

XENSIV[™] PAS CO2 12 V sensor based on photo acoustic spectroscopy principle

Features

• Operating range: 0 ppm to 32000 ppm

• Accuracy: ±30 ppm ±3% of reading between 400 ppm and 5000 ppm

• Lifetime: 10 years for indoor mission profile

• Interface: I²C, UART, and PWM

• Package dimension: 13.8 × 14 × 7.5 mm³

• Maintenance: Maintenance-free when using ABOC feature (automatic baseline offset correction)

Potential applications

High accuracy, compact size, and SMD capability make the XENSIV[™] PAS CO2 sensor ideal for indoor air quality monitoring solutions in the market with numerous potential applications.

- HVAC (heating, ventilation, air conditioning)
- · Home appliances
- · Smart home IoT devices
- In-cabin air quality monitoring unit
- Agriculture/greenhouses

Description

Infineon has leveraged its knowledge in sensors and MEMS technologies to develop a disruptive gas sensor for CO₂ sensing. The XENSIV™ PAS CO2 is a real CO₂ sensor combining NDIR technology with Infineon's high SNR MEMS microphones, allowing for state-of-the-art accuracy in an exceptionally small form factor.

The sensor is based on the photoacoustic spectroscopy (PAS) principle, where CO_2 molecules within the sensor cavity absorb infrared light, generating small pressure changes that are detected by an acoustic detector. CO_2 concentration is then delivered in the form of a direct ppm readout, thanks to the integrated microcontroller. Highly accurate CO_2 readings are guaranteed.

OPN number	Package	SP number
PASCO2V01AUMA3	LG-MLGA-14-1	SP006037335

Datasheet

Table of contents

	Features	1
	Potential applications	1
	Description	1
	Table of contents	2
1	Block diagram	4
2	Pin-out diagram	[
3	Typical sensor response to CO ₂ concentration change	6
4	Characteristics and parameters	
4.1	Specification	
4.1.1	Operating range	
4.1.2	Storage conditions	
4.1.3	Timing characteristics	
4.1.4	Absolute maximum ratings	10
4.1.5	Current rating and power consumption	10
4.1.6	CO ₂ transfer function	11
4.2	Digital interfaces	11
4.2.1	I ² C interface	11
4.2.1.1	I ² C transaction format	12
4.2.1.2	I ² C timing characteristics	12
4.2.2	UART interface	14
4.3	Application circuit examples	15
4.3.1	I ² C application circuit example	15
4.3.2	UART application circuit example	15
4.3.3	PWM application circuit example	16
4.4	Functional description	16
4.4.1	Operating modes	16
4.4.2	Data post-processing	17
4.4.2.1	Pressure compensation	17
4.4.2.2	Automatic baseline offset correction	17
4.4.2.3	Forced compensation	
4.4.2.4	Alarm threshold	
4.5	Monitoring mechanism as advanced functionality	
5	Register map	19
5.1	Register map access method	
5.2	Register map bitfields	
5.3	Product and revision ID register (PROD_ID)	
5.4	Sensor status register (SENS_STS)	

V1.8

Datasheet

Table of contents

5.5	Measurement period configuration registers (MEAS_RATE_H)	23
5.6	Measurement period configuration registers (MEAS_RATE_L)	
5.7	Measurement mode configuration register (MEAS_CFG)	
5.8	CO ₂ concentration result register (CO2PPM_H)	
5.9	CO ₂ concentration result register (CO2PPM_L)	
5.10	Measurement status register (MEAS_STS)	
5.11	Interrupt pin configuration register (INT_CFG)	27
5.12	Alarm threshold register (ALARM_TH_H)	28
5.13	Alarm threshold register (ALARM_TH_L)	
5.14	Pressure compensation registers (PRES_REF_H)	29
5.15	Pressure compensation registers (PRES_REF_L)	30
5.16	Automatic baseline offset compensation reference (CALIB_REF_H)	30
5.17	Automatic baseline offset compensation reference (CALIB_REF_L)	
5.18	Scratch pad register (SCRATCH_PAD)	31
5.19	Soft reset register (SENS_RST)	32
6	Assembly instruction	33
7	Package dimensions and footprint	34
8	Packing for shipment	35
	Revision history	36
	Disclaimer	37

V1.8

1 Block diagram

1 Block diagram

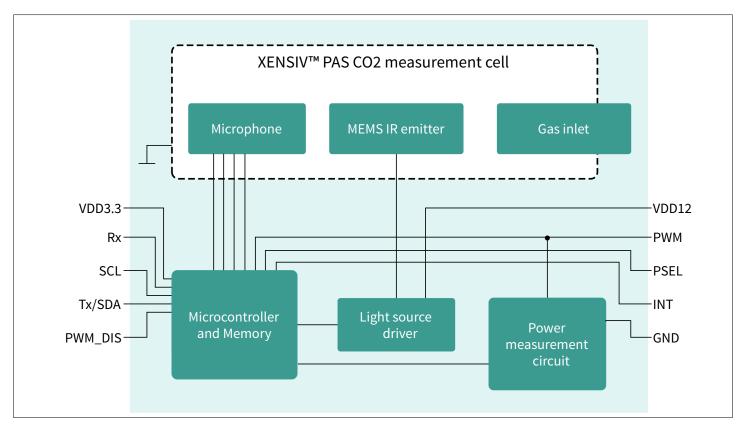


Figure 1 Block diagram of XENSIV™ PAS CO2

infineon

2 Pin-out diagram

2 Pin-out diagram

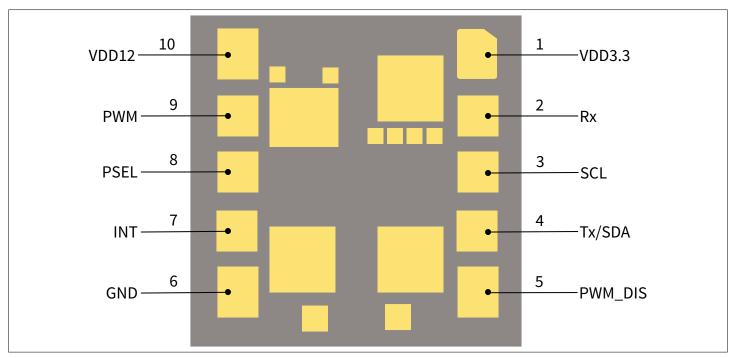


Figure 2 Pin-out diagram (bottom view)

Table 1 Pin description

PIN	Symbol	Туре	Description					
1	VDD3.3	Power supply (3.3 V)	3.3 V digital power supply					
2	Rx	Input/output	UART receiver pin (3.3 V domain)					
3	SCL	Input/output	I ² C clock pin (3.3 V domain)					
4	Tx/SDA	Output	UART transmitter pin (3.3 V domain)/I ² C data pin (3.3 V domain)					
5	PWM_DIS	Input	PWM disable input pin (3.3 V domain)					
6	GND	Ground	Ground					
7	INT	Output	Interrupt output pin (3.3 V domain)					
8	PSEL	Input	Communication interface select input pin (3.3 V domain)					
9	PWM	Output	PWM output pin (3.3 V domain)					
10	VDD12	Power supply (12 V)	12 V power supply for the IR emitter					

3 Typical sensor response to CO₂ concentration change

3 Typical sensor response to CO₂ concentration change

Measurement condition: VDD12 = 12.0 V, VDD3.3 = 3.3 V, T_{amb} = 25°C, p = 1013 hPa and % r.H. = 30%

