
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-96043 Rev. *D Revised February 26, 2021

Features

▪ Support for up to 32 DMA channels; consult the device-specific
datasheet to determine how many channels for a particular device

▪ Two independent descriptors per channel

▪ Four priority levels

▪ Byte, halfword (2 bytes), and word (4 bytes) transfers

▪ Transfer sizes up to 65536 data elements

▪ Configurable interrupt generation

▪ Output trigger on completion of transfer

▪ Three transfer modes:

□ Single data element per trigger

□ All data elements per trigger

□ All data elements per trigger and automatically trigger chained descriptor

General Description
The DMA Channel Component transfers data to and from memory, Components, and registers.
These transfers occur independent of the CPU. The DMA can transfer up to 65,536 data
elements. These data elements can be a byte, halfword (2 bytes), or word (4 bytes) wide. The
DMA starts each transaction through an external trigger that can come from a DMA channel
(including itself), another DMA channel, a peripheral, or the CPU. The DMA is best used to
offload data transfer tasks from the CPU.

When to Use a DMA Channel

The DMA Channel Component can be used in any project that needs to transfer data without
CPU intervention based on a hardware trigger signal from another Component.

A common use is transferring data from memory to a peripheral, such as a UART. The DMA can
be triggered by the UART FIFO not full signal. The DMA will load data in the UART until the
FIFO fills.

PSoC 4 Direct Memory Access (DMA) Channel
1.0

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 2 of 44 Document Number: 001-96043 Rev. *D

The DMA can also be used to take data out of the UART and place it in memory. For example,
the DMA can be triggered by the FIFO not empty signal, thus the DMA will transfer data as long
as the FIFO is not empty.

Another common use is transferring data from the ADC to memory. The ADC's end of
conversion (eoc) signal can be used to trigger the DMA to transfer the ADC result to memory.

The DMA can also be used to move blocks of memory from one memory location to another
(RAM to RAM, FLASH to RAM); DMA cannot write to FLASH.

Each DMA channel can be triggered by a hardware signal as described above, or by a firmware
register write, or both.

Each DMA channel has two descriptors. While one descriptor is running, the other can be
updated by the CPU during run time. This allows for the creation of “extra” descriptors via
firmware. The hardware makes this easier by providing a mechanism that optionally invalidates a
descriptor when it is complete. While the descriptor is invalid, the CPU can update it.

Exercise care to ensure that the firmware updates the descriptor before it is triggered. The
amount of time required for this will be application dependent; specifically, how quickly will the
descriptor be re-triggered after it has finished. You must determine this time and the time it takes
to update the descriptor. If the DMA engine triggers an invalid descriptor, it will not run it and will
disable that channel. You can determine this has occurred by reading the descriptor status.

If updating the descriptor using API calls is too slow for your application, you can do it through
direct register writes to the descriptor structure. Each descriptor structure has four 32-bit words:

CYDMA_DESCR_BASE.descriptor[channel][descriptor].src

CYDMA_DESCR_BASE.descriptor[channel][descriptor].dst

CYDMA_DESCR_BASE.descriptor[channel][descriptor].ctl

CYDMA_DESCR_BASE.descriptor[channel][descriptor].status

where channel is the associated DMA channel number and descriptor is the descriptor (0 or

1) being updated. For examples, refer to the API functions in CyDMA.c file, which you can open
from the Workspace Explorer.

Another use is the firmware DMA. For this case, you do not need to place a DMA Component on
the schematic. You can allocate a DMA channel and configure it through API function calls the
same as the Component customizer. Then you can trigger the DMA from firmware.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 3 of 44

Input/Output Connections
This section describes the various input and output connections for the DMA. An asterisk (*) in
the list of I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in
the description of that I/O.

tr_in * – Input

The trigger in (tr_in) terminal is used to trigger a DMA transfer, as defined by the Transfer mode.
The trigger can come from this DMA channel (tr_out), another DMA channel, another
Component, or the CPU. The terminal is visible if the Enable trigger input parameter is checked.

This is configured in the Trigger type setting; refer to that section for more details. If the tr_in
terminal is not enabled the only way to trigger the DMA channel is through firmware.

The DMA channel is triggered by a logic HIGH/1 on the tr_in terminal. The minimum width of this
logic HIGH/1 is 2 system clock (SYSCLK) cycles. All Components that have DMA trigger outputs
automatically comply with this convention. If you are creating your own trigger using UDB logic,
ensure that the trigger complies with this requirement.

If tr_in goes high while the DMA engine is in the middle of another transfer, the DMA sets a flag
indicating that the channel has a pending request. When the DMA finishes the current transfer, it
evaluates all of the pending channels and starts a transfer for the pending channel with the
highest priority. If this channel does not have the highest priority, its request will remain pending
until its priority becomes the highest. Only one request can be pending per channel at any one
time. Multiple pending requests are counted as one.

In some situations, the trigger may remain high to indicate a continuing need for DMA
transactions. This type of trigger is called a level-sensitive trigger. These types of triggers often
originate from sources such as Serial Communication Block (SCB) FIFOs. The FIFOs have
status signals that indicate if they are not full, or empty. These signals can be used to trigger the
DMA to transfer data to the FIFO until it is full, or transfer data from the FIFO until it is empty.

With these signals, it is undesirable for the DMA to transfer more data to the FIFO when it is full
or to transfer data from the FIFO when it is empty. As stated previously, if the DMA is in the
middle of a transfer and the trigger signal is high, it will set a flag indicating that the channel has
a pending request. Thus, while the DMA is transferring the last byte to a FIFO, the trigger signal
will remain high until the byte reaches the FIFO. Because of this, the DMA will be triggered
again. In this situation, the FIFO is full but the DMA channel has a pending request. This is an
undesirable situation.

To overcome this situation, the DMA can be configured to wait a certain amount of system clock
(SYSCLK) cycles before re-triggering the channel, as set by the Trigger type parameter. It can
be configured to wait four, eight, or an indefinite number of SYSCLK clock cycles after a transfer
completes, before re-triggering the channel. If during this time the trigger goes low, the DMA
channel will be re-triggered on the next logic HIGH/1 trigger. If the trigger doesn’t go low, the
DMA waits the specified number of clock cycles before re-triggering. Please note that setting this
to indefinite has the potential of locking the DMA up if the trigger never goes low.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 4 of 44 Document Number: 001-96043 Rev. *D

The following three figures demonstrate how this feature works. In each figure, the DMA is
configured to wait four SYSCLK cycles before retriggering the DMA. In Figure 1, the DMA trigger
remains high. In Figure 2, the trigger goes low and then back high. In Figure 3, the trigger goes
low and remains low.

Figure 1. DMA trigger behavior; Trigger remains high

SYSCLK

DMA Active

DMA

Trigger

Figure 2. DMA trigger behavior; Trigger goes low then high

DMA Active

DMA

Trigger

SYSCLK

Figure 3. DMA trigger behavior; Trigger goes and stays low

DMA Active

DMA

Trigger

SYSCLK

tr_out – Output

Each DMA channel has one output trigger (tr_out). This output trigger is a two cycle HIGH/1
pulse on SYSCLK. The trigger is generated on the completion of a transfer; a transfer is defined
by the Transfer mode parameter.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 5 of 44

Component Parameters
Drag a DMA Channel onto your design and double click it to open the Configure dialog. This
dialog has the following tabs with different parameters.

Channel Tab

Enable trigger input

Enables or disables the trigger input terminal. If enabled, the DMA can be triggered by a
hardware signal or by firmware. If disabled, the DMA can only be triggered by firmware. If
enabled the terminal must be connected to a trigger source.

Channel priority

Specifies the channel priority. 0 is highest. Default setting is 3.

Number of descriptors

Specifies the number of descriptors used by the channel.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 6 of 44 Document Number: 001-96043 Rev. *D

Descriptor 0/1 Tab

Data element size

Specifies the size of the data element. The DMA engine transfers one data element at a time.
This parameter determines how wide the transfer is. This option can be set to Byte, Halfword
(2 bytes), or Word (4 bytes). The default setting is Word (4 bytes).

Number of data elements to transfer

Specifies the number of data elements to transfer. This value can be set between 1 and 65536.
The default setting is 1.

Source and destination transfer width

Specifies the size of the source and destination locations. Source is listed first (left). This
determines by how many bytes the source and destination address are incremented if increment
is turned on. The default setting is Word to Word.

For memory locations, the source and destination width will typically equal the data element size.
However, some Components provide/require data elements that are smaller than their 32-bit bus
interface width. In these cases, either the source or destination width needs to be a word, and
the data element size needs to be smaller.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 7 of 44

For example, an ADC has a 32-bit bus transfer size, but only provides a 16-bit data element.
Thus, a transfer of a 16-bit sample from an ADC source to a memory destination will have the
data element size set to Halfword and the source and destination width configured as Word to
halfword.

