
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

PSoC 4000 TRM

PSoC 4000 Family

PSoC® 4 Architecture Technical Reference
Manual (TRM)

Document No. 001-89309 Rev. *E

March 1, 2019

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
www.cypress.com

http://www.cypress.com

2 PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2013-2019. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document
("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this para-
graph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not
accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of
the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to subli-
cense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce
the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the
Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for
use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software
(as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware
products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hard-
ware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to
or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PROD-
UCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK,
VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Secu-
rity Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress
from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these mate-
rials may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further
notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this
document. Any information provided in this document, including any sample design information or programming code, is pro-
vided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the
functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any
device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are
weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of
a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the
High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do
release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component
in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors,
and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims
for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Com-
ponent in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-
Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has
qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use
the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agree-
ment.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-
RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 3

Contents Overview

Section A: Overview 9

1. Introduction ... 10

2. Getting Started .. 14

3. Document Construction ... 15

Section B: CPU System 18
4. Cortex-M0 CPU ... 19

5. Interrupts .. 24

Section C: Memory System 32
6. Memory Map ... 33

Section D: System Resources Subsystem (SRSS) 35

7. I/O System .. 36

8. Clocking System.. 45

9. Power Supply and Monitoring .. 51

10. Chip Operational Modes .. 56

11. Power Modes .. 57

12. Watchdog Timer .. 61

13. Reset System .. 64

14. Device Security ... 66

Section E: Digital System 68

15. Inter-Integrated Circuit (I2C) .. 69

16. Timer, Counter, and PWM .. 86

Section F: Analog System 109
17. CapSense ... 110

Section G: Program and Debug 111

18. Program and Debug Interface .. 112

19. Nonvolatile Memory Programming ... 119

Glossary 133

Index 148

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 4

Contents

Section A: Overview 9

1. Introduction 10
1.1 Top Level Architecture..10
1.2 Features..11
1.3 CPU System ...11

1.3.1 Processor...11
1.3.2 Interrupt Controller ...11

1.4 Memory...12
1.5 System-Wide Resources ..12

1.5.1 Clocking System ..12
1.5.2 Power System..12
1.5.3 GPIO..12

1.6 Fixed-Function Digital ...12
1.6.1 Timer/Counter/PWM Block...12
1.6.2 Serial Communication BlocksI2C Block...12

1.7 Special Function Peripherals ..12
1.7.1 CapSense ..12

1.8 Program and Debug ...13

2. Getting Started 14
2.1 Support ...14
2.2 Product Upgrades...14
2.3 Development Kits..14
2.4 Application Notes..14

3. Document Construction 15

3.1 Major Sections ..15
3.2 Documentation Conventions...15

3.2.1 Register Conventions...15
3.2.2 Numeric Naming ..15
3.2.3 Units of Measure..16
3.2.4 Acronyms...16

Section B: CPU System 18

4. Cortex-M0 CPU 19
4.1 Features..19
4.2 Block Diagram ..20
4.3 How It Works ..20
4.4 Address Map...20
4.5 Registers...21
4.6 Operating Modes ..22
4.7 Instruction Set...22

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 5

Contents

4.7.1 Address Alignment...23
4.7.2 Memory Endianness ..23

4.8 Systick Timer ..23
4.9 Debug ...23

5. Interrupts 24

5.1 Features..24
5.2 How It Works ..24
5.3 Interrupts and Exceptions - Operation ..25

5.3.1 Interrupt/Exception Handling..25
5.3.2 Level and Pulse Interrupts ...25
5.3.3 Exception Vector Table ..26

5.4 Exception Sources..26
5.4.1 Reset Exception...26
5.4.2 Non-Maskable Interrupt (NMI) Exception...27
5.4.3 HardFault Exception ..27
5.4.4 Supervisor Call (SVCall) Exception ...27
5.4.5 PendSV Exception ...27
5.4.6 SysTick Exception..27

5.5 Interrupt Sources ..28
5.6 Exception Priority..28
5.7 Enabling and Disabling Interrupts...29
5.8 Exception States...29

5.8.1 Pending Exceptions ...29
5.9 Stack Usage for Exceptions..30
5.10 Interrupts and Low-Power Modes...30
5.11 Exceptions – Initialization and Configuration ..31
5.12 Registers...31
5.13 Associated Documents ...31

Section C: Memory System 32

6. Memory Map 33
6.1 Features..33
6.2 How It Works ..33

Section D: System Resources Subsystem (SRSS) 35

7. I/O System 36

7.1 Features..36
7.2 GPIO Interface Overview..36
7.3 I/O Cell Architecture..37

7.3.1 Digital Input Buffer ...39
7.3.2 Digital Output Driver...39

7.4 High-Speed I/O Matrix ..41
7.5 .I/O State on Power Up...41
7.6 Behavior in Low-Power Modes ...42
7.7 Interrupt ..42
7.8 Peripheral Connections ..44

7.8.1 Firmware Controlled GPIO...44
7.8.2 tCapSense ...44
7.8.3 tTimer, Counter, and Pulse Width Modulator (TCPWM) Block...............................44

7.9 Registers...44

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 6

Contents

8. Clocking System 45

8.1 Block Diagram ..45
8.2 Clock Sources...46

8.2.1 Internal Main Oscillator ..46
8.2.2 Internal Low-speed Oscillator ..47
8.2.3 External Clock (EXTCLK) ..47

8.3 Clock Distribution..47
8.3.1 .HFCLK Input Selection ...48
8.3.2 HFCLK Predivider Configuration..48
8.3.3 SYSCLK Prescaler Configuration ..48
8.3.4 Peripheral Clock Divider Configuration ..49

8.4 Low-Power Mode Operation ...49
8.5 Register List..50

9. Power Supply and Monitoring 51
9.1 Block Diagram ..52
9.2 Power Supply Scenarios...53

9.2.1 Single 1.8 V to 5.5 V Unregulated Supply..53
9.2.2 Direct 1.71 V to 1.89 V Regulated Supply ...53
9.2.3 VDDIO Supply..54

9.3 How It Works ..54
9.3.1 Regulator Summary ...54

9.4 Voltage Monitoring..55
9.4.1 Power-On-Reset (POR) ...55

9.5 Register List ...55

10. Chip Operational Modes 56
10.1 Boot ..56
10.2 User ..56
10.3 Privileged ..56
10.4 Debug ...56

11. Power Modes 57

11.1 Active Mode ..58
11.2 Sleep Mode...58
11.3 Deep-Sleep Mode...58
11.4 Power Mode Summary ...59
11.5 Low-Power Mode Entry and Exit ..60
11.6 Register List..60

12. Watchdog Timer 61

12.1 Features..61
12.2 Block Diagram ..61
12.3 How It Works ..61

12.3.1 Enabling and Disabling WDT...62
12.3.2 WDT Interrupts and Low-Power Modes...63
12.3.3 WDT Reset Mode ..63

12.4 Register List ..63

13. Reset System 64
13.1 Reset Sources ..64

13.1.1 Power-on Reset ...64
13.1.2 Brownout Reset ...64

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 7

Contents

13.1.3 Watchdog Reset ..64
13.1.4 Software Initiated Reset...65
13.1.5 External Reset ...65
13.1.6 Protection Fault Reset ...65

13.2 Identifying Reset Sources...65
13.3 Register List..65

14. Device Security 66

14.1 Features..66
14.2 How It Works ..66

14.2.1 Device Security ..66
14.2.2 Flash Security ..67

Section E: Digital System 68

15. Inter-Integrated Circuit (I2C) 69

15.1 Features..69
15.2 General Description ..69

15.2.1 Terms and Definitions ..70
15.2.2 I2C Modes of Operation...70
15.2.3 Easy I2C (EZI2C) Protocol...72
15.2.4 I2C Registers ...73
15.2.5 I2C Interrupts ...74
15.2.6 Enabling and Initializing the I2C...74
15.2.7 Internal and External Clock Operation in I2C...75
15.2.8 Wake up from Sleep ..77
15.2.9 Master Mode Transfer Examples...78
15.2.10 Slave Mode Transfer Examples...80
15.2.11 EZ Slave Mode Transfer Example ...82
15.2.12 Multi-Master Mode Transfer Example ..84

16. Timer, Counter, and PWM 86

16.1 Features..86
16.2 Block Diagram ..86

16.2.1 Enabling and Disabling Counter in TCPWM Block ..87
16.2.2 Clocking ...87
16.2.3 Events Based on Trigger Inputs...87
16.2.4 Output Signals ...88
16.2.5 Power Modes ...90

16.3 Modes of Operation ..91
16.3.1 Timer Mode..92
16.3.2 Capture Mode ..95
16.3.3 Quadrature Decoder Mode ..97
16.3.4 Pulse Width Modulation Mode ...100
16.3.5 Pulse Width Modulation with Dead Time Mode ...104
16.3.6 Pulse Width Modulation Pseudo-Random Mode ...106

16.4 TCPWM Registers ..108

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 8

Contents

Section F: Analog System 109

17. CapSense 110

Section G: Program and Debug 111

18. Program and Debug Interface 112

18.1 Features..112
18.2 Functional Description ..112
18.3 Serial Wire Debug (SWD) Interface..113

18.3.1 SWD Timing Details ...114
18.3.2 ACK Details..114
18.3.3 Turnaround (Trn) Period Details ..114

18.4 Cortex-M0 Debug and Access Port (DAP) ...115
18.4.1 Debug Port (DP) Registers ..115
18.4.2 Access Port (AP) Registers ..115

18.5 Programming the PSoC 4 Device...116
18.5.1 SWD Port Acquisition...116
18.5.2 SWD Programming Mode Entry...116
18.5.3 SWD Programming Routines Executions ..116

18.6 PSoC 4 SWD Debug Interface ...117
18.6.1 Debug Control and Configuration Registers ..117
18.6.2 Breakpoint Unit (BPU)..117
18.6.3 Data Watchpoint (DWT) ...117
18.6.4 Debugging the PSoC 4 Device ..117

18.7 Registers...118

19. Nonvolatile Memory Programming 119
19.1 Features..119
19.2 Functional Description ..119
19.3 System Call Implementation ...120
19.4 Blocking and Non-Blocking System Calls...120

19.4.1 Performing a System Call ..120
19.5 System Calls...121

19.5.1 Silicon ID..121
19.5.2 Configure Clock ...122
19.5.3 Load Flash Bytes ...123
19.5.4 Write Row ..124
19.5.5 Program Row...124
19.5.6 Erase All...125
19.5.7 Checksum..125
19.5.8 Write Protection ...126
19.5.9 Non-Blocking Write Row ..127
19.5.10 Non-Blocking Program Row...128
19.5.11 Resume Non-Blocking ...129

19.6 System Call Status ...130
19.7 Non-Blocking System Call Pseudo Code ...131

Glossary 133

Index 148

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 9

Section A: Overview

This section encompasses the following chapters:

■ Introduction chapter on page 10

■ Getting Started chapter on page 14

■ Document Construction chapter on page 15

Document Revision History

Revision Issue Date
Origin of
Change

Description of Change

*A April 15, 2014 NIDH New PSoC 4000 TRM

*B May 09, 2016 MSUR Corrected links to the register TRM.

*C November 09, 2016 NIDH No content update; sunset review

*D May 30, 2017 SHEA Updated logo and copyright information

*E March 1, 2019 AJYA
Modified CapSense chapter. Fixed errors in figure captions in the Power Supply and
Monitoring chapter on page 51 chapter.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 10

1. Introduction

PSoC® 4 is a programmable embedded system controller with an Arm® Cortex®-M0 CPU.CY8C4000 family is the smallest
member of the PSoC 4 family of devices and is upward-compatible with larger members of PSoC 4.

PSoC 4 devices have these characteristics:

■ High-performance, 32-bit single-cycle Cortex-M0 CPU core

■ Capacitive touch sensing (CapSense®)

■ Configurable Timer/Counter/PWM block

■ Configurable I2C block with master, slave, and multi-master operating modes

■ Low-power operating modes – Sleep and Deep-Sleep

This document describes each functional block of the PSoC 4000 device in detail. This information will help designers to cre-
ate system-level designs.

1.1 Top Level Architecture

Figure 1-1 shows the major components of the PSoC 4000 architecture.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 11

Introduction

Figure 1-1. PSoC 4000 Family Block Diagram

1.2 Features

The PSoC 4000 family has these major components:

■ 32-bit Cortex-M0 CPU with single-cycle multiply, deliver-
ing up to 14 DMIPS at 16 MHz

■ Up to 16 KB flash and 2 KB SRAM

■ A center-aligned pulse-width modulator (PWM) with
complementary, dead-band programmable outputs

■ I2C communication block with slave, master, and multi-
master operating modes

■ CapSense

■ Low-power operating modes: Sleep and Deep-Sleep

■ Programming and debugging system through serial wire
debug (SWD)

■ Two current sourcing/sinking DACs (IDACs)

■ Comparator with 1.2 V reference

■ Fully supported by PSoC Creator™ IDE tool

1.3 CPU System

1.3.1 Processor

The heart of the PSoC 4 is a 32-bit Cortex-M0 CPU core
running up to 16 MHz for PSoC 4000. It is optimized for low-
power operation with extensive clock gating. It uses 16-bit
instructions and executes a subset of the Thumb-2 instruc-
tion set. This instruction set enables fully compatible binary
upward migration of the code to higher performance proces-
sors such as Cortex M3 and M4.

The CPU has a hardware multiplier that provides a 32-bit
result in one cycle.

1.3.2 Interrupt Controller

The CPU subsystem includes a nested vectored interrupt
controller (NVIC) with nine interrupt inputs and a wakeup
interrupt controller (WIC), which can wake the processor
from Deep-Sleep mode.

Deep Sleep
Active/ Sleep

CPU Subsystem

SRAM
2 KB

SRAM Controller

ROM
4 KB

ROM Controller

Flash
16 KB

Read Accelerator

SPCIFSWD/TC

NVIC, IRQMX

Cortex
M0

16 MHz
MUL

System Interconnect (Single/Multi Layer AHB)

I/O Subsystem

20 x GPIOs

IO
S

S
G

P
IO

(4
x

p
or

ts
)

Peripherals

Peripheral Interconnect (MMIO)PCLK

PSoC 4000

32-bit

AHB-Lite

System Resources
Lite

Power

Clock

WDT
ILO

Reset

Clock Control

IMO

Sleep Control

PWRSYS
REFPOR

WIC

Reset Control
XRES

1x
 S

C
B

-I2
C

C
ap

S
en

se

High Speed I/O MatrixPower Modes
1x

T
C

P
W

M

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 12

Introduction

1.4 Memory
The PSoC 4 memory subsystem consists of a 16 KB flash
module with a flash accelerator, 2 KB SRAM, and 4 KB
supervisory ROM options. The flash accelerator improves
the average access times from the flash block delivering
85 percent of single-cycle SRAM access performance. A
powerful and flexible protection model allows you to selec-
tively lock blocks of memory for read and write protection,
securing sensitive information. Additionally, all device inter-
faces can be permanently disabled for applications con-
cerned about phishing attacks due to a maliciously
reprogrammed device or attempts to defeat security by
starting and interrupting flash programming sequences. The
supervisory ROM is used to store the boot and configuration
routines.

1.5 System-Wide Resources

1.5.1 Clocking System

The clocking system for the PSoC 4 device consists of the
internal main oscillator (IMO) and internal low-speed oscilla-
tor (ILO) as internal clocks and has provision for an external
clock.

The system clock (SYSCLK) required for the CPU system
and the high-frequency clock (HFCLK) required by the
peripherals can be as high as 16 MHz. These clocks are
generated from the IMO.

The IMO with an accuracy of ±2 percent is the primary
source of internal clocking in the device. The default IMO
frequency is 24 MHz and it can be adjusted between 3 MHz
and 48 MHz in steps of 1 MHz. Multiple clock derivatives are
generated from the main clock frequency to meet various
application needs.

The ILO is a low-power, less accurate oscillator and is used
to generate clocks for peripheral operation in Deep-Sleep
mode. Its clock frequency is 32 kHz with ±60 percent accu-
racy.

An external clock source ranging from MHz to 16 MHz can
be used to generate the clock derivatives for the functional
blocks instead of the IMO.

1.5.2 Power System

The PSoC 4 operates with a single external supply in the
range 1.71 V to 5.5 V.

PSoC 4 has two low-power modes – Sleep and Deep-Sleep
– in addition to the default Active mode. In Active mode, the
CPU runs with all the logic powered. In Sleep mode, the
CPU is powered off with all other peripherals functional. In
Deep-Sleep mode, the CPU, SRAM, and high-speed logic
are in retention; the main system clock is OFF while the low-
frequency clock is ON and the low-frequency peripherals
are in operation.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

1.5.3 GPIO

Every GPIO in PSoC 4 has the following characteristics:

■ Eight drive strength modes

■ Individual control of input and output disables

■ Hold mode for latching previous state

■ Selectable slew rates

■ Interrupt generation – edge triggered

The PSoC 4 also supports CapSense capability on 17 out of
20 GPIOs. The pins are organized in a port that is 8-bit wide.
A high-speed I/O matrix is used to multiplex between vari-
ous signals that may connect to an I/O pin. Pin locations for
fixed-function peripherals are also fixed.

1.6 Fixed-Function Digital

1.6.1 Timer/Counter/PWM Block
The Timer/Counter/PWM block consists of a 16-bit counter
with user-programmable period length. The TCPWM block
has a capture register, period register, and compare register.
The block supports complementary, dead-band programma-
ble outputs. It also has a kill input to force outputs to a pre-
determined state. Other features of the block include center-
aligned PWM, clock prescaling, pseudo random PWM, and
quadrature decoding.

1.6.2 Serial Communication BlocksI2C
Block

The PSoC 4 has a fixed-function I2C interface. The I2C
interface can be used for general-purpose I2C communica-
tion and for tuning the CapSense component for optimized
operation.

The features of the I2C block include:

■ Standard I2C multi-master and slave function

■ EZ function mode support with 32-byte buffer

1.7 Special Function Peripherals

1.7.1 CapSense

PSoC 4 devices have the CapSense feature, which allows
you to use the capacitive properties of your fingers to toggle
buttons and sliders. CapSense functionality is supported on
all but three GPIO pins in PSoC 4 through a CapSense
Sigma-Delta (CSD) block. The CSD also provides water-
proofing capability.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 13

Introduction

1.7.1.1 IDACs and Comparator

The CapSense block has two IDACs and a comparator with
a 12-V reference, which can be used for general purposes, if
CapSense is not used.

1.8 Program and Debug
PSoC 4 devices support programming and debugging fea-
tures of the device via the on-chip SWD interface. The
PSoC Creator IDE provides fully integrated programming
and debugging support. The SWD interface is also fully
compatible with industry standard third-party tools.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 14

2. Getting Started

2.1 Support

Free support for PSoC® 4 products is available online at www.cypress.com/psoc4. Resources include training seminars,
discussion forums, application notes, PSoC consultants, CRM technical support email, knowledge base, and application
support engineers.

For application assistance, visit www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on DVD-ROM; you can also download them directly from www.cypress.com/psoccreator. Critical updates
to system documentation are also provided in the Documentation section.

2.3 Development Kits

The Cypress Online Store contains development kits, C compilers, and the accessories you need to successfully develop
PSoC projects. Visit the Cypress Online Store website at www.cypress.com/cypress-store. Under Products, click Program-
mable System-on-Chip to view a list of available items. Development kits are also available from Digi-Key, Avnet, Arrow, and
Future.

2.4 Application Notes

Refer to application note AN79953 - Getting Started with PSoC 4 for additional information on PSoC 4 device capabilities and
to quickly create a simple PSoC application using PSoC Creator and PSoC 4 development kits.

http://www.cypress.com/support/
http://www.cypress.com/psoccreator
http://www.cypress.com/psoc4
http://www.cypress.com/cypress-store
http://www.cypress.com/?rID=78695

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 15

3. Document Construction

This document includes the following sections:

■ Section B: CPU System on page 18

■ Section D: System Resources Subsystem (SRSS) on page 35

■ Section E: Digital System on page 68

■ Section F: Analog System on page 109

■ Section G: Program and Debug on page 111

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information of the prod-
uct.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed implementa-
tion and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are pre-
sented in bold, italic font throughout.

■ Registers Technical Reference Manual – Supplies all device register details summarized in the technical reference man-
ual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the PSoC 4000 Family: PSoC 4 Registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 16

Document Construction

3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms

This table lists the acronyms used in this document

Table 3-1. Units of Measure

Abbreviation Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2. Acronyms

Acronym Definition

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

AHB
AMBA (advanced microcontroller bus architecture)
high-performance bus, an Arm data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CMP compare

CO carry out

CPU central processing unit

CRC cyclic redundancy check

CSD CapSense sigma delta

CT continuous time

CTB continuous time block

CTBm continuous time block mini

DAC digital-to-analog converter

DAP debug access port

DC direct current

DI digital or data input

DMA direct memory access

DNL differential nonlinearity

DO digital or data output

DSI digital signal interface

DSM deep-sleep mode

DW data wire

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only
memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

HCI host-controller interface

HFCLK high-frequency clock

HSIOM high-speed I/O matrix

I2C inter-integrated circuit

IDE integrated development environment

ILO internal low-speed oscillator

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

Table 3-2. Acronyms (continued)

Acronym Definition

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 17

Document Construction

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LCD liquid crystal display

LFCLK low-frequency clock

LPCOMP low-power comparator

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MSb most significant bit

MSB most significant byte

NMI non-maskable interrupt

NVIC nested vectored interrupt controller

PC program counter

PCB printed circuit board

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PRS pseudo random sequence

PSoC® Programmable System-on-Chip

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

ROM read only memory

RMS root mean square

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

SE0 single-ended zero

Table 3-2. Acronyms (continued)

Acronym Definition

SNR signal-to-noise ratio

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SYSCLK system clock

SWD single wire debug

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

USBIO USB I/O

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

Table 3-2. Acronyms (continued)

Acronym Definition

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 18

Section B: CPU System

This section encompasses the following chapters:

■ Cortex-M0 CPU chapter on page 19

■ Interrupts chapter on page 24

Top Level Architecture

CPU System Block Diagram

SWD/TC

Cortex-M0
16 MHz (14 DMIPS)

NVIC, IRQMX

System Interconnect (Single Layer AHB)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 19

4. Cortex-M0 CPU

The PSoC® 4 Arm Cortex-M0 core is a 32-bit CPU optimized for low-power operation. It has an efficient three-stage pipeline,
a fixed 4-GB memory map, and supports the Armv6-M Thumb instruction set. The Cortex-M0 also features a single-cycle 32-
bit multiply instruction and low-latency interrupt handling. Other subsystems tightly linked to the CPU core include a nested
vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0 processor. For more details, see the Arm Cortex-M0 user guide or technical
reference manual, both available at www.arm.com.

4.1 Features

The PSoC 4 Cortex-M0 has the following features:

■ Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors

■ Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

■ Supports the Thumb instruction set for improved code density, ensuring efficient use of memory

■ NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response

■ Extensive debug support including:

❐ SWD port

❐ Breakpoints

❐ Watchpoints

http://www.arm.com

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 20

Cortex-M0 CPU

4.2 Block Diagram

Figure 4-1. PSoC 4 CPU Subsystem Block Diagram

4.3 How It Works

The Cortex-M0 is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes (see “Operating Modes” on page 22). It has a single-cycle 32-bit multiplication
instruction.

4.4 Address Map

The Arm Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed
from the code and SRAM regions.

Table 4-1. Cortex-M0 Address Map

Address Range Name Use

0x00000000 - 0x1FFFFFFF Code
Program code region. You can also place data here. Includes the exception vector table,
which starts at address 0.

0x20000000 - 0x3FFFFFFF SRAM Data region. You can also execute code from this region.

0x40000000 - 0x5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this region.

0x60000000 - 0xDFFFFFFF Not used.

0xE0000000 - 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 - 0xFFFFFFFF Device PSoC 4 implementation-specific.

Arm Cortex-M0 CPU

System Interconnect

Flash
Accelerator

SRAM
Controller

SROM
Controller

DAP

CPU Subsystem

Flash SRAM SROM

AHB Bridge

Test
Controller

F
ix
ed
 I
n
te
rr
u
pt
s

D
S
I
In
te
rr
u
p
ts

Flash
Programming

Interface

CPU & Memory
Subsystem

Interrupt
 MUX

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 21

Cortex-M0 CPU

4.5 Registers

The Cortex-M0 has 16 32-bit registers, as Table 4-2 shows:

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

Table 4-3 shows how the PSR bits are assigned.

Table 4-2. Cortex-M0 Registers

Name Typea Reset Value Description

R0-R12 RW Undefined R0-R12 are 32-bit general-purpose registers for data operations.

MSP (R13)
PSP (R13)

RW [0x00000000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates which stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

LR (R14) RW Undefined
The link register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions.

PC (R15) RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value from address 0x00000004. Bit[0] of the
value is loaded into the EPSR T-bit at reset and must be 1.

PSR RW Undefined

The program status register (PSR) combines:

Application Program Status Register (APSR).

Execution Program Status Register (EPSR).

Interrupt Program Status Register (IPSR).

APSR RW Undefined
The APSR contains the current state of the condition flags from previous instruction
executions.

EPSR RO [0x00000004].0 On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Table 4-3. Cortex-M0 PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 22

Cortex-M0 CPU

Use the MSR or CPS instruction to set or clear bit 0 of the PRIMASK register. If the bit is 0, exceptions are enabled. If the bit
is 1, all exceptions with configurable priority, that is, all exceptions except HardFault, NMI, and Reset, are disabled. See the
Interrupts chapter on page 24 for a list of exceptions.

4.6 Operating Modes

The Cortex-M0 processor supports two operating modes:

■ Thread Mode – used by all normal applications. In this mode, the MSP or PSP can be used. The CONTROL register bit 1
determines which stack pointer is used:

❐ 0 = MSP is the current stack pointer

❐ 1 = PSP is the current stack pointer

■ Handler Mode – used to execute exception handlers. The MSP is always used.

In thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack
pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute
using the new stack pointer.

In handler mode, explicit writes to the CONTROL register are ignored, because the MSP is always used. The exception entry
and return mechanisms automatically update the CONTROL register.

4.7 Instruction Set

The Cortex-M0 implements a version of the Thumb instruction set, as Table 4-4 shows. For details, see the Cortex-M0
Generic User Guide.

An instruction operand can be an Arm register, a constant, or another instruction-specific parameter. Instructions act on the
operands and often store the result in a destination register. Many instructions are unable to use, or have restrictions on
using, the PC or SP for the operands or destination register.

27 – 25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0
results in a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR N/A

Exception number of current ISR:

0 = thread mode
1 = reserved
2 = NMI
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…
24 = IRQ8

Table 4-3. Cortex-M0 PSR Bit Assignments

Bit PSR Register Name Usage

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 23

Cortex-M0 CPU

4.7.1 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the Cor-
tex-M0 processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.7.2 Memory Endianness

The PSoC 4 Cortex-M0 uses the little-endian format, where
the least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-
est address.

4.8 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses the Cortex-M0 internal clock as a
source.

4.9 Debug

PSoC 4 contains a debug interface based on SWD; it fea-
tures four breakpoint (address) comparators and two watch-
point (data) comparators.

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description

ADCS Add with carry

ADD{S}a Add

ADR PC-relative address to register

ANDS Bit wise AND

ASRS Arithmetic shift right

B{cc} Branch {conditionally}

BICS Bit clear

BKPT Breakpoint

BL Branch with link

BLX Branch indirect with link

BX Branch indirect

CMN Compare negative

CMP Compare

CPSID Change processor state, disable interrupts

CPSIE Change processor state, enable interrupts

DMB Data memory barrier

DSB Data synchronization barrier

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM Load multiple registers, increment after

LDR Load register from PC-relative address

LDRB Load register with word

LDRH Load register with half-word

LDRSB Load register with signed byte

LDRSH Load register with signed half-word

LSLS Logical shift left

LSRS Logical shift right

MOV{S}a Move

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-reverse word

REV16 Byte-reverse packed half-words

REVSH Byte-reverse signed half-word

RORS Rotate right

RSBS Reverse subtract

SBCS Subtract with carry

SEV Send event

STM Store multiple registers, increment after

STR Store register as word

STRB Store register as byte

STRH Store register as half-word

SUB{S}a Subtract

SVC Supervisor call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND-based test

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait for event

WFI Wait for interrupt

a. The ‘S’ qualifier causes the ADD, SUB, or MOV instructions to update
APSR condition flags.

