(infineon

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product

portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.infineon.com

& CYPRESS

~g@p” EMBEDDED IN TOMORROW™

ModusToolbox™ 2.3
User Guide

Document Number: 002-29893 Rev. *J

Cypress Semiconductor

An Infineon Technologies Company
198 Champion Court

San Jose, CA 95134-1709
WWW.CYpress.com
www.infineon.com

http://www.cypress.com/
http://www.infineon.com/

o CYPRESS

N> EMBEDDED IN TOMORROW Copyright

© Cypress Semiconductor Corporation (an Infineon company), 2020-2021. This document is the property of Cypress Semiconductor
Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced
in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any
license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you
a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your
organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and
distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely
secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability
arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these
materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the
extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this
document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the
user of this document to properly design, program, and test the functionality and safety of any application made of this information and any
resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended
for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems
(including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect
its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or
other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended
Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, ModusToolbox, WICED, PSoC, CapSense, EZ-USB,

F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of
Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 2

Contents

& CYPRESS

- EMBEDDED IN TOMORROW"™

O [o1 4 e Yo LU T3 (10 o IR 6
i o To 10 1 T ES TV o [T PP PPPPPPPPPPPPPPPRt 6
2 VAV o = L QT 1Y, [Yo (U o o] | 10D 2PN 6

1.2.1 Supported Devices
1.2.2 Development Tools
1.2.3 Run-Time Software

R e g1 (=T gl =T 01V (=1 ST PP PPPPR PP 7
P 1= {0 IS F= L (=T o [PPSO PP PPPRPP 8
2.1 Install aNd CONfIQUIE SOMWAIEueiiiiiiie ettt ettt et e e ettt e e ettt e e e esee e e e aste e e e sttt e e sabeeeaasbeeeeanseeeesnneeeeanteeeeanns 8
2,11 GUI SEE-UP INSIFUCTIONS ..eeieteeeiiteee e ettt etttk s st e e st e e ekt e e et e e o bt e e ekt e e aab et e e s nn e e e e anbr e e e enbneeennne s 8
2 B O I IS T 0 o I 1] 1 (o 1T o SR SPRR 8
p N €1 1= o F PRSPPI 9
2,21 GUI DOCUMENTALION ...ttt ettt e st e e bt e e ek bt e e eab et e e e b et e e e s e e e e eabe e e e s nb e e e e anbr e e e annne e e s nnnees 9
2.2.2 Command Line Documentation
2.3 Create AppPliCatioNS.........cvvveriiiiierieee e
2.3.1 Project Creator Tools
A B o || Aol [0 T SO P UUPT T OPPPPPUPPN
2.3.3 Typical Application Contents .
2.4 Update BSPS @nd LIDIAIES.coiiiiiiiiiiei ettt ettt e e e e e et e e e e e e bbb et e e e e e e e bbbt e e e e e e e e anee
241 [o] = U VY = g Vo 1= ST PP PTPPPPTP
242 MEAKE GELIDS ..t et e ettt e e
2.5 Configure Settings for Devices, Peripherals, and LIDraries............cuuuiiiiiiiii e 15
251 CoNfIQUrAtOr GUI TOOIS.iiiiiiiiite ittt e e st e e e bt e st e e st e e abne e e e nnes 16
2.5.2 CONfIGUIALOT CLI TOOIS ...eoiitieieiiiie ettt ettt e e bt e et e e st e e e bt e et e e es e e e e abne e e s nnees 16
A I VIV ¢ (=N o] o] o¥= 1 o] o W @0 o [ST PP TP PUPPPPPPPPN 17
2.7 (21011 o I = oTo =T o 0 BF= T To [01T o T8 o SRR UPERP 17
2.7. 1 USE ECHPSE IDE......ceoeiiieiieee ettt oottt e e oo e et bttt e e a2 e e e a bbb et e e e e e e e e abbae e et e e e e e nbnr et e e e e e e e anne 17
2.7.2 EXPOIt 10 @NOTNEE IDE ..ottt e e e ettt e e e e e bbbttt e e e e e s abb b et e e e e e e e annbareeeaeaaean 18
2.7.3 USE COMMEANA LINEiiiiiiitiieeiiiit ettt et e sttt e e b et e e bt et e e st e e e sa b bt e e ek b e e e s st et e e anbb e e e abne e e e nnnes 18
3 MOAUSTOOIDOX SOFIWAIE OVEIVIEWeeeiiiiiiie ettt etttk e et e e ettt ookt e e e e ea kbt e e ek bt e e e bb e e e e ab b et e e anbee e e s bneeeennbreennan 19
0 A Y o] o] [ToF= Vo] o N = Y= £ PP PPPPPN 20
0 O A o Y T T O T TP PP P PP R OUPPTUPTTIN 20
N 0 = | PRSPPI 20
70 e B O7o] 10 [= (o] £ PO PUPRPPN 21
3.2 INSTAIIALION RESOUICES. ... eeiieiiiit ettt ettt ettt e et e a1 bt e e ek b et oo abe e e e aa b et e e e bbb e e e nbe e e e aabb e e e e bbe e e e nnbeeeesnbeeean 21
3.21 DT C=Tol (o] g AS] 1 (U1 U = O USSR 21
3.2.2 (D ToTot0 1 1= o1 ¢= i o] o TP PT PRSPPI 22