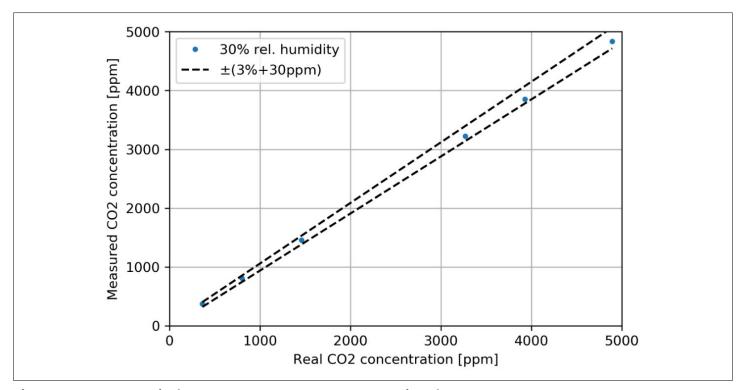


Figure 3 Typical sensor response to CO₂ concentration change

4 Characteristics and parameters

4 Characteristics and parameters

4.1 Specification

4.1.1 Operating range

To ensure proper operation of the sensor, the following operating conditions must not be exceeded. All parameters specified in the subsequent sections refer to these operating conditions unless otherwise specified.

Table 2 Operating range

Parameter	Symbol	Values	;		Unit	Note or test condition
		Min.	Тур.	Max.		
CO ₂ measurement range ¹⁾	C _{CO2}	0		32000	ppm	Functional measurement range
Ambient temperature ¹⁾	T_{amb}	0		50	°C	
Relative humidity ¹⁾	rH	0		85	%	Non-condensing
Pressure ¹⁾	p	750	1013	1150	hPa	
Supply voltage ¹⁾	VDD3.3	3	3.3	3.6	V	
	VDD12	10.8	12	13.2	V	
Lifetime ¹⁾	$t_{ m life}$		10		Year	Depends on mission profile

¹⁾ Not subject to production test. This parameter is verified by design/characterization.

4.1.2 Storage conditions

Storage condition refers to dry pack: packed, non-evacuated, desiccant¹⁾, humidity indicator card (HIC) sealed moisture barrier bag.

Table 3 Storage condition

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Storage temperature ¹⁾	$T_{ m storage}$	5		40	°C	<90% r.H. ²⁾
Storage time ¹⁾	t _{storage}			3	Year	
Storage temperature during transport ¹⁾	$T_{ m storage_transport}$	-20		60	°C	
Storage time during transport ¹⁾	t _{storage_transport}			10	Day	

¹⁾ Not subject to production test. This parameter is verified by design/characterization.

²⁾ Condensation and bedewing shall be avoided.

Number of desiccant units to be calculated according to JEDEC Standard 033.

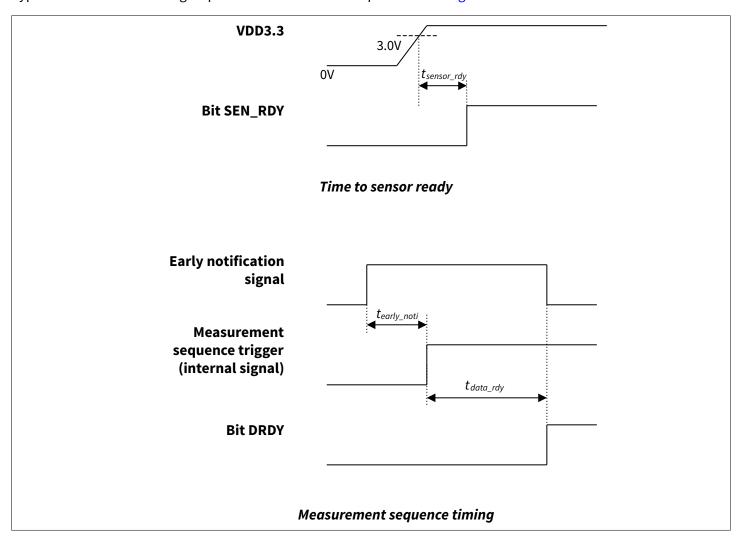
Datasheet

4 Characteristics and parameters

4.1.3 Timing characteristics

Table 4 Timing characteristics

Parameter	Symbol	Values			Unit	Note or test condition		
		Min.	Тур.	Max.				
Sampling time ¹⁾	t _{sampling}	10	60	4095	s	Sensor accuracy may be affected when sampling rates exceed 1 meas/min		
Time to sensor ready ¹⁾	t _{sensor_rdy}			1	s			
Time to early notification ^{1) 2)}	t _{early_noti}		2		s			
I ² C clock frequency ¹⁾	f_{I2C}		100		kHz			
			400					
PWM frequency ¹⁾	f_{pwm}		80		Hz			
UART baud rate ¹⁾	f_{baud}		9.6		kbps			


¹⁾ Not subject to production test. This parameter is verified by design/characterization.

²⁾ Relevant for continuous mode of operation.

4 Characteristics and parameters

Typical measurement timing sequence for I²C and UART is presented in Figure 4.

9

Figure 4 Illustration of the timing characteristic parameters

4 Characteristics and parameters

4.1.4 Absolute maximum ratings

Table 5 Absolute maximum ratings

Parameter	Symbol	Values			Unit	Note or test
		Min.	Тур.	Max.		condition
MSL level	MSL		3			
Maximum ambient temperature	T _{amb_max}	-10		60	°C	
Maximum relative humidity	rH _{max}	0		95	%	
12 V supply voltage	V _{VDD12}	9.6		14.4	V	
3.3 V supply voltage	V _{VDD3.3}	3.0		3.6	V	
Reflow temperature	T _r			245	°C	JEDEC J-STD-020E
ESD human body model	V _{ESD_HBM}	-2		2	kV	HBM (JS001)
ESD charge discharge model	V _{ESD_CDM}			500	V	CDM (JS002)

Note:

Stresses above the values listed as "Absolute Maximum Ratings" may cause permanent damage to the devices. Exposure to absolute maximum rating conditions for extended period of time may affect device reliability.

4.1.5 Current rating and power consumption

All parameters specified in Table 5 refer to the following operating conditions unless otherwise specified: VDD3.3 = 3.3 V, VDD12 = 12.0 V, T_{amb} = 25°C, % r.H. = 30%, p = 1013 hPa.

Table 6 Current rating

Parameter	Symbol	Pin	Value	S		Unit	Note or test condition
			Min.	Тур.	Max.		
Peak current ¹⁾	I _{peak 5}	VDD12		130	150	mA	
Peak current ¹⁾	I _{peak 3.3}	VDD3.3		10		mA	
Average current ¹⁾	I _{avg 5}	VDD12		0.8		mA	At 1 meas/min
Average current ¹⁾	I _{avg 3.3}	VDD3.3		6.1		mA	At 1 meas/min
Average power ¹⁾	Pavg			30		mW	At 1 meas/min

¹⁾ Not subject to production test. This parameter is verified by design/characterization.

4 Characteristics and parameters

4.1.6 CO₂ transfer function

All parameters specified in the following sections refer to the operating conditions unless otherwise specified: VDD3.3 = 3.3 V, VDD12 = 12.0 V, T_{amb} = 25°C, % r.H. = 30%, p = 1013 hPa, and $t_{sampling}$ = 1 meas/min.