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 24

5. Interrupts

The Arm Cortex-M0 (CM0) CPU in PSoC® 4 supports interrupts and exceptions. Interrupts refer to those events generated by
peripherals external to the CPU such as timers, serial communication block, and port pin signals. Exceptions refer to those
events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts and
exceptions result in the current program flow being stopped and the exception handler or interrupt service routine (ISR) being
executed by the CPU. The device provides a unified exception vector table for both interrupt handlers/ISR and exception han-
dlers.

5.1 Features

PSoC 4 supports the following interrupt features:

■ Supports 9 interrupts

■ Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels from 0 to 3 for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

5.2 How It Works

Figure 5-1. PSoC 4 Interrupts Block Diagram

Figure 5-1 shows the interaction between interrupt signals and the Cortex-M0 CPU. PSoC 4 has nine interrupts; these inter-
rupt signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution,
and communication with the CPU core. The exceptions are not shown in Figure 5-1 because they are part of CM0 core gen-
erated events, unlike interrupts, which are generated by peripherals external to the CPU.

Nested
Vectored
Interrupt

Controller
(NVIC)

Cortex-M0
Processor Core

IRQ0

Cortex-M0 Processor

IRQ1

IRQ8

Interrupt signals
from PSoC 4

on-chip peripherals

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 25

Interrupts

5.3 Interrupts and Exceptions -
Operation

5.3.1 Interrupt/Exception Handling

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt signals are initially low
(idle or inactive state) and the processor is executing the
main code, a rising edge on any one of the interrupt lines
is registered by the NVIC. The interrupt line is now in a
pending state waiting to be serviced by the CPU.

2. On detecting the interrupt request signal from the NVIC,
the CPU stores its current context by pushing the con-
tents of the CPU registers onto the stack.

3. The CPU also receives the exception number of the trig-
gered interrupt from the NVIC. All interrupts and excep-
tions have a unique exception number, as given in
Table 5-1. By using this exception number, the CPU
fetches the address of the specific exception handler
from the vector table.

4. The CPU then branches to this address and executes
the exception handler that follows.

5. Upon completion of the exception handler, the CPU reg-
isters are restored to their original state using stack pop
operations; the CPU resumes the main code execution.

Figure 5-2. Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the high-
est priority interrupt to the CPU. Thus, a higher priority inter-
rupt can block the execution of a lower priority ISR at any
time.

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the appropri-
ate exception handler.

5.3.2 Level and Pulse Interrupts

NVIC supports both level and pulse signals on the interrupt
lines (IRQ0 to IRQ8). The classification of an interrupt as
level or pulse is based on the interrupt source.

Figure 5-3. Level Interrupts

Figure 5-4. Pulse Interrupts

Figure 5-3 and Figure 5-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

1. On a rising edge event of the interrupt signal, the NVIC
registers the interrupt request. The interrupt is now in the
pending state, which means the interrupt requests have
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the inter-
rupt is cleared.

3. When the ISR is being executed by the CPU, one or
more rising edges of the interrupt signal are logged as a
single pending request. The pending interrupt is serviced
again after the current ISR execution is complete (see
Figure 5-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the
ISR, it will be pending and the ISR is executed again.
Figure 5-3 illustrates this for level triggered interrupts,
where the ISR is executed as long as the interrupt signal
is high.

Rising Edge on Interrupt Line is
registered by the NVIC

CPU detects the request signal
from NVIC and stores its

current context by pushing
contents onto the stack

CPU receives exception
number of triggered interrupt

and fetches the address of the
specific exception handle from

vector table.

CPU branches to the received
address and executes

exception handler

CPU registers are restored
using stack upon completion of

exception handler.

IRQn

CPU
Execution

State main
ISR ISR

main
ISR

main

IRQn is still high

IRQn

CPU
Execution

State main
ISR

main
ISR

main
ISR

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 26

Interrupts

5.3.3 Exception Vector Table

The exception vector table (Table 5-1), stores the entry point addresses for all exception handlers. The CPU fetches the
appropriate address based on the exception number.

In Table 5-1, the first word (4 bytes) is not marked as excep-
tion number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. In PSoC 4, the vector table can be configured to
be located either in flash memory (base address of
0x00000000) or SRAM (base address of 0x20000000). This
configuration is done by writing to the VECT_IN_RAM bit
field (bit 0) in the CPUSS_CONFIG register. When the
VECT_IN_RAM bit field is ‘1’, CPU fetches exception han-
dler addresses from the SRAM vector table location. When
this bit field is ‘0’ (reset state), the vector table in flash mem-
ory is used for exception address fetches. You must set the
VECT_IN_RAM bit field as part of the device boot code to
configure the vector table to be in SRAM. The advantage of
moving the vector table to SRAM is that the exception han-
dler addresses can be dynamically changed by modifying
the SRAM vector table contents. However, the nonvolatile
flash memory vector table must be modified by a flash mem-
ory write.

Reads of flash addresses 0x00000000 and 0x00000004 are
redirected to the first eight bytes of SROM to fetch the stack
pointer and reset vectors, unless the NO_RST_OVR bit of
the CPUSS_SYSREQ register is set. To allow flash read
from addresses 0x00000000 and 0x00000004, the
NO_RST_OVR bit should be set to ‘1’. The stack pointer
vector holds the address that the stack pointer is loaded with
on reset. The reset vector holds the address of the boot
sequence. This mapping is done to use the default
addresses for the stack pointer and reset vector from SROM
when the device reset is released. For reset, boot code in
SROM is executed first and then the CPU jumps to address
0x00000004 in flash to execute the handler in flash. The

reset exception address in the SRAM vector table is never
used.

Also, when the SYSREQ bit of the CPUSS_SYSREQ regis-
ter is set, reads of flash address 0x00000008 are redirected
to SROM to fetch the NMI vector address instead of from
flash. Reset CPUSS_SYSREQ to read the flash at address
0x00000008.

The exception sources (exception numbers 1 to 15) are
explained in 5.4 Exception Sources. The exceptions marked
as Reserved in Table 5-1 are not used, although they have
addresses reserved for them in the vector table. The inter-
rupt sources (exception numbers 16 to 24) are explained in
5.5 Interrupt Sources.

5.4 Exception Sources

This section explains the different exception sources listed
in Table 5-1 (exception numbers 1 to 15).

5.4.1 Reset Exception

Device reset is treated as an exception in PSoC 4. It is
always enabled with a fixed priority of –3, the highest priority
exception. A device reset can occur due to multiple reasons,
such as power-on-reset (POR), external reset signal on
XRES pin, or watchdog reset. When the device is reset, the
initial boot code for configuring the device is executed out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the CPU code execu-
tion jumps to flash memory. Flash memory address
0x00000004 (Exception#1 in Table 5-1) stores the location

Table 5-1. Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA)
Base_Address - 0x00000000 (start of flash memory) or
0x20000000 (start of SRAM)

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4-10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 - 3) Base_Address + 0x2C

12-13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 - 3) Base_Address + 0x38

15 System Timer (SysTick) Configurable (0 - 3) Base_Address + 0x3C

16 External Interrupt(IRQ0) Configurable (0 - 3) Base_Address + 0x40

… … Configurable (0 - 3) …

24 External Interrupt(IRQ8) Configurable (0 - 3) Base_Address + 0x52

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 27

Interrupts

of the startup code in flash memory. The CPU starts execut-
ing code out of this address. Note that the reset exception
address in the SRAM vector table will never be used
because the device comes out of reset with the flash vector
table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted.

5.4.2 Non-Maskable Interrupt (NMI)
Exception

Non-maskable interrupt (NMI) is the highest priority excep-
tion other than reset. It is always enabled with a fixed priority
of –2. There are two ways to trigger an NMI exception in the
device:

■ NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in soft-
ware by setting the NMIPENDSET bit in the interrupt
control state register (CM0_ICSR register). Setting this
bit will execute the NMI handler pointed to by the active
vector table (flash or SRAM vector table).

■ System Call NMI exception: This exception is used for
nonvolatile programming operations such as flash write
operation and flash checksum operation. It is triggered
by setting the SYSCALL_REQ bit in the
CPUSS_SYSREQ register. An NMI exception triggered
by SYSCALL_REQ bit always executes the NMI excep-
tion handler code that resides in SROM. Flash or SRAM
exception vector table is not used for system call NMI
exception. The NMI handler code in SROM is not read/
write accessible because it contains nonvolatile pro-
gramming routines that should not be modified by the
user.

5.4.3 HardFault Exception

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. Hard-
Fault exception is a catch-all exception for different types of
fault conditions, which include executing an undefined
instruction and accessing an invalid memory addresses.
The CM0 CPU does not provide fault status information to
the HardFault exception handler, but it does permit the han-
dler to perform an exception return and continue execution
in cases where software has the ability to recover from the
fault situation.

5.4.4 Supervisor Call (SVCall) Exception

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue a

supervisor call that requires privileged access to the system.
Note that the CM0 in PSoC 4 uses a privileged mode for the
system call NMI exception, which is not related to the
SVCall exception. (See the Chip Operational Modes chapter
on page 56 for details on privileged mode.) There is no other
privileged mode support for SVCall at the architecture level
in the device. The application developer must define the
SVCall exception handler according to the end application
requirements.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced
by the CPU. The SVCALLPENDED bit in the System Han-
dler Control and State Register (SHCSR) can be used to
check or modify the pending status of the SVCall exception.

5.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable. The PendSV
exception is triggered by setting the PENDSVSET bit in the
Interrupt Control State Register, CM0_ICSR. On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the PENDSV-
CLR bit in the Interrupt Control State Register, CM0_ICSR.
The priority of a PendSV exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_14[23:22] of the System Handler Priority Register 3
(CM0_SHPR3). See the Armv6-M Architecture Reference
Manual for more details.

5.4.6 SysTick Exception

CM0 CPU in PSoC 4 supports a system timer, referred to as
SysTick, as part of its internal architecture. SysTick provides
a simple, 24-bit decrementing counter for various timekeep-
ing purposes such as an RTOS tick timer, high-speed alarm
timer, or simple counter. The SysTick timer can be config-
ured to generate an interrupt when its count value reaches
zero, which is referred to as SysTick exception. The excep-
tion is enabled by setting the TICKINT bit in the SysTick
Control and Status Register (CM0_SYST_CSR). The priority
of a SysTick exception can be configured to a value
between 0 and 3 by writing to the two bit fields
PRI_15[31:30] of the System Handler Priority Register 3
(SHPR3). The SysTick exception can always be generated
in software at any instant by writing a one to the PENDST-
SETb bit in the Interrupt Control State Register, CM0_ICSR.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the Inter-
rupt Control State Register, CM0_ICSR.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 28

Interrupts

5.5 Interrupt Sources

PSoC 4 supports nine interrupts (IRQ0 to IRQ8 or exception
numbers 16 – 24) from peripherals. The source of each
interrupt is listed in . PSoC 4 provides flexible sourcing
options for each interrupt line. The interrupts include stan-
dard interrupts from the on-chip peripherals such as
TCPWM serial communication block, CSD block, and inter-
rupts from ports. The interrupt generated is usually the logi-
cal OR of the different peripheral states. The peripheral

status register should be read in the ISR to detect which
condition generated the interrupt. These interrupts are usu-
ally level interrupts, which require that the peripheral status
register be read in the ISR to clear the interrupt. If the status
register is not read in the ISR, the interrupt will remain
asserted and the ISR will be executed continuously.

See the I/O System chapter on page 36 for details on GPIO
interrupts.

5.6 Exception Priority

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. PSoC 4 provides flexibility in choosing priority values
for different exceptions. All exceptions other than Reset,
NMI, and HardFault can be assigned a configurable priority
level. The Reset, NMI, and HardFault exceptions have a
fixed priority of –3, –2, and –1 respectively. In PSoC 4, lower
priority numbers represent higher priorities. This means that
the Reset, NMI, and HardFault exceptions have the highest
priorities. The other exceptions can be assigned a configu-
rable priority level between 0 and 3.

PSoC 4 supports nested exceptions in which a higher prior-
ity exception can obstruct (interrupt) the currently active
exception handler. This pre-emption does not happen if the
incoming exception priority is the same as active exception.
The CPU resumes execution of the lower priority exception
handler after servicing the higher priority exception. The
CM0 CPU in PSoC 4 allows nesting of up to four exceptions.
When the CPU receives two or more exceptions requests of
the same priority, the lowest exception number is serviced
first.

The registers to configure the priority of exception numbers
1 to 15 are explained in “Exception Sources” on page 26.

The priority of the nine interrupts (IRQ0 to IRQ8) can be
configured by writing to the Interrupt Priority registers

(CM0_IPR). This is a group of four 32-bit registers with each
register storing the priority values of four interrupts, as given
in Table 5-3. The other bit fields in the register are not used.

Table 5-2. List of PSoC 4 Interrupt Sources

Interrupt
Cortex-M0

Exception No.
Interrupt Source

NMI (see “Exception Sources” on
page 26)

2 –

IRQ0 16 GPIO Interrupt - Port 0

IRQ1 17 GPIO Interrupt - Port 1

IRQ2 18 GPIO Interrupt - Port 2

IRQ3 19 GPIO Interrupt - Port 3

IRQ4 20 WDT (Watchdog timer) or Temp

IRQ5 21 SCB (Serial Communication Block)

IRQ6 22 SPC (System Performance Controller)

IRQ7 23 CSD (CapSense block counter overflow interrupt)

IRQ8 24 TCPWM0 (Timer/Counter/PWM 0)

Table 5-3. Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 29

Interrupts

5.7 Enabling and Disabling
Interrupts

The NVIC provides registers to individually enable and dis-
able the nine interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set-Enable Register
(CM0_ISER) and the Interrupt Clear-Enable Register
(CM0_ICER) are used to enable and disable the interrupts
respectively. These are 32-bit wide registers and each bit
corresponds to the same numbered interrupt. These regis-
ters can also be read in software to get the enable status of
the interrupts. Table 5-4 shows the register access proper-
ties for these two registers. Note that writing zero to these
registers has no effect.

The CM0_ISER and CM0_ICER registers are applicable
only for interrupts IRQ0 to IRQ8. These registers cannot be
used to enable or disable the exception numbers 1 to 15.
The 15 exceptions have their own support for enabling and
disabling, as explained in “Exception Sources” on page 26.

The PRIMASK register in Cortex-M0 (CM0) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they
are enabled. Configurable priority exceptions include all the
exceptions except Reset, NMI, and HardFault listed in
Table 5-1. They can be configured to a priority level between
0 and 3, 0 being the highest priority and 3 being the lowest
priority. When the PM bit (bit 0) in the PRIMASK register is
set, none of the configurable priority exceptions can be ser-
viced by the CPU, though they can be in the pending state
waiting to be serviced by the CPU after the PM bit is
cleared.

5.8 Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0_ICSR) contains
status bits describing the various exceptions states.

■ The VECTACTIVE bits ([8:0]) in the CM0_ICSR store the
exception number for the current executing exception.
This value is zero if the CPU does not execute any
exception handler (CPU is in thread mode). Note that the
value in VECTACTIVE bit fields is the same as the value
in bits [8:0] of the Interrupt Program Status Register
(IPSR), which is also used to store the active exception
number.

■ The VECTPENDING bits ([20:12]) in the CM0_ICSR
store the exception number of the highest priority pend-
ing exception. This value is zero if there are no pending
exceptions.

■ The ISRPENDING bit (bit 22) in the CM0_ICSR indi-
cates if a NVIC generated interrupt (IRQ0 to IRQ8) is in
a pending state.

5.8.1 Pending Exceptions

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the nine interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-Pend-
ing register (CM0_ISPR) and the Interrupt Clear-Pending
register (CM0_ICPR) are used to set and clear the pending
status of the interrupt lines. These are 32-bit wide registers
and each bit corresponds to the same numbered interrupt.

Table 5-4. Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set
Enable Register
(CM0_ISER)

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear
Enable Register
(CM0_ICER)

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Table 5-5. Exception States

Exception State Meaning

Inactive
The exception is not active or pending.
Either the exception is disabled or the
enabled exception has not been triggered.

Pending
The exception request is received by the
CPU/NVIC and the exception is waiting to
be serviced by the CPU.

Active

An exception that is being serviced by the
CPU but whose exception handler execu-
tion is not yet complete. A high-priority
exception can interrupt the execution of
lower priority exception. In this case, both
the exceptions are in the active state.

Active and Pending

The exception is serviced by the processor
and there is a pending request from the
same source during its exception handler
execution.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 30

Interrupts

Table 5-6 shows the register access properties for these two
registers. Note that writing zero to these registers has no
effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the CM0_ISER register.

Note that the CM0_ISPR and CM0_ICPR registers are used
only for the nine peripheral interrupts (exception numbers
16–47). These registers cannot be used for pending the
exception numbers 1 to 15. These 15 exceptions have their
own support for pending, as explained in “Exception
Sources” on page 26.

5.9 Stack Usage for Exceptions

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0. Cortex-M0
has two stack pointers - MSP and PSP. Only one of the
stack pointers can be active at a time. When in thread mode,
the Active Stack Pointer bit in the Control register is used to
define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-M0 always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the

current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the Cortex-M0 CPU chapter on page 19 for details.

The Cortex-M0 uses two techniques, tail chaining and late
arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are part
of the internal processor architecture. For information on tail
chaining and late arrival mechanism, visit the Arm
Infocenter.

5.10 Interrupts and Low-Power
Modes

PSoC 4 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter Active mode
when one or more wakeup sources generate an interrupt
signal. After entering Active mode, the ISR of the peripheral
interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0 CPU, triggers the transition into Sleep and Deep-Sleep
modes. The sequence of entering the different low-power
modes is detailed in the Power Modes chapter on page 57.
Chip low-power modes have two categories of fixed-function
interrupt sources:

■ Fixed-function interrupt sources that are available only in
the Active and Deep-Sleep modes (watchdog timer
interrupt, I2C interrupts, and GPIO interrupts)

■ Fixed-function interrupt sources that are available only in
the Active mode (all other fixed-function interrupts)

Table 5-6. Interrupt Set Pending/Clear Pending Registers

Register Operation
Bit

Value
Comment

Interrupt Set-
Pending Register
(CM0_ISPR)

Write
1

To put an interrupt to
pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-
Pending Register
(CM0_ICPR)

Write
1

To clear a pending
interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 31

Interrupts

5.11 Exceptions – Initialization and Configuration

This section covers the different steps involved in initializing and configuring exceptions in PSoC 4.

1. Configuring the Exception Vector Table Location: The first step in using exceptions is to configure the vector table location
as required – either in flash memory or SRAM. This configuration is done by writing either a ‘1’ (SRAM vector table) or ‘0’
(flash vector table) to the VECT_IN_RAM bit field (bit 0) in the CPUSS_CONFIG register. This register write is done as
part of device initialization code.

It is recommended that the vector table be available in SRAM if the application needs to change the vector addresses
dynamically. If the table is located in flash, then a flash write operation is required to modify the vector table contents.
PSoC Creator IDE uses the vector table in SRAM by default.

2. Configuring Individual Exceptions: The next step is to configure individual exceptions required in an application.

a. Configure the exception or interrupt source; this includes setting up the interrupt generation conditions. The register
configuration depends on the specific exception required.

b. Define the exception handler function and write the address of the function to the exception vector table. Table 5-1
gives the exception vector table format; the exception handler address should be written to the appropriate exception
number entry in the table.

c. Set up the exception priority, as explained in “Exception Priority” on page 28.

d. Enable the exception, as explained in “Enabling and Disabling Interrupts” on page 29.

5.12 Registers

5.13 Associated Documents
■ Armv6-M Architecture Reference Manual – This document explains the Arm Cortex-M0 architecture, including the instruc-

tion set, NVIC architecture, and CPU register descriptions.

Table 5-7. List of Registers

Register Name Description

CM0_ISER Interrupt Set-Enable Register

CM0_ICER Interrupt Clear Enable Register

CM0_ISPR Interrupt Set-Pending Register

CM0_ICPR Interrupt Clear-Pending Register

CM0_IPR Interrupt Priority Registers

CM0_ICSR Interrupt Control State Register

CM0_AIRCR Application Interrupt and Reset Control Register

CM0_SCR System Control Register

CM0_CCR Configuration and Control Register

CM0_SHPR2 System Handler Priority Register 2

CM0_SHPR3 System Handler Priority Register 3

CM0_SHCSR System Handler Control and State Register

CM0_SYST_CSR Systick Control and Status Register

CPUSS_CONFIG CPU Subsystem Configuration Register

CPUSS_SYSREQ System Request Register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 32

Section C: Memory System

This section presents the following chapter:

■ Memory Map chapter on page 33

Top Level Architecture

Memory System Block Diagram

SPCIF

FLASH
16 KB

Read Accelerator

SRAM
2 kB

SROM
4 kB

SRAM Controller ROM Controller

System Interconnect (Single Layer AHB)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 33

6. Memory Map

All PSoC® 4 memory (flash, SRAM, and SROM) and all registers are accessible by the CPU and in most cases by the debug
system. This chapter contains an overall map of the addresses of the memories and registers.

6.1 Features
The PSoC 4 memory system has the following features:

■ 16K bytes flash, 2K bytes SRAM

■ 4K byte SROM contains boot and configuration routines

■ Arm Cortex-M0 32-bit linear address space, with regions for code, SRAM, peripherals, and CPU internal registers

■ Flash is mapped to the Cortex-M0 code region

■ SRAM is mapped to the Cortex-M0 SRAM region

■ Peripheral registers are mapped to the Cortex-M0 peripheral region

■ The Cortex-M0 Private Peripheral Bus (PPB) region includes registers implemented in the CPU core. These include reg-
isters for NVIC, SysTick timer, and fixed-function I2C block. For more information, see the Cortex-M0 CPU chapter on
page 19.

6.2 How It Works
The PSoC 4 memory map is detailed in the following tables. For additional information, refer to the PSoC 4000 Family: PSoC
4 Registers TRM.

The Arm Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 6-1. Note that code can be executed
from the code and SRAM regions.

Table 6-1. Cortex-M0 Address Map

Address Range Name Use

0x00000000 – 0x1FFFFFFF Code
Executable region for program code. You can also put data here. Includes the exception
vector table, which starts at address 0.

0x20000000 – 0x3FFFFFFF SRAM Executable region for data. You can also put code here.

0x40000000 – 0x5FFFFFFF Peripheral All peripheral registers. Code cannot be executed out of this region.

0x60000000 – 0xDFFFFFFF – Not used

0xE0000000 – 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 – 0xFFFFFFFF Device PSoC 4 implementation-specific.

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 34

Memory Map

Table 6-2 shows the PSoC 4 address map.

Table 6-2. PSoC 4 Address Map

Address Range Use

0x00000000 - 0x00003FFF 16 KB flash

0x0FFFF000 - 0x10000000 4 KB supervisory flash

0x20000000 - 0x200007FF 2 KB SRAM

0x40100000 - 0x4011FFFF CPU subsystem registers

0x40020000 - 0x40023FFF I/O port control (high-speed I/O matrix) registers

0x40040000- -0x40043FFF I/O port registers

0x40050000- -0x4005FFFF TCPWM registers

0x40060000- -0x4006FFFF Fixed-function I2C registers

0x40080000- -0x4008FFFF CapSense registers

0x40030000- -0x4003FFFF Power, clock, reset control registers

0xE0000000 - 0xE00FFFFF Cortex-M0 PPB registers

0xF0000000 - 0xF0000FFF CoreSight ROM

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 35

Section D:System Resources Subsystem (SRSS)

This section encompasses the following chapters:

■ I/O System chapter on page 36

■ Clocking System chapter on page 45

■ Power Supply and Monitoring chapter on page 51

■ Chip Operational Modes chapter on page 56

■ Power Modes chapter on page 57

■ Watchdog Timer chapter on page 61

■ Reset System chapter on page 64

■ Device Security chapter on page 66

Top Level Architecture

System-Wide Resources Block Diagram

System Resources

Power
Sleep Control

PWRSYS

REFPOR

WIC

XRES

Clock

WDT

ILO

Reset

Clock Control

IMO

Reset Control

P
er

ip
he

ra
l I

nt
er

co
nn

e
ct

 (
M

M
IO

)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 36

7. I/O System

This chapter explains the PSoC® 4 I/O system, its features, architecture, operating modes, and interrupts. The GPIO pins in
PSoC 4 are grouped into ports; a port can have a maximum of eight GPIOs. PSoC 4000 family has a maximum of 20 GPIOs
arranged in four ports.

7.1 Features

The PSoC 4 GPIOs have these features:

■ Analog and digital input and output capabilities

■ Eight drive strength modes

■ Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

■ Slew rate control

■ Hold mode for latching previous state (used for retaining I/O state in Deep-Sleep mode)

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ CapSense support

7.2 GPIO Interface Overview

PSoC 4 is equipped with analog and digital peripherals. Figure 7-1 shows an overview of the routing between the peripherals
and pins.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 37

I/O System

Figure 7-1. GPIO Interface Overview

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the I/O cells via the high-speed I/O
matrix (HSIOM). HSIOM contains multiplexers to connect between a peripheral selected by the user and the pin. The
CapSense block is connected to the GPIO pins through the AMUX buses.

7.3 I/O Cell Architecture

Figure 7-2 shows the I/O cell architecture. It comprises of an input buffer and an output driver. This architecture is present in
every GPIO cell. It connects to the HSIOM multiplexers for the digital input and the output signal. Analog peripherals connect
directly to the pin.

High Speed IO Matrix
(HSIOM)

G
P

IO

C
o

nfig
ura

tion

G
P

IO
 Inte

rrup
t

G
P

IO
 P

in

Interface

GPIO Port Control

CSD
Controller

Fixed
Function
Digital

Peripherals
(TCPWM,

I2C)

CapSense Pin

AMUXBUS-A

AMUXBUS-B

IO Cell

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 38

I/O System

Figure 7-2. I/O Cell Architecture in PSoC 4000

Digital
Logic

Slew
Control

PORT_SLOW (GPIO_PRTx_PC[25])

GPIO_PRTx_PC[3y+2:3y]

In

OE

PIN

VDD/VDDIO

VDD/VDDIO

D
ig

it
al

 O
u

tp
u

t
P

at
h

GPIO_PRTx_DR[y]

ACTIVE_0 (TCPWM)

ACTIVE_1 (TCPWM)

ACTIVE_2 (TCPWM)

ACTIVE_3 (CSD Comparator)

DEEP_SLEEP_1 (SWD)

DEEP_SLEEP_0 (I2C)

OUTPUT ENABLE

HSIOM_PORT_SELx[4y+3:4y]

Pin Interrupt Signal

DATA
(GPIO_PRTx_INTR[y])

EDGE_SEL
(GPIO_PRTx_INTR_CFG[2y+1:2y])

I2C

DATA (GPIO_PRTx_PS[y])

INP_DIS (GPIO_PRTx_PC2[y])

D
ig

it
al

 In
p

u
t

P
at

h

Switches
HSIOM_PORT_SELx[4y+3:4y]

AMUXBUS-A (CapSense Source)

AMUXBUS-B (CapSense Shield)

A
n

a
lo

g

HSIOM

3

4

Input Buffer

Disable

Drive
Mode

 DSI

HSIOM

PORT_VTRIP_SEL (GPIO_PRTx_PC[24])

Buffer Mode Select

CMOS
LVTTL

HSIOM_PORT_SELx[4y+3:4y] 4

IO CELL

Input Buffer
 Output Driver

4

x – Port Number
y – Pin Number

VSS

VSS VSS

GPIO
Edge

Detect

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 39

I/O System

7.3.1 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled and disabled
by the INP_DIS bit of the Port Configuration Register 2
(GPIO_PRTx_PC2, where x is the port number). The buffer
is configurable for the following modes:

■ CMOS

■ LVTTL

These buffer modes are selected by the PORT_VTRIP_SEL
bit (GPIO_PRTx_PC[24]) of the Port Configuration register.

The threshold values for each mode can be obtained from
the device datasheet. The output of the input buffer is con-
nected to the HSIOM for routing to the selected peripherals.
Writing to the HSIOM port select register
(HSIOM_PORT_SELx) selects the peripheral. The digital
input peripherals in the HSIOM, shown in Figure 7-2, are pin
dependent. See the device datasheet to know the functions
available for each pin.