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 3

A

ws CYPRESS

N> EMBEDDED IN TOMORROW Contents

3.3
3.4

35
3.6

4 ModusToolbox Build System

3.23 | =S 0] o] o Lo o ST PP P PP PPPPPPPPPPPPPPPPPPR:
I S o T PSPPI
(7o (oI bt e= 0] o] 1= R PT U PURRRRN
23] S A I o =TT PR UPRRP
34.1 BOArd SUPPOI PaCKAGES.cci ittt e ettt ettt e e et e e e e e e st e e e e e e e e s etbaaseeeeeesstbaeaeeaeesssnsbbaseaaeeasan
[o] = T T SRR UUPRRP
(ol [0Tot V=T ¢ 1o] a1 oo [PSR PRPP
7S 2 A 1= T =T = I o 71 0 TSTo] o AT PRRTPRN
3.6.2 TOOIS PACKAGE VEISIONING .. .eeiiiuiriieiiiiee ittt e ettt st e ettt et e s e e st et e et e e ss b e e e e e st e s nane e e e s b e e sanne e e e nnnes
3.6.3 Multiple TooIS VErsions INSTAIIEMccuuuiiiiie e e e e e e e s e e e e e e s eebarreeaeee s
3.6.4 Specifying Alternate Tools Version............

3.6.5 Tools and Configurators Versioning

3.6.6 GitHUD Libraries VEIrSIONINGccciiiiiiiiiie ettt e et e e e e e s et e e e e e e s e tbbar e e e eeeseasatbaeeeaeeeeanees