The width of most PSoC 4 peripheral registers is 4 bytes (word) [1]. So typically the source or
destination transfer width should be set to Word when DMA is using a peripheral as its source or
destination. The source and destination transfer width for the DMA Component must match the
addressable width of the source and destination, regardless of the amount of data that needs to
be moved.

For example, if a 16-bit PWM compare value register is used as a destination for DMA data, the
destination transfer width must be set to word to match the width of the PWM register, because
the peripheral register width for the TCPWM block (and most PSoC 4 peripherals) is always 4
bytes wide. However, in this example, the data element size for the destination may still be set to
Halfword (2 bytes) because the 16-bit PWM only uses 2 bytes of data. SRAM and flash are 8-
bit, 16-bit, or 32-bit addressable; they can use any transfer width to match the needs of the
application.

Refer to the corresponding Component datasheets for more details about their DMA access
information.

Increment source address by X

After the transfer of each single data element increment the source address by the source
transfer width. X will equal what is selected for the source location of the Source and destination
transfer width parameter. Options = checked or unchecked (default).

Increment destination address by X

After the transfer of each single data element increment the source address by the source
transfer width. X will equal what is selected for the source location of the Source and destination
transfer width parameter. Options = checked or unchecked (default).

Trigger type

Specifies the type of DMA input trigger. See tr_in input section for more information on DMA
trigger behavior. This value can be set to:

▪ Pulse – standard width (default). The pulse is a logic HIGH/1 with the minimum width of 2
system clock (SYSCLK) cycles.

▪ Level sensitive – wait 4 SYSCLK. DMA will wait 4 SYSCLK cycles after a transfer
completes before re-triggering the channel.

1 Some UDB peripheral registers allow 8-bit or 16-bit addressing.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 8 of 44 Document Number: 001-96043 Rev. *D

▪ Level sensitive – wait 8 SYSCLK. DMA will wait 8 SYSCLK cycles after a transfer
completes before re-triggering the channel.

▪ Pulse – unknown width. DMA will wait an indefinite number of SYSCLK cycles after a
transfer completes before re-triggering the channel. The trigger must go low for the DMA
channel to be re-triggered on the next logic HIGH/1 trigger.

Level sensitive triggers have the ability to wait before re-triggering the DMA. This is best
explained through the following pseudo code.

/* After transaction finishes */

if (trig == 1) /* If trigger is high */

{

 /* Wait for selected time or until trigger goes low */

 do

 {

 /* Increment on SYSCLK */

 num++;

 } while(num != triggerType && trig == 1)

}

/* Wait for new trigger */

while(trig == 0);

/* trigger new transaction */

trigger;

Transfer mode

Specifies how DMA reacts on a single trigger. The settings are:

▪ Single data element per trigger (default) – Each trigger causes the DMA engine to
transfer one data element.

▪ Entire descriptor per trigger – Each trigger causes the DMA engine to transfer all data
elements specified by Number of data elements to transfer parameter, one data element
at a time.

▪ Entire descriptor chain per trigger – Each trigger causes the DMA engine to transfer all
data elements specified by Number of data elements to transfer parameter, one data
element at a time. After all data elements are transferred, automatically trigger chained
descriptor.

Note The option Chain to descriptor 0/1 must be checked for Post completion actions to
use this mode.

Descriptor 0/1 is preemptable

Specifies if the current transfer is allowed to complete undisturbed. If checked the current
transfer can be preempted/interrupted by a DMA channel of higher priority. When this channel is
preempted it is set as pending and will run next time its priority is the highest. Options = checked
or unchecked (default).

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 9 of 44

Post completion actions

Specifies what occurs descriptor 0/1 completes. The settings are:

▪ Chain to descriptor 1/0 - after the current descriptor completes chain to the next
descriptor. If the Transfer mode parameter is set to Entire descriptor chain per trigger,
the next descriptor is automatically triggered. Otherwise the next descriptor must be
triggered.

Note If the Transfer mode is set to Entire descriptor chain per trigger, then this option
will be automatically checked.

▪ Invalidate descriptor - when the descriptor finishes transferring all data elements, clear
the descriptors valid bit, making it invalid.

▪ Generate interrupt request - when the descriptor finishes transferring all data elements,
generate an interrupt request. This interrupt request is shared among all DMA channels.
Refer to the Interrupt Service Routine section for a detailed description on how to access
this interrupt.

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the Component using
software. The following sections list and describe the interface to each function. The subsequent
sections cover each function in more detail.

API Functions per DMA Instance

By default, PSoC Creator assigns the instance name "DMA_1" to the first instance of a
Component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
"DMA".

All the functions listed in the table below except DMA_Start() and DMA_Init() are inline functions.
These functions call the corresponding global DMA API functions and have the channel number
hardcoded. For example, DMA_Trigger() API calls CyDmaTrigger(DMA_CHANNEL).
DMA_CHANNEL define is generated by PSoC Creator during design build process.

Function Description

DMA_Start() Configures DMA based on customizer settings, sets source and destination
addresses and enables the channel.

DMA_Init() Initializes DMA based on customizer settings.

DMA_ChEnable() Enables the DMA channel.

DMA_ChDisable() Disables the DMA channel.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 10 of 44 Document Number: 001-96043 Rev. *D

Function Description

DMA_Trigger() Triggers the DMA channel.

DMA_SetConfiguration() Sets configuration information for the specified channel and descriptor.

DMA_SetNextDescriptor() Sets the next descriptor to run.

DMA_GetNextDescriptor() Returns the next descriptor that will be run.

DMA_Validate_Descriptor() Validates an invalid descriptor.

DMA_GetDescriptorStatus() Returns current status of descriptor.

DMA_SetPriority() Sets the channel priority.

DMA_GetPriority() Returns the channel priority.

DMA_SetSrcAddress() Sets the source address.

DMA_GetSrcAddress() Returns the source address.

DMA_SetDstAddress() Sets the destination address.

DMA_GetDstAddress() Returns the destination address.

DMA_SetDataElementSize() Sets the size of each data element.

DMA_GetDataElementSzie() Returns the size of each data element.

DMA_SetNumDataElements() Sets the number of data elements to transfer.

DMA_GetNumDataElements() Returns the number of data elements to transfer.

DMA_SetSrcDstTransferWidth() Sets the width of the source and destination.

DMA_GetSrcDstTransferWidth() Returns the width of the source and destination.

DMA_SetAddressIncrement() Sets if the source and destination addresses are incremented.

DMA_GetAddressIncrement() Returns whether or not the source or destination addresses are incremented.

DMA_SetTriggerType() Sets how long the DMA waits for its trigger to go low.

DMA_GetTriggerType() Returns how long the DMA waits for its trigger to go low.

DMA_SetTransferMode() Sets the DMA transfer mode.

DMA_GetTransferMode() Returns the DMA transfer mode.

DMA_SetPreemptable() Sets if the descriptor is preemptable.

DMA_GetPreemptable() Checks if descriptor is preemptable.

DMA_SetPostCompletionActions() Sets what occurs after the descriptor completes.

DMA_GetPostCompletionActions() Returns what happens after the descriptor completes.

DMA_SetInterruptCallback() Sets a user defined callback function to be called by the DMA interrupt.

DMA_GetInterruptCallback() Returns pointer to a user defined interrupt callback function.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 11 of 44

void DMA_Start(void * srcAddress, void * dstAddress)

Description: Calls Init() to configure the DMA channel based on customizer settings if the channel has not
been initialized before.

Sets source and destination address, validates descriptor 0 and enables the channel. After
calling this function the DMA channel is active and waiting for a trigger.

Parameters: srcAddress: Address of DMA transfer source.

 dstAddress: Address of DMA transfer destination.

Return Value: None

Side Effects: None

void DMA_Init(void)

Description: Initializes the DMA channel based on the parameters set in the Component customizer. It is
not necessary to call DMA_Init() because the DMA_Start() API calls this function, which is the
preferred method to begin Component operation.

Parameters: None

Return Value: None

Side Effects: The first descriptor is set to descriptor 0. This function should not be called while the channel
is enabled. All settings will be reset to their initial values.

Global DMA API Functions

DMA Controller API Functions

Function Description

CyDmaEnable() Enables the DMA transfer engine.

CyDmaDisable() Disables the DMA transfer engine.

CyDmaGetActiveChannels() Returns a bit-field with all of the currently active/pending channels.

CyDmaGetActiveSrcAddress() Returns the source address currently used by DMA transfer engine.

CyDmaGetActiveDstAddress() Returns the destination address currently used by the DMA transfer engine.

CyDmaGetStatus() Returns status of DMA transfer engine.

CyDmaSetInterruptVector() Sets the DMA interrupt vector.

CyDmaGetInterruptSource() Returns which channels have active/pending interrupts.