7.3.2 Digital Output Driver

Pins are driven by the digital output driver. It consists of cir-
cuitry to implement different drive modes and slew rate con-
trol for the digital output signals. The peripheral connects to
the digital output driver through the HSIOM; a particular
peripheral is selected by writing to the HSIOM port select
register (HSIOM_PORT_SELx).

PSoC 4000 has a dedicated I/O supply voltage pin VDDIO
in the 16-QFN package; in the remaining devices, I/Os are
driven with the VDD supply. Each GPIO pin has ESD diodes
to clamp the pin voltage to the I/O supply source. Ensure
that the voltage at the pin does not exceed the I/O supply
voltage VDDIO/VDD and drop below VSS. For the absolute
maximum and minimum GPIO voltage, see the device data-
sheet. The digital output driver can be enabled and disabled
using the DSI signal from the peripheral or data register
(GPIO_PRTx_DR) associated with the output pin. See 7.4
High-Speed I/O Matrix to know about the peripheral source
selection for the data and to enable or disable control source
selection.

7.3.2.1 Drive Modes

Each I/O is individually configurable into one of eight drive
modes using the Port Configuration register,
GPIO_PRTx_PC. Table 7-2 lists the drive modes. Figure 7-2
is a simplified output driver diagram that shows the pin view
based on each of the eight drive modes.

Table 7-1. Input Buffer Modes

PORT_VTRIP_SEL Input Buffer Mode

0b CMOS

1b LVTTL

Table 7-2. Drive Mode Settings

GPIO_PRTx_PC ('x' denotes port number and 'y' denotes pin number)

Bits Drive Mode Value Data = 1 Data = 0

3y+2: 3y

SEL'y’ Selects Drive Mode for Pin 'y' (0 y 7)

High-Impedance Analog 0 High Z High Z

High-impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 Strong 0

Resistive Pull Down 3 Strong 1 Weak 0

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down 7 Weak 1 Weak 0

http://www.cypress.com/?rID=94034
http://www.cypress.com/?rID=94034
http://www.cypress.com/?rID=94034
http://www.cypress.com/?rID=94034
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 40

I/O System

Figure 7-3. I/O Drive Mode Block Diagram

■ High-Impedance Analog

High-impedance analog mode is the default reset state; both output driver and digital input buffer are turned off. This state
prevents an external voltage from causing a current to flow into the digital input buffer. This drive mode is recommended for
pins that are floating or that support an analog voltage. High-impedance analog pins cannot be used for digital inputs. Read-
ing the pin state register returns a 0x00 regardless of the data register value. To achieve the lowest device current in low-
power modes, unused GPIOs must be configured to the high-impedance analog mode.

■ High-Impedance Digital

High-impedance digital mode is the standard high-impedance (High Z) state recommended for digital inputs. In this state, the
input buffer is enabled for digital input signals.

■ Resistive Pull-Up or Resistive Pull-Down

Resistive modes provide a series resistance in one of the data states and strong drive in the other. Pins can be used for either
digital input or digital output in these modes. If resistive pull-up is required, a ‘1’ must be written to that pin’s Data Register bit.
If resistive pull-down is required, a ‘0’ must be written to that pin’s Data Register. Interfacing mechanical switches is a com-
mon application of these drive modes. The resistive modes are also used to interface PSoC with open drain drive lines.
Resistive pull-up is used when input is open drain low and resistive pull-down is used when input is open drain high.

■ Open Drain Drives High and Open Drain Drives Low

Open drain modes provide high impedance in one of the data states and strong drive in the other. The pins can be used as
digital input or output in these modes. Therefore, these modes are widely used in bi-directional digital communication. Open
drain drive high mode is used when signal is externally pulled down and open drain drive low is used when signal is externally

pulled high. A common application for open drain drives low mode is driving I2C bus signal lines.

■ Strong Drive

The strong drive mode is the standard digital output mode for pins; it provides a strong CMOS output drive in both high and
low states. Strong drive mode pins must not be used as inputs under normal circumstances. This mode is often used for digi-
tal output signals or to drive external transistors.

■ Resistive Pull-Up and Resistive Pull-Down

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin DR
PS

Pin

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin
DR
PS

Pin

0 . High Impedance
 Analog

1 . High Impedance
 Digital

2 . Resistive Pull Up 3 . Resistive Pull Down

4 . Open Drain,
 Drives Low

5 . Open Drain,
 Drives High

6 . Strong Drive 7 . Resistive Pull Up
 and Pull Down

Vdd Vdd

Vdd Vdd Vdd

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 41

I/O System

In the resistive pull-up and resistive pull-down mode, the GPIO will have a series resistance in both logic 1 and logic 0 output
states. The high data state is pulled up while the low data state is pulled down. This mode is used when the bus is driven by
other signals that may cause shorts.

7.3.2.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options in strong drive mode; this is configured using PORT_SLOW bit of the
Port Configuration register (GPIO_PRTx_PC[25]). Slew rate is individually configurable for each port. This bit is cleared by
default and the port works in fast slew mode. This bit can be set if a slow slew rate is required. Slower slew rate results in
reduced EMI and crosstalk; hence, the slow option is recommended for low-frequency signals or signals without strict timing
constraints.

7.4 High-Speed I/O Matrix

The high-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the peripherals inside the device.
As the GPIOs are shared for multiple functions, HSIOM multiplexes the pin and connects to a particular peripheral selected
by the user. The HSIOM_PORT_SELx register is provided to select the peripheral. It is a 32-bit wide register available for
each port, with each pin occupying four bits. This register provides up to 16 different options for a pin as listed in Table 7-3.

Note The Active and Deep-Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

7.5 .I/O State on Power Up

During power up all the GPIOs are in high-impedance analog state and the input buffers are disabled. During run time, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power up. However, the DAP connection can be disabled or reconfig-
ured for general-purpose use through HSIOM. However, this reconfiguration takes place only after the device boots and start
executing code.

Table 7-3. PSoC 4000 HSIOM Port Settings

HSIOM_PORT_SELx ('x' denotes port number and 'y' denotes pin number)

Bits Name (SEL 'y') Value Description (Selects pin 'y' source (0 y 7)

4y+3 : 4y

DR 0 Pin is firmware-controlled GPIO.

CSD_SENSE 4 Pin is a CSD sense pin (analog mode).

CSD_SHIELD 5 Pin is a CSD shield pin (analog mode).

AMUXA 6 Pin is connected to AMUXBUS-A.

AMUXB 7
Pin is connected to AMUXBUS-B. This mode is also used for GPIO pre-charging of
tank capacitors.

ACTIVE_0 8 Pin-specific Active source # 0 (TCPWM, EXT_CLK).

ACTIVE_1 9 Pin-specific Active source #1 (TCPWM).

ACTIVE_2 10 Pin-specific Active source #2 (TCPWM).

ACTIVE_3 11 Pin-specific Active source #3 (CSD comparator).

DEEP_SLEEP_0 14 Pin-specific Deep-Sleep source #0 (SCB - I2C).

DEEP_SLEEP_1 15 Pin-specific Deep-Sleep source #1 (SWD).

http://www.cypress.com/?rID=94034
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 42

I/O System

7.6 Behavior in Low-Power Modes

Table 7-4 shows the status of GPIOs in low-power modes.

7.7 Interrupt

In the PSoC 4 device, all the port pins have the capability to generate interrupts. As shown in Figure 7-2, the pin signal is
routed to the interrupt controller through the GPIO Edge Detect block.

Figure 7-4 shows the GPIO Edge Detect block architecture.

Figure 7-4. GPIO Edge Detect Block Architecture

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
reconfiguration. The edge detector is configured by writing
into the EDGE_SEL bits of the Port Interrupt Configuration
register, GPIO_PRTx_INTR_CFG, as shown in Table 7-5.

Besides the pins, edge detector is also present at the glitch
filter output. This filter can be used on one of the pins of a
port. The pin is selected by writing to the FLT_SEL field of

the GPIO_PRTx_INTR_CFG register as shown in Table 7-6.

The edge detector outputs of a port are ORed together and
then routed to the interrupt controller (NVIC in the CPU sub-
system). Thus, there is only one interrupt vector per port. On
a pin interrupt, it is required to know which pin caused an
interrupt. This is done by reading the Port Interrupt Status
register, GPIO_PRTx_INTR. This register not only includes
the information on which pin triggered the interrupt, it also
includes the pin status; it allows the CPU to read both infor-

Table 7-4. GPIO in Low-Power Modes

Low-Power Mode Status

Sleep
■ GPIOs are active and can be driven by peripherals such as CapSense, TCPWM, and I2C, which can work in

sleep mode.

■ Input buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.

Deep-Sleep
■ GPIO output pin states are latched and remain in the frozen state, except the I2C pins. I2C block can work in the

deep-sleep mode and can wake up the CPU on address match event.

■ Input buffers are also active in this mode; pin interrupts are functional.

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50 ns Glitch Filter

Interrupt
Signal

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7

Table 7-5. Edge Detector Configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 7-6. Glitch filter Input Selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 43

I/O System

mation in a single read operation. This register has one
more important use – to clear the interrupt. Writing ‘1’ to the
corresponding status bit clears the pin interrupt. It is impor-
tant to clear the interrupt status bit; otherwise, the interrupt
will occur repeatedly for a single trigger or respond only
once for multiple triggers, which is explained later in this
section. Also, note that when the Port Interrupt Control Sta-
tus register is read when an interrupt is occurring on the cor-
responding port, it can result in the interrupt not being
properly detected. Therefore, when using GPIO interrupts, it
is recommended to read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code. Table 7-7 shows the Port Interrupt Status
register bit fields.

The edge detector block output is routed to the Interrupt
Source Multiplexer shown in Figure 5-3 on page 25, which
gives an option of Level and Rising Edge detect. If the Level
option is selected, an interrupt is triggered repeatedly as
long as the Port Interrupt Status register bit is set. If the Ris-
ing Edge detect option is selected, an interrupt is triggered
only once if the Port Interrupt Status register is not cleared.
Thus, it is important to clear the interrupt status bit if the
Edge Detect block is used.

Table 7-7. Port Interrupt Status Register

GPIO_PRTx_INTR Description

0000b to 0111b
Interrupt status on pin 0 to pin 7. Writing ‘1’
to the corresponding bit clears the interrupt

1000b Interrupt status from the glitch filter

10000b to 10111 Pin 0 to Pin 7 status

11000b Glitch filter output status

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 44

I/O System

7.8 Peripheral Connections

7.8.1 Firmware Controlled GPIO

See Table 7-3 to know the HSIOM settings for a firmware
controlled GPIO. GPIO_PRTx_DR is the data register used
to read and write the output data for the GPIOs. A write
operation to this register changes the GPIO output to the
written value. Note that a read operation reflects the output
data written to this register and not the current state of the
GPIOs. Using this register, read-modify-write sequences
can be safely performed on a port that has both input and
output GPIOs.

In addition to the data register, three other registers –
GPIO_PRTx_DR_SET, GPIO_PRTx_DR_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the
output data respectively of a specific pin in a port without

affecting other pins. Writing ‘1’ into these registers will set,
clear, or invert; writing ‘0’ will have no affect on the pin sta-
tus.

GPIO_PRTx_PS is the I/O pad register that provides the
state of the GPIOs when read. Writes to this register have
no effect.

7.8.2 tCapSense

The pins that support CSD can be configured as CapSense
widgets such as buttons, slider elements, touchpad ele-
ments, or proximity sensors. CapSense also requires exter-
nal tank capacitors and shield lines. Table 7-8 shows the
GPIO and HSIOM settings required for CapSense. See the
CapSense chapter on page 113 for more information.

7.8.3 tTimer, Counter, and Pulse Width Modulator (TCPWM) Block

TCPWM has dedicated connections to the pin. See the device datasheet for details on these dedicated pins of PSoC 4. Note
that when the TCPWM block inputs such as start and stop are taken from the pins, the drive mode can be only high-z digital
because the TCPWM block disables the output buffer at the input pins.

7.9 Registers

Note The 'x' in the GPIO register name denotes the port number. For example, GPIO_PTR1_DR is the Port 1 output data
register.

Table 7-8. CapSense Settings

CapSense Pin
GPIO Drive Mode
(GPIO_PRTx_PC)

Digital Input Buffer Setting
(GPIO_PRTx_PC2)

HSIOM Setting

Sensor High-Impedance Analog Disable Buffer CSD_SENSE

Shield High-Impedance Analog Disable Buffer CSD_SHIELD

CMOD (normal operation) High-Impedance Analog Disable Buffer AMUXBUS A or CSD_COMP

CMOD (GPIO precharge, only available in select
GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

CSH TANK (GPIO precharge, only available in
select GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

Table 7-9. I/O Registers

Name Description

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_DR_SET Port Output Data Set Register

GPIO_PRTx_DR_CLR Port Output Data Clear Register

GPIO_PRTx_DR_INV Port Output Data Inverting Register

GPIO_PRTx_PS Port Pin State Register - Reads the logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin

GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register

GPIO_PRTx_INTR Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 45

8. Clocking System

The PSoC® 4 clock system includes these clock resources:

■ Two internal clock sources:

❐ 24–48 MHz internal main oscillator (IMO) with ±2 percent accuracy across all frequencies with trim

❐ 40-kHz internal low-speed oscillator (ILO) (can be calibrated using the IMO)

■ External clock (EXTCLK) generated using a signal from an I/O pin

■ High-frequency clock (HFCLK) of up to 48 MHz, selected from IMO or external clock

❐ Dedicated prescaler for HFCLK

■ Low-frequency clock (LFCLK) sourced by ILO

■ Dedicated prescaler for system clock (SYSCLK) of up to 16 MHz sourced by HFCLK

■ Four peripheral clocks, each with a 16-bit divider

8.1 Block Diagram

Figure 8-1 gives a generic view of the clocking system in PSoC 4 devices.

Figure 8-1. Clocking System Block Diagram

IMO

ILO

EXTCLK

LFCLK

HFCLK SYSCLK
Prescaler

SYSCLK

Peripheral
Divider 0

Peripheral
Divider 1

Peripheral
Divider 2

Peripheral
Divider 3

HFCLK
Predivider

SCBCLK

CSDCLK0

CSDCLK1

TCPWMCLK

WDT

Cortex-M0
CPU

SCB (I2C)

TCPWM

CSD

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 46

Clocking System

The three clock sources in the device are IMO, EXTCLK,
and ILO, as shown in Figure 8-1. The HFCLK mux selects
the HFCLK source from the EXTCLK or the IMO. The
HFCLK predivider divides the HFCLK input. The ILO
sources the LFCLK.

8.2 Clock Sources

8.2.1 Internal Main Oscillator

The internal main oscillator operates with no external com-
ponents and outputs a stable clock at frequencies
spanning24-48 MHz in 4-MHz increments. Frequencies are
selected by setting the frequency in the CLK_IMO_TRIM2
register and setting the IMO trim in the CLK_IMO_TRIM1
register The frequency setting in CLK_IMO_TRIM2 deter-
mines the IMO frequency output. Table 8-1 provides the set-
ting corresponding to the IMO frequency output. In addition
to setting the frequency in CLK_IMO_TRIM2, the user
needs to load corresponding trim values in the
CLK_IMO_TRIM1. Frequency selection follows an algorithm
to ensure no intermediate state is programmed to a value
higher than 48 MHz. Each PSoC device has IMO trim set-
tings determined during manufacturing to meet datasheet
specifications; the trim is stored in manufacturing configura-
tion data in SFLASH. There are TRIM values corresponding
to the frequency selected by the user. The TRIM values from
SFLASH are loaded in the corresponding trim registers –
CLK_IMO_TRIM1. These values may be loaded at startup
to achieve the desired configuration. Firmware can retrieve
these trim values and reconfigure the device to change the
frequency at run-time.

To configure the IMO frequency, follow this algorithm:

■ If ((new_freq 43 MHz) and (old_freq 43 MHz)),

Change CLK_IMO_TRIM2 to a lower frequency such as
24 MHz

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for the new_freq

Wait 5 µs

Change CLK_IMO_TRIM2 to new_freq

■ else if (new_freq > old_freq),

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for new_freq

Wait 5 µs

Change CLK_IMO_TRIM2 to new_freq

■ else

Change CLK_IMO_TRIM2 to new_freq

Wait 5 cycles

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for new_freq

Table 8-1. IMO Frequency Configuration

CLK_IMO_TRIM2 Frequency in
MHzBit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 3

0 0 0 1 0 0 4

0 0 0 1 0 1 5

0 0 0 1 1 0 6

0 0 0 1 1 1 7

0 0 1 0 0 0 8

0 0 1 0 0 1 9

0 0 1 0 1 0 10

0 0 1 0 1 1 11

0 0 1 1 0 0 12

0 0 1 1 1 0 13

0 0 1 1 1 1 14

0 1 0 0 0 0 15

0 1 0 0 0 1 16

0 1 0 0 1 0 17

0 1 0 0 1 1 18

0 1 0 1 0 0 19

0 1 0 1 0 1 20

0 1 0 1 1 0 21

0 1 0 1 1 1 22

0 1 1 0 0 0 23

0 1 1 0 0 1 24

0 1 1 0 1 1 25

0 1 1 1 0 0 26

0 1 1 1 0 1 27

0 1 1 1 1 0 28

0 1 1 1 1 1 29

1 0 0 0 0 0 30

1 0 0 0 0 1 31

1 0 0 0 1 0 32

1 0 0 0 1 1 33

1 0 0 1 0 1 34

1 0 0 1 1 0 35

1 0 0 1 1 1 36

1 0 1 0 0 0 37

1 0 1 0 0 1 38

1 0 1 0 1 0 39

1 0 1 0 1 1 40

1 0 1 1 1 0 41

1 0 1 1 1 1 42

1 1 0 0 0 0 43

1 1 0 0 0 1 44

1 1 0 0 1 0 45

1 1 0 0 1 1 46

1 1 0 1 0 0 47

1 1 0 1 0 1 48

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 47

Clocking System

8.2.1.1 Startup Behavior

After reset, the IMO is configured for 24-MHz operation. During the “boot” portion of startup, trim values are read from flash
and the IMO is configured to achieve datasheet specified accuracy. The HFCLK predivider is initially set to a divide value of 4
to reduce current consumption at startup.

8.2.2 Internal Low-speed Oscillator

The internal low-speed oscillator operates with no external components and outputs a stable clock at 40-kHz nominal. The
ILO is relatively low power and low accuracy. It can be calibrated periodically using a higher accuracy, high-frequency clock to
improve accuracy. The ILO is available in all power modes. The ILO is always used as the system low-frequency clock LFCLK
in the device. The ILO is a relatively inaccurate (±60 percent overvoltage and temperature) oscillator, which is used to gener-
ate low-frequency clocks. If calibrated against the IMO when in operation, the ILO is accurate to ±10 percent for stable tem-
perature and voltage. The ILO is recommended to be always on, because it is the source of the WDT, which is required for
reliable system operation. The ILO can be disabled by clearing the ENABLE bit in the CLK_ILO_CONFIG register. The WDT
reset must be disabled before disabling the ILO. Otherwise, any register write to disable the ILO will be ignored. Enabling the
WDT reset will automatically enable the ILO.

Note Disabling the ILO reset is not recommended if:

■ WDT protection is required against firmware crashes

■ WDT protection is required against the power supply events that produce sudden brownout events that may in turn com-
promise the CPU functionality.

See the Watchdog Timer chapter on page 61 for details.

8.2.3 External Clock (EXTCLK)

The external clock (EXTCLK) is a MHz range clock that can be generated from a signal on a designated PSoC 4 pin. This
clock may be used instead of the IMO as the source of the system high-frequency clock, HFCLK. The allowable range of
external clock frequencies is0–16 MHz. The device always starts up using the IMO and the external clock must be enabled in
user mode; so the device cannot be started from a reset, which is clocked by the external clock.

When manually configuring a pin as the input to the EXTCLK, the drive mode of the pin must be set to high-impedance digital
to enable the digital input buffer. See the I/O System chapter on page 36 for more details.

8.3 Clock Distribution

PSoC 4 clocks are developed and distributed throughout the device, as shown in Figure 8-1. The distribution configuration
options are as follows:

■ HFCLK input selection

■ HFCLK predivider configuration

■ SYSCLK prescaler configuration

■ Peripheral divider configuration

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 48

Clocking System

8.3.1 .HFCLK Input Selection

HFCLK in PSoC 4 has two input options: IMO and EXTCLK. The HFCLK input is selected using the CLK_SELECT register’s
DIRECT_SEL bits, as described in Table 8-2.

8.3.2 HFCLK Predivider Configuration

The HFCLK predivider allows the device to divide the HFCLK selection mux input before use as HFCLK. The predivider is
capable of dividing the HFCLK by powers of 2 between 1 and 8. The predivider value is set using register CLK_SELECT bits
HFCLK_DIV, as described in Table 8-3. The HFCLK predivider is set to a divide value of 4 during boot to reduce current con-
sumption.

Note HFCLK's frequency cannot exceed 16 MHz.

8.3.3 SYSCLK Prescaler Configuration

The SYSCLK Prescaler allows the device to divide the HFCLK before use as SYSCLK, which allows for non-integer relation-
ships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other clocks in the device
that are derived from HFCLK. The SYSCLK prescaler is capable of dividing the HFCLK by1, 2, 4, or 8. The prescaler divide
value is set using register CLK_SELECT bits SYSCLK_DIV, as described in Table 8-4. The prescaler is initially configured to
divide by 1.

 Note The SYSCLK frequency cannot exceed 16 MHz.

Table 8-2. HFCLK Input Selection Bits DIRECT_SEL

Name Description

DIRECT_SEL[2:0]

HFCLK input clock selection

0: IMO. Uses the IMO as the source of the HFCLK

1: EXTCLK. Uses the EXTCLK as the source of the HFCLK

2–7: Reserved. Do not use

Table 8-3. HFCLK Predivider Value Bits HFCLK_DIV

Name Description

HFCLK_DIV[1:0]

HFCLK predivider value

0: No divider on HFCLK

1: Divides HFCLK by 2

2: Divides HFCLK by 4

3: Divides HFCLK by 8

Table 8-4. SYSCLK Prescaler Divide Value Bits SYSCLK_DIV

Name Description

SYSCLK_DIV[1:0]

SYSCLK prescaler divide value

0: SYSCLK = HFCLK

1: SYSCLK = HFCLK/2

2: SYSCLK = HFCLK/4

3: SYSCLK = HFCLK/8

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 49

Clocking System

8.3.4 Peripheral Clock Divider Configuration

The four peripheral clocks are derived from the HFCLK using the 16-bit peripheral clock dividers. Each is capable of dividing
the input clock by values between 1 and 65,536. Each of the four dividers is controlled by a PERI_DIV_16_CTL register,
whose mapping is explained in Table 8-5.

The PERI_DIV_CMD register can be used to enable, disable, and select the type of clock dividers for all peripheral clock
dividers. See the PERI_DIV_CMD in the PSoC 4000 Family: PSoC 4 Registers TRM for more details.

Input clocks to the peripherals are selected by PERI_PCLK_CTLx registers. Table 8-6 shows the peripheral clocks and their
respective registers. See the PSoC 4000 Family: PSoC 4 Registers TRM for more details.

8.4 Low-Power Mode Operation

The high-frequency clocks including the IMO, EXTCLK, HFCLK, SYSCLK, and peripheral clocks operate only in Active and
Sleep modes. The ILO and LFCLK operate in all power modes.

Table 8-5. Peripheral Clock Divider Control Register PERI_DIV_16_CTLx

Bits Name Description

0 EN

Enables or disables the divider

0: Divider disabled

1: Divider enabled

23:8 INT16_DIV
Divide value for the divider. Output = Input/(INT16_DIV + 1)

Acceptable divide values range from 0 to 65,536.

Table 8-6. Selecting Peripheral Clocks

Clock Register

SCB (I2C) PERI_PCLK_CTL0

CSD0 PERI_PCLK_CTL1

CSD1 PERI_PCLK_CTL2

TCPWM PERI_PCLK_CTL3

Table 8-7. Non-Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_CTLx

Bits Name Description

0 ENABLE_x
Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as
a result on a DISABLE command.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [, 65536].

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 50

Clocking System

8.5 Register List

Table 8-8. Clocking System Register List

Register Name Description

CLK_IMO_TRIM1 IMO Trim Register - This register contains IMO trim, allowing fine manipulation of its frequency.

CLK_IMO_TRIM2
IMO Frequency Selection Register - This register controls the frequency range of the IMO, allowing gross
manipulation of its frequency.

CLK_ILO_CONFIG ILO Configuration Register - This register controls the ILO configuration.

CLK_IMO_CONFIG IMO Configuration Register - This register controls the IMO configuration.

CLK_SELECT
Clock Select - This register controls clock tree configuration, selecting different sources for the system
clocks.

PERI_DIV_16_CTLx
Peripheral Clock Divider Control Registers - These registers configure each of the peripheral clock dividers,
enabling or disabling the divider and setting the integer divide value.

PERI_PCLK_CTLx Programmable clock control registers - These registers are used to select the input clocks to peripherals.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 51

9. Power Supply and Monitoring

PSoC® 4 is capable of operating from a 1.71 V to 5.5 V externally supplied voltage. This is supported through one of the two
following operating ranges:

■ 1.80 V to 5.50 V supply input to the internal regulators

■ 1.71 V to 1.89 V1 direct supply

There are different internal regulators to support the various power modes. These include Active digital regulator, Quiet regu-
lator, and Deep-Sleep regulator.

1. When the system supply is in the range 1.80 V to 1.89 V, both direct supply and internal regulator options can be used. The selection can be made depending
on the user’s system capability. Note that the supply voltage cannot go above 1.89 V for the direct supply option because it will damage the device. It should
not go below 1.80 V for the internal regulator option because the regulator will turn off.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 52

Power Supply and Monitoring

9.1 Block Diagram

Figure 9-1. Power System Block Diagram

The Active digital regulator allows the external VDD supply to

be regulated to the nominal 1.8 V required for the digital
core. The output pin of this regulator has a specific capacitor
requirement, as shown in Figure 9-1. This Active digital reg-
ulator is designed to supply the internal circuits only; there-
fore, it should not be loaded externally.

The primary regulated supply, labeled VCCD, can be config-

ured for internal regulation or can be directly supplied by the
pin. In internal regulation mode, VDD can vary between

1.8 V and 5.5 V and the on-chip regulators generate the
other low-voltage supplies.

In direct supply configuration, VCCD and VDD must be

shorted together and connected to a supply of 1.71 V to
1.89 V. The Active digital regulator is still powered up and
enabled by default. It must be disabled by the firmware to

reduce power consumption; see 9.3.1.1 Active Digital Regu-
lator.

The VDDIO pin, available in certain package types, provides

a separate voltage domain for the I2C pins. The chip can
thus communicate with an I2C system, running at a different
voltage (where VDDIO VDD). For example, VDD can be

3.3 V and VDDIO can be 1.8 V. See the device datasheet for

details.

One additional regulator is used to provide power in the
Deep-Sleep mode.

Digital
Regulator

VDD

0.1 uF 1 uF

V
D

D

V
C

C
D

Active
Domain

Examples: CPU,
IMO, Flash

Quiet
Regulator

Deep-Sleep
Regulator

Bandgap
Voltage

Reference

Deep-Sleep
Domain

Examples: ILO,
I2C

V
S

S

Note: Do not connect
external load to VCCD

1 uF

VDDIO

0.1 uF 1 uF

http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 53

Power Supply and Monitoring

9.2 Power Supply Scenarios

The following diagrams illustrate the different ways in which the device is powered.

9.2.1 Single 1.8 V to 5.5 V Unregulated Supply

If a 1.8-V to 5.5-V supply is to be used as the unregulated power supply input, it should be connected as shown in Figure 9-2.

Figure 9-2. Single Unregulated VDD Supply

In this mode, the device is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This
range is also designed for battery-powered operation; for instance, the chip can be powered from a battery system that starts
at 3.5 V and works down to 1.8 V. In this mode, the internal regulator supplies the internal logic. The VCCD output must be
bypassed to ground via a 0.1 µF external ceramic capacitor.