3.6.7 Dependencies Between Libraries

N @ =T 4V 1= OO T PO P PP PPPPPPO
O A o] o)L= 1T T T Y/ =1 PR RSTPR
e T = 151 == TSP RTUPTRPR
I 1 T 1 (=011 1oL RSSO
4.4.1 =T 01 1
4.5 Adding source files
45.1 Auto-Discovery
4.6 Pre-builds and POSE-DUIIASviiiii et e e e e e 36
4.7 Program and Debug.........
4.8 Available Make Targets
4.8.1 GENETAl MBKE TAIGELSeiiiiitiieeiitit ettt e et e e ettt e e b e e e e eh bt e e e be et e e bb e e e e as b et e e aabe e e e s nreeeeannneeenan 37
482 [D] = LI = T (0 =] £ TP PP PPPPPPRP 38
4.8.3 TOOIS MBKE TAIGELSeeeeiieiiiitiiet e ettt ettt e e e e ook e ettt e e e e e o s bbbttt e e e e e e sa bbb et e e e e e e annbbb et e e e e e eanbbbeeeeaeeanannnns 39
4.8.4 ULIIILY MAKE TAITEIS .. ieieieieiiitiie ettt ettt ettt ettt e et e e ekt e ok et e e sh b et e e e be e e e e b b e e e e as b bt e e aabne e e snreeeeannneeenan 39
4.9 Available MaKe VAri@bIEs.ooiiiiiiiii e 40
49.1 Basic Configuration Make VariabIeS............oouiiiiiiiiiiic e 40
4.9.2 Advanced Configuration Make Vari@bles............c.oooiiiiiiiiiiii et 41
493 BSP MaKe VariabIEs.........ooiiiiiiiiiiii e e 43
4.9.4 GetliDS MKE VANIADIES ... ettt et e e e e e 43
495 Path Make VAriabIESoooiiiiiiiiii e 44
4.9.6 Miscellaneous MaKe Variahlesoouiiiiiiii e 45
I = Yo F-T (o ST] o] oo o A = Tod (€= To T =T ST ST PT TP OPPPPPRPPN a7
ST R @1V T V= TP PU PP PPPRP PRI a7
5.2 WHAUS IN @ BSP ..ttt e et e s e e s 48
52.1 COMPONENT_BSP_DESIGN_MODUSccositiuiioeeeeeeeeteteteteteeeeseseseeesesese et eeesees s st et s eseteseseseenneneas 49
5.2.2 COMP ONEN T Lttt ettt e e e e e e e e 49
L B o 1= o IR ST o Jo [(=Tt (o] o2 PP PURUPPN 49
L o [0 ot S U] oo [T (=Tt (o] Y TP PSP OPPPO 49
LT T U o] o To i A | TP PUPRPPN 49
5.2.6 SBSP_INAMES MK ...ttt ettt ettt t etttk b ekt h ekt h ekt b et bt bt R e e bt e b e e nr e e nnn e nnne s 49
5.2.7 [oTor= SR (=Tod o1 o 1] O T PRSP P PP PPPPPPR 49
5.2.8 README/RELEASE.IMA.......utiiititiiiteitit ettt ettt ettt ettt b ekt b et e st et e abe e e sbe e e sbe e e ke e e be e e nbeeeeneeeneneennne s 49

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 4

o CYPRESS

N> EMBEDDED IN TOMORROW Contents

5.29 BTSDK-SPECIfIC BSP fIlES ...ttt e ettt e e e e e et e e e e e e e ennnraeeaaeaan 50
5.3 Creating YOUI OWN BSP ittt e e e e ettt e e e e e e e e aa it e et e e e e e eeaataeeeeeeeaaasareeeeeesaansbbaeeeaeeeananres 50
5.4 Modifying the BSP Configuration for a Single APPIICALION.cueiiiiiiiiiiie e 51
B MAINITEST FIlES ...ttt ettt ettt b et e bt e b e e e bt e bt E et R et bt e bt et h e nn e ner s

6.1 Overview
6.2 Create Your Own Manifest

6.2.1 Overriding the Standard SUPEr-MaNIFESTc.uiiiiiiiie it 54
6.2.2 Secondary Super-Manifest54
6.2.3 o To=TT] Vo PSPPSR 55
(S S 7o i [Tox (] o =1 - PO OPPR 55
6.3 USING OffliNE CONENT.....cciiiiitiiiee e e et e e e e e e et e e e e e e s eesab b e e e eeeeessaataeeeeeesaaasaseeeeeesaassstbaneeaeeeaanres 56
6.4 ACCESS PriVate REPOSIIOMESvviiiiiiiiiiiiii et e e ettt e e e e ettt e e e e e s e e e e e e e s e e bbb e e e eeeeseaaataeeeeeesaaasaseeeeeesaasnsbaaeeeaeeaaansres 57
A = o o 4 4oL I € TN 15 SRR
% R O 1V V= T PO P PP PPPRPPPRI
7.2 Import to Eclipse..........
7.3 Exportto VS Code
7.3.1 P EIEQUISITES. ...ttt e et o et e e bt e e st e e e bt e e ekt e e n et e e e e e e h et e e e e nnee s
7.3.2 Process Example....................
7.4 Export IAR EWARM (Windows Only)
7.4.1 P I BB QUISITES. ...ttt ettt ettt e e oot e ekt e et e e e Rt e ekt ean et e e e e e e b et e e e e e nnee s
T.4.2 PrOCESS EXAMPIE.....co ittt ettt et e ettt e e bt e e e aat et e e e mte e e e aateeeeente e e e anbeeeeanbeeeeenaeeeennnes
7.5 Export to Keil pVision 5 (WINAOWS ONIY) ...couviiiiiiiiei ittt e s e s bt nnne e e nneee s 68
A T8 R o =1 =T 01 (=SSR 68
T7.5.2 PrOCESS EXAMPIE.....co ittt ettt et e ettt e e s bt e e e e at e e e amte e e e anteeeeeste e e e anteeeeanbeeeeenaeeeennnes 68
DOCUMENT REVISION HISTOIY ..eiiiiiiiiiiiiiiit ettt e ettt oo e e e ot bttt e e e e e s st b et e e e e e e e e aa bbbt e e e e e e e e e bbb ee e e e e e e easnbbbeeeeeeeeannnrneeeas 81