Table 7 CO₂ transfer function

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Accuracy ¹⁾	Acc	-30 ppm -3% of reading		+30 ppm +3% of reading	ppm	C _{CO2} : 400-3000 ppm
			±30 ppm +3% of reading			C _{CO2} : 3001-5000 ppm
Response time ²⁾	t ₆₃		90		s	
Resolution ²⁾	Res		1		ppm	
Repeatability ^{2) 3)}	R			10	ppm	3 times standard deviation at fixed C_{CO2} : 1000 ppm
Pressure stability ²⁾	p _{error}		0		%/hPa	With pressure compensation feature enabled
Acoustic stability ²⁾	SPL _{error}	3	6	15	ppm	Up to 95 dB for pink noise from 100 Hz to 10 kHz

¹⁾ Accuracy verified using certified calibration gas mixtures and high-precision reference sensors. Uncertainty in calibration gas mixtures of ±2% needs to be considered. Temporary deviations in accuracy caused by assembly, rough handling or harsh environmental conditions can be compensated using forced compensation scheme (FCS) or automatic baseline offset correction (ABOC).

4.2 Digital interfaces

The XENSIV™ PAS CO2 supports I²C, UART, and PWM. The I²C and UART interfaces are described in detail in the following chapters.

4.2.1 I²C interface

The device complies with the I^2C protocol. When I^2C is selected as a serial communication interface, the device acts as an I^2C slave. The main characteristics of the interface are described below:

- · Slave mode only
- I²C clock frequency: 100 kHz and 400 kHz
- 7-bit slave address: 0×28
- No CRC
- The device supports clock stretching
- 8-bit addressing mode supported (7-bit address + RW)
- Bulk read and write supported (device auto-increments automatically the address)
- Address 0×00 not supported

Further details of the protocol are covered in the separate application note.

²⁾ Not subject to production test. This parameter is verified by design/characterization.

³⁾ Stepwise Reaction IIR filter is enabled.

4 Characteristics and parameters

4.2.1.1 I²C transaction format

The I²C transaction has the following structure: a start condition followed by four bytes followed a stop condition.

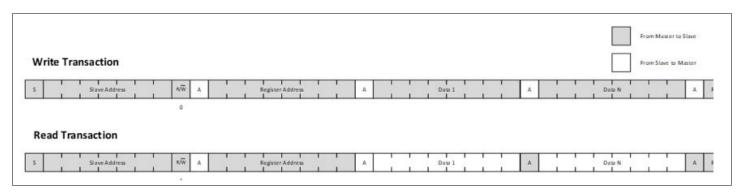


Figure 5 I²C write and read transaction

Table 8 I²C transaction

Byte	Description	Value	Comments
	Start condition		
1	Header	(Slave address << 1) R/W	
2	First data-byte	As per user request/register value	Read: data provided by the slave Write: data provided by the user
N+2	Data byte N	As per user request/register value	Read: data provided by the slave Write: data provided by the user
	End condition		

4.2.1.2 I²C timing characteristics

Due to the wired-AND configuration of an I²C bus system, the port drivers on the SCL and SDA signal lines need to operate in open-drain mode. The high level of these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbits/s, approximately 2 kOhm for operation at 400 kbits/s.

Table 9 I²C standard mode timing

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t1			300	ns	
Rise time of both SDA and SCL	t2			1000	ns	
Data hold time	t3	0			μs	
Data set-up time	t4	250			ns	
LOW period of SCL clock	t5	4.7			μs	
HIGH period of SCL clock	t6	4.0			μs	
Hold time for a (repeated) START condition	t7	4.0			μs	
Set-up time for (repeated) START condition	t8	4.7			μs	

(table continues...)

Datasheet

4 Characteristics and parameters

Table 9 (continued) I²C standard mode timing

Parameter	Symbol	Values			Unit	Note or test condition	
		Min.	Тур.	Max.			
Set-up time for STOP condition	t9	4.0			μs		
Bus free time between a STOP and START condition	t10	4.7			μs		
Capacitive load for each bus line	C _b			400	pF		

Table 10 I²C fast mode timing

Parameter	Symbol	Values			Unit	Note or test condition	
		Min.	Тур. Мах.				
Fall time of both SDA and SCL	t1	20 + 0.1*C _b		300	ns	C _b refers to the total capacitance of one bus line in pF	
Rise time of both SDA and SCL	t2	20 + 0.1*C _b		300	ns	C _b refers to the total capacitance of one bus line in pF	
Data hold time	t3	0			μs		
Data set-up time	t4	100			ns		
LOW period of SCL clock	t5	1.3			μs		
HIGH period of SCL clock	t6	0.6			μs		
Hold time for a (repeated) START condition	t7	0.6			μs		
Set-up time for (repeated) START condition	t8	0.6			μs		
Set-up time for STOP condition	t9	0.6			μs		
Bus free time between a STOP and START condition	t10	1.3			μs		
Capacitive load for each bus line	C _b			400	pF		

4 Characteristics and parameters

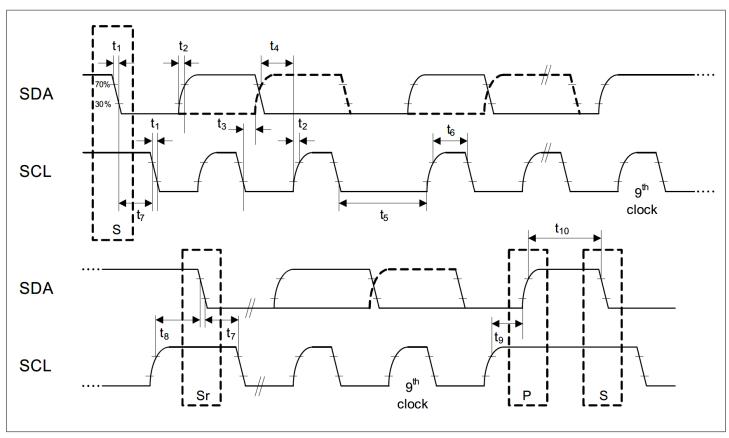


Figure 6 I²C standard and fast mode timing

4.2.2 UART interface

When UART is selected as a serial communication interface, the device acts as a UART slave. The device operates via UART for point-to-point communication. Bus operation is not supported. As a result, it is recommended that the master uses a time-out mechanism. The basic format of a valid UART frame is 1 start bit, 8 data bits, no parity bit, and 1 stop bit. The master combines several UART frames into a message (read or write). The combination of master request and slave answer defines a transaction. The main characteristics of the interface are described below:

- Point to point operation no bus support
- Slave operation only
- UART clock frequency = 9.6 kHz
- Format: 1 start bit, 8 data bits, no parity bit, 1 stop bit. Supports direct connection with a terminal program

V1.8

infineon

4 Characteristics and parameters

4.3 Application circuit examples

4.3.1 I²C application circuit example

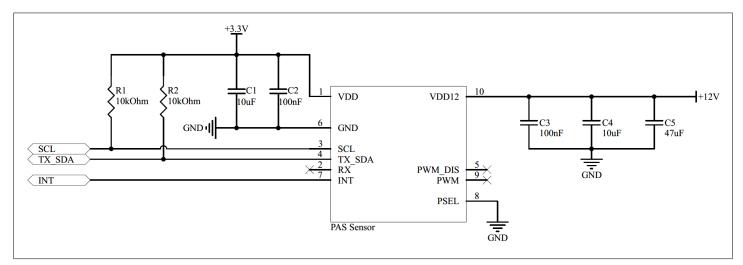


Figure 7 Application circuit example for I²C

With this configuration, the device will start in Idle mode of operation. Internal pull up is present on PWM_DIS pin.