Bypass capacitors are also required from VDDD to ground; typical practice for systems in this frequency range is to use a bulk
capacitor in the 1 µF to 10 µF range in parallel with a smaller ceramic capacitor (0.1 µF, for example). Note that these are sim-
ply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic
should be simulated to design and obtain optimal bypassing.

9.2.2 Direct 1.71 V to 1.89 V Regulated Supply

In direct supply configuration, VCCD and VDD are shorted together and connected to a 1.71-V to 1.89-V supply. This regulated

supply should be connected to the device, as shown in Figure 9-3.

PSoC 4

VDDD

VCCD

VSS

0.1 uF 1 uF

0.1 uF

1.8 V - 5.5 V

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 54

Power Supply and Monitoring

Figure 9-3. Single Regulated VDD Supply

In this mode, VCCD and VDDD pins are shorted together and
bypassed. The internal regulator should be disabled in firm-
ware. See 9.3.1.1 Active Digital Regulator on page 54 for
details.

9.2.3 VDDIO Supply.

The VDDIO pin, available in certain package types, provides

a separate voltage domain for the I2C pins. See the device
datasheet for the power supply connections when VDDIO is

present. In applications where VDDIO supply is present and

VDD is off, make sure that P3[0] and P3[1] are not floating.

9.3 How It Works

The regulators in Figure 9-1 power the various domains of
the device. All the core regulators and digital I/Os draw their
input power from the VDD pin supply. Digital I/Os are sup-
plied from VDD. The VDDIO pin, available in certain package
types, provides a separate voltage domain for the I2C pins.
See the device datasheet for details.

9.3.1 Regulator Summary

The Active digital regulator and Quiet regulator are enabled
during the Active or Sleep power modes. They are turned off

in the Deep-Sleep mode (see Table 9-1 and Figure 9-1).

9.3.1.1 Active Digital Regulator

For external supplies from 1.8 V and 5.5 V, the Active digital
regulator provides the main digital logic in Active and Sleep
modes. This regulator has its output connected to a pin
(VCCD) and requires an external decoupling capacitor (1 µF
X5R).

For supplies below 1.8 V, VCCD must be supplied directly. In
this case, VCCD and VDD must be shorted together, as
shown in Figure 9-3.

The Active digital regulator can be disabled by setting the
EXT_VCCD bit in the PWR_CONTROL register. This action
reduces the power consumption in direct supply mode. The
Active digital regulator is available only in Active and Sleep
power modes.

9.3.1.2 Quiet Regulator

In Active and Sleep modes, this regulator supplies analog
circuits such as the bandgap reference and capacitive sens-
ing subsystem, which require a quiet supply, free of digital
switching noise and power supply noise. This regulator has

PSoC 4

VDDD

VCCD

VSS

0.1 uF 1 uF

1.71 V-1.89 V

Table 9-1. Regulator Status in Different Power Modes

Mode
Active

Regulator
Quiet

Regulator

Stop Off Off

Hibernate Off Off

Deep Sleep Off Off

Sleep On On

Active On On

http://www.cypress.com/?rID=94034
http://www.cypress.com/?rID=94034
http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 55

Power Supply and Monitoring

a high-power supply rejection ratio. The Quiet regulator is
available only in Active and Sleep power modes.

9.3.1.3 Deep-Sleep Regulator

This regulator supplies the circuits that remain powered in
Deep-Sleep mode, such as the ILO and SCB. The Deep-
Sleep regulator is available in all power modes. In Active
and Sleep power modes, the main output of this regulator is
connected to the output of the Active digital regulator
(VCCD). This regulator also has a separate replica output
that provides a stable voltage for the ILO. This output is not
connected to VCCD in Active and Sleep modes.

9.4 Voltage Monitoring

The voltage monitoring system includes power-on-reset
(POR) and brownout detection (BOD).

9.4.1 Power-On-Reset (POR)

POR circuits provide a reset pulse during the initial power
ramp. POR circuits monitor VCCD voltage. Typically, the

POR circuits are not very accurate with respect to trip-point.
POR circuits are used during initial chip power-up and then
disabled.

9.4.1.1 Brownout-Detect (BOD)

The BOD circuit protects the operating or retaining logic
from possibly unsafe supply conditions by applying reset to
the device. BOD circuit monitors the VCCD voltage. The

BOD circuit generates a reset if a voltage excursion dips
below the minimum VCCD voltage required for safe opera-

tion (see the device datasheet for details). The system will
not come out of RESET until the supply is detected to be
valid again.

To ensure reliable operation of the device, the watchdog
timer should be used in all designs. Watchdog timer pro-
vides protection against abnormal brownout conditions that
may compromise the CPU functionality. See Watchdog
Timer chapter on page 61 for more details.

9.5 Register List

Table 9-2. Power Supply and Monitoring Register List

Register Name Description

PWR_CONTROL
Power Mode Control Register – This register allows configuration of device power modes and regulator
activity.

http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 56

10. Chip Operational Modes

PSoC® 4 is capable of executing firmware in four different modes. These modes dictate execution from different locations in
flash and ROM, with different levels of hardware privileges. Only three of these modes are used in end-applications; debug
mode is used exclusively to debug designs during firmware development.

PSoC 4 operational modes are:

■ Boot

■ User

■ Privileged

■ Debug

10.1 Boot

Boot mode is an operational mode where the device is configured by instructions hard-coded in the device SROM. This mode
is entered after the end of a reset, provided no debug-acquire sequence is received by the device. Boot mode is a privileged
mode; interrupts are disabled in this mode so that the boot firmware can set up the device for operation without being inter-
rupted. During boot mode, hardware trim settings are loaded from flash to guarantee proper operation during power-up.
When boot concludes, the device enters user mode and code execution from flash begins. This code in flash may include
automatically generated instructions from the PSoC Creator IDE that will further configure the device.

10.2 User

User mode is an operational mode where normal user firmware from flash is executed. User mode cannot execute code from
SROM. Firmware execution in this mode includes the automatically generated firmware by the PSoC Creator IDE and the
firmware written by the user. The automatically generated firmware can govern both the firmware startup and portions of nor-
mal operation. The boot process transfers control to this mode after it has completed its tasks.

10.3 Privileged

Privileged mode is an operational mode, which allows execution of special subroutines that are stored in the device ROM.
These subroutines cannot be modified by the user and are used to execute proprietary code that is not meant to be inter-
rupted or observed. Debugging is not allowed in privileged mode.

The CPU can transition to privileged mode through the execution of a system call. For more information on how to perform a
system call, see “Performing a System Call” on page 120. Exit from this mode returns the device to user mode.

10.4 Debug

Debug mode is an operational mode that allows observation of the PSoC 4 operational parameters. This mode is used to
debug the firmware during development. The debug mode is entered when an SWD debugger connects to the device during
the acquire time window, which occurs during the device reset. Debug mode allows IDEs such as PSoC Creator and Arm
MDK to debug the firmware. Debug mode is only available on devices in open mode (one of the four protection modes). For
more details on the debug interface, see the Program and Debug Interface chapter on page 112.

For more details on protection modes, see the Device Security chapter on page 66.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 57

11. Power Modes

The PSoC® 4 provides three power modes, intended to minimize the average power consumption for a given application. The
power modes, in the order of decreasing power consumption, are:

■ Active

■ Sleep

■ Deep-Sleep

Active, Sleep, and Deep-Sleep are standard Arm-defined power modes, supported by the Arm CPUs and instruction set
architecture (ISA).

The power consumption in different power modes is controlled by using the following methods:

■ Enabling/disabling peripherals

■ Powering on/off internal regulators

■ Powering on/off clock sources

■ Powering on/off other portions of the PSoC 4

Figure 11-1 illustrates the various power modes and the possible transitions between them.

Figure 11-1. Power Mode Transitions State Diagram

ACTIVE

DEEP-SLEEP

Wakeup
Interrupt

Internal
Resets

XRES / Brownout /
Power On Reset

Firmware
Action

RESET

SLEEP

Internal Reset Event

External Reset Event

Firmware Action

Other External Event

Power Mode Action

KEY:

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 58

Power Modes

Table 11-1 illustrates the power modes offered by PSoC 4.

In addition to the wakeup sources mentioned in Table 11-1, external reset (XRES) and brownout reset bring the device to
Active mode from any power mode.

11.1 Active Mode

Active mode is the primary power mode of the PSoC device. This mode provides the option to use every possible subsystem/
peripheral in the device. In this mode, the CPU is running and all the peripherals are powered. The firmware may be config-
ured to disable specific peripherals that are not in use, to reduce power consumption.

11.2 Sleep Mode

This is a CPU-centric power mode. In this mode, the Cortex-M0 CPU enters Sleep mode and its clock is disabled. It is a mode
that the device should come to very often or as soon as the CPU is idle, to accomplish low power consumption. It is identical
to Active mode from a peripheral point of view. Any enabled interrupt can cause wakeup from Sleep mode.

11.3 Deep-Sleep Mode

In Deep-Sleep mode, the CPU, SRAM, and high-speed logic are in retention. The high-frequency clocks, including HFCLK
and SYSCLK, are disabled. Optionally, the internal low-frequency (32 kHz) oscillator remains on and low-frequency peripher-
als continue to operate. Digital peripherals that do not need a clock or receive a clock from their external interface (for exam-
ple, I2C slave) continue to operate. Interrupts from low-speed, asynchronous or low-power analog peripherals can cause a
wakeup from Deep-Sleep mode.

The available wakeup sources are listed in Table 11-3.

Table 11-1. PSoC 4 Power Modes

Power
Mode

Description Entry Condition
Wakeup
Sources

Active Clocks
Wakeup
Action

Available Regulators

Active
Primary mode of opera-
tion; all peripherals are
available (programmable).

Wakeup from other
power modes, inter-
nal and external
resets, brownout,
power on reset

Not applicable
All (programma-
ble)

All regulators are available.
The Active digital regulator
can be disabled if external
regulation is used.

Sleep

CPU enters Sleep mode
and SRAM is in retention;
all peripherals are avail-
able (programmable).

Manual register write Any interrupt
All (programma-
ble)

Interrupt

All regulators are available.
The Active digital regulator
can be disabled if external
regulation is used.

Deep-
Sleep

All internal supplies are
driven from the Deep-
Sleep regulator. IMO and
high-speed peripherals are
off. Only the low-frequency
(32 kHz) clock is available.

Interrupts from low-speed,
asynchronous, or low-
power analog peripherals
can cause a wakeup.

Manual register write
GPIO interrupt,
I2C, watchdog
timer

ILO (32 kHz) Interrupt Deep-Sleep regulator

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 59

Power Modes

11.4 Power Mode Summary

Table 11-3 illustrates the peripherals available in each low-power mode; Table 11-3 illustrates the wakeup sources available in
each power mode.

Table 11-2. Available Peripherals

Peripheral Active Sleep Deep-Sleep

CPU Available Retentiona

a. The configuration and state of the peripheral is retained. Peripheral continues its operation when the device enters Active mode.

Retention

SRAM Available Retention Retention

High-speed peripherals Available Available Retention

Low-speed peripherals Available Available Available (optional)

Internal main oscillator (IMO) Available Available Not Available

Internal low-speed oscillator (ILO, kHz) Available Available Available (optional)

Asynchronous peripherals Available Available Available

Power-on-reset, Brownout detection Available Available Available

Regular analog peripherals Available Available Not Available

GPIO output state Available Available Available

Table 11-3. Wakeup Sources

Power Mode Wakeup Source Wakeup Action

Sleep
Any interrupt source Interrupt

Any reset source Reset

Deep-Sleep

GPIO interrupt Interrupt

I2C address match Interrupt

Watchdog timer Interrupt/Reset

XRES (external reset pin)a, Brownout

a. XRES triggers a full system restart. All the states including frozen GPIOs are lost. In this case, the cause of wakeup is not readable after the device restarts.

Reset

Deep-Sleep GPIO interrupt Interrupt

I2C address match Interrupt

Watchdog timer Interrupt/Reset

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 60

Power Modes

11.5 Low-Power Mode Entry and Exit

A Wait For Interrupt (WFI) instruction from the Cortex-M0 (CM0) triggers the transitions into Sleep and Deep-Sleep mode.
The Cortex-M0 can delay the transition into a low-power mode until the lowest priority ISR is exited (if the SLEEPONEXIT bit
in the CM0 System Control Register is set).

The transition to Sleep and Deep-Sleep modes are controlled by the flags SLEEPDEEP in the CM0 System Control Register
(CM0_SCR).

■ Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 0.

■ Deep-Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 1.

The LPM READY bit in the PWR_CONTROL register shows the status of Deep-Sleep regulator. If the firmware tries to enter
Deep-Sleep mode before the regulators are ready, then PSoC 4 goes to Sleep mode first, and when the regulators are ready,
the device enters Deep-Sleep mode. This operation is automatically done in hardware.

In Sleep and Deep-Sleep modes, a selection of peripherals are available (see Table 11-3), and firmware can either enable or
disable their associated interrupts. Enabled interrupts can cause wakeup from low-power mode to Active mode. Additionally,
any RESET returns the system to Active mode. See the Interrupts chapter on page 24 and the Reset System chapter on
page 64 for details.

11.6 Register List

Table 11-4. Power Mode Register List

Register Name Description

CM0_SCR System Control - Sets or returns system control data.

PWR_CONTROL Power Mode Control - Controls the device power mode options and allows observation of current state.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 61

12. Watchdog Timer

The watchdog timer (WDT) is used to automatically reset the device in the event of an unexpected firmware execution path or
a brownout that compromises the CPU functionality. The WDT runs from the LFCLK, generated by the ILO. The timer must be
serviced periodically in firmware to avoid a reset. Otherwise, the timer will elapse and generate a device reset. The WDT can
be used as an interrupt source or a wakeup source in low-power modes.

12.1 Features

The WDT has these features:

■ System reset generation after a configurable interval

■ Periodic interrupt/wake up generation in Active, Sleep, and Deep-Sleep power modes

■ Features a 16-bit free-running counter

12.2 Block Diagram

Figure 12-1. Watchdog Timer Block Diagram

12.3 How It Works
The WDT asserts a hardware reset to the device on the third WDT match event, unless it is periodically serviced in firmware.
The WDT interrupt has a programmable period of up to 2048 ms. The WDT is a free-running wraparound up-counter with a
maximum of 16-bit resolution. The resolution is configurable as explained later in this section.

The WDT_COUNTER register provides the count value of the WDT. The WDT generates an interrupt when the count value in
WDT_COUNTER equals the match value stored in the WDT_MATCH register, but it does not reset the count to '0'. Instead,
the WDT keeps counting until it overflows (after 0xFFFF when the resolution is set to 16 bits) and rolls back to 0. When the
count value again reaches the match value, another interrupt is generated. Note that the match count can be changed when
the counter is running.

A bit named WDT_MATCH in the SRSS_INTR register is set whenever the WDT interrupt occurs. This interrupt must be
cleared by writing a '1' to the WDT_MATCH bit in SRSS_INTR to reset the watchdog. If the firmware does not reset the WDT
for two consecutive interrupts, the third match event will generate a hardware reset.

Watchdog
Timer

CLK

AHB
Interface
Register

CFG/
STATUS

CPU
Subsystem or

WIC

Reset BlockRESET

INTERRUPT

Low-Frequency
Clock

(LFCLK)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 62

Watchdog Timer

The IGNORE_BITS in the WDT_MATCH register can be used to reduce the entire WDT counter period. The ignore bits can
specify the number of MSBs that need to be discarded. For example, if the IGNORE_BITS value is 3, then the WDT counter
becomes a 13-bit counter. For details, see the WDT_COUNTER, WDT_MATCH, and SRSS_INTR registers in the PSoC
4000 Family: PSoC 4 Registers TRM.

When the WDT is used to protect against system crashes, clearing the WDT interrupt bit to reset the watchdog must be done
from a portion of the code that is not directly associated with the WDT interrupt. Otherwise, even if the main function of the
firmware crashes or is in an endless loop, the WDT interrupt vector can still be intact and feed the WDT periodically.

The safest way to use the WDT against system crashes is to:

■ Configure the watchdog reset period such that firmware is able to reset the watchdog at least once during the period, even
along the longest firmware delay path.

■ Reset the watchdog by clearing the interrupt bit regularly in the main body of the firmware code by writing a '1' to the
WDT_MATCH bit in SRSS_INTR register.

■ It is not recommended to reset watchdog in the WDT interrupt service routine (ISR), if WDT is being used as a reset
source to protect the system against crashes. Hence, it is not recommended to use WDT reset feature and ISR together.

Follow these steps to use WDT as a periodic interrupt generator:

1. Write the desired IGNORE_BITS in the WDT_MATCH register to set the counter resolution.

2. Write the desired match value to the WDT_MATCH register.

3. Clear the WDT_MATCH bit in SRSS_INTR to clear any pending WDT interrupt.

4. Enable the WDT interrupt by setting the WDT_MATCH bit in SRSS_INTR_MASK

5. Enable global WDT interrupt in the CM0_ISER register (See the Interrupts chapter on page 24 for details).

6. In the ISR, clear the WDT interrupt and add the desired match value to the existing match value. By doing so, another
periodic interrupt will be generated when the counter reaches the new match value.

For more details on interrupts, see the Interrupts chapter on page 24.

12.3.1 Enabling and Disabling WDT

The watchdog counter is a free-running counter that cannot be disabled. However, it is possible to disable the watchdog reset
by writing a key '0xACED8865' to the WDT_DISABLE_KEY register. Writing any other value to this register will enable the
watchdog reset. If the watchdog system reset is disabled, the firmware does not have to periodically reset the watchdog to
avoid a system reset. The watchdog counter can still be used as an interrupt source or wakeup source. The only way to stop
the counter is to disable the ILO by clearing the ENABLE bit in the CLK_ILO_CONFIG register. The watchdog reset must be
disabled before disabling the ILO. Otherwise, any register write to disable the ILO will be ignored. Enabling the watchdog
reset will automatically enable the ILO.

Note Disabling the WDT reset is not recommended if:

■ Protection is required against firmware crashes

■ The power supply can produce sudden brownout events that may compromise the CPU functionality

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 63

Watchdog Timer

12.3.2 WDT Interrupts and Low-Power Modes

The watchdog counter can send interrupt requests to the CPU in Active power mode and to the WakeUp Interrupt Controller
(WIC) in Sleep and Deep-Sleep power modes. It works as follows:

■ Active Mode: In Active power mode, the WDT can send the interrupt to the CPU. The CPU acknowledges the interrupt
request and executes the ISR. The interrupt must be cleared after entering the ISR in firmware.

■ Sleep or Deep-Sleep Mode: In this mode, the CPU subsystem is powered down. Therefore, the interrupt request from
the WDT is directly sent to the WIC, which will then wake up the CPU. The CPU acknowledges the interrupt request and
executes the ISR. The interrupt must be cleared after entering the ISR in firmware.

For more details on device power modes, see the Power Modes chapter on page 57.

12.3.3 WDT Reset Mode

The RESET_WDT bit in the RES_CAUSE register indicates the reset generated by the WDT. This bit remains set until
cleared or until a power-on reset (POR), brownout reset (BOD), or external reset (XRES) occurs. All other resets leave this bit
untouched. For more details, see the Reset System chapter on page 64.

12.4 Register List

Table 12-1. WDT Registers

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

WDT_COUNTER Provides the count value of the WDT

WDT_MATCH Stores the match value of the WDT

SRSS_INTR Services the WDT to avoid reset

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 64

13. Reset System

PSoC® 4 supports several types of resets that guarantee error-free operation during power up and allow the device to reset
based on user-supplied external hardware or internal software reset signals. PSoC 4 also contains hardware to enable the
detection of certain resets.

The reset system has these sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up

■ Brownout reset (BOD) to reset the device if the power supply falls below specifications during operation

■ Watchdog reset (WRES) to reset the device if firmware execution fails to service the watchdog timer

■ Software initiated reset (SRES) to reset the device on demand using firmware

■ External reset (XRES) to reset the device using an external electrical signal

■ Protection fault reset (PROT_FAULT) to reset the device if unauthorized operating conditions occur

13.1 Reset Sources

The following sections provide a description of the reset sources available in PSoC 4.

13.1.1 Power-on Reset

Power-on reset is provided for system reset at power-up. POR holds the device in reset until the supply voltage, VDDD, is

according to the datasheet specification. The POR activates automatically at power-up.

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

13.1.2 Brownout Reset

Brownout reset monitors the chip digital voltage supply VCCD and generates a reset if VCCD is below the minimum logic oper-

ating voltage specified in the device datasheet. BOD is available in all power modes.

BOD events do not set a reset cause status bit, but in some cases they can be detected. In some BOD events, VCCD will fall
below the minimum logic operating voltage, but remain above the minimum logic retention voltage. Thus, some BOD events
may be distinguished from POR events by checking for logic retention.

13.1.3 Watchdog Reset

Watchdog reset (WRES) detects errant code by causing a reset if the watchdog timer is not cleared within the user-specified
time limit. This feature is enabled by default. It can be disabled by writing '0xACED8865' to the WDT_DISABLE_KEY register.

The RESET_WDT status bit of the RES_CAUSE register is set when a watchdog reset occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

For more details, see the Watchdog Timer chapter on page 61.

http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 65

Reset System

13.1.4 Software Initiated Reset

Software initiated reset (SRES) is a mechanism that allows a software-driven reset. The Cortex-M0 application interrupt and
reset control register (CM0_AIRCR) forces a device reset when a ‘1’ is written into the SYSRESETREQ bit. CM0_AIRCR
requires a value of A05F written to the top two bytes for writes. Therefore, write A05F0004 for the reset.

The RESET_SOFT status bit of the RES_CAUSE register is set when a software reset occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

13.1.5 External Reset

External reset (XRES) is a user-supplied reset that causes immediate system reset when asserted. The XRES pin is active
low – a high voltage on the pin has no effect and a low voltage causes a reset. The pin is pulled high inside the device. XRES
is available as a dedicated pin in most of the devices. For detailed pinout, refer to the pinout section of the device datasheet.

The XRES pin holds the device in reset while held active. When the pin is released, the device goes through a normal boot
sequence. The logical thresholds for XRES and other electrical characteristics, are listed in the Electrical Specifications sec-
tion of the device datasheet.

XRES events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

13.1.6 Protection Fault Reset

Protection fault reset (PROT_FAULT) detects unauthorized protection violations and causes a device reset if they occur. One
example of a protection fault is if a debug breakpoint is reached while executing privileged code. For details about privilege
code, see “Privileged” on page 56.

The RESET_PROT_FAULT bit of the RES_CAUSE register is set when a protection fault occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

13.2 Identifying Reset Sources

When the device comes out of reset, it is often useful to know the cause of the most recent or even older resets. This is
achieved in the device primarily through the RES_CAUSE register. This register has specific status bits allocated for some of
the reset sources. The RES_CAUSE register supports detection of watchdog reset, software reset, and protection fault reset.
It does not record the occurrences of POR, BOD, or XRES. The bits are set on the occurrence of the corresponding reset and
remain set after the reset, until cleared or a loss of retention, such as a POR reset, external reset, or brownout detect.

If the RES_CAUSE register cannot detect the cause of the reset, then it can be one of the non-recorded and non-retention
resets: BOD, POR, or XRES. These resets cannot be distinguished using on-chip resources.

13.3 Register List

Table 13-1. Reset System Register List

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

CM0_AIRCR
Cortex-M0 Application Interrupt and Reset Control Register - This register allows initiation of software resets,
among other Cortex-M0 functions.

RES_CAUSE Reset Cause Register - This register captures the cause of recent resets.

http://www.cypress.com/?rID=94034
http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 66

14. Device Security

PSoC® 4 offers a number of options for protecting user designs from unauthorized access or copying. Disabling debug fea-
tures and enabling flash protection provide a high level of security.

The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to re-enable them is
to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Addi-
tionally, all device interfaces can be permanently disabled for applications concerned about phishing attacks due to a mali-
ciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences.
Permanently disabling interfaces is not recommended for most applications because the designer cannot access the device.
For more information, as well as a discussion on flash row and chip protection, see the CY8C4000 Programming Specifica-
tions.

Note Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4
devices with full device security enabled may not be returned for failure analysis.

14.1 Features

The PSoC 4 device security system has the following features:

■ User-selectable levels of protection.

■ In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and it cannot
enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an undefined state and open to
observation.

■ CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI remains
asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

In addition to these, the device offers protection for individual flash row data.

14.2 How It Works

14.2.1 Device Security

The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection modes:
BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and debug. You can
change the mode by writing to the CPUSS_PROTECTION register.

■ BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied from supervi-
sor flash to the protection control register (CPUSS_PROTECTION). The debug-access port is stalled until this has hap-
pened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT mode, the CPU
always operates in privileged mode.

■ OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, flash can
be programmed and debugger features are supported. In privileged mode, access restrictions are enforced.

■ PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This mode disables all debug access
to user code or memory. Access to most registers is still available; debug access to registers to reprogram flash is not
available. The mode can be set back to OPEN but only after completely erasing the flash.

■ KILL mode: The user may change the mode from OPEN to KILL. This mode removes all debug access to user code or
memory, and the flash cannot be erased. Access to most registers is still available; debug access to registers to repro-

http://www.cypress.com/?rID=94554

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 67

Device Security

gram flash is not available. The part cannot be taken out of KILL mode; devices in KILL mode may not be returned for fail-
ure analysis.

14.2.2 Flash Security

The PSoC 4 devices include a flexible flash-protection system that controls access to flash memory. This feature is designed
to secure proprietary code, but it can also be used to protect against inadvertent writes to the bootloader portion of flash.

Flash memory is organized in rows. You can assign one of two protection levels to each row; see Table 14-1. Flash protection
levels can only be changed by performing a complete flash erase.

For more details, see the Nonvolatile Memory Programming chapter on page 119.

Table 14-1. Flash Protection Levels

Protection Setting Allowed Not Allowed

Unprotected
External read and write,
Internal read and write

–

Full Protection External reada

Internal read

a. To protect the device from external read operations, you should change the device protection settings to PROTECTED.

External write,
Internal write

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 68

Section E: Digital System

This section encompasses the following chapters:

■ Inter-Integrated Circuit (I2C) chapter on page 69

■ Timer, Counter, and PWM chapter on page 86

Top Level Architecture

Digital System Block Diagram

High Speed I/O Matrix

Peripheral Interconnect (MMIO)

1x
 T

C
P

W
M

1
x

I2
C

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 69

15. Inter-Integrated Circuit (I2C)

PSoC 4 contains a Serial Communication Block (SCB) configured to operate as a fixed-function I2C block. This section
explains the I2C implementation in PSoC. For more information on the I2C protocol specification, refer to the I2C-bus specifi-
cation available on the NXP website.

15.1 Features

This block supports the following features:

■ Master, slave, and master/slave mode

■ Slow-mode (50 kbps), standard-mode (100 kbps), and fast-mode (400 kbps)data-rates

■ 7- or 10-bit slave addressing (10-bit addressing requires firmware support)

■ Clock stretching and collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Error reduction using an digital median filter on the input path of the I2C data signal (SDA)

■ Glitch-free signal transmission with an analog glitch filter

■ Interrupt or polling CPU interface

15.2 General Description

Figure 15-1 illustrates an example of an I2C communication network.

Figure 15-1. I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the following lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collector or open-drain output stages, with pull-up resistors (Rp). A sim-
ple master/slave relationship exists between devices. Masters and slaves can operate as either transmitter or receiver. Each
slave device connected to the bus is software addressable by a unique 7-bit address. PSoC also supports 10-bit address
matching for I2C with firmware support.

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.nxp.com/documents/other/UM10204_v5.pdf
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 70

Inter-Integrated Circuit (I2C)

15.2.1 Terms and Definitions

Table 15-1 explains the commonly used terms in an I2C
communication network.

15.2.1.1 Clock Stretching

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the imple-
mentation of the I/O signal interface, the SCL line value will
be '0', independent of the values that any other master or
slave may be driving on the SCL line. This is known as clock
stretching and is the only situation in which a slave drives
the SCL line. The master device monitors the SCL line and
detects it when it cannot generate a positive clock pulse ('1')
on the SCL line. It then reacts by delaying the generation of
a positive edge on the SCL line, effectively synchronizing
with the slave device that is stretching the clock.

15.2.1.2 Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when mas-
ter 1 is driving the value '1' on the SDA line and master 2 is
driving the value '0' on the SDA line, the actual line value will
be '0' due to the implementation of the I/O signal interface.
Master 1 detects the inconsistency and loses control of the
bus. Master 2 does not detect any inconsistency and keeps
control of the bus.