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 5

1 Introduction

& CYPRESS

- EMBEDDED IN TOMORROW"™

1.1 About this Guide

This guide provides information and instructions for using the ModusToolbox software tools provided by the version 2.3.0
installer and the make build system. This document contains the following chapters:

® This chapter describes ModusToolbox from a high level.

m Chapter 2 provides instructions for getting started using the ModusToolbox tools.

m Chapter 3 includes an overview of all the software considered a part of ModusToolbox.
]

Chapter 4 describes the ModusToolbox build system.

Chapter 5 covers different aspects of the ModusToolbox Board Support Packages (BSPs).
® Chapter 6 explains the ModusToolbox manifest files and how to use them with BSPs, libraries, and code examples.

® Chapter 7 provides instructions for using a ModusToolbox application with various integrated development
environments (IDES).

1.2 What is ModusToolbox?

ModusToolbox is a modern, extensible development environment supporting a wide range of Infineon microcontroller devices. It
provides a flexible set of tools and a diverse, high-quality collection of application-focused software. These include configuration
tools, low-level drivers, libraries, and operating system support, most of which are compatible with Linux®, macOS®, and
Windows®-hosted environments. ModusToolbox does not include proprietary tools or custom build environments. This means
you choose your compiler, your IDE, your RTOS, and your ecosystem without compromising usability or access to our industry-
leading CapSense®, AIROC™ Bluetooth®, Wi-Fi®, security, and low-power features.

1.2.1 Supported Devices

ModusToolbox supports development on the following Arm Cortex-M devices.
m PSoC 4 Configurable Microcontroller
m XMC Industrial Microcontroller
®m PMG1 USB-C Power Delivery Microcontroller
m PSoC 6 MCU
m PSoC 6 Secure MCU
m AIROC Bluetooth SoC

1.2.2 Development Tools

The ModusToolbox tools package provides you with all the desktop products needed to build sophisticated, low-power
embedded, connected and loT applications. The tools enable you to create new applications (Project Creator), add or update
software components (Library Manager), set up peripherals and middleware (Configurators), program and debug (OpenOCD
and Device Firmware Updater), and compile (GNU C compiler).

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 6

o CYPRESS

N> EMBEDDED IN TOMORROW Introduction

Infineon Technologies understands that you want to pick and choose the tools and products to use, merge them into your own
flows, and develop applications in ways we cannot predict. That's why ModusToolbox is not a monolithic, proprietary software
tool that dictates the use of any particular IDE. For convenience, the tools package installation includes the Eclipse IDE for
ModusToolbox. However, we fully support the following IDEs and their corresponding compiler technology, so you are free to
develop the way you wish:

® Microsoft Visual Studio Code (VS Code)
® |AR Embedded Workbench (EW-ARM)

® Arm Microcontroller Developers Kit (puVision 5)

For detailed instructions developing ModusToolbox applications with third-party IDEs, see the Exporting to IDEs chapter in this
guide.

1.2.3 Run-Time Software

ModusToolbox tools also includes an extensive collection of GitHub-hosted repos comprising Code Examples, Board Support
Packages (BSP), plus middleware and applications support. We release run-time software on a quarterly “train model” schedule,
and access to new or updated libraries typically does not require you to update your ModusToolbox installation.

New projects start with one of our many Code Examples that showcase everything from simple peripheral demonstrations to
complete application solutions. Every Infineon kit is backed by a comprehensive BSP implementation that simplifies the software
interface to the board, enables applications to be re-targeted to new hardware in no time, and can be easily extended to support
your custom hardware without the usual porting and integration hassle.