CyDmaClearInterruptSource() Clears specified active/pending interrupts.

CyDmaSetInterruptSourceMask() Create an interrupt mask.

CyDmaGetInterruptSourceMask() Returns an interrupt mask.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 12 of 44 Document Number: 001-96043 Rev. *D

Function Description

CyDmaGetInterruptSourceMasked() Returns bit-wise AND of interrupt source and mask.

CyDmaSetInterruptCallback() Sets a user defined callback function to be called by the DMA interrupt.

CyDmaGetInterruptCallback() Returns pointer to a user defined interrupt callback function.

CyDmaInterrupt() The default ISR for DMA interrupts.

void CyDmaEnable(void)

Description: Sets the default ISR to be called by the DMA interrupt and enables the DMA transfer engine.

Parameters: None

Return Value: None

Side Effects: Does not affect channel enable status. Overrides the interrupt vector set prior the first time
CyDmaEnable() is called.

void CyDmaDisable(void)

Description: Disables the DMA transfer engine.

Parameters: None

Return Value: None

Side Effects: Does not affect channel enable status.

uint32 CyDmaGetActiveChannels(void)

Description: Returns a bit field of all the DMA channels that are either active or pending.

Parameters: None

Return Value: Bit field of active and pending channels.

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 13 of 44

void * CyDmaGetActiveSrcAddress(void)

Description: Returns the source address currently being used by the DMA transfer engine. This function
can be used to debug the DMA, or observe where it is at in a transfer. It will not be used in
normal DMA operation.

Parameters: None

Return Value: Source address currently being used by DMA transfer engine.

Side Effects: The series of function calls CyDmaGetStatus(), CyDmaGetActiveSrcAddress(), and
CyDmaGetActiveDstAddress() are not atomic, the DMA engine may have advanced after one
or more of these function calls. Meaning the returns from these three functions may not be
related to each other.

void * CyDmaGetActiveDstAddress(void)

Description: Returns the destination address currently being used by the DMA transfer engine. This
function can be used to debug the DMA, or observe where it is at in a transfer. It will not be
used in normal DMA operation.

Parameters: None

Return Value: Destination address currently being used by DMA transfer engine.

Side Effects: The series of function calls CyDmaGetStatus(), CyDmaGetActiveSrcAddress(), and
CyDmaGetActiveDstAddress() are not atomic, the DMA engine may have advanced after one
or more of these function calls. Meaning the returns from these three functions may not be
related to each other.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 14 of 44 Document Number: 001-96043 Rev. *D

uint32 CyDmaGetStatus(void)

Description: Returns the status of the DMA transfer engine.

Parameters: None

Return Value: Returns the contents of the DMA status register. See the register section for more detail on
bit meaning. Below is a table of defines (mask) for accessing the data in the register

Defines for STATE: Only one define can be active at a time

Define Description

CYDMA_IDLE Idle state when the DMA is not active.

CYDMA_LOAD_DESCR The DMA is loading the descriptor to the DMA transfer engine.

CYDMA_LOAD_SRC DMA is getting the value from the source location.

CYDMA_STORE_DST DMA is storing a value at the destination location.

CYDMA_STORE_DESCR DMA is updating the descriptors after completion of transfer.

CYDMA_WAIT_TRIG_DEACT The DMA is waiting for the level sensitive trigger to deactivate.

CYDMA_STORE_ERROR There was an error during the transaction and the DMA is
writing the error code to the channel status register.

Define (Mask) Description Bits

CYDMA_TRANSFER_INDEX Transfer index of currently active channel. This
value increase from zero to Number of data
elements to transfer - 1.

[15:0]

CYDMA_CH_NUM Channel number of currently active channel. [20:16]

CYDMA_STATE Current state of DMA transfer engine, see table
below for descriptions of each state.

[26:24]

CYDMA_PRIO Priority of currently active channel. [29:28]

CYDMA_DESCRIPTOR Active descriptor. 30

CYDMA_ACTIVE Specifies if there is a currently active / pending
transfer in the data transfer engine.

31

Side Effects: The series of function calls CyDmaGetStatus(), CyDmaGetActiveSrcAddress(),
CyDmaGetActiveDstAddress() are not atomic, the DMA engine may have advanced after one
or more of these function calls. Meaning the returns from these three functions may not be
related to each other.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 15 of 44

void CyDmaSetInterruptVector(cyisraddress interruptVector)

Description: Sets the function that will be called by the DMA interrupt.

Note Calling CyDmaEnable() for the first time overrides any effect this API could have. Call
CyDmaSetInterruptVector() after calling CyDmaEnable() to change the default ISR.

When defining ISR functions, the CY_ISR and CY_ISR_PROTO macros should be used to
provide consistent definition across compilers:

Function definition example:

CY_ISR(MyISR)

{

 /* ISR Code here */

}

Function prototype example:

CY_ISR_PROTO(MyISR);

Parameters: Address of function that will be called by the DMA interrupt.

Return Value: None

Side Effects: Other Components that use DMA may register their callback functions to be called from the
default DMA ISR. Therefore, changing the DMA ISR to a user defined ISR using this API may
prevent these other Components from functioning correctly.

uint32 CyDmaGetInterruptSource(void)

Description: Returns the bit field of which channels generated an interrupt request.

Parameters: None

Return Value: Bit filed of which channels generated an interrupt request.

Side Effects: None

void CyDmaClearInterruptSource(uint32 interruptMask)

Description: Clears the pending interrupts.

Parameters: interruptMask: Bit field of interrupts to clear.

Return Value: None

Side Effects: None

void CyDmaSetInterruptSourceMask(uint32 interruptMask)

Description: Sets mask for interrupt source.

Parameters: interruptMask: Mask corresponding to interrupt bit field.

Return Value: None

Side Effects: None

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 16 of 44 Document Number: 001-96043 Rev. *D

uint32 CyDmaGetInterruptSourceMask(void)

Description: Returns mask for interrupt source.

Parameters: None

Return Value: Mask corresponding to interrupt bit field.

Side Effects: None

uint32 CyDmaGetInterruptSourceMasked (void)

Description: Returns the bitwise AND of the interrupt source and the interrupt mask.

Parameters: None

Return Value: Bitwise AND of the interrupt source and the interrupt mask.

Side Effects: None

cydma_callback_t CyDmaSetInterruptCallback(int32 channel, cydma_callback_t callback)

Description: Sets a user defined callback function to be called by the DMA interrupt. The function should
contain code to process the interrupt request for the associated DMA channel.

Parameters: channel: Channel used by this function.

 callback: Pointer to the user defined callback function.

Return Value: Pointer to the function previously set for the specified channel.

Side Effects: None

cydma_callback_t CyDmaGetInterruptCallback(int32 channel)

Description: Returns the pointer to the interrupt callback function for the specified DMA channel.

Parameters: channel: Channel used by this function.

Return Value: Callback function pointer for the specified channel.

Side Effects: None

void CyDmaInterrupt(void)

Description: The default ISR for DMA interrupts. The handler checks which DMA channel has triggered
the interrupt and calls the user defined callback function. The callback function is set using
CyDmaSetInteruptCallback() API.

Parameters: None

Return Value: None

Side Effects: This function clears the pending interrupts.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 17 of 44

DMA Channel API Functions

Function Description

CyDmaChAlloc() Allocates a channel number for use with later DMA functions.

CyDmaChFree() Frees a channel handle allocated by CyDmaChAlloc().

CyDmaChEnable() Enables the DMA channel.

CyDmaChDisable() Disables the DMA channel.

CyDmaTrigger() Triggers the DMA channel.

CyDmaSetPriority() Sets the channel priority.

CyDmaGetPriority() Returns the channel priority.

CyDmaSetNextDescriptor() Sets the next descriptor to run.

CyDmaGetNextDescriptor() Returns the next descriptor that will be run.

int32 CyDmaChAlloc(void)

Description: Allocates a channel number for use with later DMA functions.

Parameters: None

Return Value: The allocated channel number. Zero is a valid channel number.
CYDMA_INVALID_CHANNEL is returned if there are no channels available.

Side Effects: None

cystatus CyDmaChFree(int32 channel)

Description: Frees a channel number allocated by CyDmaChAlloc().

Parameters: channel: The channel previously returned by CyDmaChAlloc().

Return Value: CYRET_SUCCESS if successful.

CYRET_BAD_PARAM if channel is invalid.

Side Effects: None

void CyDmaChEnable(int32 channel)

Description: Enables the DMA channel.

Parameters: channel: Channel used by this function.

Return Value: None

Side Effects: If this function is called before CyDmaSetConfiguration(), and CyDmaSetSrcAddress() and
CyDmaSetDstAddress() the operation of the DMA is undefined and could result in system
data corruption.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 18 of 44 Document Number: 001-96043 Rev. *D

void CyDmaChDisable(int32 channel)

Description: Disables the DMA channel.

