flash writes, the device must be configured such that VCCD is greater than 0.99 V. You must use the
Cy_PRA_SystemConfig() function to change the system LDO voltage. More information on this function can be found in the
PRA (Protected Register Access) driver section of the Peripheral Driver Library (PDL) documentation. The PRA driver is used
to prevent any combination of hardware settings that could destabilize the system and make it more susceptible to attacks. 

Arguments

Bits [31:0] SRAM_SCRATCH2_ADDR
Address of SRAM where the short set of API parameters are 
stored. Must be a 32-bit aligned address

SRAM_SCRATCH2

Bits [31:0] Length Number of bytes in response

SRAM_SCRATCH2+ 0x04

Bits [31:0] Address Address where JWT response packet is stored.

Address Return Value Description

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x34 Opcode for EncryptedProgramming

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2 ADDR
Address of SRAM where the short set of API parameters are 
stored. Must be a 32-bit aligned address



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 174

“Secure Boot”

Return

16.3.2.22 DAPControl

This SysCall allows users to control DAP access during run-time. It works only when a particular CPU ID Debug Access Port
has permission set to “allowed” in the debug policy. The control field in the debug policy defines whether this SysCall can
control the DAP with (control is set to “certificate”) or without (control is set to “open”\) a signed certificate (JWT).

Arguments

Arguments if IPC_STRUCT.DATA[0] = 1 for a case when signed JWT is not required by debug policy:

SRAM_SCRATCH2

Bits [31:0] Length
Number of bytes (Init: the length if encryption header, Program: 
Data size to program)

SRAM_SCRATCH2 + 0x04

Array [Length-4]

When Mode is set to Init:

■ AES key size in bytes(1 byte): 128 bits = 16 bytes, 256 bits = 32 bytes

■ Encrypted AES key (32 bytes)

❐ ECDH key agreement algorithm should be used with Device or Group Private/Public keys and HSM/
OEM public key.

■ Encrypted Initialization Vector (16 bytes)

■ Padding (16 bytes)

■ Salt (16 bytes) and Label (16 bytes) to derivate key encryption key
When Mode is set to Program:

■ Flash address to be programmed (4 bytes).

■ Encrypted data array with padding to decode and program one flash row (512 bytes+16bytes padding).

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.

Address Value to be Written Description

Address Value to be Written Description

IPC_STRUCT.DATA Register

Bits [31:24] 0x3A Opcode for DAPControl

Bits [23:16] Desired State
0 - Disable

1 - Enable

Bits [15:9] DAP AP

0 - M0p

1 - M4

2 - System

Bits [7:0] 0x01 No SRAM needed



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 175

“Secure Boot”

Arguments if IPC_STRUCT.DATA[0] = 1

Return

16.3.2.23 TransitionToRMA

Converts parts from SECURE to RMA life cycle stage.

Before transitioning to RMA stage, syscall destroys fuse and flash contents five times as specified in the debug policy
<destroy_fuses> and <destroy_flash>. When successful, it sets IPC3_DATA with a value of 0x000000EA to enable full
access to device in the RMA life cycle stage.

After each reset, ROM boot code will wait on OpenRMA syscall to open full access again. DAP will only have access via
SYSTEM AP to IPC MMIOs and one-sixteenth of RAM0. Only OpenRMA system call is allowed before successful OpenRMA
execution.

Arguments

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x3A Opcode for DAPControl

Bits [23:16] Desired State
0 - Disable

1 - Enable

Bits [15:8] DAP AP

0 - M0p

1 - M4

2 - System

Bits [7:0] 0x01 No SRAM needed

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH2

Bits [31:0] Length Number of bytes in packet below

SRAM_SCRATCH2+ 0x04

Array [Length]
The JWT packet, signed by the Private Key mentioned in the Debug Policy/DAP AP/key with a “auth” object 
including valid DIE_ID range.

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status (if any) See System Call Status for details.

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x3B Opcode for TransitionToRMA

Bits [23:0] 0xXXXXXX Not used



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 176

“Secure Boot”

Return

16.3.2.24 OpenRMA

When successful, it sets IPC3_DATA with a value of 0x000000EA to enable full access to device in the RMA life cycle stage.

The interface and parameters are similar to the TransitionToRMA syscall with the difference that SRAM_SCRATCH and
SRAM_SCRATCH2 should be placed in the beginning of RAM: 0x08000000.

Arguments

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH2

Bits [31:0] Length Length of JWT packet

SRAM_SCRATCH2+ 0x04

Array [Length]

The JWT packet, signed by the Private Key mentioned in the Debug Policy/RMA/key, with a “auth” object 
including valid DIE_ID range.

DIE_ID must be present in the signed JWT packet in the following format:

“die_id”: {“lot”: “integer”, “wafer”: “integer”, “xpos”: “integer”, “ypos”: “integer”, “sort”: “integer”, “minor”: 
“integer”, “day”: “integer”, “month”: “integer”, “year”: “integer”}

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status See System Call Status for details.

Address Return Value Description

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:0] 0x08000000
The scratch SRAM must be at the beginning of the device 
SRAM.

SRAM_SCRATCH (0x08000000)

Bits [31:24] 0x29 Opcode for TransitionToRMA

Bits [23:0] 0xXXXXXX Not used

SRAM_SCRATCH + 0x04 (0x08000004)

Bits [31:0] 0x08000008

SRAM_SCRATCH2 (0x08000008)

Bits [31:0] Length Length of JWT packet

SRAM_SCRATCH2+ 0x04

Array [Length]

The JWT packet, signed by the Private Key mentioned in the Debug Policy/RMA/key, with a “auth” object 
including valid DIE_ID range.

DIE_ID must be present in the signed JWT packet in the following format:

“die_id”: {“lot”: “integer”, “wafer”: “integer”, “xpos”: “integer”, “ypos”: “integer”, “sort”: “integer”, “minor”: 
“integer”, “day”: “integer”, “month”: “integer”, “year”: “integer”}



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 177

“Secure Boot”

Return

16.3.2.25 Attestation

Calculates hashes of memory regions provided in an input list. Also calculates signature of a certificate that attests the device
state at the moment of signing. Signature is calculated for the following data structure:

■ Server random number (uint32_t)

■ Syscall random number (uint32_t)

■ Device UID (SFLASH->DIE_LOT array, 11 bytes)

■ Device Identity (cy_flashDeviceKeyData array, 512 bytes)

■ OEM Public key and Product ID (cy_flashProvKeyData array, 512 bytes)

■ Chain of trust (cy_flashChainOfTrust array, 5 kbytes)

■ Image certificate (cy_flashImgCertJWT array, 1 kbytes)

■ Policy package (cy_flashProvisionJWT array, 10 kbytes)

■ Number of memory regions (uint32_t)

■ for (each memory region)

❐ Memory region address (uint32_t)

❐ Memory region size (uint32_t)

❐ Memory region content (uint8_t array)

❐ Memory region hash (calculated with the syscall random number at the beginning) (uint8_t array)

Signature is calculated without any additional padding/aligning between different certificate fields. Memory regions can be
from SRAM, flash, AUXflash, or SFlash. SMIF and peripheral address space are not supported.

AttestationSysCall Algorithm

1. Generate syscall random number

2. Init signature hash calculation

3. Update signature hash with Server/Syscall random numbers, DevUID, Dev public key, policy package

4. Update signature hash with number of regions

5. Check whether the array with memory regions has at least read access allowed for the caller (to avoid side channel 
attacks)

6. for (each specified memory region) {

■ Start region hash calculation with the syscall random number

■ Update signature and region hash with a region content (in parallel using the same data)

■ Update signature hash with the region hash

■ Verify writing rights of the caller and sufficient memory size

■ Output the region hash to corresponding memory

}

7. Sign the signature hash with a device private key 

Address Return Value Description

IPC_STRUCT.DATA

Bits [31:0]
0xA = SUCCESS

0xF = ERROR
This values is written into the data register only if the command is 
successful, otherwise the value is not defined.

SRAM_SCRATCH (0x08000000)

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status See System Call Status for details.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 178

“Secure Boot”

8. Clear Crypto block internal memories and used stack

A real-life usage example: Consider a server that has information about all connected devices in the field, their IDs, public
keys, and available versions of firmware. The server wants to know the exact state of one of the devices – whether it is
attacked, which firmware versions it has, and which configuration. The server sends a request to the device to send back a
signed certificate with hashes and content of specific memory regions. Application (through SPM service) calls the SysCall,
which calculates hashes of the specified regions and creates a signature of a data certificate with specific structure. SPM
code creates a package with all the data required, includes their calculated hashes and signature, and returns it to the
application. Application sends it back to the server.

Arguments

Return

Address Return Value Description

IPC_STRUCT.DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH

Bits [31:24] 0x3C Opcode for Attestation

Bits [23:0] 0xXXXXXX Not used

SRAM_SCRATCH + 0x04

Bits [31:0] SRAM_SCRATCH2_ADDR
SRAM address where the API parameters are stored. This must 
be a 32-bit aligned address.

SRAM_SCRATCH2

Bits [31:0] PSA signing algorithm

PSA signing algorithm (contains hash algorithm type used both 
for signature and memory region hashes). Only 
PSA_ALG_ECDSA(PSA_ALG_SHA_256) is allowed at the 
moment

SRAM_SCRATCH2+ 0x04

Bits [31:0] Number Random number from server

SRAM_SCRATCH2+ 0x08

Bits [31:0] Number Number of memory regions in the list

SRAM_SCRATCH2+ 0x0C

Bits [31:0] Address Pointer to list of memory region start addresses

SRAM_SCRATCH2+ 0x10

Bits [31:0] Address Pointer to list of memory region sizes

SRAM_SCRATCH2+ 0x14

Bits [31:0] Address Pointer to array for hashes of the memory regions

SRAM_SCRATCH2+ 0x18

Bits [31:0] Number Size in bytes of the array for hashes

Address Return Value Description

SRAM_SCRATCH

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [27:0] Error status See System Call Status for details.

SRAM_SCRATCH + 0x04



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 179

“Secure Boot”

16.3.3 System Call Status

At the end of every system call, a status code is written over the arguments in the IPC_DATA register or the SRAM address
pointed by IPC_DATA. A success status is 0xAXXXXXXX, where X indicates don’t care values or return data for system calls
that return a value. A failure status is indicated by F<0/1/7>XXXXXX, where XXXXXX is the failure code.

Flashboot also returns several status code in DAP IPC_DATA at the end of boot. Debug probes needs to preserve them

before invoking system calls.

Bits [31:0] SRAM_SCRATCH2_ADDR
Address of SRAM where the extended set of API's response is 
stored, SRAM address where the API parameters are stored. 
This must be a 32-bit aligned address.

SRAM_SCRATCH2

Bits [31:0] Number Random number from the syscall

SRAM_SCRATCH2+ 0x04

Bits [31:0] Number Size in bytes of each memory region Hash

SRAM_SCRATCH2+ 0x08

Bits [31:0] Number Size in bytes of the Signature

SRAM_SCRATCH2+ 0x0C

Bits [31:0] Address Address where Signature is stored

Address Return Value Description

Value Description

0xAXXXXXX PASS, X - don’t care

0xF0000000 Reject the system call when CPUSS_PROTECTION is not NORMAL

0xF0000001 Invalid flash row latch address

0xF0000002 Invalid flash address

0xF0000003 Row is write protected

0xF0000004 Wrong or out-of-bound flash address

0xF0000005 IPC structure is already locked by another process

0xF0000006 Input parameters passed to Flash API are not valid

0xF0000008 Returned by all APIs when client doesn’t have access to region it is using for passing arguments.

0xF0000009 Command in progress.

0xF000000A Checksum of flash resulted in non-zero.

0xF000000B The opcode is not a valid API opcode.

0xF000000F Returned when invalid arguments are passed to the API. For example, calling Silicon ID API with ID type of 0x5.

0xF0000013 An argument to the system call is not in a valid location.

0xF0000021 Sector erase requested on SFlash region.

0xF0000041 Bulk erase failed.

0xF0000042 Sector erase failed.

0xF0000043 Subsector erase failed.

0xF0000044 Verification of Bulk, Sector, or Subsector fials after program/erase.

0xF7000000 The fail status of the Secure FlashBoot return value

0xF700DEAD Returned when device is in DEAD state.

0xF7000001 Returned if a device is provisioned and re-provisioning is not supported

0xF7000002 Returned when write to flash operation fails.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 180

“Secure Boot”

0xF7000003
Returned when signature verification of the JWT packet, which should be signed by Cypress Private Key is failed(cy_-
auth or image_cert).

0xF7000004
Returned when signature verification of the JWT packet, which should be signed by OEM Private Key is failed(rot_auth 
or prov_req).

0xF7000005
Returned when signature verification of the JWT packet, which should be signed by HSM Private Key is 
failed(prov_cmd).

0xF7000006 Returned when cy_auth token in prov_cmd packet doesn’t contain valid hsm_pub_key.

0xF7000007 Returned when import of Cypress Public Key from JSON to key storage is failed of when validation of this key in cy_auth 

0xF7000009 Returned when Device Key generation is failed.

0xF700000A Returned if a master with PC > 4 tries to use PSA syscall and protection is enabled in the policy ((“protect_flags” & 2) != 

0xF700000B Returned when Secure Hash calculation is failed.

0xF700000C Returned when compare of HSM public key in cy_auth and rot_auth packet is failed.

0xF700000E Returned when validation of prod_id in prov_req packet is failed.

0xF700000F Returned when Efuse blow is failed.

0xF7000010 Returned when Protection Context change of the Crypto is failed

0xF7000011 Returned when validation of provision policy by schema failed.

0xF7000012 Returned by TransitionToRMA or SyscallDPControl when requested action (enable DP or RMA) is not permitted by the 

0xF7000013 Returned when cryptographic operation failed.

0xF7000014 Returned when “prod_id” string is too long. Maximum allowed length is 64 bytes.

0xF7000015 Returned when calculated secure image hash doesn’t match with a hash received in image_cert packet.

0xF7000017 Returned if generation of a device UDS failed or it already exists.

0xF7000018 Returned if import of Group key failed.

0xF7000019 Returned if encryption and storing of Device and Group private keys failed.

0xF700001A Returned if device private keys already exist.

0xF700001B Returned if the length of the Chain of trust string is too long. Maximum length is 5120 bytes.

0xF700001C Returned if the length of the provisioning request string is too long. Maximum length is 10240 bytes.

0xF700001D Returned if the size of the image certificate is too big. Maximum size is 1024 bytes.

0xF700001E Returned if the image certificate signature validation failed.

0xF700001F Returned if a structure of the image certificate is not correct.

0xF7000020 Returned if the device ID in the “cy_auth” packet does not match with the provisioned device.

0xF7000021 Returned if the die ID in the “cy_auth” packet does not match with the provisioned device.

0xF7000022 Returned if re-provisioning settings in the policy does not match previously provisioned ones.

0xF7000023 Returned if the re-provisioning certificate signature validation failed.

0xF7000024 Returned if invalid arguments are passed to a SysCall.

0xF7000025 Returned if a master with PC > 4 tries to use psa_asymmetric_sign API with an internal key and protection is enabled in 

0xF7000026 Returned if EncryptedProgramming SysCall tries to program not permitted regions of the flash memory according to the 

0xF7000027 Returned when provisioning key length in JSON format is equal to 0 or is greater than 172 bytes.

0xF70000FF Returned when memory allocation failed.

0xF7000206 Returned when cy_auth token in prov_cmd packet doesn’t contain valid cy_pub_key.

0xF7000306 Returned when rot_auth token in prov_cmd packet doesn’t contain valid oem_pub_key.

0xF7000406 Returned when rot_auth token in prov_cmd packet doesn’t contain valid hsm_pub_key.

0xF7000506 Returned when the body part of the prov_cmd packet is absent.

0xF7000606 Returned when base64_decode of the body part of the prov_cmd packet is failed.

Value Description



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 181

“Secure Boot”

0xF7000706 Returned when JSON parser failed with the decoded body part of the prov_cmd packet.

0xF7000806 Returned when “cy_auth” token is absent in the parsed body part of the prov_cmd packet.

0xF7000C06 Returned when “exp” token is absent in the parsed body part of the cy_auth packet.

0xF7001706 Returned when “oem_pub_key” token is absent in the parsed body part of the rot_auth packet.

0xF7001806 Returned when “hsm_pub_key” token is absent in the parsed body part of the rot_auth packet.

0xF7001906 Returned when “prod_id” token is absent in the parsed body part of the rot_auth packet.

0xFF000000 The status mask of the Secure FlashBoot return value

Value Description



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 182

Section C:System Resources Subsystem (SRSS)

This section encompasses the following chapters:

■ Power Supply and Monitoring chapter on page 184

■ Device Power Modes chapter on page 191

■ Backup System chapter on page 201

■ Clocking System chapter on page 208

■ Reset System chapter on page 224

■ I/O System chapter on page 227

■ Watchdog Timer chapter on page 249

■ Trigger Multiplexer Block chapter on page 261

■ Profiler chapter on page 267



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 183

System Resources Subsystem (SRSS)

Top Level Architecture

Figure C-1.  System-Wide Resources Block Diagram

WCO
RTC

BREG

Backup
Backup Control

Digital DFT

Test

Analog DFT

System Resources

Power

Reset

Sleep Control

PWRSYS-LP/ULP

REF

POR

Reset Control

TestMode Entry

XRES

LVD
BOD

DeepSleep
Hibernate

LP Active/Sleep
ULP Active/Sleep

Power Modes

Backup

OVP

Clock
Clock Control

IMO
WDT

2 xPLL
ECO

ILO

FLL

Buck



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 184

17.   Power Supply and Monitoring

The PSoC 6 MCU family supports an operating voltage range of 1.7 V to 3.6 V. It integrates multiple regulators including an
on-chip buck converter to power the blocks within the device in various power modes. The device supports multiple power
supply rails – VDDD, VDDA, VDDIO, and VBACKUP – enabling the application to use a dedicated supply for different blocks within
the device. For instance, VDDA is used to power analog peripherals such as ADC and opamps. 

The PSoC 6 MCU family supports power-on-reset (POR), brownout detection (BOD), over-voltage protection (OVP), and low-
voltage-detection (LVD) circuit for power supply monitoring and failure protection purposes. 

17.1 Features

The power supply subsystem of the PSoC 6 MCU supports the following features:

■ Operating voltage range of 1.7 V to 3.6 V

■ User-selectable core logic operation at either 1.1 V or 0.9 V

■ Three independent supply rails (VDDD, VDDA, and VDDIO) for PSoC core peripherals and one independent supply rail

(VBACKUP) for backup domain

■ Multiple on-chip regulators

❐ One low-dropout (LDO) regulator to power peripherals in Active power mode

❐ One buck converter

❐ Multiple low-power regulators to power peripherals operating in different low-power modes

■ Two BOD circuit (VDDD and VCCD) in all power modes except Hibernate mode

■ LVD circuit to monitor VDDD, VAMUXA, VAMUXB, VBACKUP, or VDDIO 

■ One OVP block monitoring VCCD 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation - SysPM

■ Application notes

■ Code examples



Power Supply and Monitoring

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 185

17.2 Architecture

Figure 17-1.  Power System Block Diagram  

VDDD VDDAVDDIOVBACKUP

VCCDPSLP

VCCRET

On-chip 
buck converter

2.2 uH

VIND

VDDBAK

Low-dropout regulator 
(Active regulator)

Backup Supply 
Selection

Dee-Sleep and 
Retention regulators

VCCD

Active domain and 
High frequency logic/

peripherals

Flash

Backup logic, WCO, 
RTC

Deep Sleep domain 
peripherals / SRAM

SRAM (Active)

High voltage (VDDD) 
and hibernate Domain 

peripherals

IO Cells

Analog peripherals 

0.1 µF1 µF 0.1 µF1 µF 0.1 µF1 µF 0.1 µF1 µF

4.7 µF

Regulators (LDO or Buck)

Deep Sleep power supply/logic

Active mode power supply/logic

Retention power supply/logic

Backup power supply/logic

Legend:

External power pad

External IO pad

Internal power rails

VSSD

VSSD VSSD VSSIO VSSA

PSoC 6

0.1 µF10 µF

VSS_NS VDD_NS

On-chip buck connections



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 186

Power Supply and Monitoring

See the device datasheet for the values to be used for the
capacitors and inductor shown in Figure 17-1.

The regulators and supply pins/rails shown in Figure 17-1
power various blocks inside the device. The availability of
various supply rails/pins for an application will depend on
the device package selected. Refer to the device datasheet
for details. 

All the core regulators draw their input power from the VDDD
supply pin. The on-chip buck uses the VDD_NS supply pin as
its input. VCCD supply is used to power all active domain and
high frequency peripherals. The output of the buck is
connected to the VCCD pin and in firmware the VCCD supply
can be switched to the buck output. A dedicated Deep Sleep
regulator powers all the Deep Sleep peripherals. The Deep
Sleep regulator switches its output to VCCD when available
and to its regulated output when VCCD is not present
(System Deep Sleep power mode). Hibernate domain does
not implement any regulators and the peripherals available
in that domain such as Low-Power comparator and ILO
operate directly from VDDD. 

When the VDDA pin is not present, analog peripherals run
directly from the VDDD.

The I/O cells operate from various VDDx (VDDA, VDDD, or
VDDIO) pins depending on the port where they are located.
VCCD supply is used to drive logic inside the I/O cells from
core peripherals. VDDA powers the analog logic such as
analog mux switches inside the I/O cell. To know which I/Os
operate from which supply, refer to the device datasheet.

The device includes a VBACKUP supply pin to power a small
set of peripherals such as RTC and WCO, which run
independent from other supply rails available in the device.
When the VBACKUP supply is not present, the device uses
VDDD to power these peripherals. 

In addition to the power rails and regulators, the device
provides options to monitor supply rails and protection
against potential supply failures. These include a POR
circuit, a BOD circuit, an OVP circuit, and a LVD circuit.

17.3 Power Supply

17.3.1 Regulators Summary

17.3.1.1 Core Regulators

The device includes the following core regulators to power
peripherals and blocks in various power modes.

Linear Core Regulator

The device includes a linear LDO regulator to power the
Active and Sleep mode peripherals. This regulator
generates the core voltage (VCCD) required for Active mode

operation of the peripherals from VDDD. The regulator is

capable of providing 0.9 V and 1.1 V for core operation. See

Core Operating Voltage on page 187. The regulator is
available in Active and Sleep power modes. This regulator
implements two sub-modes – high-current and low-current
modes. LINREG_LPMODE bit [24] of the PWR_CTL
register selects between the two modes of operation. The
high-current mode is the normal operating mode, that is, the
device operates to its full capacity in Active or Sleep power
modes. In the low-current mode, the current output from the
regulator is limited. This mode implements the Low-Power
Active and Sleep power modes. The low-current mode sets
a limitation on the capabilities and availability of resources in
the Low-Power Active and Sleep modes. For details, see the
Device Power Modes chapter on page 191. 

By default, the linear regulator is powered on reset. The
regulator can be disabled by setting the LINREG_DIS bit
[23] of the PWR_CTL register. Note that the linear regulator
should be turned OFF only when the following conditions
are satisfied: 

■ Switching buck regulator is ON.

■ The load current requirement of the device from the
VCCD supply does not exceed 20 mA. This should be

ensured by the firmware by disabling power consuming
high-frequency peripherals and reducing the system
clock frequency.

If the linear regulator is turned OFF without the above
conditions satisfied, it will result in VCCD brownout and the

device will reset.

Switching (Buck) Core Regulator

The device includes a switching (buck) core regulator. The
buck requires an inductor and a capacitor to generate the
output. Note that the buck output is also available in the
Deep Sleep device power mode.

The buck regulator can be enabled by setting the BUCK_EN
bit [30] of the PWR_BUCK_CTL register. The buck output
can be enabled/disabled using the BUCK_OUT1_EN bit [31]
of the PWR_BUCK_CTLx registers. The buck output
supports voltages from 0.85 V to 1.20 V. Use either 0.9 V or
1.1 V for VCCD operation. The output selection can be made
using BUCK_OUTx_SEL bits in the PWR_BUCK_CTLx
registers. .

When used to power the core peripherals, the buck
regulator provides better power efficiency than the linear
regulator, especially at higher VDDD. However, the buck

regulator has less load current capability than the linear
regulator. Therefore, when using the buck regulator, take
care not to overload the regulator by running only the
necessary peripherals at a lower frequency in firmware.
Overload conditions can cause the buck output to drop and
result in a brownout reset. Refer to the device datasheet for
the load limitations on the buck regulator, recommended
settings when used for VCCD, and its efficiency

characteristics. Follow these steps in firmware when



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 187

Power Supply and Monitoring

switching to the buck regulator for core (VCCD) operation

without causing a brownout.

1. Make sure the necessary inductor and capacitor
connection for the buck as explained in Figure 17-1 is
present in the hardware.  

2. Change the core supply voltage to 50 mV more than the
final buck voltage. For instance, if the final buck voltage
is 0.9 V, then set the LDO output to 0.95 V and 1.15 V for
1.1 V buck operation. Set the ACT_REG_TRIM bits[4:0]
of the PWR_TRIM_PWRSYS_CTL register to ‘0x0B’ to
switch to 0.9 V and '0x1B' to switch to 1.1 V buck
operation. This is discussed in Core Operating Voltage.

3. Reduce the device current consumption by reducing
clock frequency and switching off blocks to meet the
buck regulator’s load capacity.

4. Disable System Deep Sleep mode regulators. Because
the buck regulator is available in the System Deep Sleep
power mode, other deep-sleep regulators can be
powered down. This is done by setting the following bits
in the PWR_CTL register: 

a. DPSLP_REG_DIS bit [20] – Disables the deep-sleep
core regulator.

b. RET_REG_DIS bit [21] – Disables the logic retention
regulator.

c. NWELL_REG_DIS bit [22] – Disables the nwell
regulator.

5. Set the buck output to the desired value by writing ‘2’ (for
0.9 V) or ‘5’ (for 1.1 V) to the BUCK_OUT1_SEL bits[2:0]
of the PWR_BUCK_CTL register.

6. Enable the buck regulator and output by setting the
BUCK_EN bit[30] and BUCK_OUT1_EN bit[31] of the
PWR_BUCK_CTL register.

7. Wait for the buck regulator to start up and settle.

8. Disable the linear regulator by setting the LINREG_DIS
bit[23] of the PWR_CTL register.

After transitioning to the buck regulator, do not switch back
to the linear regulator mode to ensure proper device
operation. This should happen once during powerup.

Core Operating Voltage

PSoC 6 MCUs can operate at either 0.9 V LP mode
(nominal) or 1.1 V ULP mode (nominal) core voltage. On
reset, the core is configured to operate at 1.1 V by default.
At 0.9 V, power consumption is less, but there are some
limitations. The maximum operating frequency for all HFCLK
paths should not exceed 50 MHz, whereas the peripheral
and slow clock should not exceed 25 MHz.

Follow these steps to change the PSoC 6 MCU core
voltage:

1. While transitioning to 0.9 V, reduce the operating 
frequency to be within the HFCLK and peri clock limits 
defined in the device datasheet. Turn off blocks, if 
required, to be within the maximum current consumption 
limit of the linear regulator at 0.9 V.

2. Set the ACT_REG_TRIM bits[4:0] of the 
PWR_TRIM_PWRSYS_CTL register to ‘0x07’ for 0.9 V 
or ‘0x17’ for 1.1 V. For the buck regulator, set the 
BUCK_OUT1_SEL bits[2:0] of the PWR_BUCK_CTL 
register to ‘0x02’ for 0.9 V and ‘0x05’ for 1.1 V.

3. In the case of 1.1 V to 0.9 V transition, the time it takes 
to discharge or settle to the new voltage may depend on 
the load. So the system can continue to operate while 
the voltage discharges.

4. In the case of 0.9 V to 1.1 V transition, wait 9 µs for the 
regulator to stabilize to the new voltage. The clock 
frequency can be increased after the settling delay.

Notes: 

■ Refer to the device datasheet for characterized numbers
for the settling intervals and load current limitations.

■ When changing clock frequencies, make sure to update
wait states of RAM/ROM/FLASH. Refer to the CPU
Subsystem (CPUSS) chapter on page 33 for details on
the wait states.

Other Low-power Regulators

In addition to the core active regulators, the device includes
multiple low-power regulators for powering Deep Sleep
peripherals/logic (VCCDPSLP), digital retention logic/SRAM

(VCCRET), and N-wells (VNWELL) in the device. Note that

VNWELL is not shown in Figure 17-1 because this rail is used

across the device for powering all the N-wells in the chip.
These rails are shorted to VCCD in Active and Sleep power

modes. VCCRET powers all the Active mode logic that needs

to be in retention in Deep Sleep mode. 

Note that none of these power rails are available in
Hibernate mode. In Hibernate mode, all the hibernate logic
and peripherals operate from VDDD directly and a Hibernate

wakeup resets the device. For details, refer to the Device
Power Modes chapter on page 191.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 188

Power Supply and Monitoring

17.3.2 Power Pins and Rails

Table 17-1 lists all the power supply pins available in the device. The supply rails running inside the device (VCCDPSLP,

VCCRET, VDDBAK, and VNWELL) are derived from these external supply pins/rails.

17.3.3 Power Sequencing Requirements

VDDD, VBACKUP, VDDIO, and VDDA do not have any

sequencing limitation and can establish in any order. The
presence of VDDA without VDD or VDDD can cause some

leakage from VDDA. However, it will not drive any analog or

digital output. All the VDDA pins in packages that offer

multiple VDDA supply pins, must be shorted externally (on

the PCB). Note that the system will not exit reset until both
VDDD and VDDA are established. However, it will not wait for

other supplies to establish.

17.3.4 Backup Domain

The PSoC 6 MCU offers an independent backup supply
option (VBACKUP). This rail powers a small set of peripherals

that includes an RTC, WCO, and a small number of
retention registers. This rail is independent of all other rails
and can exist even when other rails are absent. As
Figure 17-1 shows, this pin sources the VDDBAK rail in the

device. The VDDBAK rail is connected to VDDD when no

VBACKUP supply exists. For details on the backup domain,

refer to the Backup System chapter on page 201.

17.3.5 Power Supply Sources

The PSoC 6 MCU offers power supply options that support
a wide range of application voltages and requirements.
VDDD input supports a voltage range of 1.7 V to 3.6 V. If the

application voltage is in this range, then the PSoC 6 MCU
(VDDD) can be interfaced directly to the application voltage.

In applications that have voltage beyond this range, a
suitable PMIC (Buck or Boost or Buck-Boost) should be
used to bring the voltage to this range.

Other supply rails and pins such as VDDA, VDDIO, and

VBACKUP exist independent of VDDD and VCCD.

17.4 Voltage Monitoring

The PSoC 6 MCU offers multiple voltage monitoring and
supply failure protection options. This includes POR, BOD,
LVD, and OVP. 

17.4.1 Power-On-Reset (POR)

POR circuits provide a reset pulse during the initial power
ramp. POR circuits monitor VDDD voltage. Typically, the

POR circuits are not very accurate about the trip-point. 

POR circuits are used during initial chip power-up and then
disabled. Refer to the device datasheet for details on the
POR trip-point levels.

17.4.2 Brownout-Detect (BOD)

The BOD circuit protects the operating or retaining logic
from possibly unsafe supply conditions by applying reset to
the device. The PSoC 6 MCU offers two BOD circuits –
high-voltage BOD (HVBOD) and low-voltage BOD (LVBOD).
The HVBOD monitors the VDDD voltage and LVBOD

monitors the VCCD voltage. Both BOD circuits generate a

reset if a voltage excursion dips below the minimum VDDD/

VCCD voltage required for safe operation (see the device

datasheet for details). The system will not come out of
RESET until the supply is detected to be valid again. 

The HVBOD circuit guarantees a reset in System LP, ULP,
and Deep Sleep power modes before the system crashes,
provided the VDDD supply ramp satisfies the datasheet

Table 17-1.  Supply Pins

Supply Pin Ground Pin Voltage Range Supporteda

a. Refer to the device datasheet for exact range and recommended connections.

Description

VDD or VDDD VSS or VSSD 1.7 V to 3.6 V
VDD is a single supply input for multiple supplies and VDDD is a 

digital supply input. Either of the pins will be present in a given 
package.

VDD_NS VSS_NS 1.7 V to 3.6 V Supply input to the buck regulator on-chip.

VCCD VSS or VSSD Capacitor (0.9 V or 1.1 V)
Core supply or bypass capacitor for the internal core regulator 
(LDO).

VDDA VSS or VSSA (if available) 1.7 V to 3.6 V Analog supply voltage.

VDDIO VSS or VSSIO (if available) 1.7 V to 3.6 V Additional I/O supply voltage.

VBACKUP VSS or VSSD (if available) 1.4 V to 3.6 V Backup domain supply voltage.

VIND1 – Inductor Inductor connection for the internal buck regulator.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 189

Power Supply and Monitoring

maximum supply ramp limits in that mode. There is no BOD
support in Hibernate mode. Applications that require BOD
support should not use Hibernate mode and should disable
it. Refer to the Device Power Modes chapter on page 191
for details.

The LVBOD, operating on VCCD, is not as robust as the

HVBOD. The limitation is because of the small voltage
detection range available for LVBOD on the minimum
allowed VCCD. 

For details on the BOD trip-points, supported supply ramp
rate, and BOD detector response time, refer to the device
datasheet.

17.4.3 Low-Voltage-Detect (LVD)

An LVD circuit monitors external supply voltage and
accurately detects depletion of the energy source. The LVD
generates an interrupt to cause the system to take
preventive measures.

The LVD can be configured to monitor VDDD, VAMUXA,

VAMUXB, or VDDIO. The HVLVD1_SRCSEL bits [6:4] of the

PWR_LVD_CTL register selects the source of the LVD. The
LVD support up to 15 voltage levels (thresholds) to monitor
between 1.2 V to 3.1 V. The HVLVD1_TRIPSEL bits [3:0] of
the PWR_LVD_CTL register select the threshold levels of
the LVD. LVD should be disabled before selecting the
threshold. The HVLVD1_EN bit [7] of the PWR_LVD_CTL
register can be used to enable or disable the LVD. 

Whenever the voltage level of the supply being monitored
drops below the threshold, the LVD generates an interrupt.
This interrupt status is available in the SRSS_INTR register.
HVLVD1 bit [1] of the SRSS_INTR register indicates a
pending LVD interrupt. The SRSS_INTR_MASK register
decides whether LVD interrupts are forwarded to the CPU or
not. 

Note that the LVD circuit is available only in Active,
LPACTIVE, Sleep, and LPSLEEP power modes. If an LVD is
required in Deep Sleep mode, then the device should be
configured to periodically wake up from Deep Sleep mode
using a Deep Sleep wakeup source. This makes sure an
LVD check is performed during Active/LPACTIVE mode.

When enabling the LVD circuit, it is possible to receive a
false interrupt during the initial settling time. Firmware can
mask this by waiting for 8 µs after setting the HVLVD1_EN
bit in the PWR_LVD_CTL register. The recommended
firmware procedure to enable the LVD function is:

1. Ensure that the HVLVD1 bit in the SRSS_INTR_MASK
register is 0 to prevent propagating a false interrupt.

2. Set the required trip-point in the HVLVD1_TRIPSEL field
of the PWR_LVD_CTL register. 

3. Configure the LVD edge (falling/rising/both) that triggers
the interrupt by configuring HVLVD1_EDGE_SEL
bits[1:0] of SRSS_INTR_CFG register. By default, the

configuration disables the interrupt. Note: LVD logic may
falsely detect a falling edge during Deep Sleep entry.
This applies only when HVLVD1_EDGE_SEL is set to
FALLING(2) or BOTH(3). Firmware can workaround this
condition by disabling falling edge detection before
entering Deep Sleep, and re-enabling it after exiting
Deep Sleep.

4. Enable the LVD by setting the HVLVD1_EN bit in the
PWR_LVD_CTL register. This may cause a false LVD
event.

5. Wait at least 8 µs for the circuit to stabilize.

6. Clear any false event by setting the HVLVD1 bit in the
SRSS_INTR register. The bit will not clear if the LVD
condition is truly present.

7. Unmask the interrupt by setting the HVLVD1 bit in 
SRSS_INTR_MASK.

For details on supported LVD thresholds, refer to the device
datasheet and the PWR_LVD_CTL register definition in the
registers TRM.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 190

Power Supply and Monitoring

Figure 17-2.  PSoC 6 MCU LVD Block

17.4.4 Over-Voltage Protection (OVP)

The PSoC 6 MCU offers an over-voltage protection circuit that monitors the VCCD supply. Similar to the BOD circuit, the OVP

circuit protects the device from unsafe supply conditions by applying a reset. As the name suggests, the OVP circuit applies a
device reset, when the VCCD supply goes above the maximum allowed voltage. The OVP circuit can generate a reset in all

device power modes except the Hibernate mode.

17.5 Register List 

Name Description

PWR_CTL
Power Mode Control register - controls the device power mode options and allows observation of current 
state

PWR_BUCK_CTL Buck Control register - controls the buck output and master buck enable 

PWR_BUCK_CTL2 Buck Control register 2 - controls the VRF output

PWR_LVD_CTL LVD Configuration register

SRSS_INTR SRSS Interrupt register - shows interrupt requests from the SRSS peripheral 

SRSS_INTR_MASK SRSS Interrupt Mask register - controls forwarding of the interrupt to CPU

SRSS_INTR_SET SRSS Interrupt Set register - sets interrupts; this register is used for firmware testing

SRSS_INTR_MASKED
SRSS Interrupt Masked register - logical AND of corresponding SRSS interrupt request (SRSS Interrupt 
register) and mask bits (SRSS Interrupt Mask register) 

.

.

.

.

.

1.2 V

3.1 V

HVLVD1_TRIPSEL [3:0]

4

HVLVD1 SRSS_INTR[HVLVD1]

HVLVD1_SRCSEL [2:0]

3

VDDD

VAMUXA

VAMUXB

SRSS_INTR_MASK[HVLVD1]
To CPU as SRSS 
interrupt

PSoC 6 LVD block

HVLVD1_EN

-

+



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 191

18.   Device Power Modes

The PSoC 6 MCU can operate in four system and three CPU power modes. These modes are intended to minimize the
average power consumption in an application. The power modes supported by PSoC 6 MCUs, in the order of decreasing
power consumption, are:

■ System Low Power (LP) – All peripherals and CPU power modes are available at maximum speed and current
■ System Ultra Low Power (ULP) – All peripherals and CPU power modes are available, but with limited speed and current
■ CPU Active – CPU is executing code in system LP or ULP mode
■ CPU Sleep – CPU code execution is halted in system LP or ULP mode
■ CPU Deep Sleep – CPU code execution is halted and system deep sleep is requested while in system LP or ULP mode
■ System Deep Sleep – Entered only after both CPUs enter CPU Deep Sleep mode. Only low-frequency peripherals are 

available
■ System Hibernate – Device and I/O states are frozen and the device resets on wakeup

CPU Active, Sleep, and Deep Sleep are standard Arm-defined power modes supported by the Arm CPU instruction set
architecture (ISA). System LP, ULP, Deep Sleep and Hibernate modes are additional low-power modes supported by PSoC 6.
Hibernate mode is the lowest power mode in the PSoC 6 MCU and on wakeup, the CPU and all peripherals go through a
reset.

18.1 Features

The PSoC 6 MCU power modes have the following features:

■ Four system and three CPU power modes aimed at optimizing power consumption in an application
■ System ULP mode with reduced operating current and clock frequency while supporting full device functionality
■ System Deep Sleep mode with support for multiple wakeup sources and configurable amount of SRAM retention
■ System Hibernate mode with wakeup from I/O, comparator, WDT, RTC, and timer alarms

The power consumption in different power modes is further controlled by using the following methods:

■ Enabling and disabling clocks to peripherals
■ Powering on/off clock sources
■ Powering on/off peripherals and resources inside the PSoC 6 device

18.2 Architecture

The PSoC 6 device supports multiple power modes. Some modes only affect the CPUs (CPU power modes) and others affect
the whole system (system power modes). The system and CPU power modes are used in combination to control the total
system performance and power. CPU power modes are entered separately for each CPU on the device. 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysPM

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 192

Device Power Modes

The SysPm Peripheral Driver Library (PDL) driver supports all device power mode transitions and is the recommended
method of transition and configuration of PSoC 6 MCU power resources.

Table 18-1 summarizes the power modes available in PSoC 6 MCUs, their description, and details on their entry and exit
conditions.

Table 18-1.  PSoC 6 MCU Power Modes

System 
Power 
Mode

MCU 
Power 
Mode

Description Entry Conditions
Wakeup 
Sources

Wakeup 
Action

LP

Active

System – Primary mode of operation. 1.1 
V core voltage. All peripherals are avail-
able (programmable). Maximum clock fre-
quencies 

CPU – Active mode

Reset from external reset, brownout, 
power on reset system and Hibernate 
mode. Manual register write from sys-
tem ULP mode. Wakeup from CPU 
Sleep or CPU Deep Sleep while in sys-
tem LP mode. Wakeup from system 
Deep Sleep after entered from LP mode.

Not applicable N/A

Sleep

1.1 V core voltage. One or more CPUs in 
Sleep mode (execution halted). All periph-
erals are available (programmable). Maxi-
mum clock frequencies

In system LP mode, CPU executes WFI/
WFE instruction with Deep Sleep dis-
abled

Any interrupt to 
CPU

Interrupt

Deep 
Sleep

1.1 V core voltage. One CPU in Deep 
Sleep mode (execution halted). Other 
CPU in Active or Sleep mode. All periph-
erals are available (programmable). Maxi-
mum clock frequencies

In system LP mode, CPU executes WFI/
WFE instruction with Deep Sleep 
enabled

Any interrupt to 
CPU

Interrupt

ULP

Active
0.9 V core voltage. All peripherals are 
available (programmable). Limited clock 
frequencies. No Flash write.

Manual register write from system LP 
mode. Wakeup from CPU Sleep or CPU 
Deep Sleep while in system ULP mode. 
Wakeup from system Deep Sleep after 
entered from ULP mode.

Not applicable N/A

Sleep

0.9 V core voltage. One or more CPUs in 
Sleep mode (execution halted). All periph-
erals are available (programmable). Lim-
ited clock frequencies. No Flash write.

In system ULP mode, CPU executes 
WFI/WFE instruction with Deep Sleep 
disabled

Any interrupt to 
CPU

Interrupt

Deep 
Sleep

0.9 V core voltage. One CPU in Deep 
Sleep mode (execution halted). Other 
CPU in Active or Sleep mode. All periph-
erals are available (programmable). Lim-
ited clock frequencies. No Flash write.

In system ULP mode, CPU executes 
WFI/WFE instruction with Deep Sleep 
enabled

Any interrupt to 
CPU

Interrupt

Deep 
Sleep

Deep 
Sleep

All high-frequency clocks and peripherals 
are turned off. Low-frequency clock (32 
kHz) and low-power analog and digital 
peripherals are available for operation 
and as wakeup sources. SRAM is 
retained (programmable).

Both CPUs simultaneously in CPU Deep 
Sleep mode.

GPIO interrupt, 
Low-Power 
comparator, 
SCB, watchdog 
timer, and RTC 
alarms

Interrupt

Hibernate N/A

GPIO states are frozen. All peripherals 
and clocks in the device are completely 
turned off except optional low-power com-
parators and backup domain. Wakeup is 
possible through WAKEUP pins, XRES, 
low-power comparator (programmable), 
WDT, and RTC alarms (programmable). 
Device resets on wakeup.

Manual register write from LP or ULP 
modes.

WAKEUP pin, 
low- power com-
parator, watch-

dog timera, and 

RTCb alarms

a. Watchdog timer is capable of generating a hibernate wakeup. See the Watchdog Timer chapter on page 249 for details.
b. RTC (along with WCO) is part of the backup domain and is available irrespective of the device power mode. RTC alarms are capable of waking up the device

from any power mode.

Reset



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 193

Device Power Modes

18.2.1 CPU Power Modes

The CPU Active, Sleep, and Deep Sleep modes are the
standard Arm-defined power modes supported by both
Cortex-M4 and Cortex-M0+ CPUs. All Arm CPU power
modes are available in both system LP and ULP power
modes. CPU power modes affect each CPU independently.

18.2.1.1 CPU Active Mode

In CPU Active mode, the CPU executes code and all logic
and memory is powered. The firmware may decide to
enable or disable specific peripherals and power domains
depending on the application and power requirements. All
the peripherals are available for use in Active mode. The
device enters CPU Active mode upon any device reset or
wakeup.

18.2.1.2 CPU Sleep Mode

In CPU Sleep mode, the CPU clock is turned off and the
CPU halts code execution. Note that in the PSoC 6 MCU,
Cortex-M4 and Cortex-M0+ both support their own CPU
Sleep modes and each CPU can be in sleep independent of
the other CPU state. All peripherals available in Active mode
are also available in Sleep mode. Any peripheral interrupt,
masked to the CPU, will wake the CPU to Active mode. Only
the CPU(s) with the interrupt masked will wake.

18.2.1.3 CPU Deep Sleep Mode

In CPU Deep Sleep mode, the CPU requests the device to
go into system Deep Sleep mode. When the device is ready,
it enters Deep Sleep mode as detailed in 18.2.3 System
Deep Sleep Mode.

Because PSoC 6 has more than one CPU, both CPUs must
independently enter CPU Deep Sleep before the system will
transition to system Deep Sleep. 

18.2.2 System Power Modes

System power modes affect the whole device and may be
combined with CPU power modes.

18.2.2.1 System Low Power Mode

System Low Power (LP) mode is the default operating mode
of the device after reset and provides maximum system
performance. In LP mode all resources are available for
operation at their maximum power level and speed. 

While in system LP mode the CPUs may operate in any of
the standard Arm defined CPU modes detailed in 18.2.1
CPU Power Modes.

18.2.2.2 System Ultra Low Power Mode

System Ultra Low Power (ULP) mode is identical to LP
mode with a performance tradeoff made to achieve lower
system current. This tradeoff lowers the core operating

voltage, which then requires reduced operating clock
frequency and limited high-frequency clock sources. Flash
write operations are not available in ULP mode. Table 18-5
provides the list of resources available in ULP mode along
with limitations. 

While in system ULP mode, the CPUs may operate in any of
the standard Arm-defined CPU modes detailed in 18.2.1
CPU Power Modes.

Transitioning between LP and ULP modes is performed by
reducing the core regulator voltage from the LP mode
voltage to the ULP mode voltage. The lower voltage reduces
system operating current and slows down signal speeds
requiring a lower maximum operating frequency. Refer to
Core Operating Voltage section in Power Supply and
Monitoring chapter on page 184 for details on how to switch
between LP and ULP modes.

18.2.3 System Deep Sleep Mode

In system Deep Sleep mode, all the high-speed clock
sources are off. This in turn makes high-speed peripherals
unusable in system Deep Sleep mode. However, low-speed
clock sources and peripherals may continue to operate, if
configured and enabled by the firmware. In addition, the
peripherals that do not need a clock or receive a clock from
their external interface (I2C or SPI slave) may continue to
operate, if configured for system Deep Sleep operation. The
PSoC 6 MCU provides an option to configure the amount of
SRAM, in blocks of 32 KB, that are retained during Deep
Sleep mode. 

Both Cortex-M0+ and Cortex-M4 can enter CPU Deep
Sleep mode independently. However, the entire device
enters system Deep Sleep mode only when both the CPUs
are in CPU Deep Sleep. On wakeup, the CPU that woke up
enters CPU Active mode and the other CPU remains in CPU
Deep Sleep mode. On wakeup, the system will return to LP
or ULP mode based on what mode was Active before
entering system Deep Sleep. Both CPUs may wake up to
CPU Active simultaneously from the same wakeup source if
so configured.

The device enters system Deep Sleep mode after the
following conditions are met.

■ The LPM_READY bit of the PWR_CTL register should 
read ‘1’. This ensures the system is ready to enter Deep 
Sleep. If the bit reads ‘0’, then the device will wait in 
system LP or ULP mode instead of system Deep Sleep 
until the bit is set, at which instant the device 
automatically enters Deep Sleep mode, if requested.

■ Both Cortex-M0+ and Cortex-M4 must be in CPU Deep 
Sleep. This is achieved by setting the SLEEPDEEP bit 
[2] of the SCR register of both Cortex-M0+ and Cortex-
M4 and then executing WFI or WFE instruction.

■ The HIBERNATE bit [31] of the PWR_HIBERNATE 
register should be cleared; otherwise, the device will 
enter system Hibernate mode.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 194

Device Power Modes

In system Deep Sleep mode, the LP and ULP mode
regulator is turned off and a lower power, Deep Sleep
regulator sources all the peripherals enabled in system
Deep Sleep mode. Alternatively, the buck regulator can be
used to power the Deep Sleep peripherals. See the Power
Supply and Monitoring chapter on page 184 for details.
Table 18-5 provides the list of resources available in system
Deep Sleep mode. 

Interrupts from low-speed, asynchronous, or low-power
analog peripherals can cause a CPU wakeup from system
Deep Sleep mode. Note that when a debugger is running on
either core, the device stays in system LP or ULP mode and
the CPUs enter CPU Sleep mode instead of CPU Deep
Sleep mode. PSoC 6 uses buffered writes. Therefore, writes
to an MMIO register or memory can take few a cycles from
the write instruction execution. The only way to ensure that
the write operation is complete is by reading the same
location after the write. It is required to follow a write by a
read to the same location before executing a WFI/WFE
instruction to enter CPU Deep Sleep mode.

18.2.4 System Hibernate Mode
System Hibernate mode is the lowest power mode of the
device when external supplies are still present and XRES is
deasserted. It is intended for applications in a dormant state.
In this mode, both the Active LP/ULP mode regulator and
Deep Sleep regulator are turned off and GPIO states are
automatically frozen. Wakeup is facilitated through
dedicated wakeup pins and a Low-Power comparator
output. Low-Power comparator operation in Hibernate mode
requires externally generated voltages for wakeup
comparison. Internal references are not available in
Hibernate mode. Optionally, an RTC alarm from the backup
domain or a watchdog timer (16-bit free-running WDT)
interrupt can generate a Hibernate wakeup signal. Set the
MASK_HIBALARM bit [18] of the PWR_HIBERNATE
register to enable the RTC alarm wakeup from Hibernate
mode.

The device goes through a reset on wakeup from Hibernate.
I/O pins remain in the configuration they were frozen before
entering Hibernate mode. To differentiate between other
system resets and a Hibernate mode wakeup, the TOKEN
bits [7:0] of the PWR_HIBERNATE register can be used as
described in the Power Mode Transitions on page 196. The
PWR_HIBERNATE (except the HIBERNATE bit [31])
register along with the PWR_HIB_DATA register are
retained through the Hibernate wakeup sequence and can
be used by the application for retaining some content. Note
that these registers are reset by other reset events. On a
Hibernate wakeup event, the HIBERNATE bit [31] of the
PWR_HIBERNATE register is cleared.

The brownout detect (BOD) block is not available in
Hibernate mode. As a result, the device does not recover
from a brownout event in Hibernate mode. Do not enter
Hibernate mode in applications that require brownout
detection, that is, applications where the supply is not

stable. In addition, make sure the supply is stable for at least
250 µs before the device enters Hibernate mode. To prevent
accidental entry into Hibernate mode in applications that
cannot meet these requirements, an option to disable the
Hibernate mode is provided. Set the HIBERNATE_DISABLE
bit [30] of the PWR_HIBERNATE register to disable
Hibernate mode in the device. Note that this bit is a write-
once bit during execution and is cleared only on reset.
Debug functionality will be lost and the debugger will
disconnect on entering Hibernate mode.

18.2.5 Other Operation Modes
In addition to the power modes discussed in the previous
sections, there are three other states the device can be in –
Reset, Off, and Backup states. These states are determined
by the external power supply and XRES connections. No
firmware action is required to enter these modes nor an
interrupt or wakeup event to exit them.

18.2.5.1 Backup Domain 
PSoC 6 offers an independent backup supply option that
can be supplied through a separate Vbackup pin. For details
on the backup domain and the powering options, refer to the
Backup System chapter on page 201. This domain powers a
real-time clock (RTC) block, WCO, and a small set of
backup registers. Because the power supply to these blocks
come from a dedicated Vbackup pin, these blocks continue
to operate in all CPU and system power modes, and even
when the device power is disconnected or held in reset as
long as a Vbackup supply is provided. The RTC present in
the backup domain provides an option to wake up the
device from any CPU or system power mode. The RTC can
be clocked by an external crystal (WCO) or the internal low-
speed oscillator (ILO). However, the ILO is available only if
the device is powered – the device should not be in the off or
reset state. Using ILO is not recommended for timekeeping
purpose; however, it can be used for wakeup from Hibernate
power mode.

18.2.5.2 Reset State
Reset is the device state when an external reset (XRES pin
pulled low) is applied or when POR/BOD is asserted. Reset
is not a power mode. During the reset state, all the
components in the device are powered down and I/Os are
tristated, keeping the power consumption to a minimum.

18.2.5.3 Off State
The off state simply represents the device state with no
power applied. Even in the device off state, the backup
domain can continue to receive power (Vbackup pin) and
run the peripherals present in that domain. The reset and off
states are discussed for completeness of all possible modes
and states the device can be in. These states can be used in
a system to further optimize power consumption. For
instance, the system can control the supply of the PSoC 6
MCU by enabling or disabling the regulator output powering
the device using the PMIC interface. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 195

Device Power Modes

18.3 Power Mode Transitions

Figure 18-1 shows various states the device can be in along with possible power mode transition paths. 

Figure 18-1.  Power Mode Transitions in PSoC 6 MCU

S yste m  U LP
(0 .9  V  C o re )

S yste m  L P
(1 .1  V  C o re )

C P U  A c tiv e C P U  A c tiv e

C P U  S leep /
D eep  s leep

C P U  S le ep /
D eep  s lee p

S y s tem  
H ibe rna te

X R E S

R ese t even t

F irm w are  ac t ion

H ibe rna te  w akeup  even ts

P ow er M ode A ction

L E G E N D :

X R E S /
P O R /B O D  

asse r t

F irm w are  
ac t ion

P e r iphe ra l 
in te rrup t

F irm w are  
ac t ion

W akeup  
asse rt

X R E S /P O R /B O D  
deasse rt

P e r iphe ra l in te rrup ts /
H a rdw a re  e ven ts

S y s tem     
D eep  s leep

O ff

B o th
C P U s  in

D eep  s leep D eep  s leep  
in te rrup t fo r  

th is  C P U

F irm w are  
ac t ion

P e r iphe ra l 
in te rrup t

D eep  s leep  
in te rrup t fo r  
o the r  C P U

D eep  s leep  
in te rrup t fo r  
o the r  C P U

D eep  s leep  
in te r rup t fo r  

th is  C P U

F irm w are  
ac t ion



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 196

Device Power Modes

18.3.1 Power-up Transitions

Table 18-2 summarizes various power-up transitions, their type, triggers, and actions.

18.3.2 Power Mode Transitions

Table 18-2.  Power Mode Transitions

Initial State Final State Type Trigger Actions

Of XRES External
Power rail (VDDD) ramps up 

above POR voltage level with 
XRES pin asserted.

1. All high-voltage logic is reset

Off Reset External
Power rail (VDDD) ramps up 

above POR voltage level with 
XRES pin de-asserted.

1. All high-voltage logic is reset

2. Low-voltage (internal core and Deep Sleep mode) 
regulators and references are ramped up

3. All low-voltage logic (logic operating from internal 
regulators) is reset

4. IMO clock is started

XRES Reset External
XRES is de-asserted with VDDD 

present and above POR level.

1. Low-voltage regulators and references are ramped up

2. All low-voltage logic is reset

3. IMO clock is started

Reset Active Internal
Reset sequence completes. This 
transition can also be caused by 
internal resets.

1. Clock is released to the system

2. System reset is de-asserted

3. CPU starts execution

Table 18-3.  Power Mode Transitions

Initial State Final State Type Trigger Actions

System LP
System 
ULP

Internal

Firmware action

1. Ensure the Clk_HF paths, peripheral, and slow clocks are less than the 
ULP clock speed limitations.

2. Flash/SRAM/ROM wait states values are increased to ULP values as 
detailed in the Nonvolatile Memory chapter on page 127.

3. Configure the core regulator to 0.9 V.

1. Device is put into ULP 
mode with all peripherals 
available with limited 
speed. Flash write 
operation are not 
supported.

System 
ULP

System LP Internal

Firmware action

1. Configure the core regulator to 1.1 V.

2. Wait 9 µs to allow the core voltage to stabilize at the new value. 

3. Flash/SRAM/ROM wait states values are decreased to LP values as 
detailed in the Nonvolatile Memory chapter on page 127.

4. Increase the Clk_HF paths, peripheral, and slow clocks as desired up to 
the maximum LP clock speed specifications.

1. Device is put into LP 
mode with all peripherals 
available with maximum 
speed. Flash write 
operations are supported.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 197

Device Power Modes

System LP/
ULP and 
CPU Active

System LP/
ULP and 
CPU Sleep 

Internal

Firmware action

1. Clear the SLEEPDEEP bit [2] of the SCR register for both Cortex-M0+ 
and Cortex-M4.

2. Optionally, set the SLEEPONEXIT bit [1] of the SCR register, if the CPU 
runs only on interrupts. When this bit is set, the CPU does not return to 
application code after the WFI/WFE instruction is executed. The CPU wakes 
up on any enabled (masked to CPU) interrupt or event and enters CPU 
Sleep mode as soon as it exits the interrupt or services the event.

3. Optionally, set the SEVONPEND bit [4] of the SCR register if the applica-
tion must wake up the CPU from any pending interrupt. If this bit is set, any 
interrupt that enters a pending state wakes up the CPU. This includes all the 
disabled (unmasked) interrupts to CPU.

4. Execute WFI/WFE instruction on both CPUs.

1. CPU clocks are gated 
off

2. CPU waits for an inter-
rupt or event to wake it 
up.

System LP/
ULP and 
CPU Active

System LP/
UP and 
CPU Deep 
Sleep

Internal

Firmware action

Perform these steps to enter Deep Sleep mode (LPM_READY bit [5] of the 
PWR_CTL register should read '1' before performing these steps): 

1. Clear the HIBERNATE bit [31] of the PWR_HIBERNATE register.

2. Set the SLEEPDEEP bit [2] of the SCR register for one or both Cortex-
M0+ and Cortex-M4.

3. Optionally, set the SLEEPONEXIT bit [1] of the SCR register if the CPU 
runs only on interrupts. When this bit is set, the CPU does not return to 
application code after the WFI/WFE instruction is executed. The CPU wakes 
up on any enabled (masked to CPU) interrupt or event and enters CPU 
Deep Sleep mode as soon as it exits the interrupt or services the event.

4. Optionally, set the SEVONPEND bit [4] of the SCR register if the applica-
tion needs to wake up the CPU from any pending interrupt. If this bit is set, 
any interrupt that enters a pending state wakes up the CPU. This includes all 
the disabled (unmasked) interrupts to CPU.

5. Read the SCR register before executing a WFI/WFE instruction to ensure 
the write operation is complete. PSoC 6 uses buffered writes and any write 
transfer just before executing WFI/WFE instruction should be followed by a 
read to the same memory location. This ensures that the write operation has 
taken effect before entering Deep Sleep mode. Execute WFI/WFE instruc-
tion on both CPUs.

6. CPU in Deep Sleep mode generates a hardware request for the whole 
device to enter system Deep Sleep. A CPU waiting in CPU Deep Sleep state 
is functionally identical to CPU Sleep mode with the exception of the 
hardware request.

7. If only one CPU is in Deep Sleep mode the system will remain in system 
LP or ULP mode until the other CPU also enters CPU Deep Sleep. While 
waiting, a masked interrupt can wake the CPU to Active mode.

1. CPU clocks are gated 
off

2. CPU waits for a Deep 
Sleep interrupt to wake it 
up.

System LP/
ULP and 
CPU Deep 
Sleep

System 
Deep Sleep

Internal

Hardware action

1. When both CPUs enter CPU Deep Sleep mode and the LPM_READY bit 
[5] of the PWR_CTL register reads '1', the device will automatically transition 
to system Deep Sleep power mode.

1. High-frequency clocks 
are shut down.

2. Retention is enabled 
and non-retention logic is 
reset.

3. Active regulator is dis-
abled and Deep Sleep 
regulator takes over.

Table 18-3.  Power Mode Transitions

Initial State Final State Type Trigger Actions



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 198

Device Power Modes

18.3.3 Wakeup Transitions

System LP/
ULP and 
CPU Active

System 
Hibernate

Internal

Firmware action

Perform these steps to enter Hibernate mode (LPM_READY bit [5] of the 
PWR_CTL register should read '1' before performing these steps): 

1. Set the TOKEN bits [7:0] of the PWR_HIBERNATE register (optional) and 
PWR_HIB_DATA register to some application-specific branching data that 
can be used on a wakeup event from Hibernate mode.

2. Set the UNLOCK bits [8:15] of the PWR_HIBERNATE register to 0x3A, 
this ungates writes to FREEZE and HIBERNATE bits of the PWR_HIBER-
NATE register.

3. Configure wakeup pins polarity (POLARITY_HIBPIN bits [23:20]), wakeup 
pins mask (MASK_HIBPIN bits [27:24]) and wakeup alarm mask (MASK_HI-
BALARM bit [18]) in the PWR_HIBERNATE register based on the applica-
tion requirement.

4. Optionally, set the FREEZE bit [17] of the PWR_HIBERNATE register to 
freeze the I/O pins.

5. Set the HIBERNATE bit [31] of the PWR_HIBERNATE register to enter 
Hibernate mode.

6. Ensure that the write operation to the PWR_HIBERNATE register is 
complete by reading the PWR_HIBERNATE register. Otherwise, instead of 
entering Hibernate mode, the CPU may start executing instructions after the 
write instruction. When the write is followed by a WFI/WFE instruction, the 
WFI/WFE can prevent the write from taking effect. On completion of the 
write operation, the device automatically enters Hibernate mode.

1. CPU enters low-power 
mode.

2. Both high-frequency 
and low-frequency clocks 
are shut down.

3. Retention is enabled 
and non-retention logic is 
reset.

4. Both Active and Deep 
Sleep regulators are 
powered down. The 
peripherals that are 
active in the Hibernate 
domain operate directly 
out of VDDD. 

Table 18-3.  Power Mode Transitions

Initial State Final State Type Trigger Actions

Table 18-4.  Wakeup Transitions

Initial State Final State Type Trigger Actions

CPU Sleep CPU Active Internal/External
Any peripheral 
interrupt masked to 
CPU

1. Clock to CPU is ungated.

2. Peripheral interrupt is serviced by CPU.

3. Device remains in current system LP or ULP power mode.

System Deep 
Sleep

System LP/
ULP Active 
and CPU 
Active

Internal/External
Any Deep Sleep 
interrupt

1. Active regulator and references are enabled.

2. Retention is disabled and non-retention reset is de-asserted.

3. High-frequency clocks are turned on.

4. CPU exits low-power mode and services the interrupt.

5. Returns to previous system LP or ULP power mode.

Note: If only one CPU wakes up from the system Deep Sleep 
interrupt, then the other CPU remains in the CPU Deep Sleep 
state until its Deep Sleep interrupt wakes it up. However, the 
system will wake up to LP or ULP mode. Note that a Deep Sleep 
interrupt can wake up either one or both CPUs depending on the 
WIC configuration for the CPU. See the Interrupts chapter on 
page 54.

Hibernate
System LP 
and CPU 
Active

External

Wakeup pin, RTC 
alarm, WDT interrupt, 
or Low-Power 
comparator output 
asserts 

1. Device is reset and goes through a reset to active power-up 
transition.

2. Optionally, read the TOKEN bits [7:0] of the 
PWR_HIBERNATE and PWR_HIB_DATA registers for 
application-specific branching from hibernate wakeup.

3. Optionally, set the I/O drive modes by reading the I/O frozen 
output and setting the I/O output to the read value.

4. Unfreeze the I/O cells by clearing the FREEZE bit [17] of the 
PWR_HIBERNATE register.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 199

Device Power Modes

18.4 Summary

18.5 Register List

Table 18-5.  Resources Available in Different Power Modes

Component

Power Modes

LP ULP
Deep Sleep Hibernate XRES

Power Off 
with BackupCPU Active

CPU Sleep/
Deep Sleep

CPU Active
CPU Sleep/
Deep Sleep

Core functions

CPU On Sleep On Sleep Retention Off Off Off

SRAM On On On On Retention Off Off Off

Flash Read/Write Read/Write Read Only Read Only Off Off Off Off

High-Speed Clock 
(IMO, ECO, PLL, FLL)

On On On On Off Off Off Off

LVD On On On On Off Off Off Off

ILO On On On On On On Off Off

Peripherals

SMIF/SHDC On On On On Retention Off Off Off

SAR ADC On On On On Off Off Off Off

LPCMP On On On On Ona Ona Off Off

TCPWM On On On On Off Off Off Off

CSD On On On On Retention Off Off Off

LCD On On On On On Off Off Off

SCB On On On On
Retention (I2C/SPI 
wakeup available)b

Off Off Off

GPIO On On On On On Freeze Off Off

Watchdog timer On On On On On On Off Off

Multi-Counter WDT On On On On On Off Off Off

Resets

XRES On On On On On On On Off

POR On On On On On On Off Off

BOD On On On On On Off Off Off

Watchdog reset On On On On On Onc Off Off

Backup domain

WCO, RTC, alarms On On On On On On On On

a. Low-Power comparator may be optionally enabled in the Hibernate mode to generate wakeup.
b. Only the SCB with system Deep Sleep support is available in the Deep Sleep power mode; other SCBs are not available in the Deep Sleep power mode.
c. Watchdog interrupt can generate a Hibernate wakeup. See the Watchdog Timer chapter on page 249 for details.

Name Description

PWR_CTL Power Mode Control register – controls the device power mode options and allows observation of current state

PWR_HIBERNATE Hibernate Mode register – controls various Hibernate mode entry/exit related options

PWR_HIB_DATA Hibernate Mode Data register – data register that is retained through a hibernate wakeup sequence

CM4_SCS_SCR
Cortex-M4 System Control register – controls the CM4 CPU sleep and deep sleep decisions on the WFI/WFE 
instruction execution

CM0P_SCS_SCR
Cortex-M0+ System Control register – controls the CM0+ CPU sleep and deep sleep decisions on the WFI/
WFE instruction execution



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 200

Device Power Modes

CPUSS_CM0_CTL

CPUSS_CM0_STATUS

CPUSS_CM4_PWR_CTL

CPUSS_CM4_STATUS

Name Description



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 201

19.   Backup System

The Backup domain adds an “always on” functionality to PSoC 6 MCUs using a separate power domain supplied by a backup
supply (VBACKUP) such as a battery or supercapacitor. It contains a real-time clock (RTC) with alarm feature, supported by a
32768-Hz watch crystal oscillator (WCO), and power-management IC (PMIC) control.

Backup is not a power mode; it is a power domain with its own power supply, which can be active during any of the device
power modes. For more details, see the Power Supply and Monitoring chapter on page 184 and Device Power
Modes chapter on page 191.

19.1 Features
■ Fully-featured RTC

❐ Year/Month/Date, Day-of-Week, Hour : Minute : Second fields

❐ All fields binary coded decimal (BCD)

❐ Supports both 12-hour and 24-hour formats

❐ Automatic leap year correction

■ Configurable alarm function

❐ Alarm on Month/Date, Day-of-Week, Hour : Minute : Second fields

❐ Two independent alarms

■ 32768-Hz WCO with calibration

■ Automatic backup power switching

■ Built-in supercapacitor charger

■ External PMIC control

■ 32-byte backup registers 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysPM

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 202

Backup System

19.2 Architecture

Figure 19-1.  Block Diagram

The Backup system includes an accurate WCO that can
generate the clock required for the RTC with the help of an
external crystal or external clock inputs. The RTC has a
programmable alarm feature, which can generate interrupts
to the CPU. An AHB-Lite interface provides firmware access
to MMIO registers in the Backup domain. 

An automatic backup power switch selects the VDDBAK

supply required to run the blocks in the Backup domain –
either VDDD (main power) or VBACKUP (backup battery/

supercapacitor power).

The domain also has backup registers that can store 32
bytes of data and retain its contents even when the main
supply (VDDD) is OFF as long as the backup supply

(VBACKUP) is present. The Backup system can also control

an external PMIC that supplies VDDD.

19.3 Power Supply

Power to the backup system (VDDBAK) is automatically
switched between VDDD (main supply) and VBACKUP

(Backup domain supply). VBACKUP is typically connected to

an independent supply derived from a battery or
supercapacitor (see the Power Supply and
Monitoring chapter on page 184 for more details).

There are no VBACKUP versus VDDD sequencing restrictions

for the power selector switch. Either VBACKUP or VDDD may

be removed during normal operation, and the Backup
system will remain powered. 

The VDDBAK_CTL bitfield in the BACKUP_CTL register
controls the behavior of the power selector switch. See the
registers TRM for details of this register. Possible options
are:

■ VDDBAK_CTL = 0 (Default mode): Selects VDDD when

the brownout detector in the system resources is
enabled and no brownout situation is detected (see the
Power Supply and Monitoring chapter on page 184 for
more details). Otherwise, it selects the highest supply
among VDDD and VBACKUP. 

■ VDDBAK_CTL = 1, 2, or 3: Always selects VBACKUP for

debug purposes.

If a supercapacitor is connected to VBACKUP, the PSoC 6

MCU can charge the supercapacitor while VDDD is available.

Supercapacitor charging can be enabled by writing “3C” to
the EN_CHARGE_KEY bitfield in the BACKUP_CTL
register. Note that this feature is for charging
supercapacitors only and cannot safely charge a battery. Do
not write this key when VBACKUP is connected to a battery.

Battery charging must be handled at the board level using
external circuitry.

Note: If VDDD and VBACKUP are connected on the PCB, the

Backup domain may require an explicit reset triggered by
firmware using the RESET bitfield in the BACKUP_RESET
register. This firmware reset is required if the VBACKUP

supply was invalid during a previous power supply ramp-up
or brownout event. It is not necessary to reset the Backup
domain if the RES_CAUSE register indicates a non-power-
related reset as the reset cause, or if the PSoC 6 MCU just

RTC 
Registers

RTC

Alarm

Config

User 
Registers

RTC

Alarm

Config

Watch 
Crystal 

Oscillator
(WCO)

Backup 
Registers 
(32 bytes)

MMIO 
Interface

AHB 
Interface Backup 

Power
Switch

AHB-Lite Bus

VDDD

VBACKUP

WCO_IN WCO_OUT
(Crystal  and Capacitor Connections / 

External Clock Input)

PMIC_Wakeup_In

PMIC_Wakeup_Out

 (Power Supply Pins)

 (Controls an External 
Power Management IC)

LFCLK 
(from System Resources)

VDDBAK



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 203

Backup System

woke from the Hibernate power mode and the supply is
assumed to have been valid the entire time. 

It is possible to monitor the VBACKUP supply using an ADC

attached to AMUXBUS-A by setting the VBACKUP_MEAS
bit in the BACKUP_CTL register. Note that the VBACKUP

signal is scaled by 10 percent so it is within the supply range
of the ADC. See the SAR ADC chapter on page 454 for
more details on how to connect the ADC to AMUXBUS-A.

19.4 Clocking

The RTC primarily runs from a 32768-Hz clock, after it is
scaled down to one-second ticks. This clock signal can
come from either of these internal sources:

■ Watch-crystal oscillator (WCO). This is a high-accuracy
clock generator that is suitable for RTC applications and
requires a 32768-Hz external crystal populated on the
application board. WCO can also operate without
crystal, using external clock/sine wave inputs. These
additional operating modes are explained later in this
section. WCO is supplied by the Backup domain and can
therefore run without VDDD present. 

■ Alternate Backup Clock (ALTBAK): This option allows
the use of LFCLK generated by the System Resources
Subsystem (SRSS) as the Backup domain clock. Note
that LFCLK is not available in all device power modes or
when the VDDD is removed. (See the Device Power

Modes chapter on page 191 for more detail.)

Clock glitches can propagate into the Backup system 
when LFCLK is enabled or disabled by the SRSS. In 
addition, LFCLK may not be as accurate as WCO 
depending on the actual source of LFCLK. Because of 
these reasons, LFCLK is not recommend for RTC 
applications. Also, if the WCO is intended as the clock 
source then choose it directly instead of routing through 
LFCLK. 

For more details on these clocks and calibration, see the
Clocking System chapter on page 208.

The RTC clock source can be selected using the CLK_SEL
bitfield in the BACKUP_CTL register. The WCO_EN bit in
the BACKUP_CTL register can be used to enable or disable
the WCO. If the WCO operates with an external crystal,
make sure the WCO_BYPASS bit in the BACKUP_CTL
register is cleared before enabling the WCO. In addition, the
PRESCALER bitfield in BACKUP_CTL must be configured
for a prescaler value of 32768. 

Note: External crystal and bypass capacitors of proper
values must be connected to WCO_IN and WCO_OUT and
pins. See the device datasheet for details of component
values and electrical connections. In addition, GPIOs must
be configured for WCO_OUT and WCO_IN signals. See the
I/O System chapter on page 227 to know how to configure
the GPIOs.

19.4.1 WCO with External Clock/Sine 
Wave Input

The WCO can also operate from external clock/sine wave
inputs. In these modes, WCO must be bypassed by setting
the WCO_BYPASS bit in the BACKUP_CTL register before
enabling the WCO. Also, GPIOs must be configured for
WCO_OUT and WCO_IN signals (in Analog mode). The
external clock/sine wave input modes, prescaler settings,
and electrical connections are as follows:

■ 32768-Hz external clock mode: In this mode, WCO_IN is
floating and WCO_OUT is externally driven by a 32768-
Hz square wave clock toggling between ground and
VDDD supply levels. In this configuration, the WCO_OUT

pin functions as a digital input pin for the external clock.
The PRESCALER bitfield in BACKUP_CTL must be
configured for a prescaler value of 32768.

■ 60-Hz external clock mode: This mode can be used for
deriving a clock from the 60-Hz AC mains supply. In this
mode, WCO_OUT is floating and WCO_IN is driven with
an external sine wave with zero DC offset, derived from
the 60-Hz/120-V mains through a 100:1 capacitive
divider. For example, a suitable capacitive divider can be
formed by connecting a 220-pF/6-V capacitor between
WCO_IN and ground, and a 2.2-pF/ 200-V capacitor
between WCO_IN and the 60-Hz/120-V mains input.
The PRESCALER bitfield in BACKUP_CTL must be
configured for a prescaler value of 60.

■ 50-Hz external clock mode: This mode is similar to the
60-Hz mode, and can be used for 50-Hz/220-V mains
standard. The capacitive divider explained previously
can be modified to fit this type of supply by having a 1-pF
/250-V capacitor between WCO_IN and the mains input.
The PRESCALER bitfield in BACKUP_CTL must be
configured for a prescaler value of 50.

19.4.2 Calibration

The absolute frequency of the clock input can be calibrated
using the BACKUP_CAL_CTL register. Calibration only
works when the PRESCALER bitfield in BACKUP_CTL is
set to 32768.

CALIB_VAL is a 6-bit field in the BACKUP_CAL_CTL
register that holds the calibration value for absolute
frequency (at a fixed temperature). One bit of this field
translates into 128 ticks to be added or removed from the
clock count. Therefore, each bit translates to a change of
1.085 ppm (= 128/(60*60*32768)).

The CALIB_SIGN field in the BACKUP_CAL_CTL register
controls whether the ticks are added (it takes fewer clock
ticks to count one second) or subtracted (it takes more clock
ticks to count one second).

For more information, see the BACKUP_CAL_CTL register
in the registers TRM.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 204

Backup System

19.5 Reset

The PSoC 6 MCU reset sources that monitor device power supply such as power-on reset (POR) and brownout reset (BOD)
cannot reset the backup system as long as the backup supply (VDDBAK) is present. Moreover, internal and external resets

such as watchdog timer (WDT) reset and XRES cannot reset the backup system. The backup system is reset only when:

■ all the power supplies are removed from the Backup domain, also known as a “cold-start”. 

■ the firmware triggers a Backup domain reset using the RESET bitfield in the BACKUP_RESET register.

19.6 Real-Time Clock

The RTC consists of seven binary coded decimal (BCD) fields and one control bit as follows:

BCD encoding indicates that each four-bit nibble represents
one decimal digit. Constant bits are omitted in the RTC
implementation. For example, the maximum RTC_SEC is
59, which can be represented as two binary nibbles 0101b
1001b. However, the most significant bit is always zero and
is therefore omitted, making the RTC_SEC a 7-bit field.

The RTC supports both 12-hour format with AM/PM flag,
and 24-hour format for “hours” field. The RTC also includes
a “day of the week” field, which counts from 1 to 7. You
should define which weekday is represented by a value of
‘1’.

The RTC implements automatic leap year correction for the
Date field (day of the month). If the Year is divisible by 4, the
month of February (Month=2) will have 29 days instead of
28. When the year reaches 2100 - the Year field rolls over
from 99 to 00 - the leap year correction will be wrong (2100
is flagged as a leap year which it is not); therefore, an
interrupt is raised to allow the firmware to take appropriate
actions. This interrupt is called the century interrupt.

User registers containing these bitfields are
BACKUP_RTC_TIME and BACKUP_RTC_DATE. See the
corresponding register descriptions in the registers TRM for
details. As the user registers are in the high-frequency bus-
clock domain and the actual RTC registers run from the low-
frequency 32768-Hz clock, reading and writing RTC

registers require special care. These processes are
explained in the following section.

19.6.1 Reading RTC User Registers

To start a read transaction, the firmware should set the
READ bit in the BACKUP_RTC_RW register. When this bit
is set, the RTC registers will be copied to user registers and
frozen so that a coherent RTC value can safely be read by
the firmware. The read transaction is completed by clearing
the READ bit. 

The READ bit cannot be set if:

■ RTC is still busy with a previous operation (that is, the
RTC_BUSY bit in the BACKUP_STATUS register is set)

■ WRITE bit in the BACKUP_RTC_RW register is set

The firmware should verify that the above bits are not set
before setting the READ bit. 

19.6.2 Writing to RTC User Registers

When the WRITE bit in the BACKUP_RTC_RW register is
set, data can be written into the RTC user registers;
otherwise, writes to the RTC user registers are ignored.
When all the RTC writes are done, the firmware must clear
the WRITE bit for the RTC update to take effect. After the

Table 19-1.  RTC Fields

Bitfield Name 
Number 
of Bits

Description

RTC_SEC 7 Calendar seconds in BCD, 0-59

RTC_MIN 7 Calendar minutes in BCD, 0-59

RTC_HOUR 6

Calendar hours in BCD; value depends on 12-hour or 24-hour format set in the BACKUP_RTC_TIME register. 
In 24-hour mode, bits RTC_HOUR[5:0] = 0–23 
In 12-hour mode, bit RTC_HOUR[5] = 0 for AM and 1 for PM 
Bits RTC_HOUR[4:0] = 1–12

CTRL_12HR 1 Select the 12-hour or 24-hour mode: 1=12HR, 0=24HR

RTC_DAY 3
Calendar day of the week in BCD, 1-7 
You should define the meaning of the values

RTC_DATE 6
Calendar day of the month in BCD, 1-31 
Automatic leap year correction

RTC_MON 4 Calendar month in BCD, 1-12

RTC_YEAR 8 Calendar year in BCD, 0-99 (Can be used to represent years 2000 -2099)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 205

Backup System

WRITE bit is cleared, the hardware will copy all the new data
on one single WCO clock edge to ensure coherency to the
actual RTC registers. 

The WRITE bit cannot be set if:

■ RTC is still busy with a previous operation (that is, the
RTC_BUSY bit in the BACKUP_STATUS register is set)

■ READ bit in the BACKUP_RTC_RW register is set

The firmware should make sure that the values written to the
RTC fields form a coherent legal set. The hardware does not
check the validity of the written values. Writing illegal values
results in undefined behavior of the RTC.

When in the middle of an RTC update with the WRITE bit
set, and a brownout, reset, or entry to Deep Sleep or
Hibernate mode occurs, the write operation will not be
complete. This is because the WRITE bit will be cleared by
a reset, and the RTC update is triggered only when this bit is

cleared by a WRITE transaction. If the write operation is in
progress (RTC_BUSY), data corruption can occur if the
system is reset or enters Deep Sleep or Hibernate mode. 

19.7 Alarm Feature

The Alarm feature allows the RTC to be used to generate an
interrupt, which may be used to wake up the system from
Sleep, Deep Sleep, and Hibernate power modes. 

The Alarm feature consists of six fields corresponding to the
fields of the RTC: Month/Date, Day-of-Week, and
Hour : Minute : Second. Each Alarm field has an enable bit
that needs to be set to enable matching; if the bit is cleared,
then the field will be ignored for matching.

The Alarm bitfields are as follows:

If the master enable (ALM_EN) is set, but all alarm fields for date and time are disabled, an alarm interrupt will be generated
once every second. Note that there is no alarm field for Year because the life expectancy of a chip is about 20 years and thus
setting an alarm for a certain year means that the alarm matches either once or never in the lifetime of the chip.

The PSoC 6 MCU has two independent alarms. See the BACKUP_ALM1_TIME, BACKUP_ALM1_DATE,
BACKUP_ALM2_TIME, and BACKUP_ALM2_DATE registers in the registers TRM for details. 

Note that the alarm user registers, similar to RTC user registers, require certain special steps before read/write operations, as
explained in sections Reading RTC User Registers on page 204 and Writing to RTC User Registers on page 204. 

Interrupts must be properly configured for the RTC to generate interrupts/wake up events. Also, to enable RTC interrupts to
wake up the device from Hibernate mode, the MASK_HIBALARM bit in the PWR_HIBERNATE register must be set. See the
Device Power Modes chapter on page 191 and Interrupts chapter on page 54 for details.

Table 19-2.  Alarm Bitfields

Bitfield Name 
Number 
of Bits

Description

ALARM_SEC 7 Alarm seconds in BCD, 0-59

ALARM_SEC_EN 1 Alarm second enable: 0=disable, 1=enable

ALARM _MIN 7 Alarm minutes in BCD, 0-59

ALARM _MIN_EN 1 Alarm minutes enable: 0=disable, 1=enable

ALARM _HOUR 6

Alarm hours in BCD, value depending on the 12-hour or 24-hour mode 
In 12-hour mode, bit ALARM _HOUR[5] = 0 for AM and 1 for PM, 
bits ALARM_HOUR[4:0] = 1–12 
In 24-hour mode, bits ALARM_HOUR[5:0] = 0–23

ALARM _HOUR_EN 1 Alarm hour enable: 0=disable, 1=enable

ALARM_DAY 3
Calendar day of the week in BCD, 1-7 
You should define the meaning of the values

ALARM_DAY_EN 1 Alarm day of the week enable: 0=disable, 1=enable

ALARM _DATE 6
Alarm day of the month in BCD, 1-31 
Leap year corrected

ALARM _DATE_EN 1 Alarm day of the month enable: 0=disable, 1=enable

ALARM _MON 4 Alarm month in BCD, 1-12

ALARM _MON_EN 1 Alarm month enable: 0=disable, 1=enable

ALM_EN 1

Master enable for alarm. 
0: Alarm is disabled. Fields for date and time are ignored. 
1: Alarm is enabled. If none of the date and time fields are enabled, then this alarm triggers once 
every second.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 206

Backup System

The BACKUP_INTR_MASK register can be used to disable certain interrupts from the backup system.

The RTC alarm can also control an external PMIC as explained in the following section.

19.8 PMIC Control

The backup system can control an external PMIC that supplies VDDD. PMIC enable is an active-high output that is available at

a certain pin PMIC_Wakeup_Out. See the device datasheet for the location of this pin. This pin can be connected to the
“enable” input of a PMIC. 

Table 19-4 shows the bitfields in BACKUP_PMIC_CTL.

Note that two writes to the BACKUP_PMIC_CTL register
are required to change the PMIC_EN setting. The first write
should update the desired settings (including the UNLOCK
code) but should not change PMIC_EN or
PMIC_EN_OUTEN. The second write must use the same bit
values as the first one except desired PMIC_EN/
PMIC_EN_OUTEN settings.

When the PMIC_EN bit is cleared by firmware, the external
PMIC is disabled and the system functions normally until
VDDD is no longer present (OFF with Backup mode). The
firmware can set this bit if it does so before VDDD is actually
removed. The time between firmware disabling the

PMIC_EN bit and the actual removal of VDDD depends on
the external PMIC and supply-capacitor characteristics. 

Additionally, PMIC can be turned on by one of these events:

■ An RTC Alarm/Century Interrupt

■ A logic high input at the PMIC_Wakeup_In pin. See the
device datasheet for the location of this pin. This allows
a mechanical button or an external input from another
device to wake up the system and enable the PMIC. The
POLARITY bit in the BACKUP_PMIC_CTL register must
be set to ‘1’ to use this feature. The same wakeup pin
PMIC_Wakeup_In can wake up the device from

Table 19-3.  Interrupt Mask Bits

Bit Name Description

ALARM1 Mask bit for interrupt generated by ALARM1

ALARM2 Mask bit for interrupt generated by ALARM2

CENTURY Mask bit for century interrupt (interrupt generated when the Year field rolls over from 99 to 00)

Table 19-4.  PMIC Control Bits

Bitfield Name 
Number 
of Bits

Description

UNLOCK 8
This byte must be set to 0x3A for PMIC to be disabled. Any other value in this field will 
cause writes to PMIC_EN to be ignored. Do not change PMIC_EN in the same write cycle 
as setting/clearing the UNLOCK code; do these in separate write cycles.

POLARITY 1 Reserved for future use. Keep this bit at ‘1’.

PMIC_EN_OUTEN 1

Output enable of the PMIC_EN pin.

0: PMIC_EN pin output is HI-Z. This allows the PMIC_EN pin to be used as a GPIO. The 
HI-Z condition is kept only if the UNLOCK key (0x3A) is present.

1: PMIC_EN pin output is enabled. 

PMIC_ALWAYSEN 1

Override normal PMIC controls to prevent errant firmware from accidentally turning off the 
PMIC.

0: Normal operation; PMIC_EN and PMIC_OUTEN work as explained in their bitfield 
descriptions. 

1: PMIC_EN is forced set; PMIC_EN and PMIC_OUTEN are ignored. 

This bit is a write-once bit that cannot be cleared until the next Backup domain reset.

PMIC_EN 1

Enable external PMIC (hardware output available at pin PMIC_Wakeup_Out). This bit is 
enabled by default. 

This bit will only clear if the UNLOCK field was written correctly in a previous write operation 
and PMIC_ALWAYSEN = 0. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 207

Backup System

Hibernate mode. See the Device Power Modes chapter
on page 191 for details.

Make sure that one or more of these events are configured
properly, and a battery or supercapacitor is connected to
VBACKUP with sufficient charge to power the backup system

until one of these events occur. Otherwise, the PMIC may
continue to be in the disabled state with the PSoC 6 MCU
unable to enable it again. 

19.9 Backup Registers

The Backup domain has sixteen registers
(BACKUP_BREG0 to BACKUP_BREG15), which can be
used to store 32 bytes of important information/flags. These
registers retain their contents even when the main supply
(VDDD) is off as long as backup supply (VBACKUP) is present.

These registers can also be used to store information that
must be retained when the device enters Hibernate mode.

19.10 Register List

Table 19-5.  Backup Registers

Register Name Description

BACKUP_CTL Main control register (including power and clock)

BACKUP_RTC_RW RTC read/write control register

BACKUP_STATUS Status register

BACKUP_RTC_TIME Calendar seconds, minutes, hours, and day of week

BACKUP_RTC_DATE Calendar day of month, month, and year

BACKUP_ALM1_TIME Alarm 1 seconds, minute, hours, and day of week

BACKUP_ALM1_DATE Alarm 1 day of month, and month

BACKUP_ALM2_TIME Alarm 2 seconds, minute, hours, and day of week

BACKUP_ALM2_DATE Alarm 2 day of month, and month

BACKUP_INTR Interrupt request register

BACKUP_INTR_MASK Interrupt mask register

BACKUP_INTR_MASKED Interrupt masked request register

BACKUP_PMIC_CTL PMIC control register

BACKUP_BREG0 to BACK-
UP_BREG15

Backup registers 

BACKUP_RESET Reset register for the backup domain



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 208

20.   Clocking System

PSoC 6 MCU provides flexible clocking options with on-chip crystal oscillators, phase lock loop, frequency lock loop, and
supports multiple external clock sources. 

20.1 Features

The PSoC 6 MCU clock system includes these resources:

■ Two internal clock sources:

❐ 8-MHz internal main oscillator (IMO)

❐ 32-kHz internal low-speed oscillator (ILO)

■ Three external clock sources

❐ External clock (EXTCLK) generated using a signal from an I/O pin

❐ External 4–35 MHz crystal oscillator (ECO) 

❐ External 32-kHz watch crystal oscillator (WCO)

■ One frequency lock loop (FLL) with 24–100 MHz output range

■ Two phase-locked loop (PLL) with 10.625–200 MHz output range

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysClk

■ Application notes

■ Code examples



Clocking System

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 209

20.2 Architecture

Figure 20-1 gives a generic view of the clocking system in PSoC 6 MCUs.

Figure 20-1.  Clocking System Block Diagram  

ECO

IMO

EXTCLK

CLK_HF[0]Predivider
(1/2/4/8) 

WCO

ILO

CLK_LF

FLL

(FLL/PLLs) Root Clock mux (Clks_HF[i] are Root  Clocks)

USB

QSPI, 
SDHC[1]

Audio
Predivider
(1/2/4/8) 

Predivider
(1/2/4/8) 

Predivider
(1/2/4/8) 

Path Mux

CLK_PATH4

CLK_PATH3

CLK_HF[1]

CLK_HF[2]

CLK_HF[3]

PLL1 

PLL2 

SDHC[0]
Predivider
(1/2/4/8) 

CLK_HF[4]

clk_ext
Predivider
(1/2/4/8) 

CLK_HF[5]

CM4 
Clock

Peripheral
Clock 

Dividers 

clk_peri
CM0+ 
Clock

CLK_PATH5



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 210

Clocking System

20.3 Clock Sources

20.3.1 Internal Main Oscillator (IMO)

The IMO is an accurate, high-speed internal (crystal-less)
oscillator that produces a fixed frequency of 8 MHz. The
IMO output can be used by the PLL or FLL to generate a
wide range of higher frequency clocks, or it can be used
directly by the high-frequency root clocks. 

When USB is present the USB Start-of-Frame (SOF) signal
is used to trim the IMO to ensure that the IMO matches the
accuracy of the USB SOF. The ENABLE_LOCK bitfield in
the USBFS0_USBDEV_CR register of the USB block needs
to be set for this feature to work. The driver for the USB
block in the PDL does this automatically.

The IMO is available only in the system LP and ULP power
modes. 

20.3.2 External Crystal Oscillator (ECO)

The PSoC 6 MCU contains an oscillator to drive an external
4-MHz to 35-MHz crystal. This clock source is built using an
oscillator circuit in PSoC. The circuit employs an external
crystal that needs to be populated on the external crystal
pins of the PSoC 6 MCU. See AN218241 - PSoC 6 MCU
Hardware Design Considerations for more details.