4.3.2 UART application circuit example

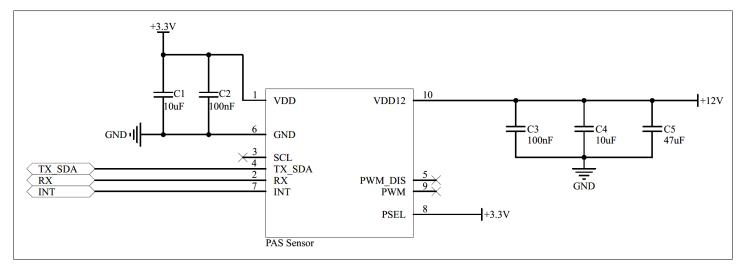


Figure 8 Application circuit example for UART

With this configuration, the device will start in Idle mode of operation. Internal pull up is present on PWM_DIS pin.

4 Characteristics and parameters

4.3.3 PWM application circuit example

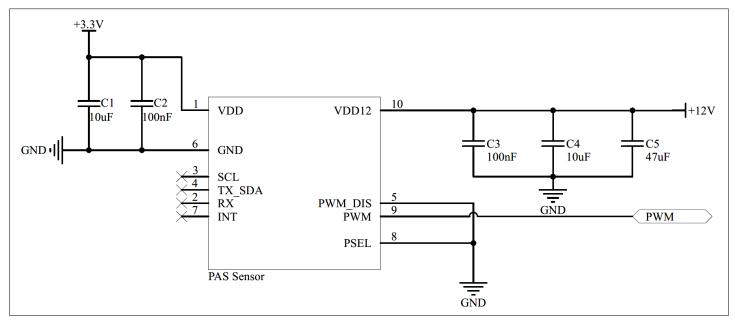


Figure 9 Application circuit example for PWM

With this configuration, the device will start in continuous mode of operation with sampling time of 1 meas/min.

4.4 Functional description

This section describes the operation of the sensor while measuring CO₂ concentrations. At any moment, the device can be in one out of two different states: active and inactive. At active state, the CPU controlling the device is operating and can perform tasks, such as: running a measurement sequence, serving an interrupt, and so on. When the device has no specific task to perform, it goes to an inactive state. A transition from active to inactive state may occur at the end of a measurement sequence. Several events can wake up the device: the reception of a measurement request in continuous measurement mode.

4.4.1 Operating modes

The operating mode can be programmed via the serial communication interface by using the bit field **MEAS_CFG.OP_MODE**.

The sensor module supports three operating modes:

- **Idle mode:** The device does not perform any CO₂ concentration measurement. The device remains inactive until it becomes active shortly to serve interrupts before going back to an inactive state
- Continuous mode: In this mode, the device periodically triggers a CO₂ concentration measurement sequence.
 Once a measurement sequence is completed, the device goes back to an inactive state and wakes up automatically for the next measurement sequence. The measurement period is programmable from 5 s to 4095 s
- **Single-shot mode:** In this mode, the device triggers a single measurement sequence. At the end of the measurement sequence, the device goes back automatically to idle mode

4 Characteristics and parameters

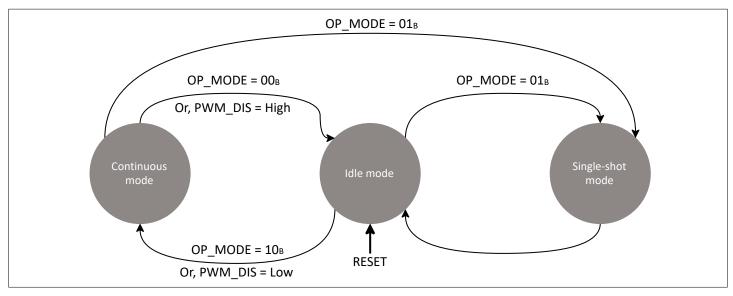


Figure 10 Operating mode transition

4.4.2 Data post-processing

Once the CO_2 concentration data has been acquired, several post-processing schemes can be applied to utilize different functionality.

4.4.2.1 Pressure compensation

The CO₂ concentration value acquired by the sensor is dependent on the external atmospheric pressure. To compensate for this effect, the application system can provide the value of the atmospheric pressure by writing into the specific registers, that is, **PRES_REF_H** and **PRES_REF_L**. At the end of a measurement sequence, the device reads the pressure value and applies for compensation on the CO₂ concentration value before storing it into the result registers.

4.4.2.2 Automatic baseline offset correction

To correct slow drifts caused by aging during operation, the device supports automatic baseline offset compensation. Every week of operation, the device computes an offset to correct the baseline of the device. The device must be in contact with the reference concentration (for example, fresh air at 400 ppm of CO₂ concentration) at least 30 minutes per operating week to make sure proper baseline compensation. The device supports different configurations for compensation. The ABOC set point may only be set between 350 and 1500 ppm.

4.4.2.3 Forced compensation

Forced compensation provides a means to speed up the offset compensation process. Before forced compensation is enabled, the device shall be physically exposed to the reference CO_2 concentration. The device will use the next three measurements to calculate the compensation offset. The user shall ensure constant exposure to the reference CO_2 concentration during that time. It is recommended to operate at one measurement per 10 seconds while implementing the forced compensation scheme. When three measurement sequences are completed, the device automatically reconfigures itself with the newly computed offset applied to the subsequent CO_2 concentration measurement results. The forced compensation offset can be stored to the non-volatile memory by using the corresponding command (SENS_RST = 0xCF).

V1.8

Datasheet

4 Characteristics and parameters

4.4.2.4 Alarm threshold

The device can be configured via interrupt to perform an alarm threshold check each time a new CO₂ concentration data is acquired. At the end of each measurement sequence, the computed CO₂ value (after all applicable offset compensations) is compared to the concatenated value in **ALARM_TH_H** and **ALARM_TH_L**. In case of a threshold violation, the sticky bit **MEAS_STS.ALARM** is set. This also sets pin **INT** to active level due to configuration as alarm. Bit **MEAS_STS.ALARM** is cleared by reading register **MEAS_STS.ALARM_CLR**.

4.5 Monitoring mechanism as advanced functionality

The device supports several mechanisms to monitor the correct operation of the sensor.

Table 11 Functionality description

Mechanism	Description						
Sensor ready status	After each power-on reset, bit SENS_STS.SEN_RDY is set to confirm that the sensor has initialized correctly						
Scratchpad register	To check the integrity of the communication layer of the serial communication interface, register SCRATCH_PAD can be used. This register can use this memory field to write any value and verify that the data received by the device is correct. It can also be used to verify that a soft reset has been executed, using the following sequence:						
	 The user writes a non-default value to register SCRATCH_PAD The user reads back register SCRATCH_PAD to verify the writ commend has been correctly executed The user writes register SENS_RST to trigger a soft reset The user reads register SCRATCH_PAD to verify that it has been reset to its default value 						
VDD12V verification	At power-up and the beginning of each measurement sequence, the device automatically measures the voltage at VDD12 . If the measured voltage exceeds the specified operating range of the device, bit SENS_STS.ORVS is set. The measurement sequence is, however, completed normally. Bit SENS_STS.ORVS can be cleared by setting bit SENS_STS.ORVS_CLR						
Internal temperature verification	At the beginning of each measurement sequence, the device automatically measures its internal temperature. If the measured temperature exceeds the specified operating ranged of the device, sticky bit SENS_STS.ORTMP is set. The measurement sequence is, however, completed normally. Bit SENS_STS.ORTMP can be cleared by setting bit SENS_STS.ORTMP CLR						

Datasheet

5 Register map

5 Register map

5.1 Register map access method

The registers that can be accessed by the user's application via the communication interfaces are covered here. Registers need to be addressed byte-wise.