Parameters: channel: Channel used by this function.

Return Value: None

Side Effects: If this function is called during a DMA transfer the transfer is aborted.

void CyDmaTrigger(int32 channel)

Description: Triggers the DMA channel.

Parameters: channel: Channel used by this function.

Return Value: None

Side Effects: None

void CyDmaSetPriority(int32 channel, int32 priority)

Description: Sets the priority for the channel.

Parameters: channel: Channel used by this function.

 priority: Priority for channel. Priority can be 0,1,2, or 3. 0 is the highest priority.

Return Value: None

Side Effects: This function should not be called while the channel is enabled

int32 CyDmaGetPriority(int32 channel)

Description: Returns the priority for the channel.

Parameters: channel: Channel used by this function.

Return Value: Priority for channel. Priority can be 0, 1, 2, or 3. 0 is the highest priority.

Side Effects: None

void CyDmaSetNextDescriptor(int32 channel, int32 descriptor)

Description: Sets the descriptor that should be run the next time the channel is triggered.

Parameters: channel: Channel used by this function.

 descriptor: Next descriptor to run (0 or 1).

Return Value: None

Side Effects: This function should not be called while the channel is enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 19 of 44

int32 CyDmaGetNextDescriptor(int32 channel)

Description: Returns the next descriptor that should be run, as set by CyDmaSetNextDescriptor().

Parameters: channel: Channel used by this function.

Return Value: descriptor: Next descriptor to run (0 or 1).

Side Effects: None

Descriptor API Functions

Function Description

CyDmaSetConfiguration() Sets configuration information for the specified channel and descriptor.

CyDmaValidateDescriptor() Validates an invalid descriptor.

CyDmaGetDescriptorStatus() Returns current status of descriptor.

CyDmaSetSrcAddress() Sets the source address.

CyDmaGetSrcAddress() Returns the source address.

CyDmaSetDstAddress() Sets the destination address.

CyDmaGetDstAddress() Returns the destination address.

CyDmaSetDataElementSize() Sets the size of each data element.

CyDmaGetDataElementSize() Returns the size of each data element.

CyDmaSetNumDataElements() Sets the number of data elements to transfer.

CyDmaGetNumDataElements() Returns the number of data elements to transfer.

CyDmaSetSrcDstTransferWidth() Sets the width of the source and destination.

CyDmaGetSrcDstTransferWidth() Returns the width of the source and destination.

CyDmaSetAddressIncrement() Sets if the source and destination addresses are incremented.

CyDmaGetAddressIncrement() Returns whether or not the source or destination addresses are
incremented.

CyDmaSetTriggerType() Sets how long the DMA waits for its trigger to go low.

CyDmaGetTriggerType() Returns how long the DMA waits for its trigger to go low.

CyDmaSetTransferMode() Sets the DMA transfer mode.

CyDmaGetTransferMode() Returns the DMA transfer mode.

CyDmaSetPreemptable() Sets if the descriptor is preemptable.

CyDmaGetPreemptable() Checks if descriptor is preemptable.

CyDmaSetPostCompletionActions() Sets what occurs after the descriptor completes.

CyDmaGetPostCompletionActions() Returns what happens after the descriptor completes.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 20 of 44 Document Number: 001-96043 Rev. *D

void CyDmaSetConfiguration(int32 channel, int32 descriptor, cydma_init_struct * config)

Description: Sets configuration information for the specified descriptor. This function is used to configure
the DMA when the Component is not placed in a schematic.

Parameters: channel: DMA channel modified by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 config: pointer to a structure that contains the following list of fields These fields match the
selections available in the customizer.

Field Description

uint32 dataElementSize Specifies the size of the data element. Options:

▪ CYDMA_BYTE

▪ CYDMA_HALFWORD

▪ CYDMA_WORD

See CyDmaSetDataElementSize() API for more information on
configuration values.

int32 numDataElements Total number of data elements this descriptor transfers. Valid
ranges are 1 to 65536.

uint32 srcDstTransferWidth Specifies the width of the source and destination. Options:

▪ CYDMA_ELEMENT_ELEMENT

▪ CYDMA_ELEMENT_WORD

▪ CYDMA_WORD_ELEMENT

▪ CYDMA_WORD_WORD

See CyDmaSetSrcDstTransferWidth() API for more information on
configuration values.

uint32 addressIncrement Specifies whether the source or destination addresses are
incremented after the transfer of each data element. Options (can
be OR’d together):

▪ CYDMA_INC_SRC_ADDR

▪ CYDMA_INC_DST_ADDR

▪ CYDMA_INC_NONE

See CyDmaSetAddressIncrement() API for more information on
configuration values.

uint32 triggerType Specifies the type of input trigger for the DMA. Level sensitive
triggers can be configured to wait a number of system clocks
(SYSCLK) for the trigger to go low (deactivate) before triggering
the channel again. Options:

▪ CYDMA_PULSE

▪ CYDMA_LEVEL_FOUR

▪ CYDMA_ LEVEL_EIGHT

▪ CYDMA_PULSE_UNKNOWN

See CyDmaSetTriggerType() API for more information on
configuration values.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 21 of 44

uint32 transferMode Specifies how the DMA reacts to every trigger event. Options:

▪ CYDMA_SINGLE_DATA_ELEMENT

▪ CYDMA_ENTIRE_DESCRIPTOR

▪ CYDMA_ENTIRE_DESCRIPTOR_CHAIN

See CyDmaSetTransferMode() API for more information on
configuration values.

uint32 preemptable Specifies if the descriptor is preemptable. Options:

▪ CYDMA_PREEMPTABLE

▪ CYDMA_NON_PREEMPTABLE

See CyDmaSetPreemptable() API for more information on
configuration values.

uint32 actions Specifies what occurs after a descriptor completes. Options (can
be OR’d together):

▪ CYDMA_CHAIN

▪ CYDMA_INVALIDATE

▪ CYDMA_GENERATE_IRQ

See CyDmaSetPostCompletionActions() API for more information
on configuration values.

Return Value: None

Side Effects: The status register associated with the specified descriptor is reset to zero after this function
call. This function also validates the descriptor. This function should not be called while the
descriptor is active. This can be checked by calling CyDmaGetStatus().

void CyDmaValidateDescriptor(int32 channel, int32 descriptor)

Description: Validates the specified descriptor after it has been invalidated.

Parameters: channel: Channel used by this function.

 descriptor: Specifies descriptor (0 or 1) validated by this function.

Return Value: None

Side Effects: The status register associated with the specified descriptor is reset to zero after this function
call.

This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetDescriptorStatus(int32 channel, int32 descriptor)

Description: Returns the status of the specified descriptor.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) read by this function.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 22 of 44 Document Number: 001-96043 Rev. *D

Return Value: Returns the contents of the specified descriptors status register. Below is a table of defines
for accessing the data in the register.

Parameter Value
(Mask)

Description Bits

CYDMA_TRANSFER_
INDEX

Number of data elements transferred by the descriptor.
Counts up from 0 to Number of data elements.

▪ When a descriptor is done (Response is DONE), the
field is set to ‘0’ when the descriptor is valid and the field
is set to Number of data elements when Invalidate
descriptor is selected for this descriptor.

▪ When a descriptor is not done (Response is
NO_ERROR), the field reflects the progress of a data
transfer.

▪ In case of erroneous behavior (RESPONSE is neither
DONE or NO_ERROR), the field is not updated, but
keeps its value to ease debugging.

At descriptor initialization, this field should be set to zero.
This is done by CyDmaSetConfiguration(),
CyDmaValidateDescriptor(), and DMA_Start() API functions.

This field allows software to read the progress of the data
transfer. Note that descriptor source and destination
addresses represent base addresses and are not modified
during data transfer. However, this field is modified during
data transfer and provides an offset wrt. the base
addresses.

[15:0]

CYDMA_RESPONSE Response/status codes for the descriptor, see table below
for more detail.

[18:16]

CYDMA_VALID Indicates if descriptor is valid.

‘0’ - Invalid. Cannot be used for a data transfer. An attempt
to use invalid descriptor will result in channel disabling, an
INVALID_DESCR response code and the interrupt bit set.

DMA transfer engine sets this field to ‘0’ when a descriptor is
done, but only if Invalidate descriptor option is selected.

At descriptor initialization, this field should be set to zero.
This is done by

CyDmaSetConfiguration(), CyDmaValidateDescriptor(), and
DMA_Start() API functions.

[31]

Response code meaning, only one response can be set at a time. To test for a response
code the following syntax can be used:

if((CyDmaGetDescriptorStatus() & CYDMA_RESPONSE) == CYDMA_NO_ERROR)

Response code Description

CYDMA_NO_ERROR The descriptor is either unused or not yet completed.

CYDMA_DONE Descriptor is done without errors.