The extensive middleware collection includes an ever-growing set of sensor interfaces, display support, and connectivity-
focused libraries. ModusToolbox also conveniently bundles packages of all the necessary run-time components you need to
leverage the following key Infineon technology focus areas:

m CapSense

® AnyCloud Wi-Fi (with AIROC Wi-Fi+Bluetooth combo devices)
® AIROC Bluetooth and Bluetooth Mesh

® Machine Learning

m Device Security (PSoC 64 MCU)

1.3 Partner Ecosystems

To support Infineon microcontrollers in our partner ecosystems, some tools and middleware from ModusToolbox are also
integrated into Mbed OS and Amazon FreeRTOS. Refer to mbed.com and aws.amazon.com/freertos, respectively, to learn
more about developing applications in those environments.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 7

https://github.com/cypresssemiconductorco
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
mbed.com/
aws.amazon.com/freertos

2 Getting Started

&= CYPRESS

- EMBEDDED IN TOMORROW

ModusToolbox software provides various graphical user interface (GUI) and command-line interface (CLI) tools to create and
configure applications the way you want. You can use the included Eclipse-based IDE, which provides an integrated flow with all
the ModusToolbox tools. Or, you can use other IDEs or no IDE at all. Plus, you can switch between GUI and CLI tools in various
ways to fit your design flow. Regardless of what tools you use, the basic flow for working with ModusToolbox applications
includes these tasks:

® Install and Configure Software
m Get Help
Create Applications

Update BSPs and Libraries

Configure Settings for Devices, Peripherals, and Libraries

Write Application Code

® Build, Program, and Debug

This chapter helps you get started using various ModusToolbox tools. It covers these tasks, showing both the GUI and CLI
options available.

2.1 Install and Configure Software

The ModusToolbox tools package is located on the Cypress website:

https://www.cypress.com/products/modustoolbox-software-environment

You can install the software on Windows, Linux, and macOS. Refer to the ModusToolbox Installation Guide for specific
instructions.

2.1.1 GUI Set-up Instructions

In general, the IDE and other GUI-based tools included as part of the ModusToolbox tools package work out of the box without
any changes required. Simply launch the executable for the applicable GUI tool. On Windows, most tools are on the Start menu.

2.1.2 CLI Set-up Instructions

Before using the CLI tools, ensure that the environment is set up correctly.

m For Windows, the tools package provides a command-line utility called “modus-shell.” You can run this from the Start
menu, or navigate to the following installation directory and run Cygwin.bat :

<install_path>/ModusToolbox/tools_2.3/modus-shell/

® For macOS, the installer will detect if you have the necessary tools. If not, it will prompt you to install them using the
appropriate Apple system tools.

m For Linux, there is only a ZIP file, and you are expected to understand how to set up various tools for your chosen
operating system.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 8

https://www.cypress.com/products/modustoolbox-software-environment
http://www.cypress.com/ModusToolboxInstallGuide

o CYPRESS

> EMBEDDED IN TOMORROW Getting Started

To check your installation, open the appropriate command-line shell.
B Type which make. FOr most environments, it should return /usr/bin/make.

® Type which git. For most environments, it should return /usr/bin/git.

If these commands return the appropriate paths, then you can begin using the CLI. Otherwise, install and configure the GNU
make and git packages as appropriate for your environment.

2.2 Get Help

In addition to this user guide, Cypress provides documentation for both GUI and CLI tools. GUI tool documentation is generally
available from the tool's Help menu. CLI documentation is available using the tool’s -h option.

2.2.1 GUI Documentation

2.2.1.1 Eclipse IDE

If you choose to use the integrated Eclipse IDE, see the Eclipse IDE for ModusToolbox Quick Start Guide for getting started
information, and the Eclipse IDE for ModusToolbox User Guide for additional details.

2.2.1.2 Configurator and Tool Guides

Each GUI-based configurator and tool includes a user guide that describes different elements of the tool, as well as how to use
them. See Installation Resources for descriptions of these tools and links to the documentation.

2.2.2 Command Line Documentation

2.2.2.1 make help

The ModusToolbox build system includes a make help target that provides help documentation. In order to use the help, you
must first run the make getlibs command in an application directory (see make getlibs for details). From the appropriate shell in
an application directory, type in the following to print the available make targets and variables to the console:

make help

To view verbose documentation for any of these targets or variables, specify them using the cy_ueLp variable. For example:

make help CY_ HELP=TOOLCHAIN
Note This help documentation is part of the base library, and it may also contain additional information specific to a BSP.