Table 12 Bit access terminology

Mode	Symbol	Description
Read/Write	rw	This bit or bitfield can be written or read
Read	r	This bit or bitfield is read-only
Write	w	This bit or bitfield is write-only (read as 0 _H)
Read/Write hardware or firmware affected	rwh	As rw, but bit or bitfield can also be modified by hardware or firmware
Read hardware or firmware affected	rh	As r, but bit or bitfield can also be modified by hardware or firmware
Sticky	S	Bits with this attribute are "sticky" in one direction. If their reset value is overwritten once they can be switched again into their reset state only by a reset operation. Software and internal logic (except reset-like functions) cannot switch this type of bit into its reset state by writing directly to the register. The sticky attribute can be combined with other functions (for example, "rh")
Reserved/not implemented	0	Bitfields named "0" indicate functions not implemented. They have the following behavior: Reading these bitfields returns 0 _H Writing these bitfields has no effect These bitfields are reserved. When writing, software should always set such bitfields to 0 _H to preserve compatibility with future products
Reserved/not defined	Res	Certain bitfields or bit combinations in a bitfield can be marked as "Reserved", indicating that the behavior of the device is undefined for that combination of bits. Setting the register to such an undefined value may lead to unpredictable results. When writing, the software must always set such bitfields to legal values

Datasheet

5 Register map

5.2 Register map bitfields

Table 13 Register map

Name	Address	7	6	5	4	3	2	1	0	Reset	
PROD_ID	0x00	PROD			REV	REV					
SENS_ST S	0x01	SEN_RDY	PWM_DI S_ST	ORTMP	ORVS	ICCER	ORTMP_ CLR	ORVS_CL R	ICCER_C LR	0xC0	
MEAS_RA TE_H	0x02	0				VAL				0x00	
MEAS_RA ΓE_L	0x03	VAL								0x3C	
MEAS_CF G	0x04	Reserved		PWM_O UTEN	PWM_M ODE	BOC_CFG		OP_MODE		0x24	
CO2PPM _H	0x05	VAL	VAL							0x00	
CO2PPM _L	0x06	VAL								0x00	
MEAS_ST S	0x07	0		Reserved	DRDY	INT_STS	ALARM	INT_STS _CLR	ALARM_ CLR	0x00	
INT_CFG	0x08	0			INT_TYP	INT_FUNC	ALARM_ TYP	0x11			
ALARM_T H_H	0x09	VAL								0x00	
ALARM_T H_L	0x0A	VAL								0x00	
PRES_RE F_H	0x0B	VAL								0x03	
PRES_RE F_L	0x0C	VAL								0xF7	
CALIB_R EF_H	0x0D	VAL								0x01	
CALIB_R EF_L	0x0E	VAL								0x90	
SCRATCH _PAD	0x0F	VAL								0x00	
SENS_RS T	0x10	SRTRG								0x00	

Note:

- Registers with addresses 0x11 to 0x14 are reserved and must not be accessed. Any read or write operation to these registers will result in a communication error.
- Registers with addresses 0x15 to 0xFF are reserved and must not be accessed. Any read or write operation to these registers will result in a non-acknowledge error.

5 Register map

5.3 Product and revision ID register (PROD_ID)

This register displays the device's product and version ID. Write accesses to this register are ignored.

PROD_ID

Address:

Product and revision ID register

Reset value:

0x4F/0x60_H

REV

r

Bits Description Field **Type PROD** 7:5 **Product ID** This bitfield indicates the product type. 001_R: Reserved 010_B: PASCO2V01 011_B: PASCO2V15 **REV Revision ID** 4:0 r This bitfield indicates the product and firmware revision. 0001_B: Revision 1. 0010_B: Revision 2. 0011_B: Revision 3.

5.4 Sensor status register (SENS_STS)

This register displays and controls the status of the sensor. Write accesses to the read-only bits of this register are ignored.

SENS_STS Address: $0x01_H$ Sensor status register Reset value: $0xC0_H$

PWM_DIS_S **ORTMP ORVS** ORVS_CLR SEN_RDY **ICCER** ORTMP_CLR ICCER_CLR T rh rh rhs rhs rhs w w w

Field	Bits	Туре	Description
SEN_RDY	7	rh	Sensor ready bit
			This bit indicates if the initialization of the sensor after power-on reset has been performed correctly.
			0 _B : The sensor has not been initialized correctly.
			1 _B : The sensor has been initialized correctly.

(table continues...)

Datasheet

(continued)

Field	Bits	Type	Description
PWM_DIS_ST	6	rh	PWM_DIS pin status
			This bit indicates the level read at pin PWM_DIS .
			0 _B : A low level is read at pin PWM_DIS .
			1 _B : A high level is read at pin PWM_DIS .
			Note : This bit is updated at every transition at pin PWM_DIS .
ORTMP	5	rhs	Out-of-range temperature error bit (sticky bit)
			This bit indicates if a condition where the temperature has been outside the specified valid range has been detected.
			0 _B : No error has occurred.
			1 _B : An error has occurred.
			This bit is cleared by setting SENS_STS.ORTMP_CLR .
ORVS	4	rhs	Out-of-range VDD12V error bit (sticky bit)
			This bit indicates if a condition where VDD12V has been outside the specified valid range has been detected.
			0 _B : No error has occurred.
			1 _B : An error has occurred.
			This bit is cleared by setting bit SENS_STS.ORVS_CLR .
ICCER	3	rhs	Communication error notification bit (sticky bit)
			This bit indicates if a non-valid command has been received by the serial communication interface.
			0 _B : No invalid command received.
			1 _B : An invalid command has been received.
			This bit is cleared by setting SENS_STS.ICCER_CLR .
ORTMP_CLR	2	w	Out-of-range temperature error clear bit Writing this bit with 1_B clears the sticky bit SENS_STS.ORTMP.
			This bit is read back as 0 _B .
ORVS_CLR	1	w	Out-of-range VDD12V error clear bit
			Writing this bit with 1 _B clears the sticky bit SENS_STS.ORVS .
			This bit is read back as 0 _B .
ICCER_CLR	0	W	Communication error clear bit
			Writing this bit with 1 _B clears the sticky bit SENS_STS.ICCER .
			This bit is read back as 0 _B .

5 Register map

5.5 Measurement period configuration registers (MEAS_RATE_H)

Registers **MEAS_RATE_H** and **MEAS_RATE_L** define the measurement period used in continuous mode. The concatenation of **MEAS_RATE_H** (MSB) and **MEAS_RATE_L** (LSB) define the period. The concatenated value is coded as a two's complement signed short integer (1 bit = 1 s).

Values above $0FFF_H$ are treated as being equal to FFF_H (4095 s). Values below 0005_H are treated as being equal to 0005_H (5 s). Writing a non-valid value to this field generates a communication error (bit **SENS_STS.ICCER** set).

Note:

When writing to **MEAS_RATE_H** and **MEAS_RATE_L**, the new value is not immediately considered by the device. It is internally latched at the next transition from idle to continuous mode.

MEAS_RATE_H				Address:			0x02 _H	
Measurement	period configur	ration registers	R	eset value:			0x00 _H	
7	6	5	4	3	2	1	0	
	C)		VAL				
	rv	W			rv	vh		

Field	Bits	Туре	Description			
0	7:4	rw	Reserved			
			This bitfield shall be written with 0 _H .			
VAL	3:0	rwh MS	MSB of the measurement period in continuous mode			
			The concatenation of this value with bitfield MEAS_RATE_L define the measurement period in continuous mode.			
			Note: Values above 0F _H reserved. Writing a non-valid value to this field generates a communication error (bit SENS_STS.ICCER set) and sets the bitfield to 0F _H .			