15.2.2 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-slave
serial interface. Devices operate in either master mode,
slave mode, or master/slave mode. In master/slave mode,
the device switches from master to slave mode when it is
addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the

clock on the SCL line. Table 15-2 illustrates the I2C modes
of operation.

Data transfer through the I2C bus follows a specific format.
Table 15-3 lists some common bus events that are part of an
I2C data transfer. The Write Transfer and Read Transfer
sections explain the I2C bus bit format during data transfer.

When operating in multi-master mode, the bus should
always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the
master must wait until the current operation is complete
before issuing a START signal (see Table 15-3, Figure 15-2,
and Figure 15-3). The master looks for a STOP signal as an
indicator that it can start its data transmission.

When operating in multi-master-slave mode, if the master
loses arbitration during data transmission, the hardware
reverts to slave mode and the received byte generates a
slave address interrupt, so that the device is ready to
respond to any other master on the bus. With all of these
modes, there are two types of transfer - read and write. In
write transfer, the master sends data to slave; in read trans-
fer, the master receives data from slave. Write and read
transfer examples are available in “Master Mode Transfer
Examples” on page 78, “Slave Mode Transfer Examples” on
page 80, and “Multi-Master Mode Transfer Example” on
page 84.

Table 15-1. Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control
the bus at the same time without corrupting the
message

Arbitration

Procedure to ensure that, if more than one mas-
ter simultaneously tries to control the bus, only
one is allowed to do so and the winning mes-
sage is not corrupted

Synchronization
Procedure to synchronize the clock signals of
two or more devices

Table 15-2. I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

Multi-master-slave Simultaneous slave and multi-master operation

Table 15-3. I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it
remains LOW during the HIGH period of the clock
pulse, after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

NACK

The receiver does not pull the SDA line LOW and
it remains HIGH during the HIGH period of clock
pulse after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

Repeated
START

START condition generated by master at the end
of a transfer instead of a STOP condition

DATA
SDA status change while SCL is low (data chang-
ing), and no change while SCL is high (data valid)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 71

Inter-Integrated Circuit (I2C)

15.2.2.1 Write Transfer

Figure 15-2. Master Write Data Transfer

■ A typical write transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-

bit I2C slave address and a write indicator ('0') after the START condition. The addressed slave transmits an acknowl-
edgement byte by pulling the data line low during the ninth bit time.

■ If the slave address does not match any of the slave devices or if the addressed device does not want to acknowledge the
request, it transmits a no acknowledgement (NACK) by not pulling the SDA line low. The absence of an acknowledge-
ment, results in an SDA line value of '1' due to the pull-up resistor implementation.

■ If no acknowledgement is transmitted by the slave, the master may end the write transfer with a STOP event. The master
can also generate a repeated START condition for a retry attempt.

■ The master may transmit data to the bus if it receives an acknowledgement. The addressed slave transmits an acknowl-
edgement to confirm the receipt of every byte of data written. Upon receipt of this acknowledgement, the master may
transmit another data byte.

■ When the transfer is complete, the master generates a STOP condition.

15.2.2.2 Read Transfer

Figure 15-3. Master Read Data Transfer

■ A typical read transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-
bit I2C slave address and a read indicator ('1') after the START condition. The addressed slave transmits an acknowledge-
ment by pulling the data line low during the ninth bit time.

■ If the slave address does not match with that of the connected slave device or if the addressed device does not want to
acknowledge the request, a no acknowledgement (NACK) is transmitted by not pulling the SDA line low. The absence of
an acknowledgement, results in an SDA line value of '1' due to the pull-up resistor implementation.

■ If no acknowledgement is transmitted by the slave, the master may end the read transfer with a STOP event. The master
can also generate a repeated START condition for a retry attempt.

■ If the slave acknowledges the address, it starts transmitting data after the acknowledgement signal. The master transmits
an acknowledgement to confirm the receipt of each data byte sent by the slave. Upon receipt of this acknowledgement,
the addressed slave may transmit another data byte.

■ The master can send a NACK signal to the slave to stop the slave from sending data bytes. This completes the read
transfer.

■ When the transfer is complete, the master generates a STOP condition.

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

MSB LSB

START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 72

Inter-Integrated Circuit (I2C)

15.2.3 Easy I2C (EZI2C) Protocol

The Easy I2C (EZI2C) protocol is a unique communication
scheme built on top of the I2C protocol by Cypress. It uses a
software wrapper around the standard I2C protocol to com-
municate to an I2C slave using indexed memory transfers.
This removes the need for CPU intervention at the level of
individual frames.

The EZI2C protocol defines an 8-bit address that indexes a
memory array (8-bit wide 32 locations) located on the slave
device. Five lower bits of the EZ address are used to
address these 32 locations. The number of bytes transferred
to or from the EZI2C memory array can be found by compar-
ing the EZ address at the START event and the EZ address
at the STOP event.

Note The I2C block has a hardware FIFO memory, which is
16 bits wide and 16 locations deep with byte write enable.
The access methods for EZ and non-EZ functions are differ-
ent. In non-EZ mode, the FIFO is split into TXFIFO and
RXFIFO. Each has 16-bit wide eight locations. In EZ mode,
the FIFO is used as a single memory unit with 8-bit wide 32
locations.

EZI2C has two types of transfers: a data write from the mas-
ter to an addressed slave memory location, and a read by
the master from an addressed slave memory location.

15.2.3.1 Memory Array Write

An EZ write to a memory array index is by means of an I2C
write transfer. The first transmitted write data is used to send
an EZ address from the master to the slave. The five lowest
significant bits of the write data are used as the "new" EZ
address at the slave. Any additional write data elements in
the write transfer are bytes that are written to the memory
array. The EZ address is automatically incremented by the
slave as bytes are written into the memory array. If the num-
ber of continuous data bytes written to the EZI2C buffer
exceeds EZI2C buffer boundary, it overwrites the last loca-
tion for every subsequent byte.

15.2.3.2 Memory Array Read

An EZ read from a memory array index is by means of an
I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received
read data is the byte from the memory array at the EZ
address memory location. The EZ address is automatically
incremented as bytes are read from the memory array. The
address wraps around to zero when the final memory loca-
tion is reached.

Figure 15-4. EZI2C Write and Read Data Transfer

LEGEND :

MS
B

LS
BSDA

SCL

START Slave address (7 bits) Write ACK ACKEZ address(8 bits) STOP

Write data transfer(single write data)

MSB LSB

START Slave address (7 bits) Read ACK ACKRead Data(8 bits) STOP

Read data transfer(single read data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

Write Data(8 bits) ACK

EZ address

Address

Data

EZ Buffer
(32 bytes SRAM)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 73

Inter-Integrated Circuit (I2C)

15.2.4 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 15-4.

Note Detailed descriptions of the I2C register bits are available in the PSoC 4000 Family: PSoC 4 Registers TRM.

Table 15-4. I2C Registers

Register Function

SCB_CTRL
Enables the I2C block and selects the type of serial interface (I2C). Also used to select internally and exter-
nally clocked operation and EZ and non-EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS
Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ slave
address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS
Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to
determine whether it is safe to issue a software access to the EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSB or LSB is the first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
if the transmitter FIFO holds the valid data.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO;
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK.

SCB_EZ_DATA Holds the data in an EZ memory location.

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 74

Inter-Integrated Circuit (I2C)

15.2.5 I2C Interrupts

The fixed-function I2C block generates interrupts for the fol-
lowing conditions.

■ I2C Master

❐ I2C master lost arbitration

❐ I2C master received NACK

❐ I2C master received ACK

❐ I2C master sent STOP

❐ I2C bus error (unexpected stop/start condition
detected)

■ I2C Slave

❐ I2C slave lost arbitration

❐ I2C slave received NACK

❐ I2C slave received ACK

❐ I2C slave received STOP

❐ I2C slave received START

❐ I2C slave address matched

❐ I2C bus error (unexpected stop/start condition
detected)

■ TX

❐ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ I2C Externally Clocked

❐ Wake up request on address match

❐ I2C STOP detection at the end of each transfer

❐ I2C STOP detection at the end of a write transfer

❐ I2C STOP detection at the end of a read transfer

The I2C interrupt signal is hard-wired to the Cortex-M0 NVIC
and cannot be routed to external pins.

The interrupt output is the logical OR of the group of all pos-
sible interrupt sources. The interrupt is triggered when any
of the enabled interrupt conditions are met. Interrupt status
registers are used to determine the actual source of the
interrupt. For more information on interrupt registers, see
the PSoC 4000 Family: PSoC 4 Registers TRM.

15.2.6 Enabling and Initializing the I2C

The following section describes the method to configure the
I2C block for standard (non-EZ) mode and EZI2C mode.

15.2.6.1 I2C Standard (Non-EZ) Mode
Configuration

The I2C interface must be programmed in the following
order.

1. Program protocol specific information using the
SCB_I2C_CTRL register according to Table 15-5. This
includes selecting master - slave functionality.

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-6.

a. Specify the data frame width.

b. Specify that MSB is the first bit to be transmitted/
received.

3. Program transmitter and receiver FIFO using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters, respectively, as shown in Table 15-7.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

4. Program the SCB_CTRL register to enable the I2C block
and select the I2C mode. These register bits are shown
in Table 15-8. For a complete description of the I2C reg-
isters, see the PSoC 4000 Family: PSoC 4 Registers
TRM.

Table 15-5. SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 75

Inter-Integrated Circuit (I2C)

15.2.6.2 EZI2C Mode Configuration

To configure the I2C block for EZI2C mode, set the following I2C register bits

1. Select the EZI2C mode by writing '1' to the EZ_MODE bit (bit 10) of the SCB_CTRL register.

2. Follow steps 2 to 4 mentioned in I2C Standard (Non-EZ) Mode Configuration.

3. Set the S_READY_ADDR_ACK (bit 12) and S_READY_DATA_ACK (bit 13) bits of the SCB_I2C_CTRL register.

15.2.7 Internal and External Clock Operation in I2C

The I2C block supports both internally and externally clocked operation for data-rate generation. Internally clocked operations
use a clock signal derived from the PSoC system bus clock. Externally clocked operations use a clock provided by the user.
Externally clocked operation allows limited functionality in the Deep-Sleep power mode, in which on-chip clocks are not
active. For more information on system clocking, see the Clocking System chapter on page 45.

Externally clocked operation is limited to the following cases:

■ Slave functionality.

■ EZ functionality.

TX and RX FIFOs do not support externally clocked operation; therefore, it is not used for non-EZ functionality.

Internally and externally clocked operations are determined by two register fields of the SCB_CTRL register:

Table 15-6. SCB_TX_CTRL/SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data
frame. This is always 7.

8 MSB_FIRST
1= MSB first (this should always be true)

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface
lines. This filter should reduce susceptibility to errors, but it requires higher overs-
ampling values.

1=Enabled

0=Disabled

Table 15-7. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL

Bits Name Description

[3:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or the receiver FIFO
has more entries than the value of this field, a transmitter or receiver trigger event
is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no
effect. Freeze does not advance the TX or RX FIFO read/write pointer.

Table 15-8. SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 Reserved

10 Reserved

11 Reserved

31 ENABLED
0 I2C block disabled

1 I2C block enabled

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 76

Inter-Integrated Circuit (I2C)

■ EC_AM_MODE (Externally Clocked Address Matching Mode): Indicates whether I2C address matching is internally
('0') or externally ('1') clocked.

■ EC_OP_MODE (Externally Clocked Operation Mode): Indicates whether the rest of the protocol operation (besides I2C
address match) is internally ('0') or externally ('1') clocked. As mentioned earlier, externally clocked operation does not
support non-EZ functionality.

These two register fields determine the functional behavior of I2C. The register fields should be set based on the required
behavior in Active, Sleep, and Deep-Sleep system power modes. Improper setting may result in faulty behavior in certain
power modes. Table 15-9 and Table 15-10 describe the settings for I2C in EZ and non-EZ mode.

15.2.7.1 I2C Non-EZ Mode of Operation

Externally clocked operation is not supported for non-EZ functionality because there is no FIFO support for this mode. So, the
EC_OP_MODE should always be set to '0' for non-EZ mode. However, EC_AM_MODE can be set to '0' or '1'. Table 15-9
gives an overview of the possibilities. The combination EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid and the block
will not respond.

EC_AM_MODE is '0' and EC_OP_MODE is '0'.

This setting only works in Active and Sleep system power modes. All the functionality of the I2C is provided in the internally
clocked domain.

EC_AM_MODE is '1' and EC_OP_MODE is '0'.

This setting works in Active, Sleep, and Deep-Sleep system power modes. I2C address matching is performed by the exter-
nally clocked logic in Active, Sleep, and Deep-Sleep system power modes. When the externally clocked logic matches the
address, it sets a wakeup interrupt cause bit, which can be used to generate an interrupt to wakeup the CPU.

■ In Active system power mode, the CPU is active and the wakeup interrupt cause is disabled (associated MASK bit is '0').
The externally clocked logic takes care of the address matching and the internally locked logic takes care of the rest of the
I2C transfer.

■ In the Sleep mode, wakeup interrupt cause can be either enabled or disabled based on the application. The remaining
operations are similar to the Active mode.

■ In the Deep-Sleep mode, the CPU is shut down and will wake up on I2C activity if the wakeup interrupt cause is enabled.
CPU wakeup up takes time and the ongoing I2C transfer is either negatively acknowledged (NACK) or the clock is
stretched. In the case of a NACK, the internally clocked logic takes care of the first I2C transfer after it wakes up. For clock
stretching, the internally clocked logic takes care of the ongoing/stretched transfer when it wakes up. The register bit
S_NOT_READY_ADDR_NACK (bit 14) of the SCB_I2C_CTRL register determines whether the externally clocked logic
performs a negative acknowledge ('1') or clock stretch ('0').

15.2.7.2 I2C EZ Operation Mode

EZ mode has three possible settings. EC_AM_MODE can be set to '0' or '1' when EC_OP_MODE is '0' and EC_AM_MODE
must be set to '1' when EC_OP_MODE is '1'. Table 15-10 gives an overview of the possibilities. The grey cells indicate a pos-
sible, yet not recommended setting because it involves a switch from the externally clocked logic (slave selection) to the inter-

Table 15-9. I2C Operation in Non-EZ Mode

I2C (Non-EZ) Mode

System Power
Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep
Address match using internal clock.

Operation using internal clock.

Address match using external clock.

Operation using internal clock.
Not supported

Deep-Sleep Not supported
Address match using external clock.

Operation using internal clock.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 77

Inter-Integrated Circuit (I2C)

nally clocked logic (rest of the operation). The combination EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid and the
block will not respond.

■ EC_AM_MODE is '0' and EC_OP_MODE is '0'. This setting only works in Active and Sleep system power modes.

■ EC_AM_MODE is '1' and EC_OP_MODE is '0'. This setting works same as I2C non-EZ mode.

■ EC_AM_MODE is '1' and EC_OP_MODE is '1'. This setting works in Active and Deep-Sleep system power modes.

The I2C block’s functionality is provided in the externally clocked domain. Note that this setting results in externally clocked
accesses to the block's SRAM. These accesses may conflict with internally clocked accesses from the device. This may
cause wait states or bus errors. The field FIFO_BLOCK (bit 17) of the SCB_CTRL register determines whether wait states
('1') or bus errors ('0') are generated.

15.2.8 Wake up from Sleep

The system wakes up from Sleep or Deep-Sleep system power modes when an I2C address match occurs. The fixed-func-
tion I2C block performs either of two actions after address match: Address ACK or Address NACK.

Address ACK - The I2C slave executes clock stretching and waits until the device wakes up and ACKs the address.

Address NACK - The I2C slave NACKs the address immediately. The master must poll the slave again after the device
wakeup time is passed. This option is only valid in the slave or multi-master-slave modes.

Note The interrupt bit WAKE_UP (bit 0) of the SCB_INTR_I2C_EC register must be enabled for the I2C to wake up the
device on slave address match while switching to the Sleep mode.

Table 15-10. I2C Operation in EZ Mode

I2C, EZ Mode

System Power
Mode

EC_OP_MODE= 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep

Address match using internal
clock

Operation using internal
clock

Address match using external
clock

Operation using internal clock
Invalid

Address match using external
clock

Operation using external clock

Deep-Sleep Not supported
Address match using external
clock

Operation using internal clock

Address match using external
clock

Operation using external clock

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 78

Inter-Integrated Circuit (I2C)

15.2.9 Master Mode Transfer Examples

Master mode transmits or receives data.

15.2.9.1 Master Transmit

Figure 15-5. Single Master Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
TX FIFO

Enable SCB I2C
block

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Address ACK ed or
NACK ed?

Error

Yes

NACK STOP/
RESTART

Set Fixed
Function I2C

block to transmit
mode

Transmission
of one byte

data complete?

Byte ACK ed or
NACK ed?

Yes

NACK STOP/
RESTART

Data transfer
complete?

ACK

No

Send STOP
signal

Yes

Send START
signal

ACK

No
(stretch)

E
Error

STOP

E

Report and
handle error

TX FIFO
Empty?

EYes

No

RESTART

End

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 79

Inter-Integrated Circuit (I2C)

15.2.9.2 Master Receive

Figure 15-6. Single Master Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Address ACK ed or
NACK ed?

Error

Yes

NACK STOP/
RESTART

Set Fixed Function
I2C block

to receive mode

Receiving
one byte data

complete?

RX FIFO
full?

Yes

Yes
E

Data transfer
complete?

No

Send STOP
signal

Yes

Send START
signal

ACK

E
Error

STOP

E

Report and
handle error

Send ACK

Send NACK

No

No

RESTART

End

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 80

Inter-Integrated Circuit (I2C)

15.2.10 Slave Mode Transfer Examples

Slave mode transmits or receives data.

15.2.10.1 Slave Transmit

Figure 15-7. Slave Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Receiving
one byte slave

address
complete?

No
(stretch)

E

Address ACK ed or
NACK ed?

Error

Yes

NACK

Set Fixed Function
I2C block

to transmit mode

Transmitting one byte
data complete?

TX FIFO
empty?

Yes

Yes
E

Byte ACK ed
or NACK ed?

ACK

ACK

No
E

Error

Begin

E

Report and
handle error

START detected

Wake up

No

NACK

Data transfer
complete?

No

Yes

End

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 81

Inter-Integrated Circuit (I2C)

15.2.10.2 Slave Receive

Figure 15-8. Slave Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK ed or
NACK ed?

Error

Yes

NACK

Set Fixed Function
I2C block to

receive mode

Receiving one byte
data complete?

RX FIFO
full?

Yes

Yes
E

ACK

No
(stretch)

E
Error

E

Report and
handle error

START detected

Wake up

No

Data transfer
complete?

No

Yes

Send
ACK

Send
NACK

End

Enable Fixed
Function I2C block

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 82

Inter-Integrated Circuit (I2C)

15.2.11 EZ Slave Mode Transfer Example

The EZ Slave mode transmits or receives data.

15.2.11.1 EZ Slave Transmit

Figure 15-9. EZI2C Slave Mode Write Operation Flow Chart

Transmitting one byte
data complete?

EZ buffer
empty?

Yes

Yes
E

Byte ACK ed
or NACK ed?

ACK

No
E

Error

Begin

No

NACK

Data transfer
complete?

No

Yes

Select transmit
mode

E

Report and
handle error

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Select EZ
mode

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK ed or
NACK ed?

Error

Yes

NACK

START detected

Wake up

Wait for START End

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 83

Inter-Integrated Circuit (I2C)

15.2.11.2 EZ Slave Receive

Figure 15-10. EZI2C Slave Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Select EZ
mode

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK ed or
NACK ed?

Error

Yes

NACK

ACK

START detected

Wake up

Receiving one byte
data complete?

EZ buffer
full

Yes
E

No
(stretch)

E
Error

No

Select receive
mode

E

Report and
handle error

Receiving
one byte EZ

address
complete?

Address ACK ed or
NACK ed?

ACK

Begin
NACK

Yes

No
(stretch)

Yes

Data transfer
complete?

No

Yes

Send
ACK

Send
NACK

End

Wait for START

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 84

Inter-Integrated Circuit (I2C)

15.2.12 Multi-Master Mode Transfer Example

In multi-master mode, data can be transferred with the slave mode enabled or not enabled.

15.2.12.1 Multi-Master - Slave Not Enabled

Figure 15-11. Multi-Master, Slave Not Enabled Flow Chart

B egin

D isable Fixed
Function I2C block

S elect M aster
m ode

E nable
TX FIFO

E nable Fixed
Function I2C block

S end S TA RT
signal

Transm ission
of one byte

slave address
com plete?N o

(stretch)

E

Lost arbitration?

E rror

Y es

B egin

B us busy?

N o

B us busy?
Y es

N o

Y es

No

Continue w ith data transfer as
in s ingle m aster

E

R eport and
handle error

Y es

E nd

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 85

Inter-Integrated Circuit (I2C)

15.2.12.2 Multi-Master - Slave Enabled

Figure 15-12. Multi-Master, Slave Enabled Flow Chart

Begin

D isable F ixed
Function I2C block

Select M aster and
Slave m ode

Enable
TX FIFO

Enable F ixed
Function I2C block

Send START
signal

Transm ission
of one byte

slave address
com plete?

No
(stretch)

E

Bus busy or
lost arbitration?

Error

Yes

Bus busy?

No

Yes

No

Continue w ith data transfer as
in single m aster

E

Report and
handle error

Yes

Continue w ith address
recognition as a slave

End

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 86

16. Timer, Counter, and PWM

The Timer, Counter, and Pulse Width Modulator (TCPWM) block in PSoC® 4 implements the 16-bit timer, counter, pulse width
modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an
input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadra-
ture signals. This chapter explains the features, implementation, and operational modes of the TCPWM block.

16.1 Features
■ One 16-bit timer, counter, or pulse width modulator (PWM)

■ The TCPWM block supports the following operational modes:

❐ Timer

❐ Capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Multiple counting modes – up, down, and up/down

■ Clock prescaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Supports interrupt on:

❐ Terminal Count – The final value in the counter register is reached

❐ Capture/Compare – The count is captured to the capture/compare register or the counter value equals the compare
value

■ Underflow, overflow, and capture/compare output signals that can be routed to dedicated GPIOs

■ Complementary line output for PWMs

■ Selectable start, reload, stop, count, and capture event signals for the TCPWM from the dedicated GPIOs with rising
edge, falling edge, both edges, and level trigger options

16.2 Block Diagram

Figure 16-1. TCPWM Block Diagram

Bus Interface

Underflow,
Overflow,
Capture/compare

Interrupt line_out,
line_compl_out

System
Interface

Trigger_in
[4:0]

5 Counter

T
rig

ge
r

S
yn

ch
ro

ni
za

tio
n

C
on

fig
ur

at
io

n
R

eg
is

te
rsBus Interface Logic

23

CPU Subsystem

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 87

Timer, Counter, and PWM

The block has these interfaces:

■ Bus interface: Connects the block to the CPU subsystem.

■ I/O signal interface: Connects input triggers (such as reload, start, stop, count, and capture) and output signals (such as
overflow (OV), underflow (UN), and capture/compare (CC)) to dedicated GPIOs.

■ Interrupts: Provides interrupt request signals from the counter, based on terminal count (TC) or CC conditions.

■ System interface: Consists of control signals such as clock and reset from the system resources subsystem.

This TCPWM block can be configured by writing to the TCPWM registers. See “TCPWM Registers” on page 108 for more
information on all registers required for this block.

16.2.1 Enabling and Disabling Counter in TCPWM Block

The counter can be enabled by setting the COUNTER_ENABLED field (bit 0) of the control register TCPWM_CTRL.

Note The counter must be configured before enabling it. If the counter is enabled after being configured, registers are
updated with the new configuration values. Disabling the counter retains the values in the registers until it is enabled again (or
reconfigured).

16.2.2 Clocking

The TCPWM receives the HFCLK through the system interface to synchronize all events in the block. The counter enable sig-
nal (counter_en), which is generated when the counter is enabled, gates the HFCLK to provide a counter-specific clock
(counter_clock). Output triggers (explained later in this chapter) are also synchronized with the HFCLK.

Clock Prescaling: counter_clock can be prescaled, with divider values of 1, 2, 4… 64, 128. This prescaling is done by modi-
fying the GENERIC field of the counter control (TCPWM_CNT_CTRL) register, as shown in Table 16-1.

Note Clock prescaling cannot be done in quadrature mode and PWM-DT mode.

16.2.3 Events Based on Trigger Inputs

These are the events triggered by hardware or software.

■ Reload

■ Start

■ Stop

■ Count

■ Capture/switch

Hardware triggers can be level signal, rising edge, falling edge, or both edges. Figure 16-2 shows the selection of edge detec-
tion type for any event trigger signal. The trigger control register 0 (TCPWM_CNT_TR_CTRL0) selects one of the 1416five
trigger inputs as the event signal, which includes constant '0' and '1' signals.

Any edge (rising, falling, or both) or level (high) can be selected for the occurrence of an event by configuring the trigger con-
trol register 1 (TCPWM_CNT_TR_CTRL1). This edge/level configuration can be selected for each trigger event separately.

Table 16-1. Bit-Field Setting to Prescale Counter Clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 88

Timer, Counter, and PWM

Alternatively, firmware can generate an event by writing to the counter command register (TCPWM_CMD), as shown in
Figure 16-2.

Figure 16-2. Trigger Signal Edge Detection

The events derived from these triggers can have different
definitions in different modes of the TCPWM block.

■ Reload: A reload event initializes and starts the counter.

❐ In UP counting mode, the count register
(TCPWM_CNT_COUNTER) is initialized with ‘0’.

❐ In DOWN counting mode, the counter is initialized
with the period value stored in the
TCPWM_CNT_PERIOD register.

❐ In UP/DOWN counting mode, the count register is
initialized with ‘0’.

❐ In quadrature mode, the reload event acts as a
quadrature index event. An index/reload event indi-
cates a completed rotation and can be used to syn-
chronize quadrature decoding.

■ Start: A start event is used to start counting; it can be
used after a stop event or after re-initialization of the
counter register to any value by software. Note that the
count register is not initialized on this event.

❐ In quadrature mode, the start event acts as quadra-
ture phase input phiB, which is explained in detail in
“Quadrature Decoder Mode” on page 97.

■ Count: A count event causes the counter to increment
or decrement, depending on its configuration.

❐ In quadrature mode, the count event acts as quadra-
ture phase input phiA.

■ Stop: A stop event stops the counter from incrementing
or decrementing. A start event will start the counting
again.

❐ In the PWM modes, the stop event acts as a kill
event. A kill event disables all the PWM output lines.

■ Capture: A capture event copies the counter register
value to the capture register and capture register value
to the buffer capture register. In the PWM modes, the
capture event acts as a switch event. It switches the val-
ues of the capture/compare and period registers with
their buffer counterparts. This feature can be used to
modulate the pulse width and frequency.

Notes

■ All trigger inputs are synchronized to the HFCLK.

■ When more than one event occurs in the same counter
clock period, one or more events may be missed. This
can happen for high-frequency events (frequencies
close to the counter frequency) and a timer configuration
in which a pre-scaled (divided) counter clock is used.

16.2.4 Output Signals

The TCPWM block generates several output signals, as shown in Figure 16-3.

Figure 16-3. TCPWM Output Signals

16.2.4.1 Signals upon Trigger Conditions

■ Counter generates an internal overflow (OV) condition when counting up and the count register reaches the period value.

■ Counter generates an internal underflow (UN) condition when counting down and the count register reaches zero.

trigger control register 1

rising edge

falling edge

both

pass through
counter command

register (SW generated)

event

2

Edge
Detector
Circuit

Trigger signal

Trigger
Synchronization

System bus
clock

1

0

tr_in [4:0]

trigger control register 0

5

3

TCPWM block

Interrupt

line_out
line_compl_out

Underflow

Overflow
Capture / Compare

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 89

Timer, Counter, and PWM

■ The capture/compare (CC) condition is generated by the TCPWM when the counter is running and one of the following
conditions occur:

❐ The counter value equals the compare value.

❐ A capture event occurs - When a capture event occurs, the TCPWM_CNT_COUNTER register value is copied to the
capture register and the capture register value is copied to the buffer capture register.