To see the various make targets and variables available, see the Available Make Targets and Available Make Variables sections
in the ModusToolbox Build System chapter.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 9

http://www.cypress.com/ModusToolboxQSG
https://www.cypress.com/MTBEclipseIDEUserGuide

3

CYPRESS

G EMBEDDED IN TOMORROW Getting Started

2222 CLITools

Various CLI tools include a -h option that prints help information to the screen about that tool. For example, running this
command prints output for the Project Creator CLI tool to the screen:

./project-creator-cli -h

B ~/ModusTaolbox/toals_2.3/project-creator - O X

a "git ¢
is tool

pl .
The folle 11 tion nfi I-BT nto your home

~~hon

ad of ones in

plication name.

2.3 Create Applications

ModusToolbox provides the Project Creator as both a GUI tool and a command line tool to easily create one or more
ModusToolbox applications. See Project Creator Tools. If you prefer not to use the Project Creator tools, you can use the
git clone command directly. See git clone. However, be sure to also run the make getlibs command in the application
directory. See make getlibs. You can then use those application files in your preferred IDE or from the command line.

Note Beginning with the ModusToolbox 2.2 release, we structure applications with the MTB flow. Using this flow, applications
can share BSPs and libraries. If needed, different applications can use different versions of the same BSP/library. Sharing
resources reduces the number of files on your computer and speeds up subsequent application creation time. Shared BSPs,
libraries, and versions are located in the mtb_shared directory adjacent to your application directories. You can easily switch a
shared BSP or library to become local to a specific application, or back to being shared. Refer to the Library Manager User
Guide for details.

Looking ahead, most example applications will use the MTB flow. However, there are still various applications that use the
previous flow, now called the LIB flow, and these applications generally do not share BSPs and libraries. ModusToolbox fully
supports both flows, but it only supports one flow or the other for a given application.

For simplicity, this guide focuses on the MTB flow. For details about how the LIB flow works, refer to the ModusToolbox 2.1
revision of this guide, located here:

https://www.cypress.com/file/504361/download

2.3.1 Project Creator Tools

The Project Creator tools run the git clone command for the selected code example(s) and create a directory at the specified
location with the specified name. The tools also updates the application makefile and create a <BSP-NAME>.mtb file based on
the specified BSP. That .mtb file contains the following:

m The URL of the git repo where the BSP contents can be found.
® The commit (version of the library) to checkout / make visible / use in the application.

m A variable of where to put the BSP on disk (shared or local to the application).

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 10

https://www.cypress.com/ModusToolboxLibraryManager
https://www.cypress.com/ModusToolboxLibraryManager
https://www.cypress.com/file/504361/download

o CYPRESS

> EMBEDDED IN TOMORROW Getting Started

The Project Creator tools then run the make getlibs command to read the BSP manifest file, resolve dependencies, and import
libraries. Depending on the settings in the application and manifest, the tools put everything into application directories and an
mtb_shared directory. In most cases, BSPs are placed local to the application while libraries are shared.

2.3.1.1 Project Creator GUI

The Project Creator GUI tool provides a series of screens to select a BSP and code example, specify the application name and
location, as well as select target IDE. The tool displays various messages during the application creation process. Refer to the
Project Creator Guide for more details. Open the Project Creator GUI tool from the Windows Start menu or by running the
executable file installed in the following directory by default:

<install_path>/ModusToolbox/tools_2.3/project-creator/

Settings Help

Ente ter text g Import, CYSCKIT-062-WIFI-BT
Kit Name ~ Mcu Connectivity Device ||| The PSoC 6 WIF-BT Pioneer Kit s a low-cost hardware platform that enables design and
» PMG1BSPs debug of the PSoC 62 MCU (CYBC5247BZ1-D54) and the Murata LEEESKL 1DX Module
V PSoC 4 BSPs (CYWA4343W WiFi +Blustooth Combo Chip).
~ PSoC G BSPs Kit Features:

CYACKIT-062-BLE CY8C6347BZ1-BLD33 <none>

CYBCKIT-06252-43012 CYBCE24ABZI-52D44 CYW43012COWKWBG *BLEVS.0

CY2CKIT-06254 CY8C6244L01-54D92 <none> *Serial memory interface

CYACKIT-062WIFI-BT _ CYBCG247BZI-D54 CYW4343WKUBG :?D;T“ld‘ﬂd‘_m‘ fe‘”ﬂsphme interface