5.6 Measurement period configuration registers (MEAS_RATE_L)

Registers **MEAS_RATE_H** and **MEAS_RATE_L** define the measurement period used in continuous mode. The concatenation of **MEAS_RATE_H** (MSB) and **MEAS_RATE_L** (LSB) define the period. The concatenated value is coded as a two's complement signed short integer (1 bit = 1 s).

Values above $0FFF_H$ are treated as being equal to FFF_H (4095 s). Values below 0005_H are treated as being equal to 0005_H (5 s). Writing a non-valid value to this field generates a communication error (bit **SENS_STS.ICCER** set).

Note: When writing to **MEAS_RATE_H** and **MEAS_RATE_L**, the new value is not immediately considered by the device. It is internally latched at the next transition from idle to continuous mode.

MEAS_RATE_L	•			Address:			0x03 _H				
Measurement period configuration registers			Reset value:			1					
7	6	5	4	3	2	1	0				
VAL											

rwh

Datasheet

Field	Bits	Туре	Descript	tion
VAL	7:0	rwh	LSB of th	he measurement period in continuous mode
				catenation of this value with bitfield MEAS_RATE_H.VAL
			Note:	Values 00 _H to 04 _H are reserved. Writing a non-valid value to this field generates a communication error (bit SENS_STS.ICCER set) and sets the bitfield to 05 _H .

5.7 Measurement mode configuration register (MEAS_CFG)

This register defines the operation settings of the device.

MEAS_CFG Address: $0x04_{H}$ Measurement mode configuration register Reset value: $0x24_{H}$

7 6		5	4	3	2	1 0		
Res	Res		PWM_OUTE PWM_MODE		CFG	OP_MODE		
rwh		rwh	rw	rwh		rw	h	

Field	Bits	Type	Description				
Res	7:6	rwh	Reserved				
			This bitfield shall be written with 00 _B .				
PWM_OUTEN	5	rwh	PWM output software enable bit				
			0 _B : PWM output is disabled by software.				
			1 _B : PWM output is enabled by software.				
			Notes:				
			1. The actual state of pin PWM depends on both				
			MEAS_CFG.PWM_OUTEN and pin PWM_DIS.				
			2. This bit is automatically set at a high to low transition at pin PWM_DIS .				
PWM_MODE	4	rw	PWM mode configuration				
			0 _B : PWM single-pulse mode.				
			1 _B : PWM pulse-train mode.				

(table continues...)

Datasheet

5 Register map

(continued)

Field	Bits	Туре	Description				
BOC_CFG	3:2	rwh	Baseline offset compensation configuration				
			00 _B : Automatic baseline offset compensation (ABOC) disabled.				
			$01_{\rm B}$: ABOC enabled. The offset is periodically updated at each BOC computation.				
			Note : With firmware version 2.18 an extended ABOC functionality has been introduced, including support for single shot mode.				
			10 _B : Forced compensation.				
			Note : After the forced compensation is done, device automatically reconfigures itself into ABOC $(MEAS_CFG.BOC_CFG = 01_B)$.				
			11 _B : Reserved.				
OP_MODE	1:0	rwh	Sensor operating mode				
			00 _B : Idle mode.				
			$01_{\rm B}$: Single-shot mode enabled. Writing $01_{\rm B}$ to this field triggers a single measurement sequence. This field is reset by firmware automatically.				
			10 _B : Continuous mode enabled.				
			11 _B : Reserved (as 00 _B).				

5.8 CO₂ concentration result register (CO2PPM_H)

Registers $CO2PPM_H$ and $CO2PPM_L$ are used to display the result of the last CO_2 concentration measurement. The concatenation of $CO2PPM_H$ (MSB) and $CO2PPM_L$ (LSB) define the CO_2 concentration value. The concatenated CO_2 concentration value is coded as a two's complement signed short integer (1 bit = 1 ppm). This field is updated at the end of each measurement sequence.

Reading register CO2PPM_L clears bit MEAS_STS.DRDY.

When reading the CO₂ concentration value, the user shall first read registers CO2PPM_H and then CO2PPM_L.

CO2PPM_H				Address:		0x05 _H		
CO ₂ concentration result register			Reset value:			0x00 _H		
7	6	5	4	3	2	1	0	
VAL								

rh

Field	Bits	Туре	Description
VAL	7:0	rh	MSB of the CO ₂ concentration value
			The concatenation of this value with bitfield ${\bf CO2PPM_L.VAL}$ gives the ${\bf CO_2}$ concentration value.

5 Register map

5.9 CO₂ concentration result register (CO2PPM_L)

Registers $CO2PPM_H$ and $CO2PPM_L$ are used to display the result of the last CO_2 concentration measurement. The concatenation of $CO2PPM_H$ (MSB) and $CO2PPM_L$ (LSB) define the CO_2 concentration value. The concatenated CO_2 concentration value is coded as a two's complement signed short integer (1 bit = 1 ppm). This field is updated at the end of each measurement sequence.

Reading register CO2PPM_L clears bit MEAS_STS.DRDY.

When reading the CO₂ concentration value, the user shall first read registers CO2PPM_H and then CO2PPM_L.

CO2PPM_L					Address:		0x06 _H		
CO ₂ concentration result register			Reset value:			0x00 _H			
	7	6	5	4	3	2	1	0	
				V	AL				
				r	h				

Field Bits Type Description

VAL 7:0 rh LSB of the CO₂ concentration value

The concatenation of this value with bitfield CO2PPM_H.VAL gives the CO₂ concentration value.

Reading this bitfield clears bit MEAS_STS.DRDY.

5.10 Measurement status register (MEAS_STS)

This register displays the status information of the sensor. Write accesses to the read-only bits of this register are ignored.

Ν	MEAS_STS				Address:			0x07 _H
Measurement status register				F	Reset value:	0x00 _H		
	7	6	5	4	3	2	1	0
	C)	Res	DRDY	INT_STS	ALARM	INT_STS_CL R	ALARM_CLR
	rv	N	rh	rhs	rhs	rhs	w	w

Field	Bits	Туре	Description
0	7:6	rw	Reserved
			This bitfield is read as 00 _B .
Res	5	rh	Reserved
			This bit is reserved.
DRDY	4	rhs	Data ready bit (sticky bit)
			This bit indicates if new data are available in register CO2PPM_H and CO2PPM_L .
			0 _B : No new data are available.
			1_{B} : Unread data are available. This bit is set at the end of every measurement sequence.
			This bit is cleared by reading CO2PPM_L.

Datasheet

5 Register map

(continued)

Field	Bits	Type	Description
INT_STS	3	rhs	INT pin status bit
			This bit indicates if pin INT has been latched to active state (in case of alarm or data ready).
			0 _B : Pin INT has not been latched to active state.
			1 _B : Pin INT has been latched to active state. This bit is set at the end of every measurement sequence in case of a latching condition.
			This bit is cleared by setting bit MEAS_STS.INT_STS_CLR .
ALARM	2	rhs	Alarm notification (sticky bit)
			This bit indicates if a threshold violation occurred.
			0 _B : No violation occurred.
			1 _B : Violation occurred. This bit is set at the end of every measurement sequence in case of violation.
			This bit is cleared by setting bit MEAS_STS.ALARM_CLR.
INT_STS_CLR	1	w	INT pin status clear bit
			Writing this bit with 1_{B} clears the sticky bit MEAS_STS.INT_STS and forces pin INT to inactive level.
			This bit is read back as 0 _B .
ALARM_CLR	0	w	Alarm notification clear bit
			Writing this bit with 1_B clears the sticky bit MEAS_STS.ALARM .
			This bit is read back as 0 _B .