Note These signals, when they occur, remain at logic high for two cycles of the system clock. For reliable operation, the con-
dition that causes this trigger should be less than a quarter of the HFCLK. For example, if the HFCLK is running at 24 MHz,
the condition causing the trigger should occur at a frequency less than 6 MHz.

16.2.4.2 Interrupts

The TCPWM block provides a dedicated interrupt output signal from the counter. An interrupt can be generated for a TC con-
dition or a CC condition. The exact definition of these conditions is mode-specific. All eight interrupt output signals from the
eight TCPWMs are also OR'ed together to produce a single interrupt output signal.

Four registers are used for interrupt handling in this block, as shown in Table 16-2.

16.2.4.3 Outputs

The TCPWM has two outputs, line_out and line_compl_out (complementary of line_out). Note that the OV, UN, and CC con-
ditions can be used to drive line_out and line_compl_out if needed, by configuring the TCPWM_CNT_TR_CTRL2 register
(Table 16-3). The line_out and line_compl_out is enabled by the line_out_en and line_compl_out_en, one for each counter.

Table 16-2. Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC This bit is set to '1', when a terminal count is detected. Write '1' to clear this bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare register
value. Write '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the interrupt request register.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

Table 16-3. Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE
Default Value = 3

1:0

0 Set line_out to '1

Configures output line on a compare
match (CC) event

1 Clear line_out to '0

2 Invert line_out

3 No change

OVERFLOW_MODE
Default Value = 3

3:2

0 Set line_out to '1

Configures output line on a overflow
(OV) event

1 Clear line_out to '0

2 Invert line_out

3 No change

UNDERFLOW_MODE
Default Value = 3

5:4

0 Set line_out to '1

Configures output line on a underflow
(UN) event

1 Clear line_out to '0

2 Invert line_out

3 No change

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 90

Timer, Counter, and PWM

16.2.5 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers

and other logic are powered in Deep-Sleep mode to keep the states of configuration registers. See Table 16-4 for details.

Table 16-4. Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep-Sleep
In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional.
All the configuration registers will keep their state.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 91

Timer, Counter, and PWM

16.3 Modes of Operation

The counter block can function in six operational modes, as shown in Table 16-5. The MODE [26:24] field of the counter con-
trol register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNT_CTRL register, as shown in Table 16-6.

Table 16-5. Operational Mode Configuration

Mode
MODE Field

[26:24]
Description

Timer 000
Implements a timer or counter. The counter increments or decrements by '1' at every counter clock cycle in
which a count event is detected.

Capture 010
Implements a timer or counter with capture input. The counter increments or decrements by '1' at every coun-
ter clock cycle in which a count event is detected. When a capture event occurs, the counter value copies into
the capture register.

Quadrature
Decoder

011
Implements a quadrature decoder, where the counter is decremented or incremented, based on two phase
inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100 Implements edge/center-aligned PWMs with an 8-bit clock prescaler and buffered compare/period registers.

PWM-DT 101
Implements edge/center-aligned PWMs with configurable 8-bit dead time (on both outputs) and buffered com-
pare/period registers.

PWM-PR 110 Implements a pseudo-random PWM using a 16-bit linear feedback shift register (LFSR).

Table 16-6. Counting Mode Configuration

Counting Modes
UP_DOWN_

MODE[17:16]
Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) condition is
generated when the counter reaches the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC condition is gener-
ated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10
Increments the counter until the period value is reached, and then decrements the counter
until ‘0’ is reached. A TC condition is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11
Similar to up/down counting mode 0 but a TC condition is generated when the counter
reaches ‘0’ and when the counter value reaches the period value.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 92

Timer, Counter, and PWM

16.3.1 Timer Mode

The timer mode is commonly used to measure the time of occurrence of an event or to measure the time difference between
two events.

16.3.1.1 Block Diagram

Figure 16-4. Timer Mode Block Diagram

16.3.1.2 How It Works

The timer can be configured to count in up, down, and up/down counting modes. It can also be configured to run in either con-
tinuous mode or one-shot mode. The following explains the working of the timer:

■ The timer is an up, down, and up/down counter.

❐ The current count value is stored in the count register (TCPWM_CNTx_COUNTER).
Note It is not recommended to write values to this register while the counter is running.

❐ The period value for the timer is stored in the period register.

■ The counter is re-initialized in different counting modes as follows:

❐ In the up counting mode, after the count reaches the period value, the count register is automatically reloaded with 0.

❐ In the down counting mode, after the count register reaches zero, the count register is reloaded with the value in the
period register.

❐ In the up/down counting modes, the count register value is not updated upon reaching the terminal values. Instead the
direction of counting changes when the count value reaches 0 or the period value.

■ The CC condition is generated when the count register value equals the compare register value. Upon this condition, the
compare register and buffer compare register switch their values if enabled by the AUTO_RELOAD_CC bit-field of the
counter control (TCPWM_CNT_CTRL) register. This condition can be used to generate an interrupt request.

Figure 16-5 shows the timer operational mode of the counter in four different counting modes. The period register contains
the maximum counter value.

■ In the up counting mode, a period value of A results in A+1 counter cycles (0 to A).

■ In the down counting mode, a period value of A results in A+1 counter cycles (A to 0).

■ In the two up/down counting modes (0 and 1), a period value of A results in 2*A counter cycles (0 to A and back to 0).

PERIOD

COUNTER

COMPARE

 BUFFER
COMPARE

==

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 93

Timer, Counter, and PWM

Figure 16-5. Timing Diagram for Timer in Multiple Counting Modes

Period

TC

Counter

Timer, down counting mode

0xFFFF

counter_clock

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x0001

0x0000

0x0002

0x0003

UN

OV

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x0001

0xFFFF

0xFFFE

Period

TC

Counter

Timer, up counting mode

0xFFFF

0x0000

0xFFFE

0xFFFF

counter_clock

0x0003

0xFFFE

0xFFFF

0xFFFE

UN

OV

0x0001

0x0002

0x0003

0x0002

0x0001

0x0002

0x0001

0xFFFF

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 94

Timer, Counter, and PWM

Note The OV and UN signals remain at logic high for two cycles of the HFCLK, as explained in “Signals upon Trigger Condi-
tions” on page 88. The figures in this chapter assume that HFCLK and counter clock are the same.

16.3.1.3 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select Timer mode by writing '000' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register.

5. Set AUTO_RELOAD_CC field of the TCPWM_CNT_CTRL register, if required to switch values at every CC condition.

6. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 16-1.

7. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register, as
shown in Table 16-6.

8. The timer can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the
ONE_SHOT[18] field of TCPWM_CNT_CTRL.

9. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, Capture, and
Count).

10. Set the TCPWM_CNT_TR_CTRL1 register to select the edge of the trigger that causes the event (Reload, Start, Stop,
Capture, and Count).

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 89.

12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is not enabled.

Period

TC

Counter

Timer, up/down counting mode 0

0xFFFF

counter_clock

UN

OV

0xFFFE

0xFFFF

0x0002

0x0001

0x0000

0x0003

0xFFFE

0xFFFE

0xFFFE

0x0001 0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0xFFFF

Period

TC

Counter

Timer, up/down counting mode 1

0xFFFF

0xFFFE

0xFFFF

counter_clock

UN

OV

0x0002

0x0001

0x0000

0x0003

0xFFFE

0xFFFD

0xFFFC

0xFFFE

0xFFFF

0x0002

0x0001

0x0003

0xFFFF

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 95

Timer, Counter, and PWM

16.3.2 Capture Mode

In the capture mode, the counter value can be captured at any time either through a firmware write to command register
(TCPWM_CMD) or a capture trigger input. This mode is used for period and pulse width measurement.

16.3.2.1 Block Diagram

Figure 16-6. Capture Mode Block Diagram

16.3.2.2 How it Works

The counter can be set to count in up, down, and up/down counting modes by configuring the UP_DOWN_MODE[17:16] bit-
field of the counter control register (TCPWM_CNT_CTRL).

Operation in capture mode occurs as follows:

■ During a capture event, generated either by hardware or software, the current count register value is copied to the capture
register (TCPWM_CNT_CC) and the capture register value is copied to the buffer capture register
(TCPWM_CNT_CC_BUFF).

■ A pulse on the CC output signal is generated when the counter value is copied to the capture register. This condition can
also be used to generate an interrupt request.

Figure 16-7 illustrates the capture behavior in the up counting mode.

Figure 16-7. Timing Diagram of Counter in Capture Mode, Up Counting Mode

PERIOD

COUNTER

CAPTURE

CAPTURE BUFFER

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture

Period

Counter

OV

UN

TC

Capture, up counting mode

capture

capture buffer

CC

counter_clock

0xFFFF

Capture trigger

0x0002

0x0002

0xFFFE

0xFFFE

0x0003

0xFFFE

0xFFFF

0x0002

0x0003

0x0000

0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0x0001

0x0002

0x0001

0xFFFF

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 96

Timer, Counter, and PWM

In the figure, observe that:

■ The period register contains the maximum count value.

■ Internal overflow (OV) and TC conditions are generated when the counter reaches the period value.

■ A capture event is only possible at the edges or through software. Use trigger control register 1 to configure the edge
detection.

■ Multiple capture events in a single clock cycle are handled as:

❐ Even number of capture events - no event is observed

❐ Odd number of capture events - single event is observed

This happens when the capture signal frequency is greater than the counter_clock frequency.

16.3.2.3 Configuring Counter for Capture Mode

The steps to configure the counter for Capture mode operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select Capture mode by writing '010' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 16-1.

5. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register, as
shown in Table 16-6.

6. Counter can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the
ONE_SHOT[18] field of the TCPWM_CNT_CTRL register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, Capture, and
Count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Stop, Capture, and
Count).

9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 89.

10. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is not enabled.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 97

Timer, Counter, and PWM

16.3.3 Quadrature Decoder Mode

Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume control
wheels, and PC mice). The quadrature encoder signals are used as phiA and phiB inputs to the decoder.

16.3.3.1 Block Diagram

Figure 16-8. Quadrature Mode Block Diagram

16.3.3.2 How It Works

Quadrature decoding only runs on counter_clock. It can
operate in three sub-modes: X1, X2, and X4 modes. These
encoding modes can be controlled by the
QUADRATURE_MODE[21:20] field of the counter control
register (TCPWM_CNT_CTRL). This mode uses double
buffered capture registers.

The Quadrature mode operation occurs as follows:

■ Quadrature phases phiA and phiB: Counting direction is
determined by the phase relationship between phiA and
phiB. These phases are connected to the count and the
start trigger inputs, respectively as hardware input to the
decoder.

■ Quadrature index signal: This is connected to the reload
signal as a hardware input. This event generates a TC
condition, as shown in Figure 16-9.

On TC, the counter is set to 0x0000 (in the up counting
mode) or to the period value (in the down counting
mode).

Note The down counting mode is recommended to be
used with a period value of 0x8000 (the mid-point value).

■ A pulse on CC output signal is generated when the
count register value reaches 0x0000 or 0xFFFF. On a
CC condition, the count register is set to the period value
(0x8000 in this case).

■ On TC or CC condition:

❐ Count register value is copied to the capture register

❐ Capture register value is copied to the buffer capture
register

❐ This condition can be used to generate an interrupt
request

■ The value in the capture register can be used to deter-
mine which condition caused the event and whether:

❐ A counter underflow occurred (value 0)

❐ A counter overflow occurred (value 0xFFFF)

❐ An index/TC event occurred (value is not equal to
either 0 or 0xFFFF)

■ The DOWN bit field of counter status
(TCPWM_CNTx_STATUS) register can be read to deter-
mine the current counting direction. Value '0' indicates a
previous increment operation and value '1' indicates pre-
vious decrement operation. Figure 16-9 illustrates
quadrature behavior in the X1 encoding mode.

❐ A positive edge on phiA increments the counter
when phiB is '0' and decrements the counter when
phiB is '1'.

❐ The count register is initialized with the period value
on an index/reload event.

❐ Terminal count is generated when the counter is ini-
tialized by index event. This event can be used to
generate an interrupt.

❐ When the count register reaches 0xFFFF (the maxi-
mum count register value), the count register value is
copied to the capture register and the count register
is initialized with period value (0x8000 in this case).

PERIOD

COUNTER

CAPTURE

 BUFFER CAPTURE

==

index

phiA

Stop

phiB

CC

TC

counter_clock

0x0000
0xFFFF

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 98

Timer, Counter, and PWM

Figure 16-9. Timing Diagram for Quadrature Mode, X1 Encoding

The quadrature phases are detected on the counter_clock. Within a single counter_clock period, the phases should not
change value more than once. The X2 and X4 quadrature encoding modes count twice and four times as fast as the X1
encoding mode.

Figure 16-10 illustrates the quadrature mode behavior in the X2 and X4 encoding modes.

Period

TC

CC

Quadrature, X1 encoding

0x8000

Y 0xFFFFcapture

buffer capture
X Y

0x8000 0x8001 0x8002 0x8000 0x7FFFcounter

phiA

phiB

index/reload
event

0x8003

counter_clock

0xFFFF

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 99

Timer, Counter, and PWM

Figure 16-10. Timing Diagram for Quadrature Mode, X2 and X4 Encoding

16.3.3.3 Configuring Counter for Quadrature Mode

The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select Quadrature mode by writing '011' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL regis-
ter.

5. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).

6. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).

7. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 89.

8. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

Period

TC

Quadrature, X2 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4 5 6 7 8 7 6

Period

TC

Quadrature, X4 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4 5 6 7 8 9 10 11 12 11 10 9 8

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 100

Timer, Counter, and PWM

16.3.4 Pulse Width Modulation Mode

The PWM mode is also called the Digital Comparator mode. The comparison output is a PWM signal whose period depends
on the period register value and duty cycle depends on the compare and period register values.

PWM period = (period value/counter clock frequency) in left- and right-aligned modes

PWM period = (2 × (period value/counter clock frequency)) in center-aligned mode

Duty cycle = (compare value/period value) in left- and right-aligned modes

Duty cycle = ((period value-compare value)/period value) in center-aligned mode

16.3.4.1 Block Diagram

Figure 16-11. PWM Mode Block Diagram

16.3.4.2 How It Works

The PWM mode can output left, right, center, or asymmetri-
cally aligned PWM signals. The desired output alignment is
achieved by using the counter's up, down, and up/down
counting modes selected using UP_DOWN_MODE [17:16]
bits in the TCPWM_CNT_CTRL register, as shown in
Table 16-6.

This CC signal along with OV and UN signals control the
PWM output line. The signals can toggle the output line or
set it to a logic '0' or '1' by configuring the
TCPWM_CNT_TR_CTRL2 register. By configuring how the
signals impact the output line, the desired PWM output
alignment can be obtained.

The recommended way to modify the duty cycle is:

■ The buffer period register and buffer compare register
are updated with new values.

■ On TC, the period and compare registers are automati-
cally updated with the buffer period and buffer compare
registers when there is an active switch event. The
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register are set to ‘1’. When

a switch event is detected, it is remembered until the
next TC event. Pass through signal (selected during
event detection setting) cannot trigger a switch event.

■ Updates to the buffer period register and buffer compare
register should be completed before the next TC with an
active switch event; otherwise, switching does not reflect
the register update, as shown in Figure 16-13.

In the center-aligned mode, the output line is set to '0' at Ter-
minal Count and toggled at the CC condition

At the reload event, the count register is initialized and starts
counting in the appropriate mode. At every count, the count
register value is compared with compare register value to
generate the CC signal on match.

Figure 16-12 illustrates center-aligned PWM with buffered
period and compare registers (up/down counting mode 0).

line_out_compl

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

UN

OV

CC

TC

counter_clock

BUFFER PERIOD

PWM
line_out

count

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 101

Timer, Counter, and PWM

Figure 16-12. Timing Diagram for Center Aligned PWM

Figure 16-12 illustrates center-aligned PWM with software generated switch events:

■ Software generates a switch event only after both the period buffer and compare buffer registers are updated.

■ Because the updates of the second PWM pulse come late (after the terminal count), the first PWM pulse is repeated.

■ Note that the switch event is automatically cleared by hardware at TC after the event takes effect.

PWM center aligned buffered

new period value B, new compare value N

A B

B

A

BA

M

M

N

N N

M

SW update of buffers

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition

B

M

N

TC

CC

line_out

counter_clock

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 102

Timer, Counter, and PWM

Figure 16-13. Timing Diagram for Center Aligned PWM (software switch event

16.3.4.3 Other Configurations

■ For asymmetric PWM, the up/down counting mode 1 should be used. This causes a TC when the counter reaches either
‘0’ or the period value. To create an asymmetric PWM, the compare register is changed at every TC (when the counter
reaches either ‘0’ or the period value), whereas the period register is only changed at every other TC (only when the coun-
ter reaches ‘0’).

■ For left-aligned PWM, use the up counting mode; configure the OV condition to set output line to '1' and CC condition to
reset the output line to '0'. See Table 16-3.

■ For right-aligned PWM, use the down counting mode; configure UN condition to reset output line to '0' and CC condition to
set the output line to '1'. See Table 16-3.

16.3.4.4 Kill Feature

The kill feature gives the ability to disable both output lines immediately. This event can be programmed to stop the counter
by modifying the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the counter control register, as shown in Table 16-7.

Table 16-7. Field Setting for Stop on Kill Feature

PWM_STOP_ON_KILL Field Comments

0 The kill trigger temporarily blocks the PWM output line but the counter is still running.

1 The kill trigger temporarily blocks the PWM output line and the counter is also stopped.

A B

BA

M

M

N

N

Switch event

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition
B

M

N

TC

CC

line_out

M

A

PWM, center aligned, buffered (software switch event)

counter_clock

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 103

Timer, Counter, and PWM

A kill event can be programmed to be asynchronous or synchronous, as shown in Table 16-8.

In the synchronous kill, PWM cannot be started before the next TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see Table 16-8). The generated stop event disables both output lines. In this
case, the reload event can use the same trigger input signal but should be used in falling edge detection mode.

16.3.4.5 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select PWM mode by writing '100' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 16-1.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 16-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, and
Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, and
Count).

10. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC,
OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 89.

12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is not enabled.

Table 16-8. Field Setting for Synchronous/Asynchronous Kill

PWM_SYNC_KILL Field Comments

0 An asynchronous kill event lasts as long as it is present. This event requires pass through mode.

1
A synchronous kill event disables the output lines until the next TC event. This event requires rising
edge mode.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 104

Timer, Counter, and PWM

16.3.5 Pulse Width Modulation with Dead Time Mode

Dead time is used to delay the transitions of both ‘line_out’ and ‘line_out_compl’ signals. It separates the transition edges of
these two signals by a specified time interval. Two complementary output lines 'dt_line' and 'dt_line_compl' are derived from
these two lines. During the dead band period, both compare output and complement compare output are at logic ‘0’ for a fixed
period. The dead band feature allows the generation of two non-overlapping PWM pulses. A maximum dead time of 255
clocks can be generated using this feature.

16.3.5.1 Block Diagram

Figure 16-14. PWM-DT Mode Block Diagram

16.3.5.2 How It Works

The PWM operation with Dead Time mode occurs as fol-
lows:

■ On the rising edge of the PWM line_out, depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the
period configured in the register.

■ When the dead band period is complete, dt_line is set to
'1'.

■ On the falling edge of the PWM line_out depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the
period configured in the register.

■ When the dead band period has completed,
dt_line_compl is set to '1'.

■ A dead band period of zero has no effect on the dt_line
and is the same as line_out.

■ When the duration of the dead time equals or exceeds
the width of a pulse, the pulse is removed.

This mode follows PWM mode and supports the following
features available with that mode:

■ Various output alignment modes

■ Two complementary output lines, dt_line and
dt_line_compl, derived from PWM "line_out" and "line
_out_compl", respectively

❐ Stop/kill event with synchronous and asynchronous
modes

❐ Conditional switch event for compare and buffer
compare registers and period and buffer period reg-
isters

This mode does not support clock prescaling.

Figure 16-15 illustrates how the complementary output lines
dt_line and dt_line_compl are generated from the PWM out-
put line, line_out.

PERIOD

COUNTER

COMPARE

BUFFER COMPARE

==

Reload

Start

Stop

Switch

CC

TC

counter_clock

BUFFER PERIOD

PWM
dt_line

Count
Dead Time

dt_line_compl

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 105

Timer, Counter, and PWM

Figure 16-15. Timing Diagram for PWM, with and without Dead Time

16.3.5.3 Configuring Counter for PWM with Dead Time Mode

The steps to configure the counter for PWM with Dead Time mode of operation and the affected register bits are as follows:

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select PWM with Dead Time mode by writing '101' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in
Table 16-1.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 16-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required, as shown
in the “Pulse Width Modulation Mode” on page 100.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, and
Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, and
Count).

10. dt_line and dt_line_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC,
OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 89.

12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD register) to start the counter if hardware start signal is not enabled.

PWM, Deadtime insertion

line_out

Dead time duration : 0

dt_line

dt_line_compl

Deadtime duration :

dt_line

dt_line_compl

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 106

Timer, Counter, and PWM

16.3.6 Pulse Width Modulation Pseudo-Random Mode

This mode uses the linear feedback shift register (LFSR). LFSR is a shift register whose input bit is a linear function of its pre-
vious state.

16.3.6.1 Block Diagram

Figure 16-16. PWM-PR Mode Block Diagram

16.3.6.2 How It Works

The counter register is used to implement LFSR with the polynomial: x16+x14+x13+x11+1, as shown in Figure 16-17. It gener-
ates all the numbers in the range [1, 0xFFFF] in a pseudo-random sequence. Note that the counter register should be initial-
ized with a non-zero value.

Figure 16-17. Pseudo-Random Sequence Generation using Counter Register

PERIOD

LFSR / COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

CC

TC

counter_clock

BUFFER PERIOD

<
line_out

0

1 0 0 0 0 000 01 1 1 111 1

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 107

Timer, Counter, and PWM

The following steps describe the process:

■ The PWM output line, ‘line_out’, is driven with '1' when
the lower 15-bit value of the counter register is smaller
than the value in the compare register (when coun-
ter[14:0] < compare[15:0]). A compare value of ‘0x8000’
or higher always results in a '1' on the PWM output line.
A compare value of ‘0’ always results in a '0' on the
PWM output line.

■ A reload event behaves similar to a start event; however,
it does not initialize the counter.

■ Terminal count is generated when the counter value
equals the period value. LFSR generates a predictable
pattern of counter values for a certain initial value. This
predictability can be used to calculate the counter value
after a certain amount of LFSR iterations ‘n’. This calcu-
lated counter value can be used as a period value and
the TC is generated after ‘n’ iterations.

■ At TC, a switch/capture event conditionally switches the
compare and period register pairs (based on the
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register).

■ A kill event can be programmed to stop the counter as
described in previous sections.

■ One shot mode can be configured by setting the
ONE_SHOT field of the counter control register. At ter-
minal count, the counter is stopped by hardware.

■ In this mode, underflow, overflow, and trigger condition
events do not occur.

■ CC condition occurs when the counter is running and its
value equals compare value. Figure 16-18 illustrates
pseudo-random noise behavior.

■ A compare value of 0x4000 results in 50 percent duty
cycle (only the lower 15 bits of the 16- bit counter are
used to compare with the compare register value).

Figure 16-18. Timing Diagram for Pseudo-Random PWM

A capture/switch input signal may switch the values between the compare and compare buffer registers and the period and
period buffer registers. This functionality can be used to modulate between two different compare values using a trigger input
signal to control the modulation.

Note Capture/switch input signal can only be triggered by an edge (rising, falling, or both). This input signal is remembered
until the next terminal count.

16.3.6.3 Configuring Counter for Pseudo-Random PWM Mode

The steps to configure the counter for pseudo-random PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to COUNTER_ENABLED of the TCPWM_CTRL register.

2. Select pseudo-random PWM mode by writing '110' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the TCPWM_CNT_PERIOD register and buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, and Switch).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, and Switch).

8. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC,
OV, and UN conditions.

9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 89.

10. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

Pseudo Random PWM

reload event

compare

period

counter

line_out

0x4000

0xACE1

0xACE1 0x5670 0xAB38 0x559C 0x2ACE 0x1567

counter_clock

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 108

Timer, Counter, and PWM

16.4 TCPWM Registers

Table 16-9. List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CMD TCPWM command register Generates software events

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNT_CTRL Counter control register
Configures counter mode, encoding modes, one shot mode,
switching, kill feature, dead time, clock pre-scaling, and counting
direction

TCPWM_CNT_STATUS Counter status register
Reads the direction of counting, dead time duration, and clock
pre-scaling; checks if the counter is running

TCPWM_CNT_COUNTER Count register Contains the 16-bit counter value

TCPWM_CNT_CC Counter compare/capture register
Captures the counter value or compares the value with counter
value

TCPWM_CNT_CC_BUFF Counter buffered compare/capture register Buffer register for counter CC register; switches period value

TCPWM_CNT_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNT_PERIOD_BUFF Counter buffered period register Buffer register for counter period register; switches compare value

TCPWM_CNT_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNT_TR_CTRL1 Counter trigger control register 1 Determine edge detection for specific counter input signals

TCPWM_CNT_TR_CTRL2 Counter trigger control register 2 Controls counter output lines upon CC, OV, and UN conditions

TCPWM_CNT_INTR Interrupt request register Sets the register bit when TC or CC condition is detected

TCPWM_CNT_INTR_SET Interrupt set request register Sets the corresponding bits in interrupt request register

TCPWM_CNT_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNT_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 109

Section F: Analog System

This section encompasses the following chapter:

■ CapSense chapter on page 110

Top Level Architecture

Analog System Block Diagram

High Speed I/O Matrix

GPIO Pins

CapSense
(2 IDACs and

 1 Comparator available for
general purpose use)

Peripheral Interconnect (MMIO)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 110

17. CapSense

The CapSense system can measure the self-capacitance of an electrode or the mutual capacitance between a pair of
electrodes. In addition to capacitive sensing, the CapSense system can function as an ADC to measure voltage on any GPIO
pin that supports the CapSense functionality.

The CapSense touch sensing method in PSoC 4, which senses self-capacitance, is known as CapSense Sigma Delta (CSD).
Similarly, the mutual-capacitance sensing method is known as CapSense Cross-point (CSX). The CSD and CSX touch
sensing methods provide the industry’s best-in-class signal-to-noise ratio (SNR), high touch sensitivity, low-power operation,
and superior EMI performance.

CapSense touch sensing is a combination of hardware and firmware techniques. Therefore, use the CapSense component
provided by the PSoC Creator IDE to implement CapSense designs. See the PSoC 4 and PSoC 6 MCU CapSense Design
Guide for more details,

http://www.cypress.com/an85951
http://www.cypress.com/an85951

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 111

Section G: Program and Debug

This section encompasses the following chapters:

■ Program and Debug Interface chapter on page 112

■ Nonvolatile Memory Programming chapter on page 119

Top Level Architecture

Program and Debug Block Diagram

S
ys

te
m

 B
u

s

PROGRAM AND DEBUG

Program

Debug and Trace

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 112

18. Program and Debug Interface

The PSoC® 4 Program and Debug interface provides a communication gateway for an external device to perform program-
ming or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party device that
supports programming and debugging. The serial wire debug (SWD) interface is used as the communication protocol
between the external device and PSoC 4.

18.1 Features
■ Programming and debugging through the SWD interface

■ Four hardware breakpoints and two hardware watchpoints while debugging

■ Read and write access to all memory and registers in the system while debugging, including the Cortex-M0 register bank
when the core is running or halted

18.2 Functional Description

Figure 18-1 shows the block diagram of the program and debug interface in PSoC 4. The Cortex-M0 debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the “host”, communi-
cates with the DAP of the PSoC 4 “target” using the two pins of the SWD interface - the bidirectional data pin (SWDIO) and
the host-driven clock pin (SWDCK). The SWD physical port pins (SWDIO and SWDCK) communicate with the DAP through
the high-speed I/O matrix (HSIOM). See the I/O System chapter on page 36 for details on HSIOM.

Figure 18-1. Program and Debug Interface

The DAP communicates with the Cortex-M0 CPU using the Arm-specified advanced high-performance bus (AHB) interface.
AHB is the systems interconnect protocol used inside the device, which facilitates memory and peripheral register access by
the AHB master. The device has two AHB masters – Arm CM0 CPU core and DAP. The external device can effectively take
control of the entire device through the DAP to perform programming and debugging operations.