CVACKIT-064B0S2-4343W CYBOG44ABZI-S2D44 CYW4343WKUBG _F”uu‘fpe"e g CapsensE

CYBCKIT-0845052-4343W CYBOB44ABZI-S2D44 CYW4343WKUBG o IEEE 802. 1 1a/b/a/n WLAN

CYSCPROTO-062-4343W CYBCE24ABZI-S2D44 CYW4343WKUBG

CYBCPROTO-06253-4343W CYBCH245LQ1-53D72 CYWA343WKUBG Kit Contents:

CYBCPROTO-063-BLE CYBLE-416045-02 <none> 3
= CYBCKIT-062-WIFI-BT evaluation board

*TFT display shield with a 2.4" TFT display, light sensor, 6-axis motion sensor, and

CYSCPROTO-064B0S1-BLE CYBOB447BZI-BLDS3 <none>
CY3CPROTO-064B0S3 CYBOB445L0)-53D42 <none>

digital microphone

CVBCPROTO-06451-58 CYBOBA47BZI-DS4 <none» 0SB cable
CYBLE-416045-EVAL CYBLE-416045-02 <none>

CYSBSYSKIT-01 CYBC624AFNI-52D43 <none>

CVSBSYSKIT-DEV-01 CYBCE24AFNI-52D43 CYW43012TCOKFFBH

CYWIP6251-43012EVB-01 CYBC6247FDI-D32 CYW43012TCOEKUBG

CYWIP6251-43438EVE-01 CYBCE247BZI-D54 CYW43438KUBG

PSOCH-GENERIC C¥8C6347BZI-BLD33 <none> -
] ¥

Summary: -
BSP: CYSCKIT-062-WIFI-BT
Press "Next” to select application. -

Mext > Close

&l

The option to select a target IDE generates necessary files for that IDE. If you launch the Project Creator GUI tool from the
included Eclipse-based IDE, it seamlessly exports the created application for use in the Eclipse IDE.

2.3.1.2 project-creator-cli

You can also use the project-creator-cli tool to create applications from a command-line prompt or from within batch files or shell
scripts. The tool is located in the same directory as the GUI version (<install_path>/ModusToolbox/tools_2.3/project-creator/). To
see all the options available, run the tool with the -h option:

./project-creator-cli -h

The following example shows running the tool with various options.

./project-creator-cli \
--board-id CY8CKIT-062-WIFI-BT \
--app-id mtb-example-psoc6-hello-world \
--user-app-name MyLED \
--target-dir "C:/cypress projects"

In this example, the project-creator-cli tool runs the git clone command to clone the HelloWorld code example from the
Cypress GitHub server (https://github.com/cypresssemiconductorco). It also updates the TArRGET variable in the makefile to
match the selected BSP (--board-id), creates a .mtb file for it, and runs the make getlibs command to obtain the necessary
library files. This example also includes options to specify the name (--user-app-name) and location (--target-dir) where the
application will be stored.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 11

http://www.cypress.com/ModusToolboxProjectCreator
https://github.com/cypresssemiconductorco

o CYPRESS

> EMBEDDED IN TOMORROW Getting Started

2.3.2 gitclone

The Project Creator GUI and command line tools run the git clone command as part of the process of creating an application.
You can run the git clone command directly from the command line. Open the appropriate shell and type in the following
command (replace the <URL> with the appropriate URL of the repo you wish to clone):

git clone <URL>

The clone operation creates an application directory in your current location. Navigate to that directory (cd <p1r>), and find the
application makefile. This is the top-level file that determines the application build flow. To see the various make targets and
variables that you can edit in this file, refer to the Available Make Targets and Available Make Variables sections in the
ModusToolbox Build System chapter.

Note When using the git clone command directly, be sure to also run the make getlibs command in the application directory.
See make getlibs. Also, each code example has a default BSP included in the application's deps subdirectory. If you want to use
a different BSP, you must create a .mtb file for it in the deps subdirectory before running make getlibs, and you must change
the TARGET variable in the Makefile.