CYDMA_SRC_BUS_ERROR There was an error loading the value from the source location.

CYDMA_DST_BUS_ERROR There was an error storing the value at the destination location.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 23 of 44

 Response code Description

CYDMA_SRC_MISAL Misalignment of source address. This occurs on a 2-byte
transfer (16 bits) that is not 2-byte aligned (2-byte aligned
addresses end with 0b0), or on a 4-byte transfer (32 bits) that is
not 4-byte aligned (4-byte aligned addresses end with 0b00). If
this is set, the channel is disabled and the descriptor invalidated.

CYDMA_DST_MISAL Misalignment of destination address. This occurs on a 2-byte
transfer (16 bits) that is not 2-byte aligned (2-byte aligned
addresses end with 0b0), or on a 4-byte transfer (32bits) that is
not 4-byte aligned (4-byte aligned addresses end with 0b00). If
this is set the channel is disabled and the descriptor invalidated.

CYDMA_INVALID_DESCR Active channel has an invalid descriptor. The channel is disabled
and interrupt bit is set for this error response.

Side Effects: None

void CyDmaSetSrcAddress(int32 channel, int32 descriptor, void * srcAddress)

Description: Configures the source address for the specified descriptor.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 srcAddress: Address of DMA transfer source.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

void * CyDmaGetSrcAddress(int32 channel, int32 descriptor)

Description: Returns the source address for the specified descriptor, set by CyDmaSetSrcAddress().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) used by this function.

Return Value: Source address written to specified descriptor.

Side Effects: None

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 24 of 44 Document Number: 001-96043 Rev. *D

void CyDmaSetDstAddress(int32 channel, int32 descriptor, void * dstAddress)

Description: Configures the destination addresses for the specified descriptor.

Parameters: channel: Channel used by this function.

Return Value: descriptor: Descriptor (0 or 1) modified by this function.

 dstAddress: Address of DMA transfer destination.

 None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

void * CyDmaGetDstAddress(int32 channel, int32 descriptor)

Description: Returns the destination address for the specified descriptor set by CyDmaSetDstAddress().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) used by this function.

Return Value: Destination address written to specified descriptor.

Side Effects: None

void CyDmaSetDataElementSize(int32 channel, int32 descriptor, uint32 dataElementSize)

Description: Sets the data element size for the specified descriptor.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 dataElementSize: Specifies the size of the data element. The DMA transfer engine transfers
one data element at a time. How these transfers occur is controlled by the transfer mode.

Note The size of the source and destination can be configured to use the data element size,
or a word, this is set in CyDmaSetSrcDstTransferWidth().

Parameter Value Description

CYDMA_BYTE Each data element is one byte.

CYDMA_HALFWORD Each data element is a halfword (2 bytes).

CYDMA_WORD Each data element is a word (4 bytes).

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 25 of 44

uint32 CyDmaGetDataElementSize(int32 channel, int32 descriptor)

Description: Returns the data element size configured for the specified descriptor, set by
CyDmaSetDataElementSize() or CyDmaSetConfiguration().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: See CyDmaSetDataElementSize() for return value meaning.

Side Effects: None

void CyDmaSetNumDataElements(int32 channel, int32 descriptor, int32 numDataElements)

Description: Sets the number of data elements to transfer for specified descriptor.

Parameters: channel: Channel used by this function

 descriptor: Descriptor (0 or 1) modified by this function.

 numDataElements: Total number of data elements this descriptor transfers. Valid ranges are
1 to 65536.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

int32 CyDmaGetNumDataElements(int32 channel, int32 descriptor)

Description: Returns the number of data elements to be transferred. Only reflects the value written by
CyDmaSetNumDataElements() or CyDmaSetConfiguration().This does not reflect how many
elements have been transferred. For that information use the CyDmaGetDescriptorStatus()
function.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: Number of data elements to transfer.

Side Effects: None

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 26 of 44 Document Number: 001-96043 Rev. *D

void CyDmaSetSrcDstTransferWidth(int32 channel, int32 descriptor, uint32 transferWidth)

Description: Sets the width of the source and destination. The DMA can either read and write data from
the source and destination at the size specified by CyDmaSetDataElementSize() or by a
word (4bytes). This also determines how many bytes the addresses are incremented if
increment source and destination address are turned on.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 transferWidth: Specifies the width of the source and destination.

Parameter Value Description

CYDMA_ELEMENT_ELEMENT Source and destination widths are set by the data element
size.

CYDMA_ELEMENT_WORD Source width is set by data element size. Destination width
is a word (4bytes). If the source width is smaller than the
destination width the upper bytes of the destination are
written with zeros.

CYDMA_WORD_ELEMENT Source width is a word (4 bytes). Destination width is set by
data element size. If the source width is larger than the
destination width, the upper bytes of the source are ignored
during the transaction.

CYDMA_WORD_WORD Both source and destination widths are words. However,
the data element size still has an effect in this mode. For
example, if the data element size is set to a byte, then the
upper three bytes of destination will be padded with zeros,
and the upper three bytes of the source will be ignored
during the transaction.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetSrcDstTransferWidth(int32 channel, int32 descriptor)

Description: Returns the width of the source and destination, as set by CyDmaSetSrcDstTransferWidth(),
or CyDmaSetConfiguration().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: Width of source and destination. See CyDmaSetSrcDstTransferWidth() for more information.

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 27 of 44

void CyDmaSetAddressIncrement(int32 channel, int32 descriptor, uint32 addressIncrement)

Description: Sets whether the source or destination addresses are incremented after the transfer of each
data element. The amount that the source and destination address are incremented is
determined by the CyDmaSetSrcDstTransferWidth() function. The addresses will either be
incremented by the data element size or by a word (4 bytes).

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 addressIncrement: Bit field of defines that can be OR’d together.

Parameter Value Description

CYDMA_INC_SRC_ADDR Increment the Source address.

CYDMA_INC_DST_ADDR Increment the Destination address.

CYDMA_INC_NONE No address increment.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetAddressIncrement(int32 channel, int32 descriptor)

Description: Returns address increment settings as set by CyDmaSetAddressIncrement(), or
CyDmaSetConfiguration().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: Address increment settings. Refer to CyDmaSetAddressIncrement() for information on return
value meanings.

Side Effects: None

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 28 of 44 Document Number: 001-96043 Rev. *D

void CyDmaSetTriggerType(int32 channel, int32 descriptor, uint32 triggerType)

Description: Sets the type of input trigger for the DMA. For level sensitive triggers sets how long the DMA
waits for the trigger to go low (deactivate) before triggering the channel again.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 triggerType: Type of DMA trigger.

Parameter Value Description

CYDMA_PULSE Input trigger is a pulse

CYDMA_LEVEL_FOUR Input trigger is a level. Use the pseudo code below to
understand how the waiting works.
/* Wait for transaction to end. */

while(!end_transaction);

/* After transaction finishes. */

/* If trigger is high. */

if (trig == 1)

{

 /* Wait for selected time or until trig

goes low. */

 do

 {

 /* Increment on SYSCLK. */

 num++;

 } while(num != trigType && trig == 1)

}

/* Wait for new trigger. */

while(trig == 0);

/* trigger new transaction. */

trigger;

CYDMA_LEVEL_EIGHT

CYDMA_PULSE_UNKNOWN Input trigger is a pulse of unknown length. The channel will
not trigger again until the pulse goes low.

Note This setting can cause the DMA to lock up if the trigger
signal never goes low.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetTriggerType(int32 channel, int32 descriptor)

Description: Returns the trigger type settings as set by CyDmaSetTriggerType(), or
CyDmaSetConfiguration().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: Trigger type settings, see CyDmaSetTriggerType() for return value details.

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 29 of 44

void CyDmaSetTransferMode(int32 channel, int32 descriptor, uint32 transferMode)

Description: Sets the DMA transfer mode. This determines how the DMA reacts to every trigger event.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 transferMode: Specifies how the DMA reacts to a trigger event.

Parameter Value Description

CYDMA_SINGLE_DATA_ELEMENT Each trigger causes the DMA to transfer a single
data element.

CYDMA_ENTIRE_DESCRIPTOR Each trigger automatically transfers all of the data
elements, set by CyDmaSetNumDataElements(),
one data element at a time.

CYDMA_ENTIRE_DESCRIPTOR_CHAIN Each trigger automatically transfers all of the data
elements, set by CyDmaSetNumDataElements(),
one data element at a time. Upon completion the
next descriptor is automatically triggered.

Note DMA_CHAIN must be set in
CyDmaPostCompletionActions() for this mode to
work.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetTransferMode(int32 channel, int32 descriptor)

Description: Returns the transfer mode for the specified descriptor as set by CyDmaSetTransferMode() or
CyDmaSetConfiguration().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: DMA transfer mode setting. Refer to CyDmaSetTransferMode() for more information.