The ECO can be enabled by using the CLK_ECO_CONFIG
ECO_EN register bitfields.

20.3.2.1 ECO Trimming

The ECO supports a wide variety of crystals and ceramic
resonators with the nominal frequency range specification of
f = 4 MHz – 35 MHz. The crystal manufacturer typically
provides numerical values for parameters, namely the
maximum drive level (DL), the equivalent series resistance
(ESR), and the parallel load capacitance (CL). These
parameters can be used to calculate the transconductance
(gm) and the maximum peak to peak (VPP).

Max peak to peak value:

Transconductance: 

ECO does not support VPP less than 0.5 V. Similarly, gm
cannot be greater than or equal to 18 mA/V.

The following fields are found in the CLK_TRIM_ECO_CTL
register. The Amplitude trim (ATRIM) and WDTRIM settings
control the trim for amplitude of the oscillator output. ATRIM
sets the crystal drive level when automatic gain control
(AGC) is enabled (CLK_ECO_CONFIG.AGC_EN = 1). AGC
must be enabled for VPP< 2 V and disabled for all other
cases. 

WARNING: Take care when disabling AGC because driving
a crystal beyond its rated limit can permanently damage the
crystal. 

Based on the VPP value, the ATRIM and WDTRIM values
are set as shown in Table 20-1 and Table 20-2. 

The GTRIM sets up the trim for amplifier gain based on the
calculated gm, as shown in Table 20-3.

RTRIM sets up the trim for filter characteristics based on the
frequency, as shown in Table 20-4.

VPP 2

2 DL
ESR

-----------------

4 f CL
----------------------------=

gm 4 5 2 f CL  2
ESR=

Table 20-1.  ATRIM Settings

VPP ATRIM

VPP < 0.6 V 0x00

0.6 V < VPP < 0.7 V 0x02

0.7 V < VPP < 0.8 V 0x04

0.8 V < VPP < 0.9 V 0x06

0.9 V < VPP < 1.025 V 0x08

1.025 V < VPP < 1.15 V 0x0A

1.15 V < VPP < 1.275 V 0x0C

VPP > 1.275 V 0x0E

Table 20-2.  WDTRIM Settings

VPP WDTRIM

VPP < 0.6 V 0x00

VPP < 0.8 V 0x02

VPP < 1.0 V 0x04

VPP > 1.0 V 0x06

Table 20-3.  GTRIM Settings

gm GTRIM

gm < 4.5 mA/V 0x01

gm = 4.5 mA/V 0x00

gm > 4.5 mA/V INT (gm / 4.5mA/V)

Table 20-4.  RTRIM Settings

Nominal Frequency f 
(MHz)

RTRIM

f > 28.6 MHz 0x00

28.6 MHz  f > 23.33MHz 0x01

23.33 MHz  f > 16.5 MHz 0x02

16.5 MHz  f 0x03

https://www.cypress.com/documentation/application-notes/an218241-psoc-6-mcu-hardware-design-considerations
https://www.cypress.com/documentation/application-notes/an218241-psoc-6-mcu-hardware-design-considerations
https://www.cypress.com/documentation/application-notes/an218241-psoc-6-mcu-hardware-design-considerations


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 211

Clocking System

FTRIM sets up the trim for filter characteristics based on
ATRIM, as shown in Table 20-5.

First, set up the trim values based on Table 20-1 through
Table 20-5 and then enable the ECO. After the ECO is
enabled, the CLK_ECO_STATUS register can be checked
to ensure it is ready. The SysClk driver of the PDL provides
a function that automatically calculates all trim values based
on the XTALs Vpp and gm. 

20.3.3 External Clock (EXTCLK)

The external clock is a 0- to 100-MHz range clock that can
be sourced from a signal on a designated I/O pin. This clock
can be used as the source clock for either the PLL or FLL, or
can be used directly by the high-frequency clocks. 

When manually configuring a pin as an input to EXTCLK,
the drive mode of the pin must be set to high-impedance
digital to enable the digital input buffer. See the I/O
System chapter on page 227 for more details. Consult the
device datasheet to determine the specific pin used for
EXTCLK. See KBA224493 for more details.

20.3.4 Internal Low-speed Oscillator (ILO)

The ILO operates with no external components and outputs
a stable clock at 32.768 kHz nominal. The ILO is relatively
low power and low accuracy. It is available in all power
modes. If the ILO is to remain active in Hibernate mode, and
across power-on-reset (POR) or brownout detect (BOD), the
ILO_BACKUP bit must be set in the CLK_ILO_CONFIG
register. 

The ILO can be used as the clock source for: CLK_LF,
which in turn can be used as a source for the backup
domain (CLK_BAK). CLK_BAK runs the real-time clock
(RTC). This can be useful if you do not wish to populate a
WCO. Although the ILO is not suitable as an RTC due to its
poor accuracy, it can be used as a HIBERNATE wakeup
source using the wakeup alarm facility in the RTC. In this
case, the VDDD rail must be supplied during HIBERNATE for

the ILO to run, and the ILO_BACKUP bit must be set in the
CLK_ILO_CONFIG register. CLK_LF is also the source of

the MCWDT timers; see the Watchdog Timer chapter on
page 249 for details.

The ILO is always the source of the watchdog timer (WDT). 

The ILO is enabled and disabled with the ENABLE bit of the
CLK_ILO_CONFIG register. Always leave the ILO enabled
as it is the source of the WDT. 

If the WDT is enabled, the only way to disable the ILO is to
first clear the WDT_LOCK bit in the WDT_CTL register and
then clear the ENABLE bit in the CLK_ILO_CONFIG
register. If the WDT_LOCK bit is set, any register write to
disable the ILO will be ignored. Enabling the WDT will
automatically enable the ILO.

The calibration counters described in Clock Calibration
Counters on page 223 can be used to measure the ILO
against a high-accuracy clock such as the ECO. This result
can then be used to determine how the ILO must be
adjusted. The ILO can be trimmed using the
CLK_TRIM_ILO_CTL register. 

20.3.5 Watch Crystal Oscillator (WCO)

The WCO is a highly accurate 32.768-kHz clock source. It is
the primary clock source for the RTC. The WCO can also be
used as a source for CLK_LF. 

The WCO can be enabled and disabled by setting the
WCO_EN bit in the CTL register for the backup domain. The
WCO can also be bypassed and an external 32.768-kHz
clock can be routed on a WCO output pin. This is done by
setting the WCO_BYPASS bit in the CTL register for the
backup domain. See WCO with External Clock/Sine Wave
Input on page 203 for more details.

20.4 Clock Generation

20.4.1 Phase-Locked Loop (PLL)

The PSoC 6 MCU contains two PLLs, which resides on
CLK_PATH1 and CLK_PATH2. They are capable of
generating a clock output in the range 10.625–200 MHz; the
input frequency must be between 4 and 64 MHz. This
makes it possible to use the IMO to generate much higher
clock frequencies for the rest of the system. 

Table 20-5.  FTRIM Settings

Nominal Frequency f 
(MHz)

FTRIM

ATRIM < 2 0x00

4 > ATRIM  2 0x01

6 > ATRIM  4 0x02

8 > ATRIM  6 0x03

10 > ATRIM  8 0x04

12 > ATRIM  10 0x05

14 > ATRIM  12 0x06

ATRIM  14 0x07

https://community.cypress.com/docs/DOC-15849


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 212

Clocking System

Figure 20-2.  PLL Block Diagram

The PLL is configured following these steps:

Note: fref is the input frequency of the PLL, that is, the

frequency of input clock, such as 8 MHz for the IMO.

1. Determine the desired output frequency (fout). Calculate 

the reference (REFERENCE_DIV), feedback 
(FEEDBACK_DIV), and output (OUTPUT_DIV) dividers 
subject to the following constraints:

a. PFD frequency (phase detector frequency). fpfd = fref 

/ REFERENCE_DIV. It must be in the range 4 MHz 
to 8 MHz. There may be multiple reference divider 
values that meet this constraint.

b. VCO frequency. fvco = fpfd * FEEDBACK_DIV. It must 

be in the range 170 MHz to 400 MHz. There may be 
multiple feedback divider values that meet this 
constraint with different REFERENCE_DIV choices.

c. Output frequency. fout = fvco / OUTPUT_DIV. It must 

be in the range 10.625 MHz to 200 MHz. Note that 
your device may not be capable of operating at this 
frequency; check the device datasheet. It may not be 
possible to get the desired frequency due to 
granularity; therefore, consider the frequency error of 
the two closest choices.

d. Choose the best combination of divider parameters 
depending on the application. Some possible 
decision-making factors are: minimum output 
frequency error, lowest power consumption (lowest 
fvco), or lowest jitter (highest fvco).

2. Program the divider settings in the appropriate 
CLK_PLL_CONFIG register. Do not enable the PLL on 
the same cycle as configuring the dividers. Do not 
change the divider settings while the PLL is enabled.

3. Enable the PLL (CLK_PLL_CONFIG.ENABLE = 1). Wait 
at least 1 µs for PLL circuits to start.

4. Wait until the PLL is locked before using the output. By 
default, the PLL output is bypassed to its reference clock 
and will automatically switch to the PLL output when it is 
locked. This behavior can be changed using 
PLL_CONFIG.BYPASS_SEL. The status of the PLL can 
be checked by reading CLK_PLL_STATUS. This register 
contains a bit indicating the PLL has locked. It also 
contains a bit indicating if the PLL lost the lock status. 

To disable the PLL, first set the PLL_CONFIG.BYPASS_SEL
to PLL_REF. Then wait at least six PLL output clock cycles

before disabling the PLL by setting PLL_CONFIG.ENABLE
to ‘0’. 

20.4.2 Frequency Lock Loop (FLL)

The PSoC 6 MCU contains one frequency lock loop (FLL),
which resides on Clock Path 0. The FLL is capable of
generating a clock output in the range 24 MHz to 100 MHz;
the input frequency must be between 0.001 and 100 MHz,
and must be at least 2.5 times less than the CCO frequency.
This makes it possible to use the IMO to generate much
higher clock frequencies for the rest of the system. 

The FLL is similar in purpose to a PLL but is not equivalent:

■ FLL can start up (lock) much faster than the PLL.

■ It consumes less current than the PLL.

■ FLL does not lock the phase. At the heart of the FLL is a 
current-controlled oscillator (CCO). The output 
frequency of this CCO is controlled by adjusting the trim 
of the CCO; this is done in hardware and is explained in 
detail later in this section.

■ FLL can produce up to 100-MHz clock with good duty 
cycle through its divided clock output. 

■ FLL reference clock can be the WCO (32 kHz), IMO 
(8 MHz), or any other periodic clock source.

Note: The CCO frequency must be at least 2.5 times
greater than the reference frequency. 

The CCO can output a stable frequency in the 48 MHz to
200 MHz range. This range is divided into five sub-ranges
as shown by Table 20-6.

Note: The output of the CCO has an option to enable a
divide by two or not. For this device, the divide by two must
always be enabled. 

Within each range, the CCO output is controlled via a 9-bit
trim field. This trim field is updated via hardware based on
the control algorithm described below.

Phase 
Detector

Charge 
pump

Voltage 
control 

Oscillator 
(VCO)Feedback 

Divider (P)

Reference 
Divider (Q)

Reference 
Clock 

PLL OUTOutput 
Divider

Lock 
Detect Bypass 

Logic

Table 20-6.  CCO Frequency Ranges

CCO 
Range

0 1 2 3 4

fmin 48 MHz 64 MHz 85 MHz 113 MHz 150 MHz

fmax 64 MHz 85 MHz 113 MHz 150 MHz 200 MHz



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 213

Clocking System

A reference clock must be provided to the FLL. This
reference clock is typically the IMO, but could be many
different clock sources. The FLL compares the reference
clock against the CCO clock to determine how to adjust the
CCO trim. Specifically, the FLL will count the number of
CCO clock cycles inside a specified window of reference
clock cycles. The number of reference clock cycles to count
is set by the FLL_REF_DIV field in the CLK_FLL_CONFIG2
register. 

After the CCO clocks are counted, they are compared
against an ideal value and an error is calculated. The ideal
value is programmed into the FLL_MULT field of the
CLK_FLL_CONFIG register. 

As an example, the reference clock is the IMO (8 MHz), the
desired CCO frequency is 100 MHz, the value for
FLL_REF_DIV is set to 146. This means that the FLL will

count the number of CCO clocks within 146 clock periods of
the reference clock. In one clock cycle of the reference clock
(IMO), there should be 100 / 8 = 12.5 clock cycles of the
CCO. Multiply this number by 146 and the value of
FLL_MULT should be 1825. 

If the FLL counts a value different from 1825, it attempts to
adjust the CCO such that it achieves 1825 the next time it
counts. This is done by scaling the error term with
FLL_LF_IGAIN and FLL_LF_PGAIN found in
CLK_FLL_CONFIG3. Figure 20-3 shows how the error (err)
term is multiplied by FLL_LF_IGAIN and FLL_LF_PGAIN
and then summed with the current trim to produce a new
trim value for the CCO. The CCO_LIMIT field in the
CLK_FLL_CONFIG4 can be used to put an upper limit on
the trim adjustment; this is not needed for most situations. 

Figure 20-3.  FLL Error Correction Diagram

The FLL determines whether it is “locked” by comparing the error term with the LOCK_TOL field in the CLK_FLL_CONFIG2
register. When the error is less than LOCK_TOL the FLL is considered locked. 

After each adjustment to the trim the FLL can be programmed to wait a certain number of reference clocks before doing a
new measurement. The number of reference clocks to wait is set in the SETTLING_COUNT field of CLK_FLL_CONFIG3. Set
this such that the FLL waits ~1 µs before a new count. Therefore, if the 8-MHz IMO is used as the reference this field should
be programmed to ‘8’. 

When configuring the FLL there are two important factors that must be considered: lock time and accuracy. Accuracy is the
closeness to the intended output frequency. These two numbers are inversely related to each other via the value of REF_DIV.
Higher REF_DIV values lead to higher accuracy, whereas lower REF_DIV values lead to faster lock times. 

In the example used previously the 8-MHz IMO was used as the reference, and the desired FLL output was 100 MHz. For
that example, there are 12.5 CCO clocks in one reference clock. If the value for REF_DIV is set to ‘1’ then FLL_MULT must
be set to either ‘13’ or ‘12’. This will result in a CCO output of either 96 MHz or 104 MHz, and an error of 4 percent from the
desired 100 MHz. Therefore, the best way to improve this is to increase REF_DIV. However, the larger REF_DIV is, the
longer each measurement cycle takes, thus increasing the lock time. In this example, REF_DIV was set to 146. This means
each measurement cycle takes 146 * (1/8 MHz) = 18.25 µs, whereas when REF_DIV is set to 1, each measurement cycle
takes 1 * (1/ 8 MHz) 0.125 µs. 

Another issue with lower REF_DIV values is that the minimum LOCK_TOL is 1, so the output of the CCO can have an error of
±1. In the example where REF_DIV = 1 and FLL_MULT = 13, the MULT value can really be 12, 13, or 14 and still be locked.
This means the output of the FLL may vary between 96 and 112 MHz, which may not be desirable. 

 limit

+

 
current_trim 

 IGAIN

 PGAIN

err new_trim 

X

X 0

max



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 214

Clocking System

Thus, a choice must be made between faster lock times and more accurate FLL outputs. The biggest change to make for this
is the value of REF_DIV. The following section describes how to configure all of the FLL registers and gives some example
equations to set REF_DIV N for best accuracy.

20.4.2.1 Configuring the FLL

This section provides a guide to calculate FLL parameters. The following equations are tailored to achieve the best accuracy. 

In the following equations:

N = REF_DIV

M = FLL _MULT

1. Set CCO_RANGE in the CLK_FLL_CONFIG4 register.

a. Determine the output frequency of the FLL. 

b. Calculate the CCO frequency. The CCO frequency = 2 * FLL output frequency.

c. Use Table 20-7 to determine the CCO range. 

d. Write CCO range into CCO_RANGE in the CLK_FLL_CONFIG4 register. 

2. Set the FLL_OUTPUT_DIV in CLK_FLL_CONFIG. Set the output divider to ‘1’.

3. Set FLL_REF_DIV in CLK_FLL_CONFIG2.

FLL_REF_DIV divides the FLL input clock. The FLL counts the number of CCO clocks within one period of the divided 
reference clock. A general equation to calculate the reference divider is as follows:

Equation 20-1

The CCOTrimStep is found in Table 20-8.

A larger N results in better precision on the FLL output, but longer lock times; a smaller N will result in faster lock times, 
but less precision. 

Note: When the WCO is used as the reference clock, N must be set to 19.

4. Set FLL_MULT in CLK_FLL_CONFIG.

FLL_MULT is the ratio between the desired CCO frequency and the divided input frequency. This is the ideal value for the 
counter that counts the number of CCO clocks in one period of the divided input frequency.

Equation 20-2

5. Set the FLL_LF_IGAIN and FLL_LF_PGAIN in CLK_FLL_CONFIG3.

Within each range of the CCO there are 512 steps of adjustment for the CCO frequency. These steps are controlled by 
CCO_FREQ in the CLK_FLL_CONFIG4 register. The FLL automatically adjusts CCO_FREQ based on the output of the 
FLL counter. 

Table 20-7.  CCO Frequency Ranges

CCO 
Range

0 1 2 3 4

fmin 48 MHz 64 MHz 85 MHz 113 MHz 150 MHz

fmax 64 MHz 85 MHz 113 MHz 150 MHz 200 MHz

Table 20-8.  CCO Trim Steps

CCO Range 0 1 2 3 4

CCO_Trim_Steps 0.0011 0.0011 0.0011 0.0011 0.00117

N ROUNDUP
2 fref

CCOTrimStep
fCCOT etarg


-----------------------------------------------------------
 
 
 

=

M fCCOT etarg

N
fref
--------=



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 215

Clocking System

The output of the counter gives the number of CCO clocks, over one period of the divided reference clock, by which the 
FLL is off. This value is then multiplied by the sum of FLL_LF_IGAIN and FLL_LF_PGAIN. The result of this multiplication 
is then summed with the value currently in the CCO_FREQ register. 

To determine the values for IGAIN and PGAIN use the following equation:

Equation 20-3

Find the value of IGAIN closest but not over the values in the gain row in Table 20-9. 

Program FLL_LF_IGAIN with the register value that corresponds to the chosen gain value. 

Take the IGAIN value from the register and use it in the following equation:

Equation 20-4

Find the value of PGAIN closest but not over the values in the gain row in Table 20-9. Program FLL_PF_IGAIN with the 
register value that corresponds to the chosen gain value.

For best performance Pgain_reg + Igain_reg should be as close as possible to calculated IGAIN without exceeding it. 
kCCO is the gain of the CCO; Table 20-10 lists the kCCO for each CCO range.

6. Set SETTLING_COUNT in CLK_FLL_CONFIG3.

SETTLING_COUNT is the number of reference clocks to wait for the CCO to settle after it has changed. It is best to set 
this such that the settling time is around 1 µs.

Do not set the settling time to anything less than 1 µs, greater will lead to longer lock times.

1. Set LOCK_TOL in CLK_FLL_CONFIG2.

LOCK_TOL determines how much error the FLL can tolerate at the output of the counter that counts the number of CCO 
clocks in one period of the divided reference clock. A higher tolerance can be used to lock more quickly or track a less 
accurate source. The tolerance should be set such that the FLL does not unlock under normal conditions. A lower 
tolerance means a more accurate output, but if the input reference is unstable then the FLL may unlock.

The following equation can be used to help determine the value:

Equation 20-5

CCO (accuracy) = 0.25% or 0.0025

ref (accuracy) is the accuracy of the reference clock

2. Set CCO_FREQ in CLK_FLL_CONFIG4.

This field determines the frequency at which the FLL starts before any measurement. The nearer the FLL is to the desired 
frequency, the faster it will lock.

Table 20-9.  IGAIN and PGAIN Register Values

Register Value 0 1 2 3 4 5 6 7 8 9 10 11

Gain Value 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

Table 20-10.  kCCO Values

CCO Range 0 1 2 3 4

kCCO 48109.38 64025.65 84920 113300 154521.85

IGAIN
0.85

KCCO
N

fref
--------

-----------------------------

 
 
 
 
 



PGAIN IGAINreg
0.85

KCCO
N

fref
--------

-----------------------------–

SETTLING_COUNT =1 µs * fref 

LOCK_TOL M
1 CCOaccuracy+

1 Frefaccuracy–
----------------------------------------- 
  1–=



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 216

Clocking System

Equation 20-6

fCCOBase can be found in Table 20-11.  

9. Calculating Precision, Accuracy, and Lock Time of FLL

To calculate the precision and accuracy of the FLL, the accuracy of the input source must be considered. 

The precision is the larger of: 

Equation 20-7

Or (CCO_Trim_Steps / 2) 

Example: The desired FLL output is 100 MHz, thus CCO target is 200 MHz. The 2 percent accurate 8 MHz IMO is used as 
the reference input. N is calculated to be 69.

PrecisionFLL = ((8 MHz * 1.02)/(69 * 200 MHz)) = 0.059%, which is greater than the (CCO_Trim_Steps / 2)

The accuracy of the FLL output is the precision multiplied by the lock tolerance. If the CCO goes beyond this range, then 
the FLL will unlock. 

AccuracyFLL = PrecisionFLL * LOCK_TOL

The value for the reference divider N should be tuned such that it achieves the best precision/accuracy versus lock time. 

The lock time depends on the time for each adjustment step in the locking process;

Step_Time = (N / fref) + (SETTLING_COUNT / fref)

Multiply this number by the number of steps it takes to lock, to determine lock time. Typically, the FLL locks within the first 
~10 steps. ModusToolbox and the PDL provide drivers and calculators that automatically populate the FLL registers 
based on FLL input and output frequency requirements.

Table 20-11.  CCO Base Frequency

CCO Range 0 1 2 3 4

CCO_Base 43600 58100 77200 103000 132000

Table 20-12.  CCO Trim Steps

CCO Range 0 1 2 3 4

CCO_Trim_Steps 0.0011 0.0011 0.0011 0.0011 0.00117

CCOFREQ ROUPNDUP

LOG
fCCOT etarg

fCCOBase

----------------------
 
 
 

LOG 1 CCOTrimStep
+ 

----------------------------------------------------------

 
 
 
 
 
 
 

=

PrecisionFLL fref

1 fref accuracy +

N fCCOT etarg


----------------------------------------------
 
 
 

=



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 217

Clocking System

20.4.2.2 Enabling and Disabling the FLL

The FLL requires firmware sequencing when enabling, disabling, and entering/exiting DEEPSLEEP.

To enable the FLL, follow these steps:

1. Enable the CCO by writing CLK_FLL_CONFIG4.CCO_ENABLE = 1 and wait until CLK_FLL_STATUS.CCO_READY==1. 

2. Ensure the reference clock has stabilized and CLK_FLL_CONFIG3.BYPASS_SEL = FLL_REF. 

3. Write FLL_ENABLE = 1 and wait until CLK_FLL_STATUS.LOCKED==1. 

4. Write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_OUT to switch to the FLL output.

To disable the FLL, follow these steps:

1. Ensure the processor is operating from a different clock than clk_path0. If the muxes are changed, wait four FLL output 
clock cycles for it to complete.

2. Write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_REF and read the same register to ensure the write completes.

3. Wait at least six FLL reference clock cycles and disable it with FLL_ENABLE = 0.

4. Disable the CCO by writing CLK_FLL_CONFIG4.CCO_ENABLE = 0.

Before entering DEEPSLEEP, either disable the FLL using the above sequence or use the following procedure to deselect/
select it before/after DEEPSLEEP. Before entering DEEPSLEEP, write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_REF to
change the FLL to use its reference clock. After DEEPSLEEP wakeup, wait until CLK_FLL_STATUS.LOCKED==1 and then
write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_OUT to switch to the FLL output.

Note: It is not recommended to use the FLL_AUTO option in the BYPASS_SEL field. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 218

Clocking System

20.5 Clock Trees

The PSoC 6 MCU clocks are distributed throughout the
device, as shown in Figure 20-1. The clock trees are
described in this section: 

■ Path Clocks

■ High-Frequency Root Clocks (CLK_HF[i])

■ Low-Frequency Clock (CLK_LF)

■ Timer Clock (CLK_TIMER)

■ Analog Pump Clock (CLK_PUMP)

20.5.1 Path Clocks

The PSoC 6 MCU has six clock paths: CLK_PATH0 contains
the FLL, CLK_PATH1 and CLK_PATH2 contain the PLLs,
and CLK_PATH3, CLK_PATH4, and CLK_PATH5 are a
direct connection to the high-frequency root clocks. Note
that the FLL and PLL(s) can be bypassed if they are not
needed. These paths are the input sources for the high-
frequency clock roots. 

Each clock path has a mux to determine which source clock
will clock that path. This configuration is done in
CLK_PATH_SELECT[i] register.

The DSI mux is configured through the
CLK_DSI_SELECT[i] register.

20.5.2 High-Frequency Root Clocks

The PSoC 6 MCU has six high-frequency root clocks
(CLK_HF[i]). Each CLK_HF has a particular destination on
the device, as shown in Table 20-15.

Each high-frequency root clock has a mux to determine its
source. This configuration is done in the
CLK_ROOT_SELECT[i] register.

Each CLK_HF has a pre-divider, which is set in the
CLK_ROOT_SELECT register. 

CLK_HF[1-5] can be enabled and disabled. CLK_HF[0] is
always enabled as it is the source of the CPU. To enable
and disable CLK_HF[1-5] set the ENABLE bit in the
CLK_ROOT_SELECT register. 

Table 20-13.  Clock Path Source Selections

Name Description

PATH_MUX[2:0]

Selects the source for clk_path[i]

0: IMO

1: EXTCLK

2: ECO

3: Reserved

4: DSI_MUX

5-7: Reserved

Table 20-14.  DSI Mux Source Selection

Name Description

DSI_MUX[4:0]

Selects the source for the DSI_MUX[i]

0-15: Reserved

16: ILO

17: WCO

18: Reserved

19: Reserved

20-31: Invalid

Table 20-15.  CLK_HF Destinations

Name Description

CLK_HF[0]
Root clock for both CPUs, PERI, and 
AHB infrastructure

CLK_HF[1]
Root clock for the PDM/PCM and I2S 
audio subsystem

CLK_HF[2]
Root clock for the Serial Memory 
Interface subsystem and SDHC[1] 
block

CLK_HF[3] Root clock for USB communications

CLK_HF[4] Root clock for SDHC[0] block

CLK_HF[5]
Clock output on clk_ext pin (when used 
as an output)

Table 20-16.  HFCLK Input Selection Bits

Name Description

ROOT_MUX[3:0]

HFCLK input clock selection

0: Select CLK_PATH0

1: Select CLK_PATH1

2: Select CLK_PATH2

3: Select CLK_PATH3

4: Select CLK_PATH4

5: Select CLK_PATH5

Table 20-17.  HFCLK Divider Selection

Name Description

ROOT_DVI[5:4]

Selects predivider value for the clock 
root and DSI input

0: No Divider

1: Divide clock by 2

2: Divide clock by 4

3: Divide clock by 8



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 219

Clocking System

20.5.3 Low-Frequency Clock

The low-frequency clock (CLK_LF) in the PSoC 6 MCU has
two input options: ILO and WCO. 

CLK_LF is the source for the multi-counter watchdog timers
(MCWDT) and the RTC. 

The source of CLK_LF is set in the LFCLK_SEL bits of the
CLK_SELECT register. 

20.5.4 Timer Clock 

The timer clock (CLK_TIMER) can be used as a clock
source for the profiler or the CPU SYSTICK timer. The
source for CLK_TIMER can either be the IMO or
CLK_HF[0]. This selection is made in the TIMER_SEL
bitfield of the CLK_TIMER_CTL register. Several dividers
can be applied to this clock, which are found in the
CLK_TIMER_CTL register. 

20.5.5 Group Clocks (clk_sys)

On the PSoC 6 platform, peripherals are grouped. Each
group has a dedicated group clock (also referred to as
clk_sys). The group clock sets the clock rate for the AHB
interface on the peripheral; it also sets the clock rate for the
trigger outputs and trigger input synchronization. Each
group clock has an eight-bit divider located in the
CLOCK_CTL register in the PERI_GROUP_STRUCT in the
PERI register set. For a majority of applications these
dividers should be left at default (divide by 1).

20.5.6 Backup Clock (clk_bak)

The backup clock is used to clock the backup domain,
specifically the RTC. For more information see WCO with
External Clock/Sine Wave Input on page 203.

Table 20-18.  LFCLK Input Selection Bits LFCLK_SEL

Name Description

LFCLK_SEL[1:0]

LFCLK input clock selection

0: ILO. Uses the internal local oscillator 
as the source of the LFCLK

1: WCO. Uses the watch crystal 
oscillator as the source of the LFCLK

2: Reserved

3: Reserved



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 220

Clocking System

20.6 CLK_HF[0] Distribution

clk_hf[0] is the root clock for the CPU subsystem and for the peripheral clock dividers. 

Figure 20-4.  CLK_HF[0] Distribution

20.6.1 CLK_FAST

CLK_FAST clocks the Cortex-M4 processor. This clock is a
divided version of CLK_HF[0]. The divider for this clock is
set in the CM4_CLOCK_CTL register of the CPU
subsystem. 

20.6.2 CLK_PERI

CLK_PERI is the source clock for all programmable
peripheral clock dividers and for the Cortex-M0+ processor.
It is a divided version of CLK_HF[0]. The divider for this
clock is set in the PERI_INT_DIV bitfields of the
CM0_CLOCK_CTL register. 

20.6.3 CLK_SLOW

CLK_SLOW is the source clock for the Cortex-M0+. This
clock is a divided version of CLK_PERI. The divider for this
clock is set in the SLOW_INT_DIV bitfields of the
CM0_CLOCK_CTL register.

20.7 Peripheral Clock Dividers 

The PSoC 6 MCU peripherals such as SCBs and TCPWMs
require a clock. These peripherals can be clocked only by a
peripheral clock divider. 

The PSoC 6 MCU has 29 peripheral clock dividers (PCLK).
It has eight 8-bit dividers, sixteen 16-bit dividers, four
fractional 16.5-bit dividers (16 integer bits, five fractional
bits), and one 24.5-bit divider (24 integer bits, five fractional
bits). The output of any of these dividers can be routed to
any peripheral.

20.7.1 Fractional Clock Dividers

Fractional clock dividers allow the clock divisor to include a
fraction of 0..31/32. For example, a 16.5-bit divider with an
integer divide value of 3 generates a 16-MHz clock from a
48-MHz CLK_PERI. A 16.5-bit divider with an integer divide
value of 4 generates a 12-MHz clock from a 48-MHz
CLK_PERI. A 16.5-bit divider with an integer divide value of
3 and a fractional divider of 16 generates a 48 / (3 + 16/32) =
48 / 3.5 = 13.7-MHz clock from a 48-MHz CLK_PERI. Not all
13.7-MHz clock periods are equal in size; some will have a
16-MHz period and others will have a 12-MHz period, such
that the average is 13.7 MHz.

Fractional dividers are useful when a high-precision clock is
required (for example, for a UART/SPI serial interface).
Fractional dividers are not used when a low jitter clock is
required, because the clock periods have a jitter of one
CLK_PERI cycle.

20.7.2 Peripheral Clock Divider 
Configuration 

The peripheral clock dividers are configured using registers
from the peripheral block; specifically DIV_CMD,
DIV_8_CTL, DIV_16_CTL, DIV_16_5_CTL,
DIV_24_5_CTL, and CLOCK_CTL registers.

First the clock divider needs to be configured. This is done
via the DIV_8_CTL, DIV_16_CTL, DIV_16_5_CTL, and
DIV_24_5_CTL registers. There is one register for each
divider; for example, there are eight DIV_8_CTL registers as
there are eight 8-bit dividers. In these registers, set the
value of the integer divider; if it is a fractional divider then set
the fraction portion as well. 

Predivider 
1-256CLK_HF[0] CLK_FAST CM4

Predivider 
1-256 CLK_PERI

Predivider 
1-256

CM0+CLK_SLOW

To peripheral 
clock dividers



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 221

Clocking System

After the divider is configured use the DIV_CMD register to
enable the divider. This is done by setting the DIV_SEL to
the divider number you want to enable, and setting the
TYPE_SEL to the divider type. For example, if you wanted
to enable the 0th 16.5-bit divider, write ‘0’ to DIV_SEL and
‘2’ to TYPE_SEL. If you wanted to enable the tenth 16-bit
divider, write ‘10’ to DIV_SEL and ‘1’ to TYPE_SEL. See the
registers TRM for more details.

20.7.2.1 Phase Aligning Dividers

For specific use cases, you must generate clocks that are
phase-aligned. For example, consider the generation of two
gated clocks at 24 and 12 MHz, both of which are derived
from a 48-MHz CLK_PERI. If phase alignment is not
considered, the generated gated clocks appear as follows.

Figure 20-5.  Non Phase-Aligned Clock Dividers

These clock signals may or may not be acceptable, depending on the logic functionality implemented on these two clocks. If
the two clock domains communicate with each other, and the slower clock domain (12 MHz) assumes that each high/‘1’ pulse
on its clock coincides with a high/‘1’ phase pulse in the higher clock domain (24 MHz), the phase misalignment is not
acceptable. To address this, it is possible to have dividers produce clock signals that are phase-aligned with any of the other
(enabled) clock dividers. Therefore, if (enabled) divider x is used to generate the 24-MHz clock, divider y can be phase-
aligned to divider x and used to generate the 12-MHz clock. The aligned clocks appear as follows.

Figure 20-6.  Phase-Aligned Clock Dividers

Phase alignment also works for fractional divider values. If (enabled) divider x is used to generate the 38.4-MHz clock (divide
by 1 8/32), divider y can be phase-aligned to divider x and used to generate the 19.2-MHz clock (divide by 2 16/32). The
generated gated clocks appear as follows.

Figure 20-7.  Phase-Aligned Fractional Dividers

Divider phase alignment requires that the divider to which it
is phase-aligned is already enabled. This requires the
dividers to be enabled in a specific order.

Phase alignment is implemented by controlling the start
moment of the divider counters in hardware. When a divider
is enabled, the divider counters are set to ‘0’. The divider
counters will only start incrementing from ‘0’ to the

CLK_PERI (48 MHz)

24 MHz gated clock

12 MHz gated clock

No phase alignment

CLK_PERI (48 MHz)

24 MHz gated clock

12 MHz gated clock

Phase alignment

CLK_PERI (48 MHz)

38.4 MHz gated clock

19.2 MHz gated clock

Phase alignment



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 222

Clocking System

programmed integer and fractional divider values when the
divider to which it is phase-aligned has an integer counter
value of ‘0’.

Note that the divider and clock multiplexer control register
fields are all retained during the Deep Sleep power mode.
However, the divider counters that are used to implement
the integer and fractional clock dividers are not. These
counters are set to ‘0’ during the Deep Sleep mode.
Therefore, when transitioning from Deep Sleep to Active
mode, all dividers (and clock signals) are enabled and
phase-aligned by design. 

Phase alignment is accomplished by setting the
PA_DIV_SEL and PA_DIV_TYPE bits in the DIV_CMD
register before enabling the clock. For example, to align the
fourth 8-bit divider to the third 16-bit divider, set DIV_SEL to
‘4’, TYPE_SEL to ‘0’, PA_DIV_SEL to ‘3’, and
PA_TYPE_SEL to ‘1’. 

20.7.2.2 Connecting Dividers to Peripheral

The PSoC 6 MCU has 54 peripherals, which can connect to
one of the programmable dividers. Table 20-19 lists those
peripherals.  

To connect a peripheral to a specific divider, the
PERI_CLOCK_CTL register is used. There is one
PERI_CLOCK_CTL register for each entry in Table 20-19.
For example, to select the twelfth 16-bit divider for
tcpwm[1].clocks[2] write to the twenty-fifth CLOCK_CTL
register, set the DIV_SEL to ‘12’, and the TYPE_SEL to ‘1’. 

Table 20-19.  Clock Dividers to Peripherals

Clock Number Destination

0 scb[0].clock

1 scb[1].clock

2 scb[2].clock

3 scb[3].clock

4 scb[4].clock

5 scb[5].clock

6 scb[6].clock

7 scb[7].clock  

8 scb[8].clock  

9 scb[9].clock  

10 scb[10].clock  

11 scb[11].clock  

12 scb[12].clock  

13 smartio[8].clock  

14 smartio[9].clock 

15 tcpwm[0].clocks[0]  

16 tcpwm[0].clocks[1]  

17 tcpwm[0].clocks[2]  

18 tcpwm[0].clocks[3]  

19 tcpwm[0].clocks[4]  

20 tcpwm[0].clocks[5]  

21 tcpwm[0].clocks[6]  

22 tcpwm[0].clocks[7]  

23 tcpwm[1].clocks[0]  

24 tcpwm[1].clocks[1]  

25 tcpwm[1].clocks[2]  

26 tcpwm[1].clocks[3]  

27 tcpwm[1].clocks[4]  

28 tcpwm[1].clocks[5]  

29 tcpwm[1].clocks[6]  

30 tcpwm[1].clocks[7]  

31 tcpwm[1].clocks[8]  

32 tcpwm[1].clocks[9]  

33 tcpwm[1].clocks[10]  

34 tcpwm[1].clocks[11]  

35 tcpwm[1].clocks[12]  

36 tcpwm[1].clocks[13]  

37 tcpwm[1].clocks[14]  

38 tcpwm[1].clocks[15]  

39 tcpwm[1].clocks[16]  

40 tcpwm[1].clocks[17]  

41 tcpwm[1].clocks[18]  

42 tcpwm[1].clocks[19]  

43 tcpwm[1].clocks[20]  

44 tcpwm[1].clocks[21]  

45 tcpwm[1].clocks[22]  

46 tcpwm[1].clocks[23]  

47 csd.clock  

48 lcd.clock  

49 profile.clock_profile  

50 cpuss.clock_trace_in  

51 pass.clock_pump_peri  

52 pass.clock_sar  

53 usb.clock_dev_brs

Table 20-19.  Clock Dividers to Peripherals

Clock Number Destination



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 223

Clocking System

20.8 Clock Calibration Counters

A feature of the clocking system in PSoC 6 MCUs is built-in hardware calibration counters. These counters can be used to
compare the frequency of two clock sources against one another. The primary use case is to take a higher accuracy clock
such as the ECO and use it to measure a lower accuracy clock such as the ILO or PILO. The result of this measurement can
then be used to trim the ILO and PILO.

There are two counters: Calibration Counter 1 is clocked off of Calibration Clock 1 (generally the high-accuracy clock) and it
counts down; Calibration Counter 2 is clocked off of Calibration Clock 2 and it counts up. When Calibration Counter 1 reaches
0, Calibration Counter 2 stops counting up and its value can be read. From that value the frequency of Calibration Clock 2 can
be determined with the following equation.

For example, if Calibration Clock 1 = 8 MHz, Counter 1 = 1000, and Counter 2 = 5

Calibration Clock 1 Frequency = (5/1000) * 8 MHz = 40 kHz. 

Calibration Clock 1 and Calibration Clock 2 are selected with the CLK_OUTPUT_FAST register. All clock sources are
available as a source for these two clocks. CLK_OUTPUT_SLOW is also used to select the clock source.

Calibration Counter 1 is programmed in CLK_CAL_CNT1. Calibration Counter 2 can be read in CLK_CAL_CNT2. 

When Calibration Counter 1 reaches 0, the CAL_COUNTER_DONE bit is set in the CLK_CAL_CNT1 register. 

Calibration Clock 2 Frequency
Counter 2 Final Value
Counter 1 Initial Value
---------------------------------------------------------- Calibration Clock 1 Frequency=



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 224

21.   Reset System

The PSoC 6 MCU family supports several types of resets that guarantee error-free operation during power up and allow the
device to reset based on user-supplied external hardware or internal software reset signals. The PSoC 6 MCU also contains
hardware to enable the detection of certain resets.

21.1 Features

The PSoC 6 MCU has these reset sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up to the level required for the device to 
function properly

■ Brownout reset (BOD) to reset the device if the power supply falls below the device specifications during normal operation

■ External reset (XRES) to reset the device using an external input

■ Watchdog timer (WDT) reset to reset the device if the firmware execution fails to periodically service the watchdog timer

■ Software initiated reset to reset the device on demand using firmware

■ Logic-protection fault resets to reset the device if unauthorized operating conditions occur

■ Clock-supervision logic resets to reset the device when clock-related errors occur

■ Hibernate wakeup reset to bring the device out of the Hibernate low-power mode

21.2 Architecture

The following sections provide a description of the reset sources available in the PSoC 6 MCU family.

Note: None of these sources can reset the Backup system. The Backup domain is reset only when all the power supplies are
removed from it, also known as a “cold start” or if the firmware triggers a reset using the BACKUP_RESET register. For more
details, see the Backup System chapter on page 201.

21.2.1 Power-on Reset

Power-on reset is provided to keep the system in a reset state during power-up. POR holds the device in reset until the supply
voltage, VDDD reaches the datasheet specification. The POR activates automatically at power-up. See the Power Supply and

Monitoring chapter on page 184 for more details.

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysLib

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 225

Reset System

21.2.2 Brownout Reset

Brownout reset monitors the chip digital voltage supply
VDDD and generates a reset if VDDD falls below the minimum

logic operating voltage specified in the device datasheet.
See the Power Supply and Monitoring chapter on page 184
for more details.

BOD events do not set a reset cause status bit, but in some
cases they can be detected. In some BOD events, VDDD will
fall below the minimum logic operating voltage specified by
the datasheet, but remain above the minimum logic
retention voltage. Thus, some BOD events may be
distinguished from POR events by checking for logic
retention. This is explained further in Identifying Reset
Sources on page 226.

21.2.3 Watchdog Timer Reset

Watchdog timer reset causes a reset if the WDT is not
serviced by the firmware within a specified time limit. See
the Watchdog Timer chapter on page 249 for more details. 

The RESET_HWWDT bit or RESET_SWWDT0 to
RESET_SWWDT3 status bits of the RES_CAUSE register
is set when a watchdog reset occurs. This bit remains set
until cleared by the firmware or until a POR, XRES, or BOD
reset occurs. All other resets leave this bit unaltered.

For more details, see the Watchdog Timer chapter on
page 249.

21.2.4 Software Initiated Reset

Software initiated reset is a mechanism that allows the CPU
to request a reset. The Cortex-M0+ and Cortex-M4
Application Interrupt and Reset Control registers
(CM0_AIRCR and CM4_AIRCR, respectively) can request a
reset by writing a ‘1’ to the SYSRESETREQ bit of the
respective registers. 

Note that a value of 0x5FA should be written to the
VECTKEY field of the AIRCR register before setting the
SYSRESETREQ bit; otherwise, the processor ignores the
write. See the CPU Subsystem (CPUSS) chapter on
page 33 for details.

The RESET_SOFT status bit of the RES_CAUSE register is
set when a software reset occurs. This bit remains set until
cleared by firmware or until a POR, XRES, or BOD reset
occurs. All other resets leave this bit unaltered.

21.2.5 External Reset

External reset (XRES) is a reset triggered by an external
signal that causes immediate system reset when asserted.
The XRES pin is active low – a logic ‘1’ on the pin has no
effect and a logic ‘0’ causes reset. The pin is pulled to logic
‘1’ inside the device. XRES is available as a dedicated pin.

For detailed pinout, refer to the pinout section of the device
datasheet.

The XRES pin holds the device in reset as long as the pin
input is ‘0’. When the pin is released (changed to logic ‘1’),
the device goes through a normal boot sequence. The
logical thresholds for XRES and other electrical
characteristics are listed in the Electrical Specifications
section of the device datasheet . XRES is available in all
power modes, but cannot reset the Backup system.

An XRES event does not set a reset cause status bit, but
can be partially inferred by the absence of any other reset
source. If no other reset event is detected, then the reset is
caused by POR, BOD, or XRES.

21.2.6 Logic Protection Fault Reset

Logic protection fault reset detects any unauthorized
protection violations and causes the device to reset if they
occur. One example of a protection fault is reaching a debug
breakpoint while executing privileged code.

The RESET_ACT_FAULT or RESET_DPSLP_FAULT bits of
the RES_CAUSE register is set when a protection fault
occurs in Active or Deep Sleep modes, respectively. These
bits remain set until cleared or until a POR, XRES, or BOD
reset. All other resets leave this bit unaltered.

21.2.7 Clock-Supervision Logic Reset

Clock-supervision logic initiates a reset due to the loss of a
high-frequency clock or watch-crystal clock, or due to a
high-frequency clock error.

The RESET_CSV_WCO_LOSS bit of the RES_CAUSE
register is set when the clock supervision logic requests a
reset due to the loss of a watch-crystal clock (if enabled).

The RESET_CSV_HF_LOSS is a 16-bit field in the
RES_CAUSE2 register that can be used to identify resets
caused by the loss of a high-frequency clock. Similarly, the
RESET_CSV_HF_FREQ field can be used to identify resets
caused by the frequency error of a high-frequency clock.

For more information on clocks, see the Clocking
System chapter on page 208.

21.2.8 Hibernate Wakeup Reset

Hibernate wakeup reset occurs when one of the Hibernate
wakeup sources performs a device reset to return to the
Active power mode. See the Device Power Modes chapter
on page 191 for details on Hibernate mode and available
wakeup sources.

TOKEN is an 8-bit field in the PWR_HIBERNATE register
that is retained through a Hibernate wakeup sequence. The
firmware can use this bitfield to differentiate hibernate
wakeup from a general reset event. Similarly, the
PWR_HIB_DATA register can retain its contents through a



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 226

Reset System

Hibernate wakeup reset, but is cleared when XRES is
asserted.

21.3 Identifying Reset Sources

When the device comes out of reset, it is often useful to
know the cause of the most recent or even older resets. This
is achieved through the RES_CAUSE and RES_CAUSE2
registers. These registers have specific status bits allocated
for some of the reset sources. These registers record the
occurrences of WDT reset, software reset, logic-protection
fault, and clock-supervision resets. However, these registers
do not record the occurrences of POR, BOD, XRES, or

Hibernate wakeup resets. The bits in these registers are set
on the occurrence of the corresponding reset and remain
set after the reset, until cleared by the firmware or a loss of
retention, such as a POR, XRES, or BOD. 

Hibernate wakeup resets can be detected by examining the
TOKEN field in the PWR_HIBERNATE register as described
previously. Hibernate wakeup resets that occur as a result of
an XRES cannot be detected. The other reset sources can
be inferred to some extent by the status of the RES_CAUSE
and RES_CAUSE2 registers, as shown in Table 21-1.

For more information, see the RES_CAUSE and RES_CAUSE2 registers in the registers TRM.

If these methods cannot detect the cause of the reset, then it can be one of the non-recorded and non-retention resets: BOD,
POR, or XRES. These resets cannot be distinguished using on-chip resources.

21.4 Register List

Table 21-1.  Reset Cause Bits to Detect Reset Source

Register Bitfield
Number of 

Bits
Description

RES_CAUSE RESET_HWWDT 1 A hardware WDT reset has occurred since the last power cycle.

RES_CAUSE RESET_ACT_FAULT 1 Fault logging system requested a reset from its Active logic.

RES_CAUSE RESET_DPSLP_FAULT 1 Fault logging system requested a reset from its Deep Sleep logic.

RES_CAUSE RESET_CSV_WCO_LOSS 1
Clock supervision logic requested a reset due to loss of a watch-crystal 
clock.

RES_CAUSE RESET_SOFT 1
A CPU requested a system reset through its SYSRESETREQ. This can 
be done via a debugger probe or in firmware.

RES_CAUSE RESET_MCWDT0 1 Multi-counter WDT reset #0 has occurred since the last power cycle.

RES_CAUSE RESET_MCWDT1 1 Multi-counter WDT reset #1 has occurred since the last power cycle.

RES_CAUSE RESET_MCWDT2 1 Multi-counter WDT reset #2 has occurred since the last power cycle.

RES_CAUSE RESET_MCWDT3 1 Multi-counter WDT reset #3 has occurred since the last power cycle.

RES_CAUSE2 RESET_CSV_HF_LOSS 16
Clock supervision logic requested a reset due to loss of a high-frequency 
clock. Each bit index K corresponds to a clk_hf<K>. Unimplemented 
clock bits return zero.

RES_CAUSE2 RESET_CSV_HF_FREQ 16
Clock supervision logic requested a reset due to frequency error of a 
high-frequency clock. Each bit index K corresponds to a clk_hf<K>. 
Unimplemented clock bits return zero.

Table 21-2.  Reset System Register List

Register Description

RES_CAUSE Reset cause observation register

RES_CAUSE2 Reset cause observation register 2

PWR_HIBERNATE
Hibernate power mode control register. Contains a TOKEN field that can be used to detect the Hibernate 
wakeup reset

PWR_HIB_DATA Retains its contents through Hibernate wakeup reset

CM4_AIRCR Application interrupt and reset control register of Cortex-M4

CM0_AIRCR Application interrupt and reset control register of Cortex-M0+



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 227

22.   I/O System

This chapter explains the PSoC 6 MCU I/O system, its features, architecture, operating modes, and interrupts. The I/O
system provides the interface between the CPU core and peripheral components to the outside world. The flexibility of
PSoC 6 MCUs and the capability of its I/O to route most signals to most pins greatly simplifies circuit design and board layout.
The GPIO pins in the PSoC 6 MCU family are grouped into ports; a port can have a maximum of eight GPIO pins.

22.1 Features

The PSoC 6 MCU GPIOs have these features:

■ Analog and digital input and output capabilities

■ Eight drive strength modes

■ Separate port read and write registers

■ Overvoltage tolerant (OVT-GPIO) pins

■ Separate I/O supplies and voltages for up to six groups of I/O

■ Edge-triggered interrupts on rising edge, falling edge, or on both edges, on all GPIO

■ Slew rate control

■ Frozen mode for latching previous state (used to retain the I/O state in System Hibernate Power mode)

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ CapSense support

■ Smart I/O provides the ability to perform Boolean functions in the I/O signal path

■ Segment LCD drive support

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - GPIO

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 228

I/O System

22.2 Architecture

The PSoC 6 MCU is equipped with analog and digital peripherals. Figure 22-1 shows an overview of the routing between the
peripherals and pins.

Figure 22-1.  GPIO Interface Overview

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the I/O cells via the high-speed I/O
matrix (HSIOM). The HSIOM for each pin contains multiplexers to connect between the selected peripheral and the pin.
Analog peripherals such as SAR ADC, Low-Power comparator (LPCOMP), and CapSense are either connected to the GPIO
pins directly or through the AMUXBUS.

GPIO & Port 
Control

High Speed IO Matrix

CapSense 
Sensing

Analog 
Peripherals

CapSense
Controller

Segment 
LCD

Fixed 
Function 
Digital 

Peripherals

C
on

fig
u

ra
tio

n

In
te

rrup
t

In
terfa

ce

I/O Cell

Pin

AMUXBUS-A
AMUXBUS-B



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 229

I/O System

22.2.1 I/O Cell Architecture

Figure 22-2 shows the I/O cell architecture present in every GPIO cell. It comprises an input buffer and an output driver that
connect to the HSIOM multiplexers for digital input and output signals. Analog peripherals connect directly to the pin for point
to point connections or use the AMUXBUS.

Figure 22-2.  GPIO and GPIO_OVT Cell Architecture  

22.2.2 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled or disabled
by the IN_EN[7:0] bit of the Port Configuration Register
(GPIO_PRTx_CFG, where x is the port number). 

The input buffer is connected to the HSIOM for routing to the
CPU port registers and selected peripherals. Writing to the
HSIOM port select register (HSIOM_PORT_SELx) selects
the pin connection. See the device datasheet for the specific
connections available for each pin.

If a pin is connected only to an analog signal, the input
buffer should be disabled to avoid crowbar currents.

Digital 
Logic

Slew   
Rate 

Control

GPIO 
Edge 
Detect

HSIOM_PRTx_PORT_SEL[1:0][IOy_SEL]

GPIO_PRTx_IN[INy]

ACTIVE_[15:0]

DEEP_SLEEP_[7:0]

GPIO_PRTx_OUT[OUTy]

ACTIVE_0(TCPWM)

ACTIVE_1(SCB)

ACTIVE_2(CAN)

ACTIVE_[15:3]

DEEP_SLEEP_0(LCD-COM)

DEEP_SLEEP_1(LCD-SEG)

DEEP_SLEEP_2(SCB)

DEEP_SLEEP_[7:3]

OUT_EN
OUT

Drive 
Mode

Pin

VDD

VSS

Input Buffer
Output Driver

GPIO_PRTx_CFG[DRIVE_MODEy]

5

3

GPIO_PRTx_INTR[IN_INy]
GPIO_PRTx_MASK[EDGEy]

GPIO_PRTx_INTR_MASKED[EDGEy]
GPIO_PRTx_INTR_SET[EDGEy]
GPIO_PRTx_INTR_CFG[EDGEy_SEL]
Pin Interrupt Signal

GPIO_PRTx_CFG[IN_ENy]

GPIO_PRTx_CFG_IN[VTRIP_SELy_0]

GPIO_PRTx_CFG_OUT[DRIVE_SELy]
GPIO_PRTx_CFG_OUT[SLOWy]

GPIO_PRTx_INTR[EDGEy]

2

Dedicated Analog Resources (SAR ADC, LPCOMP)

AMUXBUS-A (CapSense Source, SAR ADC)

AMUXBUS-B (CapSense Shield, SAR ADC)

Switches

x = Port Number
y = Pin Number

Note: HSIOM select ion connects OUT and OUT_EN. 
ACTIVE_[2:0] and DEEP_SLEEP_[2:0] connections are examples. 
See Device Datasheet for specific connections to HSIOM ACTIVE 
and DEEP_SLEEP select ions.

13

5



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 230

I/O System

Each pin’s input buffer trip point and hysteresis are
configurable for the following modes:

■ CMOS + I2C

■ TTL

These buffer modes are selected by the VTRIP_SEL[7:0]_0
bit of the Port Input Buffer Configuration register.
(GPIO_PRTx_CFG_IN).

22.2.3 Digital Output Driver

Pins are driven by the digital output driver. It consists of
circuitry to implement different drive modes and slew rate
control for the digital output signals. The HSIOM selects the
control source for the output driver. The two primary types of
control sources are CPU registers and fixed-function digital
peripherals. A particular HSIOM connection is selected by
writing to the HSIOM port select register
(HSIOM_PORT_SELx). 

I/O ports are powered by different sources. The specific
allocation of ports to supply sources can be found in the
Pinout section of the device datasheet.

Each GPIO pin has ESD diodes to clamp the pin voltage to
the I/O supply source. Ensure that the voltage at the pin
does not exceed the I/O supply voltage VDDIO/VDDD/VDDA or

drop below VSSIO/VSSD/VSSA. For the absolute maximum
and minimum GPIO voltage, see the device datasheet . 

The digital output driver can be enabled or disabled in
hardware by using the DSI signal from a peripheral or the
output data register (GPIO_PRTx_OUT) associated with the
output pin. See 22.3 High-Speed I/O Matrix for details on
peripheral source selections supporting output enable
control.

22.2.3.1 Drive Modes

Each I/O is individually configurable to one of eight drive
modes by the DRIVE_MODE[7:0] field of the Port
Configuration register, GPIO_PRTx_CFG. Table 22-1 lists
the drive modes. Drive mode ‘1’ is reserved and should not
be used in most designs. CPU register and AMUXBUS
connections support seven discrete drive modes to
maximize design flexibility. Fixed-function digital peripherals,
such as SCB and TCPWM blocks, support modified
functionality for the same seven drive modes compatible
with fixed peripheral signaling. Figure 22-3 shows simplified
output driver diagrams of the pin view for CPU register
control on each of the eight drive modes. Figure 22-4 is a
simplified output driver diagram that shows the pin view for
fixed-function-based peripherals for each of the eight drive
modes.

Table 22-1.  Drive Mode Settings

Drive Mode Value

CPU Register, AMUXBUS Fixed-Function Digital Peripheral

OUT_EN = 1 OUT_EN = 0 OUT_EN = 1 OUT_EN = 0

OUT = 1 OUT = 0 OUT = 1 OUT = 0 OUT = 1 OUT = 0 OUT = 1 OUT = 0

High Impedance 0 HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z

Reserved 1 Strong 1 Strong 0 HI-Z HI-Z Strong 1 Strong 0
Weak 1 & 
0

Weak 1 & 
0

Resistive Pull Up 2 Weak 1 Strong 0 HI-Z HI-Z Strong 1 Strong 0 Weak 1 Weak 1

Resistive Pull Down 3 Strong 1 Weak 0 HI-Z HI-Z Strong 1 Strong 0 Weak 0 Weak 0

Open Drain, Drives Low 4 HI-Z Strong 0 HI-Z HI-Z Strong 1 Strong 0 HI-Z HI-Z

Open Drain, Drives High 5 Strong 1 HI-Z HI-Z HI-Z Strong 1 Strong 0 HI-Z HI-Z

Strong 6 Strong 1 Strong 0 HI-Z HI-Z Strong 1 Strong 0 HI-Z HI-Z

Resistive Pull Up and Down 7 Weak 1 Weak 0 HI-Z HI-Z Strong 1 Strong 0 Weak 1 Weak 0



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 231

I/O System

Figure 22-3.  CPU I/O Drive Mode Block Diagram

Figure 22-4.  Peripheral I/O Drive Mode Block Diagrams

Resistive
Pull up

2.

IN
OUT

VDDIO

Pin

OUT_EN

High Impedance0.

IN
OUT

Pin

OUT_EN

Reserved1. Resistive
Pull down

3.

IN
OUT

VDDIO

Pin

OUT_EN

Open Drain
Drives Low

4.

IN
OUT

Pin

OUT_EN

Open Drain
Drives High

5.

IN
OUT

VDDIO

Pin

OUT_EN

Strong6. 7.

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

Resistive Pull 
Up and Down

Resistive
Pull up

2.

IN
OUT

VDDIO

Pin

OUT_EN

High Impedance0.

IN
OUT

Pin

OUT_EN

Reserved1. Resistive
Pull down

3.

IN
OUT

VDDIO

Pin

OUT_EN

Open Drain,
Drives Low

4. Open Drain,
Drives High

5.

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

Strong6. Resistive Pull 
Up and Down

7.

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 232

I/O System

■ High-Impedance

This is the standard high-impedance (HI-Z) state
recommended for analog and digital inputs. For digital
signals, the input buffer is enabled; for analog signals, the
input buffer is typically disabled to reduce crowbar current
and leakage in low-power designs. To achieve the lowest
device current, unused GPIOs must be configured to the
high-impedance drive mode with input buffer disabled. High-
impedance drive mode with input buffer disabled is also the
default pin reset state.

■ Resistive Pull-Up or Resistive Pull-Down

Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
for either digital input or digital output in these modes. If
resistive pull-up is required, a ‘1’ must be written to that pin’s
Data Register bit. If resistive pull-down is required, a ‘0’
must be written to that pin’s Data Register. Interfacing
mechanical switches is a common application of these drive
modes. The resistive modes are also used to interface
PSoC with open drain drive lines. Resistive pull-up is used
when the input is open drain low and resistive pull-down is
used when the input is open drain high.

■ Open Drain Drives High and Open Drain Drives Low

Open drain modes provide high impedance in one of the
data states and strong drive in the other. Pins are useful as
digital inputs or outputs in these modes. Therefore, these
modes are widely used in bidirectional digital
communication. Open drain drive high mode is used when
the signal is externally pulled down and open drain drive low
is used when the signal is externally pulled high. A common
application for the open drain drives low mode is driving I2C
bus signal lines.

■ Strong Drive

The strong drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both high
and low states. Strong drive mode pins should not be used
as inputs under normal circumstances. This mode is often
used for digital output signals or to drive external devices.

■ Resistive Pull-Up and Resistive Pull-Down

In the resistive pull-up and pull-down mode, the GPIO will
have a series resistance in both logic 1 and logic 0 output
states. The high data state is pulled up while the low data
state is pulled down. This mode is useful when the pin is
driven by other signals that may cause shorts.

22.2.3.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options for
the strong drivers configured using the SLOW bit of the port
output configuration register (GPIO_PRTx_CFG_OUT). By
default, this bit is cleared and the port works in fast slew
mode. This bit can be set if a slow slew rate is required.
Slower slew rate results in reduced EMI and crosstalk and

are recommended for low-frequency signals or signals
without strict timing constraints.

When configured for fast slew rate, the drive strength can be
set to one of four levels using the DRIVE_SEL field of the
port output configuration register (GPIO_PRTx_CFG_OUT).
The drive strength field determines the active portion of the
output drivers used and can affect the slew rate of output
signals. Drive strength options are full drive strength
(default), one-half strength, one-quarter strength, and one-
eighth strength. Drive strength must be set to full drive
strength when the slow slew rate bit (SLOW) is set. 

Note: For some devices in the PSoC 6 MCU family,
simultaneous GPIO switching with unrestricted drive
strengths and frequency can induce noise in on-chip
subsystems affecting CapSense and ADC results. Refer to
the Errata section in the respective device datasheet for
details.

22.2.3.3 GPIO-OVT Pins

Select device pins are overvoltage tolerant (OVT) and are
useful for interfacing to busses or other signals that may
exceed the pin’s VDDIO supply, or where the whole device
supply or pin VDDIO may not be always present. They are
identical to regular GPIOs with the additional feature of
being overvoltage tolerant. GPIO-OVT pins have hardware
to compare VDDIO to the pin voltage. If the pin voltage
exceeds VDDIO, the output driver is disabled and the pin
driver is tristated. This results in negligible current sink at the
pin.

Note that in overvoltage conditions, the input buffer data will
not be valid if the external source’s specification of VOH and

VOL do not match the trip points of the input buffer defined

by the current VDDIO voltage.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 233

I/O System

22.3 High-Speed I/O Matrix 

The high-speed I/O matrix (HSIOM) is a set of high-speed multiplexers that route internal CPU and peripheral signals to and
from GPIOs. HSIOM allows GPIOs to be shared with multiple functions and multiplexes the pin connection to a user-selected
peripheral. The HSIOM_PRTx_PORT_SEL[1:0] registers allow a single selection from up to 32 different connections to each
pin as listed in Table 22-2.

Table 22-2.  HSIOM Connections

SELy_SEL Name
Digital Driver Signal Source Digital Input 

Signal 
Destination

Analog Switches
Description

OUT OUT_EN AMUXA AMUXB

0 GPIO OUT Register 1 IN Register 0 0
GPIO_PRTx_OUT register controls 
OUT

1 Reserved – – – – – –

2 Reserved – – – – – –

3 Reserved – – – – – –

4 AMUXA OUT Register 1 IN Register 1 0 Analog mux bus A connected to pin

5 AMUXB OUT Register 1 IN Register 0 1 Analog mux bus B connected to pin

6 Reserved – – – – – –

7 Reserved – – – – – –

8 ACT_0
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 0 - See the 
datasheet for specific pin connectivity

9 ACT_1
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 1 - See the 
datasheet for specific pin connectivity

10 ACT_2
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 2 - See the 
datasheet for specific pin connectivity

11 ACT_3
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 3 - See the 
datasheet for specific pin connectivity

12 DS_0
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 0 - See the 
datasheet for specific pin connectivity

13 DS_1
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 1 - See the 
datasheet for specific pin connectivity

14 DS_2
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 2 - See the 
datasheet for specific pin connectivity

15 DS_3
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 3 - See the 
datasheet for specific pin connectivity

16 ACT_4
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 4 - See the 
datasheet for specific pin connectivity

17 ACT_5
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 5 - See the 
datasheet for specific pin connectivity

18 ACT_6
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 6 - See the 
datasheet for specific pin connectivity

19 ACT_7
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 7 - See the 
datasheet for specific pin connectivity

20 ACT_8
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 8 - See the 
datasheet for specific pin connectivity

21 ACT_9
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 9 - See the 
datasheet for specific pin connectivity



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 234

I/O System

Note: The Active and Deep Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

22 ACT_10
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 10 - See the 
datasheet for specific pin connectivity

23 ACT_11
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 11 - See the 
datasheet for specific pin connectivity

24 ACT_12
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 12 - See the 
datasheet for specific pin connectivity

25 ACT_13
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 13 - See the 
datasheet for specific pin connectivity

26 ACT_14
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 14 - See the 
datasheet for specific pin connectivity

27 ACT_15
Active Source 

OUT
Active Source 

OUT_EN
Active Source IN 0 0

Active functionality 15 - See the 
datasheet for specific pin connectivity

28 DS_4
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 4 - See the 
datasheet for specific pin connectivity

29 DS_5
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 5 - See the 
datasheet for specific pin connectivity

30 DS_6
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 6 - See the 
datasheet for specific pin connectivity

31 DS_7
Deep Sleep 
Source OUT

Deep Sleep 
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 7 - See the 
datasheet for specific pin connectivity

Table 22-2.  HSIOM Connections

SELy_SEL Name
Digital Driver Signal Source Digital Input 

Signal 
Destination

Analog Switches
Description

OUT OUT_EN AMUXA AMUXB



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 235

I/O System

22.4 I/O State on Power Up

During power up, all the GPIOs are in high-impedance analog state and the input buffers are disabled. During runtime, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power up. The DAP connection does not provide pull-up or pull-down
resistors; therefore, if left floating some crowbar current is possible. The DAP connection can be disabled or reconfigured for
general-purpose use through the HSIOM only after the device boots and starts executing code.

22.5 Behavior in Low-Power Modes

Table 22-3 shows the status of GPIOs in low-power modes.

22.6 Interrupt

All port pins have the capability to generate interrupts. Figure 22-5 shows the routing of pin signals to generate interrupts.

Figure 22-5.   Interrupt Signal Routing 

■ Pin signal through the “GPIO Edge Detect” block with direct connection to the CPU interrupt controller

■ Pin signal through the port adapter and DSI to the CPU interrupt controller

Figure 22-6 shows the GPIO Edge Detect block architecture.

Figure 22-6.  GPIO Edge Detect Block Architecture

Table 22-3.  GPIO in Low-Power Modes

Low-Power Mode Status

CPU Sleep 
■ Standard GPIO, GPIO-OVT, and SIO pins are active and can be driven by most peripherals such as CapSense, 

TCPWMs, and SCBs, which can operate in CPU Sleep mode.

■ Inputs buffers are active; thus an interrupt on any I/O can be used to wake the CPU.

System Deep Sleep
■ GPIO, GPIO-OVT, and SIO pins, connected to System Deep Sleep domain peripherals, are functional. All other 

pins maintain the last output driver state and configuration.

■ Pin interrupts are functional on all I/Os and can be used to wake the device.

System Hibernate
■ Pin output states and configuration are latched and remain in the frozen state.

■ Pin interrupts are functional only on select IOs and can be used to wake the device. See the device datasheet 
for specific hibernate pin connectivity. 

GPIO Edge 
Detect

Interrupt 
Controller

Pin Dedicated IRQ Route
HSIOM

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50 ns Glitch Filter

Interrupt 
Signal

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 236

I/O System

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
any reconfiguration. The edge detector is configured by
writing into the EDGEv_SEL bits of the Port Interrupt
Configuration register, GPIO_PRTx_INTR_CFG, as shown
in Table 22-4.

Writing ‘1’ to the corresponding status bit clears the pin edge
state. Clearing the edge state status bit is important;
otherwise, an interrupt can occur repeatedly for a single
trigger or respond only once for multiple triggers, which is
explained later in this section. When the Port Interrupt
Control Status register is read at the same time an edge is
occurring on the corresponding port, it can result in the edge
not being properly detected. Therefore, when using GPIO
interrupts, read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code.

Firmware and the debug interface are able to trigger a
hardware interrupt from any pin by setting the corresponding
bit in the GPIO_PRTx_INTR_SET register.

In addition to the pins, each port provides a glitch filter
connected to its own edge detector. This filter can be driven
by one of the pins of a port. The selection of the driving pin
is done by writing to the FLT_SEL field of the
GPIO_PRTx_INTR_CFG register as shown in Table 22-5.

When a port pin edge occurs, you can read the Port
Interrupt Status register, GPIO_PRTx_INTR, to know which
pin caused the edge. This register includes both the latched
information on which pin detected an edge and the current
pin status. This allows the CPU to read both information in a
single read operation. This register has an additional use –
to clear the latched edge state. 

The GPIO_PRTx_INTR_MASK register enables forwarding
of the GPIO_PRTx_INTR edge detect signal to the interrupt
controller when a ‘1’ is written to a pin’s corresponding
bitfield. The GPIO_PRTx_INTR_MASKED register can then
be read to determine the specific pin that generated the
interrupt signal forwarded to the interrupt controller. The
masked edge detector outputs of a port are then ORed
together and routed to the interrupt controller (NVIC in the
CPU subsystem). Thus, there is only one interrupt vector
per port. 

The masked and ORed edge detector block output is routed
to the Interrupt Source Multiplexer shown in Figure 8-3 on
page 57, which gives an option of Level and Rising Edge
detection. If the Level option is selected, an interrupt is
triggered repeatedly as long as the Port Interrupt Status
register bit is set. If the Rising Edge detect option is
selected, an interrupt is triggered only once if the Port
Interrupt Status register is not cleared. Thus, the interrupt
status bit must be cleared if the Edge Detect block is used. 

Each port has a dedicated interrupt vector when the
interrupt signal is routed through the fixed-function route.
However, when the signal is routed though the DSI, interrupt
vector connections are flexible and can occupy any of the
DSI-connected interrupt lines of the NVIC. See the
Interrupts chapter on page 54 for details.

All of the port interrupt vectors are also ORed together into a
single interrupt vector for use on devices with more ports
than there are interrupt vectors available. To determine the
port that triggered the interrupt, the GPIO_INTR_CAUSEx
registers can be read. A ‘1’ present in a bit location indicates
that the corresponding port has a pending interrupt. The
indicated GPIO_PRTx_INTR register can then be read to
determine the pin source. 

When the signal is routed through the DSI, bypassing the
Edge Detect block, the edge detection is configurable in the
Interrupt Source Multiplexer block. If the multiplexer is
configured as Level, the interrupt is triggered repeatedly as
long as the pin signal is high. Use the Rising Edge detect
option when this route is selected to generate only one
interrupt.

22.7 Peripheral Connections

22.7.1 Firmware-Controlled GPIO

For standard firmware-controlled GPIO using registers, the
GPIO mode must be selected in the HSIOM_PORT_SELx
register. 

The GPIO_PRTx_OUT register is used to read and write the
output buffer state for GPIOs. A write operation to this
register changes the GPIO’s output driver state to the
written value. A read operation reflects the output data
written to this register and the resulting output driver state. It
does not return the current logic level present on GPIO pins,

Table 22-4.  Edge Detector Configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 22-5.  Glitch Filter Input Selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 237

I/O System

which may be different. Using the GPIO_PRTx_OUT
register, read-modify-write sequences can be safely
performed on a port that has both input and output GPIOs.

In addition to the data register, three other registers –
GPIO_PRTx_SET, GPIO_PRTx_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the
output data respectively on specific pins in a port without
affecting other pins. This avoids the need for read-modify-
write operations in most use cases. Writing ‘1’ to these
register bitfields will set, clear, or invert the respective pin;
writing ‘0’ will have no affect on the pin state.

GPIO_PRTx_IN is the port I/O pad register, which provides
the actual logic level present on the GPIO pin when read.
Writes to this register have no effect.

22.7.2 Analog I/O

Analog resources, such as LPCOMP, and SAR ADC, which
require low-impedance routing paths have dedicated pins.
Dedicated analog pins provide direct connections to specific
analog blocks. They help improve performance and should
be given priority over other pins when using these analog
resources. See the device datasheet for details on these
dedicated pins of the PSoC 6 MCU.

To configure a GPIO as a dedicated analog I/O, it should be
configured in high-impedance analog mode (see Table 22-1)
with input buffer disabled. The respective connection should
be enabled via registers in the specific analog resource.

To configure a GPIO as an analog pin connecting to
AMUXBUS, it should be configured in high-impedance
analog mode with the input buffer disabled and then routed
to the correct AMUXBUS using the HSIOM_PORT_SELx
register.

While it is preferred for analog pins to disable the input
buffer, it is acceptable to enable the input buffer if
simultaneous analog and digital input features are required.

22.7.2.1 AMUXBUS Connection

Static connection of AMUXBUS A or B is made by selecting
AMUXA or AMUXB in the HSIOM_PORT_SELx register.
Dynamic hardware-controlled connection is made by
selecting AMUXA_DSI or AMUXB_DSI in the
HSIOM_PORT_SELx register, enabling you to implement
hardware AMUXBUS switching.

To properly configure a pin as AMUXBUS input, follow these
steps:

1. Configure the GPIO_PRTx_CFG register to set the pin 
in high-Impedance mode with input buffer disabled, 
enabling analog connectivity on the pin.

2. Configure the HSIOM_PRT_SELx register to connect 
the pin to AMUXBUS A or B. For static connections, 
select AMUXA or AMUXB. For dynamic connections, 
select AMUXA_DSI or AMUXB_DSI.

22.7.3 LCD Drive

GPIOs have the capability of driving an LCD common or
segment line. HSIOM_PORT_SELx registers are used to
select pins for the LCD drive. See the LCD Direct
Drive chapter on page 432 for details.

22.7.4 CapSense

The pins that support CapSense can be configured as
CapSense widgets such as buttons, slider elements,
touchpad elements, or proximity sensors. CapSense also
requires external capacitors and optional shield lines. See
the PSoC 4 and PSoC 6 MCU CapSense Design Guide for
more details.

22.8 Smart I/O

The Smart I/O block adds programmable logic to an I/O port.
This programmable logic integrates board-level Boolean
logic functionality such as AND, OR, and XOR into the port.
A graphical interface is provided with the ModusToolbox
install for configuring the Smart I/O block. For more informa-
tion about the configurator tool, see the ModusToolbox
Smart I/O Configurator Guide.

The Smart I/O block has these features:

■ Integrate board-level Boolean logic functionality into a 
port

■ Ability to preprocess HSIOM input signals from the GPIO 
port pins

■ Ability to post-process HSIOM output signals to the 
GPIO port pins

■ Support in all device power modes except Hibernate

■ Integrate closely to the I/O pads, providing shortest 
signal paths with programmability

22.8.1 Overview

The Smart I/O block is positioned in the signal path between
the HSIOM and the I/O port. The HSIOM multiplexes the
output signals from fixed-function peripherals and CPU to a
specific port pin and vice-versa. The Smart I/O block is
placed on this signal path, acting as a bridge that can
process signals between port pins and HSIOM, as shown in
Figure 22-7.

https://www.cypress.com/search-results?as_q=modustoolbox%20smart%20I/O%20configurator%20guide
https://www.cypress.com/search-results?as_q=modustoolbox%20smart%20I/O%20configurator%20guide
https://www.cypress.com/search-results?as_q=modustoolbox%20smart%20I/O%20configurator%20guide
http://www.cypress.com/an85951


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 238

I/O System

Figure 22-7.  Smart I/O Interface

The signal paths supported through the Smart I/O block as
shown in Figure 22-7 are as follows:

1. Implement self-contained logic functions that directly 
operate on port I/O signals

2. Implement self-contained logic functions that operate on 
HSIOM signals

3. Operate on and modify HSIOM output signals and route 
the modified signals to port I/O signals

4. Operate on and modify port I/O signals and route the 
modified signals to HSIOM input signals

The following sections discuss the Smart I/O block
components, routing, and configuration in detail. In these
sections, GPIO signals (io_data) refer to the input/output
signals from the I/O port; device or chip (chip_data) signals
refer to the input/output signals from HSIOM.

22.8.2 Block Components

The internal logic of the Smart I/O includes these
components:

■ Clock/reset

■ Synchronizers

■ Three-input lookup table (LUT)

■ Data unit

22.8.2.1 Clock and Reset 

The clock and reset component selects the Smart I/O
block’s clock (clk_block) and reset signal (rst_block_n). A
single clock and reset signal is used for all components in
the block. The clock and reset sources are determined by
the CLOCK_SRC[4:0] bitfield of the SMARTIO_PRTx_CTL
register. The selected clock is used for the synchronous
logic in the block components, which includes the I/O input
synchronizers, LUT, and data unit components. The
selected reset is used to asynchronously reset the
synchronous logic in the LUT and data unit components. 

Note that the selected clock (clk_block) for the block’s
synchronous logic is not phase-aligned with other
synchronous logic in the device, operating on the same

clock. Therefore, communication between Smart I/O and
other synchronous logic should be treated as asynchronous. 

The following clock sources are available for selection:

■ GPIO input signals “io_data_in[7:0]”. These clock 
sources have no associated reset.

■ HSIOM output signals “chip_data[7:0]”. These clock 
sources have no associated reset.

■ Smart I/O clock (clk_smartio). This is derived from the 
system clock (clk_sys) using a peripheral clock divider. 
See the Clocking System chapter on page 208 for 
details on peripheral clock dividers. This clock is 
available only in System LP and ULP power modes. The 
clock can have one out of two associated resets: 
rst_sys_act_n and rst_sys_dpslp_n. These resets 
determine in which system power modes the block 
synchronous state is reset; for example, rst_sys_act_n is 
intended for Smart I/O synchronous functionality in the 
System LP and ULP power modes and reset is activated 
in the System Deep Sleep power mode. 

■ Low-frequency system clock (clk_lf). This clock is 
available in System Deep Sleep power mode. This clock 
has an associated reset, rst_lf_dpslp_n. Reset is 
activated if the system enters Hibernate, or is at POR.

When the block is enabled, the selected clock (clk_block)
and associated reset (rst_block_n) are provided to the fabric
components. When the fabric is disabled, no clock is
released to the fabric components and the reset is activated
(the LUT and data unit components are set to the reset
value of ‘0’). 

The I/O input synchronizers introduce a delay of two
clk_block cycles (when synchronizers are enabled). As a
result, in the first two cycles, the block may be exposed to
stale data from the synchronizer output. Hence, during the
first two clock cycles, the reset is activated and the block is
in bypass mode.

HSIOM Smart I/O I/O Port

HSIOM 
Output Signals

HSIOM
Input Signals

GPIO Output 
Signals

GPIO Input 
Signals

12

4

3



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 239

I/O System

22.8.2.2 Synchronizer

Each GPIO input signal and device input signal (HSIOM input) can be used either asynchronously or synchronously. To use
the signals synchronously, a double flip-flop synchronizer, as shown in Figure 22-8, is placed on both these signal paths to
synchronize the signal to the Smart I/O clock (clk_block). The synchronization for each pin/input is enabled or disabled by
setting or clearing the IO_SYNC_EN[i] bitfield for GPIO input signal and CHIP_SYNC_EN[i] for HSIOM signal in the
SMARTIO_PRTx_SYNC_CTL register, where ‘i’ is the pin number.

Figure 22-8.  Smart I/O Clock Synchronizer

22.8.2.3 Lookup Table (LUT) 

Each Smart I/O block contains eight lookup table (LUT) components. The LUT component consists of a three-input LUT and
a flip-flop. Each LUT block takes three input signals and generates an output based on the configuration set in the
SMARTIO_PRTx_LUT_CTLy register (y denotes the LUT number). For each LUT, the configuration is determined by an 8-bit
lookup vector LUT[7:0] and a 2-bit opcode OPC[1:0] in the SMARTIO_PRTx_LUT_CTLy register. The 8-bit vector is used as
a lookup table for the three input signals. The 2-bit opcode determines the usage of the flip-flop. The LUT configuration for
different opcodes is shown in Figure 22-9.

Table 22-6.  Clock and Reset Register Control

Register[BIT_POS] Bit Name Description

SMARTIO_PRTn_CTL[12:8] CLOCK_SRC[4:0]

Clock (clk_block)/reset (rst_block_n) source selection:

0: io_data_in[0]/1

...

7: io_data_in[7]/1

8: chip_data[0]/1

...

15: chip_data[7]/1

16: clk_smartio/rst_sys_act_n; asserts reset in any power mode other than System LP 
or ULP; that is, Smart I/O is active only in LP or ULP power modes with clock from the 
peripheral divider.

17: clk_smartio/rst_sys_dpslp_n. Smart I/O is active in all power modes with a clock 
from the peripheral divider. However, the clock will not be active in System deep sleep 
power mode.

19: clk_lf/rst_lf_dpslp_n. Smart I/O is active in all power modes with a clock from ILO.

20-30: Clock source is a constant '0'. Any of these clock sources should be selected 
when Smart I/O is disabled to ensure low power consumption.

31: clk_sys/1. This selection is not intended for clk_sys operation. However, for 
asynchronous operation, three clk_sys cycles after enabling, the Smart I/O is fully 
functional (reset is de-activated). To be used for asynchronous (clockless) block 
functionality.

io_data_in[i]
Or

chip_data_in[i]

clk_block

clkclk

DQDQ

0

1

SYNC_CTL.IO_SYNC_EN[i]
Or

SYNC_CTL.CHIP_SYNC_EN[i]

To SMARTIO 
block

Clock Synchronizer



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 240

I/O System

The SMARTIO_PRTx_LUT_SELy registers select the three input signals (tr0_in, tr1_in, and tr2_in) going into each LUT. The
input can come from the following sources:

■ Data unit output

■ Other LUT output signals (tr_out)

■ HSIOM output signals (chip_data[7:0])

■ GPIO input signals (io_data[7:0])

LUT_TR0_SEL[3:0] bits of the SMARTIO_PRTx_LUT_SELy register selects the tr0_in signal for the yth LUT. Similarly,
LUT_TR1_SEL[3:0] bits and LUT_TR2_SEL[3:0] bits select the tr1_in and tr2_in signals, respectively. See Table 22-7 for
details.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 241

I/O System

Table 22-7.  LUT Register Control

Register[BIT_POS] Bit Name Description

SMARTIO_PRTx_LUT_CTLy[7:0] LUT[7:0]

LUT configuration. Depending on the LUT opcode (LUT_OPC), the internal 
state, and the LUT input signals tr0_in, tr1_in, and tr2_in, the LUT 
configuration is used to determine the LUT output signal and the next 
sequential state.

SMARTIO_PRTx_LUT_CTLy[9:8] LUT_OPC[1:0] LUT opcode specifies the LUT operation as illustrated in Figure 22-9.

SMARTIO_PRTx_LUT_SELy[3:0] LUT_TR0_SEL[3:0]

LUT input signal “tr0_in” source selection:

0: Data unit output

1: LUT 1 output

2: LUT 2 output

3: LUT 3 output

4: LUT 4 output

5: LUT 5 output

6: LUT 6 output

7: LUT 7 output

8: chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)

9: chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)

10: chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)

11: chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)

12: io_data_in[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)

13: io_data_in[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

14: io_data_in[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)

15: io_data_in[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

SMARTIO_PRTx_LUT_SELy[11:8] LUT_TR1_SEL[3:0]

LUT input signal “tr1_in” source selection:

0: LUT 0 output

1: LUT 1 output

2: LUT 2 output

3: LUT 3 output

4: LUT 4 output

5: LUT 5 output

6: LUT 6 output

7: LUT 7 output

8: chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)

9: chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)

10: chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)

11: chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)

12: io_data_in[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)

13: io_data_in[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

14: io_data_in[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)

15: io_data_in[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

SMARTIO_PRTx_LUT_SELy[19:16] LUT_TR2_SEL[3:0]
LUT input signal “tr2_in” source selection. Encoding is the same as for 
LUT_TR1_SEL.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 242

I/O System

Figure 22-9.  Smart I/O LUT Configuration

22.8.2.4 Data Unit (DU)

Each Smart I/O block includes a data unit (DU) component. The DU consists of a simple 8-bit datapath. It is capable of
performing simple increment, decrement, increment/decrement, shift, and AND/OR operations. The operation performed by
the DU is selected using a 4-bit opcode DU_OPC[3:0] bitfield in the SMARTIO_PRTx_DU_CTL register. 

The DU component supports up to three input trigger signals (tr0_in, tr1_in, tr2_in) similar to the LUT component. These
signals are used to initiate an operation defined by the DU opcode. In addition, the DU also includes two 8-bit data inputs
(data0_in[7:0] and data1_in[7:0]) that are used to initialize the 8-bit internal state (data[7:0]) or to provide a reference. The 8-
bit data input source is configured as:

■ Constant ‘0x00’

■ io_data_in[7:0]

■ chip_data_in[7:0]

■ DATA[7:0] bitfield of SMARTIO_PRTx_DATA register

LUT

tr0_in

tr1_in

tr2_in

tr_out

8

OPC[1:0] = 0

LUT[7:0]

LUT

tr0_in

tr1_in

tr2_in

tr_out

8

OPC[1:0] = 1

LUT[7:0]

clk_block

LUT

tr0_in

tr1_in

tr2_in

8

OPC[1:0] = 2

LUT[7:0]

clk_block

tr_out

tr2_in

tr1_in

tr0_in

OPC[1:0] = 3

clk_block

tr_out

LUT[5]

LUT[4]

LUT[3]

LUT[2]

LUT[1]

LUT[0]

Set

Clr

Clk

Enable



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 243

I/O System

The trigger signals are selected using the DU_TRx_SEL[3:0] bitfield of the SMARTIO_PRTx_DU_SEL register. The DUT_-
DATAx_SEL[1:0] bits of the SMARTIO_PRTx_DU_SEL register select the 8-bit input data source. The size of the DU (number
of bits used by the datapath) is defined by the DU_SIZE[2:0] bits of the SMARTIO_PRTx_DU_CTL register. See Table 22-8
for register control details.

The DU generates a single output trigger signal (tr_out). The internal state (du_data[7:0]) is captured in flip-flops and requires
clk_block. 

The following pseudo code describes the various datapath operations supported by the DU opcode. Note that “Comb”
describes the combinatorial functionality – that is, functions that operate independent of previous output states. “Reg”
describes the registered functionality – that is, functions that operate on inputs and previous output states (registered using
flip-flops).
// The following is shared by all operations.
mask = (2 ^ (DU_SIZE+1) – 1)
data_eql_data1_in = (data & mask) == (data1_in & mask));
data_eql_0        = (data & mask) == 0);
data_incr         = (data + 1) & mask;
data_decr         = (data - 1) & mask;

Table 22-8.  Data Unit Register Control

Register[BIT_POS] Bit Name Description

SMARTIO_PRTx_DU_CTL[2:0] DU_SIZE[2:0]
Size/width of the data unit (in bits) is DU_SIZE+1. For example, if DU_SIZE is 
7, the width is 8 bits.

SMARTIO_PRTx_DU_CTL[11:8] DU_OPC[3:0]

Data unit opcode specifies the data unit operation:

1: INCR

2: DECR

3: INCR_WRAP

4: DECR_WRAP

5: INCR_DECR

6: INCR_DECR_WRAP

7: ROR

8: SHR

9: AND_OR

10: SHR_MAJ3

11: SHR_EQL

Otherwise: Undefined.

SMARTIO_PRTx_DU_SEL[3:0] DU_TR0_SEl[3:0]

Data unit input signal “tr0_in” source selection:

0: Constant '0'.

1: Constant '1'.

2: Data unit output.

10–3: LUT 7–0 outputs.

Otherwise: Undefined.

SMARTIO_PRTx_DU_SEL[11:8] DU_TR1_SEl[3:0]
Data unit input signal “tr1_in” source selection. Encoding same as DU_TR0_-
SEL

SMARTIO_PRTx_DU_SEL[19:16] DU_TR2_SEl[3:0]
Data unit input signal “tr2_in” source selection. Encoding same as DU_TR0_-
SEL

SMARTIO_PRTx_DU_SEL[25:24] DU_DATA0_SEL[1:0]

Data unit input data “data0_in” source selection:

0: 0x00

1: chip_data[7:0].

2: io_data[7:0].

3: SMARTIO_PRTx_DATA.DATA[7:0] register field.

SMARTIO_PRTx_DU_SEL[29:28] DU_DATA1_SEL[1:0]
Data unit input data “data1_in” source selection. Encoding same as DU_DA-
TA0_SEL.

SMARTIO_PRTx_DATA[7:0] DATA[7:0] Data unit input data source.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 244

I/O System

data0_masked      = data_in0 & mask;

// INCR operation: increments data by 1 from an initial value (data0) until it reaches a
// final value (data1).
Comb:tr_out = data_eql_data1_in;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked; //tr0_in is reload signal - loads masked data0
                                             // into data
      else if (tr1_in) data <= data_eql_data1_in ? data : data_incr; //increment data until
                                                                     // it equals data1

// INCR_WRAP operation: operates similar to INCR but instead of stopping at data1, it wraps 
// around to data0.
Comb:tr_out = data_eql_data1_in;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr; 

// DECR operation: decrements data from an initial value (data0) until it reaches 0.
Comb:tr_out = data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_0        ? data : data_decr; 

// DECR_WRAP operation: works similar to DECR. Instead of stopping at 0, it wraps around to 
// data0.
Comb:tr_out = data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_0        ? data0_masked: data_decr; 

// INCR_DECR operation: combination of INCR and DECR. Depending on trigger signals it either 
// starts incrementing or decrementing. Increment stops at data1 and decrement stops at 0.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked; // Increment operation takes precedence over
                                             // decrement when both signal are available
      else if (tr1_in) data <= data_eql_data1_in ? data : data_incr;
      else if (tr2_in) data <= data_eql_0  ? data : data_decr;

// INCR_DECR_WRAP operation: same functionality as INCR_DECR with wrap around to data0 on 
// reaching the limits.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr;
      else if (tr2_in) data <= data_eql_0  ? data0_masked : data_decr;

// ROR operation: rotates data right and LSb is sent out. The data for rotation is taken from 
// data0.
Comb:tr_out = data[0];
Reg:  data <= data;
      if (tr0_in)      data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; //Shift right operation
                       data[du_size] <= data[0]; //Move the data[0] (LSb) to MSb
      }



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 245

I/O System

// SHR operation: performs shift register operation. Initial data (data0) is shifted out and 
// data on tr2_in is shifted in.
Comb:tr_out = data[0];
Reg:  data <= data;
      if (tr0_in)      data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; //Shift right operation
                       data[du_size] <= tr2_in; //tr2_in Shift in operation
      }

// SHR_MAJ3 operation: performs the same functionality as SHR. Instead of sending out the 
// shifted out value, it sends out a '1' if in the last three samples/shifted-out values
// (data[0]), the signal high in at least two samples. otherwise, sends a '0'. This function
// sends out the majority of the last three samples. 
Comb:tr_out =   (data == 0x03)
               | (data == 0x05) 
               | (data == 0x06) 
               | (data == 0x07);
Reg:  data <= data;
      if (tr0_in)      data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; 
                       data[du_size] <= tr2_in;
      }

// SHR_EQL operation: performs the same operation as SHR. Instead of shift-out, the output is 
// a comparison result (data0 == data1).
Comb:tr_out = data_eql_data1_in;
Reg:  data <= data;
      if      (tr0_in) data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; 
                       data[du_size] <= tr2_in;
      }

// AND_OR operation: ANDs data1 and data0 along with mask; then, ORs all the bits of the
// ANDed output.
Comb:tr_out = | (data & data1_in & mask);
Reg:  data <= data;
      if (tr0_in) data <= data0_masked;

22.8.3 Routing

The Smart I/O block includes many switches that are used to route the signals in and out of the block and also between
various components present inside the block. The routing switches are handled through the PRTGIO_PRTx_LUT_SELy and
SMARTIO_PRTx_DU_SEL registers. Refer to the registers TRM for details. The Smart I/O internal routing is shown in
Figure 22-10. In the figure, note that LUT7 to LUT4 operate on io_data/chip_data[7] to io_data/chip_data[4] whereas LUT3 to
LUT0 operate on io_data/chip_data[3] to io_data/chip_data[0].