H
S

IO
M

Cortex-M0 DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex-M0 CPU

AHB DAP
AHB

Arm Cortex-M0 subsystem

AHB

S
P

C
 I

n
te

rf
a

ce

FLASH SROM SRAM
Peripheral
Modules

AHB

PSoC 4

Host Device

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 113

Program and Debug Interface

18.3 Serial Wire Debug (SWD) Interface

PSoC 4’s Cortex-M0 supports programming and debugging through the SWD interface. The SWD protocol is a packet-based
serial transaction protocol. At the pin level, it uses a single bidirectional data signal (SWDIO) and a unidirectional clock signal
(SWDCK). The host programmer always drives the clock line, whereas either the host or the target drives the data line. A
complete data transfer (one SWD packet) requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a request to the PSoC 4 target.

■ Target Acknowledge Response Phase – The PSoC 4 target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the target, or vice versa, there is a turnaround period (Trn) where
neither device drives the line and it floats in a high-impedance (Hi-Z) state. This period is either one-half or one and a half
clock cycles, depending on the transition.

Figure 18-2 shows the timing diagrams of read and write SWD packets.

Figure 18-2. SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The “AP not DP” (APnDP) bit determines whether
the transfer is an AP access – 1b1 or a DP access –
1b0.

c. The “Read not Write” bit (RnW) controls which direc-
tion the data transfer is in. 1b1 represents a ‘read
from’ the target, or 1b0 for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for
AP or DP, depending on the APnDP bit value. See
Table 18-3 and Table 18-4 for definitions.
Note Address bits are transmitted with the LSB first.

e. The parity bit contains the parity of APnDP, RnW,
and ADDR bits. It is an even parity bit; this means,
when XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by
PSoC 4; there is no ACK response (ACK = 3b111).
The programming operation should be aborted and
retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven
by the target

a. The ACK[2:0] bits represent the target to host
response, indicating failure or success, among other
results. See Table 18-1 for definitions.
Note ACK bits are transmitted with the LSB first.

3. Data Transfer Phase: SWDIO driven by either target or
host depending on direction

a. The data for read or write is written to the bus, LSB
first.

S
ta

rt
 (

1)

A
P

n
D

P

R
n

W
 (

0)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

T
rn

 (
H

i-Z
)

1

w
da

ta
[0

]

P
ar

ity

ACK[0:2]

0 0

w
da

ta
[1

]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK Phase Host Data Transfer Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

n
D

P

R
n

W
 (

1)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

T
rn

 (
H

i-Z
)

1

rd
a

ta
[0

]

P
ar

ity

ACK[0:2]

0 0

rd
a

ta
[1

]

rd
a

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK and Data Transfer Phases

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 114

Program and Debug Interface

b. The data parity bit indicates the parity of the data
read or written. It is an even parity; this means when
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective
action should be taken. For a read packet, if the host
detects a parity error, it must abort the programming
operation and restart. For a write packet, if the target
detects a parity error, it generates a FAULT ACK
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free-running or to make the clock free-running in IDLE
mode.

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

18.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 18-1 and Figure 18-2 illustrate the timing of SWDIO bit
writes and reads.

18.3.2 ACK Details

The acknowledge (ACK) bit-field is used to communicate
the status of the previous transfer. OK ACK means that pre-
vious packet was successful. A WAIT response requires a
data phase. For a FAULT status, the programming operation
should be aborted immediately. Table 18-2 shows the ACK
bit-field decoding details.

Details on WAIT and FAULT response behaviors are as fol-
lows:

■ For a WAIT response, if the transaction is a read, the
host should ignore the data read in the data phase. The
target does not drive the line and the host must not
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the
data phase is ignored by the PSoC 4. But, the host must
still send the data to be written to complete the packet.
The parity bit corresponding to the data should also be
sent by the host.

■ For a WAIT response, it means that the PSoC 4 is pro-
cessing the previous transaction. The host can try for a
maximum of four continuous WAIT responses to see if
an OK response is received. If it fails, then the program-
ming operation should be aborted and retried again.

■ For a FAULT response, the programming operation
should be aborted and retried again by doing a device
reset.

18.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 18-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This action ensures that the host can read the ACK data on
the next falling edge. Thus, the first Trn period lasts only
one-half cycle. The second Trn period of the SWD packet is
one and a half cycles. Neither the host nor the PSoC 4
should drive the SWDIO line during the Trn period.

Table 18-1. SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request
Host Write Target Read

Host Data Transfer

Target Ack Response
Host Read Target Write

Target Data Transfer

Table 18-2. SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 115

Program and Debug Interface

18.4 Cortex-M0 Debug and Access Port (DAP)

The Cortex-M0 program and debug interface includes a Debug Port (DP) and an Access Port (AP), which combine to form
the DAP. The debug port implements the state machine for the SWD interface protocol that enables communication with the
host device. It also includes registers for the configuration of access port, DAP identification code, and so on. The access port
contains registers that enable the external device to access the Cortex-M0 DAP-AHB interface. Typically, the DP registers are
used for a one time configuration or for error detection purposes, and the AP registers are used to perform the programming
and debugging operations. Complete architecture details of the DAP is available in the Arm® Debug Interface v5 Architecture
Specification.

18.4.1 Debug Port (DP) Registers

Table 18-3 shows the Cortex-M0 DP registers used for programming and debugging, along with the corresponding SWD
address bit selections. The APnDP bit is always zero for DP register accesses. Two address bits (A[3:2]) are used for select-
ing among the different DP registers. Note that for the same address bits, different DP registers can be accessed depending
on whether it is a read or a write operation. See the Arm® Debug Interface v5 Architecture Specification for details on all of
the DP registers.

18.4.2 Access Port (AP) Registers

Table 18-4 lists the main Cortex-M0 AP registers that are used for programming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always one for AP register accesses. Two address bits (A[3:2]) are used for
selecting the different AP registers.

Table 18-3. Main Debug Port (DP) Registers

Register APnDP
Address

A[3:2]
RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register
This register is used to force a DAP abort and to clear the
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R)
Identification Code
Register

This register holds the SWD ID of the Cortex-M0 CPU, which
is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W)
Control and Status
Register

This register allows control of the DP and contains status
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register
This register is used to select the current AP. In PSoC 4, there
is only one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Table 18-4. Main Access Port (AP) Registers

Register APnDP
Address

A[3:2]
RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W)
Control and Status
Word Register
(CSW)

This register configures and controls accesses through the
memory access port to a connected memory system (which is
the PSoC 4 Memory map)

TAR 1 (AP) 2b01 X (R/W)
Transfer Address
Register

This register is used to specify the 32-bit memory address to
be read from or written to

DRW 1 (AP) 2b11 X (R/W)
Data Read and Write
Register

This register holds the 32-bit data read from or to be written to
the address specified in the TAR register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 116

Program and Debug Interface

18.5 Programming the PSoC 4
Device

PSoC 4 is programmed using the following sequence.

1. Acquire the SWD port in PSoC 4.

2. Enter the programming mode.

3. Execute the device programming routines such as Sili-
con ID Check, Flash Programming, Flash Verification,
and Checksum Verification.

18.5.1 SWD Port Acquisition

18.5.1.1 SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target's SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.

Code 1. SWD Port Acquire Pseudo Code
ToggleXRES(); // Toggle XRES pin to reset
device

//Execute Arm’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset
(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP (IDCODE, out ID); //Read
the IDCODE DP register

}while ((ack != OK) && time_elapsed < 2 ms); //
retry connection until OK ACK or timeout

if (time_elapsed >= 2 ms) return FAIL; //check
for acquire time out

if (ID != CM0_ID) return FAIL; //confirm SWD ID
of Cortex-M0 CPU. (0x0BB11477)

In this pseudo code, SWD_LineReset() is the standard Arm
command to reset the debug access port. It consists of more
than 49 SWDCK clock cycles with SWDIO high. The trans-
action must be completed by sending at least one SWDCK
clock cycle with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and the chip. Read_DAP() refers
to the read of the IDCODE register in the debug port. The
sequence of line reset and IDCODE read should be
repeated until an OK ACK is received for the IDCODE read
or a timeout (2 ms) occurs. The SWD port is said to be in the
acquired state if an OK ACK is received within the time win-
dow and the IDCODE read matches with that of the Cortex-
M0 DAP.

18.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device pro-
gramming mode. Timing specifications and pseudo code for
entering the programming mode are detailed in the docu-
ment.

18.5.3 SWD Programming Routines
Executions

When the device is in programming mode, the external pro-
grammer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The pro-
gramming routines are explained in the Nonvolatile Memory
Programming chapter on page 119.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 117

Program and Debug Interface

18.6 PSoC 4 SWD Debug
Interface

Cortex-M0 DAP debugging features are classified into two
types: invasive debugging and noninvasive debugging.
Invasive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:

■ Debug Control and Configuration registers

■ Breakpoint Unit (BPU) – provides breakpoint support

■ Debug Watchpoint (DWT) – provides watchpoint sup-
port. Trace is not supported in Cortex-M0 Debug.

See the Armv6-M Architecture Reference Manual for com-
plete details on the debug architecture.

18.6.1 Debug Control and Configuration
Registers

The debug control and configuration registers are used to
execute firmware debugging. The registers and their key
functions are as follows. See the Armv6-M Architecture Ref-
erence Manual for complete bit level definitions of these reg-
isters.

■ Debug Halting Control and Status Register
(CM0_DHCSR) – This register contains the control bits
to enable debug, halt the CPU, and perform a single-
step operation. It also includes status bits for the debug
state of the processor.

■ Debug Fault Status Register (CM0_DFSR) – This regis-
ter describes the reason a debug event has occurred
and includes debug events, which are caused by a CPU
halt, breakpoint event, or watchpoint event.

■ Debug Core Register Selector Register (CM0_DCRSR)
– This register is used to select the general-purpose reg-
ister in the Cortex-M0 CPU to which a read or write oper-
ation must be performed by the external debugger.

■ Debug Core Register Data Register (CM0_DCRDR) –
This register is used to store the data to write to or read
from the register selected in the CM0_DCRSR register.

■ Debug Exception and Monitor Control Register
(CM0_DEMCR) – This register contains the enable bits
for global debug watchpoint (DWT) block enable, reset
vector catch, and hard fault exception catch.

18.6.2 Breakpoint Unit (BPU)

The BPU provides breakpoint functionality on instruction
fetches. The Cortex-M0 DAP in PSoC 4 supports up to four
hardware breakpoints. Along with the hardware breakpoints,
any number of software breakpoints can be created by using

the BKPT instruction in the Cortex-M0. The BPU has two
types of registers.

■ The breakpoint control register (CM0_BP_CTRL) is
used to enable the BPU and store the number of hard-
ware breakpoints supported by the debug system (four
for CM0 DAP in the PSoC 4).

■ Each hardware breakpoint has a Breakpoint Compare
Register (CM0_BP_COMPx). It contains the enable bit
for the breakpoint, the compare address value, and the
match condition that will trigger a breakpoint debug
event. The typical use case is that when an instruction
fetch address matches the compare address of a break-
point, a breakpoint event is generated and the processor
is halted.

18.6.3 Data Watchpoint (DWT)

The DWT provides watchpoint support on a data address
access or a program counter (PC) instruction address.
Trace is not supported by the Cortex-M0 in PSoC 4. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register,
which can be used for noninvasive coarse profiling of the
program counter. The most important registers in the DWT
are as follows.

■ The watchpoint compare (CM0_DWT_COMPx) registers
store the compare values that are used by the watch-
point comparator for the generation of watchpoint
events. Each watchpoint has an associated
DWT_COMPx register.

■ The watchpoint mask (CM0_DWT_MASKx) registers
store the ignore masks applied to the address range
matching in the associated watchpoints.

■ The watchpoint function (CM0_DWT_FUNCTIONx) reg-
isters store the conditions that trigger the watchpoint
events. They may be program counter watchpoint event
or data address read/write access watchpoint events. A
status bit is also set when the associated watchpoint
event has occurred.

■ The watchpoint comparator PC sample register
(CM0_DWT_PCSR) stores the current value of the pro-
gram counter. This register is used for coarse, non-inva-
sive profiling of the program counter register.

18.6.4 Debugging the PSoC 4 Device

The host debugs the target PSoC 4 by accessing the debug
control and configuration registers, registers in the BPU, and
registers in the DWT. All registers are accessed through the
SWD interface; the SWD debug port (SW-DP) in the Cortex-
M0 DAP converts the SWD packets to appropriate register
access through the DAP-AHB interface.

The first step in debugging the target PSoC 4 is to acquire
the SWD port. The acquire sequence consists of an SWD
line reset sequence and read of the DAP SWDID through
the SWD interface. The SWD port is acquired when the cor-

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 118

Program and Debug Interface

rect CM0 DAP SWDID is read from the target device. For
the debug transactions to occur on the SWD interface, the
corresponding pins should not be used for any other pur-
pose. See the I/O System chapter on page 36 to understand
how to configure the SWD port pins, allowing them to be
used only for SWD interface or for other functions such as
GPIO. If debugging is required, the SWD port pins should
not be used for other purposes. If only programming support
is needed, the SWD pins can be used for other purposes.

When the SWD port is acquired, the external debugger sets
the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such

as stepping, halting, breakpoint configuration, and watch-
point configuration are carried out by writing to the appropri-
ate registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 66. Only the OPEN protected
mode supports device debugging. The external debugger
and the target device connection is not lost for a device tran-
sition from Active mode to either Sleep or Deep-Sleep
modes. When the device enters the Active mode from either
Deep-Sleep or Sleep modes, the debugger can resume its
actions without initiating a connect sequence again.

18.7 Registers

Table 18-5. List of Registers

Register Name Description

CM0_DHCSR Debug Halting Control and Status Register

CM0_DFSR Debug Fault Status Register

CM0_DCRSR Debug Core Register Selector Register

CM0_DCRDR Debug Core Register Data Register

CM0_DEMCR Debug Exception and Monitor Control Register

CM0_BP_CTRL Breakpoint control register

CM0_BP_COMPx Breakpoint Compare Register

CM0_DWT_COMPx Watchpoint Compare Register

CM0_DWT_MASKx Watchpoint Mask Register

CM0_DWT_FUNCTIONx Watchpoint Function Register

CM0_DWT_PCSR Watchpoint Comparator PC Sample Register

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 119

19. Nonvolatile Memory Programming

Nonvolatile memory programming refers to the programming of flash memory in the PSoC® 4 device. This chapter explains
the different functions that are part of device programming, such as erase, write, program, and checksum calculation.
Cypress-supplied programmers and other third-party programmers can use these functions to program the PSoC 4 device
with the data in an application hex file. They can also be used to perform bootload operations where the CPU will update a
portion of the flash memory.

19.1 Features
■ Supports programming through the debug and access port (DAP) and Cortex-M0 CPU

■ Supports both blocking and non-blocking flash program and erase operations from the Cortex-M0 CPU

19.2 Functional Description

Flash programming operations are implemented as system calls. System calls are executed out of SROM in the privileged
mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0 CPU requests the sys-
tem call by writing the function opcode and parameters to the System Performance Controller Interface (SPCIF) input regis-
ters, and then requesting the SROM to execute the function. Based on the function opcode, the System Performance
Controller (SPC) executes the corresponding system call from SROM and updates the SPCIF status register. The DAP or the
CPU should read this status register for the pass/fail result of the function execution. As part of function execution, the code in
SROM interacts with the SPCIF to do the actual flash programming operations.

PSoC 4 flash is programmed using a Program Erase Program (PEP) sequence. The flash cells are all programmed to a
known state, erased, and then the selected bits are programmed. This sequence increases the life of the flash by balancing
the stored charge. When writing to flash the data is first copied to a page latch buffer. The flash write functions are then used
to transfer this data to flash.

External programmers program the flash memory in PSoC 4 using the SWD protocol by sending the commands to the Debug
and Access Port (DAP). The programming sequence for the PSoC 4 device with an external programmer is given in the
PSoC 4000 Programming Specifications. Flash memory can also be programmed by the CM0 CPU by accessing the relevant
registers through the AHB interface. This type of programming is typically used to update a portion of the flash memory as
part of a bootload operation, or other application requirements, such as updating a lookup table stored in the flash memory.
All write operations to flash memory, whether from the DAP or from the CPU, are done through the SPCIF.

Note It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or unexpected
changes may be made to portions of the flash. Reset sources (see the Reset System chapter on page 64) include XRES pin,
software reset, and watchdog; make sure that these are not inadvertently activated. In addition, the low-voltage detect circuits
should be configured to generate an interrupt instead of a reset.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 120

Nonvolatile Memory Programming

19.3 System Call Implementation

A system call consists of the following items:

■ Opcode: A unique 8-bit opcode

■ Parameters: Two 8-bit parameters are mandatory for all
system calls. These parameters are referred to as key1
and key2, and are defined as follows:

key1 = 0xB6

key2 = 0xD3 + Opcode

The two keys are passed to ensure that the user system
call is not initiated by mistake. If the key1 and key2
parameters are not correct, the SROM does not execute
the function, and returns an error code. Apart from these
two parameters, additional parameters may be required
depending on the specific function being called.

■ Return Values: Some system calls also return a value on
completion of their execution, such as the silicon ID or a
checksum.

■ Completion Status: Each system call returns a 32-bit sta-
tus that the CPU or DAP can read to verify success or
determine the reason for failure.

19.4 Blocking and Non-Blocking
System Calls

System call functions can be categorized as blocking or
non-blocking based on the nature of their execution. Block-
ing system calls are those where the CPU cannot execute
any other task in parallel other than the execution of the sys-
tem call. When a blocking system call is called from a pro-
cess, the CPU jumps to the code corresponding in SROM.
When the execution is complete, the original thread execu-
tion resumes. Non-blocking system calls allow the CPU to
execute some other code in parallel and communicate the
completion of interim system call tasks to the CPU through
an interrupt.

Non-blocking system calls are only used when the CPU initi-
ates the system call. The DAP will only use system calls dur-
ing the programming mode and the CPU is halted during
this process.

The three non-blocking system calls are Non-Blocking Write
Row, Non-Blocking Program Row, and Resume Non-Block-
ing, respectively. All other system calls are blocking.

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the non-
blocking system calls can only be called from a code execut-
ing out of SRAM. If the non-blocking functions are called
from flash memory, the result is undefined and may return a
bus error and trigger a hard fault when the flash fetch opera-
tion is being done.

The System Performance Controller (SPC) is the block that
generates the properly sequenced high-voltage pulses
required for erase and program operations of the flash

memory. When a non-blocking function is called from
SRAM, the SPC timer triggers its interrupt when each of the
sub-operations in a write or program operation is complete.
Call the Resume Non-Blocking function from the SPC inter-
rupt service routine (ISR) to ensure that the subsequent
steps in the system call are completed. Because the CPU
can execute code only from the SRAM when a non-blocking
write or program operation is being done, the SPC ISR
should also be located in the SRAM. The SPC interrupt is
triggered once in the case of a non-blocking program func-
tion or thrice in a non-blocking write operation. The Resume
Non-Blocking function call done in the SPC ISR is called
once in a non-blocking program operation and thrice in a
non-blocking write operation.

The pseudo code for using a non-blocking write system call
and executing user code out of SRAM is given later in this
chapter.

19.4.1 Performing a System Call

The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible meth-
ods for preparing the function parameters (key1, key2,
additional parameters) are:

a. Write the function parameters to the
CPUSS_SYSARG register: This method is used for
functions that retrieve their parameters from the
CPUSS_SYSARG register. The 32-bit
CPUSS_SYSARG register must be written with the
parameters in the sequence specified in the respec-
tive system call table.

b. Write the function parameters to SRAM: This method
is used for functions that retrieve their parameters
from SRAM. The parameters should first be written in
the specified sequence to consecutive SRAM loca-
tions. Then, the starting address of the SRAM, which
is the address of the first parameter, should be writ-
ten to the CPUSS_SYSARG register. This starting
address should always be a word-aligned (32-bit)
address. The system call uses this address to fetch
the parameters.

2. Specify the system call using its opcode and initiating the
system call: The 8-bit opcode should be written to the
SYSCALL_COMMAND bits ([15:0]) in the
CPUSS_SYSREQ register. The opcode is placed in the
lower eight bits [7:0] and 0x00 be written to the upper
eight bits [15:8]. To initiate the system call, set the
SYSCALL_REQ bit (31) in the CPUSS_SYSREG regis-
ter. Setting this bit triggers a non-maskable interrupt that
jumps the CPU to the SROM code referenced by the
opcode parameter.

3. Wait for the system call to finish executing: When the
system call begins execution, it sets the PRIVILEGED
bit in the CPUSS_SYSREQ register. This bit can be set
only by the system call, not by the CPU or DAP. The
DAP should poll the PRIVILEGED and SYSCALL_REQ
bits in the CPUSS_SYSREG register continuously to
check whether the system call is completed. Both these
bits are cleared on completion of the system call. The

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 121

Nonvolatile Memory Programming

maximum execution time is one second. If these two bits
are not cleared after one second, the operation should
be considered a failure and aborted without executing
the following steps. Note that unlike the DAP, the CPU
application code cannot poll these bits during system
call execution. This is because the CPU executes code
out of the SROM during the system call. The application
code can check only the final function pass/fail status
after the execution returns from SROM.

4. Check the completion status: After the PRIVILEGED and
SYSCALL_REQ bits are cleared to indicate completion
of the system call, the CPUSS_SYSARG register should
be read to check for the status of the system call. If the
32-bit value read from the CPUSS_SYSARG register is
0xAXXXXXXX (where ‘X’ denotes don’t care hex val-
ues), the system call was successfully executed. For a
failed system call, the status code is 0xF00000YY where

YY indicates the reason for failure. See Table 19-1 for
the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return
values such as silicon ID and checksum, the CPU or
DAP should read the CPUSS_SYSREG and
CPUSS_SYSARG registers to fetch the values returned.

19.5 System Calls

Table 19-1 lists all the system calls supported in PSoC 4
along with the function description and availability in device
protection modes. See the Device Security chapter on
page 66 for more information on the device protection set-
tings. Note that some system calls cannot be called by the
CPU as given in the table. Detailed information on each of
the system calls follows the table.

19.5.1 Silicon ID

This function returns a 12-bit family ID, 16-bit silicon ID, and an 8-bit revision ID, and the current device protection mode.
These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed through the
CPUSS_SYSARG and CPUSS_SYSREQ registers.

Parameters

Table 19-1. List of System Calls

System Call Description
DAP Access CPU

AccessOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID ✔ ✔ – ✔

Load Flash Bytes
Loads data to the page latch buffer to be programmed later into the
flash row, in 1 byte granularity, for a row size of 64 bytes

✔ – – ✔

Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer

✔ – – ✔

Program Row Programs a row of flash with data in the page latch buffer ✔ – – ✔

Erase All
Erases all user code in the flash array; the flash row-level protection
data in the supervisory flash area

✔ – –

Checksum
Calculates the checksum over the entire flash memory (user and super-
visory area) or checksums a single row of flash

✔ ✔ – ✔

Write Protection
This programs both flash row-level protection settings and chip-level
protection settings into the supervisory flash (row 0)

✔ ✔ –

Non-Blocking Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer. During program/erase pulses, the user may execute code from
SRAM. This function is meant only for CPU access

– – – ✔

Non-Blocking Program
Row

Programs a row of flash with data in the page latch buffer. During pro-
gram/erase pulses, the user may execute code from SRAM. This func-
tion is meant only for CPU access

– – – ✔

Resume Non-Blocking
Resumes a non-blocking write row or non-blocking program row. This
function is meant only for CPU access

– – – ✔

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD3 Key2

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 122

Nonvolatile Memory Programming

Return

19.5.2 Configure Clock

This function initializes the clock necessary for flash programming and erasing operations. This API is used to ensure that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz prior to calling the flash write and flash
erase APIs. The flash write and erase APIs will exit without acting on the flash and return the "Invalid Pump Clock Frequency"
status if the IMO is the source of the charge pump clock and is not 48 MHz.

Parameters

Return

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo See the device datasheet for Silicon ID values for different
part numbersBits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id

Bits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code

CPUSS_SYSREQ register

Bits [11:0] Family ID
Family ID is 0x09A for PSoC 4000

Bits [15:12] Chip Protection See the Device Security chapter on page 66

Bits [31:16] 0xXXXX Not used

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xE8 Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0015 Configure clock opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

http://www.cypress.com/?rID=94034

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 123

Nonvolatile Memory Programming

19.5.3 Load Flash Bytes

This function loads the page latch buffer with data to be programmed into a row of flash. The load size can range from 1-byte
to the maximum number of bytes in a flash row, which is 64 bytes. Data is loaded into the page latch buffer starting at the
location specified by the “Byte Addr” input parameter. Data loaded into the page latch buffer remains until a program opera-
tion is performed, which clears the page latch contents. The parameters for this function, including the data to be loaded into
the page latch, are written to the SRAM; the starting address of the SRAM data is written to the CPUSS_SYSARG register.
Note that the starting parameter address should be a word-aligned address.

Parameters

Return

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr

Start address of page latch buffer to write data

0x00 – Byte 0 of latch buffer

0x3F – Byte 63 of latch buffer

Bits [31:24] Flash Macro Select

0x00 – Flash Macro 0

0x01 – Flash Macro 1

(Refer to the Cortex-M0 CPU chapter on page 19 for the
number of flash macros in the device)

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size

Number of bytes to be written to the page latch buffer.

0x00 – 1 byte

0x3F – 64 bytes

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address- From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 124

Nonvolatile Memory Programming

19.5.4 Write Row

This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all data in the page
latch buffer is 0, then the program is skipped. The parameters for this function are stored in SRAM. The start address of the
stored parameters is written to the CPUSS_SYSARG register. This function clears the page latch buffer contents after the row
is programmed.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function. This function can do a write operation only if the corresponding flash row is not write protected.

Note that the SROM does not modify, enable, or disable any clock during any flash operation. Refer to the
CLK_IMO_CONFIG register in the PSoC 4000 Family: PSoC 4 Registers TRM for more information.

Parameters

Return

19.5.5 Program Row

This function programs the addressed row of the flash with data in the page latch buffer. If all data in the page latch buffer is 0,
then the program is skipped. The row must be in an erased state before calling this function. It clears the page latch buffer
contents after the row is programmed.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function. The row must be in an erased state before calling this function. This function can do a program operation
only if the corresponding flash row is not write-protected.

Parameters

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID
Row number to program

0x0000 – Row 0

http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 125

Nonvolatile Memory Programming

Return

19.5.6 Erase All

This function erases all the user code in the flash main arrays and the row-level protection data in supervisory flash row 0 of
each flash macro.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. This API can be called only from the DAP
in the programming mode and only if the chip protection mode is OPEN. If the chip protection mode is PROTECTED, then the
Write Protection API must be used by the DAP to change the protection settings to OPEN. Changing the protection setting
from PROTECTED to OPEN automatically does an erase all operation.

Parameters

Return

19.5.7 Checksum

This function reads either the whole flash memory or a row of flash and returns the 24-bit sum of each byte read in that flash
region. When performing a checksum on the whole flash, the user code and supervisory flash regions are included. When

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 126

Nonvolatile Memory Programming

performing a checksum only on one row of flash, the flash row number is passed as a parameter. Bytes 2 and 3 of the param-
eters select whether the checksum is performed on the whole flash memory or a row of user code flash.

Parameters

Return

19.5.8 Write Protection

This function programs both the flash row-level protection settings and the device protection settings in the supervisory flash
row. The flash row-level protection settings are programmed separately for each flash macro in the device. Each row has a
single protection bit. The total number of protection bytes is the number of flash rows divided by eight. The chip-level protec-
tion settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the supervisory flash. The size of
the supervisory flash row is the same as the user code flash row size.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. The Load Flash Bytes function is used to
load the flash protection bytes of a flash macro into the page latch buffer corresponding to the macro. The starting address
parameter for the load function should be zero. The flash macro number should be one that needs to be programmed; the
number of bytes to load is the number of flash protection bytes in that macro.

Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be the corre-
sponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection settings, the device level
protection setting is passed as a parameter in the CPUSS_SYSARG register.