Side Effects: None

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 30 of 44 Document Number: 001-96043 Rev. *D

void CyDmaSetPreemptable(int32 channel, int32 descriptor, uint32 preemptable)

Description: Specifies if the descriptor is preemptable.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 preemptable: Determines if the descriptor is preemptable.

If the descriptor is preemptable, it allows channels of higher priority to interrupt this channel
transfer. Once the channel has been interrupted, it finishes the current transfer of a single
data element, and then goes pending. After it goes pending it must wait until it is the highest
priority pending channel before it runs again.

Parameter Value Description

CYDMA_PREEMPTABLE The descriptor is preemptable.

CYDMA_NON_PREEMPTABLE The descriptor is non-preemptable.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetPreemptable(int32 channel, int32 descriptor)

Description: Returns whether or not the descriptor is preemptable.

Parameters: channel: Channel used by this function

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: DMA transfer mode setting. Refer to CyDmaSetPreemptable() for more information.

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 31 of 44

void CyDmaSetPostCompletionActions(int32 channel, int32 descriptor, uint32 actions)

Description: Specifies what occurs after a descriptor completes.

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

 actions: Bit field of defines that can be OR’d together.

Parameter Value Description

CYDMA_CHAIN On completion of descriptor chain to the next descriptor.

CYDMA_INVALIDATE Invalidate the descriptor when it completes.

CYDMA_GENERATE_IRQ On completion of descriptor generate an interrupt request.

CYDMA_NONE No actions will occur after a descriptor completes.

Return Value: None

Side Effects: This function should not be called when the specified descriptor is active in the DMA transfer
engine. This can be checked by calling CyDmaGetStatus().

uint32 CyDmaGetPostCompletionActions(int32 channel, int32 descriptor)

Description: Returns the post descriptor action settings as set by CyDmaSetPostCompletionActions() or
CyDmaSetConfiguration().

Parameters: channel: Channel used by this function.

 descriptor: Descriptor (0 or 1) modified by this function.

Return Value: Post descriptor actions. See CyDmaSetPostCompletionActions() for return details.

Side Effects: None

Global Variables

Variable Description

DMA_initVar This global variable indicates whether the Component has been initialized. The variable is
initialized to 0 and set to 1 the first time DMA_Start() is called. This allows the Component to
restart without re-initialization after the first call to the DMA_Start() routine.

If re-initialization of the Component is required, then the DMA_Init() function can be called
before the DMA_Start() function.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 32 of 44 Document Number: 001-96043 Rev. *D

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator Components

▪ specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The DMA Component is MISRA compliant, except for following specific deviations.

Rule Rule
Class

Rule Description Description of Deviation(s)

14.3 R Before preprocessing, a null statement shall
only occur on a line by itself; it may be
followed by a comment provided that the
first character following the null statement is
a white-space character.

The issue is caused by the use of the
CYASSERT macro, which is empty in
RELEASE mode. There is no negative effect
on this because the source is clear and
readable.

API Memory Usage

The Component memory usage varies significantly depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with an associated compiler configured in Release mode
with optimization set for Size. For a specific design, the map file generated by the compiler can
be analyzed to determine the memory usage.

PSoC 4 (GCC)

Configuration Flash Bytes SRAM Bytes

DMA Channel 116 1

DMA Library (cy_dmac) 1118 4 ˣ CH_NR + 5

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 33 of 44

Configuration Flash Bytes SRAM Bytes

Typical [2] 324 4 ˣ CH_NR + 1

Functional Description

Overview

The DMA controller transfers data between source and destination locations. The source
location can be Flash, SRAM or another Component, i.e. UART, ADC and many others. The
destination location can be SRAM or another Component. The transfer is initiated by a trigger
that can come from a DMA channel (including itself), a peripheral, or the CPU. The DMA
supports multiple channels (consult the part specific datasheet to determine how many channels
for a particular part) each of which may have a dedicated trigger and be individually enabled.

The DMA can transfer up to 65,536 data elements of configurable size. The data element size
can be a byte, halfword (2 bytes), or word (4 bytes).

The controller supports three operation modes that determine how the DMA operates on a single
trigger signal. The modes are:

▪ Single data element per trigger

▪ Entire descriptor per trigger

▪ Entire descriptor chain per trigger

The data transfer specifics, such as source and destination address locations and the size of the
transfer, are specified by a descriptor structure. Each channel has dedicated descriptor structure.

The DMA controller provides Active/Sleep functionality and is not available in Deep-Sleep and
Hibernate power modes.

Block Diagram and Configuration

Figure 4 gives an overview of the DMA controller at a block level.

▪ Trigger multiplexer block is outside the DMA controller and connects each channel to one
specific trigger in the design. A logical '1' on a selected trigger line indicates an activated
trigger and results in a channel data transfer.

▪ Pending triggers keep track of activated triggers by locally storing them in pending bits.
This is essential, because multiple channel trigger may be activated simultaneously,
whereas only one channel can be served by the data transfer engine at a time. This block

2. Includes a set of APIs for typical use case. The DMA transfer is configured using Configure dialog and started
from user firmware via DMA_Start() API call.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 34 of 44 Document Number: 001-96043 Rev. *D

enables the use of both level-sensitive and pulse-sensitive triggers. See tr_in input
description for more information on trigger signal. The pending triggers are registered in
the status register (STATUS_CH_ACT).

▪ Priority decoder determines the highest priority channel with an active trigger. The
priorities are set for each channel using the PRIO field of the channel control register
(CH_CTL).

▪ Data transfer engine is responsible for the data transfer from a source location to a
destination location. When idle, the data transfer engine is ready to accept the highest
priority activated channel. The configuration of the data transfer is specified by the
descriptor.

▪ Descriptor 0/1. Every channel has two descriptor structures for double buffering. A
descriptor is a set of four 32-bit registers that describe the configuration of the transfer.
The descriptor comprises of information regarding the source and destination address, the
mode of transfer to be used and other specifics related to the transfer. See Descriptors
section for more details.

▪ Master I/F is an AHB-Lite bus master, which allows the DMA controller to initiate AHB-Lite
data transfers to the source and destination locations.

▪ Slave I/F is an AHB-Lite bus slave, which allows the PSoC main CPU to access the DMA
controller's control/status registers and to access the descriptor structure.

▪ Interrupt logic includes interrupt status for each of the channels.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 35 of 44

Figure 4. DMA controller block diagram

PING

descriptor
SRC

DST

CTL

STATUS

CH_CTL

SRC

DST

CTL

STATUS

Descriptor 0

SRC

DST

CTL

STATUS

Descriptor 1

DMAC_CH_CTLx

DMA channel

SRC

DST

CTL

STATUS

Trigger

 multiplexer

Input

triggers

SW trigger

Slave I/F

Pending triggers Priority decoder Data transfer

Interrupt logic

Output

triggers

DMAC_CTL

DMAC_STATUS

DMAC_STATUS_SRC_ADDR

DMAC_STATUS_DST_ADDR

DMAC_STATUS_CH_ACT

DMAC_INTR

DMAC_INTR_SET

DMAC_INTR_MASK

DMAC_INTR_MASKED

Master I/F
Interrupt

Descriptors

The data transfer between a source and a destination in a channel is described/configured using
a descriptor structure. Each DMA channel has two descriptors – descriptor 0 (PING) and
descriptor 1 (PONG). The active descriptor is set by the PING_PONG bit in the channel control
register (DMAC_CH_CTL).The two descriptors are identical and each structure consists of four
32-bit words:

▪ Source address (SRC)

▪ Destination address (DST)

▪ Control word (CTL)

▪ Status word (STATUS)

Descriptor Source and Destination Addresses

Source address specifies base address of source location. This is configured by calling
DMA_Start(), DMA_SetSrcAddress() or CyDmaSetSrcAddress().

Destination address specifies base address of destination location. This is configured by calling
DMA_Start(), DMA_SetDstAddress() or CyDmaSetDstAddress().

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 36 of 44 Document Number: 001-96043 Rev. *D

To transfer from/to a variable, set source/destination address to the variable address. For
example:

int16 sample;

...

DMA_SetDstAddress(0, (void *) &sample);

For an array, set source/destination address to the address of the first array element. For
example:

#define BUFFER_SIZE 64

...

uint32 srcBuffer[BUFFER_SIZE];

uint32 dstBuffer[BUFFER_SIZE];

...

DMA_Start((void *)srcBuffer, (void *)dstBuffer);

If the source/destination location is another Component, i.e. ADC or UART, refer to its datasheet
for details which register should be used as a source/destination location for DMA. For example
to transfer from a RAM array to SCB UART TX buffer:

uint8 uartData[BUFFER_SIZE];

...

DMA_Start((void *)uartData, (void *) UART_TX_FIFO_WR_PTR);

Note For readability, the instance name used in all code examples is "DMA".