I/O System

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 246

Figure 22-10.  Smart I/O Routing

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

LUT0

tr
0

_i
n

tr
1_

in
tr

2_
in

tr
_o

u
t

LUT1

tr
0_

in
tr

1_
in

tr
2

_i
n

tr
_o

u
t

LUT2

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

LUT3

tr
0_

in
tr

1
_i

n
tr

2_
in

tr
_o

u
t

LUT4

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

LUT5

tr
0

_i
n

tr
1

_i
n

tr
2

_i
n

tr
_o

u
t

LUT6

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

LUT7

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

Data Unit

tr
0_

in

tr
1_

in

tr
2_

in

tr
_o

u
t

8

8

8

8

SMARTIO_PRTx_DATA.DATA[7:0]

0x00

chip_data[7:0]

io_data[7:0]

d
at

a_
in

0

d
at

a_
in

1

Clock and 
Reset

clk_smartio

clk_sys

clk_lf

io_data[7]
smartio_data[7]

chip_data[7]

io_data[6]
smartio_data[6]

chip_data[6]

io_data[5]
smartio_data[5]

chip_data[5]

io_data[4]
smartio_data[4]

chip_data[4]

io_data[3]
smartio_data[3]

chip_data[3]

io_data[2]
smartio_data[2]

chip_data[2]

io_data[1]
smartio_data[1]

chip_data[1]

io_data[0]
smartio_data[0]

chip_data[0]

rst_block_n

clk_block

smartio_data[7]
chip_data[7]

smartio_data[6]
chip_data[6]

smartio_data[5]
chip_data[5]

smartio_data[4]
chip_data[4]

smartio_data[3]
chip_data[3]

smartio_data[2]
chip_data[2]

smartio_data[1]
chip_data[1]

smartio_data[0]
chip_data[0]

1'b0
1'b1

clk_block

Various signals
8-bit wide data bus
Programmable Switch (ONLY ONE of the switches along a 
vertical line can be closed at a time)

Closed switch connecting a bit of the 8-bit data bus



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 247

I/O System

22.8.4 Operation

The Smart I/O block should be configured and operated as follows: 

1. Before enabling the block, all the components and routing should be configured as explained in “Block Components” on 
page 238.

2. In addition to configuring the components and routing, some block level settings must be configured correctly for desired 
operation.

a. Bypass control: The Smart I/O path can be bypassed for a particular GPIO signal by setting the BYPASS[i] bitfield in 

the SMARTIO_PRTx_CTL register. When bit ‘i’ is set in the BYPASS[7:0] bitfield, the ith GPIO signal is bypassed to 
the HSIOM signal path directly – Smart I/O logic will not be present in that signal path. This is useful when the Smart I/
O function is required only on select I/Os.

b. Pipelined trigger mode: The LUT input multiplexers and the LUT component itself do not include any combinatorial 
loops. Similarly, the data unit also does not include any combinatorial loops. However, when one LUT interacts with 
the other or to the data unit, inadvertent combinatorial loops are possible. To overcome this limitation, the 
PIPELINE_EN bitfield of the SMARTIO_PRTx_CTL register is used. When set, all the outputs (LUT and DU) are 
registered before branching out to other components. 

3. After the Smart I/O block is configured for the desired functionality, the block can be enabled by setting the ENABLED 
bitfield of the SMARTIO_PRTx_CTL register. If disabled, the Smart I/O block is put in bypass mode, where the GPIO 
signals are directly controlled by the HSIOM signals and vice-versa. The Smart I/O block must be configured; that is, all 
register settings must be updated before enabling the block to prevent glitches during register updates.

Table 22-9.  Smart I/O Block Controls

Register [BIT_POS] Bit Name Description

SMARTIO_PRTx_CTL[25] PIPELINE_EN

Enable for pipeline register:

0: Disabled (register is bypassed).

1: Enabled

SMARTIO_PRTx_CTL[31] ENABLED

Enable Smart I/O. Should only be set to '1' when the Smart I/O is completely configured:

0: Disabled (signals are bypassed; behavior as if BYPASS[7:0] is 0xFF). When disabled, 
the block (data unit and LUTs) reset is activated.

If the block is disabled:

- The PIPELINE_EN register field should be set to '1', to ensure low power consumption.

- The CLOCK_SRC register field should be set to 20 to 30 (clock is constant '0'), to ensure 
low power consumption.

1: Enabled. When enabled, it takes three clk_block clock cycles until the block reset is de-
activated and the block becomes fully functional. This action ensures that the I/O pins' 
input synchronizer states are flushed when the block is fully functional.

SMARTIO_PRTx_CTL[7:0] BYPASS[7:0]

Bypass of the Smart I/O, one bit for each I/O pin: BYPASS[i] is for I/O pin i. When 
ENABLED is '1', this field is used. When ENABLED is '0', this field is not used and Smart I/
O is always bypassed.

0: No bypass (Smart I/O is present in the signal path)

1: Bypass (Smart I/O is absent in the signal path)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 248

I/O System

22.9 Registers

Note The ‘x’ in the GPIO register name denotes the port number. For example, GPIO_PTR1_OUT is the Port 1 output data
register.

Table 22-10.  I/O Registers

Name Description

GPIO_PRTx_OUT Port output data register reads and writes the output driver data for I/O pins in the port.

GPIO_PRTx_OUT_CLR Port output data clear register clears output data of specific I/O pins in the port.

GPIO_PRTx_OUT_SET Port output data set register sets output data of specific I/O pins in the port.

GPIO_PRTx_OUT_INV Port output data invert register inverts output data of specific I/O pins in the port.

GPIO_PRTx_IN Port input state register reads the current pin state present on I/O pin inputs.

GPIO_PRTx_INTR Port interrupt status register reads the current pin interrupt state.

GPIO_PRTx_INTR_MASK
Port interrupt mask register configures the mask that forwards pin interrupts to the CPU’s 
interrupt controller.

GPIO_PRTx_INTR_MASKED
Port interrupt masked status register reads the masked interrupt status forwarded to the CPU 
interrupt controller.

GPIO_PRTx_INTR_SET Port interrupt set register allows firmware to set pin interrupts.

GPIO_PRTx_INTR_CFG Port interrupt configuration register selects the edge detection type for each pin interrupt.

GPIO_PRTx_CFG Port configuration register selects the drive mode and input buffer enable for each pin.

GPIO_PRTx_CFG_IN Port input buffer configuration register configures the input buffer mode for each pin.

GPIO_PRTx_CFG_OUT Port output buffer configuration register selects the output driver slew rate for each pin.

HSIOM_PORT_SELx
High-speed I/O Mux (HSIOM) port selection register selects the hardware peripheral connection 
to I/O pins.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 249

23.   Watchdog Timer

The watchdog timer (WDT) is a hardware timer that automatically resets the device in the event of an unexpected firmware
execution path. The WDT, if enabled, must be serviced periodically in firmware to avoid a reset. Otherwise, the timer elapses
and generates a device reset. In addition, the WDT can be used as an interrupt source or a wakeup source in low-power
modes.

The PSoC 6 MCU family includes one WDT and two multi-counter WDTs (MCWDT). The WDT has a 16-bit counter. Each
MCWDT has two 16-bit counters and one 32-bit counter. Thus, the watchdog system has a total of seven counters – five 16-
bit and two 32-bit. All 16-bit counters can generate a watchdog device reset. All seven counters can generate an interrupt on
a match event.

23.1 Features

The PSoC 6 MCU WDT supports these features:

■ One 16-bit free-running WDT with:

❐ ILO as the input clock source

❐ Device reset generation if not serviced within a configurable interval

❐ Interrupt/wakeup generation in LP/ULP Active, LP/ULP Sleep, Deep Sleep, and Hibernate power modes

■ Two MCWDTs, each supporting:

❐ Device reset generation if not serviced within a configurable interval

❐ LFCLK (ILO or WCO) as the input clock source

❐ Periodic interrupt/wake up generation in LP/ULP Active, LP/ULP Sleep, and Deep Sleep power modes

❐ Two 16-bit and one 32-bit independent counters

❐ One 64-bit or one 48-bit (with one 16-bit independent counter), or two 32-bit cascaded counters

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - WDT

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 250

Watchdog Timer

23.2 Architecture

Figure 23-1.  Watchdog Timer Block Diagram

23.3 Free-running WDT

23.3.1 Overview

Figure 23-2 shows the functional overview of the WDT. The WDT has a free-running wraparound up-counter with a maximum
of 16-bit resolution. The counter is clocked by the ILO. The timer has the capability to generate an interrupt on match and a
reset event on the third unhandled interrupt. The number of bits used for a match comparison is configurable as depicted in
Figure 23-2.

Figure 23-2.  Free-running WDT Functional Diagram

Free running watchdog 
timer

Multi counter watchdog 
timers (x2)

Device 
Registers

Low 
frequency 

clock 
(LFCLK)

Clock

CFG/STATUS

Reset

Interrupt

Clock

CFG/STATUS

Reset

Interrupt

2

2

WIC

Device 
Reset

ILO

WDT (16-bit Counter)
WDT_CNT

ILO
– IGNORE_BITS) –

Bitwise AND

INTERRUPT

WDT_EN EN

INTR.WDT_MATCH
(Write ش from Firmware)

Count = 0

++Count

Count == 3 RESET

Reset Generation 
logic

Yes

Free-running 
WDT

== WDT_MATCH.MATCH



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 251

Watchdog Timer

When enabled, the WDT counts up on each rising edge of
the ILO. When the counter value (WDT_CNT register)
equals the match value stored in MATCH bits [15:0] of the
WDT_MATCH register, an interrupt is generated. The match
event does not reset the WDT counter and the WDT keeps
counting until it reaches the 16-bit boundary (65535) at
which point, it wraps around to 0 and counts up. The match
interrupt is generated every time the counter value equals
the match value.

The WDT_MATCH bit of the SRSS_INTR register is set
whenever a WDT match interrupt occurs. This interrupt must
be cleared by writing a ‘1’ to the same bit (WDT_MATCH bit
of SRSS_INTR). Clearing the interrupt resets the watchdog.
If the firmware does not clear the interrupt for two
consecutive occasions, the third interrupt generates a
device reset.

In addition, the WDT provides an option to set the number of
bits to be used for comparison. The IGNORE_BITS bits
[19:16] of the WDT_MATCH register is used for this
purpose. These bits configure the number of MSbs to ignore
from the 16-bit count value while performing the match. For
instance, when the value of these bits equals 3, the MSb 3

bits are ignored while performing the match and the WDT
counter behaves similar to a 13-bit counter. Note that these
bits do not reduce the counter size – the WDT_CNT register
still counts from 0 to 65535 (16-bit).

The WDT can be enabled or disabled using the WDT_EN bit
[0] of the WDT_CTL register. The WDT_CTL register
provides a mechanism to lock the WDT configuration
registers. The WDT_LOCK bits [31:30] control the lock
status of the WDT registers. These bits are special bits,
which can enable the lock in a single write; to release the
lock, two different writes are required. The WDT_LOCK bits
protect the WDT_EN bit, WDT_MATCH register,
CLK_ILO_CONFIG register, and LFCLK_SEL bits [1:0] of
the CLK_SELECT register. Note that the WDT_LOCK bits
are not retained in Deep Sleep mode and reset to their
default (LOCK) state after a deep sleep wakeup. As a result,
to update any register protected by the WDT_LOCK bits
after a deep sleep wakeup, a WDT UNLOCK sequence
should be issued before the register update.

Table 23-1 explains various registers and bitfields used to
configure and use the WDT. 

Table 23-1.  Free-running WDT Configuration Options

Register [Bit_Pos] Bit_Name Description

WDT_CTL[0] WDT_EN

Enable or disable the watchdog reset

0: WDT reset disabled

1: WDT reset enabled

WDT_CTL[31:30] WDT_LOCK

Lock or unlock write access to the watchdog configuration and clock related registers. When 
the bits are set, the lock is enabled.

0: No effect

1: Clear bit 0

2: Clear bit 1

3: Set both bit 0 and 1 (lock enabled)

WDT will lock on a reset. This field is not retained in Deep Sleep or Hibernate mode, so the 
WDT will be locked after wakeup from these modes.

WDT_CNT[15:0] COUNTER Current value of WDT counter

WDT_MATCH[15:0] MATCH Match value to a generate watchdog match event or interrupt

WDT_MATCH[19:16] IGNORE_BITS
Number of MSbs of the WDT_CNT register to ignore for comparison with the MATCH value. 
Up to 12 MSbs can be ignored; settings above 12 act similar to a setting of 12.

SRSS_INTR[0] WDT_MATCH

WDT interrupt request

This bit is set whenever a watchdog match event happens. The WDT interrupt is cleared by 
writing a ‘1’ to this bit

SRSS_INTR_MASK[0] WDT_MATCH

Mask for the WDT interrupt

0: WDT interrupt is not masked to CPU

1: WDT interrupt is masked to CPU



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 252

Watchdog Timer

23.3.2 Watchdog Reset

A watchdog is typically used to protect the device against firmware/system crashes or faults. When the WDT is used to
protect against system crashes, the WDT interrupt bit should be cleared from a portion of the code that is not directly
associated with the WDT interrupt. Otherwise, even if the main function of the firmware crashes or is in an endless loop, the
WDT interrupt vector can still be intact and feed the WDT periodically.

The safest way to use the WDT against system crashes is to:

■ Configure the watchdog reset period such that firmware is able to reset the watchdog at least once during the period, even 
along the longest firmware delay path.

■ Reset (feed) the watchdog by clearing the interrupt bit regularly in the main body of the firmware code by writing a ‘1’ to 
the WDT_MATCH bit in the SRSS_INTR register. Note that this does not reset the watchdog counter, it feeds only the 
watchdog so that it does not cause a reset for the next two match events.

Do not reset the watchdog (clear interrupt) in the WDT interrupt service routine (ISR) if WDT is being used as a reset source
to protect the system against crashes. Therefore, do not use the WDT reset feature and ISR together.

The recommended steps to use WDT as a reset source are as follows:

1. Make sure the WDT configuration is unlocked by clearing the WDT_LOCK bits[31:30] of the WDT_CTL register. Note that 
clearing the bits requires two writes to the register with each write clearing one bit as explained in Table 23-1.

2. Write the desired IGNORE_BITS in the WDT_MATCH register to set the counter resolution to be used for the match.

3. Write any match value to the WDT_MATCH register. The match value does not control the period of watchdog reset as 
the counter is not reset on a match event. This value provides an option to control only the first interrupt interval, after that 
the successive interrupts’ period is defined by the IGNORE_BITS. Approximate watchdog period is given by the following 
equation:

Equation 23-1

4. Set the WDT_MATCH bit in the SRSS_INTR register to clear any pending WDT interrupt.

5. Enable ILO by setting the ENABLE bit [31] of the CLK_ILO_CONFIG register.

6. Enable the WDT by setting the WDT_EN bit in WDT_CTL register.

7. Lock the WDT and ILO configuration by writing ‘3’ to the WDT_LOCK bits. This also locks the LFCLK_SEL bits of the 
CLK_SELECT register.

8. In the firmware, write ‘1’ to the WDT_MATCH bit in the SRSS_INT register to feed (clear interrupt) the watchdog. 

23.3.3 Watchdog Interrupt

In addition to generating a device reset, the WDT can be used to generate interrupts. The watchdog counter can send
interrupt requests to the CPU in CPU Active power modes and to the wakeup interrupt controller (WIC) in CPU Sleep and
Deep Sleep power modes. In addition, the watchdog is capable of waking up the device from Hibernate power mode. It works
as follows:

■ Active Mode: In Active power mode, the WDT can send the interrupt to the CPU. The CPU acknowledges the interrupt 
request and executes the ISR. Clear the interrupt in the ISR.

■ Sleep or Deep Sleep Mode: In this mode, the CPU subsystem is powered down. Therefore, the interrupt request from 
the WDT is directly sent to the WIC, which then wakes up the CPU. The CPU acknowledges the interrupt request and 
executes the ISR. Clear the interrupt in the ISR firmware.

■ Hibernate Mode: In this mode, the entire device except a few peripherals (such as WDT and LPCOMP) are powered 
down. Any interrupt to wake up the device in this mode results in a device reset. Hence, there is no interrupt service 
routine or mechanism associated with this mode.

For more details on device power modes, see the Device Power Modes chapter on page 191. 

Because of its free-running nature, the WDT should not be used for periodic interrupt generation. Use the MCWDT instead;
see 23.4 Multi-Counter WDTs. The MCWDT counters can be used to generate periodic interrupts. If absolutely required,
follow these steps to use the WDT as a periodic interrupt generator:

1. Unlock the WDT if this is the first update to the WDT registers after a deep sleep or hibernate wakeup, or a device reset.

2. Write the desired IGNORE_BITS in the WDT_MATCH register to set the counter resolution to be used for the match.

Watchdog reset period = ILOperiod 2 2 16 IGNORE_BITS–
WDT_MATCH+ 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 253

Watchdog Timer

3. Write the desired match value to the WDT_MATCH register.

4. Set the WDT_MATCH bit in the SRSS_INTR register to clear any pending WDT interrupt.

5. Enable the WDT interrupt to CPU by setting the WDT_MATCH bit in SRSS_INTR_MASK.

6. Enable SRSS interrupt to the CPU by configuring the appropriate ISER register (See the Interrupts chapter on page 54 for 
details).

7. In the ISR, unlock the WDT; clear the WDT interrupt and add the desired match value to the existing match value. By 
doing so, another interrupt is generated when the counter reaches the new match value (period).

Note that interrupt servicing and watchdog reset cannot be used simultaneously using the free-running WDT.

23.4 Multi-Counter WDTs

23.4.1 Overview

Figure 23-3 shows the functional overview of a single multi-counter WDT block. The PSoC 6 MCU includes two MCWDT
blocks. Each MCWDT block includes two 16-bit counters (MCWDTx_WDT0 and MCWDTx_WDT1) and one 32-bit counter
(MCWDTx_WDT2). These counters can be configured to work independently or in cascade (up to 64-bit). The 16-bit counters
have the ability to generate an interrupt and reset the device. The 32-bit counter can only generate an interrupt. All the
counters are clocked by LFCLK.

Note: Because the PSoC 6 MCU includes two CPUs (Cortex-M0+ and Cortex-M4), associate one MCWDT block to only one
CPU during runtime. Although both the MCWDT blocks are available to both the CPUs, a single MCWDT is not intended to be
used by multiple CPUs simultaneously. 

Figure 23-3.  Multi-Counter WDT Functional Diagram

LFCLK

MCWDT0 (16-bit Counter)
MCWDT_CTR0

MCWDT1 (16-bit Counter)
MCWDT_CTR1

WDT2 (32-bit Counter)
MCWDT_CTRHIGH

MCWDT_CTR0 == 
MCWDT_MATCH0

MCWDT_CTR1 == 
MCWDT_MATCH1

321616

MCWDT 
Mode 

Configuration
MCWDT_MODE0

2
MCWDT_MODE1

2

MCWDT 
Mode 

Configuration
MCWDT_MODE2

1

5
MCWDT_BITS2

MCWDT_CASCADE0_1 MCWDT_CASCADE1_2

MCWDT_INT1MCWDT_INT0 MCWDT_INT2RESET RESET

INTERRUPT

RESET

MCWDT 
Mode 

Configuration

Multi counter 
WDT



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 254

Watchdog Timer

23.4.1.1 WDT0 and WDT1 Counters Operation

MCWDTx_WDT0 and MCWDTx_WDT1 are 16-bit up counters, which can be configured to be a 16-bit free-running counter
or a counter with any 16-bit period. These counters can be used to generate an interrupt or reset. 

The WDT_CTR0 bits [15:0] and WDT_CTR1 bits [16:31] of the MCWDTx_CNTLOW register holds the current counter values
of WDT0 and WDT1 respectively. The WDT_MATCH0 bits [15:0] and WDT_MATCH1 bits [16:31] of the MCWDTx_MATCH
register store the match value for WDT0 and WDT1 respectively. The WDT_MODEx bits of the MCWDTx_CONFIG register
configures the action the watchdog counter takes on a match event (WDT_MATCHx == WDT_CTRx). The WDT0/WDT1
counters perform the following actions:

■ Assert interrupt (WDT_INTx) on match

■ Assert a device reset on match

■ Assert an interrupt on match and a device reset on the third unhandled interrupt

In addition to generating reset and interrupt, the match event can be configured to clear the counters. This is done by setting
the WDT_CLEARx bit of the MCWDTx_CONFIG register. WDT0/WDT1 counter operation is shown in Figure 23-4.

Figure 23-4.  WDT0/WDT1 Operation

Time

Time

WDT1 Match 
value

Counts value

WDT0 Match 
value

0xFFFF

WDT0
interrupt 1

WDT0 
interrupt 2

WDT0
interrupt 3

WDT0/WDT1 
counters 
overflow

WDT1 
interrupt 1

WDT1
interrupt 2

WDT1
interrupt 3

WDT0/WDT1 operation with WDT_CLEARx bit = 0

WDT1 Match 
value

Counts value

WDT0 Match 
value

0xFFFF

WDT0 
interrupt 

and WDT0 
reset

WDT0/WDT1 operation with WDT_CLEARx bit = 1

WDT1 
interrupt 

and WDT1 
reset

WDT0/WDT1 
counters 
overflow



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 255

Watchdog Timer

23.4.1.2 WDT2 Counter Operation

The MCWDTx_WDT2 is a 32-bit free-running counter, which can be configured to generate an interrupt. The
MCWDTx_CNTHIGH register holds the current value of the WDT2 counter. WDT2 does not support a match feature.
However, it can be configured to generate an interrupt when one of the counter bits toggle. The WDT_BITS2 bits [28:24] of
the MCWDTx_CONFIG register selects the bit on which the WDT2 interrupt is asserted. WDT_MODE2 bit [16] of the
MCWDTx_CONFIG register decides whether to assert an interrupt on bit toggle or not. Figure 23-5 shows the WDT2 counter
operation.

Table 23-2.  WDT0 and WDT1 Configuration Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CONFIG[1:0]

MCWDTx_CONFIG[9:8]

WDT_MODE0

WDT_MODE1

WDT action on a match event (WDT_CTRx == WDT_MATCHx)

0: Do nothing

1: Assert interrupt (WDT_INTx)

2: Assert device reset 

3: Assert interrupt on match and a device reset on the third unhandled interrupt

MCWDTx_CONFIG[2]

MCWDTx_CONFIG[10]

WDT_CLEAR0

WDT_CLEAR1

Clear the WDTx counter on match. In other words, (WDT_MATCHx + 1) acts similar 
to a period for the WDTx counter.

0: Free-running counter

1: Clear WDT_CTRx bits on match

MCWDTx_CNTLOW[15:0]

MCWDTx_CNTLOW[16:31]

WDT_CTR0

WDT_CTR1
Current watchdog counter value. Bits[15:0] contain the current value of WDT0 
counter and bits[31:16] contain the current value of WDT1 counter.

MCWDTx_MATCH[15:0]

MCWDTx_MATCH[16:31]

WDT_MATCH0

WDT_MATCH1

Watchdog match value

Changing WDT_MATCH requires 1.5 LFCLK cycles to come into effect. After 
changing WDT_MATCH, do not enter the Deep Sleep mode for at least one LFCLK 
cycle to ensure the WDT updates to the new setting.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 256

Watchdog Timer

Figure 23-5.  WDT2 Operation 

WDT2 Interrupt 
WDT_BITS2 = 1

WDT2 Interrupt 
WDT_BITS2 = 2

Time

Counts value

0xFFFFFFFF

WDT2 operation

WDT2 
counter 
period

0x00000002

0x00000000

0x00000004

0x00000005

0x00000003

0x00000006

0x00000008

0x00000009

0x00000007

0x0000000A

0x0000000B

0x0000000D
0x0000000C

0x0000000E
0x0000000F

0x00000010

WDT2 Interrupt 
WDT_BITS2 = 3

WDT2 Interrupt 
WDT_BITS2 = 4

0x00000001

.

.

.

Table 23-3.  WDT2 Configuration Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CONFIG[16] WDT_MODE2

WDT2 mode

0: Free-running counter

1: Free-running counter with interrupt (WDT_INTx) request generation when specified, but 
in MCWDTx_CNTHIGH register toggles

MCWDTx_CONFIG[28:24] WDT_BITS2

Bit to monitor for WDT2 interrupt assertion

0: Asserts when bit [0] of MCWDTx_CNTHIGH register toggles (interrupt every tick)

……

31: Asserts when bit [0] of MCWDTx_CNTHIGH register toggles (interrupt every 231 ticks)

MCWDTx_CNTHIGH[31:0] WDT_CTR2 Current counter value of WDT2



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 257

Watchdog Timer

23.4.2 Enabling and Disabling WDT

The WDT counters are enabled by setting the WDT_ENABLEx bit in the MCWDTx_CTL register and are disabled by clearing
it. Enabling or disabling a WDT requires 1.5 LFCLK cycles to come into effect. Therefore, the WDT_ENABLEx bit value must
not be changed more than once in that period and the WDT_ENABLEDx bit of the MCWDTx_CTL register can be used to
monitor enabled/disabled state of the counter.

The WDT_RESETx bit of the MCWDTx_CTL register clears the corresponding WDTx counter when set in firmware. The
hardware clears the bit after the WDTx counter resets. This option is useful when the WDT0 or WDT1 is configured to
generate a device reset on a match event. In such cases, the device resets when the counter reaches the match value. Thus,
setting the WDT_RESET0 or WDT_RESET1 bit resets the WDT0 or WDT1 counter respectively, preventing device reset.

After WDT is enabled, do not write to the WDT configuration (MCWDTx_CONFIG) and control (MCWDTx_CTL) registers.
Accidental corruption of WDT registers can be prevented by setting the WDT_LOCK bits [31:30] of the MCWDTx_CTL
register. If the application requires updating the match value (WDT_MATCH) when the WDT is running, the WDT_LOCK bits
must be cleared. The WDT_LOCK bits require two different writes to clear both the bits. Writing a ‘1’ to the bits clears bit 0.
Writing a ‘2’ clears bit 1. Writing a ‘3’ sets both the bits and writing ‘0’ does not have any effect. Note that the WDT_LOCK bits
protects only MCWDTx_CTL (except the WDT_LOCK bits), MCWDTx_CONFIG, and MCWDTx_MATCH registers. The
LFCLK select registers are protected by the free-running WDT lock bits.

Note: When the watchdog counters are configured to generate an interrupt every LFCLK cycle, make sure you read the
MCWDTx_INTR register after clearing the watchdog interrupt (setting the WDT_INTx bit in the MCWDTx_INTR register).
Failure to do this may result in missing the next interrupt. Hence, the interrupt cycle becomes LFCLK/2.

23.4.3 Watchdog Cascade Options

The cascade configuration shown in Figure 23-3 provides an option to increase the WDT counter resolution. The
WDT_CASCADE0_1 bit [3] of the MCWDTx_CONFIG register cascades WDT0 and WDT1 and the WDT_CASCADE1_2 bit
[11] of the MCWDTx_CONFIG register cascades WDT1 and WDT2. Note that cascading two 16-bit counters does not provide
a 32-bit counter; instead, you get a 16-bit period counter with a 16-bit prescaler. For example, when cascading WDT0 and
WDT1, WDT0 acts as a prescaler for WDT1 and the prescaler value is defined by the WDT_MATCH0 bits [15:0] in the

Table 23-4.  Watchdog Configuration Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CTL[0]

MCWDTx_CTL[8]

MCWDTx_CTL[16]

WDT_ENABLE0

WDT_ENABLE1

WDT_ENABLE2

Enable WDT counter x

0: Counter is disabled

1: Counter is enabled

MCWDTx_CTL[1]

MCWDTx_CTL[9]

MCWDTx_CTL[17]

WDT_ENABLED0

WDT_ENABLED1

WDT_ENABLED2

Indicates the actual enabled/disabled state of the counter. This bit should be monitored after 
changing the WDT_ENABLEx bit, to receive an acknowledgment of the change

MCWDTx_CTL[3]

MCWDTx_CTL[11]

MCWDTx_CTL[19]

WDT_RESET0

WDT_RESET1

WDT_RESET2

Reset WDT counter x to 0. Hardware clears the bit when the reset is complete

0: Software - No action, Hardware - Counter is reset after software sets this bit

1: Software - Resets the counter, Hardware - Counter is not reset after software sets this bit

MCWDTx_CTL[31:30] WDT_LOCK

Locks or unlocks write access to the MCWDTx_CTL (except the WDT_LOCK bits), 
MCWDTx_CONFIG, and MCWDTx_MATCH registers. When the bits are set, the lock is 
enabled.

0: No effect

1: Clears bit 0

2: Clears bit 1

3: Sets both bit 0 and 1 (lock enabled)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 258

Watchdog Timer

MCWDTx_MATCH register. The WDT1 has a period defined by WDT_MATCH1 bits [31:16] in the MCWDTx_MATCH
register. The same logic applies to WDT1 and WDT2 cascading.

When using cascade (WDT_CASCADE0_1 or WDT_CASCADE1_2 set), resetting the counters when the prescaler or lower
counter is at its match value with the counter configured to clear on match, results in the upper counter incrementing to 1
instead of remaining at 0. This behavior can be corrected by issuing a second reset to the upper counter after approximately
100 µs from the first reset. Note that the second reset is required only when the first reset is issued while the prescaler
counter value is at its match value. Figure 23-6 illustrates the behavior when WDT0 and WDT1 are cascaded along with the
second reset timing.

Figure 23-6.  MCWDT Reset Behavior in Cascaded Mode

In addition, the counters exhibit non-monotonicity in the
following cascaded conditions:

■ If WDT_CASCADE0_1 is set, then WDT_CTR1 does not 
increment the cycle after WDT_CTR0 = WDT_MATCH0.

■ If WDT_CASCADE1_2 is set, then WDT_CTR2 does not 
increment the cycle after WDT_CTR1 = WDT_MATCH1.

■ If both WDT_CASCADE0_1 and WDT_CASCADE1_2 
are set, then WDT_CTR2 does not increment the cycle 
after WDT_CTR1 = WDT_MATCH1 and WDT_CTR1 

does not increment the cycle after WDT_CTR0 = 
WDT_MATCH0.

When cascading is enabled, always read the WDT_CTR1 or
WDT_CTR2 counter value only when the prescaler counter
(WDT_CTR0 or WDT_CTR1) value is not 0. This makes
sure the upper counter is incremented after a match event in
the prescaler counter.

Table 23-5.  Watchdog Cascade Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CONFIG[3] WDT_CASCADE0_1

Cascade WDT0 and WDT1 

0: WDT0 and WDT1 are independent counters 

1: WDT1 increments two cycles after WDT_CTR0 == WDT_MATCH0

MCWDTx_CONFIG[11] WDT_CASCADE1_2

Cascade WDT1 and WDT2 

0: WDT1 and WDT2 are independent counters 

1: WDT2 increments two cycles after WDT_CTR1 == WDT_MATCH1

0x001F 0x0020 0x0000 0x0001 0x0002 0x0003 0x0004 0x0005

0x0000 0x0001

First reset 
issued to 
both 
counters

Counter 
reset

Counter 
increment

WDT_CTRx == 
WDT_MATCHx

LFCLK

WDT_RESET0

WDT_RESET1

WDT_CTR0

WDT_CTR1

Other settings:
WDT_CASCADE0_1 = 1
WDT_CLEAR0 = 1
WDT_MATCH0 = 0x0020

0x0000

Second reset to 
correct the 
behavior

~100 µs

Upper counter 
reset (second)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 259

Watchdog Timer

23.4.4 Watchdog Reset

WDT0 and WDT1 counters can be configured to generate a
device reset similar to the free-running WDT reset. Follow
these steps to use the WDT0 or WDT1 counter of a
MCWDTx block to generate a system reset:

1. Configure the WDTx to generate a reset using the 
WDT_MODEx bits in MCWDTx_CONFIG. Configure the 
WDT_MODE0 or WDT_MODE1 bits in 
MCWDTx_CONFIG to ‘2’ (reset on match) or ‘3’ 
(interrupt on match and reset on the third unhandled 
interrupt).

2. Optionally, set the WDT_CLEAR0 or WDT_CLEAR1 bit 
in the MCWDTx_CONFIG register for WDT0 or WDT1 to 
reset the corresponding watchdog counter to ‘0’ on a 
match event. Otherwise, the counters are free running. 
See Table 23-2 on page 255 for details.

3. Calculate the watchdog reset period such that firmware 
is able to reset the watchdog at least once during the 
period, even along the longest firmware delay path. For 
WDT_MODEx == 2, match value is same as the 
watchdog period. For WDT_MODEx == 3, match value 
is one-third of the watchdog period. Write the calculated 
match value to the WDT_MATCH register for WDT0 or 
WDT1. Optionally, enable cascading to increase the 
interval. Note: The legal value for the WDT_MATCH 
field is 1 to 65535.

4. For WDT_MODEx == 2, set the WDT_RESETx bit in the 
MCWDTx_CONFIG register to reset the WDTx counter 
to 0. For WDT_MODEx == 3, set the WDT_INTx bit in 
MCWDTx_INTR to clear any pending interrupts.

5. Enable WDTx by setting the WDT_ENABLEx bit in the 
MCWDTx_CTL register. Wait until the WDT_ENABLEDx 
bit is set.

6. Lock the MCWDTx configuration by setting the 
WDT_LOCK bits of the MCWDTx_CTL register.

7. In the firmware, feed (reset) the watchdog as explained 
in step 4.

Do not reset watchdog in the WDT ISR. It is also not
recommended to use the same watchdog counter to
generate a system reset and interrupt. For example, if
WDT0 is used to generate system reset against crashes,
then WDT1 or WDT2 should be used for periodic interrupt
generations.

23.4.5 Watchdog Interrupt 

When configured to generate an interrupt, the WDT_INTx
bits of the MCWDTx_INTR register provide the status of any
pending watchdog interrupts. The firmware must clear the
interrupt by setting the WDT_INTx. The WDT_INTx bits of
the MCWDTx_INTR_MASK register mask the
corresponding WDTx interrupt of the MCWDTx block to the
CPU.

Follow these steps to use WDT as a periodic interrupt
generator:

1. Write the desired match value to the WDT_MATCH 
register for WDT0/WDT1 or the WDT_BITS2 value to 
the MCWDTx_CONFIG register for WDT2. Note: The 
legal value for the WDT_MATCH field is 1 to 65535.

2. Configure the WDTx to generate an interrupt using the 
WDT_MODEx bits in MCWDTx_CONFIG. Configure the 
WDT_MODE0 or WDT_MODE1 bits in 
MCWDTx_CONFIG for WDT0 or WDT1 to ‘1’ (interrupt 
on match) or ‘3’ (interrupt on match and reset on third 
unhandled interrupt). For WDT2, set the WDT_MODE2 
bit in the MCWDTx_CONFIG register.

3. Set the WDT_INT bit in MCWDTx_INTR to clear any 
pending interrupt.

4. Set the WDT_CLEAR0 or WDT_CLEAR1 bit in the 
MCWDTx_CONFIG register for WDT0 or WDT1 to reset 
the corresponding watchdog counter to ‘0’ on a match 
event.

5. Mask the WDTx interrupt to the CPU by setting the 
WDT_INTx bit in the MCWDTx_INTR_MASK register

6. Enable WDTx by setting the WDT_ENABLEx bit in the 
MCWDTx_CTL register. Wait until the WDT_ENABLEDx 
bit is set.

7. Enable MCWDTx interrupt to the CPU by configuring the 
appropriate ISER register. Refer to the 
Interrupts chapter on page 54.

8. In the ISR, clear the WDTx interrupt by setting the 
WDT_INTx bit in the MCWDTx_INTR register.

Note that interrupts from all three WDTx counters of the
MCWDT block are mapped as a single interrupt to the CPU.
In the interrupt service routine, the WDT_INTx bits of the
MCWDTx_INTR register can be read to identify the interrupt
source. However, each MCWDT block has its own interrupt
to the CPU. For details on interrupts, see the
Interrupts chapter on page 54.

The MCWDT block can send interrupt requests to the CPU
in Active power mode and to the WIC in Sleep and Deep
Sleep power modes. It works similar to the free-running
WDT.

23.5 Reset Cause Detection

The RESET_WDT bit [0] in the RES_CAUSE register
indicates the reset generated by the free-running WDT. The
RESET_MCWDTx bit in the RES_CAUSE register indicates
the reset generated by the MCWDTx block. These bits
remain set until cleared or until a power-on reset (POR),
brownout reset (BOD), or external reset (XRES) occurs. All
other resets leave this bit unaltered.

For more details, see the Reset System chapter on
page 224.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 260

Watchdog Timer

23.6 Register List

Table 23-6.  WDT Registers

Name Description

WDT_CTL Watchdog Counter Control Register

WDT_CNT Watchdog Counter Count Register

WDT_MATCH Watchdog Counter Match Register

MCWDTx_MCWDT_CNTLOW Multi-counter WDT Sub-counters 0/1

MCWDTx_MCWDT_CNTHIGH Multi-counter WDT Sub-counter 2

MCWDTx_MCWDT_MATCH Multi-counter WDT Counter Match Register

MCWDTx_MCWDT_CONFIG Multi-counter WDT Counter Configuration

MCWDTx_MCWDT_CTL Multi-counter WDT Counter Control

MCWDTx_MCWDT_INTR Multi-counter WDT Counter Interrupt Register

MCWDTx_MCWDT_INTR_SET Multi-counter WDT Counter Interrupt Set Register

MCWDTx_MCWDT_INTR_MASK Multi-counter WDT Counter Interrupt Mask Register

MCWDTx_MCWDT_INTR_MASKED Multi-counter WDT Counter Interrupt Masked Register

CLK_SELECT Clock Selection Register

CLK_ILO_CONFIG ILO Configuration

SRSS_INTR SRSS Interrupt Register

SRSS_INTR_SET SRSS Interrupt Set Register

SRSS_INTR_MASK SRSS Interrupt Mask Register

SRSS_INTR_MASKED SRSS Interrupt Masked Register

RES_CAUSE Reset Cause Observation Register



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 261

24.   Trigger Multiplexer Block

Every peripheral in the PSoC 6 MCU is interconnected using trigger signals. Trigger signals are means by which peripherals
denote an occurrence of an event or a state. These triggers are used as means to affect or initiate some action in other
peripherals. The trigger multiplexer block helps to route triggers from a source peripheral block to a destination. 

24.1 Features
■ Ability to connect any trigger signal from one peripheral to another

■ Two-layer architecture with 15 trigger groups

■ Supports a software trigger, which can trigger any signal in the block

■ Supports multiplexing of triggers between peripherals

■ One-to-one trigger paths for dedicated triggers that are more commonly routed

■ Ability to configure a trigger multiplexer with trigger manipulation features in hardware such as inversion and edge/level 
detection

■ Ability to block triggers in debug mode

24.2 Architecture 

The trigger signals in the PSoC 6 MCU are digital signals generated by peripheral blocks to denote a state such as FIFO
level, or an event such as the completion of an action. These trigger signals typically serve as initiator of other actions in other
peripheral blocks. An example is an ADC peripheral block sampling three channels. After the conversion is complete, a
trigger signal will be generated, which in turn triggers a DMA channel that transfers the ADC data to a memory buffer. This
example is shown in Figure 24-1. 

Figure 24-1.  Trigger Signal Example

A PSoC 6 MCU has multiple peripheral bocks; each of these blocks can be connected to other blocks through trigger signals,
based on the system implementation. To support this, the PSoC 6 MCU has hardware, which is a series of multiplexers used
to route the trigger signals from potential sources to destinations. This hardware is called the trigger multiplexer block. The

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - Trigger Multiplexer

■ Application notes

■ Code examples

ADC
Ch1

Ch2

Ch3 EoC

DMA

Trigger signal



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 262

Trigger Multiplexer Block

trigger multiplexer can connect to any trigger signal emanating out of any peripheral block in the PSoC 6 MCU and route it to
any other peripheral to initiate or affect an operation at the destination peripheral block. 

24.2.1 Trigger Multiplexer Group

The trigger multiplexer block is implemented using several trigger multiplexers. A trigger multiplexer selects a signal from a
set of trigger output signals from different peripheral blocks to route it to a specific trigger input of another peripheral block.
The multiplexers are grouped into trigger groups. All the trigger multiplexers in a trigger group have similar input options and
are designed to feed similar destination signals. Hence the trigger group can be considered as a block that multiplexes
multiple inputs to multiple outputs. This concept is illustrated in Figure 24-2. Both the trigger multiplexers and the one-to-one
triggers offer trigger manipulation, which includes inversion or specifies the output signal as edge or level triggered. For edge
triggering, the trigger is synchronized to the consumer block’s (the peripheral block that is receiving the trigger) clock and a
two-cycle pulse is generated on this clock.

Figure 24-2.  Trigger Multiplexer Groups

24.2.2 One-to-one Trigger

In addition to trigger multiplexers, there are dedicated trigger paths called one-to-one triggers. These trigger paths/routes are
between fixed source and destination peripherals and cannot be multiplexed. These paths can be enabled or disabled. A
group of registers in the format PERI_TR_1TO1_GR[X]_TR_CTL[Y], with X being the trigger group and Y being the output
trigger number from the one-to-one trigger, can be used to enable or disable the triggers path. 

24.2.3 Trigger Multiplexer Block

The trigger multiplexer block has two types of trigger routings: trigger multiplexers that are capable of selecting from multiple
trigger sources to a specific trigger destination and one-to-one triggers that are predetermined fixed trigger paths that can be
enabled or disabled. See Table 24-2 for more information on each trigger group and its description.

Note: The triggers output into different peripherals, which may have more routing than is shown on the trigger routing
diagram. For more information on this routing, go to the trigger destination peripheral block.

Figure 24-3 shows the trigger multiplexer architecture.

In [0:N] Out [0:M]

In_0

In_1

In_N

Out_0

Out_1

Out_M

Trigger multiplexer group takes N 
inputs and routes to M outputs.

An equivalent implementation of a trigger 
multiplexer group with N inputs and M outputs



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 263

Trigger Multiplexer Block

Figure 24-3.  Trigger Multiplexer Block Architecture 

Note: * indicates that Figure 24-4 shows details about the TCPWM and SCB inputs.

DW0 Tr_out[0:7]
8

DW1 Tr_out[0:7] 8

*TCPWM0(32-bit)

Tr_overflow[0:3]
Tr_compare_match[0:3]
Tr_underflow[0:3]

DW0 Tr_in[0:7]8

Trigger Mux Group 0

Trigger Group 1

8

8

8

12

*TCPWM1(16-bit)

Tr_overflow[0:11]
Tr_compare_match[0:11]
Tr_underflow[0:11]

36

DMAC Tr_out[0:3]

4

HSIOM Tr_out[0:13]

14

CTI Tr_out[0:1]

2

FAULT Tr_out[0:1]

2

*TCPWM0(32-bit)

Tr_overflow[4:7]
Tr_compare_match[4:7]
Tr_underflow[4:7]

*TCPWM1

Tr_overflow[12:23]
Tr_compare_match[12:23]
Tr_underflow[12:23]

12

36

Trigger Group 2

Trigger Group 3

DW1 Tr_in[0:7]8

4

CSD tr_adc_done[0]

1

HSIOM Tr_out[14:27]

14

2LPCOMP DCI [0:1]

TCPWM0(32-bit)
Tr_overflow[0:7]
Tr_compare_match[0:7]
Tr_underflow[0:7]

TCPWM1(16-bit)
Tr_overflow[0:7]
Tr_compare_match[0:7]
Tr_underflow[0:7]

24

24

4

39

SCB
Tr_i2c_scl_filtered[0:12]
Tr_tx_req[0:12]
Tr_rx_req[0:12]

SMIF Tr_tx/rx_req
2

USB Dma_req[0:7]
8

AUDIOSS0
Tr_i2s_tx_req
Tr_i2s_rx_req
Tr_pdm_rx_req

3

AUDIOSS1
Tr_i2s_tx_req
Tr_i2s_rx_req

2

PASS tr_sar_out 1

CSD dsi_sense_out 1

14

2

2

24

24

4

39

2

8

3

2

1

1

14

2

2

*TCPWM0(32-bit) 

tr_in[0:13]

14

*TCPWM1(16-bit) 

tr_in[0:13]

14

Trigger Group 4

DW0 Tr_out[0:28] 29

DW1 Tr_out[0:28] 29

24

72

4

39

2

8

3

2

CSD dsi_sample_out 1

1

1

1

2

2

2

29

29

Trigger Group 5

24
2

Trigger Group 6

24

*TCPWM1(16-bit)

Tr_overflow[0:23]
Tr_compare_match[0:23]
Tr_underflow[0:23]

72

4

39

2

8

3

2

1

1

1

1

14

14

2

2

2

Trigger Group 8

24

72

14

14

2

Trigger Group 9

24

72

14

14

2

2

Trigger Group 7

HSOIM tr_io_output[0:1]
2

CTI tr_in[0:1]
2

1

1
PROFILE tr_start

PROFILE tr_stop

DMAC tr_in[0:3]
4

PERI tr_dbg_freeze
1

CSD dsi_start1

1
PASS tr_sar_in

Trigger 1-to-1 Group 0

12SCB
tr_tx_req[0:5]
tr_rx_req[0:5]

12 DW0 tr_in[16:27]

Trigger 1-to-1 Group 1

14SCB
tr_tx_req[6:12]
tr_rx_req[6:12]

14 DW1 tr_in[8:21]

Trigger 1-to-1 Group 2

1SAR tr_out 1 DW0 tr_in[28]

Trigger 1-to-1 Group 3

2SMIF Tr_tx/rx_req 2 DW1 tr_in[22:23]

Trigger 1-to-1 Group 4

5 5 DW1 tr_in[24:28]AUDIOSS
Tr_i2s_tx_req[0]
Tr_i2s_rx_req[0]
Tr_pdm_rx_req[0]
Tr_i2s_tx_req[1]
Tr_i2s_rx_req[1]

Trigger 1-to-1 Group 5

88 DW0 tr_in[8:15]USB dma_req[0:7]

Trigger 1-to-1 Group 6

88DW0 tr_out[8:15] USB dma_burstend[0:7]

SW Input
Cpuss.zero[0]

1

1

1

1

1

1

1

1

1

1

8

[0]

[1:8]

[9:16]

[17:28]

[29:64]

[65:68]

[69:82]

[83:84]

[85:86]

[0]

[1:8]

[9:16]

[17:28]

[29:64]

[65:68]

[69]

[70:83]

[84:85]

[0]

[1:8]

[9:32]

[33:56]

[57:60]

[61:99]

[100:101]

[102:109]

[110:112]

[113:114]

[115]

[116]

[117:130]

[131:132]

[133:134]

[0]

[1:8]

[9:32]

[33:56]

[57:60]

[61:99]

[100:101]

[102:109]

[110:112]

[113:114]

[115]

[116]

[117:130]

[131:132]

[133:134]

[0]

[1:29]

[30:58]

[59:82]

[83:154]

[155:158]

[159:197]

[198:199]

[200:207]

[208:210]

[211:212]

[213]

[214]

[215]

[216]

[217:218]

[219:220]

[221:222]

[0]

[1:29]

[30:58]

[59:82]

[83:154]

[155:158]

[159:197]

[198:199]

[200:207]

[208:210]

[211:212]

[213]

[214]

[215]

[216]

[217:230]

[231:244]

[245:246]

[247:248]

[249:250]

[0]

[1:2]

[0]

[1:24]

[25:26]

[0]

[1:24]

[25:96]

[97:110]

[111:124]

[125:126]

[0]

[1:24]

[25:96]

[97:110]

[111:124]

[125:126]



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 264

Trigger Multiplexer Block

Figure 24-4.  TCPWM and Multiplexer SCB Input Layout

Note: The format in these diagrams apply to all TCPWM and SCB connections in the trigger groups that have these
connections. The trigger input line number will change between trigger groups and will not always start at 17 and 61 as shown
in the TCPWM and SCB diagrams.

24.2.4 Software Triggers

All input and output signals to a trigger multiplexer can be triggered from software. This is accomplished by writing into the
PERI_TR_CMD register. This register allows you to trigger the corresponding signal for a number of peripheral clock cycles. 

The PERI_TR_CMD[GROUP_SEL] bitfield selects the trigger group of the signal being activated. The
PERI_TR_CMD[OUT_SEL] bitfield determines whether the trigger signal is in output or input of the multiplexer.
PERI_TR_CMD[TR_SEL] selects the specific line in the trigger group.

The PERI_TR_CMD[COUNT] bitfield sets up the number of peripheral clocks the trigger will be activated. 

The PERI_TR_CMD[ACTIVATE] bitfield is set to ‘1’ to activate the trigger line specified. Hardware resets this bit after the
trigger is deactivated after the number of cycles set by the PERI_TR_CMD[COUNT].

Trigger signals that are software triggered may have some implications. If the output of a distribution multiplexer is being
triggered, only the peripheral block trigger that the signal feeds is triggered. If an input of a reduction multiplexer is being
triggered, then all the peripheral routes that connect to this signal through the trigger multiplexer block will be triggered. You
should be aware of the routing that is being configured before deciding on the trigger signal. For distribution multiplexers,
each trigger group will have its own clock_source, which will be used for trigger_manipulation and for generating
software_trigger.

SCB
Tr_i2c_scl_filtered[0:12]
Tr_tx_req[0:12]
Tr_rx_req[0:12]

Trigger Mux Group 2

Tr_i2c_scl_filtered[0]

Tr_tx_req[0]

Tr_rx_req[0]

Tr_i2c_scl_filtered[12]

Tr_tx_req[12]

Tr_tx_req[12]

...

[61]

[62]

[63]

[97]

[98]

[99]

...

...
39[61:99]

TCPWM0(32-bit)
Tr_overflow[0:3]
Tr_compare_match[0:3]
Tr_underflow[0:3]

Trigger Mux Group 0

Tr_overflow[0]

Tr_compare_match[0]

Tr_underflow[0]

Tr_overflow[3]

Tr_compare_match[3]

Tr_underflow[3]

...

[17]

[18]

[19]

[26]

[27]

[28]

...

...
12[17:28]



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 265

Trigger Multiplexer Block

24.3 Register List  

Table 24-1.  Register List

Register Name  Description

PERI_TR_CMD
Trigger command register. The control enables software activation of a specific input trigger or 
output trigger of the trigger multiplexer structure.

PERI_TR_GR[X]_TR_OUT_CTL[Y}

This register specifies the input trigger for a specific output trigger in a trigger group. It can 
also invert the signal and specify if the output signal should be treated as a level-sensitive or 
edge-sensitive trigger; only specific multiplexers can do this (see table). Every trigger 
multiplexer has a group of registers, the number of registers being equal to the output bus size 
from the multiplexer. In the register format, X is the trigger group and Y is the output trigger 
line number from the multiplexer.

PERI_TR_1TO1_GR[X]_TR_OUT_CTL[Y]

This register specifies the input trigger for a specific output trigger in a one-to-one trigger 
group. It also includes trigger manipulation that can invert the signal and specify if the output 
signal should be treated as a level-sensitive or edge-sensitive trigger. Every one-to-one trigger 
multiplexer has a group of registers, the number of registers being equal to the output bus size 
from the multiplexer. The registers are formated with X as the trigger group and Y as the 
output trigger line number from the multiplexer.

Table 24-2.  Trigger Group

Trigger Group Number Description

0 Routes all input trigger signals to DMA0

1 Routes all input trigger signals to DMA1

2 Routes all input trigger signals to TCPWM0(32-bit)

3 Routes all input trigger signals to TCPWM1(16-bit)

4 Routes all input trigger signals to HSIOM

5 Routes all input trigger signals to CPUSS CTI and the Profiler

6 Routes all input trigger signals to DMAC

7 Routes all input trigger signals to trigger freeze operation

8 Routes all input trigger signals to CSD ADC start

9 Routes all input trigger signals to PASS ADC start

Trigger 1-to-1 Group

0 Connects SCB triggers to DMA0

1 Connects SCB triggers to DMA1

2 Connects SAR triggers to DMA0

3 Connects SMIF triggers to DMA1

4 Connects AUDIOSS triggers to DMA1

5 Connects USB triggers to DMA0

6 Connects DMA0 to USB



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 266

Trigger Multiplexer Block

Figure 24-5.  PSoC 6 MCU Trigger Multiplexer Block Architecture 

Trigger Group 10

Trigger Group 9

Trigger Group 11

Trigger Group 13

Trigger Group 12

Trigger Group 14

Trigger Group 0

Trigger Group 1

Trigger Group 2

Trigger Group 3

Trigger Group 4

Trigger Group 5

Trigger Group 6

Trigger Group 7

Trigger Group 8

USB 
DMA Burstend[0:7]

UDB 
Tr_dw_ack[0:7]8

8

8

16

2

8

16

2

8

8

8
16

2

16
8

8
16

2

16
8

8
16

8
2

8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

DW0
Tr_out[0:15]

DW1
Tr_out[0:15]

TCPWM0[32bit]
Tr_underflow[0:7]
Tr_overflow[0:7]
Tr_compare_match[0:7]

TCPWM1[16bit]
Tr_underflow[0:23]
Tr_overflow[0:23]
Tr_compare_match[0:23]

HSIOM

SCB
Tr_tx_req[0:8]
Tr_rx_req[0:8]

AUDIOSS
Tr_pdm_rx_req
Tr_i2s_tx_req
Tr_i2s_rx_req

SMIF
Tr_tx_req
Tr_rx_req

USB
Dma_req[0:7]

UDB
Tr_udb[0:15]
Dsi_out_tr[0:1]

CPUSS_CTI
Tr_out[0:1]

PASS
Tr_sar_out
Tr_ctdac_empty
Dsi_ctb_cmp0
Dsi_ctb_cmp1

LPCOMP
Dsi_comp[0:1]

SCB
Tr_i2c_scl_filtered[0:8]

CPUSS
Tr_fault[0:1]

DW0
Tr_in[0:15]

DW1
Tr_in[0:15]

TCPWM0[32bit]
Tr_on[0:13]

TCPWM1[16bit]
Tr_on[0:13]

PROFILE
Tr_start[0]
Tr_stop[1]

CPUSS.CTI
Tr_in[0:1]

PASS
Tr_sar_in[0]

UDB
Tr_in[0:1]

HSIOM
Peri_tr_io_output[0:1]

16

16

14

14

2

2

1

2

2

[1:16]

[17:32]

[1:16]

[17:32]

[1:24]

[25:96]

[1:28]

[1:18]

[19:21]

[22:23]

[24:31]

[0:17]

[18:19]

[20:23]

[24:25]
[26:34]

[35:36]

[0:7]

[8:15]

[0:15]

[16:17]

[8:9]

[0:7]

[0:15]

[0:7]

[1:8]
[8:23]

[25:26]

[27:42]
[43:50]

[1:8]
[8:24]

[25:26]

[27:42]
[43:50]

[1:8]
[9:24]

[25:32]

[33:34]

[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

Peri.tr_io_input[0:27]

1

1

1

1

1

1

1

1

1

SW Input
Cpuss.zero[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 267

25.   Profiler

The PSoC 6 MCU Profiler provides counters that can measure duration or number of events of a particular peripheral.
Functions such as DMA transfers or buffered serial communications can happen asynchronously, and are not directly tied to
the CPU or code execution. The profiler provides additional insight into the device so you can identify an asynchronous
activity that could not be monitored previously. 

The profiler manages a set of counters. You configure an available counter to monitor a particular source. Depending on the
nature of the source, you count either duration (reference clock cycles) or the number of events. 

The ability to monitor specific peripherals enables you to understand and optimize asynchronous hardware, including:

■ Identify the activity of a particular peripheral

■ Identify asynchronous activity

25.1 Features

The profiler has these features and capabilities:

■ A variety of sources you can monitor (see Table 25-1)

■ Support for eight counters, to monitor up to eight sources simultaneously

■ For each counter you specify:

❐ what source to monitor (can be changed dynamically if required)

❐ what to measure (duration or events)

❐ what reference clock to use for the count (only affects duration)

■ Provides ability to easily detect active peripherals that may be difficult to measure by external monitoring

■ Provides an absolute count of events or reference clock cycles for each monitored source

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation - Profiler

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 268

Profiler

25.2 Architecture
Figure 25-1.  Profiler Block Diagram

The profiler supports up to 32 counters. The actual number of counters is hardware dependent. This device supports up to
eight counters.

25.2.1 Profiler Design

With the profiler you can monitor:

■ Peripherals that operate asynchronously to software

■ CPU activity

This includes flash access, DMA, and other processes. See Available Monitoring Sources on page 269.

You can measure total energy consumption directly using external hardware. The profiler can monitor internal hardware with
no external probe or measuring device.

The profiler counts either the amount of time that a source is active (duration) or the number of events that occur. The profiler
does not report the actual amount of energy consumed.

Your application may use a system resource or peripheral that is not among the profiler sources. A complete understanding of
your application’s energy consumption requires that you profile those parts of your code that use those other systems. For
example, you could determine the time the peripheral is in use, and then derive energy use based on power consumption
data from the data sheet, or external power monitoring. 

All counters that are in use start and stop at the same time. The time between start and stop is called the profiling window, or
the profiling session. During the profiling session, each counter increments at its own rate based on the monitored signal and
(if measuring duration) the selected reference clock. See Start and Stop Profiling on page 271.

Before starting a profiling session, configure the counters you want to use. See Configure and Enable a Counter on page 271.

You can get interim results during a profiling session, or final results after you stop profiling. See Get the Results on page 272.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 269

Profiler

25.2.2 Available Monitoring Sources

You specify which source a counter monitors. The available sources vary per device series. You can find constants in a
header file named <series>_config.h (part of the Peripheral Driver Library). For example, Table 25-1 lists the sources in
psoc63_config.h.

25.2.3 Reference Clocks

Each monitored source has its own clock reference, called the sample clock. Table 25-2 lists the six choices for the sample
clock. You may use one of two CLK_PROFILE sources, or one of four CLK_REF sources.

The counter units of the profiler are clocked using either CLK_HF or CLK_PERI as CLK_PROFILE. You configure CLK_HF in
system resources and CLK_PERI in the CPU subsystem. See Clocking System chapter on page 208 for details on clocks. In
addition, there are four available reference clocks: CLK_TIMER, CLK_IMO, CLK_ECO, and CLK_LF. Any of the six clock
sources can be used as the sample clock.

If you measure events, the sample clock is selected automatically to be either CLK_HF or CLK_PERI depending on the
monitored source. The count represents the number of events that occurred during the profiling session. The profiler counts
the edges of the monitored signal, using either CLK_HF or CLK_PERI to detect edges.

If you measure duration, you specify the sample clock from one of the six choices listed in Table 25-2. When you measure
duration, while the monitored source is active, the counter increments at each cycle of the sample clock. The profiler
synchronizes reference clocks with CLK_PROFILE. As a result the four available reference clocks cannot exceed
CLK_PROFILE/2.

Table 25-1.  Available Signals to Monitor

Value Symbol Count Description

0 PROFILE_ONE Duration Constant One 

1 CPUSS_MONITOR_CM0 Events CM0+ active cycle count 

2 CPUSS_MONITOR_CM4 Events CM4 active cycle count 

3 CPUSS_MONITOR_FLASH Events Flash read count 

4 CPUSS_MONITOR_DW0_AHB Events DW0 AHB transfer count (DMA transfer)

5 CPUSS_MONITOR_DW1_AHB Events DW1 AHB transfer count (DMA transfer)

6 CPUSS_MONITOR_CRYPTO Events Crypto memory access count 

7 USB_MONITOR_AHB Events USB AHB transfer count

8 SCB0_MONITOR_AHB Events SCB 0 AHB transfer count 

9 SCB1_MONITOR_AHB Events SCB 1 AHB transfer count 

10 SCB2_MONITOR_AHB Events SCB 2 AHB transfer count 

11 SCB3_MONITOR_AHB Events SCB 3 AHB transfer count 

12 SCB4_MONITOR_AHB Events SCB 4 AHB transfer count 

13 SCB5_MONITOR_AHB Events SCB 5 AHB transfer count 

14 SCB6_MONITOR_AHB Events SCB 6 AHB transfer count 

15 SCB7_MONITOR_AHB Events SCB 7 AHB transfer count 

16 SCB8_MONITOR_AHB Events SCB 8 AHB transfer count 

17–20 Reserved

21 SMIF_MONITOR_SMIF_SPI_SELECT0 Duration SPI select to memory 0 active 

22 SMIF_MONITOR_SMIF_SPI_SELECT1 Duration SPI select to memory 1 active 

23 SMIF_MONITOR_SMIF_SPI_SELECT2 Duration SPI select to memory 2 active 

24 SMIF_MONITOR_SMIF_SPI_SELECT3 Duration SPI select to memory 3 active 

25 SMIF_MONITOR_SMIF_SPI_SELECT_ANY Duration SPI select to any of the memories 0-3 active 

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__energy__profiler.html


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 270

Profiler

To measure duration accurately, the sample clock should have a stable frequency throughout the profiling session. If your
application remains in active power states, you can use CLK_HF as the sample clock. CLK_HF gives you the greatest
resolution in your results.

The profiler can be enabled in CPU Active and Sleep modes. However, clock frequencies can change based on the power
state of the application. The source clock frequency should be stable throughout the profiling session to ensure reliable data.

High-frequency clocks are not available in System Deep Sleep and Hibernate power modes, so the profiler is disabled. The
configuration registers maintain state through Deep Sleep. Profiler data is lost (registers are not maintained) in Hibernate
mode. See the Device Power Modes chapter on page 191.

25.3 Using the Profiler

This section describes the steps required to use the profiler effectively. To use the profiler, you add instrumentation code to
your application, to set or read values in particular registers. See the registers TRM for details.

At the highest level you perform these tasks:

■ Enable the profiling block

■ Configure and enable counters 

■ Start and stop profiling

■ Handle counter overflow

■ Get the results

■ Exit gracefully

You can monitor as many sources as there are available counters. The actual number of available counters is hardware
dependent. The value is defined in the symbol PROFILE_PRFL_CNT_NR in the <series>_config.h file. For example, the
psoc63_config.h file defines this value as ‘8’.

Instead of manipulating registers directly, you can use the Peripheral Driver Library (PDL). The PDL provides a software API
to manage the profiler and an interrupt to handle counter overflow. The software driver maintains an array of data for each
counter, including the source you want to monitor, whether you are monitoring duration or events, the reference clock, and an
overflow count for each counter. It provides function calls to configure and enable a counter, start and stop a profiling session,
and calculate the results for each counter. The PDL API handles all register and bit access.

Refer to the PDL API Reference for more information. The PDL installer puts the documentation here: 
<PDL directory>\doc\pdl_api_reference_manual.html

25.3.1 Enable or Disable the Profiler

Before performing any operations, enable the profiling block. See Table 25-3. This does not enable individual counters or start
a profiling session.

Table 25-2.  Available Sample Clock Sources for the Profiler

Value Clock Source Symbol Clock Type

0 Timer CLK_TIMER CLK_REF

1 Internal main oscillator CLK_IMO CLK_REF

2 External crystal oscillator CLK_ECO CLK_REF

3 Low frequency clock CLK_LF CLK_REF

4 High-frequency clock CLK_HF CLK_PROFILE

5 Peripheral clock CLK_PERI CLK_PROFILE

Table 25-3.  Enabling the Profiler

Task Register Bitfield Value

Enable the profiler PROFILE_CTL ENABLED 0 = disabled; 1 = enabled



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 271

Profiler

25.3.2 Configure and Enable a Counter

Each counter has a PROFILE_CTL register that holds configuration information. For each counter you specify:

■ The source you want to monitor

■ What you want to measure (events or duration)

■ The reference clock for the counter (affects only duration)

You also enable each counter individually. Only the enabled counters will start when START_TR is set to one. See Table 25-4.

The count value is a 32-bit register. If that is not a sufficiently large number for your purposes, you must also enable the
profiling interrupt for the counter. See Handle Counter Overflow on page 271.

When gathering data, you may want to know the actual number of clock cycles that occurred during the profiling session. To
get this number, configure a counter to use:

■ PROFILE_ONE as the monitored source

■ duration (not events)

■ a reference clock

The count for that counter is the actual number of reference clock cycles that occurred during the profiling session.

25.3.3 Start and Stop Profiling

After configuring and enabling the counters you want to use, you can start and stop a profiling session. You may wish to
ensure that all counters are set to zero before beginning the profiling session. The PROFILE_CMD register applies to all
counters, meaning that all enabled counters will be started at the same time. See Table 25-5.

By design, all counters that are in use start and stop simultaneously. During the profiling session, each counter increments at
its own rate based on the monitored signal and (if measuring duration) the reference clock.

25.3.4 Handle Counter Overflow

Each profiling counter is a 32-bit number. If this is not sufficient for your purposes, then you must handle counter overflow. To
do so you must:

■ Enable the profiling interrupt for the particular counter

■ Provide an interrupt handler

For example, your interrupt handler could maintain an overflow counter for each profiling counter. See the Interrupts chapter
on page 54 for details about interrupts.

Counter overflow involves the interaction of three registers, INTR, INTR_MASK, and INTR_MASKED. Each of these registers
has one bit per profiling counter.

Table 25-4.  Configuring and Enabling a Counter

Task Register Bitfield Value

Specify source PROFILE_CTL MON_SEL Table 25-1 on page 269

Specify events or duration PROFILE_CTL CNT_DURATION 0 = events; 1 = duration. See Table 25-1 on page 269

Specify the reference clock PROFILE_CTL REF_CLK_SEL Table 25-2 on page 270

Enable the counter PROFILE_CTL ENABLED 0 = disabled; 1 = enabled

Table 25-5.  Starting or Stopping a Profiling Session

Task Register Bitfield Value

Clear all counters PROFILE_CMD CLEAR_ALL_CNT 1 = reset all counters to zero

Start profiling PROFILE_CMD START_TR 1 = start profiling

Stop profiling PROFILE_CMD STOP_TR 1 = stop profiling



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 272

Profiler

When an overflow occurs for a particular counter, hardware sets the corresponding bit in the INTR register. You typically do
not read this register.

To enable the profiling interrupt for a particular counter, set the corresponding bit in the INTR_MASK register.

When an interrupt occurs, your interrupt handler reads the bits in the INTR_MASKED register. This register reflects a bitwise
AND between the INTR register (an overflow interrupt has occurred for a particular counter) and the INTR_MASK register
(this counter has the interrupt enabled). When a bit is set in the INTR_MASKED register, the corresponding counter is
enabled and has experienced an overflow.

You can artificially trigger an overflow interrupt to test your code. The INTR_SET register also has one bit per counter. For
debug purposes, software can set the appropriate bit to activate a specific overflow interrupt. This enables debug of the
interrupt without waiting for hardware to cause the interrupt.

25.3.5 Get the Results

For each of your enabled counters, read the counter value in the CNT register for that counter. This is your absolute count. If
you are tracking counter overflow, then the absolute count is 0x1 0000 0000 * overflow count + counter value.

The common use case is to get results after you stop profiling. However, you can get a snapshot of the results without
stopping the profiler. In this case, however, the profiler is still counting and the results are changing as you gather the data.

After completing a profiling session, you may wish to repeat the same profile. Clear all counters to zero, and then start and
stop profiling. See Start and Stop Profiling on page 271. If you are handling counter overflow, set your overflow counters to
zero as well.

You can also reconfigure any or all counters to gather different data. See Configure and Enable a Counter on page 271.
Reconfigure the profiler, and start another profiling session.

25.3.6 Exit Gracefully

When finished, you should disable the profiler. To do this make sure that you:

■ Stop profiling (see Start and Stop Profiling on page 271)

■ Clear any profiling configuration (see Configure and Enable a Counter on page 271)

■ Disable the profiling interrupt if you have set it up (see Handle Counter Overflow on page 271)

■ Disable the profiler itself (see Enable or Disable the Profiler on page 270)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 273

Section D: Digital Subsystem

This section encompasses the following chapters:

■ Secure Digital Host Controller (SDHC) chapter on page 274

■ Serial Communications Block (SCB) chapter on page 285

■ Serial Memory Interface (SMIF) chapter on page 342

■ Timer, Counter, and PWM (TCPWM) chapter on page 359

■ Inter-IC Sound Bus chapter on page 395

■ PDM-PCM Converter chapter on page 407

■ Universal Serial Bus (USB) Device Mode chapter on page 416

■ LCD Direct Drive chapter on page 432

Top Level Architecture

Figure D-1.  Digital System Block Diagram

I/O Subsystem

Peripheral Interconnect (MMIO,PPU)

IO
S

S
 G

P
IO

PCLK

 
S

C
B

U
A

R
T

/S
P

I/
I2

C
: 8

X
, U

A
R

T
/I2

C
; 4

X

GPIO 

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

High Speed I/O Matrix, Smart I/O , Boundary Scan

 S
C

B
I2

C
,S

P
I

DeepSleep
Hibernate

LP Active/Sleep
ULP Active/Sleep

Power Modes

Backup

 T
C

P
W

M
T

IM
E

R
,C

T
R

,Q
D

, 
P

W
M

Smart IO

eF
us

e  

S
er

ia
l M

e
m

or
y

 I/
F

Q
S

P
I 

w
ith

 O
T

F
 E

nc
ry

pt
io

n/
D

ec
ry

pt
io

n

 
S

D
H

C
S

D
/S

D
IO

/e
M

M
C

C
S

D
C

ap
S

e
ns

e

 P
ro

fil
er

 I2
S

P
D

M
/P

C
M

Audio
Subsystem

DMA
MMIO

U
S

B
-F

S
H

os
t 

+
 D

ev
ic

e
F

S
/L

S
P

H
Y

L
C

D



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 274

26.   Secure Digital Host Controller (SDHC)

The secure digital host controller (SDHC) in the PSoC 6 MCU allows interfacing with embedded multimedia card (eMMC)-
based memory devices, secure digital (SD) cards, and secure digital input output (SDIO) cards. The block supports all three
interfaces – SD, SDIO, and eMMC. The block can also work with devices providing SDIO interface, such as Cypress' WiFi
products (for example, CYW4343W). Figure 26-1 illustrates a typical application using the SDHC block. 

Figure 26-1.  Typical SDHC Application

26.1 Features
■ Complies with eMMC 5.1, SD 6.0, and SDIO 4.10 standards

■ Supports host controller interface (HCI) 4.2 shared by eMMC and SD

■ SD interface supports 1-bit and 4-bit bus interfaces, and the following speed modes. The specified data rate is for a 4-bit 
bus. 

❐ 3.3-V signal voltage: Default speed (12.5 MB/s at 25 MHz) and high speed (25 MB/s at 50 MHz)

❐ UHS-I modes using 1.8-V signal voltage: SDR12 (12.5 MB/s at 25 MHz), SDR25 (25 MB/s at 50 MHz), SDR40 (40 
MB/s at 80 MHz), and DDR40 (40 MB/s at 40 MHz)

■ eMMC interface supports 1-bit and 4-bit bus interfaces, and the following speed modes. The specified data rate is for a 4-
bit bus.

❐ Legacy (13 MB/s at 26 MHz), high-speed SDR (26 MB/s at 52 MHz), and high-speed DDR (52 MB/s at 52 MHz)

■ Supports three DMA modes – SDMA, ADMA2, and ADMA3 – through a dedicated DMA engine

■ Provides 1KB SRAM for buffering up to two 512-byte blocks

■ Provides I/O interfaces for bus interface voltage selection (3.3 V/1.8 V) and for power enable/disable

■ Provides I/O interfaces for functions such as card detection, mechanical write protection, eMMC card reset, and LED 
control

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation - SDHC

■ Application notes

■ Code examples

SDHC[0] configured for 
SDIO

PSoC 6

Cypress Wi-Fi Device



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 275

Secure Digital Host Controller (SDHC)

26.1.1 Features Not Supported

The SDHC block does not support the following features. 

■ SD/SDIO operation in UHS-II mode

■ Command queuing engine (CQE)

■ eMMC boot operation in dual data rate mode

■ Read wait operation by DAT[2] signaling in an SDIO card

■ Suspend/resume operation in an SDIO card

■ Interrupt input pins for embedded SD systems

■ SPI protocol mode of operation 

26.2 Block Diagram 

Figure 26-2.  SDHC Block Diagram

The SDHC controller supports all three interfaces – SD, SDIO, and eMMC; it supports up to 4-bit bus width. The AHB master
interface helps to transfer data to and from the system memory and the AHB slave interface provides access to the
configuration registers. The register set comprises the standard SD host controller interface (HCI) registers as specified in the
SD Specifications Part A2 SD Host Controller Standard Specification. These registers are described in the registers TRM. The
DMA engine handles direct data transfer between the SDHC logic and system memory. It supports SDMA, ADMA2, and
ADMA3 modes based on the configuration. 

The SDHC block complies with the following standards. Refer to the specifications documents for more information on the
protocol and operations. 

■ SD Specifications Part 1 Physical Layer Specification Version 6.00

■ SD Specifications Part A2 SD Host Controller Standard Specification Version 4.20

■ SD Specifications Part E1 SDIO Specifications Version 4.10

■ Embedded Multi-Media Card (eMMC) Electrical Standard 5.1

SDHC

AHB Master 
Interface

DMA Engine 
(SDMA, ADMA2, ADMA3)

AHB Slave 
Interface

Configuration 
Registers

eMMC/SD/SDIO 
Interface

SRAM Controller

1 KB Packet 
Buffer SRAM

To I/O 
Sub-System

To System 
Interconnect

To Peripheral 
Interconnect

Interrupts 
to CPU

Sub-System

CLK_HF[i]

clk_card

card_cmd

card_dat_3to0[3:0]

io_volt_sel

card_detect_n
card_mech_write_prot

card_if_pwr_en

IOSS

CLK_SYS

CLK_SLOW



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 276

Secure Digital Host Controller (SDHC)

26.3 Clocking

Table 26-1 lists the different clocks used in the SDHC block. While configuring the clock for SDHC make sure that clk_slow 
clk_sys  clk_card.

26.3.1 Clock Gating 

All the clocks except the slave interface clock can be gated
internally to enter standby mode (See Power Modes on
page 277). In standby mode, you can also stop the clocks
externally if required. The slave clock cannot be gated
because it is used for wakeup logic (see Interrupts to CPU
on page 277) during the standby mode. 

The card clock is gated by clearing the SD_CLK_EN bit and
other clocks are gated by clearing the INTERNAL_CLK_EN
bit of the CLK_CTRL_R register. See Clock Setup on
page 283 for the sequence to be followed while modifying
this bit. 

26.3.2 Base Clock (CLK_HF[i]) 
Configuration 

The HCI register (Capabilities) has a read-only field
(BASE_CLK_FREQ) to indicate the base clock frequency so
that an SD HCI-compatible driver can easily configure the
divider for the required bus speed. This value is set to 0x64
(100 MHz) and hence CLK_HF[i] must be set to 100 MHz. If
this compatibility is not required, CLK_HF[i] can be set to
any value. See 26.3.4 Timeout (TOUT) Configuration.

26.3.3 Card Clock (SDCLK) Configuration 

The SDCLK or card clock frequency is set by configuring the
10-bit divider in the CLK_CTRL_R register and selecting the
10-bit divided clock mode by clearing the
CLK_GEN_SELECT bit of the same register. The default
value of this bit is zero. The UPPER_FREQ_SEL field holds
the upper two bits (9:8) and the FREQ_SEL field holds the
lower eight bits (7:0) of the divider. Base clock frequency is

sourced from CLK_HF[i] as explained in Table 26-1. SDCLK
frequency is equal to base clock frequency when the divider
value is zero. 

SDCLK Frequency = Base Clock Frequency / (2 × 10-bit
divider value)

These fields are set automatically, based on the selected
Bus Speed mode, to a value specified in one of the preset
registers when HOST_CTRL2_R.PRESET_VAL_ENABLE
is set. The preset registers are selected according to
Table 26-2. 

26.3.4 Timeout (TOUT) Configuration

An internal timer is used for command and data timeouts.
The timeout value is specified through the
TOUT_CTRL_R.TOUT_CNT register field. The timer clock
(TMCLK) frequency indicated by the read-only fields
TOUT_CLK_FREQ and TOUT_CLK_UNIT of
CAPABILITIES1_R register is 1 MHz. Timer clock is derived
by dividing the CLK_HF[i], which means that CLK_HF[i]
must be set to 100 MHz to be compatible with the
Capabilities register. 

Table 26-1.  Clocks in SDHC

Source SDHC Clock Function

CLK_SLOW

Core SDHC Clock
Used for core SDHC functions including the packet buffer SRAM; it is sourced from the slow 
clock (clk_slow); it must be  AHB slave clock.

AHB Master Interface Clock
Used by the AHB master interface; it is sourced from the slow clock (clk_slow); it must be  
AHB slave clock. 

CLK_SYS AHB Slave Interface Clock

Used by the AHB slave interface; it is clocked by the PERI group clock (clk_sys); it must be 
 clk_card. The group clock is derived from the PERI clock (clk_peri) using a divider. 
Because this divider can remain at the default value of ‘1’ for most applications, clk_peri can 
be considered as clk_sys for SDHC. See Clocking System chapter on page 208 for informa-
tion on clk_sys and clk_peri. 

CLK_HF[i] 
Base Clock/Card Clock

Used for sourcing the SD/eMMC interface clock (clk_card); it is derived from CLK_HF[i]; it 
must be set to 100 MHz to be compatible with the Capabilities register. See 26.3.2 Base 
Clock (CLK_HF[i]) Configuration for details. See High-Frequency Root Clocks on page 218 
to know which CLK_HF[i] drives an SDHC instance. 

Timer Clock Used for command and data timeout functions; it is derived from CLK_HF[i]. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 277

Secure Digital Host Controller (SDHC)

26.4 Bus Speed Modes

The SDHC block can operate in either SD/SDIO mode or in eMMC mode. The SDHC block operates in eMMC mode when
the EMMC_CTRL_R.CARD_IS_EMMC bit is set; otherwise, it operates in SD/SDIO mode. The speed mode is configured
through HOST_CTRL1_R and HOST_CTRL2_R registers as per Table 26-2. The HOST_CTRL2_R.UHS2_IF_ENABLE bit
should remain at its default value of zero because the block does not support UHS-II mode. The card clock must be
configured according to the selected speed mode through the CLK_CTRL_R register. See 26.3.3 Card Clock (SDCLK)
Configuration for more information. 

26.5 Power Modes

The block can operate during active and sleep system
power modes. It does not support deep sleep mode and
cannot wake up from events such as card insertion and
removal when the system is in deep sleep. All the core
registers except the packet buffer SRAM are retained when
the system enters deep sleep mode and the SRAM is
switched off to save power. Retention is performed so that
the block can resume operation immediately after wakeup
from deep sleep without requiring reconfiguration. Make
sure that no AHB traffic (such as register read/write and
DMA operation) is present, the SD/SDIO/eMMC bus
interface is idle, and no data packets are pending in the
packet buffer SRAM when the system transitions into deep
sleep mode. 

26.5.1 Standby Mode

The block can be put into standby mode to save power
during the active and sleep system power modes by turning
off the clocks. See Clock Gating on page 276 for details.
The block can detect wakeup interrupts (see Interrupts to
CPU on page 277) in standby mode. 

26.6 Interrupts to CPU

The block provides two interrupt signals to CPUSS: 

■ Wakeup Interrupt Signal – Triggered on events such as 
card insertion, removal, and SDIO card interrupt. This 
interrupt source cannot wake up the system from deep 
sleep mode and is provided so that a host driver can 
take appropriate action on those events. For example, 
resuming operation from standby mode on card 

insertion. See 26.5.1 Standby Mode for details. As card 
insertion and removal is not applicable to an embedded 
device, wakeup interrupt should not be used in this case. 
However it can still be used for SDIO card interrupt.

■ General Interrupt Signal – Triggered on all other events, 
in either normal conditions or error conditions. 

A host driver must not enable the wakeup and general
interrupt signals at the same time.

To use only the wakeup interrupt signal, clear the
NORMAL_INT_STAT_R and
NORMAL_INT_SIGNAL_EN_R registers, and then set the
enable bits of the required wakeup events in the
WUP_CTRL_R and NORMAL_INT_STAT_EN registers. 

To use only the general interrupt signal, clear the
WUP_CTRL_R and NORMAL_INT_STAT_R registers.
Then, set the required bits in
NORMAL_INT_SIGNAL_EN_R and
NORMAL_INT_STAT_EN registers. 

These interrupts remain asserted until the CPU clears the
interrupt status through one of the status registers –
NORMAL_INT_STAT_R and ERROR_INT_STAT_R.

The SDIO card interrupt status bit, CARD_INTERRUPT, is a
read-only bit. The host driver may clear the
NORMAL_INT_STAT_EN_R.CARD_INTERRUPT_STAT_E
N bit before servicing the SDIO card interrupt and may set
this bit again after all interrupt requests from the card are
cleared to prevent inadvertent interrupts.

Table 26-2.  Bus Speed Mode Configuration

Bus Speed Mode
HOST_CTRL1_R Field HOST_CTRL2_R Fields

Selected Preset Register
HIGH_SPEED_EN SIGNALING_EN UHS_MODE_SEL

SD Default Speed (DS) 0 0 Don't care PRESET_DS_R

SD High Speed (HS) 1 0 Don't care PRESET_HS_R

SDR12/eMMC Legacy Don't care 1 000b PRESET_SDR12_R

SDR25/eMMC High Speed Don't care 1 001b PRESET_SDR25_R

SDR50 Don't care 1 010b PRESET_SDR50_R

DDR50/eMMC High Speed 
DDR

Don't care 1 100b PRESET_DDR50_R



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 278

Secure Digital Host Controller (SDHC)

Following is the list of registers used in interrupt configuration. 

26.6.1 SDIO Interrupt

The SDIO interrupt function is supported on card_dat_3to0[1] line (SD pin 8). See the SDIO specifications for details on this
feature. The CARD_INTERRUPT_STAT_EN bit in the NORMAL_INT_STAT_EN_R register and the
CARD_INTERRUPT_SIGNAL_EN bit in the NORMAL_INT_SIGNAL_EN_R register must be set to enable this interrupt. To
use this interrupt as wakeup interrupt, use WUP_CTRL_R.WUP_CARD_INT instead of NORMAL_INT_SIGNAL_EN_R. 

26.7 I/O Interface

SDHC block provides the signals shown in Table 26-4, which can be routed to pins through the I/O subsystem (IOSS). Refer
to the I/O System chapter on page 227 to configure the I/Os, and the device datasheet for specific pins available for each
signal. SDHC also supports SDIO interrupt on DAT[1] line (card_data_3to0[1]). The output signals must be configured in
strong drive mode, bi-directional signals in strong drive with the input buffer ON, and the input pins in high-impedance mode
when an external pull-up resistor is available; otherwise, they must be configured in internal pull-up mode. Input buffer must
be enabled for the input pins. The drive mode of the DAT lines must be set to high impedance after card removal. See Card
Detection on page 281 for details. In addition to configuring the drive mode and HSIOM registers in IOSS, the
SDHC_CORE.GP_OUT_R register must be configured to enable the required signals. See Table 26-4. The card_detect_n
and card_write_prot should be connected to ground if an eMMC or an embedded SDIO device is connected.

Table 26-3.  Interrupt Control Registers

Register Description

WUP_CTRL_R
Enables or disables different wakeup interrupts. Host driver must maintain voltage on the SD bus by set-
ting PWR_CTRL_R.SD_BUS_PWR_VDD1 bit for these interrupts to occur. These interrupts cannot 
wakeup the device from deep sleep. 

NORMAL_INT_STAT_R
Reflects the status of wakeup interrupts and non-error general interrupts. It also has a bit to indicate 
whether any of the bits in ERROR_INT_STAT_R is set.

ERROR_INT_STAT_R Reflects the status of general interrupts that are triggered by error conditions.

NORMAL_INT_STAT_EN_R Provides mask bits for wakeup interrupts and non-error general interrupts.

ERROR_INT_STAT_EN_R Provides mask bits for general interrupts that are triggered by error conditions.

NORMAL_INT_SIGNAL_EN_R
Setting any of these bits to ‘1’ enables interrupt generation for wakeup interrupts and non-error general 
interrupts.

ERROR_INT_SIGNAL_EN_R
Setting any of these bits to ‘1’ enables interrupt generation for general interrupts that are triggered by 
error conditions. 

FORCE_ERROR_INT_STAT_R Forces an error interrupt to occur when the corresponding bit is set. 

Table 26-4.  I/O Signal Interface

Signal Function Register Configuration

clk_card Clock output GP_OUT_R.CARD_CLOCK_OE

card_cmd Command (bi-directional) Always enabled

card_dat_3to0[3:0] Data (bi-directional) HOST_CTRL1_R.DAT_XFER_WIDTH

card_detect_n Card detect signal input, Active low GP_OUT_R.CARD_DETECT_EN

card_mech_write_prot Mechanical write protect signal input, Active low GP_OUT_R.CARD_MECH_WRITE_PROT_EN

io_volt_sel
Signaling voltage select output (see 26.7.1 Switching Signaling 
Voltage from 3.3 V to 1.8 V)

GP_OUT_R.IO_VOLT_SEL_OE

card_if_pwr_en Card interface power enable output GP_OUT_R.CARD_IF_PWR_EN_OE



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 279

Secure Digital Host Controller (SDHC)

26.7.1 Switching Signaling Voltage from 
3.3 V to 1.8 V

The I/Os operate at the voltage level supplied through the
external VDDIO pin. The SD mode supports switching the
signaling voltage from 3.3 V to 1.8 V after negotiation with
the SD card. The block sets the
HOST_CTRL2_R.SIGNALING_EN bit to indicate the switch.
This value is reflected on the io_volt_sel pin, which can be
connected to an external regulator powering VDDIO to switch
between 3.3 V and 1.8 V. Note that PSoC 6 does not
provide an internal regulator to power the SD interface I/Os.

26.8 Packet Buffer SRAM

SRAM that is internal to the SDHC block is used as a packet
buffer to store data packets while carrying out data transfer
to and from the card. The size of the SRAM is 1KB to
support buffering of two 512 bytes blocks. As write and read

transfers to the cards do not occur simultaneously, a single
shared buffer is used for read and write operations. During
the data transfer command handshake, the read/write bit of
the command register is sampled and stored. This internal
bit defines whether the SDHC is in read or write mode. 

Figure 26-3 shows how data flows from the card interface to
the AHB master interface through the packet buffer for a
card read transfer. Received data from the card interface is
written into packet buffer. When one block of data is
received, DMA starts transmitting that data to the system by
reading it from the packet buffer. For a card write transfer,
data flows in the reverse direction. DMA writes data into a
packet buffer that is subsequently read by the card interface
logic. DMA and card interface logic can work simultaneously
because read and write to packet buffer can be interleaved.
For card read, DMA can send out the previous block while
card interface logic is receiving the current block. For card
write, DMA can write the current block into packet buffer
while card interface logic is sending out the previous block.

Figure 26-3.  Data Flow in a Read Transfer

26.8.1 Packet Buffer Full/Empty

When the packet buffer becomes full in card read, the clock
to the card is stopped to prevent the card from sending the
next data block. When packet buffer is empty, data block is
not sent. In both cases, card interface logic is idle. SDHC
does not support SDIO Read Wait signaling through DAT[2].
Therefore, the I/O command (CMD52) cannot be performed
during a multiple read cycle because the card clock is
stopped. 

26.9 DMA Engine

The DMA engine handles data transfer between SDHC and
system memory. Following are the features of this unit: 

■ Supports SDMA, ADMA2, and ADMA3 modes based on 
the configuration.

■ The same DMA engine is used to interleave data 
transfer and descriptor fetch. This enables new task 
descriptor fetches (for CMD44 and CMD45) while DMA 

is moving data during task execution (for CMD46 and 
CMD47).

■ Prefetches data for back-to-back eMMC write 
commands.

■ Writes back the received data packets to system 
memory.

Figure 26-4 shows the data flow between the host driver and
SD bus. The host driver can transfer data using either a
programmed I/O (PIO) method in which the internal buffer is
accessed through the buffer data port (BUF_DATA_R)
register or using any of the defined DMA methods. PIO
mode is much slower and burdens the processor. Do not
use the PIO mode for large transfers.

Card 
Interface 

Logic
DMA

SRAM 
Controller

Packet Buffer 
(SRAM)

SD/eMMC 
Bus

AHB 
Master



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 280

Secure Digital Host Controller (SDHC)

Figure 26-4.  Data Flow

DMA supports both single block and multi-block transfers.
The control bits in the block gap control (BGAP_CTRL_R)
register is used to stop and restart a DMA operation. SDMA
mode is used for short data transfer because it generates
interrupts at page boundaries. These interrupts disturb the
CPU to reprogram the new system address. Only one SD
command transaction can be executed for every SDMA
operation.

ADMA2 and ADMA3 are used for long data transfers. They
adopt scatter gather algorithm so that higher data transfer
speed is available. The host driver can program a list of data
transfers between system memory and SD card to the
descriptor table. ADMA2 performs one read/write SD
command operation at a time. ADMA3 can program multiple
read/write SD command operation in a descriptor table.

In SDMA and ADMA2 modes, writing the CMD_R register
triggers the DMA operation. In ADMA3 mode, writing
ADMA_ID_LOW_R register triggers the DMA operation. 

SD mode commands are generated by writing into the
following registers – system address (SDMASA_R), block
size (BLOCKSIZE_R), block count (BLOCKCOUNT_R),
transfer mode (XFER_MODE_R), and command (CMD_R).
When HOST_CTRL2_R.HOST_VER4_EN = 0, SDMA uses
SDMASA_R as system address register and hence Auto
CMD23 cannot be used with SDMA because this register is
assigned for Auto CMD23 as the 32-bit block count register.
When HOST_CTRL2_R.HOST_VER4_EN = 1, SDMA uses
ADMA_SA_LOW_R as system address register and
SDMASA_R is reassigned to 32-bit block count and hence
SDMA may use Auto CMD23. 

To use the 32-bit block count register when
HOST_CTRL2_R.HOST_VER4_EN = 1, it must be
programmed with a non-zero value and the value of the 16-
bit block count register BLOCK_COUNT_R must be zero.

Refer to the respective specifications documents listed in
Block Diagram on page 275 to learn more about the DMA
operation.

26.10 Initialization Sequence

Figure 26-5 shows the sequence for initializing SDHC to
work with SD/SDIO/eMMC cards. Subsequent sections
describe each step. After initialization, SDHC is ready to
communicate with the card. Refer to the corresponding
specifications document for information on other sequences
such as card initialization and identification, changing bus
speed mode, signal voltage switch procedure, transaction
generation, and error recovery. 

Figure 26-5.  SDHC Programming Sequence

26.10.1 Enabling SDHC

Ensure clk_sys is configured to be greater than or equal to
clk_card and is running. Then, follow the sequence in
Figure 26-6 to enable the block. The internal clock can also
be enabled later during clock setup. It must be enabled to
detect card insertion or removal through general interrupts
when SDHC is not in standby mode. See 26.10.2 Card
Detection for details. 