5.11 Interrupt pin configuration register (INT_CFG)

This register defines the configuration of pin **INT**.

INT_CFG				Address:		0x08 _H	
Interrupt pin configuration register			Res	set value:		0x11 _H	
7	6	5	4	3	2	1	0
0			INT_TYP	INT_FUNC			ALARM_TYP
	rw		rw		rw		rw

	Type	Description
7:5	rw	Reserved
		This bitfield shall be written with 00 _B .
4	rw	Pin INT electrical configuration
		0 _B : Pin INT is configured as push-pull and low active.
		1 _B : Pin INT is configured as push-pull and high active.
		Note : Writing this bitfield forces pin INT to inactive state.

(table continues...)

Datasheet

5 Register map

(continued)

Field	Bits	Type	Description
INT_FUNC	3:1	rw	Pin INT function configuration
			000 _B : Pin INT is inactive.
			001 _B : Pin INT is configured as alarm threshold violation notification pin.
			010 _B : Pin INT is configured as data ready notification pin.
			011 _B : Pin INT is configured as sensor busy notification pin.
			100_B : Pin INT is configured as early measurement start notification pin (this function only is available in continuous mode with MEAS_CFG.OP_MODE = 10_B , otherwise the pin is inactive).
			101 _B : Reserved
			111 _B : Reserved
ALARM_TYP	0	rw	Alarm type configuration bit
			This bitfield defines if an alarm is issued in case of lower or higher threshold violation.
			0 _B : Crossing down – the concatenated value of register ALARM_TH_H and ALARM_TH_L is defined as a lower threshold register.
			1 _B : Crossing up – the concatenated value of register ALARM_TH_H and ALARM_TH_L is defined as a higher threshold register.

5.12 Alarm threshold register (ALARM_TH_H)

Registers **ALARM_TH_H** and **ALARM_TH_L** define the value used as a threshold for the alarm violation. The concatenation of **ALARM_TH_H** (MSB) and **ALARM_TH_L** (LSB) define the threshold value that shall be considered by the device. The concatenated alarm threshold value is coded as a 2's complement signed short integer (1 bit = 1 ppm).

ALARM_TH_I	Н			Address:	0x09 _H			
Alarm threshold register			Reset value:			0x00 _H		
7	6	5	4	3	2	1	0	
VAL								
			n	W				

Field	Bits	Туре	Description
VAL	7:0	rw	MSB of the alarm threshold
			The concatenation of this value with bitfield ALARM_TH_L.VAL defines the threshold value.

5 Register map

5.13 Alarm threshold register (ALARM_TH_L)

Registers **ALARM_TH_H** and **ALARM_TH_L** define the value used as a threshold for the alarm violation. The concatenation of **ALARM_TH_H** (MSB) and **ALARM_TH_L** (LSB) define the threshold value that shall be considered by the device. The concatenated alarm threshold value is coded as a 2's complement signed short integer (1 bit = 1 ppm).

ALARM_TH_L					Address:		0x0A _H				
Alarm threshold register				Reset value:			0x00 _H				
	7	6	5	4	3	2	1	0			
	VAL										
				r	N						

Field	Bits	Туре	Description
VAL	7:0	rw	LSB of the alarm threshold
			The concatenation of this value with bitfield ALARM_TH_H.VAL defines the threshold value.

5.14 Pressure compensation registers (PRES_REF_H)

Registers PRES_REF_L and PRES_REF_H are used to capture the atmospheric pressure to be compensated. The concatenation of PRES_REF_H (MSB) and PRES_REF_L (LSB) define the pressure value that shall be considered by the device. The concatenated pressure value is coded as an unsigned short integer (1 bit = 1 hPa). Since even small variations of the external pressure may lead to significant changes in the output provided by the sensor, it must be ensured that a coherent value is available for the sensor. For that purpose, PRES_REF_H and PRES_REF_L are associated with two internal shadow registers from which the device reads the pressure value to be used by the internal firmware. When writing to PRES_REF_L, the complete 16-bit pressure value is loaded into the shadow registers. When writing to PRES_REF_H, the shadow registers are not updated. Therefore, to update the pressure value, the user has to write first PRES_REF_H and then PRES_REF_L.

Pressure compensation is de facto deactivated if the default value is not updated.

For correct operation, the user shall ensure that pressure value programmed is within the specified pressure operating range of the device. The valid range of operation is 750 hPa to 1150 hPa.

Values below 750 hPa will be treated as 750 hPa (register automatically updated). Similarly, values above 1150 hPa will be treated at 1150 hPa (register automatically updated). If a value outside this range is written, bit **SENS_STS.ICCER** is set.

PRES_REF_H				Address:	0x0B _H						
Pressure com	pensation regis	sters	R	eset value:		0x03 _H					
7	6	5	4	3	2	1	0				
	VAL										
			rv	vh							

Field	Bits	Туре	Description
VAL	7:0	rwh	MSB of the pressure compensation value
			The concatenation of this value with bitfield PRESS_REF_L.VAL gives the pressure compensation value.

5 Register map

5.15 Pressure compensation registers (PRES_REF_L)

Registers **PRES_REF_L** and **PRES_REF_H** are used to capture the atmospheric pressure to be compensated. The concatenation of **PRES_REF_H** (MSB) and **PRES_REF_L** (LSB) define the pressure value that shall be considered by the device. The concatenated pressure value is coded as an unsigned short integer (1 bit = 1 hPa). Since even small variations of the external pressure may lead to significant changes in the output provided by the sensor, it must be ensured that a coherent value is available for the sensor. For that purpose, **PRES_REF_H** and **PRES_REF_L** are associated with two internal shadow registers from which the device reads the pressure value to be used by the internal firmware. When writing to **PRES_REF_L**, the complete 16-bit pressure value is loaded into the shadow registers. When writing to **PRES_REF_H**, the shadow registers are not updated. Therefore, to update the pressure value, the user has to write first **PRES_REF_H** and then **PRES_REF_L**.

Pressure compensation is de facto deactivated if the default value is not updated.

For correct operation, the user shall ensure that pressure value programmed is within the specified pressure operating range of the device. The valid range of operation is 750 hPa to 1150 hPa.

Values below 750 hPa will be treated as 750 hPa (register automatically updated). Similarly, values above 1150 hPa will be treated at 1150 hPa (register automatically updated). If a value outside this range is written, bit **SENS_STS.ICCER** is set.

PRES_REF_L			Address:				0x0C _H		
Pressure compensation registers			R	eset value:			0xF7 _H		
7	6	5	4	3	2	1	0		
VAL									
			rv	vh					

Field	Bits	Туре	Description
VAL	7:0	rwh	LSB of the pressure compensation value
			The concatenation of this value with bitfield PRESS_REF_H.VAL gives the pressure compensation value.

5.16 Automatic baseline offset compensation reference (CALIB_REF_H)

Registers **CALIB_REF_H** and **CALIB_REF_L** define the reference value used for the ABOC and the force calibration. The concatenation of **CALIB_REF_H** (MSB) and **CALIB_REF_L** (LSB) define the reference value. The concatenated offset value is coded as a two's complement signed short integer (1 bit = 1 ppm).

Values must be comprised between 350 ppm and 1500 ppm. Values below 350 ppm will be treated as 350 ppm (register automatically updated). Similarly, values above 1500 ppm will be treated at 1500 ppm (register automatically updated). If a value outside this range is written, bit **SENS_STS.ICCER** is set.