Descriptor Control Word

Descriptor control word configures the transfer specifics as shown in the following table:

Field Description

Data element size Specifies the size of the data element. The data element can be 8-, 16- or 32-bit
width. See CyDmaSetDataElementSize() API for more information on configuration
values.

The field can be configured using Data element size parameter,
DMA_SetConfiguration(), DMA_SetDataElementSize(), CyDmaSetConfiguration(),
or CyDmaSetDataElementSize() API call.

Number of data elements Total number of data elements this descriptor transfers before it is completed. Valid
ranges are 1 to 65536. In a typical use case, this setting is the buffer size of a
transfer.

The field can be configured using Number of data elements to transfer parameter,
DMA_SetConfiguration(), DMA_SetNumDataElements(),
CyDmaSetConfiguration(), or CyDmaSetNumDataElements() API call.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 37 of 44

Field Description

Source / destination widths Specifies the width of the source and destination locations. The DMA can either
read and write data from the source and destination at the size specified by data
element size or by a word (4bytes). This also determines how many bytes the
addresses are incremented if increment source and destination address are turned
on.

See CyDmaSetSrcDstTransferWidth() API for more information on configuration
values.

The field can be configured using Source and destination transfer width parameter,
DMA_SetConfiguration(), DMA_SetSrcDstTransferWidth(),
CyDmaSetConfiguration(), or CyDmaSetSrcDstTransferWidth() API call.

Address increment Specifies whether the source or destination addresses are incremented after the
transfer of each data element. Enable this option when the source/destination of the
data is a buffer and each data element needs to be fetched from subsequent
locations in the memory.

See CyDmaSetAddressIncrement() API for more information on configuration
values.

The field can be configured using Increment source address and Increment
destination address parameters, DMA_SetConfiguration(),
DMA_SetAddressIncrement(), CyDmaSetConfiguration(), or
CyDmaSetAddressIncrement() API call.

Trigger type Specifies the type of input trigger for the DMA. Level sensitive triggers can be
configured to wait a number of system clocks (SYSCLK) for the trigger to go low
(deactivate) before triggering the channel again. If during this time the trigger goes
low, the DMA channel will be retriggered on the next logic HIGH/1 trigger. If the
trigger doesn’t go low the DMA waits the specified number of clock cycles before
retriggering.

See tr_in input section for more information on trigger signal behavior.

The field can be configured using Trigger type parameter, DMA_SetConfiguration(),
DMA_SetTriggerType(), CyDmaSetConfiguration(), or CyDmaSetTriggerType() API
call.

Transfer mode Specifies how the DMA reacts to every trigger event. The DMA can be configured
to transfer one data element per trigger, entire descriptor (elements data elements)
per trigger or all data elements of current descriptor and automatically trigger next
descriptor.

See CyDmaSetTransferMode() API for more information on configuration values.

The field can be configured using Transfer mode parameter,
DMA_SetConfiguration(), DMA_SetTransferMode(), CyDmaSetConfiguration(), or
CyDmaSetTransferMode() API call.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 38 of 44 Document Number: 001-96043 Rev. *D

Field Description

Preemptable Specifies if the descriptor is preemptable. If disabled, the current transfer as defined
by transfer mode field is allowed to complete undisturbed. If enabled, the current
transfer can be preempted/interrupted by a DMA channel of higher priority. When
this channel is preempted, it is set as pending and will run the next time its priority
is the highest.

See CyDmaSetPreemptable() API for more information on configuration values.

The field can be configured using Descriptor 0/1 is preemptable parameter,
DMA_SetConfiguration(), DMA_SetPreemptable(), CyDmaSetConfiguration(), or
CyDmaSetPreemptable() API call.

Post completion actions Specifies what occurs after a descriptor completes. The descriptor is defined
completed after transfer all data elements as specified by number of data elements
field. The settings are (can be selected simultaneously):

▪ Chain to next descriptor

▪ Invalidate descriptor

▪ Generate interrupt

See CyDmaSetPostCompletionActions() API for more information on configuration
values.

The field can be configured using Post completion actions parameter,
DMA_SetConfiguration(), DMA_SetPostCompletionActions(),
CyDmaSetConfiguration(), or CyDmaSetPostCompletionActions() API call.

Descriptor Status Word

Descriptor status word provides descriptor validity bit, response code and the index of the
current data transfer. See CyDmaGetDescriptorStatus() API for more information on descriptor
status word fields.

Performance

Single element transfer mode

It requires 12 clock cycles (from “tr_in” to “tr_out”) to complete one data element transfer
assuming there are no wait states on AHB-Lite infrastructure for read/write transfers. The
equation for one data element is:

No of cycles = 12 + LOAD wait states + STORE wait states

Entire descriptor and entire descriptor chain transfer mode

It requires 12 clock cycles for the first data transfer and 3 cycles per transfer for remaining data
elements (This is also assuming no wait states on AHB-Lite infrastructure). So equation looks
like the following for transferring ‘N’ data elements:

No of cycles = (12 + LOAD wait states + STORE wait states) +
(N-1)(3 + LOAD wait states + STORE wait states)

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 39 of 44

Load wait states are incurred when the transfer source is being accessed by the CPU. Store wait
states are incurred when the transfer destination is being accessed by the CPU. The DMA must
wait until the CPU finishes before it can transfer data.

Interrupt Service Routine

If all the data transfers as specified by a descriptor channel structure have completed, an
interrupt request may be generated by the DMA transfer engine.

This interrupt request is shared among all DMA channels. The preferred method to access this
interrupt is to register a user defined callback function to be called by the DMA ISR. Every DMA
channel uses dedicated callback function. The DMA ISR determines which channel has triggered
the interrupt and invokes the associated function. It also clears the pending interrupts. To set a
callback function, use DMA_SetInterruptCallback() or CyDmaSetInterruptCallback().The function
should contain code to process an interrupt for the associated DMA channel.

The following is a C language example demonstrating how to define and set a callback function.
This example assumes the Component has been placed in a design with the instance name
“DMA”.

Callback function prototype example:

void MyIntrCallback(void);

Callback function definition example:

void MyIntrCallback(void)

{

 /* Code to process the interrupt */

}

Setting callback function example:

DMA_SetInterruptCallback(&MyIntrCallback);

Interrupt enabling example:

CyIntEnable(CYDMA_INTR_NUMBER);

CyGlobalIntEnable;

When configuring software DMA that doesn’t use the DMA Component on a schematic, call
CyDmaSetInterruptSourceMask() for enabling interrupt generation to the CPU core.

An alternative method is to use the CyDmaSetInterruptVector() API function. This will allow you
to set a custom interrupt vector for the DMA interrupt. To determine which DMA channel
generated an interrupt, call CyDmaGetInterruptSourceMasked(). Once asserted, the interrupt
request remains high until cleared by CyDmaClearInterruptSource().

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 40 of 44 Document Number: 001-96043 Rev. *D

Note Other Components with embedded DMA may register their callback functions to be called
from the DMA ISR. Therefore, changing the ISR will prevent such Components from operation.
Open DMA Editor tab under Design-Wide Resources (DWR) to view all DMA Components that
have been directly placed in the design, as well as all the DMA Components “inside” placed
Components.

The following is a C language example of the Interrupt Service Routine for the DMA interrupt:

/* ISR Prototype */

CY_ISR_PROTO(DmaInterruptHandler);

/* ISR Implementation */

CY_ISR(DmaInterruptHandler)

{

 uint32 intr;

 /* Determine the interrupt source */

 intr = CyDmaGetInterruptSourceMasked();

 /* Clear interrupt request */

 CyDmaClearInterruptSource(intr);

 /* Code to process the interrupt */

}

int main()

{

 /* Set interrupt vector for the DMA interrupt */

 CyDmaSetInterruptVector(&DmaInterruptHandler);

 /* Enable interrupts */

 CyIntEnable(CYDMA_INTR_NUMBER);

 CyGlobalIntEnable;

}

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 41 of 44

Register Protection

A number of DMA API functions use read/modify/write to update selected bits in registers; Since
these APIs do not disable interrupts during the read/modify/write sequence, it is possible for an
interrupt service routine to fire up after the read but before the write. If the interrupt service
routine were to also modify that register, then the update could get lost when the
read/modify/write sequence completes, since it will have read and continue to use the old value.

It is your responsibility to make your application interrupt safe. One way to do that is to disable
interrupts during conflicting read/modify/write requests.

The table below lists all APIs that are not interrupt safe along with registers they modify.