DMA Interface

Registers

CMD Control

Buffer

DATA Control

SD Bus InterfaceCMD DAT[7:0]

Host Driver

START

Configure interrupt 
for card detection

IS CARD 
PRESENT?

NO

YES

END

Initialize SDHC

Setup Clock

Enable SDHC

Card detect 
interrupt occurs

Initialize Card

IS 
EMBEDDED 

CARD?

NO

YES

Card Read/Write



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 281

Secure Digital Host Controller (SDHC)

Figure 26-6.  SDHC Enable Sequence

26.10.2 Card Detection

Check if the card is already inserted by following the
sequence shown in Figure 26-7. This step is required for a
removable card. After the card is detected, the host driver
can supply power and clock to the card. If the card is
inserted, then proceed with SDHC initialization. To detect
card insertion or removal through interrupt when the internal
clock is already enabled, follow the sequence shown in
Figure 26-8. To detect the card status through interrupt
when the internal clock is disabled (when SDHC is in
standby mode), the bits in the WUP_CTRL_R register must
be set and the NORMAL_INT_SIGNAL_EN register must be
cleared. See Interrupts to CPU on page 277 for details. To
detect SDIO card interrupt on DAT[1] line, a separate bit is
provided in these registers, which must be configured.

SDHC clears the PWR_CTRL_R.SD_BUS_PWR_VDD1 bit
when the card is removed and drives the DAT lines low.
Therefore, the drive mode of the DAT lines must be changed
from strong (with input buffer ON) to HI-Z when the card is
removed to keep the lines pulled high. After detecting card
insertion, the drive mode must be configured back to strong
(with input buffer ON) mode only after
PWR_CTRL_R.SD_BUS_PWR_VDD1 is set to 1.

Figure 26-7.  Card Status Check Sequence

START

SDHC_WRAP_CTL.ENABLE = 1
CLK_CTRL_R.INTERNAL_CLK_EN = 1

IS 
CLK_CTRL_R.INTER
NAL_CLK_STABLE = 

1?

NO

YES

END

START

GP_OUT_R.CARD_DETECT_EN = 1

IS 
PSTATE_REG.CARD

_STABLE  = 1?

IS 
PSTATE_REG.CARD

_INSERTED  = 1?

END

NO

YES

Card is 
present

Card is not 
present



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 282

Secure Digital Host Controller (SDHC)

Figure 26-8.  Card Detection Through Interrupt

START

Enable interrupt for Card Detect

WUP_CTRL_R = 0
NORMAL_INT_STAT_EN_R.CARD_INSERTION_STAT_EN = 1
NORMAL_INT_SIGNAL_EN_R.CARD_INSERTION_SIGNAL_EN = 1
NORMAL_INT_STAT_EN_R.CARD_REMOVAL_STAT_EN = 1
NORMAL_INT_SIGNAL_EN_R.CARD_REMOVAL_SIGNAL_EN = 1

GP_OUT_R.CARD_DETECT_EN = 1

Card detect interrupt 
is triggered

IS
NORMAL_INT_STAT_
R.CARD_INSERTION 

= 1?

END

Card is not 
present

Card is 
presentClear interrupt status:

NORMAL_INT_STAT_R.
CARD_INSERTION = 1

IS
NORMAL_INT_STAT_
R.CARD_REMOVAL 

= 1?

NO

YES

Clear interrupt status:
NORMAL_INT_STAT_R.
CARD_REMOVAL = 1

YES

NO



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 283

Secure Digital Host Controller (SDHC)

26.10.3 SDHC Initialization

To initialize SDHC, configure the basic settings as shown in
Figure 26-9. This step can also be executed immediately
after enabling SDHC.

Figure 26-9.  SDHC Setup

26.10.4 Clock Setup

Enable the internal clock followed by the card clock (SD
clock) by following the sequence shown in Figure 26-10.
The SD clock frequency must be 100 kHz to 400 kHz during
the card initialization. See Card Clock (SDCLK)
Configuration on page 276 for details. SD clock can be
started and stopped by toggling the
CLK_CTRL_R.SD_CLK_EN bit. The same sequence
excluding the step of enabling the internal clock can be used
to change the SD clock frequency. The SD clock must be
stopped before changing its frequency. Note that
GP_OUT_R.CARD_CLOCK_OE should have been set to ‘1’
for the card clock to appear on the pin. 

Figure 26-10.  Clock Setup

26.11 Error Detection

SDHC can detect different types of errors in SD and eMMC
transactions. Error is detected in either the command or
data portion of the transaction. When an error is detected,
the ERR_INTERRUPT bit in the NORMAL_INT_STAT_R
register is set. The exact error can then be identified through
the ERROR_INT_STAT_R register. The Abort command is
used to recover from an error detected during data transfer.
In addition to these two registers, SDHC has two other error
status registers – Auto CMD Error Status
(AUTO_CMD_STAT_R) and ADMA Error Status
(ADMA_ERR_STAT_R). The following table lists the errors
detected by SDHC.

START

Enable power to the card

GP_OUT_R.CARD_IF_PWR_EN_OE = 1
PWR_CTRL_R.SD_BUS_PWR_VDD1 = 1

GP_OUT_R.IO_VOLT_SEL_OE = 1
HOST_CTRL2_R.SIGNALING_EN = 0

Is Card Type = 
eMMC?

NO

YES

END

EMMC_CTRL_R.CARD_IS_EMMC = 1

Configure DMA type through 
HOST_CTRL1_R.DMA_SEL

Enable mechanical write protection through
GP_OUT_R.CARD_MECH_WRITE_PROT_EN = 1

Configure interrupts the interrupt status enable and 
signal enable registers

HOST_CTRL2_R.HOST_VER4_ENABLE = 1
HOST_CTRL2_R.ASYNC_INT_ENABLE = 1

START

Divider = CLK_HF/2/SD clock frequency

NO

YES

CLK_CTRL_R.CLK_GEN_SELECT = 0
CLK_CTRL_R.UPPER_FREQ_SEL = divider[9:8]

CLK_CTRL_R.FREQ_SEL = divider[7:0]

CLK_CTRL_R.INTERNAL_CLK_EN = 1

IS 
CLK_CTRL_R.INTER
NAL_CLK_STABLE = 

1?

CLK_CTRL_R.PLL_ENABLE = 1

NO

YES

IS 
CLK_CTRL_R.INTER
NAL_CLK_STABLE = 

1?

CLK_CTRL_R.SD_CLK_EN = 1

END

Clock Setup 
Failed

On timeout 
of 150 ms

On timeout 
of 150 ms

Configure 
GP_OUT_R.CARD_CLOCK_OUT_DLY and

GP_OUT_R.CARD_CLOCK_IN_DLY 
as per speed mode*

* See the CY8C62x8, CY8C62xA Registers TRM for details. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 284

Secure Digital Host Controller (SDHC)

Table 26-5.  Errors Detected by SHDC

Type Error

Command Errors

Command Timeout Error

Command CRC Error

Command End Bit Error

Command Index Error

Command Conflict Error

Response Error

Auto Command Errors

Command not issued by Auto CMD12 Error

Auto Command Timeout Error

Auto Command CRC Error

Auto Command End Bit Error

Auto Command Index Error

Auto Command Conflict Error

Auto CMD response Error

Data Errors

Data Timeout Error

Data CRC Error

Data End Bit Error

ADMA Error

Tuning Error



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 285

27.   Serial Communications Block (SCB)

The Serial Communications Block (SCB) supports three serial communication protocols: Serial Peripheral Interface (SPI),
Universal Asynchronous Receiver Transmitter (UART), and Inter Integrated Circuit (I2C or IIC). Only one of the protocols is
supported by an SCB at any given time. The number of SCBs in a PSoC 6 MCU varies by part number; consult the device
datasheet to determine number of SCBs and the SCB pin locations. Not all SCBs support all three modes (SPI, UART, and
I2C); consult the device datasheet to determine which modes are supported by which SCBs. Not all SCBs operate in deep
sleep, consult the device datasheet to determine which SCBs operate in deep sleep.

27.1 Features

The SCB supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols

❐ Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance

■ Standard I2C master and slave functionality

■ Trigger outputs for connection to DMA

■ Multiple interrupt sources to indicate status of FIFOs and transfers 

■ Features available only on Deep Sleep-capable SCB:

❐ EZ mode for SPI and I2C slaves; allows for operation without CPU intervention

❐ CMD_RESP mode for SPI and I2C slaves; allows for operation without CPU intervention

❐ Low-power (Deep Sleep) mode of operation for SPI and I2C slaves (using external clocking)

❐ Deep Sleep wakeup on I2C slave address match or SPI slave selection

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SCB

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 286

Serial Communications Block (SCB)

27.2 Architecture

The operation modes supported by SCB are described in
the following sections.

27.2.1 Buffer Modes

Each SCB has 256 bytes of dedicated RAM for transmit and
receive operation. This RAM can be configured in three
different modes (FIFO, EZ, or CMD_RESP). The following
sections give a high-level overview of each mode. The
sections on each protocol will provide more details.

■ Masters can only use FIFO mode

■ I2C and SPI slaves can use all three modes. Note: EZ
Mode and CMD Response Mode are available only on
the Deep Sleep-capable SCB

■ UART only uses FIFO mode

Note: This document discusses hardware implementation of
the EZ mode; for the firmware implementation, see the PDL.

27.2.1.1 FIFO Mode

In this mode the RAM is split into two 128-byte FIFOs, one
for transmit (TX) and one for receive (RX). The FIFOs can
be configured to be 8 bits x 128 elements or 16 bits x 64
elements; this is done by setting the BYTE_MODE bit in the
SCB control register.

FIFO mode of operation is available only in Active and Sleep
power modes. However, the I2C address or SPI slave select
can be used to wake the device from Deep Sleep on the
Deep Sleep-capable SCB. 

Statuses are provided for both the RX and TX FIFOs. There
are multiple interrupt sources available, which indicate the
status of the FIFOs, such as full or empty; see “SCB
Interrupts” on page 333. 

27.2.1.2 EZ Mode

In easy (EZ) mode the RAM is used as a single 256-byte
buffer. The external master sets a base address and reads
and writes start from that base address.

EZ Mode is available only for SPI slave and I2C slave. It is
available only on the Deep Sleep capable SCB. 

EZ mode is available in Active, Sleep, and Deep Sleep
power modes. 

Note: This document discusses hardware implementation of
the EZ mode; for the firmware implementation, see the PDL.

27.2.1.3 CMD_RESP Mode

Command Response (CMD_RESP) mode is similar to EZ
mode except that the base address is provided by the CPU
not the external master.

CMD_RESP mode is available only for SPI slave and I2C
slave. It is available only on the Deep Sleep-capable SCB.

CMD_RESP mode operation is available in Active, Sleep,
and Deep Sleep power modes. 

27.2.2 Clocking Modes

The SCB can be clocked either by an internal clock provided
by the peripheral clock dividers (referred to as clk_scb in this
document), or it can be clocked by the external master. 

■ UART, SPI master, and I2C master modes must use
clk_scb.

■ Only SPI slave and I2C slave can use the clock from and
external master, and only the Deep Sleep capable SCB
supports this. 

Internally- and externally-clocked slave functionality is
determined by two register fields of the SCB CTRL register:

■ EC_AM_MODE indicates whether SPI slave selection or
I2C address matching is internally (‘0’) or externally (‘1’)
clocked. 

■ EC_OP_MODE indicates whether the rest of the
protocol operation (besides SPI slave selection and I2C
address matching) is internally (‘0’) or externally (‘1’)
clocked. 

Notes:

■ FIFO mode supports an internally- or externally-clocked
address match (EC_AM_MODE is ‘0’ or ‘1’); however,
data transfer must be done with internal clocking.
(EC_OP_MODE is ‘1’).

■ EZ and CMD_RESP modes are supported with
externally clocked operation (EC_OP_MODE is ‘1’).

Table 27-1 provides an overview of the clocking and buffer
modes supported for each communication mode.

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 287

Serial Communications Block (SCB)

 

27.3 Serial Peripheral Interface (SPI)

The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The master
initiates the data transfer. The SCB supports single-master-multiple-slaves topology for SPI. Multiple slaves are supported
with individual slave select lines. 

27.3.1 Features

■ Supports master and slave functionality

■ Supports three types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ Texas Instruments SPI, with coinciding and preceding data frame indicator – mode 1 only

❐ National Semiconductor (MicroWire) SPI – mode 0 only

■ Master supports up to four slave select lines

❐ Each slave select has configurable active polarity (high or low)

❐ Slave select can be programmed to stay active for a whole transfer, or just for each byte

■ Master supports late sampling for better timing margin

■ Master supports continuous SPI clock

■ Data frame size programmable from 4 bits to 16 bits

■ Programmable oversampling

■ MSb or LSb first

■ Median filter available for inputs

■ Supports FIFO Mode

■ Supports EZ Mode (slave only) and CMD_RESP mode (slave only) on the Deep Sleep-capable SCB

Table 27-1.  Clock Mode Compatibility

Internally clocked (IC)
Externally clocked (EC) 
(Deep Sleep SCB only)

FIFO EZ CMD_RESP FIFO EZ CMD_RESP

I2C master Yes No No No No No

I2C slave Yes Yes No Yesa Yes Yes

I2C master-slave Yes No No No No No

SPI master Yes No No No No No

SPI slave Yes Yes No Yesb Yes Yes

UART transmitter Yes No No No No No

UART receiver Yes No No No No No

a. In Deep Sleep mode the external-clocked logic can handle slave address matching, it then triggers an interrupt to wake up the CPU. The slave can be
programmed to stretch the clock, or NACK until internal logic takes over. This applies only to the Deep Sleep-capable SCB.

b. In Deep Sleep mode the external-clocked logic can handle slave selection detection, it then triggers an interrupt to wake up the CPU. Writes will be ignored
and reads will return 0xFF until internal logic takes over. This applies only to the Deep Sleep-capable SCB.

Table 27-2.  Clock Configuration and Mode support

Mode
EC_AM_MODE is '0'; 
EC_OP_MODE is ‘0’

'EC_AM_MODE is '1'; 
EC_OP_MODE is '0’

'EC_AM_MODE is '1'; 
EC_OP_MODE is '1'

FIFO mode Yes Yes No

EZ mode Yes Yes Yes

CMD_RESP mode No No Yes



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 288

Serial Communications Block (SCB)

27.3.2 General Description

Figure 27-1 illustrates an example of SPI master with four slaves.

Figure 27-1.  SPI Example

A standard SPI interface consists of four signals as follows. 

■ SCLK: Serial clock (clock output from the master, input to the slave).

■ MOSI: Master-out-slave-in (data output from the master, input to the slave).

■ MISO: Master-in-slave-out (data input to the master, output from the slave).

■ Slave Select (SS): Typically an active low signal (output from the master, input to the slave).

A simple SPI data transfer involves the following: the master selects a slave by driving its SS line, then it drives data on the
MOSI line and a clock on the SCLK line. The slave uses either of the edges of SCLK depending on the configuration to
capture the data on the MOSI line; it also drives data on the MISO line, which is captured by the master.

By default, the SPI interface supports a data frame size of eight bits (1 byte). The data frame size can be configured to any
value in the range 4 to 16 bits. The serial data can be transmitted either most significant bit (MSb) first or least significant bit
(LSb) first.

Three different variants of the SPI protocol are supported by the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI protocol, in which data frames are identified by a pulse on the SS
line.

■ National Semiconductors SPI: A half-duplex variation of the original SPI protocol.

SPI 
Master

SPI
Slave 1

SPI
Slave 2

SPI
Slave 4

SCLK

MOSI

MISO

Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3

Slave Select (SS) 3

Slave Select (SS) 1



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 289

Serial Communications Block (SCB)

27.3.3 SPI Modes of Operation

27.3.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full duplex protocol. Multiple data transfers may happen with the SS
line held at ‘0’. When not transmitting data, the SS line is held at ‘1’.

Clock Modes of Motorola SPI

The Motorola SPI protocol has four different clock modes based on how data is driven and captured on the MOSI and MISO
lines. These modes are determined by clock polarity (CPOL) and clock phase (CPHA). 

Clock polarity determines the value of the SCLK line when not transmitting data. CPOL = ‘0’ indicates that SCLK is ‘0’ when
not transmitting data. CPOL = ‘1’ indicates that SCLK is ‘1’ when not transmitting data.

Clock phase determines when data is driven and captured. CPHA = 0 means sample (capture data) on the leading (first)
clock edge, while CPHA = 1 means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising
or falling. With CPHA = 0, the data must be stable for setup time before the first clock cycle.

■ Mode 0: CPOL is ‘0’, CPHA is ‘0’: Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

■ Mode 1; CPOL is ‘0’, CPHA is ‘1’: Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 2: CPOL is ‘1’, CPHA is ‘0’: Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 3: CPOL is ‘1’, CPHA is ‘1’: Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

Figure 27-2 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.

Figure 27-2.  SPI Motorola, 4 Modes

Figure 27-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is ‘0’, CPHA is ‘0’).

CPOL = 0          CPHA = 0

SCLK

MISO / 
MOSI

SCLK

MISO / 
MOSI

SCLK

MISO / 
MOSI

SCLK

MISO / 
MOSI

MSb LSb

MSb LSb

MSb LSb

MSb LSb

CPOL = 0          CPHA = 1

CPOL = 1          CPHA = 0

CPOL = 1          CPHA = 1



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 290

Serial Communications Block (SCB)

Figure 27-3.  SPI Motorola Data Transfer Example

Figure 27-4.  SELECT and SCLK Timing Correlation

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL = 0,  CPHA = 0 single data transfer

MSb LSb

MSb LSb MSb LSb

LSbMSb

MSb LSb MSb LSb

                                                              CPOL = 0,  CPHA = 0   two successive data transfers

SS

SS

CPHA = 0, CPOL = 0
Oversampling = 5 (1 SCLK period contains 6 clk_scb periods)

SCLK

SS0

clk_scb

¾ SCLK ¼ SCLK

CPHA = 1, CPOL = 0
Oversampling = 5 (1 SCLK period contains 6 clk_scb periods)

SCLK

SS0

clk_scb

¼ SCLK ¾ SCLK

For example above: OversamplingReg = 6 – 1 = 5.
   ¾ * SCLK = ((5 / 2) + 1) + (5 / 4 + 1)) * clk_scb = (3 + 2) * clk_scb = 5 * clk_scb.
   ¼ * SCLK = ((5 / 4) + 1) * clk_scb = 2 * clk_scb.

Note The value ¾ * SCLK is equal to (((OversamplingReg / 2) + 1) + (OversamplingReg / 4) + 1)), 
         where OversamplingReg  = Oversampling – 1.
         The value ¼ * SCLK is equal to ((OversamplingReg / 4)  + 1).
         The result of any division operation is rounded down to the nearest integer.
Note The provided timings are guaranteed by SCB block but do not take into account signal propagation time from SCB block to    
         pins.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 291

Serial Communications Block (SCB)

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various register bits in the following order: 

1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI Motorola mode by writing ‘00’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the clock mode in Motorola by writing to the CPHA and CPOL fields (bits 2 and 3 respectively) of the
SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 301. 

For more information on these registers, see the registers TRM.

27.3.3.2 Texas Instruments SPI

The Texas Instruments’ SPI protocol redefines the use of the SS signal. It uses the signal to indicate the start of a data
transfer, rather than a low active slave select signal, as in the case of Motorola SPI. The start of a transfer is indicated by a
high active pulse of a single bit transfer period. This pulse may occur one cycle before the transmission of the first data bit, or
may coincide with the transmission of the first data bit. The TI SPI protocol supports only mode 1 (CPOL is ‘0’ and CPHA is
‘1’): data is driven on a rising edge of SCLK and data is captured on a falling edge of SCLK.

Figure 27-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse precedes the
first data bit. Note how the SELECT pulse of the second data transfer coincides with the last data bit of the first data transfer.

Figure 27-5.  SPI TI Data Transfer Example

Figure 27-6 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSb LSb

MSb LSb MSb LSb

MSb LSb

MSb LSb MSb LSb

CPOL=0, CPHA=1  two successive data transfers

SS

SS



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 292

Serial Communications Block (SCB)

Figure 27-6.  SPI TI Data Transfer Example

Configuring SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register bits in the following order: 

1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI TI mode by writing ‘01’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL register (‘1’
configures the SELECT pulse to precede the first bit of next frame and ‘0’ otherwise).

4. Set the CPHA bit of the SCB_SPI_CONTROL register to ‘0’, and the CPOL bit of the same register to ‘1’. 

5. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 301. 

For more information on these registers, see the registers TRM.

27.3.3.3 National Semiconductors SPI

The National Semiconductors’ SPI protocol is a half-duplex protocol. Rather than transmission and reception occurring at the
same time, they take turns. The transmission and reception data sizes may differ. A single ‘idle’ bit transfer period separates
transfers from reception. However, successive data transfers are not separated by an idle bit transfer period.

The National Semiconductors SPI protocol supports only mode 0.

Figure 27-7 illustrates a single data transfer and two successive data transfers. In both cases, the transmission data transfer
size is eight bits and the reception data transfer size is four bits.

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSb LSb

MSb LSb MSb LSb

MSb LSb

MSb LSb MSb LSb

CPOL=0, CPHA=1   two successive data transfers

SS

SS



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 293

Serial Communications Block (SCB)

Figure 27-7.  SPI NS Data Transfer Example

Configuring SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register bits in the following order: 

1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI NS mode by writing ‘10’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Set the CPOL and CHPA bits of the SCB_SPI_CTRL register to ‘0’.

4. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 301.

For more information on these registers, see the registers TRM.

MSb LSb

MSb LSb

MSb LSb

MSb LSb  

MSb

idle 0 cycle

idle 0 cycle
No idle cycle

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL=0, CPHA=0  single data transfer

CPOL=0, CPHA=0  two successive data transfers

SS

SS



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 294

Serial Communications Block (SCB)

27.3.4 SPI Buffer Modes

SPI can operate in three different buffer modes – FIFO, EZ, and CMD_RESP modes. The buffer is used in different ways in
each of these modes. The following subsections explain each of these buffer modes in detail.

27.3.4.1 FIFO Mode

The FIFO mode has a TX FIFO for the data being transmitted and an RX FIFO for the data received. Each FIFO is
constructed out of the SRAM buffer. The FIFOs are either 64 elements deep with 16-bit data elements or 128 elements deep
with 8-bit data elements. The width of a FIFO is configured using the BYTE_MODE bitfield of the SCB.CTRL register. 

FIFO mode of operation is available only in Active and Sleep power modes, and not in the Deep Sleep mode. 

Transmit and receive FIFOs allow write and read accesses. A write access to the transmit FIFO uses the TX_FIFO_WR
register. A read access from the receive FIFO uses the RX_FIFO_RD register. For SPI master mode, data transfers are
started when data is written into the TX FIFO. Note that when a master is transmitting and the FIFO becomes empty the slave
is de-selected.

Transmit and receive FIFO status information is available through status registers, TX_FIFO_STATUS and
RX_FIFO_STATUS, and through the INTR_TX and INTR_RX registers. 

Each FIFO has a trigger output. This trigger output can be routed through the trigger mux to various other peripheral on the
device such as DMA or TCPWMs. The trigger output of the SCB is controlled through the TRIGGER_LEVEL field in the
RX_CTRL and TX_CTRL registers. 

■ For a TX FIFO a trigger is generated when the number of entries in the transmit FIFO is less than 
TX_FIFO_CTRL.TRIGGER_LEVEL.

■ For the RX FIFO a trigger is generated when the number of entries in the FIFO is greater than the
RX_FIFO_CTRL.TRIGGER_LEVEL.

Note that the DMA has a trigger deactivation setting. For the SCB this should be set to 16. 

Active to Deep Sleep Transition

Before going to deep sleep ensure that all active communication is complete. For a master this can easily be done by
checking the SPI_DONE bit in the INTR_M register, and ensuring the TX FIFO is empty. 

For a slave this can be achieved by checking the BUS_BUSY bit in the SPI Status register. Also the RX FIFO should be
empty before going to deep sleep. Any data in the FIFO will be lost during deep sleep. 

Also before going to deep sleep the clock to the SCB needs to be disabled. This can be done by setting the
SDA_IN_FILT_TRIM[1] bit in the I2C_CFG register to "0" 

Lastly, when the device goes to deep sleep the SCB stops driving the GPIO lines. This leads to floating pins and can lead to
undesirable current during deep sleep power modes. To avoid this condition before entering deep sleep mode change the
HSIOM settings of the SCB pins to GPIO driven, then change the drive mode and drive state to the appropriate state to avoid
floating pins. Consult the I/O System chapter on page 227 for more information on pin drive modes. 

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 0, FIFO Mode.

When the SPI Slave Select line is asserted the device will be awoken by an interrupt. After the device is awoken change the
SPI pin drive modes and HSIOM settings back to what they were before deep sleep. When clk_hf[0] is at the desired
frequency set SDA_IN_FILT_TRIM[1] to ‘1’ to enable the clock to the SCB. Then write data into the TX FIFO. At this point the
master can read valid data from the slave. Before that any data read by the master will be invalid. 

27.3.4.2 EZSPI Mode

The easy SPI (EZSPI) protocol only works in the Motorola mode, with any of the clock modes. It allows communication
between master and slave without the need for CPU intervention. In the PSoC 6 MCU, only the deep sleep-capable SCB
supports EZSPI mode.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 295

Serial Communications Block (SCB)

The EZSPI protocol defines a single memory buffer with an 8-bit EZ address that indexes the buffer (256-entry array of eight
bit per entry) located on the slave device. The EZ address is used to address these 256 locations. All EZSPI data transfers
have 8-bit data frames. 

The CPU writes and reads to the memory buffer through the SCB_EZ_DATA registers. These accesses are word accesses,
but only the least significant byte of the word is used.

EZSPI has three types of transfers: a write of the EZ address from the master to the slave, a write of data from the master to
an addressed slave memory location, and a read by the master from an addressed slave memory location.

Note: When multiple bytes are read or written the master must keep SSEL low during the entire transfer.

EZ Address Write

A write of the EZ address starts with a command byte (0x00) on the MOSI line indicating the master’s intent to write the EZ
address. The slave then drives a reply byte on the MISO line to indicate that the command is acknowledged (0xFE) or not
(0xFF). The second byte on the MOSI line is the EZ address.

Memory Array Write

A write to a memory array index starts with a command byte (0x01) on the MOSI line indicating the master’s intent to write to
the memory array. The slave then drives a reply byte on the MISO line to indicate that the command was registered (0xFE) or
not (0xFF). Any additional bytes on the MOSI line are written to the memory array at locations indicated by the communicated
EZ address. The EZ address is automatically incremented by the slave as bytes are written into the memory array. When the
EZ address exceeds the maximum number of memory entries (256), it remains there and does not wrap around to 0. The EZ
base address is reset to the address written in the EZ Address Write phase on each slave selection. 

Memory Array Read

A read from a memory array index starts with a command byte (0x02) on the MOSI line indicating the master’s intent to read
from the memory array. The slave then drives a reply byte on the MISO line to indicate that the command was registered
(0xFE) or not (0xFF). Any additional read data bytes on the MISO line are read from the memory array at locations indicated
by the communicated EZ address. The EZ address is automatically incremented by the slave as bytes are read from the
memory array. When the EZ address exceeds the maximum number of memory entries (256), it remains there and does not
wrap around to 0. The EZ base address is reset to the address written in the EZ Address Write phase on each slave
selection.

Figure 27-8 illustrates the write of EZ address, write to a memory array and read from a memory array operations in the
EZSPI protocol.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 296

Serial Communications Block (SCB)

Figure 27-8.  EZSPI Example

Command 0x00 EZ Address

Command 0x00 : Write EZ address

Command 0x01

Command 0x01 : Write DATA

Write DATA

Command 0x02

Command 0x02 : Read DATA

Read DATA

SCLK

MOSI

MISO

SCLK

MOSI

MISO

SCLK

MOSI

MISO

EZ address

EZ address (8 bits)

EZ buffer
(32 bytes SRAM)

EZ address

Write 
DATA

Read 
DATA

LEGEND :
CPOL : Clock Polarity                                               0x00 : Write EZ address
CPHA : Clock Phase                                                 0x01 : Write DATA
SCLK : SPI Interface Clock                                       0x02 : Read DATA
MISO : SPI Master-In-Slave-Out                               0xFE : slave ready
MOSI : SPI Master-Out-Slave-In                               0xFF  : slave busy

SS

SS

SS



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 297

Serial Communications Block (SCB)

Configuring SCB for EZSPI Mode

By default, the SCB is configured for non-EZ mode of
operation. To configure the SCB for EZSPI mode, set the
register bits in the following order: 

1. Select EZ mode by writing ‘1’ to the EZ_MODE bit (bit
10) of the SCB_CTRL register.

2. Set the EC_AM and EC_OP modes in the SCB_CTRL
register as appropriate.

3. Set the BYTE_MODE bit of the SCB_CTRL register to
‘1’.

4. Follow the steps in “Configuring SCB for SPI Motorola
Mode” on page 291. 

5. Follow steps 2 to 4 mentioned in “Enabling and Initializ-
ing SPI” on page 301.

For more information on these registers, see the registers
TRM.

Active to Deep Sleep Transition 

Before going to deep sleep ensure the master is not
currently transmitting to the slave. This can be done by
checking the BUS_BUSY bit in the SPI_STATUS register. 

If the bus is not busy, disable the clock to the SCB by setting
the SDA_IN_FILT_TRIM[1] bit to ‘0’ in the I2C_CFG register. 

Deep Sleep to Active Transition

■ EC_AM = 1, EC_OP = 0, EZ Mode. MISO transmits
0xFF until the internal clock is enabled. Data on MOSI is
ignored until the internal clock is enabled. Do not enable
the internal clock until clk_hf[0] is at the desired
frequency. After clk_hf[0] is at the desired frequency set
the SDA_IN_FILT_TRIM[1] bit to ‘1’ to enable the clock.
The external master needs to be aware that when it
reads 0xFF on MISO the device is not ready yet.

■ EC_AM = 1, EC_OP = 1, EZ Mode. Do not enable the
internal clock until clk_hf[0] is at the desired frequency.
After clk_hf[0] is at the desired frequency set the
SDA_IN_FILT_TRIM[1] bit to ‘1’ to enable the clock.

27.3.4.3 Command-Response Mode

The command-response mode is defined only for an SPI
slave. In the PSoC 6 MCU, only the deep sleep-capable
SCB supports this mode. This mode has a single memory
buffer, a base read address, a current read address, a base
write address, and a current write address that are used to
index the memory buffer. The base addresses are provided
by the CPU. The current addresses are used by the slave to
index the memory buffer for sequential accesses of the
memory buffer. The memory buffer holds 256 8-bit data
elements. The base and current addresses are in the range
[0, 255]. This mode is only supported by the Motorola mode
of operation. 

The CPU writes and reads to the memory buffer through the
SCB_EZ_DATA registers. These accesses are word
accesses, but only the least significant byte of the word is
used.

The slave interface accesses the memory buffer using the
current addresses. At the start of a write transfer (SPI slave
selection), the base write address is copied to the current
write address. A data element write is to the current write
address location. After the write access, the current address
is incremented by ‘1’. At the start of a read transfer, the base
read address is copied to the current read address. A data
element read is to the current read address location. After
the read data element is transmitted, the current read
address is incremented by ‘1’.

If the current addresses equal the last memory buffer
address (address equals 255), the current addresses are
not incremented. Subsequent write accesses will overwrite
any previously written value at the last buffer address.
Subsequent read accesses will continue to provide the
(same) read value at the last buffer address. The bus
master should be aware of the memory buffer capacity in
command-response mode.

The base addresses are provided through
CMD_RESP_CTRL. The current addresses are provided
through CMD_RESP_STATUS. At the end of a transfer (SPI
slave de-selection), the difference between a base and
current address indicates how many read/write accesses
were performed. The block provides interrupt cause fields to
identify the end of a transfer. Command-response mode
operation is available in Active, Sleep, and Deep Sleep
power modes.

The command-response mode has two phases of operation:

■ Write phase – The write phase begins with a selection
byte, which has its last bit set to ‘0’ indicating a write.
The master writes 8-bit data elements to the slave’s
memory buffer following the selection byte. The slave’s
current write address is set to the slave’s base write
address. Received data elements are written to the
current write address memory location. After each
memory write, the current write address is incremented.

■ Read phase – The read phase begins with a selection
byte, which has its last bit set to ‘1’ indicating a read. The
master reads 8-bit data elements from the slave’s
memory buffer. The slave’s current read address is set
to the slave’s base read address. Transmitted data
elements are read from the current address memory
location. After each read data element is transferred, the
current read address is incremented.

During the reception of the first byte, the slave (MISO)
transmits either 0x62 (ready) or a value different from 0x62
(busy). When disabled or reset, the slave transmits 0xFF
(busy). The byte value can be used by the master to
determine whether the slave is ready to accept the SPI
request.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 298

Serial Communications Block (SCB)

Figure 27-9.  Command-Response Mode Example

Note that a slave’s base addresses are updated by the CPU
and not by the master.

Active to Deep Sleep Transition

Before going to deep sleep ensure the master is not
currently transmitting to the slave. This can be done by
checking the BUS_BUSY bit in the SPI_STATUS register. 

If the bus is not busy, disable the clock to the SCB by setting
the SDA_IN_FILT_TRIM[1] bit to 0 in the I2C_CFG register. 

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 1, CMD_RESP Mode.

Do not enable the internal clock until clk_hf[0] is at the
desired frequency. When clk_hf[0] is at the desired
frequency, set the SDA_IN_FILT_TRIM[1] bit to ‘1’ to enable
the clock.

Configuring SCB for CMD_RESP Mode

By default, the SCB is configured for non-CMD_RESP mode
of operation. To configure the SCB for CMD_RESP mode,
set the register bits in the following order:

1. Select the CMD_RESP mode by writing ‘1’ to the
CMD_RESP_MODE bit (bit 12) of the SCB_CTRL
register.

2. Set the EC_AM and EC_OP modes to ‘1’ in the
SCB_CTRL register.

3. Set the BYTE_MODE bit in the SCB_CTRL register.

4. Follow the steps in “Configuring SCB for SPI Motorola
Mode” on page 291.

5. Follow steps 2 to 4 mentioned in“Enabling and
Initializing SPI” on page 301.

For more information on these registers, see the registers
TRM.

write phase (command byte 0x00)

LEGEND:
spi_clk: SPI interface clock

    spi_select: SPI slave select
    spi_mosi: SPI Master Out / Slave In 

spi_miso: SPI Master In / Slave Out 

    0x00:                   write CMD_RESP data
0x01:                   read CMD_RESP data

    !0x62:                  slave not ready
    0x62:                   slave ready

spi_clk

spi_select

spi_mosi

spi_miso

read phase (command byte 0x01)

spi_clk

spi_select

spi_mosi

spi_miso

0x01

0x00 write data

read data

ready (0x62 byte)

SRAM

Memory 
of n x 8-bits

curr_wr_addrbase_wr_addr

+1

curr_rd_addrbase_rd_addr +1

ready (0x62 byte)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 299

Serial Communications Block (SCB)

27.3.5 Clocking and Oversampling

27.3.5.1 Clock Modes

The SCB SPI supports both internally and externally clocked
operation modes. Two bitfields (EC_AM_MODE and
EC_OP MODE) in the SCB_CTRL register determine the
SCB clock mode. EC_AM_MODE indicates whether SPI
slave selection is internally (0) or externally (1) clocked.
EC_OP_MODE indicates whether the rest of the protocol
operation (besides SPI slave selection) is internally (0) or
externally (1) clocked. 

An externally-clocked operation uses a clock provided by
the external master (SPI SCLK). Note: In the PSoC 6 MCU
only the Deep Sleep-capable SCB supports externally-
clocked mode of operation and only for SPI slave mode.

An internally-clocked operation uses the programmable
clock dividers. For SPI, an integer clock divider must be
used for both master and slave. For more information on
system clocking, see the Clocking System chapter on
page 208. 

The SCB_CTRL bitfields EC_AM_MODE and
EC_OP_MODE can be configured in the following ways.

■ EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’: Use this
configuration when only Active mode functionality is
required. 

❐ FIFO mode: Supported.

❐ EZ mode: Supported.

❐ Command-response mode: Not supported. The 
slave (MISO) transmits a value different from a ready 
(0x62) byte during the reception of the first byte if 
command-response mode is attempted in this 
configuration.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’: Use this
configuration when both Active and Deep Sleep
functionality are required. This configuration relies on the
externally-clocked functionality to detect the slave
selection and relies on the internally-clocked
functionality to access the memory buffer. 

The “hand over” from external to internal functionality 
relies on a busy/ready byte scheme. This scheme relies 
on the master to retry the current transfer when it 
receives a busy byte and requires the master to support 
busy/ready byte interpretation. When the slave is 
selected, INTR_SPI_EC.WAKE_UP is set to ‘1’. The 
associated Deep Sleep functionality interrupt brings the 
system into Active power mode. 

❐ FIFO mode: Supported. The slave (MISO) transmits 
0xFF until the CPU is awoken and the TX FIFO is 
populated. Any data on the MOSI line will be 
dropped until clk_scb is enabled see “Deep Sleep to 
Active Transition” on page 298 for more details 

❐ EZ mode: Supported. In Deep Sleep power mode, 
the slave (MISO) transmits a busy (0xFF) byte during 

the reception of the command byte. In Active power 
mode, the slave (MISO) transmits a ready (0xFE) 
byte during the reception of the command byte. 

❐ CMD_RESP mode: Not supported. The slave trans-
mits (MISO) a value different from a ready (0x62) 
byte during the reception of the first byte.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘1’. Use this
mode when both Active and Deep Sleep functionality are
required. When the slave is selected,
INTR_SPI_EC.WAKE_UP is set to ‘1’. The associated
Deep Sleep functionality interrupt brings the system into
Active power mode. When the slave is deselected,
INTR_SPI_EC.EZ_STOP and/or
INTR_SPI_EC.EZ_WRITE_STOP are set to ‘1’. 

❐ FIFO mode: Not supported.

❐ EZ mode: Supported.

❐ CMD_RESP mode: Supported.

If EC_OP_MODE is ‘1’, the external interface logic accesses
the memory buffer on the external interface clock (SPI
SCLK). This allows for EZ and CMD_RESP mode
functionality in Active and Deep Sleep power modes. 

In Active system power mode, the memory buffer requires
arbitration between external interface logic (on SPI SCLK)
and the CPU interface logic (on system peripheral clock).
This arbitration always gives the highest priority to the
external interface logic (host accesses). The external
interface logic takes two serial interface clock/bit periods for
SPI. During this period, the internal logic is denied service to
the memory buffer. The PSoC 6 MCU provides two
programmable options to address this “denial of service”: 

■ If the BLOCK bitfield of SCB_CTRL is ‘1’: An internal
logic access to the memory buffer is blocked until the
memory buffer is granted and the external interface logic
has completed access. This option provides normal SCB
register functionality, but the blocking time introduces
additional internal bus wait states.

■ If the BLOCK bitfield of SCB_CTRL is ‘0’: An internal
logic access to the memory buffer is not blocked, but
fails when it conflicts with an external interface logic
access. A read access returns the value 0xFFFF:FFFF
and a write access is ignored. This option does not
introduce additional internal bus wait states, but an
access to the memory buffer may not take effect. In this
case, the following failures are detected:

❐ Read Failure: A read failure is easily detected 
because the returned value is 0xFFFF:FFFF. This 
value is unique as non-failing memory buffer read 
accesses return an unsigned byte value in the range 
0x0000:0000-0x0000:00ff. 

❐ Write Failure: A write failure is detected by reading 
back the written memory buffer location, and con-
firming that the read value is the same as the written 
value. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 300

Serial Communications Block (SCB)

For both options, a conflicting internal logic access to the memory buffer sets INTR_TX.BLOCKED field to ‘1’ (for write
accesses) and INTR_RX.BLOCKED field to ‘1’ (for read accesses). These fields can be used as either status fields or as
interrupt cause fields (when their associated mask fields are enabled).

If a series of read or write accesses is performed and CTRL.BLOCKED is ‘0’, a failure is detected by comparing the “logical-
or” of all read values to 0xFFFF:FFFF and checking the INTR_TX.BLOCKED and INTR_RX.BLOCKED fields to determine
whether a failure occurred for a series of write or read operations.

27.3.5.2 Using SPI Master to Clock Slave

In a normal SPI Master mode transmission, the SCLK is generated only when the SCB is enabled and data is being
transmitted. This can be changed to always generate a clock on the SCLK line while the SCB is enabled. This is used when
the slave uses the SCLK for functional operations other than just the SPI functionality. To enable this, write ‘1’ to the
SCLK_CONTINUOUS (bit 5) of the SCB_SPI_CTRL register.

27.3.5.3 Oversampling and Bit Rate

SPI Master Mode

The SPI master does not support externally clocked mode. In internally clocked mode, the logic operates under internal clock.
The internal clock has higher frequency than the interface clock (SCLK), such that the master can oversample its input
signals (MISO). 

The OVS (bits [3:0]) of the SCB_CTRL register specify the oversampling. The oversampling rate is calculated as the value in
OVS register + 1. In SPI master mode, the valid range for oversampling is 4 to 16, when MISO is used; if MISO is not used
then the valid range is 2 to 16. The bit rate is calculated as follows. 

Equation 27-1

Hence, with clk_scb at 100 MHz, the maximum bit rate is 25 Mbps with MISO, or 50 Mbps without MISO. 

The numbers above indicate how fast the SCB hardware can run SCLK. It does not indicate that the master will be able to
correctly receive data from a slave at those speeds. To determine that, the path delay of MISO must be calculated. It can be
calculated using the following equation:

Equation 27-2

Where:

tSCLK is the period of the SPI clock

tSCLK_PCB_D is the SCLK PCB delay from master to slave

tDSO is the total internal slave delay, time from SCLK edge at slave pin to MISO edge at slave pin

tSCLK_PCB_D is the MISO PCB delay from slave to master

tDSI is the master setup time 

Most slave datasheets will list tDSO, It may have a different name; look for MISO output valid after SCLK edge. Most master
datasheets will also list tDSI, or master setup time. tSCLK_PCB_D and tSCLK_PCB_D must be calculated based on specific
PCB geometries. 

Table 27-3.  SPI Modes Compatibility

Internally clocked (IC) Externally clocked (EC) (Deep Sleep SCB only)

FIFO EZ CMD_RESP FIFO EZ CMD_RESP

SPI master Yes No No No No No

SPI slave Yes Yes No Yesa

a. In SPI slave FIFO mode, the external-clocked logic does selection detection, then triggers an interrupt to wake up the CPU. Writes will be ignored and reads
will return 0xFF until the CPU is ready and the FIFO is populated. 

Yes Yes

Bit Rate = clk_scb/OVS

1
2
---tSCLK t SCLK_PCB_D tDSO tSCLK_PCB_D tDSI+ + +



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 301

Serial Communications Block (SCB)

If after doing these calculations the desired speed cannot be achieved, then consider using the MISO late sample feature of
the SCB. This can be done by setting the SPI_CTRL.LATE_MISO_SAMPLE register. MISO late sample tells the SCB to
sample the incoming MISO signal on the next edge of SCLK, thus allowing for ½ SCLK cycle more timing margin, see
Figure 27-10.

Figure 27-10.  MISO Sampling Timing

This changes the equation to:

Equation 27-3

Because late sample allows for better timing, leave it enabled all the time. The tDSI specification in the PSoC 6 MCU

datasheet assumes late sample is enabled.

Note: The SPI_CTRL.LATE_MISO_SAMPLE is set to ‘0’ by default.

SPI Slave Mode

In SPI slave mode, the OVS field (bits [3:0]) of SCB_CTRL register is not used. The data rate is determined by Equation 26-2
and Equation 26-3. Late MISO sample is determined by the external master in this case, not by
SPI_CTRL.LATE_MISO_SAMPLE.

For PSoC 6 MCUs, tDSO is given in the device datasheet. For internally-clocked mode, it is proportional to the frequency of

the internal clock. For example it may be 20 ns + 3 *tCLK_SCB. Assuming 0 ns PCB delays, and a 0 ns external master tDSI

Equation 26-1 can be re-arranged to tCLK_SCB  ((tSCLK) – 40 ns)/6. 

27.3.6 Enabling and Initializing SPI

The SPI must be programmed in the following order:

1. Program protocol specific information using the SCB_SPI_CTRL register. This includes selecting the sub-modes of the
protocol and selecting master-slave functionality. EZSPI and CMD_RESP can be used with slave mode only.

2. Program the OVS field and configure clk_scb as appropriate. See the Clocking System chapter on page 208 for more
information on how to program clocks and connect it to the SCB.

3. Configure SPI GPIO by setting appropriate drive modes and HSIOM settings. 

4. Select the desired Slave Select line and polarity in the SCB_SPI_CTRL register. 

5. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers:

a. Specify the data frame width. This should always be 8 for EZSPI and CMD_RESP.

b. Specify whether MSb or LSb is the first bit to be transmitted/received. This should always be MSb first for EZSPI and
CMD_RESP.

6. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers respec-
tively, as shown in SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL registers. Only for FIFO mode.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift registers.

7. Enable the block (write a ‘1’ to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control bits should
not be changed. Changes should be made after disabling the block; for example, to modify the operation mode (from
Motorola mode to TI mode) or to go from externally clocked to internally clocked operation. The change takes effect only

CPOL: 0 , CPHA: 0

spi_clk

spi_ mosi
MSb LSb

spi_ select

spi_ miso
MSb LSb

late MISO sample

normal MISO sample

tSCLK tSCLK_PCB_D tDSO tSCLK_PCB_D tDSI+ + +



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 302

Serial Communications Block (SCB)

after the block is re-enabled. Note: Re-enabling the block causes re-initialization and the associated state is lost (for
example, FIFO content).

27.3.7 I/O Pad Connection

27.3.7.1 SPI Master

Figure 27-11 and Table 27-4 list the use of the I/O pads for SPI Master. 

Figure 27-11.  SPI Master I/O Pad Connections

Normal
output mode

spi_ctlspi_clk_out_en

spi_clk_out

spi_clk_inspi_clk

Input only

spi_miso spi_miso_in

0

don t care

spi_clk_out

spi_clk_out_en

spi_clk_in

spi_miso_out_en

spi_miso_out

spi_miso_in

Normal
output mode

spi_select_out_en

spi_select_out

spi_select_inspi_select

spi_select_out

spi_select_out_en

spi_select_in

Normal
output mode

spi_mosi_out_en

spi_mosi_out

spi_mosi_in
spi_mosi

spi_mosi_out

spi_mosi_out_en

spi_mosi_in

spi_ctl

spi_ctl

spi_ctl

Table 27-4.  SPI Master I/O Pad Connection Usage

I/O Pads Drive Mode On-chip I/O Signals Usage 

spi_clk Normal output mode
spi_clk_out_en 

spi_clk_out
Transmit a clock signal

spi_select Normal output mode
spi_select_out_en 

spi_select_out
Transmit a select signal

spi_mosi Normal output mode
spi_mosi_out_en 

spi_mosi_out
Transmit a data element

spi_miso Input only spi_miso_in Receive a data element



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 303

Serial Communications Block (SCB)

27.3.7.2 SPI Slave

Figure 27-12 and Table 27-5 list the use of I/O pads for SPI Slave. 

Figure 27-12.  SPI Slave I/O Pad Connections

Open_Drain is set in the TX_CTRL register. In this mode the SPI MISO pin is actively driven low, and then high-z for driving
high. This means an external pull-up is required for the line to go high. This mode is useful when there are multiple slaves on
the same line. This helps to avoid bus contention issues. 

27.3.7.3 Glitch Avoidance at System Reset

The SPI outputs are in high-impedance digital state when the device is coming out of system reset. This can cause glitches
on the outputs. This is important if you are concerned with SPI master SS0 – SS3 or SCLK output pins activity at either device
startup or when coming out of Hibernate mode. External pull-up or pull-down resistor can be connected to the output pin to
keep it in the inactive state.

Table 27-5.  SPI Slave I/O Signal Description

I/O Pads Drive Mode On-chip I/O Signals Usage

spi_clk Input mode spi_clk_in Receive a clock signal

spi_select Input mode spi_select_in Receive a select signal

spi_mosi Input mode spi_mosi_in Receive a data element

spi_miso Normal output mode
spi_miso_out_en 
spi_miso_out

Transmit a data element

Input only

spi_ctl0

don t care

spi_clk_in
spi_clk

Normal output mode
Or

Open-drain mode

spi_miso
spi_miso_in

spi_clk_out

spi_clk_out_en

spi_clk_in

spi_miso_out_en

spi_miso_out

spi_miso_in

Input only

0

don t care

spi_select_in
spi_select

spi_select_out

spi_select_out_en

spi_select_in

Input only

0

don t care

spi_mosi_in
spi_mosi

spi_mosi_out

spi_mosi_out_en

spi_mosi_in

spi_ec_miso_out_en

spi_ec_miso_out

i2c_ic_block_ec

spi_ctl

spi_ctl

spi_ctl

spi_ec_ctl



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 304

Serial Communications Block (SCB)

27.3.8 SPI Registers

The SPI interface is controlled using a set of 32-bit control and status registers listed in Table 27-6. Some of these registers
are used specifically with the Deep Sleep SCB; for more information on these registers, see the registers TRM.

Table 27-6.  SPI Registers

Register Name Operation

SCB_CTRL Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and externally 
clocked operation, and EZ and non-EZ modes of operation.

SCB_STATUS (Deep Sleep 
SCB only)

In EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ memory.

SCB_SPI_CTRL
Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and clock-
based submodes in Motorola SPI (modes 0,1,2,3), selects the type of SS signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy and sets the SPI slave EZ address in the internally clocked mode.

SCB_TX_CTRL Specifies the data frame width and specifies whether MSb or LSb is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides 
whether a median filter is to be used on the input interface lines.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE opera-
tion of the transmitter FIFO. 

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data frame read from the receiver FIFO. Reading a data frame removes the data frame from the 
FIFO - behavior is similar to that of a POP operation. This register has a side effect when read by software: 
a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data frame read from the receiver FIFO. Reading a data frame does not remove the data frame 
from the FIFO; behavior is similar to that of a PEEK operation.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
whether the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_EZ_DATA (Deep Sleep 
SCB only)

Holds the data in EZ memory location 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 305

Serial Communications Block (SCB)

27.4 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART
interface consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

Additionally, two side-band signals are used to implement
flow control in UART. Note that the flow control applies only
to TX functionality. 

■ Clear to Send (CTS): This is an input signal to the
transmitter. When active, the receiver signals to the
transmitter that it is ready to receive.

■ Ready to Send (RTS): This is an output signal from the
receiver. When active, it indicates that the receiver is
ready to receive data.

Not all SCBs support UART mode; refer to the device
datasheet for details.

27.4.1 Features

■ Supports UART protocol

❐ Standard UART

❐ Multi-processor mode

■ SmartCard (ISO7816) reader

■ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

❐ Baud rate detection

❐ Collision detection (ability to detect that a driven bit 
value is not reflected on the bus, indicating that 
another component is driving the same bus)

■ Data frame size programmable from 4 to 16 bits

■ Programmable number of STOP bits, which can be set
in terms of half bit periods between 1 and 4 

■ Parity support (odd and even parity)

■ Median filter on RX input 

■ Programmable oversampling

■ Start skipping

■ Hardware flow control 

27.4.2 General Description

Figure 27-13 illustrates a standard UART TX and RX.

Figure 27-13.  UART Example

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start and
stop bits indicate the start and end of data transmission. The
parity bit is sent by the transmitter and is used by the
receiver to detect single bit errors. Because the interface
does not have a clock (asynchronous), the transmitter and
receiver use their own clocks; thus, the transmitter and
receiver need to agree on the baud rate.

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop, and parity bits. The
number of stop bits can be in the range of 1 to 4. The parity
bit can be either enabled or disabled. If enabled, the type of
parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled.

Note: UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes. UART also supports only the
FIFO buffer mode.

27.4.3 UART Modes of Operation

27.4.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always ‘0’, the data bits values are dependent on
the data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and
the stop bit value is ‘1’. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is ‘1’ – the same value as the stop bits. 

Because the interface does not have a clock, the transmitter
and receiver must agree upon the baud rate. The transmitter
and receiver have their own internal clocks. The receiver
clock runs at a higher frequency than the bit transfer
frequency, such that the receiver may oversample the
incoming signal. 

The transition of a stop bit to a start bit is represented by a
change from ‘1’ to ‘0’ on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of
frequency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size. 

The stop period or the amount of stop bits between
successive data transfers is typically agreed upon between
transmitter and receiver, and is typically in the range of 1 to
3-bit transfer periods. 

UART UART

Tx

Rx
Tx

Rx



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 306

Serial Communications Block (SCB)

Figure 27-14 illustrates the UART protocol.

Figure 27-14.  UART, Standard Protocol Example

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver’s clock) is used. Figure 27-15 illustrates this. 

Figure 27-15.  UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver’s clock) are used for a majority vote
to increase accuracy; this is enabled by enabling the MEDIAN filter in the SCB_RX_CTRL register. Figure 27-16 illustrates
this.

Figure 27-16.  UART, Standard Protocol (Multiple Samples)

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
Tx / Rx : Transmit or Receive line

Tx / Rx

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

Tx clock

Rx clock

Tx / Rx

LEGEND:
Tx / Rx : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

Tx clock

Rx clock

Tx / Rx

LEGEND:
Tx / Rx : Transmit or Receive line



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 307

Serial Communications Block (SCB)

Parity

This functionality adds a parity bit to the data frame and is used to identify single-bit data frame errors. The parity bit is always
directly after the data frame bits.

The transmitter calculates the parity bit (when UART_TX_CTRL.PARITY_ENABLED is 1) from the data frame bits, such that
data frame bits and parity bit have an even (UART_TX_CTRL.PARITY is 0) or odd (UART_TX_CTRL.PARITY is 1) parity. The
receiver checks the parity bit (when UART_RX_CTRL.PARITY_ENABLED is 1) from the received data frame bits, such that
data frame bits and parity bit have an even (UART_RX_CTRL.PARITY is 0) or odd (UART_RX_CTRL.PARITY is 1) parity.

Parity applies to both TX and RX functionality and dedicated control fields are available.

■ Transmit functionality: UART_TX_CTRL.PARITY and UART_TX_CTRL.PARITY_ENABLED.

■ Receive functionality: UART_RX_CTRL.PARITY and UART_RX_CTRL.PARITY_ENABLED.

When a receiver detects a parity error, the data frame is either put in RX FIFO
(UART_RX_CTRL.DROP_ON_PARITY_ERROR is 0) or dropped (UART_RX_CTRL.DROP_ON_PARITY_ERROR is 1).

The following figures illustrate the parity functionality (8-bit data frame).

Figure 27-17.  UART Parity Examples

Start Skipping

Start skipping applies only to receive functionality. The standard UART mode supports “start skipping”. Regular receive
operation synchronizes on the START bit period (a 1 to 0 transition on the UART RX line), start skipping receive operation
synchronizes on the first received data frame bit, which must be a ‘1’ (a 0 to 1 transition on UART RX).

Start skipping is used to allow for wake up from system Deep Sleep mode using UART. The process is described as follows:

1. Before entering Deep Sleep power mode, UART receive functionality is disabled and the GPIO is programmed to set an 
interrupt cause to ‘1’ when UART RX line has a ‘1’ to ‘0’ transition (START bit).

2. While in Deep Sleep mode, the UART receive functionality is not functional.

3. The GPIO interrupt is activated on the START bit and the system transitions from Deep Sleep to Active power mode.

4. The CPU enables UART receive functionality, with UART_RX_CTRL.SKIP_START bitfield set to ‘1’.

5. The UART receiver synchronizes data frame receipt on the next ‘0’ to ‘1’ transition. If the UART receive functionality is 
enabled in time, this is the transition from the START bit to the first received data frame bit.

6. The UART receiver proceeds with normal operation; that is, synchronization of successive data frames is on the START 
bit period.

Figure 27-18 illustrates the process.

uart_tx/uart_rx

parity enabled, even parity

STOPSTARTSTOP 1 0 1 0 1 0 1 0 0

P

1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit

uart_tx/uart_rx

parity enabled, even parity

STOPSTARTSTOP 1 1 1 0 1 0 1 0 1

P

uart_tx/uart_rx

parity enabled, odd parity

STOPSTARTSTOP 1 0 1 0 1 0 1 0 1

P

uart_tx/uart_rx

parity enabled, odd parity

STOPSTARTSTOP 1 1 1 0 1 0 1 0 0

P



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 308

Serial Communications Block (SCB)

Figure 27-18.  UART Start Skip and Wakeup from Deep Sleep

Note that the above process works only for lower baud rates. The Deep Sleep to Active power mode transition and CPU
enabling the UART receive functionality should take less than 1-bit period to ensure that the UART receiver is active in time to
detect the ‘0’ to ‘1’ transition.

In step 4 of the above process, the firmware takes some time to finish the wakeup interrupt routine and enable the UART
receive functionality before the block can detect the input rising edge on the UART RX line. 

If the above steps cannot be completed in less than 1 bit time, first send a “dummy” byte to the device to wake it up before
sending real UART data. In this case, the SKIP_START bit can be left as 0. For more information on how to perform this in
firmware, visit the UART section of the PDL.

Break Detection

Break detection is supported in the standard UART mode. This functionality detects when UART RX line is low (0) for more
than UART_RX_CTRL.BREAK_WIDTH bit periods. The break width should be larger than the maximum number of low (0) bit
periods in a regular data transfer, plus an additional 1-bit period. The additional 1-bit period is a minimum requirement and
preferably should be larger. The additional bit periods account for clock inaccuracies between transmitter and receiver.

For example, for an 8-bit data frame with parity support, the maximum number of low (0) bit periods is 10 (START bit, 8 ‘0’
data frame bits, and one ‘0’ parity bit). Therefore, the break width should be larger than 10 + 1 = 11
(UART_RX_CTRL.BREAK_WIDTH can be set to 11).

Note that the break detection applies only to receive functionality. A UART transmitter can generate a break by temporarily
increasing TX_CTRL.DATA_WIDTH and transmitting an all zeroes data frame. A break is used by the transmitter to signal a
special condition to the receiver. This condition may result in a reset, shut down, or initialization sequence at the receiver.

Break detection is part of the LIN protocol. When a break is detected, the INTR_RX.BREAK_DETECT interrupt cause is set
to ‘1’. Figure 27-19 illustrates a regular data frame and break frame (8-bit data frame, parity support, and a break width of 12-
bit periods).

Figure 27-19.  UART – Regular Frame and Break Frame

uart_rx

1st bit

STARTIDLE/STOP D

1 Setup IOSS/GPIO

power mode Active ActiveDeep SleepA -> DS DS -> A

5

3 IOSS/GPIO wake up interrupt

4 CPU enables Rx functionality

UART RX synchronizes2 UART not operational

START

6
UART Rx 
synchronizes

uart_rx

Regular frame

1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit

STOPSTARTSTOP

7th bit 8th bit 9th bit

Break frame (12 low/0-bit periods)

uart_rx STOPSTARTSTOP

D D D D D D D D P

 

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 309

Serial Communications Block (SCB)

Flow Control

The standard UART mode supports flow control. Modem flow control controls the pace at which the transmitter transfers data
to the receiver. Modem flow control is enabled through the UART_FLOW_CTRL.CTS_ENABLED register field. When this
field is ‘0’, the transmitter transfers data when its TX FIFO is not empty. When ‘1’, the transmitter transfers data when UART
CTS line is active and its TX FIFO is not empty.

Note that the flow control applies only to TX functionality. Two UART side-band signal are used to implement flow control:

■ UART RTS (uart_rts_out): This is an output signal from the receiver. When active, it indicates that the receiver is ready to
receive data (RTS: Ready to Send).

■ UART CTS (uart_cts_in): This is an input signal to the transmitter. When active, it indicates that the transmitter can trans-
fer data (CTS: Clear to Send).

The receiver’s uart_rts_out signal is connected to the transmitter’s uart_cts_in signal. The receiver’s uart_rts_out signal is de-
rived by comparing the number of used receive FIFO entries with the UART_FLOW_CTRL.TRIGGER_LEVEL field. If the
number of used receive FIFO entries are less than UART_FLOW_CTRL.TRIGGER_LEVEL, uart_rts_out is activated.

Typically, the UART side-band signals are active low. However, sometimes active high signaling is used. Therefore, the
polarity of the side-band signals can be controlled using bitfields UART_FLOW_CTRL.RTS_POLARITY and
UART_FLOW_CTRL.CTS_POLARITY. Figure 27-20 gives an overview of the flow control functionality.

Figure 27-20.  UART Flow Control Connection

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with single-master-multi-slave topology, as Figure 27-21 shows. This mode
is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART mode. 

Figure 27-21.  UART MP Mode Bus Connections

The main properties of UART_MP mode are: 

■ Single master with multiple slave concept (multi-drop network).

■ Each slave is identified by a unique address.

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when
set low it indicates a data byte. A data frame is illustrated in Figure 27-22.

■ Parity bit is disabled.

uart_rx_ctl

Rx FIFO

Transmitter (Tx) 

< uart_rts_out

UART_FLOW_CTRL.RTS_POLARITY

uart_rx_in

uart_tx_ctl

uart_cts_in

UART_FLOW_CTRL.CTS_POLARITY

UART_FLOW_CTRL.TRIGGER_LEVEL[]

uart_tx_out

Tx FIFO

UART_FLOW_CTRL.CTS_ENABLED

Receiver (Rx)

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

Tx

RxTx TxTx

Rx

RxRx

Master Tx

Master Rx



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 310

Serial Communications Block (SCB)

Figure 27-22.  UART MP Address and Data Frame

The SCB can be used as either master or slave device in UART_MP mode. Both SCB_TX_CTRL and SCB_RX_CTRL
registers should be set to 9-bit data frame size. When the SCB works as UART_MP master device, the firmware changes the
MP flag for every address or data frame. When it works as UART_MP slave device, the MP_MODE field of the
SCB_UART_RX_CTRL register should be set to ‘1’. The SCB_RX_MATCH register should be set for the slave address and
address mask. The matched address is written in the RX_FIFO when ADDR_ACCEPT field of the SCB_CTRL register is set
to ‘1’. If the received address does not match its own address, then the interface ignores the following data, until next address
is received for compare.

Configuring the SCB as Standard UART Interface

To configure the SCB as a standard UART interface, set various register bits in the following order:

1. Configure the SCB as UART interface by writing ‘10b’ to the MODE field (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a Standard protocol by writing ‘00’ to the MODE field (bits [25:24]) of the 
SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write ‘1’ to the MP_MODE (bit 10) or LIN_MODE (bit 12) respectively 
of the SCB_UART_RX_CTRL register.

4. Follow steps 2 to 4 described in “Enabling and Initializing the UART” on page 315.

For more information on these registers, see the registers TRM.

27.4.3.2 UART Local Interconnect Network (LIN) Mode

The LIN protocol is supported by the SCB as part of the standard UART. LIN is designed with single-master-multi-slave
topology. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports both LIN master and
slave functionality. The LIN specification defines both physical layer (layer 1) and data link layer (layer 2). Figure 27-23
illustrates the UART_LIN and LIN transceiver.

Figure 27-23.  UART_LIN and LIN Transceiver

LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet to initiate a LIN transfer. 

■ Slave task: This task involves transmitting or receiving a response.

The master node supports master task and slave task; the slave node supports only slave task, as shown in Figure 27-24. 

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

Tx Rx Tx Rx

LIN BUS

UART LIN

LIN Transceiver

Tx Rx



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 311

Serial Communications Block (SCB)

Figure 27-24.  LIN Bus Nodes and Tasks

LIN Frame Structure

LIN is based on the transmission of frames at pre-determined moments of time. A frame is divided into header and response
fields, as shown in Figure 27-25.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value ‘0’).

❐ Sync field (a 0x55 byte frame). A sync field can be used to synchronize the clock of the slave task with that of the mas-
ter task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

Figure 27-25.  LIN Frame Structure

In LIN protocol communication, the least significant bit (LSb) of the data is sent first and the most significant bit (MSb) last.
The start bit is encoded as zero and the stop bit is encoded as one. The following sections describe all the byte fields in the
LIN frame.

Break Field

Every new frame starts with a break field, which is always generated by the master. The break field has logical zero with a
minimum of 13 bit times and followed by a break delimiter. The break field structure is as shown in Figure 27-26.

Figure 27-26.  LIN Break Field

Sync Field

This is the second field transmitted by the master in the header field; its value is 0x55. A sync field can be used to synchronize
the clock of the slave task with that of the master task for automatic baud rate detection. Figure 27-27 shows the LIN sync
field structure.

Figure 27-27.  LIN Sync Field

Master Node

Master Task

Slave Task

Slave Node Slave Node

LIN bus

Slave Task Slave Task



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 312

Serial Communications Block (SCB)

Protected Identifier (PID) Field

A protected identifier field consists of two sub-fields: the
frame identifier (bits 0-5) and the parity (bit 6 and bit 7). The
PID field structure is shown in Figure 27-28.

■ Frame identifier: The frame identifiers are divided into
three categories

❐ Values 0 to 59 (0x3B) are used for signal carrying 
frames

❐ 60 (0x3C) and 61 (0x3D) are used to carry diagnostic 
and configuration data

❐ 62 (0x3E) and 63 (0x3F) are reserved for future pro-
tocol enhancements

■ Parity: Frame identifier bits are used to calculate the
parity

Figure 27-28 shows the PID field structure.

Figure 27-28.  PID Field

Data.  In LIN, every frame can carry a minimum of one byte
and maximum of eight bytes of data. Here, the LSb of the
data byte is sent first and the MSb of the data byte is sent
last.

Checksum.  The checksum is the last byte field in the LIN
frame. It is calculated by inverting the 8-bit sum along with
carryover of all data bytes only or the 8-bit sum with the
carryover of all data bytes and the PID field. There are two
types of checksums in LIN frames. They are:

■ Classic checksum: the checksum calculated over all the
data bytes only (used in LIN 1.x slaves).

■ Enhanced checksum: the checksum calculated over all
the data bytes along with the protected identifier (used in
LIN 2.x slaves).

LIN Frame Types

The type of frame refers to the conditions that need to be
valid to transmit the frame. According to the LIN
specification, there are five different types of LIN frames. A
node or cluster does not have to support all frame types.

Unconditional Frame.  These frames carry the signals and
their frame identifiers (of 0x00 to 0x3B range). The
subscriber will receive the frames and make it available to
the application; the publisher of the frame will provide the
response to the header.

Event-Triggered Frame.  The purpose of an event-
triggered frame is to increase the responsiveness of the LIN
cluster without assigning too much of the bus bandwidth to
polling of multiple slave nodes with seldom occurring events.
Event-triggered frames carry the response of one or more

unconditional frames. The unconditional frames associated
with an event triggered frame should:

■ Have equal length

■ Use the same checksum model (either classic or
enhanced)

■ Reserve the first data field to its protected identifier

■ Be published by different slave nodes

■ Not be included directly in the same schedule table as
the event-triggered frame

Sporadic Frame.  The purpose of the sporadic frames is to
merge some dynamic behavior into the schedule table
without affecting the rest of the schedule table. These
frames have a group of unconditional frames that share the
frame slot. When the sporadic frame is due for transmission,
the unconditional frames are checked whether they have
any updated signals. If no signals are updated, no frame will
be transmitted and the frame slot will be empty.

Diagnostic Frames.  Diagnostic frames always carry
transport layer, and contains eight data bytes.

The frame identifier for diagnostic frame is:

■ Master request frame (0x3C), or

■ Slave response frame (0x3D)

Before transmitting a master request frame, the master task
queries its diagnostic module to see whether it will be
transmitted or whether the bus will be silent. A slave
response frame header will be sent unconditionally. The
slave tasks publish and subscribe to the response according
to their diagnostic modules.

Reserved Frames.  These frames are reserved for future
use; their frame identifiers are 0x3E and 0x3F.

LIN Go-To-Sleep and Wake-Up

The LIN protocol has the feature of keeping the LIN bus in
Sleep mode, if the master sends the go-to-sleep command.
The go-to-sleep command is a master request frame (ID =
0x3C) with the first byte field is equal to 0x00 and rest set to
0xFF. The slave node application may still be active after the
go-to-sleep command is received. This behavior is
application specific. The LIN slave nodes automatically
enter Sleep mode if the LIN bus inactivity is more than four
seconds.

Wake-up can be initiated by any node connected to the LIN
bus – either LIN master or any of the LIN slaves by forcing
the bus to be dominant for 250 µs to 5 ms. Each slave
should detect the wakeup request and be ready to process
headers within 100 ms. The master should also detect the
wakeup request and start sending headers when the slave
nodes are active.

To support LIN, a dedicated (off-chip) line driver/receiver is
required. Supply voltage range on the LIN bus is 7 V to 18 V.

 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 313

Serial Communications Block (SCB)

Typically, LIN line drivers will drive the LIN line with the value
provided on the SCB TX line and present the value on the
LIN line to the SCB RX line. By comparing TX and RX lines
in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX
register).

27.4.3.3 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with
single-master-single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more
information, refer to the ISO7816 Specification. Only the
master (reader) function is supported by the SCB. This
block provides the basic physical layer support with
asynchronous character transmission. The UART_TX line is
connected to SmartCard I/O line by internally multiplexing
between UART_TX and UART_RX control modules.

The SmartCard transfer is similar to a UART transfer, with
the addition of a negative acknowledgement (NACK) that

may be sent from the receiver to the transmitter. A NACK is
always ‘0’. Both master and slave may drive the same line,
although never at the same time. 

A SmartCard transfer has the transmitter drive the start bit
and data bits (and optionally a parity bit). After these bits, it
enters its stop period by releasing the bus. Releasing results
in the line being ‘1’ (the value of a stop bit). After one bit
transfer period into the stop period, the receiver may drive a
NACK on the line (a value of ‘0’) for one bit transfer period.
This NACK is observed by the transmitter, which reacts by
extending its stop period by one bit transfer period. For this
protocol to work, the stop period should be longer than one
bit transfer period. Note that a data transfer with a NACK
takes one bit transfer period longer, than a data transfer
without a NACK. Typically, implementations use a tristate
driver with a pull-up resistor, such that when the line is not
transmitting data or transmitting the Stop bit, its value is ‘1’.

Figure 27-29 illustrates the SmartCard protocol.

Figure 27-29.  SmartCard Example

The communication Baud rate while using SmartCard is given as:

Baud rate = Fscbclk/Oversample

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set various register bits in the following order; note that ModusToolbox
does all this automatically with the help of GUIs. For more information on these registers, see the registers TRM.

1. Configure the SCB as UART interface by writing ‘10b’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a SmartCard protocol by writing ‘01’ to the MODE (bits [25:24]) of the 
SCB_UART_CTRL register.

3. Follow steps 2 to 4 described in “Enabling and Initializing the UART” on page 315.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7 data bits, 1 parity bit, 2 stop bits) without NACK
Tx / Rx

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
Tx / Rx : Transmit or Receive line

Tx / Rx

STOPNACK

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 314

Serial Communications Block (SCB)

27.4.3.4 Infrared Data Association (IrDA)

The SCB supports the IrDA protocol for data rates of up to 115.2 kbps using the UART interface. It supports only the basic
physical layer of IrDA protocol with rates less than 115.2 kbps. Hence, the system instantiating this block must consider how
to implement a complete IrDA communication system with other available system resources.

The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are modulated. At the receiver,
bits are demodulated. The modulation scheme uses a Return-to-Zero-Inverted (RZI) format. A bit value of ‘0’ is signaled by a
short ‘1’ pulse on the line and a bit value of ‘1’ is signaled by holding the line to ‘0’. For these data rates (<=115.2 kbps), the
RZI modulation scheme is used and the pulse duration is 3/16 of the bit period. The sampling clock frequency should be set
16 times the selected baud rate, by configuring the SCB_OVS field of the SCB_CTRL register. In addition, the PSoC 6 MCU
SCB supports a low-power IrDA receiver mode, which allows it to detect pulses with a minimum width of 1.41 µs. 

Different communication speeds under 115.2 kbps can be achieved by configuring clk_scb frequency. Additional allowable
rates are 2.4 kbps, 9.6 kbps, 19.2 kbps, 38.4 kbps, and 57.6 kbps. Figure 27-30 shows how a UART transfer is IrDA
modulated.

Figure 27-30.  IrDA Example

Configuring the SCB as a UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various register bits in the following order; note that ModusToolbox does
all this automatically with the help of GUIs. For more information on these registers, see the registers TRM.

1. Configure the SCB as a UART interface by writing ‘10b’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as IrDA protocol by writing ‘10’ to the MODE (bits [25:24]) of the SCB_UART_C-
TRL register.

3. Enable the Median filter on the input interface line by writing ‘1’ to MEDIAN (bit 9) of the SCB_RX_CTRL register.

4. Configure the SCB as described in “Enabling and Initializing the UART” on page 315.

PARIDLE START STOP START

Two successive data transfers (7 data bits, 1 parity bit, 2 stop bits)
Tx / Rx

IrDA
Tx / Rx

LEGEND:
Tx / Rx : Transmit or Receive line



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 315

Serial Communications Block (SCB)

27.4.4 Clocking and Oversampling

The UART protocol is implemented using clk_scb as an
oversampled multiple of the baud rate. For example, to
implement a 100-kHz UART, clk_scb could be set to 1 MHz
and the oversample factor set to ‘10’. The oversampling is
set using the SCB_CTRL.OVS register field. The
oversampling value is SCB_CTRL.OVS + 1. In the UART
standard sub-mode (including LIN) and the SmartCard sub-
mode, the valid range for the OVS field is [7, 15].

In UART transmit IrDA sub-mode, this field indirectly
specifies the oversampling. Oversampling determines the
interface clock per bit cycle and the width of the pulse. This
sub-mode has only one valid OVS value–16 (which is a
value of 0 in the OVS field of the SCB_CTRL register); the
pulse width is roughly 3/16 of the bit period (for all bit rates). 

In UART receive IrDA sub-mode (1.2, 2.4, 9.6, 19.2, 38.4,
57.6, and 115.2 kbps), this field indirectly specifies the
oversampling. In normal transmission mode, this pulse is
approximately 3/16 of the bit period (for all bit rates). In low-
power transmission mode, this pulse is potentially smaller
(down to 1.62 µs typical and 1.41 µs minimal) than 3/16 of
the bit period (for less than 115.2 kbps bit rates). 

Pulse widths greater than or equal to two SCB input clock
cycles are guaranteed to be detected by the receiver. Pulse
widths less than two clock cycles and greater than or equal
to one SCB input clock cycle may be detected by the
receiver. Pulse widths less than one SCB input clock cycle
will not be detected by the receiver. Note that the
SCB_RX_CTRL.MEDIAN should be set to ‘1’ for IrDA
receiver functionality. 

The SCB input clock and the oversampling together
determine the IrDA bit rate. Refer to the registers TRM for
more details on the OVS values for different baud rates. 

27.4.5 Enabling and Initializing the UART

The UART must be programmed in the following order:

1. Program protocol specific information using the
UART_TX_CTRL, UART_RX_CTRL, and
UART_FLOW_CTRL registers. This includes selecting
the submodes of the protocol, transmitter-receiver
functionality, and so on. 

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL
registers.

a. Specify the data frame width.

b. Specify whether MSb or LSb is the first bit to be
transmitted or received.

3. Program the transmitter and receiver FIFOs using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL
registers, respectively. 

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

4. Enable the block (write a ‘1’ to the ENABLE bit of the
SCB_CTRL register). After the block is enabled, control
bits should not be changed. Changes should be made
after disabling the block; for example, to modify the
operation mode (from SmartCard to IrDA). The change
takes effect only after the block is re-enabled. Note that
re-enabling the block causes re-initialization and the
associated state is lost (for example FIFO content).



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 316

Serial Communications Block (SCB)

27.4.6 I/O Pad Connection

27.4.6.1 Standard UART Mode

Figure 27-31 and Table 27-7 list the use of the I/O pads for the Standard UART mode. 

Figure 27-31.  Standard UART Mode I/O Pad Connections

27.4.6.2 SmartCard Mode

Figure 27-32 and Table 27-8 list the use of the I/O pads for the SmartCard mode. 

Figure 27-32.  SmartCard Mode I/O Pad Connections

Table 27-7.  UART I/O Pad Connection Usage

I/O Pads Drive Mode On-chip I/O Signals Usage

uart_tx Normal output mode
uart_tx_out_en

uart_tx_out
Transmit a data element

uart_rx Input only uart_rx_in Receive a data element

uart_rx_ctl

Normal
output mode

uart_tx_ctl1

uart_tx_out

uart_tx_inuart_tx

Input only

uart_rx uart_rx_in

0

don t care

uart_tx_out

uart_tx_out_en

uart_tx_in

uart_rx_out_en

uart_rx_out

uart_rx_in

Table 27-8.  SmartCard Mode I/O Pad Connections

I/O Pads Drive Mode
On-chip I/O 

Signals
Usage

uart_tx
Open drain with 
pull-up

uart_tx_in
Used to receive a data element.

Receive a negative acknowledge-ment of a transmitted data element

uart_tx_out_en
uart_tx_out

Transmit a data element.

Transmit a negative acknowledgement to a received data element.

Open drain
(pull-up)

uart_tx_out_en

uart_tx_out

uart_tx_in
uart_tx

uart_tx_ctl

uart_rx_ctluart_rx_out_en

uart_rx_out

uart_rx_in

uart_tx_in

uart_tx_out

uart_tx_out_en



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 317

Serial Communications Block (SCB)

27.4.6.3 LIN Mode

Figure 27-33 and Table 27-9 list the use of the I/O pads for LIN mode. 

Figure 27-33.  LIN Mode I/O Pad Connections

27.4.6.4 IrDA Mode

Figure 27-34 and Table 27-10 list the use of the I/O pads for IrDA mode. 

Figure 27-34.  IrDA Mode I/O Pad Connections

Table 27-9.  LIN Mode I/O Pad Connections

I/O Pads Drive Mode
On-chip I/O 

Signals
Usage

uart_tx
Normal output 
mode

uart_tx_out_en
uart_tx_out

Transmit a data element.

uart_rx Input only uart_rx_in Receive a data element.

Normal
output mode

uart_tx_ctl1

uart_tx_out

uart_tx_inuart_tx

Input only

uart_rx
uart_rx_in

0

don t care

uart_rx_ctl

uart_tx_out

uart_tx_out_en

uart_tx_in

uart_rx_out_en

uart_rx_out

uart_rx_in

LIN 
transceiver 

chip

LIN

Table 27-10.  IrDA Mode I/O Pad Connections

I/O Pads Drive Mode
On-chip I/O 

Signals
Usage

uart_tx
Normal output 
mode

uart_tx_out_en
uart_tx_out

Transmit a data element.

uart_rx Input only uart_rx_in Receive a data element.

Normal
output mode

uart_tx_ctl1

uart_tx_out

uart_tx_in
uart_tx

Input only

uart_rx
uart_rx_in

0

don t care

uart_rx_ctl

uart_tx_out

uart_tx_out_en

uart_tx_in

uart_rx_out_en

uart_rx_out

uart_rx_in

IrDA 
transducer 

module

IrDA



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 318

Serial Communications Block (SCB)

27.4.7 UART Registers

The UART interface is controlled using a set of 32-bit registers listed in Table 27-11. For more information on these registers,
see the registers TRM.

Table 27-11.  UART Registers

Register Name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL
Used to select the sub-modes of UART (standard UART, SmartCard, IrDA), also used for local loop back 
control.

SCB_UART_RX_STATUS
Used to specify the BR_COUNTER value that determines the bit period. This is used to set the accuracy 
of the SCB clock. This value provides more granularity than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL
Used to specify the number of stop bits, enable parity, select the type of parity, and enable retransmission 
on NACK.

SCB_UART_RX_CTRL
Performs same function as SCB_UART_TX_CTRL but is also used for enabling multi processor mode, 
LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL Used to specify the data frame width and to specify whether MSb or LSb is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides 
whether a median filter is to be used on the input interface lines.

SCB_UART_FLOW_CONTROL Configures flow control for UART transmitter.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 319

Serial Communications Block (SCB)

27.5 Inter Integrated Circuit (I2C)

This section explains the I2C implementation in the PSoC 6 MCU. For more information on the I2C protocol specification, refer
to the I2C-bus specification available on the NXP website.

27.5.1 Features

This block supports the following features:

■ Master, slave, and master/slave mode

■ Standard-mode (100 kbps), fast-mode (400 kbps), and fast-mode plus (1000 kbps) data-rates

■ 7-bit slave addressing

■ Clock stretching

■ Collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Auto ACK when RX FIFO not full, including address

■ General address detection

■ FIFO Mode

■ EZ and CMD_RESP modes

27.5.2 General Description

Figure 27-35 illustrates an example of an I2C communication network.

Figure 27-35.  I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the following lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collector or open-drain output stages, with pull-up resistors (Rp). A
simple master/slave relationship exists between devices. Masters and slaves can operate as either transmitter or receiver.
Each slave device connected to the bus is software addressable by a unique 7-bit address. 

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

http://www.nxp.com


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 320

Serial Communications Block (SCB)

27.5.3 External Electrical Connections

As shown in Figure 27-36, the I2C bus requires external pull-up resistors. The pull-up resistors (RP) are primarily determined
by the supply voltage, bus speed, and bus capacitance. For detailed information on how to calculate the optimum pull-up
resistor value for your design Cypress recommends using the UM10204 I2C-bus specification and user manual Rev. 6,
available from the NXP website at www.nxp.com.

Figure 27-36.  Connection of Devices to the I2C Bus

For most designs, the default values shown inTable 27-12 provide excellent performance without any calculations. The
default values were chosen to use standard resistor values between the minimum and maximum limits. 

These values work for designs with 1.8 V to 5.0 V VDD, less than 200 pF bus capacitance (CB), up to 25 µA of total input
leakage (IIL), up to 0.4 V output voltage level (VOL), and a max VIH of 0.7 * VDD. Calculation of custom pull-up resistor values
is required if your design does not meet the default assumptions, you use series resistors (RS) to limit injected noise, or you
want to maximize the resistor value for low power consumption. Calculation of the ideal pull-up resistor value involves finding
a value between the limits set by three equations detailed in the NXP I2C specification. These equations are:

Equation 27-4

Equation 27-5

Equation 27-6

Equation parameters:

■ VDD = Nominal supply voltage for I2C bus

■ VOL = Maximum output low voltage of bus devices

■ IOL= Low-level output current from I2C specification

■ TR = Rise time of bus from I2C specification

■ CB = Capacitance of each bus line including pins and PCB traces

■ VIH = Minimum high-level input voltage of all bus devices

■ VNH = Minimum high-level input noise margin from I2C specification

■ IIH = Total input leakage current of all devices on the bus

Table 27-12.  Recommended Default Pull-up Resistor Values

Standard Mode (0 – 100 kbps) Fast Mode (0 – 400 kbps) Fast Mode Plus (0 – 1000 kbps) Units

4.7 k, 5% 1.74 k, 1% 620, 5% 

Device 1

SDA (Serial Data Line)

SCL (Serial Clock Line)

Device 2

Rp Rp

+VDD

pull-up
resistors

RPMIN = (VDD(max) – VOL(max)) / IOL(min)

RPMAX = TR(max) / 0.8473 x CB(max)

RPMAX = VDD(min) – (VIH(min) + VNH(min)) / IIH(max)

http://www.nxp.com


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 321

Serial Communications Block (SCB)

The supply voltage (VDD) limits the minimum pull-up resistor
value due to bus devices maximum low output voltage (VOL)
specifications. Lower pull-up resistance increases current
through the pins and can therefore exceed the spec
conditions of VOH. Equation 26-4 is derived using Ohm's law
to determine the minimum resistance that will still meet the
VOL specification at 3 mA for standard and fast modes, and
20 mA for fast mode plus at the given VDD.

Equation 26-5 determines the maximum pull-up resistance
due to bus capacitance. Total bus capacitance is comprised
of all pin, wire, and trace capacitance on the bus. The higher
the bus capacitance the lower the pull-up resistance
required to meet the specified bus speeds rise time due to
RC delays. Choosing a pull-up resistance higher than
allowed can result in failing timing requirements resulting in
communication errors. Most designs with five of fewer I2C
devices and up to 20 centimeters of bus trace length have
less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor
value is total bus leakage calculated in Equation 26-6. The
primary source of leakage is I/O pins connected to the bus.
If leakage is too high, the pull-ups will have difficulty
maintaining an acceptable VIH level causing communication
errors. Most designs with five or fewer I2C devices on the
bus have less than 10 µA of total leakage current.

27.5.4 Terms and Definitions

Table 27-13 explains the commonly used terms in an I2C
communication network.

27.5.4.1 Clock Stretching

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the
implementation of the I/O signal interface, the SCL line
value will be ‘0’, independent of the values that any other
master or slave may be driving on the SCL line. This is
known as clock stretching and is the only situation in which
a slave drives the SCL line. The master device monitors the
SCL line and detects it when it cannot generate a positive
clock pulse (‘1’) on the SCL line. It then reacts by delaying
the generation of a positive edge on the SCL line, effectively
synchronizing with the slave device that is stretching the
clock. The SCB on the PSoC 6 MCU can and will stretch the
clock. 

27.5.4.2 Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when
master 1 is driving the value ‘1’ on the SDA line and master
2 is driving the value ‘0’ on the SDA line, the actual line
value will be ‘0’ due to the implementation of the I/O signal
interface. Master 1 detects the inconsistency and loses
control of the bus. Master 2 does not detect any
inconsistency and keeps control of the bus.

27.5.5 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-slave
serial interface. Devices operate in either master mode,
slave mode, or master/slave mode. In master/slave mode,
the device switches from master to slave mode when it is
addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the
clock on the SCL line. Table 27-14 illustrates the I2C modes
of operation.

Table 27-13.  Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates 
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control 
the bus at the same time

Arbitration

Procedure to ensure that, if more than one 
master simultaneously tries to control the bus, 
only one is allowed to do so and the winning 
message is not corrupted

Synchronization
Procedure to synchronize the clock signals of 
two or more devices

Table 27-14.  I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 322

Serial Communications Block (SCB)

Table 27-15 lists some common bus events that are part of
an I2C data transfer. The Write Transfer and Read Transfer
sections explain the I2C bus bit format during data transfer.

With all of these modes, there are two types of transfer -
read and write. In write transfer, the master sends data to
slave; in read transfer, the master receives data from slave. 

27.5.5.1 Write Transfer

■ A typical write transfer begins with the master generating

a START condition on the I2C bus. The master then

writes a 7-bit I2C slave address and a write indicator (‘0’)
after the START condition. The addressed slave
transmits an acknowledgment byte by pulling the data
line low during the ninth bit time.

■ If the slave address does not match any of the slave
devices or if the addressed device does not want to
acknowledge the request, it transmits a no
acknowledgment (NACK) by not pulling the SDA line
low. The absence of an acknowledgement, results in an
SDA line value of ‘1’ due to the pull-up resistor
implementation. 

■ If no acknowledgment is transmitted by the slave, the
master may end the write transfer with a STOP event.
The master can also generate a repeated START
condition for a retry attempt.

■ The master may transmit data to the bus if it receives an
acknowledgment. The addressed slave transmits an
acknowledgment to confirm the receipt of every byte of
data written. Upon receipt of this acknowledgment, the
master may transmit another data byte.

■ When the transfer is complete, the master generates a
STOP condition.

Figure 27-37.  Master Write Data Transfer

Table 27-15.  I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while 
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while 
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it 
remains LOW during the HIGH period of the clock 
pulse, after the transmitter transmits each byte. 
This indicates to the transmitter that the receiver 
received the byte properly.

NACK

The receiver does not pull the SDA line LOW and 
it remains HIGH during the HIGH period of clock 
pulse after the transmitter transmits each byte. 
This indicates to the transmitter that the receiver 
did not receive the byte properly.

Repeated 
START

START condition generated by master at the end 
of a transfer instead of a STOP condition

DATA
SDA status change while SCL is LOW (data 
changing), and no change while SCL is HIGH 
(data valid)

M Sb L S bSDA

SCL

START Slave address (7 bits) W rite ACK ACKData (8 b its) STO P

W rite data transfer (M aster w rites the data)

LEG EN D  :

SDA: Seria l Data L ine

SCL: Seria l C lock Line (a lways driven by the m aster)

S lave Transm it / M aster R eceive



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 323

Serial Communications Block (SCB)

27.5.5.2 Read Transfer

Figure 27-38.  Master Read Data Transfer

■ A typical read transfer begins with the master generating
a START condition on the I2C bus. The master then
writes a 7-bit I2C slave address and a read indicator (‘1’)
after the START condition. The addressed slave
transmits an acknowledgment by pulling the data line
low during the ninth bit time.

■ If the slave address does not match with that of the
connected slave device or if the addressed device does
not want to acknowledge the request, a no
acknowledgment (NACK) is transmitted by not pulling
the SDA line low. The absence of an acknowledgment,
results in an SDA line value of ‘1’ due to the pull-up
resistor implementation. 

■ If no acknowledgment is transmitted by the slave, the
master may end the read transfer with a STOP event.
The master can also generate a repeated START
condition for a retry attempt.

■ If the slave acknowledges the address, it starts
transmitting data after the acknowledgment signal. The
master transmits an acknowledgment to confirm the
receipt of each data byte sent by the slave. Upon receipt
of this acknowledgment, the addressed slave may
transmit another data byte.

■ The master can send a NACK signal to the slave to stop
the slave from sending data bytes. This completes the
read transfer.

■ When the transfer is complete, the master generates a
STOP condition.

27.5.6 I2C Buffer Modes

I2C can operate in three different buffered modes – FIFO,
EZ, and CMD_RESP modes. The buffer is used in different
ways in each of the modes. The following subsections
explain each of these buffered modes in detail.

27.5.6.1 FIFO Mode

The FIFO mode has a TX FIFO for the data being
transmitted and an RX FIFO for the data being received.
Each FIFO is constructed out of the SRAM buffer. The
FIFOs are either 64 elements deep with 16-bit data

elements or 128 elements deep with 8-bit data elements.
The width of the data elements are configured using the
CTRL.BYTE_MODE bitfield of the SCB. For I2C, put the
FIFO in BYTE mode because all transactions are a byte
wide. 

The FIFO mode operation is available only in Active and
Sleep power modes, not in the Deep Sleep power mode.
However, on the Deep Sleep-capable SCB the slave
address can be used to wake the device from sleep.

A write access to the transmit FIFO uses register
TX_FIFO_WR. A read access from the receive FIFO uses
register RX_FIFO_RD. 

Transmit and receive FIFO status information is available
through status registers TX_FIFO_STATUS and
RX_FIFO_STATUS. When in debug mode, a read from this
register behaves as a read from the
SCB_RX_FIFO_RD_SILENT register; that is, data will not
be removed from the FIFO.

Each FIFO has a trigger output. This trigger output can be
routed through the trigger mux to various other peripheral on
the device such as DMA or TCPWMs. The trigger output of
the SCB is controlled through the TRIGGER_LEVEL field in
the RX_CTRL and TX_CTRL registers. 

■ For a TX FIFO a trigger is generated when the number 
of entries in the transmit FIFO is less than 
TX_FIFO_CTRL.TRIGGER_LEVEL.