CALIB_REF_H			Address:			0x0			
Automatic baseline offset compensation reference			R	eset value:			0x01 _H		
7	6	5	4	3	2	1	0		
	VAL								
			rv	vh					

Field	Bits	Туре	Description
VAL	7:0	rwh	MSB of the ABOC
			The concatenation of this value with bitfield CALIB_REF_L.VAL gives the currently used reference value.

5 Register map

5.17 Automatic baseline offset compensation reference (CALIB_REF_L)

Registers **CALIB_REF_H** and **CALIB_REF_L** define the reference value used for the ABOC and the force calibration. The concatenation of **CALIB_REF_H** (MSB) and **CALIB_REF_L** (LSB) define the reference value. The concatenated offset value is coded as a two's complement signed short integer (1 bit = 1 ppm).

Values must be comprised between 350 ppm and 1500 ppm. Values below 350 ppm will be treated as 350 ppm (register automatically updated). Similarly, values above 1500 ppm will be treated at 1500 ppm (register automatically updated). If a value outside this range is written, bit **SENS_STS.ICCER** is set.

CALIB_REF_L			Address:				0x0E _H	
Automatic bas reference	eline offset cor	mpensation	R	eset value:			0x90 _H	
7	6	5	4	3	2	1	0	
			V	AL				
<u> </u>			rv	vh				

Field	Bits	Туре	Description
VAL	7:0	rwh	LSB of the ABOC
			The concatenation of this value with bitfield CALIB_REF_H.VAL gives the currently used reference value.

5.18 Scratch pad register (SCRATCH_PAD)

This register provides a readable and writable address space for data integrity test during runtime. This register is not associated with a specific hardware functionality.

SCRATCH_PAI				0x0F _H						
Scratch pad re	egister		Reset value:							
7	6	5	4	3	2	1	0			
VAL										
			r	w						

Field	Bits	Туре	Description
VAL	7:0	rw	Read/Write value
			This bit field is "don't care" for the device.

V1.8

Datasheet

5 Register map

5.19 Soft reset register (SENS_RST)

This register is used to trigger a soft reset.

In case an invalid command is received, bit **SENS_STS.ICCER** is set.

SENS_RST

Soft reset register

Reset value:

7

6

5

4

3

2

1

0

SRTRG

W

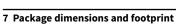
Field	Bits	Туре	Description
SRTRG	7:0	W	Soft reset trigger
			Writing A3 _H to this field triggers a soft reset event.
			Writing BC _H to this field resets the ABOC context.
			Writing CD _H to this field disables the advanced VDD compensation feature.
			Writing CF _H to this field saves the force calibration offset immediately in the internal non-volatile memory.
			Writing DF _H to this field disables the Stepwise Reactive IIR Filter.
			Writing FC _H to this field resets the forced compensation correction factor.
			Writing FE _H to this field enables the Stepwise Reactive IIR Filter (by default enabled).
			Other values are reserved. Writing a non-valid value to this field generates a communication error (bit SENS_STS.ICCER set).
			This bit is read back as 00 _H .

6 Assembly instruction

6 Assembly instruction

XENSIV™ PAS CO2 module is classified as moisture-sensitivity level 3 (MSL 3). The maximum reflow temperature during board assembly must not exceed 245°C according to IPC/JEDEC J-STD-020E. As shown in the Figure 11, pad 1 to 14 need to be soldered. Pad 1 to 10 need to be assembled as per functionality (Table 1). Pad 11 and 13 need to be connected to the GND. Pad 12 and 14 are not internally connected but must be soldered to maintain mechanical stability. Pad 12 and 14 can be left open or connected to GND. Non-marked smaller pads should be kept open.

Figure 11 XENSIV™ PASCO2V01 pads need to be connected to an application board


Notes:

- 1. One-time reflow is permitted and after assembly rework is not recommended
- **2.** Vapor phase soldering may damage the sensor irreversibly

For the customer, the allocated floor time (out of bag) is 168 hours (at ≤30°C and 60% r.H.) according to IPC/JEDEC J-STD-020. If floor time exceeds, then the parts (out of moisture barrier bag) need to be baked according to the following table:

Table 14 Baking condition of the XENSIV™ PASCO2V01

Package condition	Bake temperature	Bake time	Condition
Sensors outside of tape	125°C	24 hours	r.H. < 5%
Sensors within the tape	40°C	8 days	r.H. < 5%

7 Package dimensions and footprint

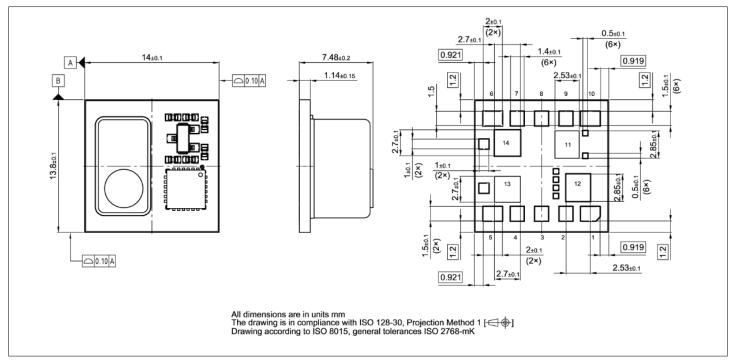


Figure 12 Package outline (top, side, and bottom view of LG-MLGA-14-1)

8 Packing for shipment

8 Packing for shipment

The device will be shipped in tape and reel. Each tape and reel consist of 300 parts.

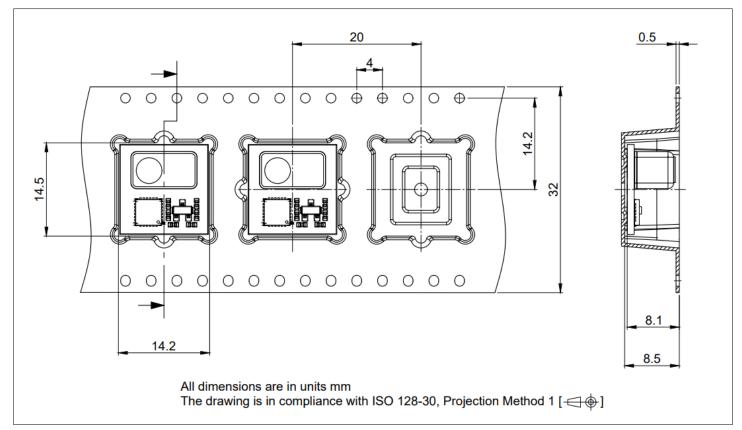


Figure 13 Tape and reel packing of XENSIV™ PAS CO2

Datasheet

Revision history

Revision history

Document revision	Date	Description of changes	
1.0	2022-01-17	Initial release	
1.1	2022-06-13	Updated storage condition and assembly instruction sections	
1.2	2022-09-21	Updated storage during transportation to resolve ambiguity before paragraph 4.1.5 Updated the baking time in assembly instruction	
1.3	2022-11-21	Added note on typical sampling rate and sensor performance Added parameter resolution	
1.4	2024-03-06	Updated Halogen-free and RoHS symbols and storage time	
1.5	2024-04-09	Supported new OPN and SP number	
1.6	2024-08-26	Typ. accuracy spec for high CO2 concentration introduced, features lisupdated, footnote on uncertainty of calibration gas mixtures added	
1.7	2024-11-27	Added Sections 5 to 8 Updated datasheet template	
1.8	2025-09-26	Updated storage condition section (used non-evacuated instead of evacuated dry-pack)	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-cmd1726744151864

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.