Function Register [3]

CyDmaChEnable() DMAC_CH_CTLx

CyDmaChDisable() DMAC_CH_CTLx

CyDmaSetPriority() DMAC_CH_CTLx

CyDmaSetNextDescriptor() DMAC_CH_CTLx

CyDmaSetDataElementSize() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

CyDmaSetNumDataElements() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

CyDmaSetAddressIncrement() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

CyDmaSetTransferMode() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

CyDmaSetPreemptable() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

CyDmaSetPostCompletionActions() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

CyDmaSetTriggerType() DMAC_DESCRx_PING_CTL / DMAC_DESCRx_PONG_CTL

Component Debug Window

PSoC Creator allows you to view debug information about Components in your design. Each
Component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device technical reference manual.

To open the Component Debug window:

1. Make sure the debugger is running or in break mode.

2. Choose Windows > Components… from the Debug menu.

3. In the Component Window Selector dialog, select the Component instances to view and
click OK.

3. x - DMA channel number.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 42 of 44 Document Number: 001-96043 Rev. *D

The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.

The following registers are displayed in the DMA Component debug window.

Register Name Description [4]

DMAC_CTL DMA controller control register.

DMAC_STATUS DMA controller status register.

DMAC_STATUS_SRC_ADDR Source address currently being used by the DMA controller.

DMAC_STATUS_DST_ADDR Destination address currently being used by the DMA controller.

DMAC_STATUS_CH_ACT Channel activation status.

DMAC_CH_CTLx Channel x control register.

DMAC_DESCRx_PING_SRC Descriptor 0 source address location for channel x.

DMAC_DESCRx_PING_DST Descriptor 0 destination address location for channel x.

DMAC_DESCRx_PING_CTL Descriptor 0 control word for channel x.

DMAC_DESCRx_PING_STATUS Descriptor 0 status word for channel x.

DMAC_DESCRx_PONG_SRC Descriptor 0 source address location for channel x.

DMAC_DESCRx_PONG_DST Descriptor 0 destination address location for channel x.

DMAC_DESCRx_PONG_CTL Descriptor 0 control word for channel x.

DMAC_DESCRx_PONG_STATUS Descriptor 0 status word for channel x.

DMAC_INTR Interrupt register.

DMAC_INTR_SET Interrupt set register.

DMAC_INTR_MASK Interrupt mask. Mask for corresponding field in INTR register.

DMAC_INTR_MASKED Interrupt masked register. Bitwise AND between the interrupt request and
mask registers.

Resources
The DMA Component utilizes a DMA channel of the device.

4. x - DMA channel number.

PSoC® Creator™ Component Datasheet PSoC 4 Direct Memory Access (DMA) Channel

Document Number: 001-96043 Rev. *D Page 43 of 44

Design-Wide cy_dmac Component Changes
This section lists the major changes in the design-wide cy_dmac Component from the previous
version.

Version Description of Changes Reason for Changes / Impact

1.10.a PSoC 4100S device family support
is added.

New devices support.

1.10 Changed default priority of DMA
interrupt from 0 (the highest priority)
to 3.

Consistency with the default priority of all other interrupts. Use
CyIntSetPriority() to set the desired DMA interrupt priority:

CyIntSetPriority(CYDMA_INTR_NUMBER, priority);

Modified CyDmaTrigger() function
for new devices support.

New devices support.

1.0.a Updated API description. Corrected description of the CyDmaSetPostCompletionActions()
function.

1.0 Initial Component version.

DMA Channel Component Changes

This section lists the major changes in the DMA Channel Component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.0.d Updated datasheet. Added MISRA Compliance table, rule 14.3.

1.0.c Datasheet edits and clarifications. Clarified that a call to CyDmaSetInterruptSourceMask() is
required for enabling interrupts to the CPU core.

Updated cy_dmac Component to
version 1.10.a.

See Design-Wide cy_dmac Component Changes.

1.0.b Updated cy_dmac Component to
version 1.10.

See Design-Wide cy_dmac Component Changes.

1.0.a Updated cy_dmac API description. See Design-Wide cy_dmac Component Changes.

1.0 Initial Component version.

PSoC 4 Direct Memory Access (DMA) Channel PSoC® Creator™ Component Datasheet

Page 44 of 44 Document Number: 001-96043 Rev. *D

© Cypress Semiconductor Corporation (an Infineon company), 2015-2021. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC
(“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its
patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress
governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the
Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to
distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware
products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a DMA Channel

	Input/Output Connections
	tr_in * – Input
	tr_out – Output

	Component Parameters
	Channel Tab
	Enable trigger input
	Channel priority
	Number of descriptors

	Descriptor 0/1 Tab
	Data element size
	Number of data elements to transfer
	Source and destination transfer width
	Increment source address by X
	Increment destination address by X
	Trigger type
	Transfer mode
	Descriptor 0/1 is preemptable
	Post completion actions

	Application Programming Interface
	API Functions per DMA Instance
	void DMA_Start(void * srcAddress, void * dstAddress)
	void DMA_Init(void)

	Global DMA API Functions
	DMA Controller API Functions
	void CyDmaEnable(void)
	void CyDmaDisable(void)
	uint32 CyDmaGetActiveChannels(void)
	void * CyDmaGetActiveSrcAddress(void)
	void * CyDmaGetActiveDstAddress(void)
	uint32 CyDmaGetStatus(void)
	void CyDmaSetInterruptVector(cyisraddress interruptVector)
	uint32 CyDmaGetInterruptSource(void)
	void CyDmaClearInterruptSource(uint32 interruptMask)
	void CyDmaSetInterruptSourceMask(uint32 interruptMask)
	uint32 CyDmaGetInterruptSourceMask(void)
	uint32 CyDmaGetInterruptSourceMasked (void)
	cydma_callback_t CyDmaSetInterruptCallback(int32 channel, cydma_callback_t callback)
	cydma_callback_t CyDmaGetInterruptCallback(int32 channel)
	void CyDmaInterrupt(void)

	DMA Channel API Functions
	int32 CyDmaChAlloc(void)
	cystatus CyDmaChFree(int32 channel)
	void CyDmaChEnable(int32 channel)
	void CyDmaChDisable(int32 channel)
	void CyDmaTrigger(int32 channel)
	void CyDmaSetPriority(int32 channel, int32 priority)
	int32 CyDmaGetPriority(int32 channel)
	void CyDmaSetNextDescriptor(int32 channel, int32 descriptor)
	int32 CyDmaGetNextDescriptor(int32 channel)

	Descriptor API Functions
	void CyDmaSetConfiguration(int32 channel, int32 descriptor, cydma_init_struct * config)
	void CyDmaValidateDescriptor(int32 channel, int32 descriptor)
	uint32 CyDmaGetDescriptorStatus(int32 channel, int32 descriptor)
	void CyDmaSetSrcAddress(int32 channel, int32 descriptor, void * srcAddress)
	void * CyDmaGetSrcAddress(int32 channel, int32 descriptor)
	void CyDmaSetDstAddress(int32 channel, int32 descriptor, void * dstAddress)
	void * CyDmaGetDstAddress(int32 channel, int32 descriptor)
	void CyDmaSetDataElementSize(int32 channel, int32 descriptor, uint32 dataElementSize)
	uint32 CyDmaGetDataElementSize(int32 channel, int32 descriptor)
	void CyDmaSetNumDataElements(int32 channel, int32 descriptor, int32 numDataElements)
	int32 CyDmaGetNumDataElements(int32 channel, int32 descriptor)
	void CyDmaSetSrcDstTransferWidth(int32 channel, int32 descriptor, uint32 transferWidth)
	uint32 CyDmaGetSrcDstTransferWidth(int32 channel, int32 descriptor)
	void CyDmaSetAddressIncrement(int32 channel, int32 descriptor, uint32 addressIncrement)
	uint32 CyDmaGetAddressIncrement(int32 channel, int32 descriptor)
	void CyDmaSetTriggerType(int32 channel, int32 descriptor, uint32 triggerType)
	uint32 CyDmaGetTriggerType(int32 channel, int32 descriptor)
	void CyDmaSetTransferMode(int32 channel, int32 descriptor, uint32 transferMode)
	uint32 CyDmaGetTransferMode(int32 channel, int32 descriptor)
	void CyDmaSetPreemptable(int32 channel, int32 descriptor, uint32 preemptable)
	uint32 CyDmaGetPreemptable(int32 channel, int32 descriptor)
	void CyDmaSetPostCompletionActions(int32 channel, int32 descriptor, uint32 actions)
	uint32 CyDmaGetPostCompletionActions(int32 channel, int32 descriptor)

	Global Variables
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage
	PSoC 4 (GCC)

	Functional Description
	Overview
	Block Diagram and Configuration
	Descriptors
	Descriptor Source and Destination Addresses
	Descriptor Control Word
	Descriptor Status Word

	Performance
	Single element transfer mode
	Entire descriptor and entire descriptor chain transfer mode

	Interrupt Service Routine
	Register Protection

	Component Debug Window
	Resources
	Design-Wide cy_dmac Component Changes
	DMA Channel Component Changes