■ For the RX FIFO a trigger is generated when the number
of entries in the FIFO is greater than the
RX_FIFO_CTRL.TRIGGER_LEVEL.

Note that the DMA has a trigger deactivation setting. For the
SCB this should be set to 16. 

Active to Deep Sleep Transition

Before going to deep sleep ensure that all active
communication is complete. This can be done by checking
the BUS_BUSY bit in the I2C_Status register. 

Ensure that the TX and RX FIFOs are empty as any data will
be lost during deep sleep.

MSb LSb

START Slave address (7 bits) Read ACK NACKData (8 bits) STOP

Read data transfer (Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 324

Serial Communications Block (SCB)

Before going to deep sleep the clock to the SCB needs to be
disabled. This can be done by setting the
SDA_IN_FILT_TRIM[1] bit in the I2C_CFG register to ‘0’.

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 0, FIFO Mode.

The following descriptions only apply to slave mode.

Master Write: 

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 0,
I2C_CTRL.S_READY_ADDR_ACK = 1. The clock is
stretched until SDA_IN_FILT_TRIM[1] is set to ‘1’. After
that bit is set to 1, the clock stretch will be released 

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 0,
I2C_CTRL.S_READY_ADDR_ACK = 0. The clock is
stretched until SDA_IN_FILT_TRIM[1] is set to ‘1’, and
S_ACK or S_NACK is set in the I2C_S_CMD register.

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 1,
I2C_CTRL.S_READY_ADDR_ACK = x. The incoming
address is NACK’d until SDA_IN_FILT_TRIM[1] is set to
‘1’. After that bit is set to 1, the slave will respond with an
ACK to a master address.

Master Read:

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 0,
I2C_CTRL.S_READY_ADDR_ACK = x. The incoming
address is stretched until SDA_IN_FILT_TRIM[1] is set
to ‘1’. After that bit is set to 1, the clock stretch will be
released.

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 1,
I2C_CTRL.S_READY_ADDR_ACK = x. The incoming
address is NACK’d until SDA_IN_FILT_TRIM[1] is set to
‘1’. After that bit is set to 1, the slave will ACK.

Note: When doing a repeated start after a write, wait 
until the UNDERFLOW interrupt status is asserted 
before setting the I2C_M_CMD.START bit and writing 
the new address into the TX_FIFO. Otherwise, the 
address in the FIFO will be sent as data and not as an 
address.

27.5.6.2 EZI2C Mode

The Easy I2C (EZI2C) protocol is a unique communication
scheme built on top of the I2C protocol by Cypress. It uses a
meta protocol around the standard I2C protocol to
communicate to an I2C slave using indexed memory
transfers. This removes the need for CPU intervention. 

The EZI2C protocol defines a single memory buffer with an
8-bit address that indexes the buffer (256-entry array of 8-bit
per entry is supported) located on the slave device. The EZ
address is used to address these 256 locations. The CPU
writes and reads to the memory buffer through the
EZ_DATA registers. These accesses are word accesses,
but only the least significant byte of the word is used.

The slave interface accesses the memory buffer using the
current address. At the start of a transfer (I2C START/
RESTART), the base address is copied to the current
address. A data element write or read operation is to the
current address location. After the access, the current
address is incremented by ‘1’. 

If the current address equals the last memory buffer address
(255), the current address is not incremented. Subsequent
write accesses will overwrite any previously written value at
the last buffer address. Subsequent read accesses will
continue to provide the (same) read value at the last buffer
address. The bus master should be aware of the memory
buffer capacity in EZ mode.

The I2C base and current addresses are provided through
I2C_STATUS. At the end of a transfer, the difference
between the base and current addresses indicates how
many read or write accesses were performed. The block
provides interrupt cause fields to identify the end of a
transfer. EZI2C can be implemented through firmware or
hardware. All SCBs can implement EZI2C through a
firmware implementation in both Active and Sleep power
modes. The Deep Sleep SCB can implement a hardware-
and firmware-based EZI2C with a Deep Sleep power mode.
This document focuses on hardware-implemented EZI2C;
for more information on software implementation, see the
PDL. 

EZI2C distinguishes three operation phases:

■ Address phase: The master transmits an 8-bit address
to the slave. This address is used as the slave base and
current address.

■ Write phase: The master writes 8-bit data element(s) to
the slave’s memory buffer. The slave’s current address
is set to the slave’s base address. Received data
elements are written to the current address memory
location. After each memory write, the current address is
incremented. 

■ Read phase: The master reads 8-bit data elements from
the slave’s memory buffer. The slave’s current address
is set to the slave’s base address. Transmitted data
elements are read from the current address memory
location. After each memory read, the current address is
incremented.

Note that a slave’s base address is updated by the master
and not by the CPU.

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 325

Serial Communications Block (SCB)

Figure 27-39.  EZI2C Write and Read Data Transfer

Active to Deep Sleep Transition

Before going to deep sleep ensure that all active communication is complete. This can be done by checking the BUS_BUSY
bit in the I2C_Status register. 

Ensure that the TX and RX FIFOs are empty as any data will be lost during deep sleep.

Before going to deep sleep the clock to the SCB needs to be disabled. This can be done by setting the
SDA_IN_FILT_TRIM[1] bit in the I2C_CFG register to ‘0’.

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 0, EZ Mode.

■ S_NOT_READY_ADDR_NACK = 0, S_READY_ADDR_ACK = 1. The clock is stretched until SDA_IN_FILT_TRIM[1] is
set to ‘1’. After that bit is set to 1, the clock stretch will be released.

■ S_NOT_READY_ADDR_NACK = 1, S_READY_ADDR_ACK = x. The incoming address is NACK’d until
SDA_IN_FILT_TRIM[1] is set to ‘1’. After that bit is set to 1, the slave will ACK. 

LEGEND :

MSb LSbSDA

SCL

START Slave address (7 bits) Write ACK ACKEZ address (8 bits) STOP

Write data transfer (single write data)

MSb LSb

START Slave address (7 bits) Read ACK NACKRead Data (8 bits) STOP

Read data transfer (single read data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive

Write Data (8 bits) ACK

EZ  address

Address

Data

EZ Buffer
(32 bytes SRAM)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 326

Serial Communications Block (SCB)

27.5.6.3 Command-Response Mode

This mode has a single memory buffer, a base read
address, a current read address, a base write address, and
a current write address that are used to index the memory
buffer. The base addresses are provided by the CPU. The
current addresses are used by the slave to index the
memory buffer for sequential accesses of the memory
buffer. The memory buffer holds 256 8-bit data elements.
The base and current addresses are in the range [0 to 255]. 

The CPU writes and reads to the memory buffer through the
SCB_EZ_DATA registers. These are word accesses, but
only the least significant byte of the word is used.

The slave interface accesses the memory buffer using the
current addresses. At the start of a write transfer (I2C
START/RESTART), the base write address is copied to the
current write address. A data element write is to the current
write address location. After the write access, the current
address is incremented by ‘1’. At the start of a read transfer,
the base read address is copied to the current read address.
A data element read is to the current read address location.
After the read data element is transmitted, the current read
address is incremented by ‘1’.

If the current addresses equal the last memory buffer
address (255), the current addresses are not incremented.
Subsequent write accesses will overwrite any previously
written value at the last buffer address. Subsequent read
accesses will continue to provide the (same) read value at

the last buffer address. The bus master should be aware of
the memory buffer capacity in command-response mode.

The base addresses are provided through
CMD_RESP_CTRL. The current addresses can be viewed
in CMD_RESP_STATUS. At the end of a transfer (I2C stop),
the difference between a base and current address
indicates how many read/write accesses were performed.
This block provides interrupts to identify the end of a
transfer, which can be found in SCB8_INTR_I2C_EC and
SCB8_INTR_SPI_EC register sections. Command-
response mode operation is available in Active, Sleep, and
Deep Sleep power modes. The command-response mode
has two phases of operation:

■ Write phase - The write phase begins with a START/
RESTART followed by the slave address with read/write
bit set to ‘0’ indicating a write. The slave’s current write
address is set to the slave’s base write address.
Received data elements are written to the current write
address memory location. After each memory write, the
current write address is incremented.

■ Read phase - The read phase begins with a START/
RESTART followed by the slave address with read/write
bit set to ‘1’ indicating a read. The slave’s current read
address is set to the slave’s base read address.
Transmitted data elements are read from the current
address memory location. After each read data element
is transferred, the current read address is incremented.

Figure 27-40.  I2C Command-Response Mode

Note: A slave’s base addresses are updated by the CPU and not by the master.

S address W PI2C bus A Adata

write data (8 bits)

write phase

LEGEND:
S: Start

    RS: Repeated start
    P:                         Stop
    A:                         ACK
    N:                         NACK

SRAM

read data (8 bits)

Pdata NS address R A

read phase

I2C bus

Memory of 
256 x 8-bits

curr_wr_addrbase_wr_addr

+1written by CPU

curr_rd_addrbase_rd_addr +1

written by CPU



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 327

Serial Communications Block (SCB)

27.5.7 Clocking and Oversampling

The SCB I2C supports both internally and externally clocked
operation modes. Two bitfields (EC_AM_MODE and
EC_OP MODE) in the SCB_CTRL register determine the
SCB clock mode. EC_AM_MODE indicates whether I2C
address matching is internally (0) or externally (1) clocked.
I2C address matching comprises the first part of the I2C
protocol. EC_OP_MODE indicates whether the rest of the
protocol operation (besides I2C address matching) is
internally (0) or externally (1) clocked. The externally
clocked mode of operation is supported only in the I2C slave
mode.

An internally-clocked operation uses the programmable
clock dividers. For I2C, an integer clock divider must be
used for both master and slave. For more information on
system clocking, see the Clocking System chapter on
page 208. The internally-clocked mode does not support the
command-response mode.

The SCB_CTRL bitfields EC_AM_MODE and
EC_OP_MODE can be configured in the following ways.

■ EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’: Use this
configuration when only Active mode functionality is
required. 

❐ FIFO mode: Supported.

❐ EZ mode: Supported.

❐ Command-response mode: Not supported. The 
slave NACKs every slave address.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’: Use this
configuration when both Active and Deep Sleep
functionality are required. This configuration relies on the
externally clocked functionality for the I2C address
matching and relies on the internally clocked
functionality to access the memory buffer. The “hand
over” from external to internal functionality relies either
on an ACK/NACK or clock stretching scheme. The
former may result in termination of the current transfer
and relies on a master retry. The latter stretches the
current transfer after a matching address is received.
This mode requires the master to support either NACK
generation (and retry) or clock stretching. When the I2C
address is matched, INTR_I2C_EC.WAKE_UP is set to
‘1’. The associated Deep Sleep functionality interrupt
brings the system into Active power mode. 

❐ FIFO mode: See “Deep Sleep to Active Transition” 
on page 324

❐ EZ mode: See “Deep Sleep to Active Transition” on 
page 325. 

❐ CMD_RESP mode: Not supported. The slave 
NACKs every slave address.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘1’. Use this
mode when both Active and Deep Sleep functionality are
required. When the slave is selected,
INTR_I2C_EC.WAKE_UP is set to ‘1’. The associated

Deep Sleep functionality interrupt brings the system into
Active power mode. When the slave is deselected,
INTR_I2C_EC.EZ_STOP and/or
INTR_I2C_EC.EZ_WRITE_STOP are set to ‘1’. 

❐ FIFO mode: Not supported.

❐ EZ mode: Supported.

❐ CMD_RESP mode: Supported.

An externally-clocked operation uses a clock provided by
the serial interface. The externally clocked mode does not
support FIFO mode. If EC_OP_MODE is ‘1’, the external
interface logic accesses the memory buffer on the external
interface clock (I2C SCL). This allows for EZ and
CMD_RESP mode functionality in Active and Deep Sleep
power modes. 

In Active system power mode, the memory buffer requires
arbitration between external interface logic (on I2C SCL) and
the CPU interface logic (on system peripheral clock). This
arbitration always gives the highest priority to the external
interface logic (host accesses). The external interface logic
takes one serial interface clock/bit periods for the I2C.
During this period, the internal logic is denied service to the
memory buffer. The PSoC 6 MCU provides two
programmable options to address this “denial of service”:

■ If the BLOCK bitfield of SCB_CTRL is ‘1’: An internal
logic access to the memory buffer is blocked until the
memory buffer is granted and the external interface logic
has completed access. For a 100-kHz I2C interface, the
maximum blocking period of one serial interface bit
period measures 10 µs (approximately 208 clock cycles
on a 48 MHz SCB input clock). This option provides
normal SCB register functionality, but the blocking time
introduces additional internal bus wait states.

■ If the BLOCK bitfield of SCB_CTRL is ‘0’: An internal
logic access to the memory buffer is not blocked, but
fails when it conflicts with an external interface logic
access. A read access returns the value 0xFFFF:FFFF
and a write access is ignored. This option does not
introduce additional internal bus wait states, but an
access to the memory buffer may not take effect. In this
case, following failures are detected:

❐ Read Failure: A read failure is easily detected, as the 
returned value is 0xFFFF:FFFF. This value is unique 
as non-failing memory buffer read accesses return 
an unsigned byte value in the range 0x0000:0000-
0x0000:00FF. 

❐ Write Failure: A write failure is detected by reading 
back the written memory buffer location, and con-
firming that the read value is the same as the written 
value. 

For both options, a conflicting internal logic access to the
memory buffer sets INTR_TX.BLOCKED field to ‘1’ (for write
access-es) and INTR_RX.BLOCKED field to ‘1’ (for read
accesses). These fields can be used as either status fields



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 328

Serial Communications Block (SCB)

or as interrupt cause fields (when their associated mask
fields are enabled).

If a series of read or write accesses is performed and
CTRL.BLOCKED is ‘0’, a failure is detected by comparing
the logical OR of all read values to 0xFFFF:FFFF and
checking the INTR_TX.BLOCKED and
INTR_RX.BLOCKED fields to determine whether a failure
occurred for a (series of) write or read operation(s).

27.5.7.1 Glitch Filtering

The PSoC 6 MCU SCB I2C has analog and digital glitch
filters. Analog glitch filters are applied on the i2c_scl_in and

i2c_sda_in input signals (AF_in) to filter glitches of up to 50
ns. An analog glitch filter is also applied on the i2c_sda_out
output signal (AF_out). Analog glitch filters are enabled and
disabled in the SCB.I2C_CFG register. Do not change the
_TRIM bitfields; only change the _SEL bitfields in this
register.

Digital glitch filters are applied on the i2c_scl_in and
i2c_sda_in input signals (DF_in). The digital glitch filter is
enabled in the SCB.RX_CTRL register via the MEDIAN
bitfield. 

Figure 27-41.  I2C Glitch Filtering Connection

The following table lists the useful combinations of glitch filters.

When operating in EC_OP_MODE = 1, the 100-kHz, 400-kHz, and 1000-kHz modes require the following settings for AF_out:

27.5.7.2 Oversampling and Bit Rate

Internally-clocked Master

The PSoC 6 MCU implements the I2C clock as an oversampled multiple of the SCB input clock. In master mode, the block
determines the I2C frequency. Routing delays on the PCB, on the chip, and the SCB (including analog and digital glitch filters)
all contribute to the signal interface timing. In master mode, the block operates off clk_scb and uses programmable
oversampling factors for the SCL high (1) and low (0) times. For high and low phase oversampling, see

Table 27-16.  Glitch Filter Combinations

AF_in AF_out DF_in Comments

0 0 1 Used when operating in internally-clocked mode and in master in fast-mode plus (1-MHz speed mode)

1 0 0 Used when operating in internally-clocked mode (EC_OP_MODE is '0')

1 1 0 Used when operating in externally-clocked mode (EC_OP_MODE is '1'). Only slave mode.

AF_in AF_out DF_in

1 1 0

100-kHz mode: I2C_CFG.SDA_OUT_FILT_SEL = 3

400-kHz mode: I2C_CFG.SDA_OUT_FILT_SEL = 3

1000-kHz mode: I2C_CFG.SDA_OUT_FILT_SEL = 1

i2c_scl_in
i2c_scl

i2c_ctl

i2c_ec_ctli2c_ec_scl_out

i2c_scl_in

i2c_scl_in

i2c_ic_scl_out

i2c_sda_in

i2c_ic_sda_out

i2c_ec_sda_out

AF_in

i2c_sda_in

i2c_sda_in
i2c_sda AF_in

AF_out

DF_in

DF_in

i2c_scl_out



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 329

Serial Communications Block (SCB)

I2C_CTRL.LOW_PHASE_OVS and I2C_CTRL.HIGH_PHASE_OVS registers. For simple manipulation of the oversampling
factor, see the SCB_CTRL.OVS register. 

Table 27-17 assumes worst-case conditions on the I2C bus. The following equations can be used to determine the settings for
your own system. This will involve measuring the rise and fall times on SCL and SDA lines in your system.

tCLK_SCB(Min) = (tLOW + tF)/LOW_PHASE_OVS

If clk_scb is any faster than this, the tLOW of the I2C specification will be violated. tF needs to be measured in your system.

tCLK_SCB(Max) = (tVD – tRF – 100 ns)/3 (When analog filter is enabled and digital disabled)

tCLK_SCB(Max) = (tVD – tRF)/4 (When analog filter is disabled and analog filter is enabled)

tRF is the maximum of either the rise or fall time. If clk_scb is slower than this frequency, tVD will be violated. 

I2C Master Clock Synchronization

The HIGH_PHASE_OVS counter does not start counting until the SCB detects that the SCL line is high. This is not the same
as when the SCB sets the SCL high. The differences are explained by three delays:

1. Delay from SCB to I/O pin

2. I2C bus tR

3. Input delay (filters and synchronization)

Figure 27-42.  I2C SCL Turnaround Path 

If the above three delays combined are greater than one clk_scb cycle, then the high phase of the SCL will be extended. This
may cause the actual data rate on the I2C bus to be slower than expected. This can be avoided by:

■ Decreasing the pull-up resistor, or decreasing the bus capacitance to reduce tR.

■ Reducing the I2C_CTRL.HIGH_PHASE_OVS value. 

Table 27-17.  I2C Frequency and Oversampling Requirements in I2C Master Mode

AF_in AF_out DF_in Mode
Supported 
Frequency

LOW_PHASE_OVS HIGH_PHASE_OVS
clk_scb 

Frequency

0 0 1

100 kHz [62, 100] kHz [9, 15] [9, 15] [1.98-3.2] MHz

400 kHz [264, 400] kHz [13, 5] [7, 15] [8.45-10] MHz

1000 kHz [447, 1000] kHz [8, 15] [5, 15] [14.32-25.8] MHz

1 0 0

100 kHz [48, 100] kHz [7, 15] [7, 15] [1.55-3.2] MHz

400 kHz [244, 400] kHz [12, 15] [7, 15] [7.82-10] MHz

1000 kHz Not supported

SCL_out

SCL_bus

SCL_in

1 2 3



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 330

Serial Communications Block (SCB)

Internally-clocked Slave

In slave mode, the I2C frequency is determined by the incoming I2C SCL signal. To ensure proper operation, clk_scb must be
significantly higher than the I2C bus frequency. Unlike master mode, this mode does not use programmable oversampling
factors. 

tCLK_SCB(Max) = (tVD – tRF – 100 ns) / 3 (When analog filter is enabled and digital disabled) 

tCLK_SCB(Max) = (tVD – tRF) / 4 (When analog filter is disabled and analog filter is enabled)

tRF is the maximum of either the rise or fall time. If clk_scb is slower than this frequency, tVD will be violated. 

The minimum period of clk_scb is determined by one of the following equations:

tCLK_SCB(MIN) = (tSU;DAT(min) + tRF) /16 

or

tCLK_SCB(Min) = (0.6 * tF – 50 ns)/2 (When analog filter is enabled and digital disabled)

tCLK_SCB(Min) = (0.6 * tF)/3 (When analog filter is disabled and digital enabled)

The result that yields the largest period from the two sets of equations above should be used to set the minimum period of
clk_scb. 

Master-Slave

In this mode, when the SCB is acting as a master device, the block determines the I2C frequency. When the SCB is acting as
a slave device, the block does not determine the I2C frequency. Instead, the incoming I2C SCL signal does.

To guarantee operation in both master and slave modes, choose clock frequencies that work for both master and slave using
the tables above.

27.5.8 Enabling and Initializing the I2C

The following section describes the method to configure the I2C block for standard (non-EZ) mode and EZI2C mode.

27.5.8.1 Configuring for I2C FIFO Mode

The I2C interface must be programmed in the following order.

1. Program protocol specific information using the SCB_I2C_CTRL register. This includes selecting master - slave function-
ality.

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers. 

3. Set the SCB_CTRL.BYTE_MODE to ‘1’ to enable the byte mode. 

4. Program the SCB_CTRL register to enable the I2C block and select the I2C mode. For a complete description of the I2C 
registers, see the registers TRM.

27.5.8.2 Configuring for EZ and CMD_RESP Modes

To configure the I2C block for EZ and CMD_RESP modes, set the following I2C register bits

Table 27-18.  SCB Input Clock Requirements in I2C Slave Mode

AF_in AF_out DF_in Mode clk_scb Frequency Range

0 0 1

100 kHz [1.98-12.8] MHz

400 kHz [8.45-17.14] MHz

1000 kHz [14.32-44.77] MHz

1 0 0

100 kHz [1.55-12.8] MHz

400 kHz [7.82-15.38] MHz

1000 kHz [15.84-89.0] MHz



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 331

Serial Communications Block (SCB)

1a. Select the EZI2C mode by writing ‘1’ to the EZ_MODE bit (bit 10) of the SCB_CTRL register.

1b. Select CMD_RESP mode by writing a 1 to the CMD_RESP bit (bit 12) of the SCB_CTRL register.

2.   Set the S_READY_ADDR_ACK (bit 12) and S_READY_DATA_ACK (bit 13) bits of the SCB_I2C_CTRL register.

Note: For all modes clk_scb must also be configured. For information on configuring a peripheral clock and connecting it to
the SCB consult the Clocking System chapter on page 208.

The GPIO must also be connected to the SCB; see the following section for more details.

27.5.9 I/O Pad Connections

Figure 27-43.  I2C I/O Pad Connections  

When configuring the I2C SDA/SCL lines, the following sequence must be followed. If this sequence is not followed, the I2C
lines may initially have overshoot and undershoot.

1. Set SCB_CTRL_MODE to ‘0’.

2. Configure HSIOM for SCL and SDA to connect to the SCB.

3. Set TX_CTRL.OPEN_DRAIN to ‘1’.

4. Configure I2C pins for high-impedance drive mode.

5. Configure SCB for I2C

6. Enable SCB

7. Configure I2C pins for Open Drain Drives Low. 

Table 27-19.  I2C I/O Pad Descriptions

I/O Pads Drive Mode On-chip I/O Signals Usage

i2c_scl Open drain with external pull-up
i2c_scl_in Receive a clock

i2c_scl_out Transmit a clock

i2c_sda Open drain with external pull-up
i2c_sda_in Receive data

i2c_sda_out Transmit data

Open drain
(pull-up)

1

i2c_scl_in
i2c_scl

i2c_ctl

i2c_ec_ctl

i2c_ec_scl_out

i2c_scl_in

i2c_scl_in

i2c_ic_scl_out

i2c_ic_block_ec

i2c_sda_in

i2c_ic_sda_out

i2c_ec_sda_out

Filter

i2c_sda_inOpen drain
(pull-up)

1

i2c_sda_in
i2c_sda Filter

Filter

oe



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 332

Serial Communications Block (SCB)

27.5.10 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 27-20. 

Note: Detailed descriptions of the I2C register bits are available in the registers TRM.

Table 27-20.  I2C Registers

Register Function

SCB_CTRL Enables the SCB block and selects the type of serial interface (SPI, UART, I2C). Also used to select inter-
nally and externally clocked operation and EZ and non-EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS
Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ slave 
address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS
Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to 
determine whether it is safe to issue a software access to the EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSb or LSb is the first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the 
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data. 

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides 
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver. 

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO; 
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data 
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the 
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK. 

SCB_EZ_DATA Holds the data in an EZ memory location.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 333

Serial Communications Block (SCB)

27.6 SCB Interrupts

SCB supports interrupt generation on various events. The interrupts generated by the SCB block vary depending on the
mode of operation.

Note: To avoid being triggered by events from previous transactions, whenever the firmware enables an interrupt mask
register bit, it should clear the interrupt request register in advance.

Note: If the DMA is used to read data out of RX FIFO, the NOT_EMPTY interrupt may never trigger. This can occur when
clk_peri (clocking DMA) is running much faster than the clock to the SCB. As a workaround to this issue, set the
RX_FIFO_CTRL.TRIGGER_LEVEL to ‘1’ (not 0); this will allow the interrupt to fire. 

The following register definitions correspond to the SCB interrupts:

■ INTR_M: This register provides the instantaneous status of the interrupt sources. A write of ‘1’ to a bit will clear the
interrupt.

■ INTR_M_SET: A write of ‘1’ into this register will set the interrupt.

■ INTR_M_MASK: The bit in this register masks the interrupt sources. Only the interrupt sources with their masks enabled
can trigger the interrupt.

■ INTR_M_MASKED: This register provides the instantaneous value of the interrupts after they are masked. It provides
logical and corresponding request and mask bits. This is used to understand which interrupt triggered the event.

Note: While registers corresponding to INTR_M are used here, these definitions can be used for INTR_S, INTR_TX,
INTR_RX, INTR_I2C_EC, and INTR_SPI_EC.

Figure 27-44 shows the physical interrupt lines. All the interrupts are OR'd together to make one interrupt source that is the
OR of all six individual interrupts. All the externally-clocked interrupts make one interrupt line called interrupt_ec, which is the
OR'd signal of interrupt_i2C_ec and interrupt_spi_ec. All the internally-clocked interrupts make one interrupt line called
interrupt_ic, which is the OR'd signal of interrupt_master, interrupt_slave, interrupt_tx, and interrupt_rx. The Active
functionality interrupts are generated synchronously to clk_peri while the Deep Sleep functionality interrupts are generated
asynchronously to clk_peri.

Table 27-21.  SCB Interrupts

Interrupt Functionality
Active/Deep 

Sleep
Registers

interrupt_master I2C master and SPI master functionality Active

INTR_M, 
INTR_M_SET, 
INTR_M_MASK, 
INTR_M_MASKED

interrupt_slave I2C slave and SPI slave functionality Active

INTR_S, 
INTR_S_SET, 
INTR_S_MASK, 
INTR_S_MASKED

interrupt_tx UART transmitter and TX FIFO functionality Active

INTR_TX, 
INTR_TX_SET, 
INTR_TX_MASK, 
INTR_TX_MASKED

interrupt_rx UART receiver and RX FIFO functionality Active

INTR_RX, 
INTR_RX_SET, 
INTR_RX_MASK, 
INTR_RX_MASKED

interrupt_i2c_ec Externally clocked I2C slave functionality Deep Sleep
INTR_I2C_EC, 
INTR_I2C_EC_MASK,
INTR_I2C_EC_MASKED

interrupt_spi_ec Externally clocked SPI slave functionality Deep Sleep
INTR_ISPI_EC, 
INTR_SPI_EC_MASK, 
INTR_SPI_EC_MASKED



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 334

Serial Communications Block (SCB)

Figure 27-44.  Interrupt Lines

27.6.1 SPI Interrupts

The SPI interrupts can be classified as master interrupts, slave interrupts, TX interrupts, RX interrupts, and externally clocked
(EC) mode interrupts. Each interrupt output is the logical OR of the group of all possible interrupt sources classified under the
section. For example, the TX interrupt output is the logical OR of the group of all possible TX interrupt sources. This signal
goes high when any of the enabled TX interrupt sources are true. The SCB also provides an interrupt cause register (SCB_
INTR_CAUSE) that can be used to determine interrupt source. The interrupt registers are cleared by writing ‘1’ to the
corresponding bitfield. Note that certain interrupt sources are triggered again as long as the condition is met even if the
interrupt source was cleared. For example, the TX_FIFO_EMPTY is set as long as the transmit FIFO is empty even if the
interrupt source is cleared. For more information on interrupt registers, see the registers TRM. The SPI supports interrupts on
the following events: 

■ SPI Master Interrupts

❐ SPI master transfer done – All data from the TX FIFO are sent. This interrupt source triggers later than TX_FI-
FO_EMPTY by the amount of time it takes to transmit a single data element. TX_FIFO_EMPTY triggers when the last 
data element from the TX FIFO goes to the shifter register. However, SPI Done triggers after this data element is 
transmitted. This means SPI Done will be asserted one SCLK clock cycle earlier than the completion of data element 
reception.

■ SPI Slave Interrupts

❐ SPI Bus Error – Slave deselected at an unexpected time in the SPI transfer. The firmware may decide to clear the TX 
and RX FIFOs for this error.

❐ SPI slave deselected after any EZSPI transfer occurred.

❐ SPI slave deselected after a write EZSPI transfer occurred.

■ SPI TX

❐ TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL.

❐ TX FIFO not full – At least one data element can be written into the TX FIFO.

❐ TX FIFO empty – The TX FIFO is empty.

❐ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

❐ TX FIFO underflow – Hardware attempts to read from an empty TX FIFO. This happens when the SCB is ready to 
transfer data and EMPTY is ‘1’.

❐ TX FIFO trigger – Less entries in the TX FIFO than the value specified by TX_FIFO_CTRL.TRIGGER_LEVEL.

■ SPI RX

❐ RX FIFO has more entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.

❐ RX FIFO full - RX FIFO is full.

❐ RX FIFO not empty - RX FIFO is not empty. At least one data element is available in the RX FIFO to be read.

❐ RX FIFO overflow - Hardware attempt to write to a full RX FIFO.

❐ RX FIFO underflow - Firmware attempts to read from and empty RX FIFO.

Interrupt Lines

INTR_M_MASKED[...]

INTR_S_MASKED[...]

INTR_TX_MASKED[...]

INTR_RX_MASKED[...]

Interrupt_master

Interrupt_slave

Interrupt_tx

Interrupt_rx

Interrupt_i2c_ec

Interrupt_spi_ec

Interrupt_ic

Interrupt_ec

Interrupt



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 335

Serial Communications Block (SCB)

❐ RX FIFO trigger - More entries in the RX FIFO than the value specified by RX_FIFO_CTRL.TRIGGER_LEVEL.

■ SPI Externally Clocked

❐ Wake up request on slave select – Active on incoming slave request (with address match). Only set when EC_AM is 
‘1’.

❐ SPI STOP detection at the end of each transfer – Activated at the end of every transfer (I2C STOP). Only set for a 
slave request with an address match, in EZ and CMD_RESP modes, when EC_OP is ‘1’.

❐ SPI STOP detection at the end of a write transfer – Activated at the end of a write transfer (I2C STOP). This event is 
an indication that a buffer memory location has been written to. For EZ mode, a transfer that only writes the base 
address does not activate this event. Only set for a slave request with an address match, in EZ and CMD_RESP 
modes, when EC_OP is ‘1’.

❐ SPI STOP detection at the end of a read transfer – Activated at the end of a read transfer (I2C STOP). This event is an 
indication that a buffer memory location has been read from. Only set for a slave request with an address match, in EZ 
and CMD_RESP modes when EC_OP is ‘1’.

Figure 27-45 and Figure 27-46 show how each of the interrupts are triggered. Figure 27-45 shows the TX buffer and the
corresponding interrupts while Figure 27-46 shows all the corresponding interrupts for the RX buffer. The FIFO has 256 split
into 128 bytes for TX and 128 bytes for RX instead of the 8 bytes shown in the figures. For more information on how to
implement and clear interrupts, see the SPI (SCB_SPI_PDL) datasheet and the PDL.

Figure 27-45.  TX Interrupt Source Operation

Component Started Write 1 byte Write 1 more byte Write 4 more bytes Write 3 more bytes

TX FIFO Empty     = 1

TX FIFO Level       = 1

TX FIFO Not Full   = 1

SPI Done               = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty     = 0 (W1C)

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

SPI Done               = 0

TX FIFO

Level = 4

Used = 1

TX Shifter

TX FIFO Empty     = 1

TX FIFO Level       = 0 (W1C)

TX FIFO Not F ull   = 1

SPI Done               = 0

TX FIFO

Level = 4

Used = 5

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty        = 0

TX FIFO Level          = 0

TX FIFO Not F ull      = 0 (W1C) 

SPI Done                  = 0

Transmit 1 byte Transmit 3 more bytes Transmit 4 more bytes Transmit 7 more bits Transmit last bit

TX FIFO Empty     = 0

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

SPI Done               = 0

TX FIFO

Level = 4

Used = 4

TX Shifter

TX FIFO Empty     = 1 

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

SPI Done               = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty     = 1

TX FIFO Level    = 1

TX FIFO Not F ull   = 1

SPI Done               =1

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty        = 0

TX FIFO Level          = 0

TX FIFO Not F ull      = 1

SPI Done                  = 0

Used = 7

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty        = 1

TX FIFO Level          = 1

TX FIFO Not F ull      = 1 

TX FIFO Underflo w  = 1

Used = 0

TX FIFO Empty     = 1

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

SPI Done               = 0



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 336

Serial Communications Block (SCB)

Figure 27-46.  RX Interrupt Source Operation

27.6.2 UART Interrupts

The UART interrupts can be classified as TX interrupts and RX interrupts. Each interrupt output is the logical OR of the group
of all possible interrupt sources classified under the section. For example, the TX interrupt output is the logical OR of the
group of all possible TX interrupt sources. This signal goes high when any of the enabled TX interrupt sources are true. The
SCB also provides an interrupt cause register (SCB_ INTR_CAUSE) that can be used to determine interrupt source. The
interrupt registers are cleared by writing ‘1’ to the corresponding bitfield. Note that certain interrupt sources are triggered
again as long as the condition is met even if the interrupt source was cleared. For example, the TX_FIFO_EMPTY is set as
long as the transmit FIFO is empty even if the interrupt source is cleared. For more information on interrupt registers, see the
registers TRM. The UART block generates interrupts on the following events: 

■ UART TX

❐ TX FIFO has fewer entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL.

❐ TX FIFO not full – TX FIFO is not full. At least one data element can be written into the TX FIFO.

❐ TX FIFO empty – The TX FIFO is empty.

❐ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

Component Started Recevice 1 byte Receive 4 more byte Receive 3 more bytes Receive 3 more bytes

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 5

RX Shifter

RX FIFO

Level = 4

RX Shifter

RX FIFO

Level = 4

Dropped

RX Shifter

RX FIFO Not Empty   = 1

RX FIFO Level           = 1

RX FIFO Full              = 1 

RX FIFO Oveflow      = 1

Read 1 byte Read 3 more bytes Read 4 more bytes

RX FIFO

Level = 4

Used = 4

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

RX Shifter
Used = 7

RX FIFO Not Empty   = 0

RX FIFO Level           = 0

RX FIFO Full              = 0

RX FIFO Not Empty   = 1

RX FIFO Level           = 0

RX FIFO Full              = 0

RX FIFO Not Empty   = 1

RX FIFO Level           =1

RX FIFO Full              = 0

RX FIFO Not Empty   = 1

RX FIFO Level           = 1

RX FIFO Full              = 1

RX FIFO Not Empty   = 1

RX FIFO Level           = 1

RX FIFO Full             = 0 (W1C)

RX FIFO Not Empty   = 1

RX FIFO Level            = 0 (W1C) 

RX FIFO Full              = 0 

RX FIFO Not Empty   = 0 (W1C)

RX FIFO Level            = 0 

RX FIFO Full              = 0 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 337

Serial Communications Block (SCB)

❐ TX FIFO underflow – Hardware attempts to read from an empty TX FIFO. This happens when the SCB is ready to 
transfer data and EMPTY is ‘1’.

❐ TX NACK – UART transmitter receives a negative acknowledgment in SmartCard mode. 

❐ TX done – This happens when the UART completes transferring all data in the TX FIFO and the last stop field is trans-
mitted (both TX FIFO and transmit shifter register are empty).

❐ TX lost arbitration – The value driven on the TX line is not the same as the value observed on the RX line. This condi-
tion event is useful when transmitter and receiver share a TX/RX line. This is the case in LIN or SmartCard modes.

■ UART RX

❐ RX FIFO has more entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.

❐ RX FIFO full – RX FIFO is full. Note that received data frames are lost when the RX FIFO is full.

❐ RX FIFO not empty – RX FIFO is not empty.

❐ RX FIFO overflow – Hardware attempts to write to a full RX FIFO.

❐ RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.

❐ Frame error in received data frame – UART frame error in received data frame. This can be either a start of stop bit 
error: 
Start bit error: After the beginning of a start bit period is detected (RX line changes from 1 to 0), the middle of the start 
bit period is sampled erroneously (RX line is ‘1’). Note: A start bit error is detected before a data frame is received.
Stop bit error: The RX line is sampled as ‘0’, but a ‘1’ was expected. A stop bit error may result in failure to receive 
successive data frames. Note: A stop bit error is detected after a data frame is received.

❐ Parity error in received data frame – If UART_RX_CTL.DROP_ON_PARITY_ERROR is ‘1’, the received frame is 
dropped. If UART_RX_CTL.DROP_ON_PARITY_ERROR is ‘0’, the received frame is sent to the RX FIFO. In Smart-
Card sub mode, negatively acknowledged data frames generate a parity error. Note that firmware can only identify the 
erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data 
frame into the RX FIFO.

❐ LIN baud rate detection is completed – The receiver software uses the UART_RX_STATUS.BR_COUNTER value to 
set the clk_scb to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchro-
nization byte.

❐ LIN break detection is successful – The line is ‘0’ for UART_RX_CTRL.BREAK_WIDTH + 1 bit period. Can occur at 
any time to address unanticipated break fields; that is, “break-in-data” is supported. This feature is supported for the 
UART standard and LIN submodes. For the UART standard submodes, ongoing receipt of data frames is not affected; 
firmware is expected to take proper action. For the LIN submode, possible ongoing receipt of a data frame is stopped 
and the (partially) received data frame is dropped and baud rate detection is started. Set to ‘1’, when event is detected. 
Write with '1' to clear bit.

Figure 27-47 and Figure 27-48 show how each of the interrupts are triggered. Figure 27-47 shows the TX buffer and the
corresponding interrupts while Figure 27-48 shows all the corresponding interrupts for the RX buffer. The FIFO has 256 split
into 128 bytes for TX and 128 bytes for RX instead of the 8 bytes shown in the figures. For more information on how to
implement and clear interrupts see the UART (SCB_UART_PDL) datasheet and the PDL.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 338

Serial Communications Block (SCB)

Figure 27-47.  TX Interrupt Source Operation

Component Started Write 1 byte Write 1 more byte Write 4 more bytes Write 3 more bytes

TX FIFO Empty     = 1

TX FIFO Level       = 1

TX FIFO Not Full   = 1

UART Done           = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty     = 0 (W1C)

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

UART Do ne          =  0

TX FIFO

Level = 4

Used = 1

TX Shifter

TX FIFO Empty     = 1

TX FIFO Level       = 0 (W1C)

TX FIFO Not F ull   = 1

UART Do ne           = 0

TX FIFO

Level = 4

Used = 5

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty        = 0

TX FIFO Level          = 0

TX FIFO Not F ull      = 0 (W1C) 

UART Do ne               = 0

Transmit 1 byte Transmit 3 more bytes Transmit 4 more bytes Transmit last bit

TX FIFO Empty     = 0

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

UART Do ne           = 0

TX FIFO

Level = 4

Used = 4

TX Shifter

TX FIFO Empty     = 1 

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

UART Do ne            = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty     = 1

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

UART Do ne            =1

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty        = 0

TX FIFO Level          = 0

TX FIFO Not F ull      = 1

UART Do ne              = 0

Used = 7

TX FIFO Empty     = 1

TX FIFO Level       = 1

TX FIFO Not F ull   = 1

UART Done           = 0



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 339

Serial Communications Block (SCB)

Figure 27-48.  RX Interrupt Source Operation

Component Started Recevice 1 byte Receive 4 more byte Receive 3 more bytes Receive 3 more bytes

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 5

RX Shifter

RX FIFO

Level = 4

RX Shifter

RX FIFO

Level = 4

Dropped

RX Shifter

RX FIFO Not Empty   = 1

RX FIFO Level           = 1

RX FIFO Full              = 1 

RX FIFO Oveflow      = 1

Read 1 byte Read 3 more bytes Read 4 more bytes

RX FIFO

Level = 4

Used = 4

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

RX Shifter
Used = 7

RX FIFO Not Empty   = 0

RX FIFO Level           = 0

RX FIFO Full              = 0

RX FIFO Not Empty   = 1

RX FIFO Level           = 0

RX FIFO Full              = 0

RX FIFO Not Empty   = 1

RX FIFO Level           =1

RX FIFO Full              = 0

RX FIFO Not Empty   = 1

RX FIFO Level           = 1

RX FIFO Full              = 1

RX FIFO Not Empty   = 1

RX FIFO Level           = 1

RX FIFO Full             = 0 (W1C)

RX FIFO Not Empty   = 1

RX FIFO Level            = 0 (W1C) 

RX FIFO Full              = 0 

RX FIFO Not Empty   = 0 (W1C)

RX FIFO Level            = 0 

RX FIFO Full              = 0 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 340

Serial Communications Block (SCB)

27.6.3 I2C Interrupts

I2C interrupts can be classified as master interrupts, slave interrupts, TX interrupts, RX interrupts, and externally clocked (EC)
mode interrupts. Each interrupt output is the logical OR of the group of all possible interrupt sources classified under the
section. For example, the TX interrupt output is the logical OR of the group of all possible TX interrupt sources. This signal
goes high when any of the enabled TX interrupt sources are true. The SCB also provides an interrupt cause register (SCB_
INTR_CAUSE) that can be used to determine interrupt source. The interrupt registers are cleared by writing ‘1’ to the
corresponding bitfield. Note that certain interrupt sources are triggered again as long as the condition is met even if the
interrupt source was cleared. For example, the TX_FIFO_EMPTY is set as long as the transmit FIFO is empty even if the
interrupt source is cleared. For more information on interrupt registers, see the registers TRM. The I2C block generates
interrupts for the following conditions.

■ I2C Master

❐ I2C master lost arbitration – The value driven by the master on the SDA line is not the same as the value observed on 
the SDA line. 

❐ I2C master received NACK – When the master receives a NACK (typically after the master transmitted the slave 
address or TX data).

❐ I2C master received ACK – When the master receives an ACK (typically after the master transmitted the slave 
address or TX data).

❐ I2C master sent STOP – When the master has transmitted a STOP.

❐ I2C bus error – Unexpected stop/start condition is detected.

■ I2C Slave

❐ I2C slave lost arbitration – The value driven on the SDA line is not the same as the value observed on the SDA line 
(while the SCL line is ‘1’). This should not occur; it represents erroneous I2C bus behavior. In case of lost arbitration, 
the I2C slave state machine aborts the ongoing transfer. Software may decide to clear the TX and RX FIFOs in case of 
this error.

❐ I2C slave received NACK – When the slave receives a NACK (typically after the slave transmitted TX data).

❐ I2C slave received ACK – When the slave receives an ACK (typically after the slave transmitted TX data).

❐ I2C slave received STOP – I2C STOP event for I2C (read or write) transfer intended for this slave (address matching is 
performed). When STOP or REPEATED START event is detected. The REPEATED START event is included in this 
interrupt cause such that the I2C transfers separated by a REPEATED START can be distinguished and potentially 
treated separately by the firmware. Note that the second I2C transfer (after a REPEATED START) may be to a differ-
ent slave address.
The event is detected on any I2C transfer intended for this slave. Note that an I2C address intended for the slave 
(address matches) will result in an I2C_STOP event independent of whether the I2C address is ACK'd or NACK'd.

❐ I2C slave received START – When START or REPEATED START event is detected. In the case of an externally-
clocked address matching (CTRL.EC_AM_MODE is ‘1’) and clock stretching is performed (until the internally-clocked 
logic takes over) (I2C_CTRL.S_NOT_READY_ADDR_NACK is ‘0’), this field is not set. Firmware should use 
INTR_S_EC.WAKE_UP, INTR_S.I2C_ADDR_MATCH, and INTR_S.I2C_GENERAL.

❐ I2C slave address matched – I2C slave matching address received. If CTRL.ADDR_ACCEPT, the received address 
(including the R/W bit) is available in the RX FIFO. In the case of externally-clocked address matching 
(CTRL.EC_AM_MODE is ‘1’) and internally-clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the 
event is detected.

❐ I2C bus error – Unexpected STOP/START condition is detected

■ I2C TX

❐ TX trigger – TX FIFO has fewer entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL.

❐ TX FIFO not full – At least one data element can be written into the TX FIFO.

❐ TX FIFO empty – The TX FIFO is empty.

❐ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

❐ TX FIFO underflow – Hardware attempts to read from an empty TX FIFO.

■ I2C RX

❐ RX FIFO has more entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 341

Serial Communications Block (SCB)

❐ RX FIFO is full – The RX FIFO is full.

❐ RX FIFO is not empty – At least one data element is available in the RX FIFO to be read.

❐ RX FIFO overflow – Hardware attempts to write to a full RX FIFO.

❐ RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.

■ I2C Externally Clocked

❐ Wake up request on address match – Active on incoming slave request (with address match). Only set when EC_AM 
is ‘1’.

❐ I2C STOP detection at the end of each transfer – Only set for a slave request with an address match, in EZ and 
CMD_RESP modes, when EC_OP is ‘1’.

❐ I2C STOP detection at the end of a write transfer – Activated at the end of a write transfer (I2C STOP). This event is an 
indication that a buffer memory location has been written to. For EZ mode, a transfer that only writes the base address 
does not activate this event. Only set for a slave request with an address match, in EZ and CMD_RESP modes, when 
EC_OP is ‘1’.

❐ I2C STOP detection at the end of a read transfer – Activated at the end of a read transfer (I2C STOP). This event is an 
indication that a buffer memory location has been read from. Only set for a slave request with an address match, in EZ 
and CMD_RESP modes, when EC_OP is ‘1’.

For more information on how to implement and clear interrupts see the I2C (SCB_I2C_PDL) datasheet and the PDL.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 342

28.   Serial Memory Interface (SMIF)

The SMIF block implements a single-SPI, dual-SPI, quad-SPI, or octal-SPI communication to interface with external memory
chips. The SMIF block’s primary use case is to set up the external memory and have it mapped to the PSoC 6 MCU memory
space using the hardware. This mode of operation, called the XIP mode, allows the bus masters in the PSoC 6 MCU to
directly interact with the SMIF for memory access to an external memory location. 

28.1 Features

The Serial Memory Interface (SMIF) block provides a master interface to serial memory devices that supports the following
functionality.

■ Interfacing up to four memory devices (slaves) at a time

■ SPI protocol

❐ SPI mode 0: clock polarity (CPOL) and clock phase (CPHA) are both ‘0’

❐ Support for single, dual, quad, and octal SPI protocols

❐ Support for dual-quad SPI mode: the use of two quad SPI memory devices to increase data bandwidth for SPI read
and write transfers

❐ Support for configurable MISO sampling time and programmable receiver clock

■ Support for device capacities in the range of 64 KB to 128 MB

■ A memory-mapped mode of operation, eXecute In Place (XIP), which enables mapping the external memory into an
internal memory address

■ A command mode (MMIO mode), which enables using the SMIF block as a simple communication hardware

■ Supports a 4-KB read cache in memory mapped (XIP) mode

■ Supports on-the-fly 128-bit encryption and decryption

28.2 Architecture

Figure 28-1 shows a high-level block diagram of the SMIF hardware in PSoC 6 MCUs. Notice that the block is divided into
multiple clock domains. This enables multiple domains to access the SMIF and still enable maintaining an asynchronous
clock for the communication interface. 

The SMIF block can also generate DMA triggers and interrupt signals. This allows events in the SMIF block to trigger actions
in other parts of the system. 

The SMIF interface is implemented using eight data lines, four slave select lines, and a clock line. 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SMIF

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 343

Serial Memory Interface (SMIF)

The access to the SMIF block can be by two modes: MMIO mode or XIP mode. The MMIO mode gives access to the SMIF’s
peripheral registers and the internal FIFOs. This mode is used when the user code is responsible for constructing the
command structure for the external memory. Typically, this mode is used when the SMIF writes to an external flash memory.
The MMIO interface is also used to configure the SMIF hardware block, including configuring the device registers that set up
the XIP operation of the SMIF block. 

The XIP mode of operation maps the external memory space to a range of addresses in the PSoC 6 MCU’s address space.
Refer to the registers TRM for details. When this address range is accessed, the hardware automatically generates the
commands required to initiate the associated transfer from the external memory. The typical use case for the XIP mode is to
execute code placed in external memory. Here, the memory will be mapped into the internal address space of the PSoC 6
MCU using the XIP mode. Thus code is execution from external memory is seamless. 

Figure 28-1.  SMIF Hardware Block Diagram

The SMIF block has three AHB-Lite interfaces: ■ An AHB-Lite interface to access the SMIF’s MMIO
registers.

                             SMIF

                            FIFOs

Memory interface logic

Tx state machine Rx state machine

cl
k_

if_
rx

d
om

ai
n

data[7:0]

Mode multiplexer

MMIO

XIP

Cryptography

MMIO AHB-Lite 
interface

cl
k_

if_
tx

d
om

ai
n

cl
k_

hf
do

m
ai

n

cl
k_

sl
o

w
do

m
ai

n

cl
k_

sy
s

do
m

ai
n

IOSS

tr_tx_req

tr_rx_req

interrupt

Port arbiter

XIP
AHB-Lite 

interface 0

4 KB 
cache cl

k_
fa

st
do

m
ai

n XIP
AHB-Lite 

interface 1

4 KB 
cache

   Capture 
    Logic

cl
k_

if
do

m
ai

n

Tx data 
FIFO

Rx data 
FIFO

Tx command 
FIFO

select[3:0]clk



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 344

Serial Memory Interface (SMIF)

■ Two AHB-Lite interfaces to support execute-in-place
(XIP).

All interfaces provide access to external memory devices. At
any time, either the MMIO AHB-Lite interface or the two XIP
AHB-Lite interfaces have access to the memory interface
logic and external memory devices. The operation mode is
specified by SMIFn_CTL.XIP_MODE. The operation mode
should not be modified when the SMIF is busy
(STATUS.BUSY is ‘1’).

In the MMIO AHB-Lite interface, access is supported
through software writes to transmit (Tx) FIFOs and software
reads from receive (Rx) FIFOs. The FIFOs are mapped on
SMIF registers. This interface provides the flexibility to
implement any memory device transfer. For example,
memory device transfers to setup, program, or erase the
external memory devices.

In an XIP AHB-Lite interface, access is supported through
XIP: AHB-Lite read and write transfers are automatically (by
the hardware) translated in memory device read and write
transfers. This interface provides efficient implementation of
memory device read and write transfers, but does NOT
support other types of memory device transfers. To improve
XIP performance, the XIP AHB-Lite interface has a 4-KB
read cache.

As mentioned, MMIO mode and XIP mode are mutually
exclusive. The operation modes share Tx and Rx FIFOs and
memory interface logic. In MMIO mode, the Tx and Rx
FIFOs are accessed through the SMIF registers and under
software control. In XIP mode, the Tx and Rx FIFOs are
under hardware control. The memory interface logic is
controlled through the Tx and Rx FIFOs and is agnostic of
the operation mode. 

28.2.1 Tx and Rx FIFOs

The SMIF block has two Tx FIFOs and one Rx FIFO. These
FIFOs provide an asynchronous clock domain transfer
between clk_hf logic and clk_if_tx/clk_if_rx memory
interface logic. The memory interface logic is completely
controlled through the Tx and Rx FIFOs.

■ The Tx command FIFO transmits memory commands to
the memory interface logic.

■ The Tx data FIFO transmits write data to the memory
interface transmit logic.

■ The Rx data FIFO receives read data from the memory
interface receive logic.

28.2.1.1 Tx Command FIFO

The Tx command FIFO consists of four 20-bit entries. Each
entry holds a command. A memory transfer consists of a
series of commands. In other words, a command specifies a
phase of a memory transfer. Four different types of
commands are supported:

■ Tx command. A memory transfer must start with a Tx
command. The Tx command includes a byte that is to be
transmitted over the memory interface. The Tx
command specifies the width of the data transfer (single,
dual, quad, or octal data transfer). The Tx command
specifies whether the command is for the last phase of
the memory transfer (explicit “last command” indication).
The Tx command specifies which of the four external
devices are selected (multiple devices can be selected
simultaneously); that is, the device selection as encoded
by the Tx command is used for the complete memory
transfer. The Tx command asserts the corresponding
slave select lines. This is the reason every memory
transfer should start with this command. 

■ TX_COUNT command. The TX_COUNT command
specifies the number of bytes to be transmitted from the
Tx data FIFO. This command relies on the Tx data FIFO
to provide the bytes that are to be transmitted over the
memory interface. The TX_COUNT command specifies
the width of the data transfer and always constitutes the
last phase of the memory transfer (implicit “last
command” indication - de-asserts the slave select). Note
that the TX_COUNT command does not assert the slave
select lines. This must be done by a Tx command
preceding it. 

■ RX_COUNT command. The RX_COUNT command
specifies the number of bytes to be received from the Rx
data FIFO. This command relies on the Rx data FIFO to
accept the bytes that are received over the memory
interface. The RX_COUNT command specifies the width
of the data transfer and always constitutes the last
phase of the memory transfer (implicit “last command”
indication - de-asserts the slave select). Note that the
RX_COUNT command does not assert the slave select
lines. This must be done by a Tx command preceding it.

■ DUMMY_COUNT command. The DUMMY_COUNT
command specifies a number of dummy cycles. Dummy
cycles are used to implement a turn-around (TAR) time
in which the memory master changes from a transmitter
driving the data lines to a receiver receiving on the same
data lines. The DUMMY_COUNT command never
constitutes the last phase of the memory transfer
(implicit NOT “last command” indication - de-asserts the
slave select); that is, it must be followed by another
command. Note that the DUMMY COUNT command
does not assert the slave select lines. This must be done
by a Tx command preceding it. 

Together, the four command types can be used to construct
any SPI transfer. The Tx command FIFO is used by both the
memory interface transmit and receive logic. This ensures
lockstep operation. The Tx command is a representation of
a queue of commands that are to be processed.

The software will write the sequence of commands into the
Tx command FIFO to generate a sequence responsible for
the communication with slave device. The software can read



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 345

Serial Memory Interface (SMIF)

the number of used Tx command FIFO entries through the
TX_CMD_FIFO_STATUS.USED[2:0] register field.

The software can write to the Tx command FIFO through the
MMIO TX_CMD_FIFO_WR register. If software attempts to
write to a full Tx command FIFO, the MMIO CTL.BLOCK
field specifies the behavior:

■ If CTL.BLOCK is ‘0’, an AHB-Lite bus error is generated.

■ If CTL.BLOCK is ‘1’, the AHB-Lite write transfer is
extended until an entry is available. This increases
latency.

28.2.1.2 Tx Data FIFO

The Tx data FIFO consists of eight 8-bit entries. A Tx
command FIFO TX_COUNT command specifies the
number of bytes to be transmitted; that is, specifies the
number of Tx data FIFO entries used. The Tx data FIFO is
used by the memory interface transmit logic.

Software can read the number of used Tx data FIFO entries
through the TX_DATA_FIFO_STATUS.USED[3:0] register
field.

Software can write to the Tx data FIFO through the
TX_DATA_FIFO_WR1, TX_DATA_FIFO_WR2, and
TX_DATA_FIFO_WR4 registers:

■ The TX_DATA_FIFO_WR1 register supports a write of a
single byte to the FIFO.

■ The TX_DATA_FIFO_WR2 register supports a write of
two bytes to the FIFO.

■ The TX_DATA_FIFO_WR4 register supports a write of
four bytes to the FIFO. If software attempts to write more
bytes than available entries in the Tx data FIFO, the
MMIO CTL.BLOCK field specifies the behavior:

■ If CTL.BLOCK is ‘0’, an AHB-Lite bus error is generated.

■ If CTL.BLOCK is ‘1’, the AHB-Lite write transfer is
extended until the required entries are available.

28.2.1.3 Rx Data FIFO

The Rx data FIFO consists of eight 8-bit entries. A Tx
command FIFO RX_COUNT command specifies the
number of bytes to be received; that is, specifies the number
of Rx data FIFO entries used. The memory interface
transmit logic will stop generating the SPI clock when the Rx
data FIFO is full. This is how flow control is achieved.

Software can read the number of used Rx data FIFO entries
through the RX_DATA_FIFO_STATUS.USED[3:0] register
field.

Software can read from the Rx data FIFO through the MMIO
RX_DATA_FIFO_RD1, RX_DATA_FIFO_RD2, and
RX_DATA_FIFO_RD4 registers:

■ The RX_DATA_FIFO_RD1 register supports a read of a
single byte from the FIFO.

■ The RX_DATA_FIFO_RD2 register supports a read of
two bytes from the FIFO.

■ The RX_DATA_FIFO_RD4 register supports a read of
four bytes from the FIFO. If software attempts to read
more bytes than available in the Rx data FIFO, the
MMIO CTL.BLOCK field specifies the behavior:

■ If BLOCK is ‘0’, an AHB-Lite bus error is generated and
hard fault occurs.

If BLOCK is ‘1’, the AHB-Lite read transfer is extended until
the bytes are available.

Software can also read the first byte of the RX data FIFO
without changing the status of the FIFO through the
RX_DATA_FIFO_RD1_SILENT register.

28.2.2 MMIO Mode

If CTL.XIP_MODE is ‘0’, the SMIF is in MMIO mode.
Software generates SPI transfers by accessing the Tx
FIFOs and Rx FIFO. Software writes to the Tx FIFOs and
reads from the Rx FIFO. The Tx command FIFO has
formatted commands (Tx, TX_COUNT, RX_COUNT, and
DUMMY_COUNT) that are described in the registers TRM.

Software should ensure that it generates correct memory
transfers and accesses the FIFOs correctly. For example, if
a memory transfer is generated to read four bytes from a
memory device, software should read the four bytes from
the Rx data FIFO. Similarly, if a memory transfer is
generated to write four bytes to a memory device, software
should write the four bytes to the Tx command FIFO or Tx
data FIFO.

Incorrect software behavior can lock up the memory
interface. For example, a memory transfer to read 32 bytes
from a memory device, without software reading the Rx data
FIFO will lock up the memory transfer as the memory
interface cannot provide more than eight bytes to the Rx
data FIFO (the Rx data FIFO has eight entries). This will
prevent any successive memory transfers from taking place.
Hence, the software should make sure that it read the FIFOs
to avoid congestion. Note that a locked up memory transfer
due to Tx or Rx FIFO states is still compliant to the memory
bus protocol (but undesirable): the SPI protocol allows
shutting down the interface clock in the middle of a memory
transfer.

28.2.3 XIP Mode

If CTL.XIP_MODE is ‘1’, the SMIF is in XIP mode. Hardware
automatically (without software intervention) generates
memory transfers by accessing the Tx FIFOs and Rx FIFO.
Hardware supports only memory read and write transfers.
Other functionality such as status reads are not supported.
This means operations such as writing into a flash device
may not be supported by XIP mode. This is because the
writing operation into a flash memory involves not only a



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 346

Serial Memory Interface (SMIF)

write command transfer, but also a status check to verify the
status of the operation.

■ Hardware generates a memory read transfer for an
AHB-Lite read transfer (to be precise: only for AHB-Lite
read transfers that miss in the cache).

■ Hardware generates a memory write transfer for an
AHB-Lite write transfer.

Each slave device slot has a set of associated device
configuration registers. To access a memory device in XIP
mode, the corresponding device configuration registers
(SMIFn_DEVICEn) should be initialized. The device
configuration register sets up the following parameters for
memory:

■ Write enable (WR_EN): Used to disable writes in XIP
mode.

■ Crypto enable (CRYPTO_EN): When enabled, all read
access to the memory is decrypted and write access
encrypted automatically.

■ Data Select (DATA_SEL): Selects the data lines to be
used (Connecting SPI Memory Devices on page 349).

■ Base address and size: Sets up the mapped memory
space. Any access in this space is converted to the
access to the external memory automatically. 

■ Read and write commands: Used to communicate with
the external memory device. These commands are
defined by multiple settings.

As different memory devices support different types of
memory read and write commands, you must provide the
hardware with device specifics, such that it can perform the
automatic translations. To this end, each memory device
has a set of MMIO registers that specify its memory read
and write transfers. This specification includes:

■ Presence and value of the SPI command byte.

■ Number of address bytes.

■ Presence and value of the mode byte.

■ Number of dummy cycles.

■ Specified data transfer widths.

The XIP interface logic produces an AHB-Lite bus error
under the following conditions:

■ The SMIF is disabled (SMIFn_CTL.ENABLED is ‘0’).

■ The SMIF is not in XIP_MODE (SMIFn_CTL.XIP_MODE
is ‘0’).

■ The transfer request is not in a memory region.

■ The transfer is a write and the identified memory region
does not support writes
(SMIFn_DEVICEn_CTL.WR_EN is ‘0’).

■ In XIP mode (CTL.XIP_MODE is ‘1’) and dual quad SPI
mode (ADDR_CTL.DIV2 is ‘1’) or the transfer address is
not a multiple of 2.

■ In XIP mode (CTL.XIP_MODE is ‘1’) and dual quad SPI
mode (ADDR_CTL.DIV2 is ‘1’), the transfer size is not a
multiple of 2.

28.2.4 Cache

To improve XIP performance, the XIP AHB-Lite interface
has a cache. The cache is defined as follows:

■ 4 KB capacity.

■ Read-only cache. Write transfers bypass the cache. A
write to an address, which is prefetched in the cache,
invalidates the associated cache subsector. If there is a
write to a memory in MMIO mode then you must
invalidate the cache while switching back to XIP mode.

■ Four-way set associative, with a least recently used
(LRU) replacement scheme.

Each XIP interface implements a 4-KB cache memory,
enabled by default. Any XIP access can be cached if a
cache is enabled. There are separate cache registers for the
slow cache (in the clk_slow domain) and fast cache (in the
clk_fast domain). The cache can be enabled using the
SLOW_CA_CTL[ENABLED] or FAST_CA_CTL[ENABLED]
registers. Read transfers that “hit” are processed by the
cache. Read transfers that “miss” result in a XIP memory
read transfer.

If CA_CTL.PREF_EN is ‘1’, prefetching is enabled and if
CA_CTL.PREF_EN is ‘0’, prefetching is disabled. If prefetch
is enabled, a cache miss results in a 16 B (subsector) refill
for the missing data AND a 16 B prefetch for the next
sequential data (independent of whether this data is already
in the cache or not). 

Cache coherency is not supported by the hardware. For
example, an XIP interface 0 write to an address in the XIP
interface 0 cache invalidates (clears) the associated cache
subsector in the XIP interface 0 cache, but not in the XIP
interface 1 cache. This means XIP interface 1 cache now
has outdated data. The user code can manually invalidate
cache by using the SLOW_CA_CMD[INV] or
FAST_CA_CMD[INV] register.

Caches should also be invalidated upon mode transitions.
For example, in MMIO mode, a write to an address in the
cache interface will cause the data in the cache interface to
be outdated. The cache should be invalidated when
transitioning to XIP mode to ensure that only valid data is
used.

28.2.5 Arbitration

The SMIF provides two AHB-Lite slave interfaces to CPUSS
(one fast interface and one slow interface). Both interfaces
have a cache (as described in 28.2.4 Cache) and can
generate XIP requests to the external memory devices. 

An arbitration component (as shown in Figure 28-1)
arbitrates between the two interfaces. Arbitration is based



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 347

Serial Memory Interface (SMIF)

on the master identifier of the AHB-Lite transfer. The
arbitration priority is specified by a system wide priority.
Each master identifier has a 2-bit priority level (“0” is the
highest priority level and “3” is the lowest priority level).
Master identifiers with the same priority level are within the
same priority group. Within a priority group, round-robin
arbitration is performed.

28.2.6 Deselect Delay

The SMIF supports configuration of deselect delay between
transfers. The SMIFn_CTL.DESELECT_DELAY field
controls the minimum number of interface cycles to hold the
chip select line inactive.

28.2.7 Cryptography

In XIP mode, a cryptography component supports on-the-fly
encryption for write data and on-the-fly decryption for read
data. The use of on-the-fly cryptography is determined by a
device’s MMIO CTL.CRYPTO_EN field. In MMIO mode, the
cryptography component is accessible through a register
interface to support offline encryption and decryption.

The usage scenario for cryptography is: data is encrypted in
the external memory devices. Therefore, memory read and

write data transfers require decryption and encryption
functionality respectively. By storing data encrypted in the
external memory devices (nonvolatile devices), leakage of
sensitive data is avoided.

Encryption and decryption are based on the AES-128
forward block cipher: advanced encryption standard block
cipher with a 128-bit key. KEY[127:0] is a secret (private)
key programmed into the CRYPTO_KEY3, …,
CRYPTO_KEY0 registers. These registers are software
write-only: a software read returns “0”. In the SMIF
hardware, by applying AES-128 with KEY[127:0] on a
plaintext PT[127:0], we get a ciphertext CT[127:0]. 

In XIP mode, the XIP address is used as the plaintext PT[].
The resulting ciphertext CT[] is used on-the-fly and not
software accessible. The XIP address is extended with the
CRYPTO_INPUT3, …, CRYPTO_INPUT0 registers.

In MMIO mode, the MMIO CRYPTO_INPUT3, …,
CRYPTO_INPUT0 registers provide the plaintext PT[]. The
resulting ciphertext CT[] is provided through the MMIO
CRYPTO_OUTPUT3, …, CRYPTO_OUTPUT0 registers.

Figure 28-2 illustrates the functionality in XIP and MMIO
modes.

Figure 28-2.  Cryptography in XIP and MMIO Modes

In XIP mode, the resulting ciphertext CT[] (of the encrypted address) is XOR’d with the memory transfer’s read data or write
data. Note that the AES-128 block cipher is on the address of the data and not on the data itself. For memory read transfers,
this means that as long as the latency of the memory transfer’s read data is longer than the AES-128 block cipher latency, the
on-the-fly decryption does not add any delay. Figure 28-3 illustrates the complete XIP mode functionality. 

The XIP mode only encrypts the address and XORs with the data; to implement the same in MMIO, you must provide the
address as the PT[] into the crypto_INPUTx registers. 

AES-128 
forward block 

cipher

XIP mode

{CRYPTO_KEY3,
CRYPTO_KEY2,
CRYPTO_KEY1,
CRYPTO_KEY0}

ciphertext CT[127:0]

AES-128 
forward block 

cipher

MMIO mode

{CRYPTO_INPUT3,
CRYPTO_INPUT2,
CRYPTO_INPUT1,
CRYPTO_INPUT0}

{CRYPTO_KEY3,
CRYPTO_KEY2,
CRYPTO_KEY1,
CRYPTO_KEY0}

{CRYPTO_OUTPUT3,
CRYPTO_OUTPUT2,
CRYPTO_OUTPUT1,
CRYPTO_OUTPUT0}

{CRYPTO_INPUT3,
CRYPTO_INPUT2,
CRYPTO_INPUT1,

A[31:4], 
CRYPT0_INPUT0.INPUT[3:0]}

On-the-fly 
usage



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 348

Serial Memory Interface (SMIF)

Figure 28-3.  XIP Mode Functionality

28.3 Memory Device Signal 
Interface

The SMIF acts as a master for SPI applications. SPI
requires the definition of clock polarity and phase. In SPI
mode, the SMIF supports a single clock polarity and phase
configuration:

■ Clock polarity (CPOL) is ‘0’: the base value of the clock
is 0.

■ Clock phase (CPHA) is ‘0’: driving of data is on the
falling edge of the clock; capturing of data is specified by
CTL.CLOCK_IF_RX_SEL.

The above configuration is also known as SPI configuration
0 and is supported by SPI memory devices.

28.3.1 Specifying Memory Devices

The SMIF requires that the memory devices are defined for
their operation in XIP mode. The SMIF supports up to four
memory devices. Each memory device is defined by a set of
registers. The memory device specific register structure
includes:

■ The device base address and capacity. The ADDR
register specifies the memory device’s base address in
the PSoC 6 MCU address space and the MASK register
specifies the memory device’s size/capacity. If a memory
device is not present or is disabled, the ADDR and
MASK registers specify a memory device with 0 B
capacity. Typically, the devices’ address regions in the
PSoC 6 MCU address space are non-overlapping
(except for dual-quad SPI mode) to ensure that the
activation of select signals is mutually exclusive. 

■ The device data signal connections (as described in
Connecting SPI Memory Devices on page 349).

■ The definition of a read transfer to support XIP mode.

■ The definition of a write transfer to support XIP mode.

Each memory device uses a dedicated device select signal:
memory device 0 uses select[0], memory device 1 uses
select[1], and so on. In other words, there is a fixed, one-to-
one connection between memory device, register set, and
select signal connection.

In XIP mode, the XIP AHB-Lite bus transfer address is
compared with the device region. If the address is within the
device region, the device select signal is activated. If an XIP
AHB-Lite bus transfer address is within multiple regions (this
is possible if the device regions overlap), all associated
device select signals are activated. This overlap enables
XIP in dual-quad SPI mode: the command, address, and
mode bytes can be driven to two quad SPI devices
simultaneously.

In XIP mode, dual quad SPI mode requires the
ADDR_CTL.DIV2 field of the selected memory devices to be
set to ‘1’. When this field is ‘1’, the transfer address is
divided by 2 and the divided by 2 address is provided to the
memory devices. 

In dual quad SPI mode, each memory device contributes a
4-bit nibble for each 8-bit byte. However, both memory
devices are quad SPI memories with a byte interface.
Therefore, the transfer size must be a multiple of 2. 

The XIP_ALIGNMENT_ERROR interrupt cause is set under
the following conditions (in XIP mode and when
ADDR_CTL.DIV2 is ‘1’):

■ The transfer address is not a multiple of 2. In this case
the divided by 2 address for the memory devices is
incorrect.

■ The transfer size is not a multiple of 2. In this case, the
memory devices contribute only a nibble of a byte. This
is not supported as the memory devices have a byte
interface. 

AES-128 
forward block 

cipher

{CRYPTO_INPUT3,
CRYPTO_INPUT2,
CRYPTO_INPUT1,

A[31:4], 
CRYPT0_INPUT0.INPUT[3:0]}

{CRYPTO_KEY3,
CRYPTO_KEY2,
CRYPTO_KEY1,
CRYPTO_KEY0}

ciphertext CT[127:0]

encrypted read data encrypted write data

decrypted read data decrypted write data

128 128

128128



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 349

Serial Memory Interface (SMIF)

28.3.2 Connecting SPI Memory Devices

Memory device I/O signals (SCK, CS, SI/IO0, SO/IO1, IO2, IO3, IO4, IO5, IO6, IO7) are connected to the SMIF I/O signals
(clk, select[3:0], and spi_data[7:0]). Not all memory devices provide the same number of I/O signals.

Table 28-1 illustrates that each memory has a single clock signal SCK, a single (low active) select signal (CS), and multiple
data signals (IO0, IO1, …). 

Each memory device has a fixed select signal connection (to select[3:0]).

Each memory device has programmable data signal connections (to data[7:0]): the CTL.DATA_SEL[1:0] field specifies how a
device’s data signals are connected. The CTL.DATA_SEL[1:0] is responsible for configuring the selection of data lines to be
used by a slave. This is not to be confused with the select lines that are used for addressing the four slaves of the SMIF
master. This information is used by the SMIF interface to drive out data on the correct spi_data[] outputs and capture data
from the correct spi_data[] inputs. If multiple device select signals are activated, the same data is driven to all selected
devices simultaneously.

Not all data signal connections are legal/supported. Supported connections are dependent on the type of memory device.

Memory devices can:

■ Use shared data signal connections.

■ Use dedicated data signal connections. This reduces the load on the data lines allowing faster signal level changes, which
in turn allows for a faster I/O interface.

Note that dual-quad SPI mode requires dedicated data signals to enable read and/or write data transfer from and to two quad
SPI devices simultaneously. 

Figure 28-4 illustrates memory device 0, which is a single SPI memory with data signals connections to spi_data[1:0].

Table 28-1.  Memory Device I/O Signals

Memory Device IO Signals

Single SPI memory SCK, CS, SI, SO. This memory device has two data signals (SI and SO).

Dual SPI memory SCK, CS, IO0, IO1. This memory device has two data signals (IO0, IO1).

Quad SPI memory SCK, CS, IO0, IO1, IO2, IO3. This memory device has four data signals (IO0, IO1, IO2, IO3).

Octal SPI memory
SCK, CS, IO0, IO1, IO2, IO3, IO4, IO5, IO6, IO7. This memory device has eight data signals (IO0, IO1, IO2, 
IO3, IO4, IO5, IO6, IO7).

Table 28-2.  Data Signal Connections

DATA_SEL[1:0] Single SPI Device Dual SPI Device Quad SPI Device Octal SPI Device

0
spi_data[0] = SI

spi_data[1] = SO

spi_data[0] = IO0

spi_data[1] = IO1

spi_data[0] = IO0

…

spi_data[3] = IO3

spi_data[0] = IO0

…

spi_data[7] = IO7

1
spi_data[2] = SI

spi_data[3] = SO

spi_data[2] = IO0

spi_data[3] = IO1
Illegal Illegal

2
spi_data[4] = SI

spi_data[5] = SO

spi_data[4] = IO0

spi_data[5] = IO1

spi_data[4] = IO0

…

spi_data[7] = IO3

Illegal

3
spi_data[6] = SI

spi_data[7] = SO

spi_data[6] = IO0

spi_data[7] = IO1
Illegal Illegal



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 350

Serial Memory Interface (SMIF)

Figure 28-4.  Single SPI Memory Device 0 Connected to spi_data[1:0]

Because of the pin layout, you might want to connect a memory device to specific data lines. Figure 28-5 illustrates memory
device 0, which is a single SPI memory with data signals connections to spi_data[7:6].

Figure 28-5.  Single SPI Memory Device 0 Connected to spi_data[7:6]

Figure 28-6 illustrates memory devices 0 and 1, both of which are single SPI memories. Each device uses dedicated data
signal connections. The device address regions in the PSoC 6 MCU address space must be non-overlapping to ensure that
the activation of select[0] and select[1] are mutually exclusive.

Device 0: SPI 
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

CTL.DATA_SEL[1:0] = 0

Device 0: SPI 
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[6]

spi_data[7]

CTL.DATA_SEL[1:0] = 3



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 351

Serial Memory Interface (SMIF)

Figure 28-6.  Single SPI Memory Devices 0 and 1 - Dedicated Data Signal

Figure 28-7 illustrates memory devices 0 and 1, both of which are single SPI memories. Both devices use shared data signal
connections. The devices’ address regions in the PSoC 6 MCU address space must be non-overlapping to ensure that the
activation of select[0] and select[1] are mutually exclusive. Note that this solution increases the load on the data lines, which
may result in a slower I/O interface.

Figure 28-7.  Single SPI Memory Devices 0 and 1 - Shared Data Signal

Figure 28-8 illustrates memory device 0, which is a quad SPI memory with data signals connections to spi_data[7:4].

Device 0: SPI 
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

Device 1: SPI 
memorySCK

CS

SI

SO

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 3

spi_data[6]

spi_data[7]

Device 0: SPI 
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

Device 1: SPI 
memorySCK

CS

SI

SO

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 0



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 352

Serial Memory Interface (SMIF)

Figure 28-8.  Quad SPI Memory Device 0

Figure 28-9 illustrates memory devices 0 and 1, device 0 is a single SPI memory and device 1 is a quad SPI memory. Each
device uses dedicated data signal connections. The device address regions in the PSoC 6 MCU address space must be non-
overlapping to ensure that the activation of select[0] and select[1] are mutually exclusive.

Figure 28-9.  Single SPI Memory 0 and Quad SPI Memory 1 - Dedicated Data Signal

Figure 28-10 illustrates memory devices 0 and 1, device 0 is a single SPI memory and device 1 is a quad SPI memory. Both
devices use shared data signal connections. The device address regions in the PSoC 6 MCU address space must be non-
overlapping to ensure that the activation of select[0] and select[1] are mutually exclusive.

SoC

SMIF
SCK

CS

SI/IO0

SO/IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

CTL.DATA_SEL[1:0] = 0

Device 0: SPI 
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_select[1]

SCK

CS

SI/IO0

SO/IO1

Device 1: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 2

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 353

Serial Memory Interface (SMIF)

Figure 28-10.  Single SPI Memory Device 0 and Quad SPI Memory Device 1 - Shared Data Signal

Figure 28-11 illustrates memory devices 0 and 1, both of which are quad SPI memories. Each device uses dedicated data
signal connections. The device address regions in the PSoC 6 MCU address space are the same to ensure that the activation
of select[0] and select[1] are the same (in XIP mode). This is known as a dual-quad configuration: during SPI read and write
transfers, each device provides a nibble of a byte.

Figure 28-11.  Quad SPI Memory Devices 0 and 1

Figure 28-12 illustrates memory device 0, which is a octal SPI memory with data signals connections to spi_data[7:0].

Device 0: SPI 
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_select[1]

SCK

CS

SI/IO0

SO/IO1

Device 1: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

spi_data[2]

spi_data[3]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 0

SoC

SMIF
SCK

CS

SI/IO0

SO/IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

SCK

CS

SI/IO0

SO/IO1

Device 1: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 2



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 354

Serial Memory Interface (SMIF)

Figure 28-12.  Octal SPI Memory Device 0

28.3.3 SPI Data Transfer

SPI data transfer uses most-significant-bit (MSb) for the first data transfer. This means that for a byte B, consisting of bits b7,
b6, …, b0, bit b7 is transferred first, followed by bit b6, and so on. For dual, quad, dual quad, and octal SPI transfers, multiple
bits are transferred per cycle. For a single SPI device and device data signal connections to spi_data[1:0] (DATA_SEL is “0”),
Table 28-3 summarizes the transfer of byte B.

Note that in single SPI data transfer, the data signals are uni-directional: in the table, data[0] is exclusively used for write data
connected to the device SI input signal and data[1] is exclusively used for read data connected to the device SO output
signal.

SoC

SMIF
SCK

CS

IO0

IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0: 
Octal SPI 
memory

IO2

IO3

CTL.DATA_SEL[1:0] = 0

IO4

IO5

IO6

IO7

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

Table 28-3.  Single Data Transfer

Cycle Data Transfer

0
For a write transfer: b7 is transferred on data[0] and SI/IO0.

For a read transfer: b7 is transferred on data[1] and SO/IO1.

1
For a write transfer: b6 is transferred on data[0] and SI/IO0.

For a read transfer: b6 is transferred on data[1] and SO/IO1.

2
For a write transfer: b5 is transferred on data[0] and SI/IO0.

For a read transfer: b5 is transferred on data[1] and SO/IO1.

3
For a write transfer: b4 is transferred on data[0] and SI/IO0.

For a read transfer: b4 is transferred on data[1] and SO/IO1.

4
For a write transfer: b3 is transferred on data[0] and SI/IO0.

For a read transfer: b3 is transferred on data[1] and SO/IO1.

5
For a write transfer: b2 is transferred on data[0] and SI/IO0.

For a read transfer: b2 is transferred on data[1] and SO/IO1.

6
For a write transfer: b1 is transferred on data[0] and SI/IO0.

For a read transfer: b1 is transferred on data[1] and SO/IO1.

7
For a write transfer: b0 is transferred on data[0] and SI/IO0.

For a read transfer: b0 is transferred on data[1] and SO/IO1.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 355

Serial Memory Interface (SMIF)

For a dual SPI device and device data signal connections to data[1:0] (DATA_SEL is “0”), Table 28-4 summarizes the transfer
of byte B.

For a quad SPI device and device data signal connections to data[3:0] (DATA_SEL is “0”), Table 28-5 summarizes the
transfer of byte B.

For a octal SPI device and device data signal connections to data[7:0] (DATA_SEL is “0”), Table 28-6 summarizes the transfer
of byte B.

In dual-quad SPI mode, two quad SPI devices are used.

■ The first device (the device with the lower device structure index) should have device data signal connections to data[3:0]
(DATA_SEL is 0).

■ The second device (the device with the higher device structure index) should have device data signal connection to
data[7:4] (DATA_SEL is 2).

The command and data phases of the SPI transfer use different width data transfers:

■ The command, address, and mode bytes use quad SPI data transfer. 

■ The read data and write data use octal data transfer. Each device provides a nibble of each data byte: the first device
provides the lower nibble and the second device provides the higher nibble.

Table 28-7 summarizes the transfer of a read data and write data byte B.

28.3.4 Example of Setting up SMIF

Devices 0 and 1 are used to implement the dual-quad SPI mode. Both devices are 1 MB / 8 Mb; the address requires 3 bytes.
Device 0 has device data signal connections to data[3:0] and device 1 has device data signal connections to data[7:4]. 

Table 28-4.  Dual Data Transfer

Cycle Data Transfer

0 b7, b6 are transferred on data[1:0] and IO1, IO0.

1 b5, b4 are transferred on data[1:0] and IO1, IO0.

2 b3, b2 are transferred on data[1:0] and IO1, IO0.

3 b1, b0 are transferred on data[1:0] and IO1, IO0.

Table 28-5.  Quad Data Transfer

Cycle Data Transfer

0 b7, b6, b5, b4 are transferred on data[3:0] and IO3, IO2, IO1, IO0.

1 b3, b2, b1, b0 are transferred on data[3:0] and IO3, IO2, IO1, IO0.

Table 28-6.  Octal Data Transfer

Cycle Data Transfer

0 b7, b6, b5, b4, b3, b2, b1, b0 are transferred on data[7:0] and IO7, IO6, IO5, IO4, IO3, IO2, IO1, IO0.

Table 28-7.  Dual-quad SPI Mode, Octal Data Transfer

Cycle Data transfer

0
b7, b6, b5, b4 are transferred on data[7:4] and second device IO3, IO2, IO1, IO0. 

b3, b2, b1, b0 are transferred on data[3:0] and first device IO3, IO2, IO1, IO0. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 356

Serial Memory Interface (SMIF)

Figure 28-13.  Setting up SMIF

For dual quad SPI mode, the AHB-Lite bus transfer address is divided by two. Cryptography and write functionality are
disabled in the following example.
#define MASK_1MB 0xfff00000;
DEV0_ADDR     = CPUSS_SMIF_BASE;
DEV0_MASK     = MASK_1MB     // MASK: 1 MB region
DEV0_CTL      =(0 << SMIF_DEVICE_CTL_DATA_SEL_Pos)        // DATA_SEL: data[3:0]
                 | (0 << SMIF_DEVICE_CTL_CRYPTO_EN_Pos)         // CRYPTO_EN
                 | (0 << SMIF_DEVICE_CTL_WR_EN_Pos));       // WR_EN
DEV0_ADDR_CTL =  (1 << SMIF_DEVICE_ADDR_CTL_DIV2_Pos)         // DIV2: enabled
                 | ((3-1) << SMIF_DEVICE_ADDR_CTL_SIZE2_Pos));   // SIZE: 3 B address

DEV1_ADDR     = CPUSS_SMIF_BASE;
DEV1_MASK     = 0xfff00000;     // MASK: 1 MB region
DEV1_CTL      =   (2 << SMIF_DEVICE_CTL_DATA_SEL_Pos)        // DATA_SEL: data[7:4]
                | (0 << SMIF_DEVICE_CTL_CRYPTO_EN_Pos)         // CRYPTO_EN
                | (1 << SMIF_DEVICE_CTL_WR_EN_Pos));       // WR_EN
DEV1_ADDR_CTL =   (1 << SMIF_DEVICE_ADDR_CTL_DIV2_Pos)         // DIV2: enabled
                | ((3-1) << SMIF_DEVICE_ADDR_CTL_SIZE2_Pos));   // SIZE: 3 B address

For XIP read transfers, the 0xEB command/instruction is used (Figure 28-14 illustrates a two-byte transfer from devices 0 and
1 in dual quad SPI mode).

SoC

SMIF
SCK

CS

SI/IO0

SO/IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

SCK

CS

SI/IO0

SO/IO1

Device 1: 
Quad SPI 
memory

WP/IO2

HOLD/IO3

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 2



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 357

Serial Memory Interface (SMIF)

Figure 28-14.  Two-Bye Transfer in Dual Quad SPI Mode

The definition of a read transfer is as follows:
DEV0_RD_CMD_CTL  = (1UL << SMIF_DEVICE_RD_CMD_CTL_PRESENT_Pos) // PRESENT
                     | (0 << SMIF_DEVICE_RD_CMD_CTL_WIDTH_Pos) // WIDTH: single data transfer
  | 0xeb);                                                     // CODE
DEV0_RD_ADDR_CTL = (2 << SMIF_DEVICE_RD_ADDR_CTL_WIDTH_Pos));  // WIDTH: quad data transfer
DEV0_RD_MODE_CTL = (1UL << SMIF_DEVICE_RD_MODE_CTL_PRESENT_Pos) // PRESENT
                    | (2 << SMIF_DEVICE_RD_MODE_CTL_WIDTH_Pos) // WIDTH: quad data transfer
                    | 0x00);        // CODE
DEV0_RD_DUMMY_CTL=  (1UL << SMIF_DEVICE_RD_DUMMY_CTL_PRESENT_Pos)     // PRESENT
                    | ((4-1) << SMIF_DEVICE_RD_DUMMY_CTL_SIZE5_Pos));  // SIZE: 4 dummy cycles
DEV0_RD_DATA_CTL = (3 << SMIF_DEVICE_RD_DATA_CTL_WIDTH_Pos)); // WIDTH: octal data transfer

Note that the command uses single data transfer, the address and mode byte use quad data transfer, and the read data byte
uses octal data transfer.

28.4 Triggers

The SMIF has two level-sensitive triggers: 

■ tr_tx_req is associated with the Tx data FIFO.

■ tr_rx_req is associated with the Rx data FIFO.

If the SMIF is enabled (CTL.ENABLED is ‘1’) and MMIO operation mode is selected (CTL.XIP_MODE is ‘0’), the trigger
functionality is enabled. If the SMIF is disabled (CTL.ENABLED is ‘0’) or the XIP operation mode is selected (CTL.XIP_MODE
is ‘1’), the triggers functionality is disabled. The trigger functionality is defined as follows:

■ The MMIO TX_DATA_FIFO_CTL.TRIGGER_LEVEL field specifies a number of FIFO entries. The tr_tx_req trigger is
active when the number of used Tx data FIFO entries is smaller or equal than the specified number; that is,
TX_DATA_FIFO_STATUS.USED  TRIGGER_LEVEL.

■ The MMIO RX_DATA_FIFO_CTL.TRIGGER_LEVEL field specifies a number of FIFO entries. The tr_rx_req trigger is
active when the number of used Rx data FIFO entries is greater than the specified number; that is,
RX_DATA_FIFO_STATUS.USED > TRIGGER_LEVEL.

0 7 8 13 14 19 20 21

4 dummy
 cycles

24 bit addressinstruction (0xeb)

0

1 1

spi_select[1]

spi_clk

spi_data[0]

spi_data[1]

2 2spi_data[2]

3 3spi_data[3]

8-bit data

0 0

mode

15 16

4 020 16 12

1 5 117 13

2 6 218 14

3 7 319 15

21

22

23

0xEB instruction, instruction 1 bit/cycle; address, mode, data 4 bits/cycle

0

5 5

spi_data[4]

spi_data[5]

6 6spi_data[6]

7 7spi_data[7]

4 44 020 16 12

1 5 117 13

2 6 218 14

3 7 319 15

21

22

23

octalquadsingle

spi_select[0]



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 358

Serial Memory Interface (SMIF)

28.5 Interrupts

The SMIF has a single interrupt output with six interrupt causes:

■ INTR.TR_TX_REQ. This interrupt cause is activated in MMIO mode when the tr_tx_req trigger is activated.

■ INTR.TR_RX_REQ. This interrupt cause is activated in MMIO mode when the tr_rx_req trigger is activated.

■ INTR.XIP_ALIGNMENT_ERROR. This interrupt cause is activated in XIP mode when the selected device’s
ADDR_CTL.DIV2 field is ‘1’ and the AHB-Lite bus address is not a multiple of 2, or the requested transfer size is not a
multiple of 2. This interrupt cause identifies erroneous behavior in dual-quad SPI mode (the selected device
ADDR_CTL.DIV2 field is set to ‘1’).

■ INTR.TX_CMD_FIFO_OVERFLOW. This interrupt cause is activated in MMIO mode, on an AHB-Lite write transfer to the
Tx command FIFO (TX_CMD_FIFO_WR) with insufficient free entries. 

■ INTR.TX_DATA_FIFO_OVERFLOW. This interrupt cause is activated in MMIO mode, on an AHB-Lite write transfer to the
Tx data FIFO (TX_DATA_FIFO_WR1, TX_DATA_FIFO_WR2, and TX_DATA_FIFO_WR4) with insufficient free entries.

■ INTR.RX_DATA_FIFO_OVERFLOW. This interrupt cause is activated in MMIO mode, on an AHB-Lite read transfer from
the Rx data FIFO (RX_DATA_FIFO_RD1, RX_DATA_FIFO_RD2, and RX_DATA_FIFO_RD4) with insufficient free
entries.

28.6 Sleep Operation

The SMIF hardware is operational in the Sleep and Active power modes. In the Sleep power mode, only DMA driven
transactions can be performed because the CPU acting as the SPI master is not active.

28.7 Performance

Accesses to the external memory will have some latency, which is dependent upon the mode of SMIF operation, the amount
of data being transferred, caching, and cryptography. In MMIO mode, the number of interface clock cycles per transfer is
determined by the equation: 

For example, in Figure 28-14, the equation to calculate the number of cycles would be (22 cycles = [8 bit instruction/1 single
width] + [24 bit address/4 width] + [8 bit mode/4 width] + 4 dummy cycles + [16 bit data/8 width]). 

In XIP Mode, the performance is affected by the cache. For data reads that hit in the cache, the read will not incur any
interface cycles. Read operations that miss in the cache will occur as a normal SMIF read operation and, if prefetching is
enabled, will result in two 16 B cache sub-sector refills. Writes to external memory in XIP mode will occur as a normal SMIF
write operation.

Enabling cryptography may impact SMIF performance. The AES-128 block cipher has a typical latency of 13 clk_hf cycles.
This means that for transfers that take more than 13 cycles, the on-the-fly decryption does not add any delay. If the transfer is
less than 13 cycles, the transfer latency will be 13 cycles. When the cache is enabled, the 13-cycle latency for encryption is
incurred only once for every 16 B fetched for the cache.

Time to Transfer N bytes 
opcode size

opcode width
---------------------------------- 
  address size

address width
------------------------------------ 
  mode size

mode width
----------------------------- 
  dummycycles

data size
data width
--------------------------- 
 + + + + 

 =
(in interface clock cycles)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 359

29.   Timer, Counter, and PWM (TCPWM)

The Timer, Counter, and Pulse Width Modulator (TCPWM) block in the PSoC 6 MCU implements a 16-bit or 32-bit timer,
counter, pulse width modulator (PWM), or quadrature decoder functionality. The block can be used to measure the period and
pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or
decode quadrature signals. This chapter explains the features, implementation, and operational modes of the TCPWM block.