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID

Selects the flash row number on which the checksum operation is done

Row number – 16 bit flash row number

or

0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] Checksum 24-bit checksum value of the selected flash region

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 127

Nonvolatile Memory Programming

Parameters

Return

19.5.9 Non-Blocking Write Row

This function is used when a flash row needs to be written by the CM0 CPU in a non-blocking manner, so that the CPU can
execute code from SRAM while the write operation is being done. The explanation of non-blocking system calls is explained
in Blocking and Non-Blocking System Calls on page 120.

The non-blocking write row system call has three phases: Pre-program, Erase, Program. Pre-program is the step in which all
of the bits in the flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all of the bits in
the row, and the program operation writes the new data to the row.

While each phase is being executed, the CPU can execute code from SRAM. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is required for
completion of the non-blocking write operation. After the completion of each phase, the SPC triggers its interrupt. In this inter-
rupt, call the Resume Non-Blocking system call.

Note The device firmware must not attempt to put the device to sleep during a non-blocking write row. This action will reset
the page latch buffer and the flash will be written with all zeroes.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function to load the data bytes that will be used for programming the row. In addition, the non-blocking write row
function can be called only from the SRAM. This is because the CM0 CPU cannot execute code from flash while doing the
flash erase program operations. If this function is called from the flash memory, the result is undefined, and may return a bus
error and trigger a hard fault when the flash fetch operation is being done.

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte

Parameter applicable only for Flash Macro 0

0x01 – OPEN mode

0x02 – PROTECTED mode

0x04 – KILL mode

Bits [31:24] Flash Macro Select
0x00 – Flash Macro 0

0x01 – Flash Macro 1

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] 0x000000

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 128

Nonvolatile Memory Programming

Parameters

Return

19.5.10 Non-Blocking Program Row

This function is used when a flash row needs to be programmed by the CM0 CPU in a non-blocking manner, so that the CPU
can execute code from the SRAM when the program operation is being done. The explanation of non-blocking system calls is
explained in Blocking and Non-Blocking System Calls on page 120. While the program operation is being done, the CPU can
execute code from the SRAM. When the non-blocking program row system call is called, the user cannot call any other sys-
tem call function other than the Resume Non-Blocking function, which is required for the completion of the non-blocking write
operation.

Unlike the Non-Blocking Write Row system call, the Program system call only has a single phase. Therefore, the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking Program Row sys-
tem call.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function to load the data bytes that will be used for programming the row. In addition, the non-blocking program
row function can be called only from SRAM. This is because the CM0 CPU cannot execute code from flash while doing flash
program operations. If this function is called from flash memory, the result is undefined, and may return a bus error and trigger
a hard fault when the flash fetch operation is being done.

Parameters

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first function
parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 Non-Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 129

Nonvolatile Memory Programming

Return

19.5.11 Resume Non-Blocking

This function completes the additional phases of erase and program that were started using the non-blocking write row and
non-blocking program row system calls. This function must be called thrice following a call to Non-Blocking Write Row or once
following a call to Non-Blocking Program Row from the SPC ISR. No other system calls can execute until all phases of the
program or erase operation are complete. More details on the procedure of using the non-blocking functions are explained in
Blocking and Non-Blocking System Calls on page 120.

Parameters

Return

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 130

Nonvolatile Memory Programming

19.6 System Call Status

At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A success sta-
tus is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls that return a value. A
failure status is indicated by 0xF00000XX, where XX is the failure code.

Table 19-2. System Call Status Codes

Status Code
(32-bit value in

CPUSS_SYSARG register)
Description

AXXXXXXXh
Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the
API returns parameters directly to the CPUSS_SYSARG register.

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h
Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size pro-
vided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory.

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h
Resume Completed – All non-blocking APIs have completed. The resume API cannot be called until the next
non-blocking API.

F0000008h
Pending Resume – A non-blocking API was initiated and must be completed by calling the resume API,
before any other APIs may be called.

F0000009h
System Call Still In Progress – A resume or non-blocking is still in progress. The SPC ISR must fire before
attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2.

F000000Eh Invalid Start Address – The start address is greater than the end address provided.

F0000012h
Invalid Pump Clock Frequency - IMO must be set to 48 MHz and HF clock source to the IMO clock source
before flash write/erase operations.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 131

Nonvolatile Memory Programming

19.7 Non-Blocking System Call Pseudo Code

This section contains pseudo code to demonstrate how to set up a non-blocking system call and execute code out of SRAM
during the flash programming operations.

#define REG(addr) (*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG(0xE000E100)
#define CPUSS_CONFIG_REG REG(0x40100000)
#define CPUSS_SYSREQ_REG REG(0x40100004)
#define CPUSS_SYSARG_REG REG(0x40100008)

#define ROW_SIZE_64 (64)
#define ROW_SIZE (ROW_SIZE_64)

/*Variable to keep track of how many times SPC ISR is triggered */
__ram int iStatusInt = 0x00;

__flash int main(void)
{

DoUserStuff();

/*CM0 interrupt enable bit for spc interrupt enable */
CM0_ISER_REG |= 0x00000040;

/*Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM */
CPUSS_CONFIG_REG |= 0x00000001;

/*Call non-blocking write row API */
NonBlockingWriteRow();

/*End Program */
while(1);

}
__sram void SpcIntHandler(void)
{

/* Write key1, key2 parameters to SRAM */
REG(0x20000000) = 0x0000DCB6;

/*Write the address of key1 to the CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000009;

/* Number of times the ISR has triggered */
iStatusInt ++;

}
__sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/
* Write key1, key2, byte address, and macro sel parameters to SRAM
*/
REG(0x20000000) = 0x0000D7B6;

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 132

Nonvolatile Memory Programming

//Write load size param (64 bytes) to SRAM
REG(0x20000004) = 0x0000003F;

for(i = 0; i < ROW_SIZE/4; i += 1)
{

REG(0x20000008 + i*4) = 0xDADADADA;
}

/*Write the address of the key1 param to CPUSS_SYSARG reg*/
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example.
* Write key1, key2, row id to SRAM row id = 0xC8 -> which is row 200
*/
REG(0x20000000) = 0x00C8DAB6;

/*Write the address of the key1 param to CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000007;

/*Execute user code until iStatusInt equals 3 to signify
* 3 SPC interrupts have happened. This should be 1 in case
* of non-blocking program System Call
*/
while(iStatusInt != 0x03)
{

DoOtherUserStuff();
}

/* Get the success or failure status of System Call*/
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0 exception table is configured to be in SRAM by writing 0x01 to the CPUSS_CONFIG register. The
SRAM exception table should have the vector address of the SPC interrupt as the address of the SpcIntHandler() function,
which is also defined to be in SRAM. See the Interrupts chapter on page 24 for details on configuring the CM0 exception table
to be in SRAM. The pseudo code for a non-blocking program system call is also similar, except that the function opcode and
parameters will differ and the iStatusInt variable should be polled for 1 instead of 3. This is because the SPC ISR will be trig-
gered only once for a non-blocking program system call.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 133

Glossary

The Glossary section explains the terminology used in this technical reference manual. Glossary terms are characterized in
bold, italic font throughout the text of this manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is neces-
sary to write the result of each calculation (addition, subtraction, shift, and so on.) to main mem-
ory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU).

active high 1. A logic signal having its asserted state as the logic 1 state.

2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.

2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit of
information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the PSoC
device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic 1
or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with a
digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 134

Glossary

AND See Boolean Algebra.

API (Application Pro-
gramming Interface)

A series of software routines that comprise an interface between a computer application and
lower-level services and functions (for example, user modules and libraries). APIs serve as build-
ing blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer pro-
gramming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as
opposed to an associative array. Most high-level programming languages have arrays as a built-
in data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces
one machine instruction, though the use of macros is common. Assembly languages are consid-
ered low-level languages; where as C is considered a high-level language.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock sig-
nal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the

negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) refer-

ence.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or
loss); it is sometimes represented more specifically as, for example, full width at half maxi-
mum.

bias 1. A systematic deviation of a value from a reference value.

2. The amount by which the average of a set of values departs from a reference value.

3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a
reference level to operate the device.

bias current The constant low-level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.

binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 135

Glossary

bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group of 8
bits is called a byte. Because the PSoC's M8CP is an 8-bit microcontroller, the PSoC devices's
native data chunk size is a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps).

block 1. A functional unit that performs a single function, such as an oscillator.

2. A functional unit that may be configured to perform one of several functions, such as a digital
PSoC block or an analog PSoC block.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic struc-
tures which "capture the essence" of the logical operations AND, OR and NOT as well as the set
theoretic operations union, intersection, and complement. Boolean algebra also defines a set of
theorems that describe how Boolean equations can be manipulated. For example, these theo-
rems are used to simplify Boolean equations, which will reduce the number of logic elements
needed to implement the equation.

The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR
(exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often use +
(for example, A+B) for OR and for AND (for example, A*B) (in some ways those operations are
analogous to addition and multiplication in other algebraic structures) and represent NOT by a
line drawn above the expression being negated (for example, ~A, A_, !A).

break-before-make The elements involved go through a disconnected state entering (‘break”) before the new con-
nected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or sys-
tems.

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring
data from one device to another. Usually refers to an area reserved for I/O operations, into
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or as
it is received from an external device.

3. An amplifier used to lower the output impedance of a system.

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically repre-
sented using vector notation; for example, address[7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.

C

C A high-level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 136

Glossary

capture To extract information automatically through the use of software or hardware, as opposed to
hand-entering of data into a computer file.

chaining Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit functions. Chaining
allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be produced from
one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to gen-
erate a pre-determined value.

clear To force a bit/register to a value of logic ‘0’.

clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal-oxide semiconductor.

comparator An electronic circuit that produces an output voltage or current whenever two input levels simul-
taneously satisfy predetermined amplitude requirements.

compiler A program that translates a high-level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and documentation.
The configuration will affect system performance.

configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to
‘1’.

crowbar A type of over-voltage protection that rapidly places a low-resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a predeter-
mined value.

CPUSS CPU subsystem

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelec-
tric crystal is less sensitive to ambient temperature than other circuit components.

cyclic redundancy
check (CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 137

Glossary

D

data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission Sending data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and - (minus) to represent num-
bers.

default value Pertaining to the pre-defined initial, original, or specific setting, condition, value, or action a sys-
tem will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the PSoC device, unless otherwise specified.

die An non-packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’ or
‘1’.

digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC gen-
erator, pseudo-random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two-state variables that describe the
behavior of a circuit or system.

digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The ana-
log-to-digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physi-
cal location of the data.

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.

E

External Reset
(XRES_N)

An active high signal that is driven into the PSoC device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 138

Glossary

F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example, a
character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the pro-
grammability and data storage of EPROMs, plus in-system erasability. Nonvolatile means that
the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip-flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made to
change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output
channel state is completely determined by the input channel states, except during switching
transients.

2. One of many types of combinational logic elements having at least two inputs (for example,
AND, OR, NAND, and NOR (also see Boolean Algebra)).

ground 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply.

3. The reference point for an electrical system.

4. The conducting paths between an electric circuit or equipment and the earth, or some con-
ducting body serving in place of the earth.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 139

Glossary

H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as distin-
guished from the data it contains or operates on, and the software that provides instructions for
the hardware to accomplish tasks.

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all regis-
ters are set to the POR value as indicated in register tables throughout this document.

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0-9 and A-F. It is a useful system in computers because there is an easy mapping from four bits
to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal digits.
Compare the binary, hex, and decimal representations:

bin = hex = dec

0000b = 0x0 = 0

0001b = 0x1 = 1

0010b = 0x2 = 2

...

1001b = 0x9 = 9

1010b = 0xA = 10

1011b = 0xB = 11

...

1111b = 0xF = 15

So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.

I

I2C A two-wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used

as a simple internal bus system for building control electronics. I2C uses only two bidirectional
pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at
100 Kbps in standard mode and 400 Kbps in fast mode.

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 140

Glossary

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in a
circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is
determined by the particular combination of resistance, inductive reactance, and capacitive
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly-language instructions, for
example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption
that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the inter-
val between successive pulses, the amplitude of successive cycles, or the frequency or
phase of successive cycles.

L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit
(LSb)

The binary digit, or bit, in a binary number that represents the least significant value (typically the
right-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in LSb.

least significant byte
(LSB)

The byte in a multi-byte word that represents the least significant values (typically the right-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in LSB.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 141

Glossary

Linear Feedback Shift
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means of
select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is contin-
uous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low-voltage detect
(LVD)

A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a

selected threshold.

M

M8CP An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all activity inside
a PSoC device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if a
macro is used five times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is usu-
ally the result of interaction with another signal, such as noise, static, jamming, or other forms
of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits, in
computing and data processing systems.

master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.

microcontroller An integrated circuit device that is designed primarily for control systems and products. In addi-
tion to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The
reason for this is to permit the realization of a controller with a minimal quantity of devices, thus
achieving maximal possible miniaturization. This in turn, will reduce the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor.

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy-to-remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 142

Glossary

mode A distinct method of operation for software or hardware. For example, the Digital PSoC block
may be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine-wave signal. A
device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal-oxide semiconductor.

most significant bit
(MSb)

The binary digit, or bit, in a binary number that represents the most significant value (typically the
left-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in MSb.

most significant byte
(MSB)

The byte in a multi-byte word that represents the most significant values (typically the left-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one-half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current,
or data.

NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 143

Glossary

P

parallel The means of communication in which digital data is sent multiple bits at a time, with each simul-
taneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).

path 1. The logical sequence of instructions executed by a computer.

2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts will
involve pin numbers as a link between schematic and PCB design (both being computer gener-
ated files) and may also involve pin names.

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.

Power On Reset (POR) A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is
one type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed.

protocol A set of rules. Particularly the rules that govern networked communications.

PSoC® Cypress’s Programmable System-on-Chip (PSoC®) devices.

PSoC blocks See analog blocks and digital blocks.

PSoC Creator™ The software for Cypress’s next generation Programmable System-on-Chip technology.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 144

Glossary

pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a base-
line value to a higher or lower value, followed by a rapid return to the baseline value.

pulse width modulator
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data-storage device from which data can be read out
and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the PSoC device.

ripple divider An asynchronous ripple counter constructed of flip-flops. The clock is fed to the first stage of the

counter. An n-bit binary counter consisting of n flip-flops that can count in binary from 0 to 2n - 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.

runt pulses In digital circuits, narrow pulses that, due to non-zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then recom-
bined to form a glitch or when the output of a flip-flop becomes metastable.

S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a
single device or channel.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 145

Glossary

set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the hex
value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted one
place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit rep-
resents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the PSoC silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of a
data processing system (for example, compilers, library routines, manuals, and circuit diagrams).
Software is often written first as source code, and then converted to a binary format that is spe-
cific to the device on which the code will be executed.

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not PSoC blocks, systems, peripherals, or regis-
ters. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC, CPU_SP, and CPU_X)
are set to 0x00. Therefore, code execution will begin at flash address 0x0000.

SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded
into an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means that
the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at a
fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to con-
sist of a set of states through which it sequences.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 146

Glossary

sticky A bit in a register that maintains its value past the time of the event that caused its transition, has
passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or to
transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The PSoC SC blocks have two groups of switches. One group of these switches is nor-
mally closed during PHI1 and open during PHI2. The other group is open during PHI1 and closed
during PHI2. These switches can be controlled in the normal operation, or in reverse mode if the
PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several blocks/compo-
nents in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.

threshold The minimum value of a signal that can be detected by the system or sensor under consider-
ation.

Thumb-2 The Thumb-2 instruction set is a highly efficient and powerful instruction set that delivers signifi-
cant benefits in terms of ease of use, code size, and performance. The Thumb-2 instruction set is
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions along-
side 32-bit instructions.

transistors The transistor is a solid-state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits, transis-
tors are used as very fast electrical switches, and arrangements of transistors can function as
logic gates, RAM-type memory, and other devices. In analog circuits, transistors are essentially
used as amplifiers.

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data
and serial bits.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 147

Glossary

user The person using the PSoC device and reading this manual.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high
level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning "voltage source." The most negative power supply signal.

W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a specified
period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 148

Index

A
active mode

PSoC . 58

B
block diagram

program and debug interface 112
watchdog timer circuit . 61

brownout reset . 64

C
clock distribution . 47
clock sources

distribution . 47
clocking system

introduction . 45
Cortex-M0

features . 19
instruction set . 22
registers . 21

D
development kits . 14
document

glossary . 133
revision history . 9

E
exception

HardFault . 27
NMI . 27
PendSV . 27
reset . 26
SVCall . 27
SysTick . 27

external reset . 65

F
features

I/O system . 36

watchdog timer .61

G
glossary .133
GPIO pins in creation of buttons and sliders 44

H
high impedance analog drive mode 40
high impedance digital drive mode40

I
I/O drive mode

high impedance analog .40
high impedance digital .40
open drain .40
resistive .40
strong .40

I/O system
CapSense .44
features .36
introduction .36
open drain modes .40
register summary .44
resistive modes .40
slew rate control .41
strong drive mode .40

identifying reset sources .65
internal low speed oscillator .47
internal main oscillator .46
internal regulators .51
introduction

clock generator .45
I/O system .36
reset .64

O
oscillators

internal PSoC .46
overview, document

revision history .9

PSoC 4000 Family: PSoC 4 Architecture TRM, Document No. 001-89309 Rev. *E 149

Index

P
power on reset . 64
program and debug

PSoC . 13
protection fault reset . 65
PSoC

active mode . 58
program and debug . 13

PSoC 4
major components . 10

R
register summary

I/O system . 44
registers

Cortex-M0 . 21
regulator

internal . 51
reset

identifying sources . 65
introduction . 64

reset sources
description . 64

revision history . 9

S
sleep mode . 58
slew rate control in I/O system 41
software initiated reset . 65
support . 14
SWD interface

program and debug interface 113
system call

overview . 120

U
upgrades . 14

W
watchdog reset . 64
watchdog timer

features . 61
interrupts . 63

	PSoC 4000 TRM
	Contents Overview
	Contents
	Section A: Overview
	Document Revision History
	1. Introduction
	1.1 Top Level Architecture
	1.2 Features
	1.3 CPU System
	1.3.1 Processor
	1.3.2 Interrupt Controller

	1.4 Memory
	1.5 System-Wide Resources
	1.5.1 Clocking System
	1.5.2 Power System
	1.5.3 GPIO

	1.6 Fixed-Function Digital
	1.6.1 Timer/Counter/PWM Block
	1.6.2 Serial Communication BlocksI2C Block

	1.7 Special Function Peripherals
	1.7.1 CapSense
	1.7.1.1 IDACs and Comparator

	1.8 Program and Debug

	2. Getting Started
	2.1 Support
	2.2 Product Upgrades
	2.3 Development Kits
	2.4 Application Notes

	3. Document Construction
	3.1 Major Sections
	3.2 Documentation Conventions
	3.2.1 Register Conventions
	3.2.2 Numeric Naming
	3.2.3 Units of Measure
	3.2.4 Acronyms

	Section B: CPU System
	Top Level Architecture
	4. Cortex-M0 CPU
	4.1 Features
	4.2 Block Diagram
	4.3 How It Works
	4.4 Address Map
	4.5 Registers
	4.6 Operating Modes
	4.7 Instruction Set
	4.7.1 Address Alignment
	4.7.2 Memory Endianness

	4.8 Systick Timer
	4.9 Debug

	5. Interrupts
	5.1 Features
	5.2 How It Works
	5.3 Interrupts and Exceptions - Operation
	5.3.1 Interrupt/Exception Handling
	5.3.2 Level and Pulse Interrupts
	5.3.3 Exception Vector Table

	5.4 Exception Sources
	5.4.1 Reset Exception
	5.4.2 Non-Maskable Interrupt (NMI) Exception
	5.4.3 HardFault Exception
	5.4.4 Supervisor Call (SVCall) Exception
	5.4.5 PendSV Exception
	5.4.6 SysTick Exception

	5.5 Interrupt Sources
	5.6 Exception Priority
	5.7 Enabling and Disabling Interrupts
	5.8 Exception States
	5.8.1 Pending Exceptions

	5.9 Stack Usage for Exceptions
	5.10 Interrupts and Low-Power Modes
	5.11 Exceptions – Initialization and Configuration
	5.12 Registers
	5.13 Associated Documents

	Section C: Memory System
	Top Level Architecture
	6. Memory Map
	6.1 Features
	6.2 How It Works

	Section D: System Resources Subsystem (SRSS)
	Top Level Architecture
	7. I/O System
	7.1 Features
	7.2 GPIO Interface Overview
	7.3 I/O Cell Architecture
	7.3.1 Digital Input Buffer
	7.3.2 Digital Output Driver
	7.3.2.1 Drive Modes
	7.3.2.2 Slew Rate Control

	7.4 High-Speed I/O Matrix
	7.5 .I/O State on Power Up
	7.6 Behavior in Low-Power Modes
	7.7 Interrupt
	7.8 Peripheral Connections
	7.8.1 Firmware Controlled GPIO
	7.8.2 tCapSense
	7.8.3 tTimer, Counter, and Pulse Width Modulator (TCPWM) Block

	7.9 Registers

	8. Clocking System
	8.1 Block Diagram
	8.2 Clock Sources
	8.2.1 Internal Main Oscillator
	8.2.1.1 Startup Behavior

	8.2.2 Internal Low-speed Oscillator
	8.2.3 External Clock (EXTCLK)

	8.3 Clock Distribution
	8.3.1 .HFCLK Input Selection
	8.3.2 HFCLK Predivider Configuration
	8.3.3 SYSCLK Prescaler Configuration
	8.3.4 Peripheral Clock Divider Configuration

	8.4 Low-Power Mode Operation
	8.5 Register List

	9. Power Supply and Monitoring
	9.1 Block Diagram
	9.2 Power Supply Scenarios
	9.2.1 Single 1.8 V to 5.5 V Unregulated Supply
	9.2.2 Direct 1.71 V to 1.89 V Regulated Supply
	9.2.3 VDDIO Supply.

	9.3 How It Works
	9.3.1 Regulator Summary
	9.3.1.1 Active Digital Regulator
	9.3.1.2 Quiet Regulator
	9.3.1.3 Deep-Sleep Regulator

	9.4 Voltage Monitoring
	9.4.1 Power-On-Reset (POR)
	9.4.1.1 Brownout-Detect (BOD)

	9.5 Register List

	10. Chip Operational Modes
	10.1 Boot
	10.2 User
	10.3 Privileged
	10.4 Debug

	11. Power Modes
	11.1 Active Mode
	11.2 Sleep Mode
	11.3 Deep-Sleep Mode
	11.4 Power Mode Summary
	11.5 Low-Power Mode Entry and Exit
	11.6 Register List

	12. Watchdog Timer
	12.1 Features
	12.2 Block Diagram
	12.3 How It Works
	12.3.1 Enabling and Disabling WDT
	12.3.2 WDT Interrupts and Low-Power Modes
	12.3.3 WDT Reset Mode

	12.4 Register List

	13. Reset System
	13.1 Reset Sources
	13.1.1 Power-on Reset
	13.1.2 Brownout Reset
	13.1.3 Watchdog Reset
	13.1.4 Software Initiated Reset
	13.1.5 External Reset
	13.1.6 Protection Fault Reset

	13.2 Identifying Reset Sources
	13.3 Register List

	14. Device Security
	14.1 Features
	14.2 How It Works
	14.2.1 Device Security
	14.2.2 Flash Security

	Section E: Digital System
	Top Level Architecture
	15. Inter-Integrated Circuit (I2C)
	15.1 Features
	15.2 General Description
	15.2.1 Terms and Definitions
	15.2.1.1 Clock Stretching
	15.2.1.2 Bus Arbitration

	15.2.2 I2C Modes of Operation
	15.2.2.1 Write Transfer
	15.2.2.2 Read Transfer

	15.2.3 Easy I2C (EZI2C) Protocol
	15.2.3.1 Memory Array Write
	15.2.3.2 Memory Array Read

	15.2.4 I2C Registers
	15.2.5 I2C Interrupts
	15.2.6 Enabling and Initializing the I2C
	15.2.6.1 I2C Standard (Non-EZ) Mode Configuration
	15.2.6.2 EZI2C Mode Configuration

	15.2.7 Internal and External Clock Operation in I2C
	15.2.7.1 I2C Non-EZ Mode of Operation
	15.2.7.2 I2C EZ Operation Mode

	15.2.8 Wake up from Sleep
	15.2.9 Master Mode Transfer Examples
	15.2.9.1 Master Transmit
	15.2.9.2 Master Receive

	15.2.10 Slave Mode Transfer Examples
	15.2.10.1 Slave Transmit
	15.2.10.2 Slave Receive

	15.2.11 EZ Slave Mode Transfer Example
	15.2.11.1 EZ Slave Transmit
	15.2.11.2 EZ Slave Receive

	15.2.12 Multi-Master Mode Transfer Example
	15.2.12.1 Multi-Master - Slave Not Enabled
	15.2.12.2 Multi-Master - Slave Enabled

	16. Timer, Counter, and PWM
	16.1 Features
	16.2 Block Diagram
	16.2.1 Enabling and Disabling Counter in TCPWM Block
	16.2.2 Clocking
	16.2.3 Events Based on Trigger Inputs
	16.2.4 Output Signals
	16.2.4.1 Signals upon Trigger Conditions
	16.2.4.2 Interrupts
	16.2.4.3 Outputs

	16.2.5 Power Modes

	16.3 Modes of Operation
	16.3.1 Timer Mode
	16.3.1.1 Block Diagram
	16.3.1.2 How It Works
	16.3.1.3 Configuring Counter for Timer Mode

	16.3.2 Capture Mode
	16.3.2.1 Block Diagram
	16.3.2.2 How it Works
	16.3.2.3 Configuring Counter for Capture Mode

	16.3.3 Quadrature Decoder Mode
	16.3.3.1 Block Diagram
	16.3.3.2 How It Works
	16.3.3.3 Configuring Counter for Quadrature Mode

	16.3.4 Pulse Width Modulation Mode
	16.3.4.1 Block Diagram
	16.3.4.2 How It Works
	16.3.4.3 Other Configurations
	16.3.4.4 Kill Feature
	16.3.4.5 Configuring Counter for PWM Mode

	16.3.5 Pulse Width Modulation with Dead Time Mode
	16.3.5.1 Block Diagram
	16.3.5.2 How It Works
	16.3.5.3 Configuring Counter for PWM with Dead Time Mode

	16.3.6 Pulse Width Modulation Pseudo-Random Mode
	16.3.6.1 Block Diagram
	16.3.6.2 How It Works
	16.3.6.3 Configuring Counter for Pseudo-Random PWM Mode

	16.4 TCPWM Registers

	Section F: Analog System
	Top Level Architecture
	17. CapSense

	Section G: Program and Debug
	Top Level Architecture
	18. Program and Debug Interface
	18.1 Features
	18.2 Functional Description
	18.3 Serial Wire Debug (SWD) Interface
	18.3.1 SWD Timing Details
	18.3.2 ACK Details
	18.3.3 Turnaround (Trn) Period Details

	18.4 Cortex-M0 Debug and Access Port (DAP)
	18.4.1 Debug Port (DP) Registers
	18.4.2 Access Port (AP) Registers

	18.5 Programming the PSoC 4 Device
	18.5.1 SWD Port Acquisition
	18.5.1.1 SWD Port Acquire Sequence

	18.5.2 SWD Programming Mode Entry
	18.5.3 SWD Programming Routines Executions

	18.6 PSoC 4 SWD Debug Interface
	18.6.1 Debug Control and Configuration Registers
	18.6.2 Breakpoint Unit (BPU)
	18.6.3 Data Watchpoint (DWT)
	18.6.4 Debugging the PSoC 4 Device

	18.7 Registers

	19. Nonvolatile Memory Programming
	19.1 Features
	19.2 Functional Description
	19.3 System Call Implementation
	19.4 Blocking and Non-Blocking System Calls
	19.4.1 Performing a System Call

	19.5 System Calls
	19.5.1 Silicon ID
	19.5.2 Configure Clock
	19.5.3 Load Flash Bytes
	19.5.4 Write Row
	19.5.5 Program Row
	19.5.6 Erase All
	19.5.7 Checksum
	19.5.8 Write Protection
	19.5.9 Non-Blocking Write Row
	19.5.10 Non-Blocking Program Row
	19.5.11 Resume Non-Blocking

	19.6 System Call Status
	19.7 Non-Blocking System Call Pseudo Code

	Glossary
	Index