29.1 Features
■ The TCPWM block supports the following operational modes:

❐ Timer-counter with compare

❐ Timer-counter with capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Up, Down, and Up/Down counting modes. 

■ Clock prescaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Underflow, overflow, and capture/compare output signals

■ Supports interrupt on:

❐ Terminal count – Depends on the mode; typically occurs on overflow or underflow

❐ Capture/compare – The count is captured to the capture register or the counter value equals the value in the compare
register

■ Complementary output for PWMs

■ Selectable start, reload, stop, count, and capture event signals for each TCPWM with rising edge, falling edge, both
edges, and level trigger options

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - TCPWM

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 360

Timer, Counter, and PWM (TCPWM)

29.2 Architecture

Figure 29-1.  TCPWM Block Diagram 

The TCPWM block in a PSoC 6 MCU can contain up to 32
counters. Each counter can be 16- or 32-bit wide. The
number of 16- and 32-bit counters are device specific; refer
to the device datasheet for details.

In this chapter, a TCPWM refers to the entire block and all
the counters inside. A counter refers to the individual
counter inside the TCPWM.

TCPWM has these interfaces:

■ I/O signal interface: Consists of input triggers (such as
reload, start, stop, count, and capture) and output
signals (such as pwm, pwm_n, overflow (OV), underflow
(UN), and capture/compare (CC)).

■ Interrupts: Provides interrupt request signals from each
counter, based on TC or CC conditions.

The TCPWM block can be configured by writing to the
TCPWM registers. See “TCPWM Registers” on page 394 for
more information on all registers required for this block.

29.2.1 Enabling and Disabling Counters 
in TCPWM Block

A counter can be enabled by setting the corresponding bit of
the TCPWM_CTRL_SET register. It can be disabled by
setting the bit in the TCPWM_CTRL_CLR register. These
registers are used to avoid race-conditions on read-modify-
write attempts to the TCPWM_CTRL register, which controls
the enable/disable fields of the counters. 

Note: The counter must be configured before enabling it.
Disabling the counter retains the values in the registers.

29.2.2 Clocking

Each TCPWM counter can have its own clock source. The
only source for the clock is from the configurable peripheral
clock dividers generated by the clocking system; see the
Clocking System chapter on page 208 for details. To select
a clock divider for a particular counter inside a TCPWM, use
the CLOCK_CTL register from the PERI register space. In
this section the clock to the counter will be called
clk_counter. Event generation is performed on the
clk_counter. Another clock, clk_sys is used for the pulse
width of the output triggers. clk_sys is synchronous to
clk_peri (see “CLK_PERI” on page 220), but can be divided
using CLOCK_CTL from the PERI_GROUP_STRUCT
register space.

29.2.2.1 Clock Prescaling

clk_counter can be further divided inside each counter, with
values of 1, 2, 4, 8…64, 128. This division is called
prescaling. The prescaling is set in the GENERIC field of the
TCPWM_CNT_CTLR register.

Note: Clock prescaling is not available in quadrature mode
and pulse width modulation mode with dead time. 

29.2.2.2 Count Event

The counter functionality is performed on an “active count”
prescaled clock, which is gated by a “count event” signal as
shown in Figure 29-2. For example, a counter increments or
decrements by ‘1’ every clk_counter cycle in which a count
event is detected. Count event generation depends on edge
detection modes on count inputs.

When the count input is configured as level, the count value
is changed on each prescaled clk_counter edge in which the
count input is high.

16
T

ri
gg

e
r 

S
yn

ch
ro

n
iz

a
tio

n

T rigger inputs

underflow,
overflow,
cc_m atch (capture or com pare)

in terrupt
pwm ,
pwm _n

23
counter_en

For each 
Counter i

Counter i

Event 
G eneration

16-b it or 32-b it counter
Configuration 

reg isters

1

2

32

...



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 361

Timer, Counter, and PWM (TCPWM)

When the count input is configured as rising/falling the count
value is changed on each prescaled clk_counter edge in
which an edge is detected on the count input. 

The next section contains additional details on edge
detection modes configuration.

Note: Count events are not supported in quadrature and
pulse-width modulation pseudo-random modes; the
clk_counter is used in these cases instead of the active
count prescaled clock.

Figure 29-2.  Counter Clock Generation

29.2.3 Trigger Inputs

Each TCPWM block has 14 Trigger_In signals, which come
from other on-chip resources such as other TCPWMs,
SCBs, or DMA. The Trigger_In signals are shared with all
counters inside of one TCPWM block. Use the Trigger Mux
registers to configure which signals get routed to the
Trigger_In for each TCPWM block. See the Trigger
Multiplexer Block chapter on page 261 for more details. Two
constant trigger inputs ‘0’ are ‘1’ are available in addition to
the 14 Trigger_In. For each counter, the trigger input source
is selected using the TCPWM_CNT_TR_CTRL0 register.

Each counter can select any of the 16 trigger signals to be
the source for any of the following events:

■ Reload

■ Start

■ Stop/Kill

■ Count

■ Capture/swap

The TCPWM_CMD_RELOAD, TCPWM_CMD_STOP,
TCPWM_CMD_START, and TCPWM_CMD_CAPTURE
registers can be used to trigger the reload, stop, start, and
capture respectively from software. 

The sections describing each TCPWM mode will describe
the function of each input event in detail. 

Typical operation uses the reload event once to initialize and
start the counter and the stop event to stop the counter.
When the counter is stopped, the start event can be used to
start the counter with its counter value unmodified from
when it was stopped.

If stop, reload, and start events coincide, the following
precedence relationship holds:

■ A stop event has higher priority than a reload event.

■ A reload event has higher priority that a start event.

As a result, when a reload or start event coincides with a
stop event, the reload or start event has no effect.

Before going to the counter each Trigger_IN can pass
through a positive edge detector, negative edge detector,
both edge detector, or pass straight through to the counter.

This is controlled using TCPWM_CNT_TR_CTRL1. In the
quadrature mode, edge detection is done using clk_counter.
For all other modes, edge detection is done using the
clk_peri.

Multiple detected events are treated as follows:

■ In the rising edge and falling edge modes, multiple
events are effectively reduced to a single event. As a
result, events may be lost. 

■ In the rising/falling edge mode, an even number of
events are not detected and an odd number of events
are reduced to a single event. This is because the rising/
falling edge mode is typically used for capture events to
determine the width of a pulse. The current functionality
will ensure that the alternating pattern of rising and
falling is maintained.

clk_counter

not supported in all modes

Pre-scaling pre-scaled 
counter clock

count event

active count
pre-scaled 

counter clock

Counter 
functionality



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 362

Timer, Counter, and PWM (TCPWM)

Figure 29-3.  TCPWM Input Events

Notes:

■ All trigger inputs are synchronized to clk_peri.

■ When more than one event occurs in the same
clk_counter period, one or more events may be missed.
This can happen for high-frequency events (frequencies
close to the counter frequency) and a timer configuration
in which a pre-scaled (divided) clk_counter is used.

29.2.4 Trigger Outputs

Each counter can generate three trigger output events.
These trigger output events can be routed through the
trigger mux to other peripherals on the device. The three
trigger outputs are:

■ Overflow (OV): An overflow event indicates that in up-
counting mode, COUNTER equals the PERIOD register,
and is changed to a different value.

■ Underflow (UN): An underflow event indicates that in a
down-counting mode, COUNTER equals 0, and is
changed to a different value.

■ Compare/Capture (CC): This event is generated when
the counter is running and one of the following
conditions occur:

❐ Counter equals the compare value. This event is
either generated when the match is about to occur
(COUNTER does not equal CC and is changed to
CC) or when the match is not about to occur
(COUNTER equals CC and is changed to a different
value).

❐ A capture event has occurred and the CC/CC_BUFF
registers are updated.

Note: These signals remain high only for two cycles of
clk_sys.

29.2.5 Interrupts

The TCPWM block provides a dedicated interrupt output for
each counter. This interrupt can be generated for a TC or
CC event. A TC is the logical OR of the OV and UN events. 

Four registers are used to handle interrupts in this block, as
shown in Table 29-1.

TCPWM_CNT_TR_CTRL1

0

1

2

3

Rising edge detect

Falling edge detect

Rising or Falling 
edge detect

No edge detect

TCPWM_CNT_TR_CTRL0

Trigger_In[14]

TCPWM_CMD registers
(software generated)

event

Trigger input sources

Table 29-1.  Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC This bit is set to ‘1’, when a terminal count is detected. Write '1' to clear this bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare register 
value. Write '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the interrupt request register.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 363

Timer, Counter, and PWM (TCPWM)

29.2.6 PWM Outputs

Each counter two outputs, pwm and pwm_n (complementary of pwm). Note that the OV, UN, and CC conditions are used to
drive pwm and pwm_n, by configuring the TCPWM_CNT_TR_CTRL2 register (Table 29-2)..

29.2.7 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers

and other logic are powered in Deep Sleep mode to keep the states of configuration registers. See Table 29-3 for details.

Table 29-2.  Configuring Output for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE 
Default Value = 3

1:0

0 Set pwm to '1

Configures output line on a com-
pare match (CC) event

1 Clear pwm to '0

2 Invert pwm

3 No change

OVERFLOW_MODE 
Default Value = 3

3:2

0 Set pwm to '1

Configures output line on a over-
flow (OV) event

1 Clear pwm to '0

2 Invert pwm

3 No change

UNDERFLOW_-
MODE Default Value = 
3

5:4

0 Set pwm to '1

Configures output line on a under-
flow (UN) event

1 Clear pwm to '0

2 Invert pwm

3 No change

Table 29-3.  Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep The CPU is in sleep but the block is still functional in this mode. All counter clocks are on.

Deep Sleep Both power and clocks to the block are turned off, but configuration registers retain their states.

Hibernate In this mode, the power to this block is switched off. Configuration registers will lose their state.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 364

Timer, Counter, and PWM (TCPWM)

29.3 Operation Modes

The counter block can function in six operational modes, as shown in Table 29-4. The MODE [26:24] field of the counter
control register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNT_CTRL register, as shown in Table 29-5.

Table 29-4.  Operational Mode Configuration

Mode
MODE Field 

[26:24]
Description

Timer 000
The counter increments or decrements by '1' at every clk_counter cycle in which a count event is detected. 
The Compare/Capture register is used to compare the count.

Capture 010
The counter increments or decrements by '1' at every clk_counter cycle in which a count event is detected. A 
capture event copies the counter value into the capture register.

Quadrature 011
Quadrature decoding. The counter is decremented or incremented based on two phase inputs according to 
an X1, X2, or X4 decoding scheme.

PWM 100 Pulse width modulation.

PWM_DT 101 Pulse width modulation with dead time insertion.

PWM_PR 110
Pseudo-random PWM using a 16- or 32-bit linear feedback shift register (LFSR) to generate pseudo-random 
noise.

Table 29-5.  Counting Mode Configuration

Counting Modes
UP_DOWN_
MODE[17:16]

Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) and Over-
flow (OV) condition is generated when the counter changes from the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC and Underflow (UN) 
condition is generated when the counter changes from a value of ‘0’.

UP/DOWN Counting Mode 1 10
Increments the counter until the period value is reached, and then decrements the counter 
until ‘0’ is reached. TC and UN conditions are generated only when the counter changes 
from a value of ‘0’.

UP/DOWN Counting Mode 2 11

Similar to up/down counting mode 1 but a TC condition is generated when the counter 
changes from ‘0’ and when the counter value changes from the period value. OV and UN 
conditions are generated similar to how they are generated in UP and DOWN counting 
modes respectively.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 365

Timer, Counter, and PWM (TCPWM)

29.3.1 Timer Mode

The timer mode is commonly used to measure the time of occurrence of an event or to measure the time difference between
two events. The timer functionality increments/decrements a counter between 0 and the value stored in the PERIOD register.
When the counter is running, the count value stored in the COUNTER register is compared with the compare/capture register
(CC). When the counter changes from a state in which COUNTER equals CC, the cc_match event is generated.

Timer functionality is typically used for one of the following:

■ Timing a specific delay – the count event is a constant ‘1’.

■ Counting the occurrence of a specific event – the event should be connected as an input trigger and selected for the count
event.

Incrementing and decrementing the counter is controlled by the count event and the counter clock clk_counter. Typical
operation will use a constant ‘1’ count event and clk_counter without pre-scaling. Advanced operations are also possible; for
example, the counter event configuration can decide to count the rising edges of a synchronized input trigger. 

Table 29-6 lists the trigger outputs and the conditions when they are triggered. 

Table 29-6.  Timer Mode Trigger Input Description

Trigger Inputs Usage

Reload

Sets the counter value and starts the counter. Behavior is dependent on UP_DOWN_MODE:

■ COUNT_UP: The counter is set to “0” and count direction is set to “up”.

■ COUNT_DOWN: The counter is set to PERIOD and count direction is set to “down”.

■ COUNT_UPDN1/2: The counter is set to “1” and count direction is set to “up”.
Can be used when the counter is running or not running.

Start

Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is 
dependent on UP_DOWN_MODE. When the counter is not running:

■ COUNT_UP: The count direction is set to “up”.

■ COUNT_DOWN: The count direction is set to “down”.

■ COUNT_UPDN1/2: The count direction is not modified.
Note that when the counter is running, the start event has no effect. 

Can be used when the counter is running or not running.

Stop Stops the counter.

Count Count event increments/decrements the counter.

Capture Not used.

Table 29-7.  Timer Mode Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock clk_counter.

One-shot

Counter is stopped by hardware, after a single period of the counter:

■ COUNT_UP: on an overflow event.

■ COUNT_DOWN, COUNT_UPDN1/2: on an underflow event.

Auto reload CC CC and CC_BUFF are exchanged on a cc_match event (when specified by CTRL.AUTO_RELOAD_CC)

Up/down modes

Specified by UP_DOWN_MODE:

■ COUNT_UP: The counter counts from 0 to PERIOD.

■ COUNT_DOWN: The counter counts from PERIOD to 0.

■ COUNT_UPDN1/2: The counter counts from 1 to PERIOD and back to 0.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 366

Timer, Counter, and PWM (TCPWM)

Note: Each output is only two clk_sys wide and is represented by an arrow in the timing diagrams in this chapter, for example
see Figure 29-5.

Figure 29-4.  Timer Functionality

Notes:

■ The timer functionality uses only PERIOD (and not PERIOD_BUFF).

■ Do not write to COUNTER when the counter is running.

Figure 29-5 illustrates a timer in up-counting mode. The counter is initialized (to 0) and started with a software-based reload
event. 

Notes:

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods. The CC register is 2, and
sets the condition for a cc_match event.

■ When the counter changes from a state in which COUNTER is 4, overflow and tc events are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated.

■ A constant count event of ‘1’ and clk_counter without prescaling is used in the following scenarios. If the count event is ‘0’
and a reload event is triggered, the reload will be registered only on the first clock edge when the count event is ‘1’.

Table 29-8.  Timer Mode Trigger Outputs

Trigger Outputs Description

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

Underflow (UN) Counter is decrementing and changes from a state in which COUNTER equals “0”.

Overflow (OV) Counter is incrementing and changes from a state in which COUNTER equals PERIOD.

Table 29-9.  Timer Mode Interrupt Outputs

Interrupt Outputs Description

tc

Specified by UP_DOWN_MODE:

■ COUNT_UP: The tc event is the same as the overflow event.

■ COUNT_DOWN: The tc event is the same as the underflow event.

■ COUNT_UPDN1: The tc event is the same as the underflow event.

■ COUNT_UPDN2: The tc event is the same as the logical OR of the overflow and underflow events.

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

Table 29-10.  Timer Mode PWM Outputs

PWM Outputs Description

pwm Not used.

pwm_n Not used.

Timer

Reload
Start
Stop

Count

clk_counter

cc_match
underflow
overflow

Trigger 
generation

COUNTER

PERIOD

==

CC

CC_BUFF

==

tc

tr_cc_match
tr_underflow
tr_overflow

Interrupt 
generation

interrupt



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 367

Timer, Counter, and PWM (TCPWM)

Figure 29-5.  Timer in Up-counting Mode

Figure 29-6 illustrates a timer in “one-shot” operation mode. Note that the counter is stopped on a tc event.

Figure 29-6.  Timer in One-shot Mode

Figure 29-7 illustrates clock pre-scaling. Note that the counter is only incremented every other counter cycle.

Figure 29-7.  Timer Clock Pre-scaling

Figure 29-8 illustrates a counter that is initialized and started (reload event), stopped (stop event), and continued/started (start
event). Note that the counter does not change value when it is not running (STATUS.RUNNING).

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

COUNTER starts with periodسis PERIOD+1

reload

no TC event CC event on leaving the 
COUNTER value

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP
ONE_SHOT = 1

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP
ONE_SHOT = 1
PRESCALE = DIV_BY_2

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 368

Timer, Counter, and PWM (TCPWM)

Figure 29-8.  Counter Start/Stopped/Continued

Figure 29-9 illustrates a timer that uses both CC and CC_BUFF registers. Note that CC and CC_BUFF are exchanged on a
cc_match event.

Figure 29-9.  Use of CC and CC_BUFF Register Bits

Figure 29-10 illustrates a timer in down counting mode. The counter is initialized (to PERIOD) and started with a software-
based reload event. 

Notes:

■ When the counter changes from a state in which COUNTER is 0, a UN and TC events are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods.

C
O

U
N

T
E

R
PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

RUNNING

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

reload
stop
start

C
O

U
N

T
E

R

PERIOD = 4

MODE = TIMER
UP_DOWN_MODE = COUNT_UP
AUTO_RELOAD_CC = 1

4

3

2

1

0

reload 03 CC
30 CC_BUFF

3
0

0
3

3
0

0
3

3
0

0
3

3
0

0
3

Compare/Capture (CC)

Underflow (UV)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 369

Timer, Counter, and PWM (TCPWM)

Figure 29-10.  Timer in Down-counting Mode

Figure 29-11 illustrates a timer in up/down counting mode 1. The counter is initialized (to 1) and started with a software-based
reload event. 

Notes:

■ When the counter changes from a state in which COUNTER is 4, an overflow is generated.

■ When the counter changes from a state in which COUNTER is 0, an underflow and tc event are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 2*4 = 8 counter clock periods.

Figure 29-11.  Timer in Up/Down Counting Mode 1

Figure 29-12 illustrates a timer in up/down counting mode 1, with different CC values. 

Notes:

■ When CC is 0, the cc_match event is generated at the start of the period (when the counter changes from a state in which
COUNTER is 0).

■ When CC is PERIOD, the cc_match event is generated at the middle of the period (when the counter changes from a
state in which COUNTER is PERIOD).

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_DOWN

4

3

2

1

0

COUNTER starts with PERIOD periodسis PERIOD+1

reload

no TCسevent CCسevent on leaving the 
COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UPDN1

4

3

2

1

0

COUNTER starts with periodسis 2*PERIOD

reload

no TCسevent CCسevent on leaving the 
COUNTER value



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 370

Timer, Counter, and PWM (TCPWM)

Figure 29-12.  Up/Down Counting Mode with Different CC Values

Figure 29-13 illustrates a timer in up/down counting mode 2. This mode is same as up/down counting mode 1, except for the
TC event, which is generated when either underflow or overflow event occurs.

Figure 29-13.  Up/Down Counting Mode 2

29.3.1.1 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select Timer mode by writing ‘000’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16- or 32-bit period in the TCPWM_CNT_PERIOD register.

4. Set the 16- or 32-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the TCPW-
M_CNT_CC_BUFF register. 

5. Set AUTO_RELOAD_CC field of the TCPWM_CNT_CTRL register, if required to swap values at every CC condition.

6. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

7. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register.

8. The timer can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the 
ONE_SHOT[18] field of the TCPWM_CNT_CTRL register.

9. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, stop, capture, and 
count).

10. Set the TCPWM_CNT_TR_CTRL1 register to select the edge of the trigger that causes the event (reload, start, stop, cap-
ture, and count).

11. If required, set the interrupt upon TC or CC condition.

12. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A start trigger must be provided through firmware 
(TCPWM_CMD_START register) to start the counter if the hardware start signal is not enabled.

MODE = TIMER
UP_DOWN_MODE = COUNT_UPDN1

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4
CC

4

3

2

1

0

1 0 4reload

cc_matchسevent at the 
start of the period

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UPDN2

4

3

2

1

0

COUNTER starts with periodسis 2*PERIOD

reload

no TCسevent CCسevent on leaving the 
COUNTER value



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 371

Timer, Counter, and PWM (TCPWM)

29.3.2 Capture Mode

The capture functionality increments and decrements a counter between 0 and PERIOD. When the capture event is activated
the counter value COUNTER is copied to CC (and CC is copied to CC_BUFF).

The capture functionality can be used to measure the width of a pulse (connected as one of the input triggers and used as
capture event).

The capture event can be triggered through the capture trigger input or through a firmware write to command register
(TCPWM_CMD_CAPTURE).

Table 29-11.  Capture Mode Trigger Input Description

Trigger Inputs Usage

reload

Sets the counter value and starts the counter. Behavior is dependent on UP_DOWN_MODE: 

■ COUNT_UP: The counter is set to “0” and count direction is set to “up”. 

■ COUNT_DOWN: The counter is set to PERIOD and count direction is set to “down”. 

■ COUNT_UPDN1/2: The counter is set to “1” and count direction is set to “up”. 
Can be used only when the counter is not running.

start

Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is 
dependent on UP_DOWN_MODE: 

■ COUNT_UP: The count direction is set to “up”. 

■ COUNT_DOWN: The count direction is set to “down”. 

■ COUNT_UPDN1/2: The count direction is not modified. 
Can be used only when the counter is not running.

stop Stops the counter.

count Count event increments/decrements the counter.

capture Copies the counter value to CC and copies CC to CC_BUFF.

Table 29-12.  Capture Mode Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock clk_counter.

One-shot

Counter is stopped by hardware, after a single period of the counter: 

■ COUNT_UP: on an overflow event. 

■ COUNT_DOWN, COUNT_UPDN1/2: on an underflow event.

Up/down modes

Specified by UP_DOWN_MODE: 

■ COUNT_UP: The counter counts from 0 to PERIOD. 

■ COUNT_DOWN: The counter counts from PERIOD to 0. 

■ COUNT_UPDN1/2: The counter counts from 1 to PERIOD and back to 0.

Table 29-13.  Capture Mode Trigger Output Description

Trigger Outputs Description

cc_match (CC) CC is copied to CC_BUFF and counter value is copied to CC (cc_match equals capture event).

Underflow (UN) Counter is decrementing and changes from a state in which COUNTER equals “0”.

Overflow (OV) Counter is incrementing and changes from a state in which COUNTER equals PERIOD.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 372

Timer, Counter, and PWM (TCPWM)

Figure 29-14.  Capture Functionality

Figure 29-15 illustrates capture behavior in the up counting mode. 

Notes:

■ The capture event detection uses rising edge detection. As a result, the capture event is remembered until the next “active
count” pre-scaled counter clock.

■ When a capture event occurs, COUNTER is copied into CC. CC is copied to CC_BUFF.

■ A cc_match event is generated when the counter value is captured. 

Figure 29-15.  Capture in Up Counting Mode

Table 29-14.  Capture Mode Interrupt Outputs

Interrupt Outputs Description

tc

Specified by UP_DOWN_MODE: 

■ COUNT_UP: tc event is the same as the overflow event. 

■ COUNT_DOWN: tc event is the same as the underflow event. 

■ COUNT_UPDN1: tc event is the same as the underflow event. 

■ COUNT_UPDN2: tc event is the same as the logical OR of the overflow and underflow events.

cc_match (CC) CC is copied to CC_BUFF and counter value is copied to CC (cc_match equals capture event).

Table 29-15.  Capture Mode PWM Outputs

PWM Outputs Description

pwm Not used.

pwm_n Not used.

Capture
Reload

Start
Stop

Count
Capture

clk_counter

cc_match
underflow
overflowCOUNTER

PERIOD

==

CC

CC_BUFF

==

tc

Trigger 
generation

tr_cc_match
tr_underflow
tr_overflow

Interrupt 
generation

interrupt

C
O

U
N

T
E

R

PERIOD = 4

MODE = CAPTURE
UP_DOWN_MODE = COUNT_UP
CAPTURE_EDGE = RISING_EDGE

4

3

2

1

0

reload

CC
CC_BUFF

1 4
1

capture

3
4

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 373

Timer, Counter, and PWM (TCPWM)

When multiple capture events are detected before the next “active count” pre-scaled counter clock, capture events are
treated as follows:

■ In the rising edge and falling edge modes, multiple events are effectively reduced to a single event. 

■ In the rising/falling edge mode, an even number of events is not detected and an odd number of events is reduced to a
single event. 

This behavior is illustrated by Figure 29-16, in which a pre-scaler by a factor of 4 is used. 

Figure 29-16.  Multiple Events Detected before Active-Count

29.3.2.1 Configuring Counter for Capture Mode

The steps to configure the counter for Capture mode operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select Capture mode by writing ‘010’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

5. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register.

6. Counter can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the ONE_-
SHOT[18] field of the TCPWM_CNT_CTRL register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, stop, capture, and 
count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, stop, capture, and 
count).

9. If required, set the interrupt upon TC or CC condition.

10. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A start trigger must be provided through firmware 
(TCPWM_CMD_START register) to start the counter if the hardware start signal is not enabled.

missed capture event

C
O

U
N

T
E

R

PERIOD = 4

MODE = CAPTURE
UP_DOWN_MODE = COUNT_UP
CAPTURE_EDGE = RISING_EDGE

4

3

2

1

0

reload

CC
CC_BUFF

1

capture

3
1

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 374

Timer, Counter, and PWM (TCPWM)

29.3.3 Quadrature Decoder Mode

Quadrature functionality increments and decrements a counter between 0 and 0xFFFF or 0xFFFFFFFF (32-bit mode).
Counter updates are under control of quadrature signal inputs: index, phiA, and phiB. The index input is used to indicate an
absolute position. The phiA and phiB inputs are used to determine a change in position (the rate of change in position can be
used to derive speed). The quadrature inputs are mapped onto triggers (as described in Table 29-16).   

Note: Clock pre-scaling is not supported and the count event is used as a quadrature input phiA. As a result, the quadrature
functionality operates on the counter clock (clk_counter), rather than on an “active count” prescaled counter clock. 

Table 29-16.  Quadrature Mode Trigger Input Description

Trigger Input Usage

reload/index
This event acts as a quadrature index input. It initializes the counter to the counter midpoint 0x8000 (16-bit) 
or 0x8000000 (32-bit mode) and starts the quadrature functionality. Rising edge event detection or falling 
edge detection mode should be used.

start/phiB
This event acts as a quadrature phiB input. Pass through (no edge detection) event detection mode should 
be used.

stop Stops the quadrature functionality.

count/phiA
This event acts as a quadrature phiA input. Pass through (no edge detection) event detection mode should 
be used.

capture Not used.

Table 29-17.  Quadrature Mode Supported Features

Supported Features Description

Quadrature encoding

Three encoding schemes for the phiA and phiB inputs are supported (as specified by CTRL.QUADRA-
TURE_MODE): 

X1 encoding. 

X2 encoding. 

X4 encoding.

Table 29-18.  Quadrature Mode Trigger Output Description

Trigger Outputs Description

cc_match (CC) Counter value COUNTER equals 0 or 0xFFFF or 0xFFFFFFFF (32-bit mode) or a reload/index event.

Underflow (UN) Not used.

Overflow (OV) Not used.

Table 29-19.  Quadrature Mode Interrupt Outputs

Interrupt Outputs Description

cc_match (CC) Counter value COUNTER equals 0 or 0xFFFF or 0xFFFFFFFF (32-bit mode) or a reload/index event.

tc Reload/index event.

Table 29-20.  Quadrature Mode PWM Outputs

PWM Outputs Description

pwm Not used.

pwm_n Not used.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 375

Timer, Counter, and PWM (TCPWM)

Figure 29-17.  Quadrature Functionality (16-bit example)

Quadrature functionality is described as follows:

■ A software-generated reload event starts quadrature operation. As a result, COUNTER is set to 0x8000 or 0x80000000,
which is the counter midpoint (the COUNTER is set to 0x7FFF if the reload event coincides with a decrement event; the
COUNTER is set to 0x8001 if the reload event coincides with an increment event). Note that a software-generated reload
event is generated only once, when the counter is not running. All other reload/index events are hardware-generated
reload events as a result of the quadrature index signal.

■ During quadrature operation:

❐ The counter value COUNTER is incremented or decremented based on the specified quadrature encoding scheme.

❐ On a reload/index event, CC is copied to CC_BUFF, COUNTER is copied to CC, and COUNTER is set to 0x8000. In
addition, the tc and cc_match events are generated.

❐ When the counter value COUNTER is 0x0000, CC is copied to CC_BUFF, COUNTER (0x0000) is copied to CC, and
COUNTER is set to 0x8000. In addition, the cc_match event is generated.

❐ When the counter value COUNTER is 0xFFFF, CC is copied to CC_BUFF, COUNTER (0xFFFF) is copied to CC, and
COUNTER is set to 0x8000. In addition, the cc_match event is generated.

The software interrupt handler uses the tc and cc_match interrupt cause fields to distinguish between a reload/index event
and a situation in which a minimum/maximum counter value was reached (about to wrap around). The CC and CC_BUFF
registers are used to determine when the interrupt causing event occurred.

Note that a counter increment/decrement can coincide with a reload/index/tc event or with a situation cc_match event. Under
these circumstances, the counter value set to either 0x8000+1 (increment) or 0x8000-1 (decrement).

Counter increments (incr1 event) and decrements (decr1 event) are determined by the quadrature encoding scheme as
illustrated by Figure 29-18.

Figure 29-18.  Quadrature Mode Waveforms

Quadrature

Reload/Index
Start/phiB

Stop
Count/phiA

clk_counter

cc_match
Trigger 

generation
COUNTER

0x8000 (+/- 1)

==

CC

CC_BUFF

==

tc

tr_cc_match

0x0000

0xFFFF

Interrupt 
generation

interrupt

phiA

phiB

incr1

Quadrature decoding
QUADRATURE_MODE = X1

decr1

incr1

Quadrature decoding
QUADRATURE_MODE = X2

decr1

incr1

Quadrature decoding
QUADRATURE_MODE = X4

decr1

Two times the events of X1 mode

Four times the events of X1 mode



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 376

Timer, Counter, and PWM (TCPWM)

Figure 29-19 illustrates quadrature functionality as a function of the reload/index, incr1, and decr1 events. Note that the first
reload/index event copies the counter value COUNTER to CC.

Figure 29-19.  Quadrature Mode Reload/Index Timing

Figure 29-20 illustrate quadrature functionality for different event scenarios (including scenarios with coinciding events). In all
scenarios, the first reload/index event is generated by software when the counter is not yet running.

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x8001 0x8002 0x8003

counter cycle

0xFFFE 0xFFFF 0x8001 0xFFFE 0xFFFF 0x8000

0xFFFF 0xFFFF

0xFFFF

X

Y X

0xFFFF

X

Quadrature decoding
increment behavior, no coinciding 
reload and increment events

overflow without incr1سeventoverflow with incr1سevent

RUNNING

XY

YZ



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 377

Timer, Counter, and PWM (TCPWM)

Figure 29-20.  Quadrature Mode Timing Cases

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x7FFFF 0x7ffe 0x7ffd

counter cycle

0x0001 0x0000 0x7FFF 0x0001 0x0000 0x8000

0x0000 0x0000

0x0000

0x0000

Quadrature decoding
decrement behavior, no coinciding reload and 
decrement events

underflow without decr1سeventunderflow with decr1سevent

RUNNING

X

Y X X

XY

YZ

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x7FFF 0x7FFE 0x7FFD

counter cycle

0x0001 0x0000 0x8001

0x0000

Quadrature decoding
decrement/increment behavior, no 
coinciding reload events

overflow with decr1سeventunderflow with incr1سevent

0xFFFE 0xFFFF 0x7FFF

0xFFFF

0x0000

0x0000

RUNNING

X

Y X X

XY

YZ

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x7FFF 0x7FFE 0x7FFD

counter cycle
Quadrature decoding
decrement/increment behavior, 
coinciding reload events

reload event and
overflow with incr1سevent

0x0001 0x0000 0x7FFF

0x0000

reload event and
underflow with decr1سevent

0xFFFE 0xFFFF 0x8001

0xFFFF0x0000

0x0000

RUNNING

X

Y X X

XY

YZ

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X

Y

Z

0x7FFF 0x7FFE 0x7FFF

counter cycleQuadrature decoding
decrement behavior and reload events

0x7FFE 0x7FFD 0x8000

0x7FFD0x7FFE

Y 0x7FFE

0x7FFF 0x7FFE 0x7FFD

reload event and
decr1سevent coincide

RUNNING

X

Y



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 378

Timer, Counter, and PWM (TCPWM)

29.3.3.1 Configuring Counter for Quadrature Mode

The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select Quadrature mode by writing ‘011’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL regis-
ter.

4. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).

5. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).

6. If required, set the interrupt upon TC or CC condition.

7. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A start trigger must be provided through firmware 
(TCPWM_CMD_START register) to start the counter if the hardware start signal is not enabled.

29.3.4 Pulse Width Modulation Mode

PWM functionality increments/decrements a counter between 0 and PERIOD. When the counter is running, the counter value
COUNTER is compared with CC. When COUNTER equals CC, the cc_match event is generated. Additionally, on a counter
overflow and counter underflow, the overflow and underflow events are generated. Combined, the cc_match, overflow and
underflow events are used to generate a pulse-width modulated signal on the PWM “pwm” and “pwm_n” output signals. Left-
aligned, right-aligned, and center-aligned PWM signals can be generated. Asymmetric PWM signals can be generated using
the COUNT_UPDN2 mode.

Table 29-21.  PWM Mode Trigger Input Description

Trigger Inputs Usage

reload

Sets the counter value and starts the counter. Behavior is dependent on UP_DOWN_MODE: 

■ COUNT_UP: The counter is set to “0” and count direction is set to “up”. 

■ COUNT_DOWN: The counter is set to PERIOD and count direction is set to “down”. 

■ COUNT_UPDN1/2: The counter is set to “1” and count direction is set to “up”. 
Can be used only when the counter is not running.

start

Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is 
dependent on UP_DOWN_MODE: 

■ COUNT_UP: The count direction is set to “up”. 

■ COUNT_DOWN: The count direction is set to “down”. 

■ COUNT_UPDN1/2: The count direction is set to “up”. 
Can be used only when the counter is not running.

stop/kill
Stops the counter or suppresses the PWM output, depending on PWM_STOP_ON_KILL and PWM_SYN-
C_KILL.

count Count event increments/decrements the counter.

capture/swap

This event acts as a swap event. When this event is active, the CC/CC_BUFF and PERIOD/PERIOD_BUFF 
registers are exchanged on a tc event (when specified by CTRL.AUTO_RELOAD_CC and CTRL.AUTO_RE-
LOAD_PERIOD). 

A swap event requires rising, falling, or rising/falling edge event detection mode. Pass-through mode is not 
supported, unless the selected event is a constant '0' or '1'. 

Note: When COUNT_UPDN2 mode exchanges PERIOD and PERIOD_BUFF at a tc event that coincides 
with an OV event, software should ensure that the PERIOD and PERIOD_BUFF values are the same. 

When a swap event is detected and the counter is running, the event is kept pending until the next tc event. 
When a swap event is detected and the counter is not running, the event is cleared by hardware.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 379

Timer, Counter, and PWM (TCPWM)

Note that the PWM mode does not support dead time insertion. This functionality is supported by the separate PWM_DT
mode.  

Table 29-22.  PWM Mode Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock “clk_counter”.

One-shot

Counter is stopped by hardware, after a single period of the counter: 

■ COUNT_UP: on an overflow event. 

■ COUNT_DOWN and COUNT_UPDN1/2: on an underflow event. 

Compare Swap
CC and CC_BUFF are exchanged on a swap event and tc event (when specified by CTRL.AUTO_RE-
LOAD_CC).

Period Swap

PERIOD and PERIOD_BUFF are exchanged on a swap event and tc event (when specified by 
CTRL.AUTO_RELOAD_PERIOD). Note: When COUNT_UPDN2/Asymmetric mode exchanges PERIOD 
and PERIOD_BUFF at a tc event that coincides with an overflow event, software should ensure that the 
PERIOD and PERIOD_BUFF values are the same. 

Alignment (Up/Down modes)

Specified by UP_DOWN_MODE: 

■ COUNT_UP: The counter counts from 0 to PERIOD. Generates a left-aligned PWM output.

■ COUNT_DOWN: The counter counts from PERIOD to 0. Generates a right-aligned PWM output.

■ COUNT_UPDN1/2: The counter counts from 1 to PERIOD and back to 0. Generates a center-aligned/
asymmetric PWM output.

Kill modes

Specified by PWM_STOP_ON_KILL and PWM_SYNC_KILL:

■ PWM_STOP_ON_KILL = ‘1’ (PWM_SYNC_KILL = don’t care): Stop on Kill mode. This mode
stops the counter on a stop/kill event. Reload or start event is required to start count running. 

■ PWM_STOP_ON_KILL = ‘0’ and PWM_SYNC_KILL = ‘0’: Asynchronous kill mode. This
mode keeps the counter running, but suppresses the PWM output signals and continues to
do so for the duration of the stop/kill event. 

■ PWM_STOP_ON_KILL = ‘0’ and PWM_SYNC_KILL = ‘1’: Synchronous kill mode. This mode
keeps the counter running, but suppresses the PWM output signals and continues to do so
until the next tc event without a stop/kill event. 

Table 29-23.  PWM Mode Trigger Output Description

Trigger Output Description

cc_match (CC)

Specified by UP_DOWN_MODE: 

■ COUNT_UP and COUNT_DOWN: The counter changes to a state in which COUNTER equals CC.

■ COUNT_UPDN1/2: counter changes from a state in which COUNTER equals CC.

Underflow (UN) Counter is decrementing and changes from a state in which COUNTER equals “0”.

Overflow (OV) Counter is incrementing and changes from a state in which COUNTER equals PERIOD.

Table 29-24.  PWM Mode Interrupt Output Description

Interrupt Outputs Description

tc

Specified by UP_DOWN_MODE: 

■ COUNT_UP: tc event is the same as the overflow event. 

■ COUNT_DOWN: tc event is the same as the underflow event. 

■ COUNT_UPDN1: tc event is the same as the underflow event. 

■ COUNT_UPDN2: tc event is the same as the logical OR of the overflow and underflow events.

cc_match (CC)

Specified by UP_DOWN_MODE: 

■ COUNT_UP and COUNT_DOWN: The counter changes to a state in which COUNTER equals CC.

■ COUNT_UPDN1/2: counter changes from a state in which COUNTER equals CC.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 380

Timer, Counter, and PWM (TCPWM)

Note that the cc_match event generation in COUNT_UP and COUNT_DOWN modes are different from the generation in
other functional modes or counting modes. This is to ensure that 0 percent and 100 percent duty cycles can be generated.

Figure 29-21.  PWM Mode Functionality

The generation of the PWM output signals is a multi-step process and is illustrated as follows:

Figure 29-22.  PWM Output Generation

PWM behavior depends on the PERIOD and CC registers. The software can update the PERIOD_BUFF and CC_BUFF
registers, without affecting the PWM behavior. This is the main rationale for double buffering these registers.

Figure 29-23 illustrates a PWM in up counting mode. The counter is initialized (to 0) and started with a software-based reload
event. 

Notes:

■ When the counter changes from a state in which COUNTER is 4, an overflow and tc event are generated.

■ When the counter changes to a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods.

Table 29-25.  PWM Mode PWM Outputs

PWM Outputs Description

pwm PWM output.

pwm_n Complementary PWM output.

PWM

clk_counter

cc_match
underflow
overflow

Trigger 
generation

COUNTER

PERIOD

==

CC

CC_BUFF

==

tc

tr_cc_match
tr_underflow
tr_overflow

PERIOD_BUFF

PWM 
generation

no dead time insertion

pwm_dt_input

Reload
Start

Stop/Kill
Count

Capture/Swap

Interrupt 
generation

interrupt

pwm_dt_input kill period

 pwm

pwm_n
pwm_n polarity

cc_match

underflow
overflow

TCPWM_CNT_TR_CTRL2

 PWM 
generation

Dead time 
insertion

only supported in 
PWM_DT mode

pwm polarity



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 381

Timer, Counter, and PWM (TCPWM)

Figure 29-23.  PWM in Up Counting Mode

Figure 29-24 illustrates a PWM in up counting mode generating a left-aligned PWM. The figure also illustrates how a right-
aligned PWM can be created using the PWM in up counting mode by inverting the OVERFLOW_MODE and
CC_MATCH_MODE and using a CC value that is complementary (PERIOD+1 - pulse width) to the one used for left-aligned
PWM. Note that CC is changed (to CC_BUFF, which is not depicted) on a tc event. The "pulse width" used as CC is the PWM
output's duty cycle x (PERIOD+1).

Figure 29-24.  PWM Left- and Right-Aligned Outputs

Figure 29-25 illustrates a PWM in down counting mode. The counter is initialized (to PERIOD) and started with a software-
based reload event. 

Notes:

■ When the counter changes from a state in which COUNTER is 0, an underflow and tc event are generated.

■ When the counter changes to a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods.

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = PWM
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

COUNTER starts with periodسis PERIOD+1

reload

no tcسevent cc_matchسevent on entering 
the COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

4201
PERIOD = 4
CC5

Left aligned PWM
CC = pulse width
OVERFLOW_MODE = SET
CC_MATCH_MODE = CLEAR

pwm

Right aligned PWM
CC = (PERIOD+1) – pulse width
OVERFLOW_MODE = CLEAR
CC_MATCH_MODE = SET

pwm

MODE = PWM
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 382

Timer, Counter, and PWM (TCPWM)

Figure 29-25.  PWM in Down Counting Mode

Figure 29-26 illustrates a PWM in down counting mode with different CC values. The figure also illustrates how a right-aligned
PWM can be creating using the PWM in down counting mode. Note that the CC is changed (to CC_BUFF, which is not
depicted) on a tc event.

Figure 29-26.  Right-Aligned Down Counting PWM

Figure 29-27 illustrates a PWM in up/down counting mode. The counter is initialized (to 1) and started with a software-based
reload event. 

Notes:

■ When the counter changes from a state in which COUNTER is 4, an overflow is generated.

■ When the counter changes from a state in which COUNTER is 0, an underflow and tc event are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated. Note that the actual
counter value COUNTER from before the reload event is NOT used, instead the counter value before the reload event is
considered to be 0.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 2*4 = 8 counter clock periods.

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = PWM
UP_DOWN_MODE = COUNT_DOWN

4

3

2

1

0

periodسis PERIOD+1COUNTER starts with PERIOD

reload

no tcسevent cc_matchسevent on entering 
the COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

4201
PERIOD = 4
CC-1 / 0xFFFF   

Right aligned PWM
CC = pulse widthس-
UNDERFLOW_MODE = CLEAR
CC_MATCH_MODE = SET

pwm

MODE = PWM
UP_DOWN_MODE = COUNT_DOWN

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 383

Timer, Counter, and PWM (TCPWM)

Figure 29-27.  Up/Down Counting PWM

Figure 29-28 illustrates a PWM in up/down counting mode with different CC values. The figure also illustrates how a center-
aligned PWM can be creating using the PWM in up/down counting mode. 

Note:

■ The actual counter value COUNTER from before the reload event is NOT used. Instead the counter value before the
reload event is considered to be 0. As a result, when the first CC value at the reload event is 0, a cc_match event is
generated.

■ CC is changed (to CC_BUFF, which is not depicted) on a tc event.

Figure 29-28.  Up/Down Counting Center-Aligned PWM

Different stop/kill modes exist. The mode is specified by PWM_STOP_ON_KILL and PWM_SYNC_KILL.

The following three modes are supported:

■ PWM_STOP_ON_KILL is ‘1’ (PWM_SYNC_KILL is don’t care): Stop on Kill mode. This mode stops the counter on a stop/
kill event. Reload or start event is required to run the counter. Both software and external trigger input can be selected as
stop kill. Edge detection mode is required.

■ PWM_STOP_ON_KILL is ‘0’ and PWM_SYNC_KILL is ‘0’: Asynchronous Kill mode. This mode keeps the counter
running, but suppresses the PWM output signals synchronously with the next count clock (“active count” pre-scaled
clk_counter) and continues to do so for the duration of the stop/kill event. Only the external trigger input can be selected
as asynchronous kill. Pass through detection mode is required.

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN1

4

3

2

1

0

COUNTER starts with periodسis 2*PERIOD

reload

no tcسevent cc_matchسevent on leaving 
the COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN1

C
O

U
N

T
E

R

PERIOD = 4
CC

4

3

2

1

0

0 1 4

Center aligned PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload

cc_matchسevent at the 
start of the period

overflowسand cc_matchس
events coincide

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 384

Timer, Counter, and PWM (TCPWM)

■ PWM_STOP_ON_KILL is ‘0’ and PWM_SYNC_KILL is ‘1’: Synchronous Kill mode. This mode keeps the counter running,
but suppresses the PWM output signals synchronously with the next count clock (“active count” pre-scaled clk_counter)
and continues to do so until the next tc event without a stop/kill event. Only the external trigger input can be selected as
synchronous kill. Rising edge detection mode is required.

Figure 29-29, Figure 29-30. and Figure 29-31 illustrate the above three modes.

Figure 29-29.  PWM Stop on Kill

Figure 29-30.  PWM Async Kill

Figure 29-31.  PWM Sync Kill

Figure 29-32 illustrates center-aligned PWM with PERIOD/PERIOD_BUFF and CC/CC_BUFF registers (up/down counting
mode 1). At the TC condition, the PERIOD and CC registers are automatically exchanged with the PERIOD_BUFF and
CC_BUFF registers. The swap event is generated by hardware trigger 1, which is a constant ‘1’ and therefore always active
at the TC condition. After the hardware exchange, the software handler on the tc interrupt cause updates PERIOD_BUFF and
CC_BUFF.

Right aligned PWM
PWM_STOP_ON_KILL = 1
STOP_EDGE = RISING_EDGE
dead timeҸ
pwm polarityҸ�� pwm_n polarityҸ

pwm_dt_input

pwm

 pwm_n

tc
cc_match

kill

pwmҸand pwm_nҸset to 
programmed polarity

kill event stops counter

pwm_dt_input

pwm

 pwm_n

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 0
STOP_EDGE = NON_EDGE_DET
dead timeҸ
pwm polarityҸ�� pwm_n polarityҸ

tc
cc_match

kill

pwmҸand pwm_nҸset to 
programmed polarity

counter does NOT stop

kill period equals kill event

pwm_dt_input

pwm

pwm_n

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 1
STOP_EDGE = RISING_EDGE
dead timeҸ
pwm polarityҸ�� pwm_n polarityҸ

tc
cc_match

kill

pwmҸand pwm_nҸset to 
programmed polarity

counter does NOT stop

kill period ends at next tckill event detected (rising edge)
kill event disappears, but kill period 

extended



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 385

Timer, Counter, and PWM (TCPWM)

Figure 29-32.  PWM Mode CC Swap Event

A potential problem arises when software updates are not completed before the next tc event with an active pending swap
event. For example, if software updates PERIOD_BUFF before the tc event and CC_BUFF after the tc event, swapping does
not reflect the CC_BUFF register update. To prevent this from happening, the swap event should be generated by software
through a register write after both the PERIOD_BUFF and CC_BUFF registers are updated. The swap event is kept pending
by the hardware until the next tc event occurs.

The previous section addressed synchronized updates of the CC/CC_BUFF and PERIOD/PERIOD_BUFF registers of a
single PWM using a software-generated swap event. During motor control, three PWMs work in unison and updates to all
period and compare register pairs should be synchronized. All three PWMs have synchronized periods and as a result have
synchronized tc events. The swap event for all three PWMs is generated by software through a single register write. The
software should generate the swap events after the PERIOD_BUFF and CC_BUFF registers of all three PWMs are updated.

Figure 29-22 uses CTRL.QUADRATURE_MODE[0] for “pwm” polarity and CTRL.QUADRATURE_MODE[1] for “pwm_n”
polarity. Figure 29-33 illustrates how the polarity settings control the PWM output signals “pwm” and “pwm_n”. 

Note: When the counter is not enabled or not running ((temporarily) stopped or killed), the PWM output signals values are
determined by their respective polarity settings.

Figure 29-33.  PWM Outputs When Killed

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN1

C
O

U
N

T
E

R

CC

4

3

2

1

0

0

Asymmetric PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload

CC_BUFF4
5

0 2
2

3

PERIOD4
PERIOD_BUFF5

5 3
3

5

34

upcounting and CC = 0 
=> cc_matchҸevent at 

underflow

SW update
5

5

SW update

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

pwm_dt_input

pwm

 pwm_n

tc
cc_match

kill

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 0
STOP_EDGE = NO_EDGE_DET
dead time = 0
pwm polarity = 0, pwm_n polarity = 0



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 386

Timer, Counter, and PWM (TCPWM)

29.3.4.1 Asymmetric PWM

The PWM mode supports the generation of an asymmetric PWM. For an asymmetric PWM, the pwm_dt_input pulse is not
necessarily centered in the middle of the period. This functionality is realized by having a different CC value when counting up
and when counting down. The CC and CC_BUFF values are exchanged on an overflow event. Note that this restricts the
asymmetry of the generated pwm_dt_input pulse. 

The COUNT_UPDN2 mode should use the same period value when counting up and counting down. When PERIOD and
PERIOD_BUFF are swapped on a tc event (overflow or underflow event), care should be taken to ensure that:

■ Within a PWM period (tc event coincides with an overflow event), the period values are the same (an overflow swap of
PERIOD and PERIOD_BUFF should not change the period value; that is, PERIOD_BUFF should be PERIOD) 

■ Between PWM periods (tc event coincides with an underflow event), the period value can change (an underflow swap of
PERIOD and PERIOD_BUFF may change the period value; that is, PERIOD_BUFF may be different from PERIOD).

Figure 29-34 illustrates how the COUNT_UPDN2 mode is used to generate an asymmetric PWM. 

Notes:

■ When up counting, when CC value at the underflow event is 0, a cc_match event is generated.

■ When down counting, when CC value at the overflow event is PERIOD, a cc_match event is generated.

■ A tc event is generated for both an underflow and overflow event. The tc event is used to exchange the CC and CC_BUFF
values.

Figure 29-34.  Asymmetric PWM

The previous waveform illustrated functionality when the CC values are neither “0” not PERIOD. Corner case conditions in
which the CC values equal “0” or PERIOD are illustrated as follows.

Figure 29-35 illustrates how the COUNT_UPDN2 mode is used to generate an asymmetric PWM. 

Notes:

■ When up counting, when CC value at the underflow event is 0, a cc_match event is generated.

■ When down counting, when CC value at the overflow event is PERIOD, a cc_match event is generated.

■ A tc event is generated for both an underflow and overflow event. The tc event is used to exchange the CC and CC_BUFF
values.

■ Software updates CC_BUFF and PERIOD_BUFF in an interrupt handler on the tc event (and overwrites the hardware
updated values from the CC/CC_BUFF and PERIOD/PERIOD_BUFF exchanges).

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN2

C
O

U
N

T
E

R

PERIOD = 4
CC

4

3

2

1

0

1 3

Asymmetric PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload
CC_BUFF3 1

1 3
3 1

1 3
3 1

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 387

Timer, Counter, and PWM (TCPWM)

Figure 29-35.  Asymmetric PWM when Compare = 0 or Period

29.3.4.2 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select PWM mode by writing ‘100b’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the TCPW-
M_CNT_PERIOD_BUFF register to swap values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and buffer compare value in the TCPWM_CNT_C-
C_BUFF register to swap values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, kill, swap, and count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, kill, swap, and count).

10. pwm and pwm_n can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, OV, and 
UN conditions.

11. If required, set the interrupt upon TC or CC condition.

12. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A start trigger must be provided through firmware 
(TCPWM_CMD_START register) to start the counter if the hardware start signal is not enabled.

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN2

C
O

U
N

T
E

R

CC

4

3

2

1

0

0 4

Asymmetric PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload

CC_BUFF4 5
5 0

4 0
3 3

3 3

PERIOD4 4
PERIOD_BUFF4 5

5 5
3

3 3
3

5

54 5

0 5

4

1

upcounting and CC = 0 
=> cc_matchҸevent at 

underflow

downcounting and CC = 
PERIOD => cc_matchҸ

event at overflow

downcounting and CC = 
PERIOD => cc_matchҸ

event at overflow

SW update SW update SW update SW update SW update

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 388

Timer, Counter, and PWM (TCPWM)

29.3.5 Pulse Width Modulation with Dead Time Mode

The PWM-DT functionality is the same as PWM functionality, except for the following differences:

■ PWM_DT supports dead time insertion; PWM does not support dead time insertion.

■ PWM_DT does not support clock pre-scaling; PWM supports clock pre-scaling.

Figure 29-36.  PWM with Dead Time Functionality

Dead time insertion is a step that operates on a preliminary PWM output signal pwm_dt_input, as illustrated in Figure 29-36.

Figure 29-37 illustrates dead time insertion for different dead times and different output signal polarity settings.

PWM

clk_counter

cc_match
underflow
overflowCOUNTER

PERIOD

==

CC

CC_BUFF

==

tc

PERIOD_BUFF

no clock pre-scaling

Reload
Start

Stop/Kill
Count

Capture/Swap

Trigger 
generation

tr_cc_match
tr_underflow
tr_overflow

PWM 
generation

pwm_dt_input

Interrupt 
generation interrupt

pwm_dt_input kill period

 pwm

pwm_n
pwm_n polarity

cc_match

underflow
overflow

TCPWM_CNT_TR_CTRL2

 PWM 
generation

Dead time 
insertion

only supported in 
PWM_DT mode

pwm polarity



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 389

Timer, Counter, and PWM (TCPWM)

Figure 29-37.  Dead-time Timing

Figure 29-38 illustrates how the polarity settings and stop/kill functionality combined control the PWM output signals “pwm”
and “pwm_n”.

Figure 29-38.  Dead Time and Kill

pwm_dt_input

pwm

pwm_n

pwm

 pwm_n

MODE = PWM_DT
dead timeҸ
pwm polarityҸ
pwm_n polarityҸ

MODE = PWM_DT
dead timeҸ
pwm polarityҸ
pwm_n polarityҸ

1dead time:

pwm

pwm_n

MODE = PWM_DT
dead timeҸ
pwm polarityҸ
pwm_n polarityҸ

2dead time:
pulse is gone

pwm

pwm_n

MODE = PWM_DT
dead timeҸ
pwm polarityҸ
pwm_n polarityҸ

2dead time:

pwm_dt_input

pwm

pwm_n

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 0
STOP_EDGE = NO_EDGE_DET
dead timeҸ
pwm polarityҸ�� pwm_n polarityҸ

tc
cc_match

kill

1dead time:

reload

RUNNING

counter not running counter temporarily killed



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 390

Timer, Counter, and PWM (TCPWM)

29.3.5.1 Configuring Counter for PWM with Dead Time Mode

The steps to configure the counter for PWM with Dead Time mode of operation and the affected register bits are as follows:

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select PWM with Dead Time mode by writing ‘101’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the 
TCPWM_CNT_PERIOD_BUFF register to swap values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register to swap values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to 
configure left-aligned, right-aligned, or center-aligned PWM.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, kill, swap, and count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, kill, swap, and count).

10. pwm and pwm_n can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, OV, and 
UN conditions.

11. If required, set the interrupt upon TC or CC condition.

12. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A start trigger must be provided through firmware 
(TCPWM_CMD_START register) to start the counter if the hardware start signal is not enabled.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 391

Timer, Counter, and PWM (TCPWM)

29.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR)

The PWM_PR functionality changes the counter value using the linear feedback shift register (LFSR). This results in a
pseudo random number sequence. A signal similar to PWM signal is created by comparing the counter value COUNTER with
CC. The generated signal has different frequency/noise characteristics than a regular PWM signal.

Note: Event detection is on the peripheral clock, clk_peri.

Note: The count event is not used. As a result, the PWM_PR functionality operates on the pre-scaled counter clock
(clk_counter), rather than on an “active count” pre-scaled counter clock. 

Table 29-26.  PWM_PR Mode Trigger Inputs

Trigger Inputs Usage

reload
Same behavior as start event. 

Can be used only when the counter is not running.

start
Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is 
independent on UP_DOWN_MODE. 

Can be used only when the counter is not running.

stop/kill Stops the counter. Different stop/kill modes exist.

count Not used.

capture

This event acts as a swap event. When this event is active, the CC/CC_BUFF and PERIOD/PERIOD_BUFF 
registers are exchanged on a tc event (when specified by CTRL.AUTO_RELOAD_CC and CTRL.AUTO_RE-
LOAD_PERIOD). 

A swap event requires rising, falling, or rising/falling edge event detection mode. Pass-through mode is not 
supported, unless the selected event is a constant '0' or '1'. 

When a swap event is detected and the counter is running, the event is kept pending until the next tc event. 
When a swap event is detected and the counter is not running, the event is cleared by hardware.

Table 29-27.  PWM_PR Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock, clk_counter.

One-shot
Counter is stopped by hardware, after a single period of the counter (counter value equals period value 
PERIOD).

Auto reload CC
CC and CC_BUFF are exchanged on a swap event AND tc event (when specified by CTRL.AUTO_RE-
LOAD_CC).

Auto reload PERIOD
PERIOD and PERIOD_BUFF are exchanged on a swap event and tc event (when specified by 
CTRL.AUTO_RELOAD_PERIOD).

Kill modes Specified by PWM_STOP_ON_KILL. See memory map for further details.

Table 29-28.  PWM_PR Trigger Outputs

Trigger Outputs Description

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

Underflow (UN) Not used.

Overflow (OV) Not used.

Table 29-29.  PWM_PR Interrupt Outputs

Interrupt Outputs Description

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

tc Counter changes from a state in which COUNTER equals PERIOD.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 392

Timer, Counter, and PWM (TCPWM)

Figure 29-39.  PWM_PR Functionality

The PWM_PR functionality is described as follows:

■ The counter value COUNTER is initialized by software (to a value different from 0).

■ A reload or start event starts PWM_PR operation. 

■ During PWM_PR operation:

❐ The counter value COUNTER is changed based on the LFSR polynomial: x16 + x14 + x13 + x11 + 1 
(en.wikipedia.org/wiki/Linear_feedback_shift_register). 

temp = COUNTER [16-16] ^ COUNTER [16-14] ^ COUNTER [16-13] ^ COUNTER [16-11] or

temp = COUNTER [0] ^ COUNTER [2] ^ COUNTER [3] ^ COUNTER [5];

COUNTER = (temp << 15) | (COUNTER >> 1)

This will result in a pseudo random number sequence for COUNTER. For example, when COUNTER is initialized to 
0xACE1, the number sequence is: 0xACE1, 0x5670, 0xAB38, 0x559C, 0x2ACE, 0x1567, 0x8AB3… This sequence will 

repeat itself after 216 – 1 or 65535 counter clock cycles.

❐ A 32-bit counter uses the LFSR polynomial: x^32 + x^30 + x^26 + x^25 + 1

❐ When the counter value COUNTER equals CC, a cc_match event is generated.

❐ When the counter value COUNTER equals PERIOD, a tc event is generated.

❐ On a tc event, the CC/CC_BUFF and PERIOD/PERIOD_BUFF can be conditionally exchanged under control of the
capture/swap event and the CTRL.AUTO_RELOAD_CC and CTRL.AUTO_RELOAD_PERIOD field (see PWM func-
tionality).

❐ The output pwm_dt_input reflects: COUNTER[14:0] < CC[15:0]. Note that only the lower 15 bits of COUNTER are
used for comparison, while the COUNTER itself can run up to 16- or 32-bit values. As a result, for CC greater or equal
to 0x8000, pwm_dt_input is always 1. The pwm polarity can be inverted (as specified by CTRL.QUADRATURE_-
MODE[0]).

As mentioned, different stop/kill modes exist. The mode is specified by PWM_STOP_ON_KILL (PWM_SYNC_KILL should be
‘0’ – asynchronous kill mode). The memory map describes the modes and the desired settings for the stop/kill event. The
following two modes are supported:

■ PWM_STOP_ON_KILL is ‘1’. This mode stops the counter on a stop/kill event.

■ PWM_STOP_ON_KILL is ‘0’. This mode keeps the counter running, but suppresses the PWM output signals immediately
and continues to do so for the duration of the stop/kill event.

Table 29-30.  PWM_PR PWM Outputs

PWM Outputs Description

pwm PWM output.

pwm_n Complementary PWM output.

PWM_PR

Reload
Start

Stop/Kill
Capture/Swap

clk_counter

cc_match

COUNTER

PERIOD

==

CC

CC_BUFF

<

tc

PERIOD_BUFF

pwm_dt_input kill period

pwm
pwm polarity

pwm_n
pwm_n polarity

Trigger 
generation

tr_cc_match

Interrupt 
generation

interrupt

http://en.wikipedia.org/wiki/Linear_feedback_shift_register


PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 393

Timer, Counter, and PWM (TCPWM)

Note that the LFSR produces a deterministic number sequence (given a specific counter initialization value). Therefore, it is
possible to calculate the COUNTER value after a certain number of LFSR iterations, n. This calculated COUNTER value can
be used as PERIOD value, and the tc event will be generated after precisely n counter clocks.

Figure 29-40 illustrates PWM_PR functionality. 

Notes:

■ The grey shaded areas represent the counter region in which the pwm_dt_input value is ‘1’, for a CC value of 0x4000.
There are two areas, because only the lower 15 bits of the counter value are used.

■ When CC is set to 0x4000, roughly one-half of the counter clocks will result in a pwm_dt_input value of ‘1’.

Figure 29-40.  PWM_PR Output

29.3.6.1 Configuring Counter for Pseudo-Random PWM Mode

The steps to configure the counter for pseudo-random PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select pseudo-random PWM mode by writing ‘110’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the TCPWM_CNT_PERIOD register and buffer period value in the TCPWM_CNT_PE-
RIOD_BUFF register to swap values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the TCPWM_CNT_C-
C_BUFF register to swap values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, kill, and swap).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, kill, and swap).

8. pwm and pwm_n can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, OV, and 
UN conditions.

9. If required, set the interrupt upon TC or CC condition.

10. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A start trigger must be provided through firmware 
(TCPWM_CMD_START register) to start the counter if the hardware start signal is not enabled.

cc_match
tc

C
O

U
N

T
E

R

PERIOD = 0xe771

CC = 0x4000

MODE = PWM_PR

0

COUNTER is exactly 
0xe771

reload
0xFFFF

pwm_dt_input

Only the lower 15 bits of the 
counter value are used.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 394

Timer, Counter, and PWM (TCPWM)

29.4 TCPWM Registers

Table 29-31.  List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CTRL_CLR TCPWM control clear register
Used to avoid race-conditions on read-modify-write 
attempt to the CTRL register

TCPWM_CTRL_SET TCPWM control set register 
Used to avoid race-conditions on read-modify-write 
attempt to the CTRL register

TCPWM_CMD_CAPTURE TCPWM capture command register Generate a capture trigger input from software

TCPWM_CMD_RELOAD  TCPWM reload command register Generate a reload trigger input from software

TCPWM_CMD_STOP TCPWM stop command register Generate a stop trigger input from software

TCPWM_CMD_START TCPWM start command register Generate a start trigger input from software

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNT_CTRL Counter control register
Configures counter mode, encoding modes, one-shot 
mode, swap mode, kill mode, dead time, clock pre-scal-
ing, and counting direction

TCPWM_CNT_STATUS Counter status register
Reads the direction of counting, dead time duration, and 
clock pre-scaling; checks whether the counter is running

TCPWM_CNT_COUNTER Count register Contains the 16- or 32-bit counter value

TCPWM_CNT_CC Counter compare/capture register
Captures the counter value or compares the value with 
counter value

TCPWM_CNT_CC_BUFF Counter buffered compare/capture register
Buffer register for counter CC register; swaps period 
value

TCPWM_CNT_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNT_PERIOD_BUFF Counter buffered period register
Buffer register for counter period register; swaps compare 
value

TCPWM_CNT_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNT_TR_CTRL1 Counter trigger control register 1
Determine edge detection for specific counter input sig-
nals

TCPWM_CNT_TR_CTRL2 Counter trigger control register 2
Controls counter output lines upon CC, OV, and UN con-
ditions

TCPWM_CNT_INTR Interrupt request register Sets the register bit when TC or CC condition is detected

TCPWM_CNT_INTR_SET Interrupt set request register Sets the corresponding bits in interrupt request register

TCPWM_CNT_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNT_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 395

30.   Inter-IC Sound Bus

The Inter-IC Sound Bus (I2S) is a serial bus interface standard used to connect digital audio devices together. The
specification is from Philips® Semiconductor (I2S bus specification: February 1986, revised June 5, 1996). In addition to the
standard I2S format, the I2S block also supports the Left Justified (LJ) format and the Time Division Multiplexed (TDM) format.

30.1 Features

■ Supports standard Philips I2S, LJ, and eight-channel TDM digital audio interface formats

■ Supports both master and slave mode operation in all the digital audio formats

■ Supports independent operation of Receive (Rx) and Transmit (Tx) directions

■ Supports operating from an external master clock provided through an external IC such as audio codec

■ Provides configurable clock divider registers to generate the required sample rates

■ Supports data word length of 8-bit, 16-bit, 18-bit, 20-bit, 24-bit, and 32-bit per channel

■ Supports channel length of 8-bit, 16-bit, 18-bit, 20-bit, 24-bit, and 32-bit per channel (channel length fixed at 32-bit in TDM
format)

■ Provides two hardware FIFO buffers, one each for the Tx block and Rx block, respectively

■ Supports both DMA- and CPU-based data transfers

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 396

Inter-IC Sound Bus

30.2 Architecture

Figure 30-1.  I2S Block Diagram

Figure 30-1 shows the high-level block diagram of the I2S block, which consists of two sub-blocks – I2S Transmitter (Tx) and
I2S Receiver (Rx). The digital audio interface format and master/slave mode configuration can be done independently for the
Tx and Rx blocks. In the master mode, the word select (ws) and serial data clock (sck) are generated by the I2S block in the
PSoC 6 MCU. In the slave mode, the ws and sck signals are inputs signals to the PSoC 6 MCU, and are generated by the
external master device. The I2S block configuration, control, and status registers, along with the FIFO data buffers are
accessible through the AHB bus. AHB bus masters such as CPU and DMA can access the I2S registers through the AHB
interface. Refer to the device datasheet for information on port pin assignments of the I2S block signals and AC/DC electrical
specifications. 

30.3 Digital Audio Interface Formats 

The I2S block supports the following digital audio interface formats.

■ Standard I2S format

■ Left Justified format

■ Time Division Multiplexed (TDM) format

The Tx and Rx sub-blocks can be independently configured to support one of the above formats in either master or slave
mode. The I2S_MODE bits in the I2S_TX_CTL and I2S_RX_CTL registers are used to configure the digital audio interface
format for the Tx and Rx blocks respectively. The MS (Master/Slave) bit in the I2S_TX_CTL and I2S_RX_CTL registers is
used to configure the blocks in master or slave mode.

30.3.1 Standard I2S Format

Figure 30-2 shows the timing diagrams for the different word length and channel length combinations in the standard I2S
digital audio format. In the standard I2S format, the word select signal (ws) is low for left channel data, and high for right
channel data. The ws signal transitions one bit-clock (sck) early relative to the start of the left/right channel data. All the serial
data (sd), ws signal transitions on the falling edge of the sck signal, and the read operations on the ws and sd lines are usually
done on the rising edge of sck. Therefore, the I2S Tx block writes to the serial data (tx_sdo) line on the falling edge of tx_sck,

PSoC 6 MCU

Audio subsystem

I2S

I2S
TX

tx_sck

tx_ws

tx_sdo

AHB bus

CPU Data Wire/
DMA SRAM

I2S
RX

rx_sck

rx_ws

rx_sdi

External IC
 (for example, Audio 

Codec, I2S Microphones)

clk_i2s_if



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 397

Inter-IC Sound Bus

and the I2S Rx block reads the data (rx_sdi) on the rising edge of rx_sck. The serial data is transmitted most significant bit
(MSb) first. Depending on whether the block is in master or slave mode, the ws/sck signals are either generated by the block
(master mode) or input signals to the block (slave mode).

The I2S block supports configurable word length and channel length selection options. The word length for the Tx and Rx
blocks can be configured using the WORD_LEN bits in the I2S_TX_CTL and I2S_RX_CTL registers, respectively. The
channel length for the Tx and Rx blocks can be configured using the CH_LEN bits in the I2S_TX_CTL and I2S_RX_CTL
registers respectively. The channel length configuration should always be greater than or equal to the word length
configuration. Ensure that when the I2S Rx block is operated in slave mode, the master Tx device ensures that its channel
length configuration aligns with the I2S Rx block channel length setting. If there is channel length mismatch, the PSoC I2S Rx
block in slave mode will not operate correctly.

In the Tx block, when the channel length is greater than the word length, the unused bits can be transmitted either as ‘0’ or ‘1’.
This selection is made using the OVHDATA bit in the I2S_TX_CTL register. In the Rx block, when the word length is less than
32 bits, the unused most significant bits written to the 32-bit Rx FIFO register can either be set to ‘0’ or sign bit extended. This
selection is made using the BIT_EXTENSION bit in the I2S_RX_CTL register.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 398

Inter-IC Sound Bus

Figure 30-2.  Standard I2S Format (Word Length and Channel Length Combination Timing Diagrams)

Table 30-1 lists the supported word length and channel length combinations.

7

Word Length = 8-bit mode

6 1 0SD
MSb LSb

15

Word Length = 16-bit mode

14 9 8SD
MSb

1 0
LSb

SD 23

Word Length = 24-bit mode

22

19

Word Length = 20-bit mode

18

17

Word Length = 18-bit mode

16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04

SD

SD

MSb

MSb

MSb

LSb

LSb

LSb

SD 31

Word Length = 32-bit mode

30 15 14 1317 16 9 812
MSb LSb

01

11 10

13 12

15 14

23 22

7 6 1 0
MSb LSb

15 14 9 8
MSb

1 0
LSb

23 22

19 18

17 16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04
MSb

MSb

MSb

LSb

LSb

LSb

31 30 15 14 1317 16 9 812
MSb LSb

01

11 10

13 12

15 14

23 220

SCK

WS

Left Channel 
(Channel Length = 32 -bit)

Right Channel 
(Channel Length = 32 -bit)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

7

Word Length = 8-bit mode

6 1 0SD
MSb LSb

15

Word Length = 16-bit mode

14 9 8SD
MSb

1 0
LSb

SD 23

Word Length = 24-bit mode

22

19

Word Length = 20-bit mode

18

17

Word Length = 18-bit mode

16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04

SD

SD

MSb

MSb

MSb

LSb

LSb

LSb
11 10

13 12

15 14

7 6 1 0
MSb LSb

15 14 9 8
MSb

1 0
LSb

23 22

19 18

17 16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04
MSb

MSb

MSb

LSb

LSb

LSb
11 10

13 12

15 14

SCK

WS

Left Channel 
(Channel Length = 24 -bit)

Right Channel 
(Channel Length = 24 -bit)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

11 10 9 8 7 6 3 2 1 05 4
LSb

7

Word Length = 8-bit mode

6 1 0SD
MSb LSb

15

Word Length = 16-bit mode

14 9 8SD
MSb

19

Word Length = 20-bit mode

18

17

Word Length = 18-bit mode

16

SD

SD

MSb

MSb
11 10

13 12

7 6 1
MSb

15 14 9
MSb

19 18

17 16

MSb

MSb
11

13

SCK

WS

Left Channel 
(Channel Length = 20 -bit)

Right Channel 
(Channel Length = 20 -bit)

~

~

~

~

~

~

9 8 7 6 3 2 1 05 4
LSb

7 6 3 2 1 05 4
LSb

11 10 9 8 7 6 3 2 1 05 4
LSb

0
LSb

8

10

12

9 8 7 6 3 2 1 05 4
LSb

7 6 3 2 1 05 4
LSb

~

~

~

~

~

~

(1) Channel Length = 32-bits

(2) Channel Length = 24-bits

(3) Channel Length = 20-bits

(4) Channel Length = 8-bits

7

Word Length = 8-bit mode

6SD
MSb

3 2 1 05 4
LSb

0

0 7 6
MSb

3 2 1 05 4
LSb

7

SCK

WS

Left Channel 
(Channel Length = 8 -bit)

Right Channel 
(Channel Length = 8 -bit)

01

1

1



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 399

Inter-IC Sound Bus

30.3.2 Left Justified (LJ) Format

Figure 30-3 shows the timing diagrams for the Left Justified interface format using the 32-bit channel length and 32-bit word
length configuration as an example. The only differences between the standard I2S and LJ formats are:

■ In the standard I2S format, WS signal is low for left channel data and high for right channel data. In the LJ format, WS
signal is high for left channel data and low for right channel data.

■ In the standard I2S format, WS signal transitions one bit-clock (sck) early relative to the start of the channel data
(coincides with LSb of the previous channel). In the LJ format, there is no early transition, and the WS signal transitions
coincide with the start of the channel data.

Apart from these differences, all the features explained in the standard I2S format section apply to the LJ format as well.

Figure 30-3.  Left Justified Digital Audio Format

30.3.3 Time Division Multiplexed (TDM) Format

Figure 30-4 shows the timing diagrams for the two types of Time Division Multiplexed (TDM) formats supported by the I2S
block. The differences between the standard I2S/LJ formats and the TDM format are as follows:

■ Standard I2S/LJ formats support only two channels (left/right) per frame, while TDM format supports up to eight channels
per frame.

■ In the TDM format, channel length for all eight channels is fixed at 32 bits. In the standard I2S/LJ formats, the channel
length is configurable. The word length per channel is configurable similar to the standard I2S and the data is also
transmitted most significant bit first. Similar to I2S, when the word length per channel is less than the 32-bit channel length
for Tx block, the OVHDATA bit in the I2S_TX_CTL register is used to fill the unused least significant channel data bits with
either all zeros or all ones

■ In the TDM format, all eight channels of data are always present in a frame, and thus the frame width is fixed at 256 bits.
You have the option to configure the number of active channels in a frame by configuring the CH_NR bits in the
I2S_TX_CTL and I2S_RX_CTL registers. In the standard I2S/LJ format, the CH_NR should always be configured for two
channels. The number of active channels in the TDM format can be less than or equal to eight channels. The unused
(inactive) channels always follow the active channels in a frame. As an example, if CH_NR is set for four channels, CH0 to
CH3 are the active channels and CH4 to CH7 are the unused channels. The OVHDATA bit in the I2S_TX_CTL register is
used to fill the unused channels with either all zeros or all ones.

Table 30-1.  Word Length and Channel Length Combinations

 
Word Length

8-bit 16-bit 18-bit 20-bit 24-bit 32-bit

Channel Length

32-bit Valid Valid Valid Valid Valid Valid

24-bit Valid Valid Valid Valid Valid Invalid

30-bit Valid Valid Valid Valid Invalid Invalid

18-bit Valid Valid Valid Invalid Invalid Invalid

16-bit Valid Valid Invalid Invalid Invalid Invalid

8-bit Valid Invalid Invalid Invalid Invalid Invalid

31

Word Length = 32-bit mode

30 15 14 1317 16 9 812
MSb LSb

31 30 15 14 1317 16 9 812
MSb LSb

31
MSb

01 01

Left Channel Right Channel



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 400

Inter-IC Sound Bus

■ The pulse width of the word select (WS) signal in the TDM format can be configured to be either one bit clock (sck) wide
or one channel wide. The selection is made using the WS_PULSE bit in the I2S_TX_CTL and I2S_RX_CTL registers. The
pulse width is fixed to one channel width in the I2S/LJ format.

■ Two types of TDM formats are supported. In TDM mode A, the WS rising edge signal to signify the start of frame coincides
with the start of CH0 data. In TDM mode B, the WS rising edge signal to signify the start of frame is one bit clock (sck)
early, relative to the start of CH0 data (coincides with the last bit of the previous frame). The selection between the two
TDM formats is made using the I2S_MODE bits in the I2S_TX_CTL and I2S_RX_CTL registers.

Figure 30-4.  TDM Digital Audio Interface Format

30.4 Clocking Polarity and Delay Options

The I2S block supports configurable clock polarity and delay options to alleviate any timing issues in the system involving
PCB signal propagation delays, and delays associated with internal device signal routing.

When the I2S Tx block operates in the slave mode, the tx_sck and tx_ws signals are input signals to the PSoC 6 MCU, and
the tx_sdo output signal is transmitted off the tx_sck falling edge. The tx_sdo signal is sampled by the external master device
Rx block on the subsequent tx_sck rising edge. Timing issues arise if the tx_sdo signal reaching the master side Rx block
does not meet the setup and hold time requirements for input data on the master side. The I2S Tx block in the PSoC 6 MCU
has an option to advance the serial data transmission by 0.5 SCK cycles when the B_CLOCK_INV bit in the I2S_TX_CTL
register is set. This feature can be used if there are timing issues while operating the I2S Tx block in slave mode. 

Similarly, when the I2S Rx block operates in the master mode, the rx_sck and rx_ws signals are output signals from the
PSoC 6 MCU, and the rx_sdi signal is transmitted by the external master device on the falling edge of rx_sck. The PSoC I2S
Rx block samples the rx_sdi signal on the subsequent rx_sck rising edge. Timing issues arise if the rx_sdi signal reaching the
PSoC block does not meet the setup and hold time requirements for input data. The I2S Rx block has an option to delay the
serial data capture by 0.5 SCK cycles when the B_CLOCK_INV bit in the I2S_RX_CTL register is set. This feature can be
used if there are timing issues while operating the I2S Rx block in master mode. 

In addition to these clock delay options, there is also an option to invert the outgoing bit clock (sck) in master mode by setting
the SCKO_POL bit in the I2S_TX_CTL and I2S_RX_CTL registers. Similarly, in the slave mode, there is an option to invert
the incoming bit clock (sck) by setting the SCKI_POL bit in the I2S_TX_CTL and I2S_RX_CTL registers.

Refer to the registers TRM for detailed description of the B_CLOCK_INV, SCKI_POL, and SCKO_POL register
configurations.

SCK

WS

SD CH1 CH6 CH0CH7CH7 CH0

Channel 
(Channel Length = 32 -bits)

Frame
(Frame Length = 256-bits)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Pulse width is 1 SCK period or 1 channel length

TDM mode A format

CH0

SCK

WS

SD CH1 CH6 CH7CH7 CH0

Channel 
(Channel Length = 32 -bits)

Frame
(Frame Length = 256-bits)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Pulse width is 1 SCK period or 1 channel length

TDM mode format B



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 401

Inter-IC Sound Bus

30.5 Interfacing with Audio Codecs

The I2S block in the PSoC 6 MCU interfaces with an audio codec device based on the choice of codec device and the end
application requirements. Some scenarios and the connection diagrams are as follows:

■ Codecs with separate ws and sck signals for the Rx and Tx directions: To interface with these codecs, the connections
between the PSoC I2S block and the codec device will be as shown in Figure 30-1 where the PSoC I2S Tx signals
(tx_sck, tx_ws, tx_sdo) connect to the codec Rx signals, and the PSoC I2S Rx signals (rx_sck, rx_ws, rx_sdi) connect to
the codec Tx signals. The direction of sck (tx_sck, rx_sck) and ws (tx_ws, rx_ws) signals depends on which device is the
master and which device is the slave.

■ Codecs with common ws and sck signals for both Rx and Tx directions: There are two possible configurations to interface
these codecs with the PSoC 6 MCU as shown in Figure 30-5. In both configurations, the sck signals (tx_sck, rx_sck,
codec_sck) are shorted externally. The same goes for the ws signal connections as well (tx_ws, rx_ws, codec_ws).
Ensure that only one block is driving the sck and ws lines. So when the codec acts as the slave device, the PSoC I2S Rx
block should be in the master mode, and the PSoC I2S Tx block should be in the slave mode (or PSoC I2S Rx as slave
and PSoC I2S Tx as master). When the codec acts as the master device, both the PSoC I2S Rx and PSoC I2S Tx blocks
should be in slave mode.

Figure 30-5.  Interfacing with Codecs having Common ws and sck Signals

30.6 Clocking Features

The I2S unit has three clock inputs.

Figure 30-6 shows the clocking divider structure in the I2S block. In the master mode, the sck and ws signals are generated
either using the clk_audio_i2s internal clock or the clk_i2s_if external clock. Refer to the device datasheet for the port pin
assignment of clk_i2s_if clock. The CLOCK_SEL bit in the I2S_CLOCK_CTL register controls the selection between internal
and external clocks.

Table 30-2.  Clock Inputs

Signal DESCRIPTION

clk_sys_i2s
System clock. This clock is used for the AHB slave Interface, control, status, and interrupt registers, and also 
clocks the DMA trigger control logic.

clk_audio_i2s
I2S internal clock. This clock is used for I2S transmitter (Tx)/receiver (Rx) blocks; it is asynchronous with the 
clk_sys_i2s. This clock is connected to the CLK_HF[1] high-frequency clock in the device. Refer to the 
Clocking System chapter on page 208 for more details on high frequency clocks.

clk_i2s_if
I2S external clock. This clock is provided from an external I2S bus host through a port pin. It is used in place 
of the clk_audio_i2s clock to synchronize I2S data to the clock used by the external I2S bus host.

PSoC

I2S 
Transmitter

(Slave)

tx_sck

tx_ws

tx_sdo

I2S 
Receiver
(Master)

rx_sck

rx_ws

rx_sdi

I2S

Codec
(Tx Slave, 
Rx Slave) codec_sck

codec_rx_sdi

codec_ws

codec_tx_sdo

PSoC

I2S 
Transmitter

(Slave)

tx_sck

tx_ws

tx_sdo

I2S
Receiver
(Slave)

rx_sck

rx_ws

rx_sdi

I2S

Codec
(Tx Master, 
Rx Master) codec_sck

codec_rx_sdi

codec_ws

codec_tx_sdo



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 402

Inter-IC Sound Bus

Figure 30-6.  Clocking Divider Structure

There are two stages of clock dividers in the I2S block as follows.

■ The first stage clock divider is used to generate the internal I2S master clock (MCLK_SOC). The input clock to the first
stage divider is either clk_audio_i2s or clk_i2s_if. The first stage clock divider is configured using the CLOCK_DIV bits in
I2S_CLOCK_CTL register. Divider values from 1 to 64 are supported.

■ The second stage clock divider is used to generate the sck signals. The input clock is the output from the first stage clock
divider. This divider value is fixed at ‘8’ (FTX_SCK = FRX_SCK = FMCLK_SOC/8). The word select (ws) signal frequency
depends on the sck frequency, and the configured channel length value.

When in slave mode, the internal clock (MCLK_SOC) frequency should still be eight times the frequency of the input serial
clock. You must choose the appropriate clock source and the CLOCK_DIV divider value to guarantee this condition is met in
the slave mode of operation. Usually, when the PSoC I2S block operates in the slave mode, the host sends a master clock
which is an integral multiple of the sampling rate. This master clock can be routed to the clk_i2s_if port pin. The CLOCK_DIV
divider value can then be adjusted to ensure that the MCLK_SOC is eight times the input SCK frequency.

Table 30-3 gives an example of the clock divider settings for operating the I2S block at the standard sampling rates in the
standard I2S format. Note that the first stage divider values in the table are the register field values – the actual divider values
are one more than the configured register values as explained in the clock divider section. Refer to the device datasheet for
details on maximum values of SCK frequency, and the output sampling rates. 

Table 30-3.  I2S Divider Values for Standard Audio Sampling Rates in Standard I2S Format

Sampling Rate 
(SR) (kHz)

WORD_LEN 
(bits)

SCK 
(2*WORD_LEN*SR) 

(MHz)

CLK_HF1 
(or clk_i2s_if) 

(MHz)

(CLK_HF[1])/SCK 
(Total Divider 

Ratio)

CLK_CLOCK_DIV 
(First Divider)

 Second Stage 
Divider 

(Fixed at 8)

8 32 0.512

49.152

96 11

8

16 32 1.024 48 5

32 32 2.048 24 2

48 32 3.072 16 1

44.1 32 2.8224 45.1584 32 3

CLOCK_DIV 
(1st stage divider)

Divider range: 1 to 64

2nd stage divider

(Divider value fixed at 8)

MCLK_SOC

SCK signal to Tx, 
Rx blocks 

(MCLK_SOC / 8)

clk_audio_i2s 
(CLK_HF[1])

clk_i2s_if

CLOCK_SEL bit  in 
I2S_CLOCK_CTL register



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 403

Inter-IC Sound Bus

30.7 FIFO Buffer and DMA 
Support

The I2S block has two FIFO buffers - one each for the Tx
block and Rx block, respectively. The ordering format of the
channel data in both Tx and Rx FIFOs depends on the
configured digital audio format. This ordering format should
be considered when writing to the Tx FIFO or reading from
the Rx FIFO. In the standard I2S and LJ digital audio
formats, the ordering of the data is (L, R, L, R, L, ...) where L
refers to the left channel data and R refers to the right
channel data. In the TDM format with the number of active
channels set to four, the data order will be (CH0, CH1, CH2,
CH3, CH0, CH1, CH2, CH3, CH0, .....). If the number of
active channels is set to eight, the cycle will repeat after
CH0–CH7 data.

I2S Tx FIFO: The I2S Tx block has a hardware FIFO of
depth 256 elements where each element is 32-bit wide. In
addition to this 256-element FIFO, the I2S block has an
internal transmit buffer that can store four 32-bit data to be
transmitted. This four-element buffer is used as an
intermediary to hold data to be transferred on the I2S bus,
and is not exposed to the AHB BUS interface. 

The TX FIFO can be paused by setting the TX_PAUSE bit in
I2S_CMD. When the TX_PAUSE bit is set, the data sent
over I2S is “0”, instead of TX FIFO data. To resume normal
operation, the TX_PAUSE bit must be cleared.

The I2S_TX_FIFO_CTL register is used for FIFO control
operations. The TRIGGER_LEVEL bits in the
I2S_TX_FIFO_CTL register can be used to generate a
transmit trigger event when the Tx FIFO has less entries
than the value configured in the TRIGGER_LEVEL bits.

The FIFO freeze operation can be enabled by setting the
FREEZE bit in the I2S_TX_FIFO_CTL register. When the
FREEZE bit is set and the Tx block is operational
(TX_START bit in I2S_CMD is set), hardware reads from the
Tx FIFO do not remove the FIFO entries. Also, the Tx FIFO
read pointer will not be advanced. Any writes to the
I2S_TX_FIFO register will increment the Tx FIFO write
pointer; when the Tx FIFO becomes full, the internal write
pointer stops incrementing. The freeze operation may be
used for firmware debug purposes. This operation is not
intended for normal operation. To return to normal operation
after using the freeze operation, the I2S must be reset by
clearing the TX_ENABLED bit in the I2S_CTL register, and
then setting the bit again. 

The CLEAR bit in the I2S_TX_FIFO_CTL register is used to
clear the Tx FIFO by resetting the read/write pointers
associated with the FIFO. Write accesses to the Tx FIFO
using the I2S_TX_FIFO_WR or I2S_TX_FIFO_WR_SILENT
registers are not allowed while the CLEAR bit is set.

The I2S_TX_FIFO_STATUS register provides FIFO status
information. This includes number of used entries in the Tx
FIFO and the current values of the Tx FIFO read/write

pointers. This register can be used for debug purposes. The
I2S Tx FIFO read pointer is updated whenever the data is
transferred from the Tx FIFO to the internal transmit buffer.
Tx FIFO write pointer is updated whenever the data is
written to the I2S_TX_FIFO_WR register, either through the
CPU or the DMA controller.

For Tx FIFO data writes using the CPU, the hardware can
be used to trigger an interrupt event for any of the FIFO
conditions such as TX_TRIGGER, TX_NOT_FULL, and
TX_EMPTY. As part of the interrupt handler, the CPU can
write to the I2S_TX_FIFO_WR register. The recommended
method is to write (256 - TRIGGER_LEVEL) words to the
I2S_TX_FIFO_WR register every time the TX_TRIGGER
interrupt event is triggered. In addition, interrupt events can
be generated for FIFO overflow/underflow conditions.

For DMA-based Tx data transfers, the I2S Tx DMA trigger
signal (tr_i2s_tx_req) can be enabled by writing ‘1’ to the
TX_REQ_EN bit in I2S_TR_CTL register. The trigger signal
output will become high whenever the Tx FIFO has less
entries than that configured in the TRIGGER_LEVEL field.
The DMA channel can be configured to transfer up to (256 -
TRIGGER_LEVEL) words from the applicable source
address (such as Flash and SRAM regions). The destination
address of the DMA should always be the
I2S_TX_FIFO_WR register address, with the destination
address increment feature disabled in the DMA channel
configuration. This FIFO address increment logic is handled
internally to adjust the write pointer, and the DMA should not
increment the destination address. For more details on DMA
channel configuration, refer to the DMA Controller
(DW) chapter on page 93.

The data in the I2S_TX_FIFO is always right-aligned. The
I2S_TX_FIFO_WR format for different word length
configurations is provided in Figure 30-7.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 404

Inter-IC Sound Bus

Figure 30-7.  I2S_TX_FIFO_WR Register Format for Different Word Lengths

I2S Rx FIFO: The I2S Rx block has a hardware FIFO of
depth 256 elements where each element is 32-bit wide. In
addition to this 256-element FIFO, the I2S block has an
internal receive buffer that can store four 32-bit data to be
received. This four-element buffer is used as an
intermediary to hold data received on the I2S bus, and is not
exposed to the AHB BUS interface. 

The I2S_RX_FIFO_CTL register is used for FIFO control
operations. The TRIGGER_LEVEL bits in the
I2S_RX_FIFO_CTL register is used to generate a receive
trigger event when the Rx FIFO has more entries than the
value configured in the TRIGGER_LEVEL bits. In the
standard I2S/LJ format, the TRIGGER_LEVEL bits can be
configured up to the allowed maximum value of 253. In the
TDM format, the maximum value of TRIGGER_LEVEL is
[254–CH_NR) where CH_NR is the number of active
channels in the TDM frame.

The FIFO freeze operation can be enabled by setting the
FREEZE bit in the I2S_RX_FIFO_CTL register. When the
FREEZE bit is set and the Rx block is operational
(RX_START bit in the I2S_CMD register is set), hardware
will not write to the Rx FIFO. Also, the Rx FIFO write pointer
will not be advanced. Any reads from the I2S_RX_FIFO
register will increment the Rx FIFO read pointer; when the
Rx FIFO becomes empty, the internal read pointer stops
incrementing. The freeze operation may be used for
firmware debug purposes. This operation is not intended for
normal operation. To return to normal operation after using
the freeze operation, the I2S must be reset by clearing the
RX_ENABLED bit in the I2S_CTL register and then setting
the bit again.

The CLEAR bit in I2S_RX_FIFO_CTL register is used to
clear the Rx FIFO by resetting the read/write pointers
associated with the FIFO. Read accesses from the Rx FIFO
using the I2S_RX_FIFO_RD or I2S_RX_FIFO_RD_SILENT
registers are not allowed while the CLEAR bit is set.

The I2S_RX_FIFO_STATUS register provides FIFO status
information. This includes number of used entries in the Rx
FIFO and the current values of the Rx FIFO read/write
pointers. This register can be used for debug purposes. The
I2S Rx FIFO write pointer is updated whenever the data is
transferred to the Rx FIFO from the internal receive buffer.
Rx FIFO read pointer is updated whenever the data is read

from the I2S_RX_FIFO_RD register, either through the CPU
or the DMA controller. For debug purposes, the
I2S_RX_FIFO_RD_SILENT register is available, which
always returns the top element of the Rx FIFO without
updating the read pointer. 

For Rx FIFO data reads using the CPU, the hardware can
be used to trigger an interrupt event for any of the FIFO
conditions such as RX_TRIGGER, RX_NOT_EMPTY, and
RX_FULL. As part of the interrupt handler, the CPU can
read from the I2S_RX_FIFO_RD register. The
recommended method is to read (TRIGGER_LEVEL + 1)
words from the I2S_RX_FIFO_RD register every time the
RX_TRIGGER interrupt event is triggered. In addition,
interrupt events can be generated for FIFO overflow/
underflow conditions.

For DMA-based Rx data transfers, the I2S Rx DMA trigger
signal (tr_i2s_rx_req) can be enabled by writing ‘1’ to the
RX_REQ_EN bit in the I2S_TR_CTL register. The trigger
signal output will become high whenever the Rx FIFO has
more entries than that configured in the TRIGGER_LEVEL
field. The DMA channel can be configured to transfer up to
(TRIGGER_LEVEL + 1) words to the applicable destination
address (such as SRAM regions). The source address of
the DMA should always be the I2S_RX_FIFO_RD register
address, with the source address increment feature
disabled in the DMA channel configuration. This FIFO
address increment logic is handled internally to adjust the
read pointer, and the DMA should not increment the source
address. For more details on DMA channel configuration,
refer to the DMA Controller (DW) chapter on page 93.

The data in the I2S_RX_FIFO is always right aligned. The
I2S_RX_FIFO_RD format for different word length
configurations is provided in Figure 30-8. Note that the
unused most significant bits are either set as ‘0’ or sign-bit
extended depending on the BIT_EXTENSION bit in the
I2S_RX_CTL register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

write data format of I2S_TX_FIFO

Word Length = 24-bit mode

Word Length = 20-bit mode

Word Length = 18-bit mode

Word Length = 16-bit mode

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSb LSb

LSb

LSb

LSb

MSb

MSb

MSb

fixed "0"

fixed "0"

fixed "0"

fixed "0"



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 405

Inter-IC Sound Bus

Figure 30-8.  I2S_RX_FIFO_RD Register Format for Different Word Lengths

30.8 Interrupt Support

The I2S block has one interrupt output signal that goes to the interrupt controller in the CPU. Refer to the Interrupts chapter on
page 54 for details on the vector number of the I2S interrupt and the procedure to configure the interrupt priority, vector
address, and enabling/disabling. The I2S interrupt can be triggered under any of the following events - TX_TRIGGER,
TX_NOT_FULL, TX_EMPTY, TX_OVERFLOW, TX_UNDERFLOW, TX_WD, RX_TRIGGER, RX_NOT_EMPTY, RX_FULL,
RX_OVERFLOW, RX_UNDERFLOW, or RX_WD. Each of the interrupt events can be individually enabled/disabled to
generate an interrupt condition. The I2S_INTR_MASK register is used to enable the required events by writing ‘1’ to the
corresponding bit. Irrespective of the INTR_MASK settings, if any of the events occur, the corresponding event status bit will
be set by the hardware in the I2S_INTR register. The I2S_INTR_MASKED register is the bitwise AND of the
I2S_INTR_MASK and I2S_INTR registers. The final I2S interrupt signal is the logical OR of all the bits in the
I2S_INTR_MASKED register. So only those events that are enabled in the I2S_INTR_MASK register are propagated as
interrupt events to the interrupt controller. Interrupts can also be triggered in software by writing to the corresponding bits in
I2S_INTR_SET register. Figure 30-9 illustrates the interrupt signal generation.

Figure 30-9.  Interrupt Signal Generation

In the interrupt service routine (ISR), the I2S_INTR_MASKED register should be read to know the events that triggered the
interrupt event. Multiple events can trigger the interrupt because the final interrupt signal is the logical OR output of the
events. The ISR should do the tasks corresponding to each interrupt event that was triggered. At the end of the ISR, the value
read in the I2S_INTR_MASKED register earlier should be written to the I2S_INTR register to clear the bits whose interrupt
events were processed in the ISR. Unless the bits are not cleared by writing ‘1’ to the I2S_INTR register, the interrupt signal
will always be high. A dummy read of the I2S_INTR register should be done for the earlier register write to take effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

read data format of I2S_RX_FIFO

Word Length = 24-bit mode

Word Length = 20-bit mode

Word Length = 18-bit mode

Word Length = 16-bit mode

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSb LSb

LSb

LSb

LSb

MSb

MSb

MSb

fixed "0"

fixed "0"

fixed "0"

fixed "0"

not Bit extension
"1" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"1""1""1""1""1""1""1""1"Bit extension

"0" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"0""0""0""0""0""0""0""0"

not Bit extension

"1"Bit extension 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"

not Bit extension

Bit extension 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1" "1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"

"1" "1"

"0""0"

not Bit extension

Bit extension 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1" "1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"

"1" "1"

"0""0"

"1" "1"

"0""0"

INTR_SET.XXX

OR

HW event for an interrupt

AND
INTR_I2S_MASK.XXX

D Q
INTR.XXX

Interrupt_I2SOR

Other interrupt signals
(INTR_I2S & INTR_I2S_MASK)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 406

Inter-IC Sound Bus

30.9 Watchdog Timer

The Tx and Rx blocks have independent watchdog timers, which can be used to generate an interrupt event if the Word
Select (WS) input is idle for more than the configured time period. This feature is available only in the slave mode of operation
where the external master drives the WS input lines (tx_ws, rx_ws). This feature can be used to detect any signal
transmission issues, master device issues, or if the master has halted communication. If the master drives the same word
select signal to both the tx_ws and rx_ws lines, then only one of the watchdog timers can be enabled to cause the interrupt
event. Although the following explanation covers Tx watchdog, the same explanation applies to Rx watchdog as well. 

To enable the Tx watchdog timer feature, WD_EN bit in the I2S_TX_CTL register should be set. The watchdog timer reload
value (32-bit timer) is configured by writing to the I2S_TX_WATCHDOG register. A value of zero written to the
I2S_TX_WATCHDOG register will also disable the watchdog timer. Figure 30-10 illustrates the watchdog behavior when the
timer is enabled. The timer runs off the CLK_PERI system clock. Refer to the Clocking System chapter on page 208 for
details on generation of CLK_PERI. The timer starts running when WD_EN and TX_START bits are set. The timer reload
happens either on a rising edge event on tx_ws input signal, or when the timer values reaches zero. When the timer value
reaches zero, the TX_WD interrupt event is generated. The TX_WD bit in the I2S_INTR_MASK register should be set to
enable interrupt generation by the watchdog timer interrupt event. The interrupt event can be cleared by writing ‘1’ to the
TX_WD bit in the I2S_INTR register.

Figure 30-10.  Watchdog Timer Working
tx_ws (input to PSoC 6 MCU)  

(or rx_ws)

watchdog timer for tx
(or rx)

I2S_TX_WATCHDOG
(or I2S_RX_WATCHDOG)

time
Interrupt event of the

 wachdog occurs

Reloads watchdog timer
on rising edge of tx_ws 
(or rx_ws)

Interrupt Event (TX_WD)
(or RX_WD)

Reloads watchdog timer 
when timer value is 0 . 
Interrupt event generated

Timer Value

0

Interrupt event 
cleared in software



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 407

31.   PDM-PCM Converter

The PDM-PCM unit accepts a stereo or mono serial data stream (pulse modulated 1-bit stream) coming from external digital
PDM microphones. The PDM-PCM converter consists of a fifth order cascaded integrator comb (CIC) filter followed by a
decimator, and a final stage high-pass filter. This block simplifies the conversion process by exposing the different
configuration settings as registers, which you can program to meet the application needs. The entire PDM-PCM conversion
process is handled in hardware; the PCM output data streaming can be done using the DMA controller thus freeing up the
CPU bandwidth from performing periodic audio streaming activities.

31.1 Features
■ Supports Mono/Stereo mode pulse density modulation (PDM) to pulse code modulation (PCM) conversion

■ Accepts 1-bit PDM input and can generate 16-, 18-, 20-, or 24-bit PCM digital data output

■ Configurable PDM microphone clock frequency 

■ Ability to generate standard audio sampling rates by adjusting the decimation rate and clock divider values

■ Digital volume control: Programmable gain amplifier (PGA) control from –12 dB to +10.5 dB in 1.5-dB steps

■ Smooth PGA and soft-mute control

■ Hardware receive buffer: 24-bit wide, 255-element FIFO with support for DMA controller-based data transfer

■ Optional high-pass filter to remove DC and low-frequency noise

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 408

PDM-PCM Converter

31.2 Architecture

Figure 31-1.  Block Diagram

Figure 31-1 shows the block diagram of the PDM-PCM
converter. Refer to the device datasheet for information on
port pin assignments of the PDM block signals, electrical
specifications, and the interrupt vector number. 

31.2.1 Enable/Disable Converter

The PDM-PCM converter can be powered ON or OFF by
using the ENABLED bit in the PDM_CTL register. The block
can be turned OFF when not used to save power. When the
block is powered off by writing ‘0’ to the ENABLED bit, the
non-retention registers lose their current values. Refer to the
registers TRM to know which registers are retention and
non-retention type. When the block is enabled again, the
non-retention registers are reset to their default values. User

firmware should ensure that all non-retention registers are
configured as required after the ENABLED bit is set, and
before the PDM-PCM conversion is started by setting the
STREAM_EN bit in the PDM_CMD register. See Operating
Procedure on page 414 for the recommended procedure to
configure this PDM-PCM converter before starting the PDM-
PCM conversion.

31.2.2 Clocking Features

The block uses the CLK_HF[1] root high-frequency clock for
performing the PDM-PCM conversion process. Refer to the
Clocking System chapter on page 208 for details on
selecting the clock source for CLK_HF[1], and configuring
the divider registers to generate CLK_HF[1].

Figure 31-2.  PDM-PCM Clocking Dividers

Figure 31-2 shows the clock divider structure in the block. The block has three stages of clock dividers to generate the clock
(PDM_CKO), which goes to the external PDM microphone clock input.

1. The first stage clock divider (CLK_CLOCK_DIV field in the PDM_CLOCK_CTL register) is used to generate the actual 
clock signal (PDM_CLK) that goes to the PDM-PCM converter. The input is CLK_HF[1]; the CLK_CLOCK_DIV can be a 
value between 0 and 3 (divider value between 1 and 4).

fPDM_CLK = fCLK-HF[1] / (CLK_CLOCK_DIV + 1)

2. The second stage clock divider (MCLKQ_CLOCK_DIV field in the PDM_CLOCK_CTL register) is used to generate the 
internal master clock and can take a value between 0 and 3 (divider value between 1 and 4). The input clock is pdm_clk 
and the output of the divider is MCLKQ.

fMCLKQ = fPDM_CLK / (MCLKQ_CLOCK_DIV + 1)

PSoC

Audio subsystem

PDM-PCM Converter

AHB bus

CPU Data Wire/
DMA SRAM

PDM_DATA
 PDM Microphone

(Left)

PDM_CKO
clk

data
L/R Select VDD

 PDM Microphone
(Right)

clk

data

L/R Select GND

CLK_CLOCK_DIV 
(1st stage divider)

Divider range: 1 to 4

CLK_HF[1]
MCLKQ_CLOCK_DIV 

(2nd stage divider)

Divider range: 1 to 4

CKO_CLOCK_DIV 
(3rd  stage divider)

Divider range: 2 to 16

PDM_CLK MCLKQ PDM_CKO

To external PDM 
Microphone



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 409

PDM-PCM Converter

3. The third stage clock divider (CKO_CLOCK_DIV field in the PDM_CLOCK_CTL register) is used to generate the clock 
that goes to the PDM microphone clock (PDM_CKO) through the output pin of the PSoC 6 MCU. The input clock is 
MCLKQ. The divider register can be between 1 and 15 (divider value between 2 and 16).

fPDM_CKO = fMCLKQ / (CKO_CLOCK_DIV + 1), if CKO_CLOCK_DIV 1

fPDM_CKO = fMCLKQ / 2, if CKO_CLOCK_DIV = 0

31.2.3 Over-Sampling Ratio

Over-sampling ratio (OSR) is the ratio between the frequency of the PDM microphone clock (fPDM_CKO) and the output PCM

sampling rate frequency (fS). The OSR is determined by the SINC_RATE bits in the PDM_CLOCK_CTL register. The relation

is as follows.

OSR = fPDM_CKO / fS = 2 x SINC_RATE

Table 31-1 gives an example of the PDM clock divider and SINC_RATE register configurations to generate the PCM output at
standard sampling rates. Note that the PDM divider values in the table are the register field values – the actual divider values
are one more than the configured register values as explained in the clock divider section. Refer to the device datasheet for
details on maximum values of PDM_CKO frequency, PDM_CLK frequency, and the output sampling rates. 

There are various methods to generate the CLK_HF[1]
frequencies listed in the table depending on the clocking
options available on the device. Refer to the Clocking
System chapter on page 208 for details on the clocking
options available in the device, including the clock sources
and PLL/FLL circuitry. For example, an external crystal
oscillator (ECO) can be used in conjunction with a phase-
locked loop (PLL) to generate the CLK_HF[1] at the desired
frequency of 49.152 MHz or 45.1584 MHz. 

One possible combination of PLL divider values to generate
the 49.152 MHz frequency from a 17.2032 MHz ECO are:
REFERENCE_DIV = 7, FEEDBACK_DIV = 100,
OUTPUT_DIV = 5. One possible combination of PLL divider
values to generate the 45.1584 MHz frequency from a
17.2032 MHz ECO are: REFERENCE_DIV = 8,
FEEDBACK_DIV = 105, OUTPUT_DIV = 5.

31.2.4 Mono/Stereo Microphone Support

The PDM-PCM converter supports mono-left, mono-right,
stereo, and swapped stereo modes of operation. The
operation mode is controlled by the PDM_CH_SET and
SWAP_LR bits in the PDM_MODE_CTL register. The
register settings for the different operation modes are given

in Table 31-2. The table also lists the invalid register
settings, which you must not use in the firmware.

Table 31-1.  PDM Clock Divider Values for Standard Audio Sampling Rates

Sampling 
Rate (SR) 

(kHz)

SINC_RATE 
(= OSR/2)

PDM_CKO 
(=2*SINC_RATE*SR) 

(MHz)

CLK_HF1 
(MHz)

(CLK_HF[1])/
(PDM_CKO) 

(Total Divider 
Ratio)

CLK_CLOCK_DIV 
(First Divider)

MCLKQ_CLOCK
_DIV 

(Second 
Divider)

CKO_CLOCK_
DIV 

(Third Divider)

8 32 0.512

49.152

96 1 3 11

16 32 1.024 48 1 3 5

32 32 2.048 24 0 3 5

48 32 3.072 16 0 1 7

44.1 32 2.8224 45.1584 32 0 1 7



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 410

PDM-PCM Converter

Figure 31-3 shows the timing diagrams for the different operating modes. 

Figure 31-3.  PDM Mono/Stereo Timing

To alleviate uncertain board delay impact on PDM_IN setup
and hold timing constraints, the PDM-PCM provides
CKO_DELAY bits in the PDM_MODE_CTL register to add
extra delay for the PDM_CKO path to internal sampler.
CKO_DELAY can be a value between 0 and 7. A value of ‘0’
implies that internal sampling of PDM data is advanced by
three PDM_CLK clock cycles for the PDM_CKO transition.
A value of ‘7’ implies that internal sampling of PDM data is
delayed by four PDM_CLK clock cycles for the PDM_CKO
transition. Refer to the registers TRM for details on the
meaning of different CKO_DELAY values.

Note: Variations have been observed in the
recommendation for left/right sampling logic among the

different PDM microphone manufacturers. The SWAP_LR
bit in the PDM-PCM converter ensures that you can adjust
the sampling logic according to the microphone datasheet
recommendations. Refer to the PDM microphone
manufacturer datasheet for the exact timing details. Also, in
stereo mode, use the same manufacturer for both the left/
right PDM microphones to ensure the timing behavior is
uniform for both channels.

Table 31-2.  Operation Mode Register Settings

Register Setting Operation Mode

PCM_CH_SET = 0, SWAP_LR = 0 or 1 Recording OFF

PCM_CH_SET = 1, SWAP_LR = 0
Mono-Left recording mode. Only the left microphone channel is sampled on the rising 
edge of PDM_CKO. FIFO buffer contains only left channel data.

PCM_CH_SET = 2, SWAP_LR = 1
Mono-Right recording mode. Only the right microphone channel is sampled on the falling 
edge of PDM_CKO. FIFO buffer contains only right channel data.

PCM_CH_SET = 3, SWAP_LR = 0
Stereo recording mode. The right microphone channel is sampled on the falling edge of 
PDM_CKO and left channel on rising edge. FIFO buffer contains data in L/R format (left 
channel followed by right channel)

PCM_CH_SET = 3, SWAP_LR = 1
Swapped Stereo recording mode. The right microphone channel is sampled on the rising 
edge of PDM_CKO and left channel on falling edge. FIFO buffer contains data in L/R for-
mat (left channel followed by right channel)

PCM_CH_SET = 1, SWAP_LR = 1 or 
PCM_CH_SET = 2, SWAP_LR = 0

Invalid setting (not supported). Do not operate the PDM-PCM converter in these configu-
ration settings.

PDM_CKO

PDM_DATA L R L R L R

Stereo mode (PCM_CH_SET = 3, SWAP_LR = 0)

PDM_CKO

PDM_DATA R L R L R L

Swapped Stereo mode (PCM_CH_SET = 3, SWAP_LR = 1)

PDM_CKO

PDM_DATA L L L

Mono left mode (PCM_CH_SET = 1, SWAP_LR = 0)

PDM_CKO

PDM_DATA R R R

Mono right mode (PCM_CH_SET = 2, SWAP_LR = 1)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 411

PDM-PCM Converter

31.2.5 Hardware FIFO Buffers and DMA 
Controller Support

The PDM-PCM converter has a hardware FIFO depth of
255 elements where each element is 24-bit wide. 

The PDM_RX_FIFO_CTL register is used for FIFO control
operations. Refer to the register description in the registers
TRM for more details. The TRIGGER_LEVEL field in the
PDM_RX_FIFO_CTL register is used to generate a receive
trigger event (interrupt event, DMA trigger signal) when the
Rx FIFO has more entries than the value configured in the
TRIGGER_LEVEL field. The TRIGGER_LEVEL field can be
configured up to 254 in the mono microphone recording
mode and up to 253 in the stereo microphone recording
mode.

The FIFO freeze operation can be enabled by setting the
FREEZE bit in the PDM_RX_FIFO_CTL register. When the
FREEZE bit is set and the Rx block is operational
(STREAM_EN bit in the PDM_CMD register is set),
hardware will not write to the Rx FIFO. Also, the Rx FIFO
write pointer will not be advanced. Any reads from the
PDM_RX_FIFO_RD register will increment the Rx FIFO
read pointer; when the Rx FIFO becomes empty, the internal
read pointer stops incrementing. The freeze operation may
be used for firmware debug purposes. This operation is not
intended for normal operation. To return to normal operation
after using the freeze operation, the PDM-PCM must be
reset by clearing the ENABLED bit in PDM_CTL register,
and then setting the bit again.

The CLEAR bit in the PDM_RX_FIFO_CTL register is used
to clear the Rx FIFO by resetting the read/write pointers
associated with the FIFO. Read accesses from the Rx FIFO
using PDM_RX_FIFO_RD or PDM_RX_FIFO_RD_SILENT
registers are not allowed while the CLEAR bit is set.

The PDM_RX_FIFO_STATUS register provides FIFO status
information. This includes number of used entries in the Rx
FIFO and the current values of the Rx FIFO read/write
pointers. This register can be used for debug purposes. The
Rx FIFO write pointer is updated whenever the data is
transferred to the Rx FIFO from the internal receive buffer.
Rx FIFO read pointer is updated whenever the data is read
from the PDM_RX_FIFO_RD register, either through the
CPU or the DMA controller. For debug purposes, the
PDM_RX_FIFO_RD_SILENT register is available, which
always returns the top element of the Rx FIFO without
updating the read pointer. 

For Rx FIFO data reads using the CPU, the hardware can
be used to trigger an interrupt event for any of the FIFO
conditions such as RX_TRIGGER and RX_NOT_EMPTY.
As part of the interrupt handler, the CPU can read from the
PDM_RX_FIFO_RD register. The recommended method is
to read (TRIGGER_LEVEL + 1) words from the
PDM_RX_FIFO_RD register every time the RX_TRIGGER
interrupt event is triggered. In addition, interrupt events can
be generated for FIFO overflow and underflow conditions.

For DMA-based data transfers, the DMA trigger signal
(tr_pdm_rx_req) can be enabled by writing ‘1’ to the
RX_REQ_EN bit in the PDM_TR_CTL register. The trigger
signal output will become high whenever the Rx FIFO has
more entries than that configured in the TRIGGER_LEVEL
field. Refer to the Trigger Multiplexer Block chapter on
page 261 for details on how to connect the DMA trigger
signal to a particular DMA channel. The DMA channel can
be configured to transfer up to (TRIGGER_LEVEL + 1)
words to the applicable destination address (such as SRAM
regions). The source address of the DMA should always be
the PDM_RX_FIFO_RD register address, with the source
address increment feature disabled in the DMA channel
configuration. This FIFO address increment logic is handled
internally to adjust the read pointer, and the DMA should not
increment the source address. For more details on DMA
channel configuration, refer to the DMA Controller
(DW) chapter on page 93.

The successive data read from the PDM_RX_FIFO_RD
follows the Left 1/Right 1/Left 2/Right 2/… format in stereo
and swapped stereo modes of operation. For mono left and
mono right recording modes, the data read from FIFO
contains either the left channel data (mono left mode) or the
right channel data (mono right mode).

The data in the PDM_RX_FIFO_RD is always right-aligned.
The PDM_TX_FIFO_RD format for different word length
configurations is provided in Figure 31-4. Note that the
unused most significant bits are either set as ‘0’ or sign-bit
extended depending on the BIT_EXTENSION field setting in
the PDM_DATA_CTL register.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 412

PDM-PCM Converter

Figure 31-4.  FIFO Register Structure

31.2.6 Interrupt Support

The block has one output signal (interrupt_pdm) that goes to the interrupt controller in the CPU. Refer to the device datasheet
for details on the vector number of the PDM-PCM interrupt. Refer to the Interrupts chapter on page 54 for the procedure to
configure the interrupt priority, vector address, and enabling/disabling.

The PDM interrupt can be triggered under any of the following events – RX_TRIGGER, RX_NOT_EMPTY, RX_OVERFLOW,
or RX_UNDERFLOW. Table 31-3 lists the trigger conditions and details of these events.

Each of the interrupt events can be individually enabled or disabled to generate the interrupt condition. The
PDM_INTR_MASK register is used to enable the required events by writing ‘1’ to the corresponding bit.

Irrespective of the INTR_MASK settings, if any event occurs, the corresponding event status bit will be set by the hardware in
the PDM_INTR register. The PDM_INTR_MASKED register is the bitwise AND of the PDM_INTR_MASK and PDM_INTR
registers. The final PDM interrupt signal is the logical OR of all the bits in the PDM_INTR_MASKED register. So only those
events that are enabled in the PDM_INTR_MASK register are propagated as interrupt events to the interrupt controller.

Interrupt events can also be triggered in software by writing to the corresponding bits in PDM_INTR_SET register. 

Figure 31-5 illustrates the interrupt signal generation from the PDM-PCM block as explained above. Only the RX_TRIGGER
interrupt generation is highlighted in the figure; the remaining interrupt events also follow the same generation logic.

Table 31-3.  Interrupt Event Trigger Condition

Interrupt Event Trigger Condition

RX_TRIGGER
The PDM Rx FIFO has more entries than the value specified in the TRIGGER_LEVEL field in the 
PDM_RX_FIFO_CTL register. At least (TRIGGER_LEVEL + 1) words can be read from the 
PDM_RX_FIFO_RD register in the interrupt service routine.

RX_NOT_EMPTY The PDM Rx FIFO has at least one word that can be read from the PDM_RX_FIFO_RD register.

RX_OVERFLOW

The PDM Rx FIFO content is overwritten by the PDM-PCM converter due to the number of unread words 
exceeding the 256 word buffer capacity. The output PCM data after the overflow condition is discarded and 
not transferred to the FIFO. This event can be used to detect bandwidth constraints in the end application 
due to DMA or the interrupt used for data transfer not getting the required priority for executing the data 
transfers.

RX_UNDERFLOW
Attempt to read from an empty PDM Rx FIFO. This can happen due to incorrect configuration of the DMA or 
the interrupt service routine code used to do the data transfer. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

read data format of PDM_RX_FIFO

WORD_LEN = 24-bit mode
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSb LSb

LSbMSb

fixed "0"

fixed "0"

BIT_EXTENSION = 0

"1" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"1""1""1""1""1""1""1""1"BIT_EXTENSION = 1
(Sign Bit Extension)

"0" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"0""0""0""0""0""0""0""0"

"1" 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"
BIT_EXTENSION = 1

(Sign Bit Extension)

WORD_LEN = 20-bit mode

BIT_EXTENSION = 0



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 413

PDM-PCM Converter

Figure 31-5.  PDM Interrupt Signal Generation

In the interrupt service routine (ISR) corresponding to the
interrupt vector number of interrupt_pdm, the
PDM_INTR_MASKED register should be read to know the
events that triggered the interrupt event. Multiple events can
trigger the interrupt because the final interrupt signal is the
logical OR output of the events. The ISR should do the tasks
corresponding to each interrupt event that was triggered. At
the end of the ISR, the value read in the
PDM_INTR_MASKED register earlier should be written to
the PDM_INTR register to clear the bits whose interrupt
events were processed in the ISR. A dummy read of the
PDM_INTR register should be done for the earlier register
write to PDM_INTR to take effect.

All of the interrupt event bits in PDM_INTR register will
continue to indicate the event condition regardless of the
true state until that bit is cleared (for example, when set, the
RX_OVERFLOW bit will continue to indicate an
OVERFLOW state until the RX_OVERFLOW bit is cleared
regardless of the true state of the FIFO. A mere FIFO read
of the FIFO will not clear the RX_OVERFLOW bit.). Unless
the PDM_INTR bits that are used to generate the interrupt
are not cleared by writing ‘1’ to the PDM_INTR bits, the
interrupt signal will always be high. 

31.2.7 Digital Volume Gain

The PDM-PCM converter supports independent digital
volume control on the left/right channels with a range from –
12.5 dB to +10.5 dB in steps of 1.5 dB. It is programmed by
configuring the PGA_R and PGA_L bits in the PDM_CTL
register. PGA gain may be changed on the fly during normal
operation, or as a one-time setting before starting the PDM-
PCM conversion process.

31.2.8 Smooth Gain Transition

To reduce zipper or clip noise during on-the-fly gain
transition or during soft mute operation, a built-in volume
smoother is implemented with fine gain steps and fine time
steps that enable soft ramp up or ramp down of the volume
levels. Two fine gain options of 0.13 dB and 0.26 dB step
sizes are available. The fine gain is set by the STEP_SEL
bit in the PDM_CTL register. In addition to the fine gain
steps, a time step is available for the fine gain change in
terms of the number of sample cycles. The time step can be

configured to a value between 64 sample periods and 512
sample periods using the S_CYCLES bits in the
PDM_MODE_CTL register. So the STEP_SEL and
S_CYCLES bit settings together determine the rate at which
PGA gain or the soft mute transitions take effect.

31.2.9 Soft Mute

The PDM-PCM contains a built-in software-controlled mute
function that digitally attenuates signals to imperceptible
levels or zero. When mute function is enabled by setting the
SOFT_MUTE bit in the PDM_CTL register, the
corresponding PCM output is decreased from current level
to mute state through predefined granular gain step per time
constant transition. The STEP_SEL bit setting determines
the gain step and the S_CYCLES bits determine the time
constant. During soft-mute, the block is still ON and the
PCM data streaming is operational; the DMA or CPU-based
data transfer also happens as usual. Only the PCM output
level is muted. When mute function is disabled by setting
SOFT_MUTE = 0, the mute function is OFF and the PDM-
PCM returns to normal operation where output signal level
goes up to normal with current PGA gain.

31.2.10 Word Length and Sign Bit 
Extension

The PCM output word length can be configured for either
16-bits, 18-bits, 20-bits, or 24-bits using WORD_LEN bits in
the PDM_DATA_CTL register. Irrespective of the word
length setting, the PCM output is always read from the FIFO
data buffer register (PDM_RX_FIFO_RD) as a 32-bit value.
The unused most significant bits in the 32-bit value can
either be sign extended or extended by ‘0’ by using the
BIT_EXTENSION bit in the PDM_DATA_CTL register. 

31.2.11 High-Pass Filter

The PDM-PCM converter has a final stage high-pass filter
(HPF) that blocks DC offset and low-frequency noise in
signal band. The HPF is enabled when the HPF_EN_N bit in
the PDM_MODE_CTL register is zero, and disabled when
the HPF_EN_N bit is 1.

PDM_INTR_SET.RX_TRIGGER
(Register bit, Software triggered event)

OR

RX_TRIGGER 
(Hardware event signal)

AND
PDM_INTR_MASK.RX_TRIGGER

(Register bit)

PDM_INTR.RX_TRIGGER
(Register bit)

interrupt_pdm
(To interrupt controller)

OR

Other interrupt Trigger events 
(RX_OVERFLOW etc)

(PDM_INTR & PDM_INTR_MASK)

PDM_INTR_MASKED.RX_TRIGGER
(Register bit)

PDM_INTR_MASKED.xxx
(Register bits)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 414

PDM-PCM Converter

The filter response for HPF is characterized as:

The HPF operates at the final PCM output sampling rate.
HPF_GAIN is a 4-bit gain configuration setting in the
PDM_MODE_CTL register. In default mode, HPF_GAIN =
0xB, so the HPF can be formulated by polynomial:

The HPF_GAIN setting can be tuned to adjust HPF cutoff
corner frequency for better system configuration.

31.2.12 Enable/Disable Streaming 

The PDM-PCM conversion process can be dynamically
enabled/disabled by using the STREAM_EN bit in the
PDM_CMD register.

31.2.13 Power Modes

The PDM-PCM can operate in Active and Sleep CPU
modes while in LP or ULP system power modes. It is not
operational in system Deep Sleep or Hibernate power
modes. When the device transitions from Deep Sleep/
Hibernate power modes to the LP/ULP power modes, the
non-retention registers lose their previous configuration
values. So the non-retention registers must be appropriately
configured before enabling the PDM-PCM again for LP/ULP
mode operation. One option is to store the non-retention
register values in SRAM before entering Deep Sleep/
Hibernate modes. When returning to the LP/ULP modes, the
SRAM values can be copied to the registers after enabling
the PDM-PCM by setting the ENABLED bit in the PDM_CTL
register. Refer to the registers TRM to identify the non-
retention registers for the PDM. 

31.3 Operating Procedure

31.3.1 Initial Configuration

The sequence of steps for initial configuration of the PDM-
PCM converter before starting the conversion process is as
follows:

1. Configure the clock dividers and decimation rate in the 
PDM_CLOCK_CTL register. This register configuration 
should be done before enabling the PDM-PCM con-
verter. If the ENABLED bit in the PDM_CTL register is 
set, it should be cleared before changing the clock con-
figuration.

2. Enable the block; set the PGA gain and fine gain step 
setting as required by writing to the PDM_CTL register.

3. Configure the PDM_MODE_CTL and PDM_DATA_CTL 
registers as required.

4. Configure the Rx FIFO trigger level setting by writing to 
the TRIGGER_LEVEL bits in the PDM_RX_FIFO_CTL 
register. The CLEAR and FREEZE bits in PDM_RX_FI-
FO_CTL are not set for normal operation.

5. Configure the events that must generate the interrupt by 
setting the corresponding bits in the PDM_INTR_MASK 
register, and clearing the remaining bits.

6. Configure the interrupt PDM interrupt vector and enable 
the interrupt vector. See the Interrupts chapter on 
page 54 for details.

7. If a DMA-based data transfer is required, connect the 
PDM DMA trigger signal (tr_pdm_rx_req) to the trigger 
input of the required DMA channel. See the Trigger Mul-
tiplexer Block chapter on page 261 for details on how to 
connect to the DMA channel trigger input. Configure the 
DMA channel as required - the source address of the 
DMA descriptor is PDM_RX_FIFO_RD register with the 
source address increment feature disabled and the 
source data length is word type (32-bits). The DMA 
channel can be used to transfer (TRIGGER_LEVEL + 1) 
words from the PDM_RX_FIFO_RD register whenever 
the trigger signal becomes high. The destination address 
configuration depends on the application requirements. 
See the DMA Controller (DW) chapter on page 93 for 
details on DMA channel configuration.

8. Enable the DMA trigger signal generation by setting the 
RX_REQ_EN bit in the PDM_TR_CTL register.

31.3.2 Interrupt Service Routine (ISR) 
Configuration

The code for the PDM interrupt service routine should have
the following flow:

1. The events that triggered the interrupt can be found by 
reading the PDM_INTR_MASKED register in the ISR. All 
the bits that are set causes the interrupt event. The reg-
ister value should also be in a variable “var”.

2. For each of the event bits that are set in PDM_IN-
TR_MASKED, appropriate application level tasks can be 
executed. For example, the RX_TRIGGER event can be 
used for CPU-based data transfers if a DMA-based data 
transfer is not used. DMA transfers should use the tr_pd-
m_rx_req trigger signal (by setting the RX_REQ_EN bit 
in the PDM_TR_CTL register). The DMA trigger should 
not use the RX_TRIGGER interrupt event to reduce 
CPU usage for data transfer. The RX_OVERFLOW 
event can be used to take appropriate counter measures 
such as giving higher priority to PDM-PCM DMA chan-
nel. The RX_UNDERFLOW event typically indicates 
wrong data transfer logic in the application – either in the 
CPU-based data transfer code or in the DMA channel 
configuration used to transfer data.

3. After the event conditions have been processed, the 
“var” value read from PDM_INTR_MASKED should be 
written to the PDM_INTR register to clear the events that 
are set in the register. Due to the buffered write logic, the 

H z 
1 z

1–
–

1 1 2
HPF_GAIN–

– z 1–
–

------------------------------------------------------------=

H z 
1 z

1–
–

1 0.99951z
1–

–
------------------------------------=



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 415

PDM-PCM Converter

PDM_INTR register should also be read after the write 
process to ensure the write process is completed in the 
slower peripheral clock domain.

31.3.3 Enabling / Disabling Streaming

The PDM-PCM conversion process starts after the
STREAM_EN bit is set in the PDM_CMD register.
Depending on the application needs, the streaming can be
dynamically started and stopped using the STREAM_EN bit.
Clear the Rx FIFO before starting the streaming process to
reset the read/write pointers and FIFO state. The procedure
to clear the FIFO is to write a ‘1’ to the CLEAR bit in
PDM_RX_FIFO_CTL followed by writing a ‘0’ to the CLEAR
bit. When the CLEAR bit is set, all the data entries in the Rx
FIFO are cleared by resetting the internal read/write
pointers. Read accesses to the PDM_RX_FIFO_RD and
PDM_RX_FIFO_RD_SILENT registers are prohibited when
the CLEAR bit is 1. Therefore, the CLEAR bit should be
cleared before starting the streaming operation.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 416

32.   Universal Serial Bus (USB) Device Mode

The PSoC 6 MCU USB block can act as a USB device that communicates with a USB host. The USB block is available as a
fixed-function digital block in the PSoC 6 MCU. It supports full-speed communication (12 Mbps) and is designed to be compli-
ant with the USB Specification Revision 2.0. USB devices can be designed for plug-and-play applications with the host and
also support hot swapping. This chapter details the PSoC 6 MCU USB block and transfer modes. For details about the USB
specification, see the USB Implementers Forum website.

32.1 Features
The USB in the PSoC 6 MCU has the following features:

■ Complies with USB Specification 2.0

■ Supports full-speed peripheral device operation with a signaling bit rate of 12 Mbps

■ Supports eight data endpoints and one control endpoint

■ Provides shared 512-byte buffer for data endpoints

■ Provides dedicated 8-byte memory for control endpoint (EP0)

■ Supports four types of transfers – bulk, interrupt, isochronous, and control

■ Supports bus- and self-powered configurations

■ Enables USB suspend mode for low power

■ Supports three types of logical transfer modes:

❐ No DMA mode (Mode 1)

❐ Manual DMA mode (Mode 2)

❐ Automatic DMA mode (Mode 3)

■ Supports maximum packet size of 512 bytes using Mode 1 and Mode 2, and maximum packet size of 1023 bytes for iso-
chronous transfer using Mode 3

■ Provides integrated 22- USB termination resistors on D+ and D– lines, and 1.5-k pull-up resistor on the D+ line

■ Supports USB 2.0 Link Power Management (LPM)

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - USB

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 417

Universal Serial Bus (USB) Device Mode

32.2 Architecture
Figure 32-1 illustrates the device architecture of the USB block in PSoC 6 MCUs. It consists of the USB Physical Layer (USB
PHY), Serial Interface Engine (SIE), and the local 512-byte memory buffer. 

Figure 32-1.  USB Device Block Diagram

32.2.1 USB Physical Layer (USB PHY)

The USB PHY allows physical layer communication with the
USB host through the D+, D–, and VBUS pins. It handles
the differential mode communication with the host, VBUS
detection, and monitoring events such as SE0 on the USB
bus.

32.2.2 Serial Interface Engine (SIE)

The SIE handles the decoding and creating of data and con-
trol packets during transmit and receive. It decodes the USB
bit streams into USB packets during receive, and creates
USB bit streams during transmit. The following are the fea-
tures of the SIE:

■ Conforms to USB Specification 2.0

■ Supports one device address

■ Supports eight data endpoints and one control endpoint

■ Supports interrupt trigger events for each endpoint

■ Integrates an 8-byte buffer in the control endpoint

The registers for the SIE are mainly used to configure the
data endpoint operations and the control endpoint data buf-
fers. This block also controls the interrupt events available
for each endpoint.

32.2.3 Arbiter

The Arbiter handles access of the SRAM memory by the
endpoints. The SRAM memory can be accessed by the
CPU, DMA, or SIE. The arbiter handles the arbitration
between the CPU, DMA, and SIE. The arbiter consists of the
following blocks:

■ SIE Interface Module

■ CPU/DMA Interface

■ Memory Interface

■ Arbiter Logic

The arbiter registers are used to handle the endpoint config-
urations, read address, and write address for the endpoints.
It also configures the logical transfer type required for each
endpoint.

32.2.3.1 SIE Interface Module

This module handles all the transactions with the SIE. The
SIE reads data from the SRAM memory and transmits to the
host. Similarly, it writes the data received from the host to
the SRAM memory. These requests are registered in the
SIE Interface module and are handled by this module.

USB Block

Arbiter

Arbiter 
Logic

Memory 
Interface

CPU/DMA 
Interface

SIE 
Interface

SIE

CPU/DMA 
Subsystem

512 Bytes 
SRAM

D+ D-

USB PHY

VBUS



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 418

Universal Serial Bus (USB) Device Mode

32.2.3.2 CPU/DMA Interface Block

This module handles all transactions with the CPU and
DMA. The CPU requests for reads and writes to the SRAM
memory for each endpoint. These requests are registered in
this interface and are handled by the block. When the DMA
is configured, this interface is responsible for all transactions
between the DMA and USB. The block supports the DMA
request line for each data endpoint. The behavior of the
DMA depends on the type of logical transfer mode config-
ured in the configuration register. 

32.2.3.3 Memory Interface

The memory interface is used to control the interface
between the USB and SRAM memory unit. The maximum
memory size supported is 512 bytes organized as 256 × 16-
bit memory unit. This is a dedicated memory for the USB.
The memory access can be requested by the SIE or by the
CPU/DMA. The SIE Interface block and the CPU/DMA Inter-
face block handle these requests.

32.2.3.4 Arbiter Logic

This is the main block of the arbiter. It is responsible for arbi-
trations for all the transactions that happen in the arbiter. It
arbitrates the CPU, DMA, and SIE access to the memory
unit and the registers. This block also handles memory man-
agement, which is either ‘Manual’ or ‘Automatic’. In Manual
memory management, the read and write address manipu-
lations are done by the firmware. In Automatic management,
all the memory handling is done by the block itself. This
block takes care of the buffer size allocation. It also handles
common memory area. This block also handles the interrupt
requests for each endpoint. 

32.3 Operation

32.3.1 USB Clocking Scheme

The USB device block should be clocked at 48 MHz with an

accuracy of ±0.25%. In the PSoC 6 MCU, CLK_HF3 is the
clock source. The USB device block also requires a 100-kHz
peripheral clock for USB bus reset timing. The required USB
clock can be generated using one of the following clocking
schemes: 

■ IMO (trimmed with USB) -> PLL -> CLK_HF3

■ ECO (with the required accuracy) -> FLL -> CLK_HF3

■ ECO (with the required accuracy) -> PLL -> CLK_HF3

■ Use external clock (EXTCLK) with the required accuracy

32.3.2 USB PHY

The USB includes the transmitter and receiver (transceiver),
which corresponds to the USB PHY. Figure 32-2 shows the
PHY architecture. The USB PHY also includes the pull-up
resistor on the D+ line to identify the device as full-speed
type to the host. The PHY integrates the 22- series termi-
nation resistors on the USB line. The signal between the
USB device and the host is a differential signal. The receiver
receives the differential signal from the host and converts it
to a single-ended signal for processing by the SIE. The
transmitter converts the single-ended signal from the SIE to
the differential signal, and transmits it to the host. The differ-
ential signal is given to the upstream devices at a nominal
voltage range of 0 V to 3.3 V.

32.3.2.1 Power Scheme

The USB PHY is powered by the VBUS power pad of the
PSoC 6 MCU. The VBUS pad can be driven either by the
host VBUS (bus-powered) or an external power supply (self-
powered).

The USB PHY needs a nominal voltage of 3.3 V for its com-
munication with the host. 

Figure 32-2.  USB PHY Architecture

22 

VDDUSB

D+

D-

Upstream
Host/Hub

USB D+ Pull Up 
Enable Logic

22 

Transmitter 
Logic

Receiver 
Logic

1.5 K

GPIO Mode
Logic

Bus (Host) powered 
or Self Powered

ten
td
dpi
dmi

rd
dpo

dmo
rse0

PSoC 6 MCU



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 419

Universal Serial Bus (USB) Device Mode

32.3.2.2 VBUS Detection

USB devices can either be bus-powered (power sourced
from the host) or self-powered (power sourced from an
external power supply). The VDDUSB power pad pin pow-
ers the USB PHY and USB I/Os (D+ and D– pins). The pres-
ence of VBUS can be detected using the following steps:

1. Enable the interrupt on VDDUSB power pad. For this 
write ‘1’ to the VDDIO_ACTIVE[5] bit of VDD_IN-
TR_MASK register.

2. VDDIO_ACTIVE[5] bit of the supply detection interrupt 
register (VDD_INTR) is set to ‘1’ whenever a change to 
supply is detected. Clear the interrupt cause by writing 
‘1’ to the bitfield.

3. Check the status of the VDD_ACTIVE[5] bit of the exter-
nal power supply detection register (VDD_ACTIVE). The 
bit is set to ‘1’ when there is supply and ‘0’ when there is 
no supply.

32.3.2.3 USB D+ Pin Pull-up Enable Logic

When a USB device is self-powered, the USB specification
warrants that the device enable the pull-up resistor on its D+
pin to identify itself as a full-speed device to the host. When
the host VBUS is removed, the device should disable the
pull-up resistor on the D+ line to not back power the host.
The USB PHY includes an internal 1.5-k pull-up resistor on
the D+ line to indicate to the host that the PSoC 6 MCU is a
full-speed device. The pull-up resistor can be enabled or
disabled by configuring the DP_UP_EN bit in the
USBLPM_POWER_CTRL register. 

32.3.2.4 Transmitter and Receiver Logic

The transceiver block transmits and receives USB differen-
tial signals with an upstream device, and includes the USB
D+ pull-up resistor used to maintain an idle state on the bus.
Output data is differentially transmitted to upstream devices
at a nominal voltage of 3.3 V. The differential inputs
received from upstream devices are converted into single-
ended data and sent to the core logic at a nominal voltage of
1.8 V. The D+ and D– pins are terminated with 22- resis-
tors to meet the USB impedance specification.

32.3.2.5 GPIO Mode Logic

The D+ and D– pins can be used either as GPIO pins or
USB I/O pins. This is controlled by the IOMODE bit of the
USBDEV_USBIO_CR1 register. This bit should be set HIGH
for GPIO functionality and LOW for USB operation.

32.3.2.6 Link Power Management (LPM)

The USB PHY supports link power management (LPM),
which is similar to the suspend mode, but has transitional
latencies in tens of microseconds between power states,
compared to the greater than 20 ms latency associated with
suspend/resume modes. For more details on LPM, refer to
the USB 2.0 specification. The following features are sup-
ported for LPM.

■ The LPM_CTL register should be configured to enable/
disable LPM, type of response when LPM is enabled,

and the response when a sub PID other than the LPM
token is received from the host.

■ The LPM_STAT register stores the values of the Best
Effort Service Latency (BESL) and the remote wakeup
feature as sent by the host. The firmware should read
this register on the LPM interrupt event and enter the
appropriate low-power mode (Deep Sleep or Sleep)
based on the BESL value from the host.

32.3.3 Endpoints

The SIE and arbiter support eight data endpoints (EP1 to
EP8) and one control endpoint (EP0). The data endpoints
share the SRAM memory area of 512 bytes. The endpoint
memory management can be either manual or automatic.
The endpoints are configured for direction and other config-
uration using the SIE and arbiter registers. The endpoint
read address and write address registers are accessed
through the arbiter. 

The endpoints can be individually made active. In the Auto
Management mode, the register EP_ACTIVE is written to
control the active state of the endpoint. The endpoint activa-
tion cannot be dynamically changed during runtime. In Man-
ual Memory Management mode, the firmware decides the
memory allocation, so it is not required to specify the active
endpoints. The EP_ACTIVE register is ignored during the
manual memory management mode. The EP_TYPE regis-
ter is used to control the transfer direction (IN, OUT) for the
endpoints. The control endpoint has separate eight bytes for
its data (EP0_DR registers).

32.3.4 Transfer Types

The PSoC 6 MCU USB supports full-speed transfers and is
compliant with the USB 2.0 specification. It supports four
types of transfers:

■ Interrupt Transfer

■ Bulk Transfer

■ Isochronous Transfer

■ Control Transfer

For further details about these transfers, refer to the USB
2.0 specification.

32.3.5 Interrupt Sources

The USB device block generates 14 interrupts to the CPU.
These interrupts are mapped to three general-purpose
interrupt lines – INTR_LO, INTR_MED, and INTR_HI. Each
of these three interrupt lines has an associated status
register, which identifies the cause of the interrupt event.
These are the USBLPM_INTR_CAUSE_LO,
USBLPM_INTR_CAUSE_MED, and
USBLPM_INTR_CAUSE_HI registers. The routing of these
interrupts is controlled by the USBLPM_INTR_LVL_SEL
register fields.

The following events generate an interrupt on one of the
three interrupt lines:

■ USB start of frame (SOF) event 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 420

Universal Serial Bus (USB) Device Mode

■ USB bus reset event

■ Eight data endpoint (EP1 – EP8) interrupt events 

■ Control endpoint (EP0) interrupt event

■ Link power management (LPM) event

■ Resume event

■ Arbiter Interrupt event

32.3.5.1 USB Start of Frame (SOF) Event

The SOF interrupt is generated upon receiving an SOF
packet from the USB host. The SOF interrupt is enabled
using the SOF_INTR_MASK bitfield in the USBLPM_IN-
TR_SIE_MASK register. 

■ The SOF interrupt status is reflected in the SOF_INTR
status bit in the USBLPM_INTR_SIE status register. 

■ The SOF interrupt status is also available in the
SOF_INTR_MASKED bit of the
USBLPM_INTR_SIE_MASKED register – this bit is the
logical AND of the corresponding SOF bits in the
USBLPM_INTR_SIE_MASK register and the
USBLPM_INTR_SIE register.

■ If there is no SOF interrupt for 3 ms, the USB device
goes into SUSPEND state.

32.3.5.2 USB Bus Reset Event

The USB bus reset interrupt is generated when a USB bus
reset condition occurs. The bus reset interrupt is enabled by
setting the BUS_RESET_INTR_MASK bit in the
USBLPM_INTR_SIE_MASK register. 

■ The bus reset interrupt status is reflected in the
BUS_RESET_INTR bit in the USBLPM_INTR_SIE sta-
tus register. 

■ The bus reset interrupt status is also available in the
BUS_RESET_INTR_MASKED bit of the
USBLPM_INTR_SIE_MASKED register – this bit is the
logical AND of the corresponding bus reset bits in the
USBLPM_INTR_SIE_MASK register and the
USBLPM_INTR_SIE register.

■ The SIE logic triggers the counter to start running on the
divided version of CLK_PERI when an SE0 condition is
detected on the USB bus. When the counter reaches the
count value configured in the USBDEV_BUS_RST_CNT
register, the bus reset interrupt is triggered. Typically,
divided CLK_PERI is set to 100 kHz and USB-
DEV_BUS_RST_CNT is set to ‘10’.

32.3.5.3 Data Endpoint Interrupt Events

These are eight interrupt events corresponding to each data
endpoint (EP1-EP8). Each of the endpoint interrupt events
can be enabled/disabled by using the corresponding bit in
the USBDEV_SIE_EP_INT_EN register. The interrupt sta-
tus of each endpoint can be known by reading the USB-
DEV_SIE_EP_INT_SR status register. An endpoint whose
interrupt is enabled can trigger the interrupt on the following
events:

■ Successful completion of an IN/OUT transfer 

■ NAK-ed IN/OUT transaction if the corresponding
NAK_INT_EN bit in the SIE_EPx_CR0 register is set

■ When there is an error in the transaction, the
ERR_IN_TXN bit in the SIE_EPx_CR0 register is set
and interrupt is generated. 

■ If the STALL bit in SIE_EPx_CR0 is set, then stall events
can generate interrupts. This stall event can occur if an
OUT packet is received for an endpoint whose mode bits
in SIE_EPx_CR0 are set to ACK_OUT or if an IN packet
is received with mode bits set to ACK_IN.

32.3.5.4 Control Endpoint Interrupt Event

The interrupt event corresponding to the control endpoint
(EP0) is generated under the following events:

■ Successful completion of an IN/OUT transfer 

■ When a SETUP packet is received on the control end-
point

The EP0 interrupt is setup using the EP0_INTR_SET bit of
the USBLPM_INTR_SIE_SET register.

32.3.5.5 Link Power Management (LPM) 
Event

Generated whenever the LPM token packet is received. The
LPM interrupt is enabled by setting the LPM_INTR_MASK
bit in the USBLPM_INTR_SIE_MASK register. The LPM
interrupt status is reflected in the LPM_INTR status bit in the
USBLPM_INTR_SIE status register. 

The LPM interrupt status is also available in the LPM_IN-
TR_MASKED bit of the USBLPM_INTR_SIE_MASKED reg-
ister; this bit is the logical AND of the corresponding LPM
bits in the USBLPM_INTR_SIE_MASK and USBLPM_IN-
TR_SIE registers.

The firmware needs to read the USBLPM_LPM_STAT reg-
ister to read the BESL remote wakeup values and appropri-
ately enter the desired low-power mode. Enter the low-
power mode in the main code. The exit from LPM is identical
to the resume event wakeup in the case of suspend mode. 

32.3.5.6 RESUME Interrupt

The RESUME interrupt is asserted by the USB block when it
detects ‘0’ on the DP pad. The RESUME interrupt is enabled
by setting the RESUME_INTR_MASK bitfield of the
USBLPM_INTR_SIE_MASK register.

■ The RESUME interrupt status is reflected in the
RESUME_INTR status bit in the USBLPM_INTR_SIE
status register.

■ The RESUME interrupt status is also available in the
RESUME_INTR_MASKED bit of the USBLPM_IN-
TR_SIE_MASKED register – this bit is the logical AND of
the corresponding RESUME bits in the USBLPM_IN-
TR_SIE_MASK register and the USBLPM_INTR_SIE
register.

The RESUME interrupt is an Active mode interrupt and not
available in Deep Sleep or Hibernate mode.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 421

Universal Serial Bus (USB) Device Mode

32.3.5.7 Arbiter Interrupt Event

The arbiter interrupt can arise from five possible sources.
Each interrupt source is logically ANDed with its corre-
sponding ENABLE bit and the results are logically ORed to
result in a single arbiter interrupt event.

The arbiter interrupt event can arise under any of the follow-
ing five scenarios:

■ DMA Grant

■ IN Buffer Full

■ Buffer Overflow

■ Buffer Underflow

■ DMA Termin

DMA Grant 

This event is applicable in Mode 2 or Mode 3. (See Logical
Transfer Modes on page 422 for details on DMA modes).
This event is triggered when the DMA controller pulses the
Burstend signal corresponding to that endpoint, for which a
DMA request had been raised to the DMA controller earlier.
The request may have been either a manual DMA request
or an automatic arbiter DMA request. A common grant sta-
tus exists for both modes of requests. This grant status indi-
cates completion of the DMA transaction. This status
indication can be used by firmware to determine when the
next manual DMA request can be raised. Multiple requests
raised for the same endpoint before the DMA grant status is
set will be dropped by the block. Only the first of multiple
requests will be transmitted to DMA controller.

IN Buffer Full

This event status can occur in any of the DMA modes (Mode
1, 2, or 3) and is applicable only for IN endpoints.

■ Store and Forward Mode (Modes 1 and 2): This status is
set when the entire packet data is transferred to the local
memory. The check is that data written for the particular
endpoint is equal to the programmed byte count for that
endpoint in the USBDEV_SIE_EPx_CNT0 and USB-
DEV_SIE_EPx_CNT1 registers.

■ Cut Through Mode (Mode 3): In this mode, the IN buffer
full status is set when the IN endpoint’s dedicated buffer
is filled with the packet data. The size of this buffer is
determined by the value programmed in bits [3:0] of the
USBDEV_BUF_SIZE register. This status indication can
be used to determine when the mode value in the USB-
DEV_SIE_EPx_CR0 register can be programmed to
acknowledge an IN token for that endpoint.

Buffer Overflow

This event status is active only in the Cut Through Mode
(Mode 3). The following conditions can cause this bit to be
set:

■ Data overflow on the endpoint dedicated buffer space

❐ In an IN endpoint, the dedicated buffer can overflow 
if the DMA transfer writes a larger number of bytes 
than the space available in the dedicated buffer. Until 

an IN token is received for that endpoint, it cannot 
use the common buffer area, hence resulting in an 
overflow of data. The possible causes of this buffer 
overflow can be incorrect programming of either the 
DMA transfer descriptor transfer size or the USB-
DEV_BUF_SIZE register.

❐ In an OUT endpoint, the dedicated buffer can over-
flow if two OUT transactions occur consecutively. 
The data from the previous transaction is still present 
in the common area and the current ongoing trans-
action fills up the OUT endpoint’s dedicated buffer 
space and overflows. The possible causes of this 
overflow can be the overall DMA bandwidth con-
straint due to other DMA transactions or reduced 
size of the dedicated OUT buffer size.

■ Common area data overflow

❐ In an IN endpoint, the common area overflow occurs 
when the DMA transfer writes a larger number of 
bytes than the space available in the common area. 
This situation may arise due to incorrect 
programming of either the DMA transfer descriptor 
transfer size or the USBDEV_DMA_THRESH and 
USBDEV_DMA_THRESH_MSB registers.

❐ In an OUT endpoint, the common area overflow 
occurs when the data written to the common area 
has not yet been read and new data overwrites the 
existing data. 

Buffer Underflow 

This event is applicable only in the Cut Through mode
(Mode 3). This underflow condition can occur only for an IN
endpoint. The underflow condition can occur either in the
dedicated buffer space or common buffer space. The under-
flow condition on the dedicated buffer space can either be
due to the reduced dedicated IN buffer size or DMA band-
width constraint. The underflow condition can occur on the
common buffer space due to DMA bandwidth constraint
and/or lower DMA channel priority.

DMA Termin

This status is set when USBDEV generates a dma_termin
signal to indicate the total programmed/ received bytes that
are written/read by the DMA controller. This status indication
can be used by the firmware to reprogram the IN/OUT end-
point for the next transfer. For an OUT endpoint, this indi-
cates that the OUT packet data is available in the system
memory for further processing by the application.

32.3.6 DMA Support

Each of the eight data endpoints has one DMA channel
available to transfer data between the endpoint buffer and
the SRAM memory. The USB generates the DMA request
signals (usb.dma_req[7:0]) to the respective DMA channels
to initiate the data transfer for the endpoint. This goes to the
Trigger Group 13 multiplexer as input triggers that can be
routed to one of the trigger inputs of the DMA block. The
Burstend signals from the DMA channel to the correspond-



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 422

Universal Serial Bus (USB) Device Mode

ing endpoint is routed using the Trigger Group 9 multiplexer.
For more details, see the DMA Controller (DW) chapter on
page 93 and Trigger Multiplexer Block chapter on page 261.

32.4 Logical Transfer Modes
The USB block in PSoC 6 MCUs supports two types of logi-
cal transfers. The logical transfers can be configured using
the register setting for each endpoint. Any of the logical
transfer methods can be adapted to support the three types
of data transfers (Interrupt, Bulk, and Isochronous) men-
tioned in the USB 2.0 specification. The control transfer is
mandatory in any USB device.

The logical transfer mode is a combination of memory man-
agement and DMA configurations. The logical transfer
modes are related to the data transfer within the USB (to

and from the SRAM memory unit for each endpoint). It does
not represent the transfer methods between the device and
the host (the transfer types specified in the USB 2.0 specifi-
cation).

The USB supports two basic types of transfer modes:

■ Store and Forward mode

❐ Manual Memory Management with No DMA Access 
(Mode 1)

❐ Manual Memory Management with Manual DMA 
Access (Mode 2)

■ Cut Through mode

❐ Automatic Memory Management with Automatic 
DMA Access (Mode 3)

Table 32-1 gives a comparison of the two transfer modes.

Every endpoint has a set of registers that need to be handled during the modes of operation, as detailed in Table 32-2.

Table 32-1.  USB Transfer Modes

Feature Store and Forward Mode Cut Through Mode

SRAM Memory Usage Requires more memory Requires less memory

SRAM Memory Manage-
ment

Manual Auto

SRAM Memory Sharing
512 bytes of SRAM shared between endpoints. 
Sharing is done by firmware.

Each endpoint is allocated a lesser share of memory auto-
matically by the block. The remaining memory is available 
as “common area.” This common area is used during the 
transfer.

IN Command
Entire packet present in SRAM memory before 
the IN command is received.

Memory filled with data only when SRAM IN command is 
received. Data is given to host when enough data is avail-
able (based on DMA configuration). Does not wait for the 
entire data to be filled.

OUT Command
Entire packet is written to SRAM memory on OUT 
command. After entire data is available, it is cop-
ied from SRAM memory to the USB device.

Waits only for enough bytes (depends on DMA configura-
tion) to be written in SRAM memory. When enough bytes 
are present, it is immediately copied from SRAM memory to 
the USB device.

Transfer of Data
Data is transferred when all bytes are written to 
the memory.

Data is transferred when enough bytes are available. It 
does not wait for the entire data to be filled.

Types Based on DMA
No DMA mode

Manual DMA mode
Only Auto DMA mode

Supported Transfer Types Ideal for interrupt and bulk transfers Ideal for Isochronous transfer



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 423

Universal Serial Bus (USB) Device Mode

In Manual memory management, the endpoint read and endpoint write address registers are updated by the firmware. So the
memory allocation can be done by the user. The memory allocation decides which endpoints are active; that is, you can
decide to share the 512 bytes for all the eight endpoints or a lesser number of endpoints.

In Automatic memory management, the endpoint read and endpoint write address registers are updated by the USB block.
The block assigns memory to the endpoints that are activated using the USBDEV_EP_ACTIVE register. The size of memory
allocated depends on the value in the USBDEV_BUF_SIZE register. The remaining memory, after allocation, is called the
common area memory and is used for data transfer.

In all of these modes, either the 8-bit endpoint data register or the 16-bit endpoint data register can be used to read/write to
the endpoint buffer. While transferring data to the 16-bit data registers, ensure that the corresponding SRAM memory
address locations are also 16-bit aligned.

In the following text, the algorithm for the IN and OUT transaction for each mode is discussed. An IN transaction is when the
data is read by the USB host (for example, PC). An OUT transaction is when the data is written by the USB host to the USB
device. The choice of using the DMA and memory management can be configured using the USBDEV_ARB_EPx_CFG reg-
ister.

Table 32-2.  Endpoint Registers

Register Comment Content Usage

USBDEV_ARB_RWx_WA
Endpoint Write 
Address Register

Address of the SRAM 
This register indicates the SRAM location to which the data in 
the data register is to be written.

USBDEV_ARB_RWx_RA
Endpoint Read 
Address Register

Address of the SRAM
This register indicates the SRAM location from which the data 
must be read and stored to the data register.

USBDEV_ARB_RWx_DR
Endpoint Data Regis-
ter

8-Bit Data

Data register is read/written to perform any transaction.

IN command: Data written to the data register is copied to the 
SRAM location specified by the WA register. After write, the 
WA value is automatically incremented to point to the next 
memory location.

OUT command: Data available in the SRAM location pointed 
by the USBDEV_ARB_RWx_RA register is read and stored to 
the DR. When the DR is read, the value of USBDEV_ARB_R-
Wx_RA is automatically incremented to point to the next 
SRAM memory location that must be read.

USBDEV_SIE_EPx-
_CNT0 and USB-
DEV_SIE_EPx_CNT1

Endpoint Byte Count 
Register

Number of Bytes

Holds the number of bytes that can be transferred.

IN command: Holds the number of bytes to be transferred to 
host.

OUT command: Holds the maximum number of bytes that 
can be received. The firmware programs the maximum num-
ber of bytes that can be received for that endpoint. The SIE 
updates the register with the number of bytes received for the 
endpoint.

“Mode” bits in USB-
DEV_SIE_EPx_CR0 

Mode Values Response to the Host
Controls how the USB device responds to the USB traffic and 
the USB host. Some examples of modes are ACK, NAK, and 
STALL. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 424

Universal Serial Bus (USB) Device Mode

32.4.1 Manual Memory Management with No DMA Access

All operations in this mode are controlled by the CPU and works in a store-and-forward operation mode. An entire packet is
transferred to the memory and a mode bit (such as ACK IN or ACK OUT) is set by the CPU. The SIE responds appropriately
to an IN/OUT token received from the host. All memory space management is handled by the CPU.

Figure 32-3.  No DMA Access IN Transaction Figure 32-4.  No DMA Access OUT Transaction

32.4.2 Manual Memory Management with DMA Access

This mode is similar to the No DMA Access except that write/read of packets is performed by the DMA. A DMA request for an
endpoint is generated by setting the DMA_CFG bit in the USBDEV_ARB_EPx_CFG register. When the DMA service is
granted and is done (DMA_GNT), an arbiter interrupt can be programmed to occur. The transfer is done using a single DMA
cycle or multiple DMA cycles. After completion of every DMA cycle, the arbiter interrupt (DMA_GNT) is generated. Similarly,
when all the data bytes (programmed in byte count) are written to the memory, the arbiter interrupt occurs and the IN_BUF_-
FULL bit is set.

Set Base address to WA

Set Packet size in the Endpoint byte 
count register

Write to data to Endpoint Data 
Register

Is all data written
 to SRAM

Write to RA register(= initial WA 
register)

Set mode in CR0 register

Is IN
Token Received?

USB block reads Data stored at RA 
and transmit to Host.
RA++ 

Is all data
Transmitted?

Set the mode as NAK for the last 
byte in transfer. Status bit set by 

the block

Wait

No

Yes

No

Yes

Responds 
Automatically

With ACK

Interrupt 
Generated

No

Yes

Set Base address to WA

Set Packet size in the Endpoint byte 
count register

Set mode in CR0 register

Is OUT
Token Received?

Write RA value (= initial WA value)

Wait

No

Yes

Data received from host
Written to SRAM location WA

WA++

Is all data 
written to 
SRAM?

No

SIE sets mode to NAK. Updates byte count with 
actual no. of data received abd sets the data valid 

bit

USB block reads data at RA 
location and writes to data register

Is all data
Read from 

SRAM?

Yes

Yes

End

Responds automatically
 with ACK

SIE Data
Interrupt 

Generated

Data register is 
Read by the CPU, RA++ is 

automatically done

No



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 425

Universal Serial Bus (USB) Device Mode

Figure 32-5 and Figure 32-6 show the flow charts for manual DMA IN and OUT transactions respectively.

Figure 32-5.  Manual DMA IN Transaction

Write WA register
 (based on required memory allocation)

Set Packet size in the Endpoint byte 
count register

DMA writes data to Endpoint Data 
Register
WA++

Is all data
 written

 to SRAM

Write to RA register(= initial WA 
register)

Set mode in CR0 register

Is IN
Token Received?

USB block reads Data stored at 
RA and transmit to Host.

RA++ 

Is all data
Transmitted?

Set the mode as NAK for the last 
byte in transfer. Status bit set by 

the block

Wait
No

Yes

No

Yes

Responds 
Automatically

With ACK

Interrupt 
Generated

Set the DMA request in 
USBDEV_ARB_EPx_CFG register

No

Yes

Value automatically written to 
the SRAM specified by WA

End



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 426

Universal Serial Bus (USB) Device Mode

Figure 32-6.  Manual DMA OUT Transaction

32.4.3 Automatic DMA Mode

This is the Automatic memory management mode with auto
DMA access. The CPU programs the initial buffer size
requirement for IN/OUT packets and informs the arbiter
block of the endpoint configuration details for the particular
application. The block then controls memory partitioning and
handling of all memory pointers. During memory allocation,
each active IN endpoint (set by the USBDEV_EP_ACTIVE
and USBDEV_EP_TYPE registers) is allocated a small
amount of memory configured using the USBDEV_BUF_-
SIZE register (32 bytes for each of the eight endpoints). The

remaining memory (256 bytes) is left as common area and
is common for all endpoints.

In this mode, the memory requirement is less and it is suit-
able for full-speed isochronous transfers up to 1023 bytes.

When an IN command is sent by the host, the device
responds with the data present in the dedicated memory
area for that endpoint. It simultaneously issues a DMA
request for more data for that EP. This data fills up the com-
mon area. The device does not wait for the entire packet of
data to be available. It waits only for the (USBDEV_DMA_-
THRES_MSB, USBDEV_DMA_THRES) number of data
available in the SRAM memory and begins the transfer from
the common area. 

Similarly, when an OUT command is received, the data for
the OUT endpoint is written to the common area. When
some data (greater than USBDEV_DMA_THRES_MSB,
USBDEV_DMA_THRES) is available in the common area,
the arbiter block initiates a DMA request and the data is
immediately written to the device. The device does not wait
for the common area to be filled.

This mode requires configuration of the
USBDEV_DMA_THRES and
USBDEV_DMA_THRES_MSB registers to hold the number
of bytes that can be transferred in one DMA transfer (32
bytes). Similarly, the burst count of the DMA should always
be equal to the value set in the USBDEV_DMA_THRES
registers. Apart from the DMA configuration, this mode also
needs the configuration of the USBDEV_BUF_SIZE for the
IN and the OUT buffers and the USBDEV_EP_ACTIVE and
the USBDEV_EP_TYPE registers.

Each DMA channel has two descriptors and both of them
are used in this mode. Each descriptor is considered as a
data chunk of 32 bytes and it executes according to the trig-
ger mechanism. The descriptors are chained and hence 64
bytes can be transferred without firmware interaction. When
both descriptors complete the endpoint DMA done interrupt
and the DMA error interrupt triggers (due to the lack of data
to transfer). The descriptors are updated to advance the
source SRAM (IN endpoint) or destination SRAM (OUT end-
point) pointer locations and then enabled again. This
sequence continues till all data is transferred. 

The steps for IN and OUT transactions using automatic
DMA mode are shown in Figure 32-7 and Figure 32-8.

Write WA register
(based on the required memory allocation)

Set Packet size in the Endpoint byte 
count register

Set mode in CR0 register

Is OUT
Token Received?

Write RA value (= initial WA value)

Wait

No

Yes

Data received from host
Written to SRAM location WA

WA++

Is all data 
written to 
SRAM?

No

SIE sets mode to NAK. Updates byte count with 
actual no. of data received abd sets the data valid 

bit

Yes

Responds automatically with 
ACK

SIE Data
Interrupt 

Generated

USB block reads data at RA 
location and writes to data register

Is all data
Read from 

SRAM?

No

Yes

End

Data register is 
Read by the CPU, RA++ is 

automatically done

Configure DMA request

DMA Grant Arbiter 
Interrupted generated



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 427

Universal Serial Bus (USB) Device Mode

Figure 32-7.  IN Transaction using Automatic DMA Mode

Set Packet size in the Endpoint byte 
count register

Set IN_DATA_RDY for the endpoint in 
ARB_EP1_CFG register

Is the endpoint
Buffer full?

Block automatically raises 
interrupt for DMA

DMA writes to Data register

Update mode value in the Mode 
register

Is IN Command 
received?

Is the complete
data available 
in the memory 

SIE reads data from SRAM (specified 
by location RA) and transmits to host

Is all data
in buffer

transmitted?

Wait

No

Yes

No

Yes

Yes

Set the data valid bits

End

No

Yes

RA++

Raise a DMA Request

SIE reads data from SRAM (specified 
by location RA) and transmits to host

Is all data
in buffer

transmitted?

Yes

RA++
No

Is data in Common Area>
(DMA THRES, DMA THRES MSB)

Wait

Initiate PHUB
transfer 

Block transfer data available
in Common Area

Set the data valid bits

End

The process is 
continued till all

 the data is 
transferred

No

Yes

In the mean time, the PHUB 
initiates the transaction. The 

data from the device is copied to 
the common area. The data 

from the USB is written to the 
SRAM by the DMA

This memory location is very limited. The 
memory location is filled initially to make sure 
the host does not stall when an IN command is 
sent. When an IN command is received the 
PHUB initiates the copy of data from device to
common area. This initialization would take 
some time. The data in the end point buffer is 
transmitted until the data is copied to the 
common area 

Data automatically read and 
written to SRAM pointed by WA. 

WA++

IN_BUF_FULL Interrupt
generated 

Block automatically sends the 
ACK (Configured as Mode 

value)

No



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 428

Universal Serial Bus (USB) Device Mode

Figure 32-8.  OUT Transaction using Automatic DMA Mode

32.4.4 Control Endpoint Logical Transfer

The control endpoint has a special logical transfer mode. It does not share the 512 bytes of memory. Instead, it has a dedi-
cated 8-byte register buffer (USBDEV_EP0_DRx registers). The IN and OUT transaction for the control endpoint is detailed in
the following figures.

Write maximum bytes to Byte Count register

Program the Mode register for the 
endpoint

Is OUT
Token Received?

USB Block writes the data from 
SRAM to the Data register

Wait

No

Yes

The DMA writes the received data to the 
SRAM in location specified by WA

DMA request is 
raised

Yes

Is all data
from SRAM 

copied to device?

End

Is data in
SRAM>(DMA_THRES,DMA_TH

RES_MSB)?

No
WA++

Set the data valid 
bits

No

Yes

The process is 
continued till all

the data is transferred

Data in the Data register is read 
and given to the USB device by 

the DMA. RA is incremented 
automatically



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 429

Universal Serial Bus (USB) Device Mode

Figure 32-9.  Control Endpoint IN Transaction Figure 32-10.  Control Endpoint OUT Transaction

Set the mode bits to ACK 
the IN token

Is SETUP 
token received?

The block ACKs it

Generates Interrupt and sets the bit in EP0_CR register to 
indicate that SETUP token was received

No

Yes

Read the status bit and data valid 
bit

Is Data Valid?

Read the EP0_DRx register to find the 
type of request

Copy the required data to the EP0_DRx 
registers

Set the data valid bit and the mode bits.
Also update the byte count value

Is IN
Token Received?

No

The block transmits the data from the 
EP0_DRx registers

The block sets the mode value to NAK all 
further IN tokens

Block generates interrupt on receiving 
ACK from host and sets the IN byte 

received bit

Are all bytes 
transferred?

End

No

No

Yes

Yes

Yes

Program the mode bits for 
ACK_OUT

Is SETUP 
token received?

The block ACKs it

Generates Interrupt and sets the bit in EP0_CR 
register to indicate that SETUP token was received

No

Yes

Read the data valid bit in 
EP0_CNT

Is Data Valid?

Read the EP0_DRx register to find the 
type of request

Update the mode bits to ACK an 
OUT token

Is OUT
Token Received?

No

The block stores the received byte to the 
EP0_DRx registers and ACK the received 

byte

Interrupt generated

Read the status and data valid bits

Are all bytes 
transferred?

End

No

No

Yes

Yes

Is data
Valid?

Set the mode bit to NAK all OUT tokens 
till all bytes have been received

No

Yes

Yes



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 430

Universal Serial Bus (USB) Device Mode

32.5 USB Power Modes
The USB supports two modes of operation:

■ Active mode: In this mode, the USB is powered up and clocks are turned on.

■ Low-power (Deep Sleep) mode: In this mode, all clocks except the low-frequency clock are turned off.

Before entering low-power mode, the firmware should enable the GPIO interrupt (falling edge interrupt) on the D+ pin. The
USB suspend mode can be determined by monitoring the SOF interrupt; this means, if there is no SOF interrupt from the USB
for more than 3 ms, the USB goes into suspend mode and the block can be put into low-power mode by the firmware.

If there is any activity on the USB bus, D+ will be pulled low, which will cause a CPU interrupt. This interrupt can be used to
wake up the USB device.

32.6 USB Device Registers

Name Description

USBDEV_EP0_DR Control endpoint EP0 data register

USBDEV_CR0 USB control 0 register

USBDEV_CR1 USB control 1 register

USBDEV_SIE_EP_INT_EN USB SIE data endpoint interrupt enable register

USBDEV_SIE_EP_INT_SR USB SIE data endpoint interrupt status

USBDEV_SIE_EPx_CNT0 Non-control endpoint count register

USBDEV_SIE_EPx_CNT1 Non-control endpoint count register

USBDEV_SIE_EPx_CR0 Non-control endpoint's control register

USBDEV_USBIO_CR0 USBIO control 0 register

USBDEV_USBIO_CR2 USBIO control 2 register

USBDEV_USBIO_CR1 USBIO control 1 register

USBDEV_DYN_RECONFIG USB dynamic reconfiguration register

USBDEV_SOF0 Start of frame register

USBDEV_SOF1 Start of frame register

USBDEV_OSCLK_DR0 Oscillator lock data register 0

USBDEV_OSCLK_DR1 Oscillator lock data register 1

USBDEV_EP0_CR Endpoint0 control register

USBDEV_EP0_CNT Endpoint0 count register

USBDEV_ARB_RWx_WA
Endpoint write address value register. Pointer value increments by 1 when 
accessed by CPU/debugger

USBDEV_ARB_RWx_WA_MSB Endpoint write address value register

USBDEV_ARB_RWx_RA
Endpoint read address value register. Pointer value increments by 1 when 
accessed by CPU/debugger

USBDEV_ARB_RWx_RA_MSB Endpoint read address value register

USBDEV_ARB_RWx_DR Endpoint data register

USBDEV_BUF_SIZE Dedicated endpoint buffer size register

USBDEV_EP_ACTIVE Endpoint active indication register

USBDEV_EP_TYPE Endpoint type (IN/OUT) indication register

USBDEV_ARB_EPx_CFG Endpoint configuration register

USBDEV_ARB_EPx_INT_EN Endpoint interrupt enable register

USBDEV_ARB_EPx_SR Endpoint interrupt enable register

USBDEV_ARB_CFG Arbiter configuration register

USBDEV_USB_CLK_EN USB block clock enable register



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 431

Universal Serial Bus (USB) Device Mode

USBDEV_ARB_INT_EN Arbiter interrupt enable register

USBDEV_ARB_INT_SR Arbiter interrupt status register

USBDEV_CWA Common area write address register

USBDEV_CWA_MSB Endpoint read address value register

USBDEV_DMA_THRES DMA burst / threshold configuration register

USBDEV_DMA_THRES_MSB DMA burst / threshold configuration register

USBDEV_BUS_RST_CNT Bus reset count register

USBDEV_MEM_DATA Data register

USBDEV_SOF16 Start of frame register

USBDEV_OSCLK_DR16 Oscillator lock data register

USBDEV_ARB_RWx_WA16
Endpoint write address value register. Pointer value increments by 2 when 
accessed by CPU/debugger

USBDEV_ARB_RWx_RA16
Endpoint read address value register. Pointer value increments by 2 when 
accessed by CPU/debugger

USBDEV_ARB_RWx_DR16 Endpoint data register

USBDEV_DMA_THRES16 DMA burst / threshold configuration register

USBLPM_POWER_CTL Power control register

USBLPM_USBIO_CTL USB IO control register

USBLPM_FLOW_CTL Flow control register

USBLPM_LPM_CTL LPM control register

USBLPM_LPM_STAT LPM status register

USBLPM_INTR_SIE USB SOF, BUS RESET, and EP0 interrupt status register

USBLPM_INTR_SIE_SET USB SOF, BUS RESET, and EP0 interrupt set register

USBLPM_INTR_SIE_MASK USB SOF, BUS RESET,, and EP0 interrupt mask register

USBLPM_INTR_SIE_MASKED USB SOF, BUS RESET, and EP0 interrupt masked register

USBLPM_INTR_LVL_SEL Select interrupt level for each interrupt source register

USBLPM_INTR_CAUSE_HI High-priority interrupt cause register

USBLPM_INTR_CAUSE_MED Medium-priority interrupt cause register

USBLPM_INTR_CAUSE_LO Low-priority interrupt cause register

Name Description



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 432

33.   LCD Direct Drive

The PSoC 6 MCU Liquid Crystal Display (LCD) drive system is a highly configurable peripheral that allows the device to
directly drive STN and TN segment LCDs.

33.1 Features
The PSoC 6 MCU LCD segment drive block has the following features:

■ Supports up to 56 segments and 8 commons

■ Supports Type A (standard) and Type B (low-power) drive waveforms

■ Any GPIO can be configured as a common or segment

■ Supports five drive methods:

❐ Digital correlation

❐ PWM at 1/2 bias

❐ PWM at 1/3 bias

❐ PWM at 1/4 bias

■ Ability to drive 3-V displays from 1.8 V VDD in Digital Correlation mode

■ Operates in Active, Sleep, and Deep Sleep modes

■ Digital contrast control

33.2 Architecture

33.2.1 LCD Segment Drive Overview

A segmented LCD panel has the liquid crystal material between two sets of electrodes and various polarization and reflector
layers. The two electrodes of an individual segment are called commons (COM) or backplanes and segment electrodes
(SEG). From an electrical perspective, an LCD segment can be considered as a capacitive load; the COM/SEG electrodes
can be considered as the rows and columns in a matrix of segments. The opacity of an LCD segment is controlled by varying
the root-mean-square (RMS) voltage across the corresponding COM/SEG pair.

The following terms/voltages are used in this chapter to describe LCD drive:

■ VRMSOFF: The voltage that the LCD driver can realize on segments that are intended to be off.

■ VRMSON: The voltage that the LCD driver can realize on segments that are intended to be on.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - LCD Drive

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 433

LCD Direct Drive

■ Discrimination Ratio (D): The ratio of VRMSON and VRMSOFF that the LCD driver can realize. This depends on the type of
waveforms applied to the LCD panel. Higher discrimination ratio results in higher contrast.

Liquid crystal material does not tolerate long term exposure to DC voltage. Therefore, any waveforms applied to the panel
must produce a 0-V DC component on every segment (on or off). Typically, LCD drivers apply waveforms to the COM and
SEG electrodes that are generated by switching between multiple voltages. The following terms are used to define these
waveforms:

■ Duty: A driver is said to operate in 1/M duty when it drives ‘M’ number of COM electrodes. Each COM electrode is effec-
tively driven 1/M of the time. 

■ Bias: A driver is said to use 1/B bias when its waveforms use voltage steps of (1/B) × VDRV. VDRV is the highest drive
voltage in the system (equals VDD). The PSoC 6 MCU supports 1/2, 1/3, and 1/4 biases in PWM drive modes.

■ Frame: A frame is the length of time required to drive all the segments. During a frame, the driver cycles through the com-
mons in sequence. All segments receive 0-V DC (but non-zero RMS voltage) when measured over the entire frame.

The PSoC 6 MCU supports two different types of drive waveforms in all drive modes. These are:

■ Type-A Waveform: In this type of waveform, the driver structures a frame into M sub-frames. ‘M’ is the number of COM
electrodes. Each COM is addressed only once during a frame. For example, COM[i] is addressed in sub-frame i.

■ Type-B Waveform: The driver structures a frame into 2M sub-frames. The two sub-frames are inverses of each other.
Each COM is addressed twice during a frame. For example, COM[i] is addressed in sub-frames i and M+i. Type-B wave-
forms are slightly more power efficient because it contains fewer transitions per frame.

33.2.2 Drive Modes

The PSoC 6 MCU supports the following drive modes.

■ PWM drive at 1/2 bias

■ PWM drive at 1/3 bias

■ PWM drive at 1/4 bias with high-frequency clock input

■ Digital correlation

33.2.2.1 PWM Drive

In PWM drive mode, multi-voltage drive signals are generated using a PWM output signal together with the intrinsic resis-
tance and capacitance of the LCD. Figure 33-1 illustrates this. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 434

LCD Direct Drive

Figure 33-1.  PWM Drive (at 1/3 Bias)

The output waveform of the drive electronics is a PWM waveform. With the Indium Tin Oxide (ITO) panel resistance and the
segment capacitance to filter the PWM, the voltage across the LCD segment is an analog voltage, as shown in Figure 33-1.
This figure illustrates the generation of a 1/3 bias waveform (four commons and voltage steps of VDD/3). See the Clocking
System chapter on page 208 for details.

The PWM is derived from either CLK_LF (32 kHz, low-speed operation) or CLK_PERI (high-speed operation). See the Clock-
ing System chapter on page 208 for more details of peripheral and low-frequency clocks. The filtered analog voltage across
the LCD segments typically runs at low frequency for segment LCD driving.

Figure 33-2 and Figure 33-3 illustrate the Type A and Type B waveforms for COM and SEG electrodes for 1/2 bias and 1/4
duty. Only COM0/COM1 and SEG0/SEG1 are drawn for demonstration purpose. Similarly, Figure 33-4 and Figure 33-5 illus-
trate the Type A and Type B waveforms for COM and SEG electrodes for 1/3 bias and 1/4 duty. 

PWM Generator

PWM Generator

SEG

COM

GPIO Output Impedance ITO Panel Resistance LCD Segment 
Capacitance

VPWM VLCD

VDDD

VDDDD

2/3 VDDD

1/3 VDDD

0

0

t

t

VPWM

VLCD



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 435

LCD Direct Drive

Figure 33-2.  PWM1/2 Type-A Waveform Example

VDD

0
COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One frame of Type A waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 436

LCD Direct Drive

Figure 33-3.  PWM1/2 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One frame of Type B waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 437

LCD Direct Drive

Figure 33-4.  PWM1/3 Type-A Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 438

LCD Direct Drive

Figure 33-5.  PWM1/3 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 439

LCD Direct Drive

The effective RMS voltage for ON and OFF segments can be calculated easily using these equations:

Equation 33-1

 Equation 33-2

Where B is the bias and M is the duty (number of COMs).

For example, if the number of COMs is four, the resulting discrimination ratios (D) for 1/2 and 1/3 biases are 1.528 and 1.732,
respectively. 1/3 bias offers better discrimination ratio in two and three COM drives also. Therefore, 1/3 bias offers better con-
trast than 1/2 bias and is recommended for most applications. 1/4 bias is available only in high-speed operation of the LCD.
They offer better discrimination ratio especially when used with high COM designs (more than four COMs).

When the low-speed operation of LCD is used, the PWM signal is derived from the 32-kHz CLK_LF. To drive a low-capaci-
tance display with acceptable ripple and rise/fall times using a 32-kHz PWM, additional external series resistances of 100 k-
1 M should be used. External resistors are not required for PWM frequencies greater than ~1 MHz. The ideal PWM fre-
quency depends on the capacitance of the display and the internal ITO resistance of the ITO routing traces.

The 1/2 bias mode has the advantage that PWM is only required on the COM signals; the SEG signals use only logic levels,
as shown in Figure 33-2 and Figure 33-3. 

33.2.2.2 Digital Correlation

The digital correlation mode, instead of generating bias voltages between the rails, takes advantage of the characteristic of
LCDs that the contrast of LCD segments is determined by the RMS voltage across the segments. In this approach, the cor-
relation coefficient between any given pair of COM and SEG signals determines whether the corresponding LCD segment is
on or off. Thus, by doubling the base drive frequency of the COM signals in their inactive sub-frame intervals, the phase rela-
tionship of the COM and SEG drive signals can be varied to turn segments on and off. This is different from varying the DC
levels of the signals as in the PWM drive approach. Figure 33-8 and Figure 33-9 are example waveforms that illustrate the
principles of operation.

V
RMS OFF  2 B 2– 2

2 M 1– +
2M

----------------------------------------------------= x
VDRV

B
------------ 
 

V
RMS ON  2B2 2 M 1– +

2M
--------------------------------------= x

VDRV

B
------------ 
 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 440

LCD Direct Drive

Figure 33-6.  Digital Correlation Type-A Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 441

LCD Direct Drive

Figure 33-7.  Digital Correlation Type-B Waveform 

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 442

LCD Direct Drive

The RMS voltage applied to on and off segments can be calculated as follows:

Where B is the bias and M is the duty (number of COMs). This leads to a discrimination ratio (D) of 1.291 for four COMs.
Digital correlation mode also has the ability to drive 3-V displays from 1.8-V VDD.

33.2.3 Recommended Usage of Drive Modes

The PWM drive mode has higher discrimination ratios compared to the digital correlation mode, as explained in 33.2.2.1
PWM Drive and 33.2.2.2 Digital Correlation. Therefore, the contrast in digital correlation method is lower than PWM method
but digital correlation has lower power consumption because its waveforms toggle at low frequencies. 

The digital correlation mode creates reduced, but acceptable contrast on TN displays, but no noticeable difference in contrast
or viewing angle on higher contrast STN displays. Because each mode has strengths and weaknesses, recommended usage
is as follows.

33.2.4 Digital Contrast Control

In all drive modes, digital contrast control can be used to change the contrast level of the segments. This method reduces
contrast by reducing the driving time of the segments. This is done by inserting a ‘Dead-Time’ interval after each frame.
During dead time, all COM and SEG signals are driven to a logic 1 state. The dead time can be controlled in fine resolution.
Figure 33-8 illustrates the dead-time contrast control method for 1/3 bias and 1/4 duty implementation.

Figure 33-8.  Dead-Time Contrast Control

Table 33-1.  Recommended Usage of Drive Modes

Display Type Deep Sleep Mode Sleep/Active Mode Notes

Four COM TN 
Glass

Digital correlation PWM 1/3 bias
Firmware must switch between LCD drive modes before going to deep 
sleep or waking up.

Four COM STN 
Glass

Digital correlation No contrast advantage for PWM drive with STN glass.

Eight COM, STN Not supported PWM 1/4 bias
Supported only in the high-speed LCD mode. The low-speed CLK_LF is 
not fast enough to make the PWM work at high multiplex ratios.

V
RMS OFF  M 1– 

2M
------------------= x VDD 

V
RMS ON  2 M 1– +

2M
----------------------------= x VDD 

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

Two Frames of of Type A Waveform with Dead-time

(Example for 1/4th Duty and 1/3rd bias)

Dead-Time

t0 t1 t2dt dtt3



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 443

LCD Direct Drive

33.3 PSoC 6 MCU Segment LCD Direct Drive

Figure 33-9.  Block Diagram of LCD Direct Drive System 

The LCD controller block contains two generators, one with
a high-speed clock source CLK_PERI and the other with a
low-speed clock source (32 kHz) derived from the CLK_LF.
These are called high-speed LCD master generator and
low-speed LCD master generator, respectively. Both the
generators support PWM and digital correlation drive
modes. PWM drive mode with low-speed generator requires
external resistors, as explained in PWM Drive on page 433. 

The multiplexer selects one of these two generator outputs
to drive LCD, as configured by the firmware. The LCD pin
logic block routes the COM and SEG outputs from the gen-
erators to the corresponding I/O matrices. Any GPIO can be
used as either COM or SEG. This configurable pin assign-
ment for COM or SEG is implemented in GPIO and I/O
matrix; see High-Speed I/O Matrix. These two generators
share the same configuration registers. These memory
mapped I/O registers are connected to the system bus
(AHB) using an AHB interface.

The LCD controller works in three device power modes:
Active, Sleep, and Deep Sleep. High-speed operation is
supported in Active and Sleep modes. Low-speed operation
is supported in Active, Sleep, and Deep Sleep modes. The
LCD controller is unpowered in Hibernate mode.

33.3.1 High-Speed and Low-Speed 
Master Generators

The high-speed and low-speed master generators are simi-
lar to each other. The only exception is that the high-speed
version has larger frequency dividers to generate the frame
and sub-frame periods. The high-speed generator is in the
active power domain and the low-speed generator is in the
Deep Sleep power domain. A single set of configuration reg-
isters is provided to control both high-speed and low-speed
blocks. Each master generator has the following features
and characteristics:

■ Register bit configuring the block for either Type A or
Type B drive waveforms (LCD_MODE bit in LCD0_-
CONTROL register).

■ Register bits to select the number of COMs (COM_NUM
field in LCD0_CONTROL register).

■ Operating mode configuration bits enabled to select one
of the following:

❐ Digital correlation

❐ PWM 1/2 bias

❐ PWM 1/3 bias

High-Speed (HS) 
LCD Master 
Generator

AHB 
interface

AHB

Low Frequency 
Clock, CLK_LF 

(32 kHz)

Config & Control 
Registers

LCD Mode 
Select

 (HS/LS)

Sub Frame 
Data

Display 
Data

HSIO
Matrix

LCD com[0]

Display Data [0]

LCD
Pin

Logic

Display
Data

Registers

HSIO
Matrix

HSIO
Matrix

High-Frequency 
Clock, CLK_PERI

LCD seg[0]

LCD com[1]

LCD seg[1]

LCD com[n]

LCD seg[n]

Active 
Power Domain 

Deep Sleep 
Power Domain 

Low-Speed (LS)
LCD Master 
Generator

Multiplexer

Display Data [1]

Display Data [n]

HS COM Signals

HS SEG Signals

LS COM Signals

LS SEG Signals

HS Sub Frame Data

LS Sub Frame Data

COM 
Signals

SEG 
Signals



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 444

LCD Direct Drive

❐ PWM 1/4 bias (not supported in low-speed genera-
tor)

❐ Off/disabled. Typically, one of the two generators will 
be configured to be Off

OP_MODE and BIAS fields in LCD0_CONTROL bits 
select the drive mode.

■ A counter to generate the sub-frame timing. The SUB-
FR_DIV field in the LCD0_DIVIDER register determines
the duration of each sub-frame. If the divide value written
into this counter is C, the sub-frame period is 4 × (C+1).
The low-speed generator has an 8-bit counter. This
counter generates a maximum half sub-frame period of
8 ms from the 32-kHz CLK_LF. The high-speed genera-
tor has a 16-bit counter.

■ A counter to generate the dead time period. These
counters have the same number of bits as the sub-frame
period counters and use the same clocks. DEAD_DIV
field in the LCD0_DIVIDER register controls the dead
time period.

33.3.2 Multiplexer and LCD Pin Logic

The multiplexer selects the output signals of either high-
speed or low-speed master generator blocks and feeds it to
the LCD pin logic. This selection is controlled by the configu-

ration and control register. The LCD pin logic uses the sub-
frame signal from the multiplexer to choose the display data.
This pin logic will be replicated for each LCD pin.

33.3.3 Display Data Registers

Each LCD segment pin is part of an LCD port with its own
display data register, LCD0_DATAx. The device has eight
such LCD ports. Note that these ports are not real pin ports
but the ports/connections available in the LCD hardware for
mapping the segments to commons. Each LCD segment
configured is considered as a pin in these LCD ports. The
LCD0_DATAxx registers are 32-bit wide and store the ON/
OFF data for all SEG-COM combination enabled in the
design. For example, LCD0_DATA0x holds SEG-COM data
for COM0 to COM3 and LCD0_DATA1x holds SEG-COM
data for COM4 to COM7. The bits [4i+3:4i] (where ‘i’ is the
pin number) of each LCD0_DATAxx register represent the
ON/OFF data for Pin[i], as shown in Table 33-2. The
LCD0_DATAxx register should be programmed according to
the display data of each frame. The display data registers
are Memory Mapped I/O (MMIO) and accessed through the
AHB slave interface. See the device datasheet for the pin
connections.

33.4 Register List 

Table 33-2.  SEG-COM Mapping Example of LCD0_DATA00 Register (each SEG is a pin of the LCD port)

BITS[31:28] = PIN_7[3:0] BITS[27:24] = PIN_6[3:0]

PIN_7-COM3 PIN_7-COM2 PIN_7-COM1 PIN_7-COM0 PIN_6-COM3 PIN_6-COM2 PIN_6-COM1 PIN_6-COM0

BITS[23:20] = PIN_5[3:0] BITS[19:16] = PIN_4[3:0]

PIN_5-COM3 PIN_5-COM2 PIN_5-COM1 PIN_5-COM0 PIN_4-COM3 PIN_4-COM2 PIN_4-COM1 PIN_4-COM0

BITS[15:12] = PIN_3[3:0] BITS[11:8] = PIN_2[3:0]

PIN_3-COM3 PIN_3-COM2 PIN_3-COM1 PIN_3-COM0 PIN_2-COM3 PIN_2-COM2 PIN_2-COM1 PIN_2-COM0

BITS[7:3] = PIN_1[3:0] BITS[3:0] = PIN_0[3:0]

PIN_1-COM3 PIN_1-COM2 PIN_1-COM1 PIN_1-COM0 PIN_0-COM3 PIN_0-COM2 PIN_0-COM1 PIN_0-COM0

Table 33-3.  LCD Direct Drive Register List

Register Name Description

LCD0_ID This register includes the information of LCD controller ID and revision number

LCD0_DIVIDER This register controls the sub-frame and dead-time period

LCD0_CONTROL This register is used to configure high-speed and low-speed generators

LCD0_DATA0x LCD port pin data register for COM0 to COM3

LCD0_DATA1x LCD port pin data register for COM4 to COM7



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 445

Section E: Analog Subsystem

This section encompasses the following chapters:

■ Analog Reference Block chapter on page 446

■ Low-Power Comparator chapter on page 449

■ SAR ADC chapter on page 454

■ Temperature Sensor chapter on page 468

■ CapSense chapter on page 472

Top Level Architecture

Figure E-1.  Analog System Block Diagram

I/O Subsystem

Peripheral Interconnect (MMIO,PPU)

IO
S

S
 G

P
IO

PCLK

GPIO 

High Speed I/O Matrix, Smart IO, Boundary Scan

DeepSleep
Hibernate

LP Active/Sleep
ULP Active/Sleep

Power Modes

Backup

Smart IO

Prog.
Analog

SAR 
ADC

(12-bit)

x1

SARMUX

Prog.
Analog

 L
P

C
O

M
P

Lo
w

 P
ow

er
 c

o
m

p
ar

at
or

C
S

D
C

a
p

S
e

ns
e



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 446

34.   Analog Reference Block

The Analog Reference block (AREF) generates highly accurate reference voltage and currents needed by the programmable
analog subsystem (PASS) and CapSense (CSD) blocks.

34.1 Features
■ Provides accurate bandgap references for PASS and CSD subsystems

■ 1.2-V voltage reference (VREF) generator

■ Option to output alternate voltage references routed from SRSS or from an external pin

■ Proportional to absolute temperature (IPTAT) current reference generation

■ Zero dependency to absolute temperature (IZTAT) flat current reference generation, which is independent of temperature
variations 

■ Option to generate IZTAT from SRSS generated current reference

■ Option to enable or disable references in System Deep-Sleep mode

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SysAnalog

■ Application notes

■ Code examples



Analog Reference Block

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 447

34.2 Architecture

Figure 34-1.  AREF Block Diagram

Figure 34-1 shows the architecture of the AREF block. AREF contains a precise bandgap reference, which generates a 1.2-V VREF and a PTAT current that is 1 µA at room

temperature (23 °C). It also generates a current reference, which is stable over temperature (IZTAT). 
M

U
X

Bandgap Reference

Voltage 
Reference 
generator

VREF

IZTAT

IPTAT

Analog Reference (AREF) block

Current 
Reference 
generator

SRSS Voltage Reference 
(0.8 V)

External (off-chip) reference

SRSS Current Reference 
(250 nA)

IPTAT
1 uA

VREF
1.2 V

Deep Sleep operation enable 
Deep Sleep modes [1:0]

IZTAT
Generator

M
U

X

IZTAT
1 uA



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 448

Analog Reference Block

34.2.1 Bandgap Reference Block

The AREF block contains a local bandgap reference
generator, which has tighter accuracy, temperature stability,
and lower noise than the SRSS bandgap reference. The
bandgap reference block provides a temperature stable
voltage and current reference (VREF) and an additional

current that tracks temperature. All AREF output currents
are sinking. 

34.2.2 Zero Dependency To Absolute 
Temperature Current Generator 
(IZTAT)

The IZTAT current generator uses the output of the bandgap
reference block to generates a precise current reference,
which has a low variation over temperature.

34.2.3 Reference Selection Multiplexers

AREF has two multiplexers to select the sources for the
output references.

34.2.3.1 VREF Selection Multiplexer Options

■ SRSS – routes the VREF from SRSS (0.8 V)

Note: SRSS references are not available in Deep Sleep
power mode. This option should not be used when the
device is in Deep Sleep mode.

■ Local – routes the locally generated bandgap reference
(1.2 V)

■ External – routes the reference from the external VREF

pin

34.2.3.2 IZTAT Selection Multiplexer Options

■ SRSS - uses the SRSS current reference (250 nA) to
generate IZTAT.

Note: SRSS references are not available in Deep Sleep
power mode. This option should not be used when the
device is in Deep Sleep mode.

■ Local - internally generates IZTAT

34.2.4 Startup Modes

AREF supports two startup modes, which provide a trade-off
between wakeup time and noise performance when
transitioning from the Deep Sleep to Active power mode.
This is selected using the AREF_MODE bit of the
AREF_CTRL register. The FAST_START mode enables
faster wakeup, but with higher noise levels. Firmware can
switch to NORMAL mode after the FAST_START settling
time to achieve better noise performance.

34.2.5 Low-Power Modes

AREF’s voltage and current references can be made
available during the Deep Sleep power mode. This is
configured using the DEEPSLEEP_ON bit in the
AREF_CTRL register. Individual references can be active by
configuring DEEPSLEEP_MODE as shown in Table 34-4. 

Note: These options are applicable only when
DEEPSLEEP_ON = 1.

34.3 Registers

Table 34-1.  Bandgap References in AREF

Bandgap Reference Outputs Value

VREF 1.2 V

IPTAT 1 uA

Table 34-2.  IZTAT Reference

IZTAT Reference Outputs Value

IZTAT 1 µA

Table 34-3.  Startup Modes

AREF_MODE Description

0 (NORMAL) Normal startup mode

1 (FAST_START) Fast startup mode

Table 34-4.  Deep Sleep Mode

DEEPSLEEP_MODE[1:0] Description

00 (OFF)
All references are OFF during Deep 
Sleep

01 (IPTAT)
IPTAT is ON during Deep Sleep. This 
mode enables fast wakeup from Deep 
Sleep. 

10 (IPTAT_IZTAT)
IPTAT and IZTAT are ON during Deep 
Sleep

11 (IPTAT_IZTAT_VREF)
IPTAT, IZTAT, and VREF are ON during 
Deep Sleep

Table 34-5.  List of AREF Registers

Register Comment Features

AREF_CTRL AREF control register Reference selection, startup time, and low-power mode.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 449

35.   Low-Power Comparator

PSoC 6 MCUs have two Low-Power comparators, which can perform fast analog signal comparison of internal and external
analog signals in all system power modes. Low-Power comparator output can be inspected by the CPU, used as an interrupt/
wakeup source to the CPU when in CPU Sleep mode, used as a wakeup source to system resources when in System Deep
Sleep or Hibernate mode, or fed to as an asynchronous or synchronous signal (level or pulse). 

35.1 Features

The PSoC 6 MCU comparators have the following features:

■ Configurable input pins

■ Programmable power and speed

■ Ultra low-power mode support

■ Each comparator features a one-sided hysteresis option

■ Rising edge, falling edge, combined rising and falling edge detection at the comparator output 

■ Local reference voltage generation

■ Wakeup source from low-power modes

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - Low-Power Comparator

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 450

Low-Power Comparator

35.2 Architecture

Figure 35-1 shows the block diagram for the Low-Power comparator.

Figure 35-1.  Low-Power Comparator Block Diagram

The following sections describe the operation of the PSoC 6
MCU Low-Power comparator, including input configuration,
power and speed modes, output and interrupt configuration,
hysteresis, and wakeup from low-power modes.

35.2.1 Input Configuration

Low-Power comparators can operate with the following input
modes:

■ Compare two voltages from external pins

■ Compare a voltage from an external pin against an
internally generated analog-signal (through AMUXBUS). 

■ Compare two internal voltages through AMUXBUS A/
AMUXBUS B 

■ Compare internal and external signals with a locally-
generated reference voltage. Note that this voltage is not
a precision reference and can vary from 0.45 V–0.75 V.

See the device datasheet for detailed specifications of the
Low-Power comparator.

Note that AMUXBUS connections are not available in Deep
Sleep and Hibernate modes. If Deep Sleep or Hibernate
operation is required, the Low-Power comparator must be
connected to the dedicated pins. This restriction also
includes routing of any internally-generated signal, which

uses the AMUXBUS for the connection. See the I/O
System chapter on page 227 for more details on connecting
the GPIO to AMUXBUS A/B or setting up the GPIO for
comparator input.

Refer to the LPCOMP_CMP0_SW, LPCOMP_CMP1_SW,
LPCOMP_CMP0_SW_CLEAR, and
LPCOMP_CMP1_SW_CLEAR registers in the registers
TRM to understand how to control the internal routing
switches shown in Figure 35-1.

If the inverting input of a comparator is routed to a local
voltage reference, the LPREF_EN bit in the
LPCOMP_CONFIG register must be set to enable the
voltage reference.

35.2.2 Output and Interrupt Configuration

Both Comparator0 and Comparator1 have hardware outputs
available at dedicated pins. See the device datasheet for the
location of comparator output pins.

Firmware readout of Comparator0 and Comparator1 outputs
are available at the OUT0 and OUT1 bits of the
LPCOMP_STATUS register (Table 35-1). The output of each
comparator is connected to a corresponding edge detector
block. This block determines the edge that triggers the
interrupt. The edge selection and interrupt enable is

Low Power Comparator Block

Analog Sub-Section
AHBAHB 

Interface

Edge 
Detector

Edge 
Detector

Interrupt to 
CPU 
Subsystem

dsi_comp0
(To HSIOM or trigger 
multiplexer)

Sync
edge + pulse

dsi_comp1
(To HSIOM or trigger 
multiplexer)

Sync
edge + pulse

S
yn

c
S

yn
c

combine & 
mask

Wake up signals to 
System Resources Sub-System

MMIO

Registers

Comparator1

Part of I/O 
system

out0

o
u

t_
w

k0
+

-

out1

o
u

t_
w

k1

+

-

VREF (0.45 V -0.75 V)

VN1

VN0BN0AN0

BP0AP0

BN1AN1

BP1AP1

IN0

IP0

IN1

IP1

A
M

U
X

B
U

S
 A

A
M

U
X

B
U

S
 B

P1BP1A

P0BP0A

P3BP3A

P2BP2A

inp0

inn0

inp1

inn1

Comparator0

To MMIO

Routing 
Switches

Routing 
Switches

AA_SL

BB_SL

AA_SR

BB_SR



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 451

Low-Power Comparator

configured using the INTTYPE0 and INTTYPE1 bitfields in
the LPCOMP_CMP0_CTRL and LPCOMP_CMP1_CTRL
registers for Comparator0 and Comparator1, respectively.
Using the INTTYPE0 and INTTYPE1 bits, the interrupt type
can be selected to disabled, rising edge, falling edge, or
both edges, as described in Table 35-1. 

Each comparator’s output can also be routed directly to a
GPIO pin through the HSIOM. See the I/O System chapter
on page 227 for more details.

During an edge event, the comparator will trigger an
interrupt. The interrupt request is registered in the COMP0
bit and COMP1 bit of the LPCOMP_INTR register for
Comparator0 and Comparator1, respectively. Both
Comparator0 and Comparator1 share a common interrupt
signal output (see Figure 35-1), which is a logical OR of the
two interrupts and mapped as the Low-Power comparator
block’s interrupt in the CPU NVIC. Refer to the
Interrupts chapter on page 54 for details. If both the
comparators are used in a design, the COMP0 and COMP1
bits of the LPCOMP_INTR register must be read in the
interrupt service routine to know which one triggered the

interrupt. Alternatively, COMP0_MASK bit and
COMP1_MASK bit of the LPCOMP_INTR_MASK register
can be used to mask the Comparator0 and Comparator1
interrupts to the CPU. Only the masked interrupts will be
serviced by the CPU. After the interrupt is processed, the
interrupt should be cleared by writing a ‘1’ to the COMP0
and COMP1 bits of the LPCOMP_INTR register in firmware.
If the interrupt to the CPU is not cleared, it stays active
regardless of the next compare events. This can interrupt
the CPU continuously. Refer to the Interrupts chapter on
page 54 for details.

LPCOMP_INTR_SET register bits [1:0] can be used to
assert an interrupt for firmware debugging.

In Deep Sleep mode, the wakeup interrupt controller (WIC)
can be activated by a comparator edge event, which then
wakes up the CPU. Similarly in Hibernate mode, the
LPCOMP can wake up the system resources sub-system.
Thus, the LPCOMP has the capability to monitor a specified
signal in low-power modes. See the Power Supply and
Monitoring chapter on page 184 and the Device Power
Modes chapter on page 191 for more details.

35.2.3 Power Mode and Speed Configuration

The Low-Power comparators can operate in three power modes: 

■ Normal

■ Low-power

■ Ultra low-power

The power or speed setting for Comparator0 is configured using the MODE0 bitfield of the LPCOMP_CMP0_CTRL register.
Similarly, the power or speed setting for Comparator1 is configured using the MODE1 bitfield of the LPCOMP_CMP1_CTRL
register. The power consumption and response time vary depending on the selected power mode; power consumption is
highest in fast mode and lowest in ultra-low-power mode, response time is fastest in fast mode and slowest in ultra-low-power

Table 35-1.  Output and Interrupt Configuration

Register[Bit_Pos] Bit_Name Description

LPCOMP_STATUS[0] OUT0 Current/Instantaneous output value of Comparator0

LPCOMP_STATUS[16] OUT1 Current/Instantaneous output value of Comparator1

LPCOMP_CMP0_CTRL[7:6] INTTYPE0

Sets on which edge Comparator0 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_CMP1_CTRL[7:6] INTTYPE1

Sets on which edge Comparator1 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_INTR[0] COMP0
Comparator0 Interrupt: hardware sets this interrupt when Comparator0 triggers. Write a '1' 
to clear the interrupt

LPCOMP_INTR[1] COMP1
Comparator1 Interrupt: hardware sets this interrupt when Comparator1 triggers. Write a '1' 
to clear the interrupt

LPCOMP_INTR_SET[0] COMP0 Write a '1' to trigger the software interrupt for Comparator0

LPCOMP_INTR_SET[1] COMP1 Write a 1 to trigger the software interrupt for Comparator1



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 452

Low-Power Comparator

mode. Refer to the device datasheet for specifications for the response time and power consumption for various power
settings.

The comparators can also be enabled or disabled using these bitfields, as described in Table 35-2.

Note: The output of the comparator may glitch when the power mode is changed while comparator is enabled. To avoid this,
disable the comparator before changing the power mode.

Additionally, the entire Low-Power comparator system can be enabled or disabled globally using the LPCOMP_CONFIG[31]
bit. See the registers TRM for details of these bitfields.

35.2.4 Hysteresis

For applications that compare signals close to each other and slow changing signals, hysteresis helps to avoid oscillations at
the comparator output when the signals are noisy. For such applications, a fixed hysteresis may be enabled in the comparator
block. See the device datasheet for the hysterisis voltage range.

The hysteresis level is enabled/disabled by using the HYST0 and HYST1 bitfields in the LPCOMP_CMP0_CTRL and
LPCOMP_CMP1_CTRL registers for Comparator0 and Comparator1, as described in Table 35-3.

Table 35-3.  Hysteresis Control Bits

35.2.5 Wakeup from Low-Power Modes

The comparator is operational in the device’s low-power modes, including Sleep, Deep Sleep, and Hibernate modes. The
comparator output can wake the device from Sleep and Deep Sleep modes. The comparator output can generate interrupts in
Deep Sleep mode when enabled in the LPCOMP_CONFIG register, the INTTYPEx bits in the LPCOMP_CMPx_CTRL
register should not be set to disabled, and the INTR_MASKx bit should be set in the LPCOMP_INTR_MASK register for the
corresponding comparator to wake the device from low-power modes. Moreover, if the comparator is required in Deep Sleep

Table 35-2.  Comparator Power Mode Selection Bits

Register[Bit_Pos] Bit_Name Description

LPCOMP_CMP0_CTRL[1:0] MODE0

Compartor0 power mode selection

00: Off

01: Ultra low-power operating mode. This mode must be used when the device is in 
Deep Sleep or Hibernate mode.

10: Low-power operating mode

11: Normal, full-speed, full-power operating mode

See the datasheet for electrical specifications in each power mode.

LPCOMP_CMP1_CTRL[1:0] MODE1

Compartor1 power mode selection

00: Off

01: Ultra low-power operating mode. This mode must be used when the device is in 
Deep Sleep or Hibernate mode.

10: Low-power operating mode

11: Normal, full-speed, full-power operating mode

See the datasheet for electrical specifications in each power mode.

Register[Bit_Pos] Bit_Name Description

LPCOMP_CMP0_CTRL[5] HYST0

Enable/Disable hysteresis to Comparator0 

1: Enable Hysteresis 

0: Disable Hysteresis

See the datasheet for hysterisis voltage range.

LPCOMP_CMP1_CTRL[5] HYST1

Enable/Disable hysteresis to Comparator1 

1: Enable Hysteresis

0: Disable Hysteresis

See the datasheet for hysterisis voltage range.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 453

Low-Power Comparator

or Hibernate modes, then it must be configured into Ultra Low-Power mode before the device is put into Deep Sleep or
Hibernate mode.

In the Deep Sleep and Hibernate power modes, a compare event on either Comparator0 or Comparator1 output will generate
a wakeup interrupt. The INTTYPEx bits in the LPCOMP_CONFIG register should be properly configured. The mask bits in the
LPCOMP_INTR_MASK register is used to select whether one or both of the comparator’s interrupt is serviced by the CPU.
See the Device Power Modes chapter on page 191 for more details.

35.2.6 Comparator Clock

The comparator uses the system main clock SYSCLK as the clock for interrupt synchronization. See the Clocking
System chapter on page 208 for more details.

35.3 Register List 

Table 35-4.  Low-Power Comparator Register Summary

Register Function

LPCOMP_CONFIG LPCOMP global configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_INTR_MASK LPCOMP interrupt request mask register

LPCOMP_INTR_MASKED LPCOMP masked interrupt output register

LPCOMP_STATUS Output status register

LPCOMP_CMP0_CTRL Comparator0 configuration register

LPCOMP_CMP1_CTRL Comparator1 configuration

LPCOMP_CMP0_SW Comparator0 switch control

LPCOMP_CMP1_SW Comparator1 switch control

LPCOMP_CMP0_SW_CLEAR Comparator0 switch control clear

LPCOMP_CMP1_SW_CLEAR Comparator1 switch control clear



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 454

36.   SAR ADC

The PSoC 6 MCU has a 12-bit successive approximation register analog-to-digital converter (SAR ADC). The 12-bit, 1-Msps
SAR ADC is designed for applications that require moderate resolution and high data rate.

36.1 Features
■ Maximum sample rate of 1 Msps 

■ Sixteen individually configurable logical channels that can scan eleven unique input channels. Each channel has the fol-
lowing features:

❐ Input from eight dedicated pins (eight single-ended mode or four differential inputs) or internal signals (AMUXBUS or
temperature sensor)

❐ Each channel may choose one of the four programmable acquisition times to compensate for external factors (such as
high input impedance sources with long settling times)

❐ Single-ended or differential measurement

❐ Averaging and accumulation

❐ Double-buffered results

■ Result may be left- or right-aligned, or may be represented in 16-bit sign extended

■ Scan can be triggered by firmware, trigger from other peripherals or pins

❐ One-shot – periodic or continuous mode

■ Hardware averaging support 

❐ First order accumulate

❐ Supports 2, 4, 8, 16, 32, 64, 128, and 256 samples (powers of 2)

■ Selectable voltage references

❐ Internal VDDA and VDDA/2 references

❐ Internal 1.2-V reference with buffer

❐ External reference

■ Interrupt generation

❐ End of scan

❐ Saturation detect and over-range (configurable) detect for every channel

❐ Scan results overflow

❐ Collision detect 

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet 

■ Peripheral Driver Library (PDL) documentation - SAR ADC

■ Application notes

■ Code examples



SAR ADC

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 455

36.2 Architecture

Figure 36-1.  Block Diagram

   SAR ADC

Conversion Result RegistersWorking Data Registers

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

SARBUS0

SARBUS1

Pins of SARMUX Port

SARBUS connects to
CTBm outputs

VREF

VPLUS

VMINUS

Temp

VSSA_KELVIN

S
A

R
M

U
X

SAR_CHAN_WORK0
to
SAR_CHAN_WORK15

Connects to internal 
Temperature Sensor

SAR_CHAN_RESULT0
to
SAR_CHAN_RESULT15

Accumulate /
Average / 

Align / 
Sign extend

SAR_CHAN_WORK_UPDATED SAR_CHAN_RESULT_UPDATED 

Saturation 
Detect

Range Detect
< , = , >

SARSEQ

saturate_intr

range_intr

eos /
collision /
overflow_int

SAR_INTR_MASKED
SAR_INTR_MASK

SAR_INTR

sar_interrupt (to NVIC)

 VREF Buffer

 VDDA
 VDDA / 2

1.2V from AREF

External Reference or Bypass Capacitor 
for Internal Reference

SAR_RANGE_COND
SAR_RANGE_THRES

SAR_CTRL
SAR_SAMPLE_CTRL
SAR_SAMPLE_TIME01
SAR_SAMPLE_TIME23
SAR_CHAN_EN
SAR_CHAN_CONFIG0 to SAR_CHAN_CONFIG15
SAR_START_CTRL

SAR_STAT
SAR_AVG_STAT

SAR_CTRL

Control Registers

Status Registers

 
tr_sar_in

Hardware trigger from
other peripherals 
such as TCPWM
(used to start 
conversion)

tr_sar_out
Hardware trigger to other peripherals 
(occurs at end of sample (eos)



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 456

SAR ADC

Figure 36-1 shows the simplified block diagram of PSoC 6
MCU SAR ADC system, with important registers shown in
blue. Preceding the SAR ADC is the SARMUX, which can
route external pins and internal signals (AMUXBUS A/
AMUXBUS B or temperature sensor output) to the internal
channels of SAR ADC. The sequencer controller (SARSEQ)
is used to control SARMUX and SAR ADC to do an auto-
matic scan on all enabled channels without CPU interven-
tion. SARSEQ also performs pre-processing such as
averaging and accumulating the output data. 

The result from each channel is double-buffered and a com-
plete scan may be configured to generate an interrupt at the
end of the scan. The sequencer may also be configured to
flag overflow, collision, and saturation errors that can be
configured to assert an interrupt.

36.2.1 SAR ADC Core

The PSoC 6 MCU SAR ADC core is a 12-bit SAR ADC. The
maximum sample rate for this ADC is 1 Msps. The SAR
ADC core has the following features: 

■ Fully differential architecture; also supports single-ended
mode

■ 12-bit resolution

■ Four programmable acquisition times

■ Seven programmable power levels

■ Supports single and continuous conversion mode

SAR_CTRL register contains the bitfields that control the
operation of SAR ADC core. See the registers TRM for more
details of this register.

36.2.1.1 Single-ended and Differential Modes

The PSoC 6 MCU SAR ADC can operate in single-ended
and differential modes. Differential or single-ended mode
can be configured using the DIFFERENTIAL_EN bitfield in
the channel configuration register, SAR_CHAN_CONFIGx,
where x is the channel number (0–15). 

SAR ADC gives full range output (0 to 4095) for differential
inputs in the range of –VREF to +VREF.

Note: The precise value of the input range in the differential
mode is –VREF to (+VREF – (VREF/2047)). The positive input

range is limited by the resolution of the ADC.

The single-ended mode options of negative input include
VSSA, VREF, or an external input from P1, P3, P5, or P7 pins

of SARMUX. See the device datasheet for the exact location
of SARMUX pins. This mode is configured by the NEG_SEL
bitfield in the global configuration register SAR_CTRL.
When VMINUS is connected to these SARMUX pins, the sin-

gle-ended mode is equivalent to differential mode. However,
when the odd pin of each differential pair is connected to the
common alternate ground, these conversions are 11-bit
because measured signal value cannot go below ground. 

To get a single-ended conversion with 12 bits, you must con-
nect VREF to the negative input of the SAR ADC; then, the

input range can be from 0 to 2 × VREF. 

Note that temperature sensor can only be used in single-
ended mode.

36.2.1.2 Input Range

All inputs should be in the range of VSSA to VDDA. Input volt-
age range is also limited by VREF. If voltage on negative
input is Vn and the ADC reference is VREF, the range on the
positive input is Vn ± VREF. This criterion applies for both
single-ended and differential modes. In single-ended mode,
Vn is connected to VSSA, VREF or an external input.

Note that Vn ± VREF should be in the range of VSSA to VDDA.
For example, if negative input is connected to VSSA, the
range on the positive input is 0 to VREF, not –VREF to VREF.
This is because the signal cannot go below VSSA. Only half
of the ADC range is usable because the positive input signal
cannot swing below VSS, which effectively only generates
an 11-bit result. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 457

SAR ADC

Figure 36-2.  Input Range

36.2.1.3 Result Data Format

Result data format is configurable from two aspects: 

■ Signed/unsigned

■ Left/right alignment

When the result is considered signed, the most significant bit of the conversion is used for sign extension to 16 bits with MSb.
For an unsigned conversion, the result is zero extended to 16-bits. The sample value can be either right-aligned or left-
aligned within the 16 bits of the result register. By default, data is right-aligned in data[11:0], with sign extension to 16 bits, if
required. Left-alignment will cause lower significant bits to be made zero.

Result data format can be controlled by DIFFERENTIAL_SIGNED, SINGLE_ENDED_SIGNED, and LEFT_ALIGN bitfields in
the SAR_SAMPLE_CTRL register. 

The result data format can be shown as follows. 

Table 36-1.  Result Data Format

Alignment
Signed/

Unsigned

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Right Unsigned – – – – 11 10 9 8 7 6 5 4 3 2 1 0

Right Signed 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1 0

Left – 11 10 9 8 7 6 5 4 3 2 1 0 – – – –

1

2

3

-1

0

Usable
Range

Unusable
Range

VDD = 3.3

Unusable
Range

-2

V
R

E
F
 =

 1
.2

V
R

E
F
 =

 V
D

D
 / 

2

V
R

E
F 

=
 V

D
D

4

-VDD

Single Ended
VMINUS = VSSA

Usable
Range

Unusable
Range

Usable
Range

1

2

3

-1

0

VDD = 3.3

-2

4

1

2

3

-1

0

VDD = 3.3

-2

4

5

Single Ended
VMINUS = VREF

Differential

Unusable
Range

V
R

E
F
 =

 1
.2

V
R

E
F
 =

 V
D

D
 / 

2

V
R

E
F 

=
 V

D
D

2 x VDD

Unusable
Range

Unusable
Range

V
R

E
F 

=
 V

D
D

V
R

E
F
 =

 1
.2

-Vin

V
R

E
F
 =

 V
D

D
 / 

2

-Vin
-Vin



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 458

SAR ADC

36.2.1.4 Negative Input Selection

The negative input connection choice affects the voltage range and effective resolution (Table 36-2). In single-ended mode,
negative input of the SAR ADC can be connected to VSSA, VREF, or P1, P3, P5, or P7 pins of SARMUX. Vx is the common

mode voltage.

Note that single-ended conversions with VMINUS connected to the pins with SARMUX connectivity are electrically equivalent
to differential mode. However, when the odd pin of each differential pair is connected to the common alternate ground, these
conversions are 11-bit because measured signal value (SARMUX.vplus) cannot go below ground. 

36.2.1.5 Acquisition Time

Acquisition time is the time taken by sample and hold (S/H) circuit inside SAR ADC to settle. After acquisition time, the input
signal source is disconnected from the SARADC core, and the output of the S/H circuit will be used for conversion. Each
channel can select one from four acquisition time options, from 4 to 1023 SAR clock cycles defined in global configuration
registers SAR_SAMPLE_TIME01 and SAR_SAMPLE_TIME23. These two registers contain four programmable sample
times ST0, ST1, ST2, and ST3. One of these four sample times can be selected for a particular channel by configuring the
SAMPLE_TIME_SEL bitfield in the respective SAR_CHAN_CONFIGx register.

Table 36-2.  Negative Input Selection Comparison

Single-ended/Differential Signed/Unsigned VMINUS  VPLUS Range Result Register

Single-ended N/Aa

a. For single-ended mode with VMINUS connected to VSSA, conversions are effectively 11-bit because voltages cannot swing below VSSA on any PSoC 6 MCU
pin. Because of this, the global configuration bit SINGLE_ENDED_SIGNED (SAR_SAMPLE_CTRL[2]) will be ignored and the result is always (0x000-0x7FF).

VSSA
+VREF

VSSA = 0

0x7FF

0x000

Single-ended Unsigned VREF

+2 × VREF

VREF

VSSA = 0

0xFFF

0x800

0

Single-ended Signed VREF

+2 × VREF

VREF

VSSA = 0

0x7FF

0x000

0x800

Single-ended Unsigned Vxb

b. Vx is the differential input common mode voltage.

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Single-ended Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Differential Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Differential Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 459

SAR ADC

Figure 36-3.  Acquisition Time

The acquisition time should be sufficient to charge the internal hold capacitor of the ADC through the resistance of the routing
path, as shown in Figure 36-3. The recommended value of acquisition time is:

Tacq >= 9 × (Rsrc + Rmux + Racqsw) × Csh

Where:

■ Rsrc = Source resistance

■ Rmux = SARMUX switch resistance

■ Racqsw = Sample and hold switch

■ Rmux + Racqsw ~= 1000 ohms

■ Csh ~= 10pF

This depends on the routing path (see Analog Routing on page 461 for details).

36.2.1.6 SAR ADC Clock

Note: The maximum SAR ADC clock frequency may be limited to less than 18 MHz by the device datasheet specification for
sample rate maximum.

SAR ADC clock frequency must be between 1.8 MHz and 18 MHz, which comes from the peripheral clock (CLK_PERI) in the
system resources subsystem (SRSS). See the Clocking System chapter on page 208 to know how to configure the peripheral
clock.

36.2.1.7 SAR ADC Timing

As Figure 36-4 shows, an ADC conversion with the minimum acquisition time of four clocks requires 18 clocks to complete.
Note that the minimum acquisition time of four clock cycles at 36 MHz is based on the minimum acquisition time supported by
the SAR block (RSW1 and CSHOLD in Figure 36-3 on page 459), which is 97 ns.

Total clock cycles for valid output are equal to:

4 clock cycles for sampling input (minimum acquisition time set by SAR_SAMPLE_TIME01 or SAR_SAMPLE_TIME23)

+ 12 clock cycle conversions (with 12-bit resolution)

+ 1 clock for EOF output signal

+ 1 clock for continuous conversion mode and Auto-zero

=18 clock cycles.

Minimum 12-Bit Conversion Time 18 Clocks

Acquisition 
Time 4 Clocks

Resolution + 2 Clocks
12bits + 2 = 14 Clocks

SWACQ

ADC
Clocks

tACQ

ADC Core

RSW1RSW2

CSHOLD

SWACQ

DC

RSRC

Inside PSoC 6

Signal
Source

½ LSB

VCSH



SAR ADC

PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 460

Figure 36-4.  SAR ADC Timing

F FSAMPLE SAMPLES1S2S3S4S5S6S7S8S9S10S11S12 S1S2S3S4S5S6

SOC

Data Data

S7S8S9S10G S11S12G* SAMPLE

SARADC CLK

trigger

sample

State

EOC

Next

Data_out

18 clock cycles



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 461

SAR ADC

36.2.2 SARMUX

SARMUX is an analog dedicated programmable multiplexer. The main features of SARMUX are:

■ Controlled by sequencer controller block (SARSEQ) or firmware

■ Internal temperature sensor

■ Multiple inputs:

❐ Analog signals from pins (port 2)

❐ Temperature sensor output (settling time for the temperature sensor is about 1 µs)

❐ AMUXBUS A/AMUXBUS B 

36.2.2.1 Analog Routing

SARMUX has many switches that may be controlled by SARSEQ block (sequencer controller) or firmware. Different control
methods have different control capability on the switches. Figure 36-5 shows the SARMUX switches. See the device data-
sheet for the exact location of SARMUX pins. 

Figure 36-5.  SARMUX Switches   

Sequencer control: In the sequencer control mode, the SARMUX switches are controlled by the SARSEQ block. After con-
figuring each channel’s analog routing, it enables multi-channel, automatic scan in a round-robin fashion, without CPU inter-
vention. Not every switch in analog routing can be controlled by the sequencer, as Figure 36-5 shows.

   SAR ADC

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

AMUXBUS A

AMUXBUS B

Temp

VSSA_KELVIN

Temperature
Sensor

MUX_FW_P0_VMINUS MUX_FW_P0_VPLUS

MUX_FW_P1_VMINUS MUX_FW_P1_VPLUS

MUX_FW_P2_VMINUS MUX_FW_P2_VPLUS

MUX_FW_P3_VMINUS MUX_FW_P3_VPLUS

MUX_FW_P4_VMINUS MUX_FW_P4_VPLUS

MUX_FW_P5_VMINUS MUX_FW_P5_VPLUS

MUX_FW_P6_VMINUS MUX_FW_P6_VPLUS

MUX_FW_P7_VMINUS MUX_FW_P7_VPLUS

MUX_FW_AMUXBUSA_VMINUS MUX_FW_AMUXBUSA_VPLUS

MUX_FW_AMUXBUSB_VMINUS MUX_FW_AMUXBUSB_VPLUS

MUX_FW_TEMP_VPLUS

MUX_FW_VSSA_VMINUS

   SARMUX

Pins of SARMUX Port

AMUXBUS connects to 
other pins / analog 
peripherals

VSSA

Enable

VPLUS

VMINUS



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 462

SAR ADC

SAR_MUX_SWITCH_SQ_CTRL register can be used to enable/disable SARSEQ control of SARMUX switches. See section
19.3.4 SARSEQ for more details of sequencer control. 

Firmware control: In firmware control, registers are written by the firmware to connect required signals to VPLUS/VMINUS

terminals before starting the scan. Firmware can control every switch in SARMUX, as Figure 36-5 shows. However, firmware
control needs continuous CPU intervention for multi-channel scans. The SAR_MUX_SWITCH0 register can be used by the
firmware to control SARMUX switches. Note that additional register writes may be required to connect blocks outside the
SARMUX.

The PSoC 6 MCU analog interconnection is very flexible. SAR ADC can be connected to multiple inputs via SARMUX, includ-
ing both external pins and internal signals. It can also connect to non-SARMUX ports through AMUXBUS A/AMUXBUS B, at
the expense of scanning performance (more parasitic coupling, longer RC time to settle).

Input from SARMUX Port

In this mode, sequencer and firmware control are possible. In addition to SARMUX switch configuration, the GPIOs must be
configured properly to connect to SARMUX. See the I/O System chapter on page 227 for more details. 

Input from Other Pins through AMUXBUS

Two pins that do not support SARMUX connectivity can be connected to SAR ADC as a differential pair. Additional switches
are required to connect these two pins to AMUXBUS A and AMUXBUS B, and then connect AMUXBUS A and AMUXBUS B
to the SAR ADC. See the I/O System chapter on page 227 for details of AMUXBUS connections.

The additional switches reduce the scanning performance (more parasitic coupling, longer RC time to settle). This is not rec-
ommended for external signals; the dedicated SARMUX port should be used, if possible. Moreover, sequencer control may
not be available if more than one AMUXBUS channel is required.

Input from Temperature Sensor

On-chip temperature sensor can be used to measure the device temperature. See the Temperature Sensor chapter on
page 468 for more details of this block. For temperature sensors, differential conversions are not available (conversion result
is undefined), thus always use it in singled-ended mode. Temperature sensor can be routed to positive input of SAR ADC
using a switch that can be controlled by the sequencer, or firmware. Setting the MUX_FW_TEMP_VPLUS bit in the
SAR_MUX_SWITCH0 register can enable the temperature sensor and connect its output to VPLUS of SAR ADC; clearing this

bit will disable temperature sensor by cutting off its bias current.

36.2.3 SARREF

The main features of the SAR reference block (SARREF) are: 

■ Reference options: VDDA, VDDA/2, 1.2-V bandgap, and external reference

■ Reference buffer and bypass capacitor to enhance internal reference drive capability

36.2.3.1 Reference Options

SARREF generates VDDA and VDDA/2 voltages. In addition, it can take in a 1.2-V bandgap reference from AREF (see the

Analog Reference Block chapter on page 446 for details) or an external VREF connected to a dedicated pin (see the device

datasheet for details). External VREF value should be between 1-V and VDDA.

The external VREF pin is also used to bypass the internal references. The VREF_SEL bitfield in the SAR_CTRL register can be

used to select which one of these references is connected to the SAR ADC.

36.2.3.2 Reference Buffer and Bypass Capacitors

The internal references, 1.2 V from bandgap and VDDA/2, are buffered with the reference buffer. This reference may be routed
to the external VREF pin where a capacitor can be used to filter noise that may exist on the reference.

The VREF_BYP_CAP_EN bitfield in the SAR_CTRL register can be used to enable the bypass capacitor. REFBUF_EN and
PWR_CTRL_VREF bitfields in the same register can be used to enable the buffer, and select one of seven available power
levels of the reference buffer respectively. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 463

SAR ADC

SAR performance varies with the mode of reference and the VDDA supply.

Reference buffer startup time varies with different bypass capacitor size. Table 36-4 lists two common values for the bypass
capacitor and its startup time specification. If reference selection is changed between scans or when scanning after device
low-power modes in which the ADC is not active (see the Device Power Modes chapter on page 191), make sure the refer-
ence buffer is settled before the SAR ADC starts sampling. 

36.2.3.3 Input Range versus Reference

All inputs should be between VSSA and VDDA. The ADCs

input range is limited by VREF selection. If negative input is

Vn and the ADC reference is VREF, the range on the positive

input is Vn ± VREF. These criteria applies for both single-

ended and differential modes as long as both negative and
positive inputs stay within VSSA to VDDA.

36.2.4 SARSEQ

SARSEQ is a dedicated control block that automatically
sequences the input mux from one channel to the next while
placing the result in an array of registers, one per channel.
SARSEQ has the following functions:

■ Controls SARMUX analog routing automatically without
CPU intervention

■ Controls SAR ADC core such as selecting acquisition
times

■ Receives data from SAR ADC and pre-process (aver-
age, range detect)

■ Results are double-buffered; therefore, the CPU can
safely read the results of the last scan while the next
scan is in progress. 

The features of SARSEQ are:

■ Sixteen channels can be individually enabled as an
automatic scan without CPU intervention that can scan
eleven unique input channels

■ Each channel has the following features:

❐ Single-ended or differential mode

❐ Input from external pin or internal signal (AMUXBUS/
temperature sensor)

❐ One of four programmable acquisition times

❐ Result averaging and accumulation

■ Scan triggering

❐ One-shot, periodic, or continuous mode

❐ Triggered by any digital signal or input from GPIO pin

❐ Triggered by internal block

❐ Software triggered

■ Hardware averaging support 

❐ First order accumulate

❐ 2, 4, 8, 16, 32, 64, 128, or 256 samples averaging
(powers of 2)

❐ Results in 16-bit representation

■ Double buffering of output data

❐ Left or right adjusted results

❐ Results in working register and result register

■ Interrupt generation

❐ Finished scan conversion

❐ Channel saturation detection

❐ Range (configurable) detection

❐ Scan results overflow

❐ Collision detect 

36.2.4.1 Channel Configuration

The SAR_CHAN_CONFIGx register contains the following
bitfields, which control the behavior of respective channels
during a SARSEQ scan:

■ POS_PORT_ADDR and POS_PIN_ADDR select the
connection to VPLUS terminal of the ADC

Table 36-3.  Reference Modes

Reference Mode 
Maximum SAR ADC 

Clock Frequency
Maximum Sample Rate

External Reference 18 MHz 1 Msps

Internal reference without bypass capacitor 1.8 MHz 100 ksps

Internal reference with bypass capacitor 18 MHz 1 Msps

VDDA as reference 18 MHz 1 Msps

Table 36-4.  Bypass Capacitor Values vs Startup Time

Capacitor Value Startup Time

Internal reference with bypass capacitor (50 nF) 120 µs

Internal reference with bypass capacitor (100 nF) 210 µs

Internal reference without bypass capacitor 10 µs



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 464

SAR ADC

■ NEG_ADDR_EN, NEG_PORT_ADDR, and
NEG_PIN_ADDR select the connection to VMINUS termi-

nal of the ADC

■ SAMPLE_TIME_SEL selects the acquisition time for the
channel

■ AVG_EN enables the hardware averaging feature

■ DIFFERENTIAL_EN selects single-ended/differential
mode

SAR_CHAN_EN contains the enable bits that can be used
to include or exclude a channel for the next SARSEQ scan.

36.2.4.2 Averaging

The SARSEQ block has a 20-bit accumulator and shift reg-
ister to implement averaging. Averaging is performed after
sign extension. The SAR_SAMPLE_CTRL register controls
the global averaging settings. 

Each channel configuration register (SAR_CHAN_CONFIG)
has an enable bit (AVG_EN) to enable averaging. 

The AVG_CNT bitfield in the SAR_SMAPLE_CTRL register
specifies the number of accumulated samples (N) according
to the formula:

N=2^(AVG_CNT+1) N range = [2..256]

For example, if AVG_CNT = 3, then N = 16.

Because the conversion result is 12-bit and the maximum
value of N is 256 (left shift 8 bits), the 20-bit accumulator will
never overflow.

The AVG_SHIFT bitfield in the SAR_SAMPLE_CTRL regis-
ter is used to shift the accumulated result to get the aver-
aged value. If this bit is set, the SAR sequencer performs
sign extension and then accumulation. The accumulated
result is then shifted right AVG_CNT + 1 bits to get the aver-
aged result. 

The AVG_MODE bitfield in the SAR_SAMPLE_CTRL can
be used to select between accumulate-and-dump and inter-
leaved averaging modes. If a channel is configured for accu-
mulate-and-dump averaging, the SARSEQ will take N
consecutive samples of the specified channel before moving
to the next channel. In the interleaved mode, one sample is
taken per channel and averaged over several scans.

36.2.4.3 Range Detection

The SARSEQ supports range detection to allow automatic
detection of result values compared to two programmable
thresholds without CPU involvement. Range detection is
defined by the SAR_RANGE_THRES register. The
RANGE_LOW field in the SAR_RANGE_THRES register
defines the lower threshold and RANGE_HIGH field defines
the upper threshold of the range.

The RANGE_COND bitfield in the SAR_RANGE_COND
register define the condition that triggers a channel mas-

kable range detect interrupt (RANGE_INTR). The following
conditions can be selected:

0: result < RANGE_LOW (below the range)

1: RANGE_LOW  result < RANGE_HIGH (inside the
range)

2: RANGE_HIGH  result (above the range)

3: result < RANGE_LOW || RANGE_HIGH  result (outside
range)

See Range Detection Interrupts on page 465 for details.

36.2.4.4 Double Buffer

Double buffering is used so that firmware can read the
results of a complete scan while the next scan is in prog-
ress. The SAR ADC results are written to a set of working
registers until the scan is complete, at which time the data is
copied to a second set of registers where the data can be
read by your application. This action allows sufficient time
for the firmware to read the previous scan before the pres-
ent scan is completed. All input channels are double buff-
ered with 16 registers.

SAR_CHAN_WORKx registers contain the working data
and SAR_CHAN_RESULTx contain the buffered results of
the channels. The SAR_CHAN_WORK_UPDATED and
SAR_CHAN_RESULT_UPDATED registers can be used to
track if the working data and the result value of a channel is
updated.

36.2.5 SAR Interrupts

SAR ADC can generate interrupts on these events:

■ End of Scan – When scanning is complete for all the
enabled channels.

■ Overflow – When the result register is updated before
the previous result is read.

■ Collision – When a new trigger is received while the SAR
ADC is still processing the previous trigger.

■ Range Detection – When the channel result meets the
threshold value.

■ Saturation Detection – When the channel result is equal
to the minimum or maximum value.

This section describes each interrupt in detail. These inter-
rupts have an interrupt mask in the SAR_INTR_MASK reg-
ister. By making the interrupt mask low, the corresponding
interrupt source is ignored. The SAR interrupt is generated if
the interrupt mask bit is high and the corresponding interrupt
source is pending. 

When servicing an interrupt, the interrupt service routine
(ISR) can clear the interrupt source by writing a ‘1’ to the
corresponding interrupt bit in the SAR_RANGE_INTR regis-
ter, after reading the data. 



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 465

SAR ADC

The SAR_INTR_MASKED register is the logical AND
between the interrupts sources and the interrupt mask. This
register provides a convenient way for the firmware to deter-
mine the source of the interrupt.

For verification and debug purposes, a set bit (such as
EOS_SET in the SAR_INTR_SET register) is used to trigger
each interrupt. This action allows the firmware to generate
an interrupt without the actual event occurring.

36.2.5.1 End-of-Scan Interrupt (EOS_INTR)

After completing a scan, the end-of-scan interrupt
(EOS_INTR) is raised. Firmware should clear this interrupt
after picking up the data from the RESULT registers. 

EOS_INTR can be masked by making the EOS_MASK bit 0
in the SAR_INTR_MASK register. EOS_MASKED bit of the
SAR_INTR_MASKED register is the logic AND of the inter-
rupt flags and the interrupt masks. Writing a ‘1’ to EOS_SET
bit in SAR_INTR_SET register can set the EOS_INTR,
which is intended for debug and verification.

36.2.5.2 Overflow Interrupt

If a new scan completes and the hardware tries to set the
EOS_INTR and EOS_INTR is still high (firmware does not
clear it fast enough), then an overflow interrupt (OVER-
FLOW_INTR) is generated by the hardware. This usually
means that the firmware is unable to read the previous
results before the current scan completes. In this case, the
old data is overwritten. 

OVERFLOW_INTR can be masked by making the OVER-
FLOW_MASK bit 0 in SAR_INTR_MASK register. OVER-
FLOW_MASKED bit of SAR_INTR_MASKED register is the
logic AND of the interrupt flags and the interrupt masks,
which are for firmware convenience. Writing a ‘1’ to the
OVERFLOW_SET bit in SAR_INTR_SET register can set
OVERFLOW_INTR, which is intended for debug and verifi-
cation.

36.2.5.3 Collision Interrupt

It is possible that a new trigger is generated while the
SARSEQ is still busy with the scan started by the previous
trigger. Therefore, the scan for the new trigger is delayed
until after the ongoing scan is completed. It is important to
notify the firmware that the new sample is invalid. This is
done through the collision interrupt, which is raised any time
a new trigger, other than the continuous trigger, is received.

The collision interrupt for the firmware trigger (FW_COLLI-
SION_INTR) allows the firmware to identify which trigger
collided with an ongoing scan.

The collision interrupts can be masked by making the corre-
sponding bit ‘0’ in the SAR_INTR_MASK register. The corre-
sponding bit in the SAR_INTR_MASKED register is the logic
AND of the interrupt flags and the interrupt masks. Writing a
‘1’ to the corresponding bit in SAR_INTR_SET register can

set the collision interrupt, which is intended for debug and
verification.

36.2.5.4 Range Detection Interrupts

Range detection interrupt flag can be set after averaging,
alignment, and sign extension (if applicable). This means it
is not required to wait for the entire scan to complete to
determine whether a channel conversion is over-range. The
threshold values need to have the same data format as the
result data.

Range detection interrupt for a specified channel can be
masked by setting the SAR_RANGE_INTR_MASK register
specified bit to ‘0’. Register SAR_RANGE_INTR_MASKED
reflects a bitwise AND between the interrupt request and
mask registers. If the value is not zero, then the SAR inter-
rupt signal to the NVIC is high. 

SAR_RANGE_INTR_SET can be used for debug/verifica-
tion. Write a ‘1’ to set the corresponding bit in the interrupt
request register; when read, this register reflects the inter-
rupt request register.

There is a range detect interrupt for each channel
(RANGE_INTR and INJ_RANGE_INTR).

36.2.5.5 Saturate Detection Interrupts

The saturation detection is always applied to every conver-
sion. This feature detects if a sample value is equal to the
minimum or maximum value and sets a maskable interrupt
flag for the corresponding channel. This action allows the
firmware to take action, such as discarding the result, when
the SAR ADC saturates. The sample value is tested right
after conversion, before averaging. This means that the
interrupt is set while the averaged result in the data register
is not equal to the minimum or maximum.

Saturation interrupt flag is set immediately to enable a fast
response to saturation, before the full scan and averaging.
Saturation detection interrupt for specified channel can be
masked by setting the SAR_SATURATE_INTR_MASK reg-
ister specified bit to ‘0’. SAR_SATURATE_INTR_MASKED
register reflects a bit-wise AND between the interrupt
request and mask registers. If the value is not zero, then the
SAR interrupt signal to the NVIC is high.

SAR_SARTURATE_INTR_SET can be used for debug/veri-
fication. Write a ‘1’ to set the corresponding bit in the inter-
rupt request register; when read, this register reflects the
interrupt request register.

36.2.5.6 Interrupt Cause Overview

INTR_CAUSE register contains an overview of all the pend-
ing SAR interrupts. It allows the ISR to determine the cause
of the interrupt. The register consists of a mirror copy of
SAR_INTR_MASKED. In addition, it has two bits that aggre-
gate the range and saturate detection interrupts of all chan-
nels. It includes a logical OR of all the bits in



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 466

SAR ADC

RANGE_INTR_MASKED and SATURATE_INTR_MASKED
registers (does not include INJ_RANGE_INTR and INJ_-
SATURATE_INTR).

36.2.6 Trigger

A scan can be triggered in the following ways: 

■ A firmware or one-shot trigger is generated when the
firmware writes to the FW_TRIGGER bit of the
SAR_START_CTRL register. After the scan is com-
pleted, the SARSEQ clears the FW_TRIGGER bit and
goes back to idle mode waiting for the next trigger. The
FW_TRIGGER bit is cleared immediately after the SAR
is disabled.

■ Trigger from other peripherals through the trigger multi-
plexer (see the Trigger Multiplexer Block chapter on
page 261 for more details).

■ A continuous trigger is activated by setting the CONTIN-
UOUS bit in SAR_SAMPLE_CTRL register. In this
mode, after completing a scan the SARSEQ starts the
next scan immediately; therefore, the SARSEQ is
always BUSY. As a result, all other triggers are essen-
tially ignored. Note that FW_TRIGGER will still get
cleared by hardware on the next completion.

For firmware continuous trigger, it takes only one SAR ADC
clock cycle before the sequencer tells the SAR ADC to start
sampling (provided the sequencer is idle).

36.2.7 SAR ADC Status

The current SAR status can be observed through the BUSY
and CUR_CHAN fields in the SAR_STATUS register. The
BUSY bit is high whenever the SAR is busy sampling or
converting a channel; the CUR_CHAN bits indicate the
number of the current channel being sampled.
SW_VREF_NEG bit indicates the current switch status,
including register controls, of the switch in the SAR ADC
that shorts NEG with VREF input.

The CUR_AVG_ACCU and CUR_AVG_CNT fields in the
SAR_AVG_STAT register indicate the current averaging
accumulator contents and the current sample counter value
for averaging (counts down).

The SAR_MUX_SWITCH_STATUS register gives the cur-
rent switch status of MUX_SWITCH0 register. These status
registers help to debug SAR behavior.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 467

SAR ADC

36.3 Registers

Name Description

SAR_CTRL Global configuration register. Analog control register

SAR_SAMPLE_CTRL Global configuration register. Sample control register

SAR_SAMPLE_TIME01 Global configuration register. Sample time specification ST0 and ST1

SAR_SAMPLE_TIME23 Global configuration register. Sample time specification ST2 and ST3

SAR_RANGE_THRES Global range detect threshold register

SAR_RANGE_COND Global range detect mode register

SAR_CHAN_EN Enable bits for the channels

SAR_START_CTRL Start control register (firmware trigger)

SAR_CHAN_CONFIGx Channel configuration register. There are 16 such registers with x = 0 to 15

SAR_CHAN_WORKx Channel working data register. There are 16 such registers with x = 0 to 15

SAR_CHAN_RESULTx Channel result data register. There are 16 such registers with x = 0 to 15

SAR_CHAN_WORK_UPDATED Channel working data register: updated bits

SAR_CHAN_RESULT_UPDATED Channel result data register: updated bits

SAR_STATUS Current status of internal SAR registers (for debug)

SAR_AVG_STAT Current averaging status (for debug)

SAR_INTR Interrupt request register

SAR_INTR_SET Interrupt set request register

SAR_INTR_MASK Interrupt mask register

SAR_INTR_MASKED Interrupt masked request register

SAR_SATURATE_INTR Saturate interrupt request register

SAR_SATURATE_INTR_SET Saturate interrupt set request register

SAR_SATURATE_INTR_MASK Saturate interrupt mask register

SAR_SATURATE_INTR_MASKED Saturate interrupt masked request register

SAR_RANGE_INTR Range detect interrupt request register

SAR_RANGE_INTR_SET Range detect interrupt set request register

SAR_RANGE_INTR_MASK Range detect interrupt mask register

SAR_RANGE_INTR_MASKED Range interrupt masked request register

SAR_INTR_CAUSE Interrupt cause register

SAR_MUX_SWITCH0 SARMUX firmware switch controls

SAR_MUX_SWITCH_CLEAR0 SARMUX firmware switch control clear

SAR_MUX_SWITCH_SQ_CTRL SARMUX switch sequencer control

SAR_MUX_SWITCH_STATUS SARMUX switch status



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 468

37.   Temperature Sensor

PSoC 6 MCUs have an on-chip temperature sensor that is used to measure the internal die temperature. The sensor consists
of a transistor connected in diode configuration.

37.1 Features
■ Measures device temperature

■ Voltage output can be internally connected to SAR ADC for digital readout

■ Factory calibrated parameters

37.2 Architecture

The temperature sensor consists of a single bipolar junction transistor (BJT) in the form of a diode. The transistor is biased
using a reference current IREF from the analog reference block (see the Analog Reference Block chapter on page 446 for

more details). Its base-to-emitter voltage (VBE) has a strong dependence on temperature at a constant collector current and

zero collector-base voltage. This property is used to calculate the die temperature by measuring the VBE of the transistor

using the SAR ADC, as shown in Figure 37-1.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation - SAR ADC, SysAnalog

■ Application notes

■ Code examples



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 469

Temperature Sensor

Figure 37-1.  Temperature Sensing Mechanism

The analog output from the sensor (VBE) is measured using the SAR ADC. Die temperature in °C can be calculated from the

ADC results as given in the following equation:

Equation 37-1

■ Temp is the slope compensated temperature in °C represented as Q16.16 fixed point number format. 

■ ‘A’ is the 16-bit multiplier constant. The value of A is determined using the PSoC 6 MCU characterization data of two point
slope calculation. It is calculated as given in the following equation.

Equation 37-2

Where,

SAR100C = ADC counts at 100 °C

SAR–40C = ADC counts at –40 °C

Constant ‘A’ is stored in a register SFLASH_SAR_TEMP_MULTIPLIER. See the registers TRM for more details.

■ ‘B’ is the 16-bit offset value. The value of B is determined on a per die basis by taking care of all the process variations
and the actual bias current (IREF) present in the chip. It is calculated as given in the following equation.

Equation 37-3

Where, 

SAR100C = ADC counts at 100 °C

Constant ‘B’ is stored in a register SFLASH_SAR_TEMP_OFFSET. See the registers TRM for more details.

■ Tadjust is the slope correction factor in °C. The temperature sensor is corrected for dual slopes using the slope correction
factor. It is evaluated based on the result obtained without slope correction, which is given by the following equation: 

Equation 37-4

If Tinitial is greater than the center value (15 °C), then Tadjust is given by the following equation.

Temperature
Sensor

S
A

R
M

U
X

SAR ADC CPU

IREF

SAR_MUX_FW_
TEMP_VPLUS

Vssa

Current from Analog 
Reference Block

vplus

vminus
12 bit

1.2 V

Vssa

vssa_kelvin

Temp A SARout 2
10

B+  Tadjust+=

A signed int  2
16 100C 40C– –

SAR100C SAR 40C––
-------------------------------------------------------- 
 

 
 =

B unsigned int  2
6
x100C

A SAR100C

2
10

---------------------------------
 
 
 

–
 
 
 

=

Tinitial A SAROUT 2
10

+ B =



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 470

Temperature Sensor

Equation 37-5

If Tinitial is less than center value, then Tadjust is given by the following equation.

Equation 37-6

Figure 37-2.  Temperature Error Compensation

Note: A and B are 16-bit constants stored in flash during factory calibration. These constants are valid only when the SAR
ADC is running at 12-bit resolution with a 1.2-V reference. 

37.3 Temperature Sensor Configuration

The temperature sensor output is routed to the positive input of SAR ADC via dedicated switches, which can be controlled by
the sequencer firmware. See the SAR ADC chapter on page 454 for details on how to read the temperature sensor output
using the ADC. The temperature sensor is switched ON only when it is connected to the positive input of the SAR ADC.

37.4 Algorithm
1. Configure SAR ADC in single-ended mode with VNEG = VSS, VREF = 1.2 V, 12-bit resolution, and right-aligned result. See 

the SAR ADC chapter on page 454 for more details.

2. Enable the SARMUX and SAR ADC. See the SAR ADC chapter on page 454 for more details.

3. Enable the temperature sensor by setting the SAR_MUX_FW_TEMP_VPLUS bit in the SAR_MUX_SWITCH0 register.

4. Trigger a SAR ADC conversion and get the digital output from the SAR ADC. See the SAR ADC chapter on page 454 for 
more details.

5. Fetch ‘A’ from SFLASH_SAR_TEMP_MULTIPLIER and ‘B’ from SFLASH_SAR_TEMP_OFFSET.

6. Calculate the die temperature using the following equation: 

For example, let A = 0xBC4B and B = 0x65B4. Assume that the output of SAR ADC (VBE) is 0x595 at a given tempera-

ture. Firmware does the following calculations:

a. Multiply A and VBE: 0xBC4B × 0x595 = (–17333)10 × (1429)10 = (–24768857)10

b. Multiply B and 1024: 0x65B4 × 0x400 = (26036)10 × (1024)10 = (26660864)10

c. Add the result of steps 1 and 2 to get Tinitial: (–24768857)10 + (26660864)10 = (1892007)10 = 0x1CDEA7

d. Calculate Tadjust using Tinitial value: Tinitial is the upper 16 bits multiplied by 216, that is, 0x1C00 = (1835008)10. It is 

greater than 15°C (0x1C - upper 16 bits). Use Equation 4 to calculate Tadjust. It comes to 0x6C6C = (27756)10

e. Add Tadjust to Tinitial: (1892007)10 + (27756)10 = (1919763)10 = 0x1D4B13

f. The integer part of temperature is the upper 16 bits = 0x001D = (29)10

Tadjust
0.5C

100C 15C–
----------------------------------- 100C 2

16
Tinitial–  

 =

Tadjust
0.5C

40C 15C+
-------------------------------- 40C 2

16
Tinitial–  

 =

Temperature
Error

Actual Temperature
15 °C 100 °C-40 °C

0 °C

0.5 °C

-0.5 °C

Compensation curve

Sensor Error Curve

Tadjust

Temp A SAROUT 2
10

+ B  TADJUST+=



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 471

Temperature Sensor

g. The decimal part of temperature is the lower 16 bits = 0x4B13 = (0.19219)10

h. Combining the result of steps f and g, Temp = 29.19219 °C ~ 29.2°C

37.5 Registers

Name Description

SFLASH_SAR_TEMP_MULTIPLIER Multiplier constant 'A' as defined in Equation 37-1.

SFLASH_SAR_TEMP_OFFSET Constant 'B' as defined in Equation 37-1.



PSoC 64 "Secure Boot MCU": CYB0644ABZI-S2D44 Architecture TRM, Document No. 002-29169 Rev. *B 472

38.   CapSense

The CapSense system can measure the self-capacitance of an electrode or the mutual capacitance between a pair of
electrodes. In addition to capacitive sensing, the CapSense system can function as an ADC to measure voltage on any GPIO
pin that supports the CapSense functionality.

The CapSense touch sensing method in PSoC 6 MCUs, which senses self-capacitance, is known as CapSense Sigma Delta
(CSD). Similarly, the mutual-capacitance sensing method is known as CapSense Cross-point (CSX). The CSD and CSX
touch sensing methods provide the industry’s best-in-class signal-to-noise ratio (SNR), high touch sensitivity, low-power
operation, and superior EMI performance. 

CapSense touch sensing is a combination of hardware and firmware techniques. Therefore, use the CapSense component
provided by the ModusToolbox IDE to implement CapSense designs. See the PSoC 4 and PSoC 6 MCU CapSense Design
Guide for more details. 

http://www.cypress.com/an85951 
http://www.cypress.com/an85951 
http://www.cypress.com/an85951 

	PSoC 64 “Secure Boot MCU”: CYB0644ABZI-S2D44 Architecture Technical Reference Manual (TRM) PSoC 64 MCU
	Content Overview
	Contents
	Section A: Overview
	Document Revision History
	1. Introduction
	1.1 Features
	1.2 Architecture
	1.3 CPU Subsystem (CPUSS)
	1.3.1 CPU
	1.3.2 DMA Controllers
	1.3.3 Flash
	1.3.4 SRAM
	1.3.5 SROM
	1.3.6 OTP eFuse
	1.3.7 Program and Debug

	1.4 System Resources Subsystem (SRSS)
	1.4.1 Power System
	1.4.2 Clocking System
	1.4.2.1 IMO Clock Source
	1.4.2.2 ILO Clock Source
	1.4.2.3 Watchdog Timer
	1.4.2.4 Clock Dividers
	1.4.2.5 Reset

	1.4.3 GPIO

	1.5 Analog Subsystem
	1.5.1 12-bit SAR ADC
	1.5.2 Temperature Sensor
	1.5.3 Low-Power Comparators
	1.5.4 CapSense

	1.6 Programmable Digital
	1.6.1 Smart I/O™

	1.7 Digital Subsystem
	1.7.1 Secure Digital Host Controller (SDHC) with eMMC
	1.7.2 Serial Communication Blocks (SCB)
	1.7.2.1 I2C Mode
	1.7.2.2 UART Mode
	1.7.2.3 SPI Mode

	1.7.3 Serial Memory Interface (SMIF)
	1.7.4 Audio Subsystem
	1.7.5 Timer/Counter/PWM Block


	2. Getting Started
	2.1 PSoC 6 MCU Resources

	3. Document Organization and Conventions
	3.1 Major Sections
	3.2 Documentation Conventions
	3.2.1 Register Conventions
	3.2.2 Numeric Naming
	3.2.3 Units of Measure
	3.2.4 Acronyms and Initializations



	Section B: CPU Subsystem
	Top Level Architecture
	4. CPU Subsystem (CPUSS)
	4.1 Features
	4.2 Architecture
	4.2.1 Address and Memory Maps
	4.2.1.1 Wait State Lookup Tables


	4.3 Registers
	4.4 Operating Modes and Privilege Levels
	4.5 Instruction Set

	5. SRAM Controller
	5.1 Features
	5.2 Architecture
	5.3 Wait States

	6. Inter-Processor Communication
	6.1 Features
	6.2 Architecture
	6.2.1 IPC Channel
	6.2.2 IPC Interrupt
	6.2.3 IPC Channels and Interrupts

	6.3 Implementing Locks
	6.4 Message Passing

	7. Fault Monitoring
	7.1 Features
	7.2 Architecture
	7.2.1 Fault Report
	7.2.2 Signaling Interface
	7.2.3 Monitoring
	7.2.4 Low-power Mode Operation
	7.2.5 Using a Fault Structure
	7.2.6 CPU Exceptions Versus Fault Monitoring

	7.3 Fault Sources
	7.4 Register List

	8. Interrupts
	8.1 Features
	8.2 Architecture
	8.3 Interrupts and Exceptions - Operation
	8.3.1 Interrupt/Exception Handling
	8.3.2 Level and Pulse Interrupts
	8.3.3 Exception Vector Table

	8.4 Exception Sources
	8.4.1 Reset Exception
	8.4.2 Non-Maskable Interrupt Exception
	8.4.3 HardFault Exception
	8.4.4 Memory Management Fault Exception
	8.4.5 Bus Fault Exception
	8.4.6 Usage Fault Exception
	8.4.7 Supervisor Call (SVCall) Exception
	8.4.8 PendSupervisory (PendSV) Exception
	8.4.9 System Tick (SysTick) Exception

	8.5 Interrupt Sources
	8.6 Interrupt/Exception Priority
	8.7 Enabling and Disabling Interrupts
	8.8 Interrupt/Exception States
	8.8.1 Pending Interrupts/Exceptions

	8.9 Stack Usage for Interrupts/ Exceptions
	8.10 Interrupts and Low-Power Modes
	8.11 Interrupt/Exception – Initialization/ Configuration
	8.12 Register List

	9. Protection Units
	9.1 Architecture
	9.2 PSoC 6 Protection Architecture
	9.3 Register Architecture
	9.3.1 Protection Structure and Attributes

	9.4 Bus Master Protection Attributes
	9.5 Protection Context
	9.6 Protection Contexts 0, 1, 2, 3
	9.7 Protection Structure
	9.7.1 Protection Violation
	9.7.2 MPU
	9.7.3 SMPU
	9.7.4 PPU
	9.7.5 Protection of Protection Structures
	9.7.6 Protection Structure Types


	10. DMA Controller (DW)
	10.1 Features
	10.2 Architecture
	10.3 Channels
	10.3.1 Channel Interrupts

	10.4 Descriptors
	10.4.1 Address Configuration
	10.4.2 Transfer Size
	10.4.3 Descriptor Chaining

	10.5 DMA Controller
	10.5.1 Trigger Selection
	10.5.2 Pending Triggers
	10.5.3 Output Triggers
	10.5.4 Status registers
	10.5.5 DMA Performance


	11. DMAC Controller (DMAC)
	11.1 Features
	11.2 Architecture
	11.3 Channels
	11.3.1 Channel Interrupts

	11.4 Descriptors
	11.4.1 Address Configuration
	11.4.2 Transfer Size
	11.4.3 Descriptor Chaining

	11.5 DMAC Controller
	11.5.1 Trigger Selection
	11.5.2 Channel Logic
	11.5.3 Output Triggers


	12. Cryptographic Function Block (Crypto)
	12.1 Features
	12.2 Architecture
	12.3 Definitions of Terms
	12.4 Crypto Block Functions
	12.4.1 Symmetric Key Functions
	12.4.2 Hash Functions
	12.4.3 Message Authentication Code (MAC) Functions
	12.4.4 Cyclic Redundancy Code (CRC)
	12.4.5 Random Number Generator (RNG)

	12.5 Module Configuration and Initialization
	12.6 Software Design Considerations

	13. Program and Debug Interface
	13.1 Features
	13.2 Architecture
	13.2.1 Debug Access Port (DAP)
	13.2.1.1 DAP Security
	13.2.1.2 DAP Power Domain

	13.2.2 ROM Tables
	13.2.3 Trace
	13.2.4 Embedded Cross Triggering

	13.3 Serial Wire Debug (SWD) Interface
	13.3.1 SWD Timing Details
	13.3.2 ACK Details
	13.3.3 Turnaround (Trn) Period Details

	13.4 JTAG Interface
	13.5 Programming the PSoC 6 MCU
	13.5.1 SWD Port Acquisition
	13.5.1.1 SWD Port Acquire Sequence

	13.5.2 SWD Programming Mode Entry
	13.5.3 SWD Programming Routine Executions

	13.6 Registers

	14. Nonvolatile Memory
	14.1 Flash Memory
	14.1.1 Features
	14.1.2 Configuration
	14.1.2.1 Block Diagram

	14.1.3 Flash Geometry
	14.1.4 Flash Controller
	14.1.4.1 Wait State Count
	14.1.4.2 Power Modes
	14.1.4.3 CPU Caches

	14.1.5 Read While Write (RWW) Support

	14.2 Flash Memory Programming
	14.2.1 Features
	14.2.2 Architecture


	15. eFuse Memory
	15.1 Features
	15.2 Architecture

	16. “Secure Boot”
	16.1 Features
	16.2 Architecture
	16.2.1 Life Cycle Stages and Protection States
	16.2.1.1 Usage of hashing
	16.2.1.2 VIRGIN Stage
	16.2.1.3 NORMAL Stage
	16.2.1.4 SECURE UNCLAIMED
	16.2.1.5 SECURE CLAIMED
	16.2.1.6 Provisioning and Reprovisioning
	16.2.1.7 RMA

	16.2.2 Boot Sequence
	16.2.3 Cypress “Secure Bootloader”
	16.2.4 Flash Security
	16.2.5 Hardware-Based Encryption
	16.2.6 Dedicated Hardware
	16.2.6.1 IPC Channels and IPC Interrupts
	16.2.6.2 Protection Context
	16.2.6.3 SMPUs
	16.2.6.4 Protected Register Access (PRA)


	16.3 System Calls
	16.3.1 Implementation
	16.3.1.1 System Call via CM0+ or CM4
	16.3.1.2 System Call via DAP
	16.3.1.3 Exiting from a System Call
	16.3.1.4 SRAM Usage

	16.3.2 System Call APIs
	16.3.2.1 Cypress ID
	16.3.2.2 Read eFuse Byte
	16.3.2.3 Write Row
	16.3.2.4 Program Row
	16.3.2.5 Erase All
	16.3.2.6 Checksum
	16.3.2.7 FmTransitionToLpUlp
	16.3.2.8 Compute Basic Hash
	16.3.2.9 Erase Sector
	16.3.2.10 Soft Reset
	16.3.2.11 Erase Row
	16.3.2.12 Erase Subsector
	16.3.2.13 ReadUniqueID
	16.3.2.14 ReadFuseByteMargin
	16.3.2.15 AcquireResponse
	16.3.2.16 PSACrypto
	16.3.2.17 RollBackCounter
	16.3.2.18 GetProvDetails
	16.3.2.19 Region Hash
	16.3.2.20 ProcessProvisionCmd
	16.3.2.21 EncryptedProgramming
	16.3.2.22 DAPControl
	16.3.2.23 TransitionToRMA
	16.3.2.24 OpenRMA
	16.3.2.25 Attestation

	16.3.3 System Call Status



	Section C: System Resources Subsystem (SRSS)
	Top Level Architecture
	17. Power Supply and Monitoring
	17.1 Features
	17.2 Architecture
	17.3 Power Supply
	17.3.1 Regulators Summary
	17.3.1.1 Core Regulators

	17.3.2 Power Pins and Rails
	17.3.3 Power Sequencing Requirements
	17.3.4 Backup Domain
	17.3.5 Power Supply Sources

	17.4 Voltage Monitoring
	17.4.1 Power-On-Reset (POR)
	17.4.2 Brownout-Detect (BOD)
	17.4.3 Low-Voltage-Detect (LVD)
	17.4.4 Over-Voltage Protection (OVP)

	17.5 Register List

	18. Device Power Modes
	18.1 Features
	18.2 Architecture
	18.2.1 CPU Power Modes
	18.2.1.1 CPU Active Mode
	18.2.1.2 CPU Sleep Mode
	18.2.1.3 CPU Deep Sleep Mode

	18.2.2 System Power Modes
	18.2.2.1 System Low Power Mode
	18.2.2.2 System Ultra Low Power Mode

	18.2.3 System Deep Sleep Mode
	18.2.4 System Hibernate Mode
	18.2.5 Other Operation Modes
	18.2.5.1 Backup Domain
	18.2.5.2 Reset State
	18.2.5.3 Off State


	18.3 Power Mode Transitions
	18.3.1 Power-up Transitions
	18.3.2 Power Mode Transitions
	18.3.3 Wakeup Transitions

	18.4 Summary
	18.5 Register List

	19. Backup System
	19.1 Features
	19.2 Architecture
	19.3 Power Supply
	19.4 Clocking
	19.4.1 WCO with External Clock/Sine Wave Input
	19.4.2 Calibration

	19.5 Reset
	19.6 Real-Time Clock
	19.6.1 Reading RTC User Registers
	19.6.2 Writing to RTC User Registers

	19.7 Alarm Feature
	19.8 PMIC Control
	19.9 Backup Registers
	19.10 Register List

	20. Clocking System
	20.1 Features
	20.2 Architecture
	20.3 Clock Sources
	20.3.1 Internal Main Oscillator (IMO)
	20.3.2 External Crystal Oscillator (ECO)
	20.3.2.1 ECO Trimming

	20.3.3 External Clock (EXTCLK)
	20.3.4 Internal Low-speed Oscillator (ILO)
	20.3.5 Watch Crystal Oscillator (WCO)

	20.4 Clock Generation
	20.4.1 Phase-Locked Loop (PLL)
	20.4.2 Frequency Lock Loop (FLL)
	20.4.2.1 Configuring the FLL
	20.4.2.2 Enabling and Disabling the FLL


	20.5 Clock Trees
	20.5.1 Path Clocks
	20.5.2 High-Frequency Root Clocks
	20.5.3 Low-Frequency Clock
	20.5.4 Timer Clock
	20.5.5 Group Clocks (clk_sys)
	20.5.6 Backup Clock (clk_bak)

	20.6 CLK_HF[0] Distribution
	20.6.1 CLK_FAST
	20.6.2 CLK_PERI
	20.6.3 CLK_SLOW

	20.7 Peripheral Clock Dividers
	20.7.1 Fractional Clock Dividers
	20.7.2 Peripheral Clock Divider Configuration
	20.7.2.1 Phase Aligning Dividers
	20.7.2.2 Connecting Dividers to Peripheral


	20.8 Clock Calibration Counters

	21. Reset System
	21.1 Features
	21.2 Architecture
	21.2.1 Power-on Reset
	21.2.2 Brownout Reset
	21.2.3 Watchdog Timer Reset
	21.2.4 Software Initiated Reset
	21.2.5 External Reset
	21.2.6 Logic Protection Fault Reset
	21.2.7 Clock-Supervision Logic Reset
	21.2.8 Hibernate Wakeup Reset

	21.3 Identifying Reset Sources
	21.4 Register List

	22. I/O System
	22.1 Features
	22.2 Architecture
	22.2.1 I/O Cell Architecture
	22.2.2 Digital Input Buffer
	22.2.3 Digital Output Driver
	22.2.3.1 Drive Modes
	22.2.3.2 Slew Rate Control
	22.2.3.3 GPIO-OVT Pins


	22.3 High-Speed I/O Matrix
	22.4 I/O State on Power Up
	22.5 Behavior in Low-Power Modes
	22.6 Interrupt
	22.7 Peripheral Connections
	22.7.1 Firmware-Controlled GPIO
	22.7.2 Analog I/O
	22.7.2.1 AMUXBUS Connection

	22.7.3 LCD Drive
	22.7.4 CapSense

	22.8 Smart I/O
	22.8.1 Overview
	22.8.2 Block Components
	22.8.2.1 Clock and Reset
	22.8.2.2 Synchronizer
	22.8.2.3 Lookup Table (LUT)
	22.8.2.4 Data Unit (DU)

	22.8.3 Routing
	22.8.4 Operation

	22.9 Registers

	23. Watchdog Timer
	23.1 Features
	23.2 Architecture
	23.3 Free-running WDT
	23.3.1 Overview
	23.3.2 Watchdog Reset
	23.3.3 Watchdog Interrupt

	23.4 Multi-Counter WDTs
	23.4.1 Overview
	23.4.1.1 WDT0 and WDT1 Counters Operation
	23.4.1.2 WDT2 Counter Operation

	23.4.2 Enabling and Disabling WDT
	23.4.3 Watchdog Cascade Options
	23.4.4 Watchdog Reset
	23.4.5 Watchdog Interrupt

	23.5 Reset Cause Detection
	23.6 Register List

	24. Trigger Multiplexer Block
	24.1 Features
	24.2 Architecture
	24.2.1 Trigger Multiplexer Group
	24.2.2 One-to-one Trigger
	24.2.3 Trigger Multiplexer Block
	24.2.4 Software Triggers

	24.3 Register List

	25. Profiler
	25.1 Features
	25.2 Architecture
	25.2.1 Profiler Design
	25.2.2 Available Monitoring Sources
	25.2.3 Reference Clocks

	25.3 Using the Profiler
	25.3.1 Enable or Disable the Profiler
	25.3.2 Configure and Enable a Counter
	25.3.3 Start and Stop Profiling
	25.3.4 Handle Counter Overflow
	25.3.5 Get the Results
	25.3.6 Exit Gracefully



	Section D: Digital Subsystem
	Top Level Architecture
	26. Secure Digital Host Controller (SDHC)
	26.1 Features
	26.1.1 Features Not Supported

	26.2 Block Diagram
	26.3 Clocking
	26.3.1 Clock Gating
	26.3.2 Base Clock (CLK_HF[i]) Configuration
	26.3.3 Card Clock (SDCLK) Configuration
	26.3.4 Timeout (TOUT) Configuration

	26.4 Bus Speed Modes
	26.5 Power Modes
	26.5.1 Standby Mode

	26.6 Interrupts to CPU
	26.6.1 SDIO Interrupt

	26.7 I/O Interface
	26.7.1 Switching Signaling Voltage from 3.3 V to 1.8 V

	26.8 Packet Buffer SRAM
	26.8.1 Packet Buffer Full/Empty

	26.9 DMA Engine
	26.10 Initialization Sequence
	26.10.1 Enabling SDHC
	26.10.2 Card Detection
	26.10.3 SDHC Initialization
	26.10.4 Clock Setup

	26.11 Error Detection

	27. Serial Communications Block (SCB)
	27.1 Features
	27.2 Architecture
	27.2.1 Buffer Modes
	27.2.1.1 FIFO Mode
	27.2.1.2 EZ Mode
	27.2.1.3 CMD_RESP Mode

	27.2.2 Clocking Modes

	27.3 Serial Peripheral Interface (SPI)
	27.3.1 Features
	27.3.2 General Description
	27.3.3 SPI Modes of Operation
	27.3.3.1 Motorola SPI
	27.3.3.2 Texas Instruments SPI
	27.3.3.3 National Semiconductors SPI

	27.3.4 SPI Buffer Modes
	27.3.4.1 FIFO Mode
	27.3.4.2 EZSPI Mode
	27.3.4.3 Command-Response Mode

	27.3.5 Clocking and Oversampling
	27.3.5.1 Clock Modes
	27.3.5.2 Using SPI Master to Clock Slave
	27.3.5.3 Oversampling and Bit Rate

	27.3.6 Enabling and Initializing SPI
	27.3.7 I/O Pad Connection
	27.3.7.1 SPI Master
	27.3.7.2 SPI Slave
	27.3.7.3 Glitch Avoidance at System Reset

	27.3.8 SPI Registers

	27.4 UART
	27.4.1 Features
	27.4.2 General Description
	27.4.3 UART Modes of Operation
	27.4.3.1 Standard Protocol
	27.4.3.2 UART Local Interconnect Network (LIN) Mode
	27.4.3.3 SmartCard (ISO7816)
	27.4.3.4 Infrared Data Association (IrDA)

	27.4.4 Clocking and Oversampling
	27.4.5 Enabling and Initializing the UART
	27.4.6 I/O Pad Connection
	27.4.6.1 Standard UART Mode
	27.4.6.2 SmartCard Mode
	27.4.6.3 LIN Mode
	27.4.6.4 IrDA Mode

	27.4.7 UART Registers

	27.5 Inter Integrated Circuit (I2C)
	27.5.1 Features
	27.5.2 General Description
	27.5.3 External Electrical Connections
	27.5.4 Terms and Definitions
	27.5.4.1 Clock Stretching
	27.5.4.2 Bus Arbitration

	27.5.5 I2C Modes of Operation
	27.5.5.1 Write Transfer
	27.5.5.2 Read Transfer

	27.5.6 I2C Buffer Modes
	27.5.6.1 FIFO Mode
	27.5.6.2 EZI2C Mode
	27.5.6.3 Command-Response Mode

	27.5.7 Clocking and Oversampling
	27.5.7.1 Glitch Filtering
	27.5.7.2 Oversampling and Bit Rate

	27.5.8 Enabling and Initializing the I2C
	27.5.8.1 Configuring for I2C FIFO Mode
	27.5.8.2 Configuring for EZ and CMD_RESP Modes

	27.5.9 I/O Pad Connections
	27.5.10 I2C Registers

	27.6 SCB Interrupts
	27.6.1 SPI Interrupts
	27.6.2 UART Interrupts
	27.6.3 I2C Interrupts


	28. Serial Memory Interface (SMIF)
	28.1 Features
	28.2 Architecture
	28.2.1 Tx and Rx FIFOs
	28.2.1.1 Tx Command FIFO
	28.2.1.2 Tx Data FIFO
	28.2.1.3 Rx Data FIFO

	28.2.2 MMIO Mode
	28.2.3 XIP Mode
	28.2.4 Cache
	28.2.5 Arbitration
	28.2.6 Deselect Delay
	28.2.7 Cryptography

	28.3 Memory Device Signal Interface
	28.3.1 Specifying Memory Devices
	28.3.2 Connecting SPI Memory Devices
	28.3.3 SPI Data Transfer
	28.3.4 Example of Setting up SMIF

	28.4 Triggers
	28.5 Interrupts
	28.6 Sleep Operation
	28.7 Performance

	29. Timer, Counter, and PWM (TCPWM)
	29.1 Features
	29.2 Architecture
	29.2.1 Enabling and Disabling Counters in TCPWM Block
	29.2.2 Clocking
	29.2.2.1 Clock Prescaling
	29.2.2.2 Count Event

	29.2.3 Trigger Inputs
	29.2.4 Trigger Outputs
	29.2.5 Interrupts
	29.2.6 PWM Outputs
	29.2.7 Power Modes

	29.3 Operation Modes
	29.3.1 Timer Mode
	29.3.1.1 Configuring Counter for Timer Mode

	29.3.2 Capture Mode
	29.3.2.1 Configuring Counter for Capture Mode

	29.3.3 Quadrature Decoder Mode
	29.3.3.1 Configuring Counter for Quadrature Mode

	29.3.4 Pulse Width Modulation Mode
	29.3.4.1 Asymmetric PWM
	29.3.4.2 Configuring Counter for PWM Mode

	29.3.5 Pulse Width Modulation with Dead Time Mode
	29.3.5.1 Configuring Counter for PWM with Dead Time Mode

	29.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR)
	29.3.6.1 Configuring Counter for Pseudo-Random PWM Mode


	29.4 TCPWM Registers

	30. Inter-IC Sound Bus
	30.1 Features
	30.2 Architecture
	30.3 Digital Audio Interface Formats
	30.3.1 Standard I2S Format
	30.3.2 Left Justified (LJ) Format
	30.3.3 Time Division Multiplexed (TDM) Format

	30.4 Clocking Polarity and Delay Options
	30.5 Interfacing with Audio Codecs
	30.6 Clocking Features
	30.7 FIFO Buffer and DMA Support
	30.8 Interrupt Support
	30.9 Watchdog Timer

	31. PDM-PCM Converter
	31.1 Features
	31.2 Architecture
	31.2.1 Enable/Disable Converter
	31.2.2 Clocking Features
	31.2.3 Over-Sampling Ratio
	31.2.4 Mono/Stereo Microphone Support
	31.2.5 Hardware FIFO Buffers and DMA Controller Support
	31.2.6 Interrupt Support
	31.2.7 Digital Volume Gain
	31.2.8 Smooth Gain Transition
	31.2.9 Soft Mute
	31.2.10 Word Length and Sign Bit Extension
	31.2.11 High-Pass Filter
	31.2.12 Enable/Disable Streaming
	31.2.13 Power Modes

	31.3 Operating Procedure
	31.3.1 Initial Configuration
	31.3.2 Interrupt Service Routine (ISR) Configuration
	31.3.3 Enabling / Disabling Streaming


	32. Universal Serial Bus (USB) Device Mode
	32.1 Features
	32.2 Architecture
	32.2.1 USB Physical Layer (USB PHY)
	32.2.2 Serial Interface Engine (SIE)
	32.2.3 Arbiter
	32.2.3.1 SIE Interface Module
	32.2.3.2 CPU/DMA Interface Block
	32.2.3.3 Memory Interface
	32.2.3.4 Arbiter Logic


	32.3 Operation
	32.3.1 USB Clocking Scheme
	32.3.2 USB PHY
	32.3.2.1 Power Scheme
	32.3.2.2 VBUS Detection
	32.3.2.3 USB D+ Pin Pull-up Enable Logic
	32.3.2.4 Transmitter and Receiver Logic
	32.3.2.5 GPIO Mode Logic
	32.3.2.6 Link Power Management (LPM)

	32.3.3 Endpoints
	32.3.4 Transfer Types
	32.3.5 Interrupt Sources
	32.3.5.1 USB Start of Frame (SOF) Event
	32.3.5.2 USB Bus Reset Event
	32.3.5.3 Data Endpoint Interrupt Events
	32.3.5.4 Control Endpoint Interrupt Event
	32.3.5.5 Link Power Management (LPM) Event
	32.3.5.6 RESUME Interrupt
	32.3.5.7 Arbiter Interrupt Event

	32.3.6 DMA Support

	32.4 Logical Transfer Modes
	32.4.1 Manual Memory Management with No DMA Access
	32.4.2 Manual Memory Management with DMA Access
	32.4.3 Automatic DMA Mode
	32.4.4 Control Endpoint Logical Transfer

	32.5 USB Power Modes
	32.6 USB Device Registers

	33. LCD Direct Drive
	33.1 Features
	33.2 Architecture
	33.2.1 LCD Segment Drive Overview
	33.2.2 Drive Modes
	33.2.2.1 PWM Drive
	33.2.2.2 Digital Correlation

	33.2.3 Recommended Usage of Drive Modes
	33.2.4 Digital Contrast Control

	33.3 PSoC 6 MCU Segment LCD Direct Drive
	33.3.1 High-Speed and Low-Speed Master Generators
	33.3.2 Multiplexer and LCD Pin Logic
	33.3.3 Display Data Registers

	33.4 Register List


	Section E: Analog Subsystem
	Top Level Architecture
	34. Analog Reference Block
	34.1 Features
	34.2 Architecture
	34.2.1 Bandgap Reference Block
	34.2.2 Zero Dependency To Absolute Temperature Current Generator (IZTAT)
	34.2.3 Reference Selection Multiplexers
	34.2.3.1 VREF Selection Multiplexer Options
	34.2.3.2 IZTAT Selection Multiplexer Options

	34.2.4 Startup Modes
	34.2.5 Low-Power Modes

	34.3 Registers

	35. Low-Power Comparator
	35.1 Features
	35.2 Architecture
	35.2.1 Input Configuration
	35.2.2 Output and Interrupt Configuration
	35.2.3 Power Mode and Speed Configuration
	35.2.4 Hysteresis
	35.2.5 Wakeup from Low-Power Modes
	35.2.6 Comparator Clock

	35.3 Register List

	36. SAR ADC
	36.1 Features
	36.2 Architecture
	36.2.1 SAR ADC Core
	36.2.1.1 Single-ended and Differential Modes
	36.2.1.2 Input Range
	36.2.1.3 Result Data Format
	36.2.1.4 Negative Input Selection
	36.2.1.5 Acquisition Time
	36.2.1.6 SAR ADC Clock
	36.2.1.7 SAR ADC Timing

	36.2.2 SARMUX
	36.2.2.1 Analog Routing

	36.2.3 SARREF
	36.2.3.1 Reference Options
	36.2.3.2 Reference Buffer and Bypass Capacitors
	36.2.3.3 Input Range versus Reference

	36.2.4 SARSEQ
	36.2.4.1 Channel Configuration
	36.2.4.2 Averaging
	36.2.4.3 Range Detection
	36.2.4.4 Double Buffer

	36.2.5 SAR Interrupts
	36.2.5.1 End-of-Scan Interrupt (EOS_INTR)
	36.2.5.2 Overflow Interrupt
	36.2.5.3 Collision Interrupt
	36.2.5.4 Range Detection Interrupts
	36.2.5.5 Saturate Detection Interrupts
	36.2.5.6 Interrupt Cause Overview

	36.2.6 Trigger
	36.2.7 SAR ADC Status

	36.3 Registers

	37. Temperature Sensor
	37.1 Features
	37.2 Architecture
	37.3 Temperature Sensor Configuration
	37.4 Algorithm
	37.5 Registers

	38. CapSense