2.3.3 Typical Application Contents

After an application has been created for the MTB flow and all the libraries have been imported, it contains the following basic
files and directories as shown in the following image:

v k—ﬁ- - Application-1
Gy > deps
w = libs
(% TARGET_CY&CKIT-06252-43012
E capsense.mth
E core-lib.mth
& core-makemtb
@ mtb.mk
E mth-hal-catl.mth
E mith-pdl-catl.mth
E psocbemOp.mthb
& recipe-make-cattamtb
L.} main.c
= LICENSE
@ > Makefile
= makefile.init
|7 README.md
IL—S- = Application-2
w 1% mth_shared
ﬁ: Archives
[capsense
= core-lib
= core-make
= mtb-hal-catl
= mtb-pdl-catl
= psocbomOp
= recipe-make-catla
= retarget-ic

2.3.3.1 Application Directory

This directory contains the application source code, makefile, readme file, as well as the deps and libs subdirectories. If you
create multiple applications, there will be multiple application directories contained in the same directory structure or workspace.

m Source Code — This is one or more files for your application’s code. Often it is named main.c, but it could be more than
one file and the files could have almost any name. Source code files can also be grouped into a subdirectory anywhere
in the application's directory (for example, sources/main.c).

m Makefile — This is the application’s makefile, which contains configuration information. See the ModusToolbox Build
System chapter for more details.

m deps Subdirectory — By default, this subdirectory contains .mtb files using the MTB flow.
O Initially, this subdirectory contains only the <BSP>.mtb file for the BSP you selected for the application.

O It could also contain <library>.mtb files for libraries that were included directly or for which you changed using the

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 12

CYPRESS

> EMBEDDED IN TOMORROW Getting Started

Library Manager. See the Update BSPs and Libraries section for details.

O This subdirectory also contains the locking_commit.log file, which keeps track of the version for each dependent
library.

m |ibs Subdirectory — This subdirectory may contain different types of files generated by the make getlibs process,
based on how the application is created. You can regenerate these files using the make getlibs command, so you do
not need to add these files to source control.

O This subdirectory contains BSPs that are local to the application (that is, not shared).

O If you update your application to specify any libraries to be local as well, then this directory will also contain source
code for those libraries.

O By default, this subdirectory contains the <library>.mtb files for libraries included as indirect dependencies of the
BSP or other libraries.

O This directory also contains the mth.mk file that lists the shared libraries and their versions.

2.3.3.2 mtb_shared Directory

Typically, a new application also includes a mtb_shared directory adjacent to the application directory, and this is where the
shared BSP and libraries are cloned by default. This location can be modified by specifying the cy GeTLIBS PATH variable.
Duplicate libraries are checked to see if they point to the same commit and if so, only one copy is kept in the mtb_shared
directory.

2.4 Update BSPs and Libraries

As part of the application creation process, the Project Creator tools update the application with BSP and library information. If
you use the git clone command, you will have to update BSP and library information as a separate process using the Library
Manager tool or from the command line using the make getlibs command. You can also update the BSP and library
information at any point in the development cycle using these tools.

2.4.1 Library Manager

As needed, use the Library Manager tool to add or remove BSPs and libraries for your application, as well as change versions
for BSPs and libraries. You can also change the active BSP. Open the Library Manager tool from the application directory using
the make modlibs command.

The Library Manager opens for the selected application and its available BSPs and libraries.

Settings Help
Directory: | C:/Users/CKF/mtw2.3/3544/hw Hello_World Browse...

Project: C:JUsers/CKF fmtw2. 3/3544/hw/Hello_World hd
Active BSP: | CYBCKIT-062-WIFI-BT i

Enter fiter text ¥ B [F | CYSCKIT-082-WIFLET =
The PSoC 6 WiFi-BT Pioneer Kit is 2 low-cost hardware platform that enables design and
BSPs Libraries debug of the PSoC 62 MCU (CY8C6247BZ1-D54) and the Murata LBEESKL 1DX Module
(CYw4343w WiFi + Bluetooth Combo Chip).

Name + Shared Version =

* PSoC 6BSPs Kit Features:
CYBCKIT-062-BLE Latest 1.X release

9 CYBCKIT-062-WIFI-BT (Active) [Latest 2% release ey Sn;gmv it ace

CYBCKIT-06252-43012 Latest 1.X release «POMPCM digital microphone interface
CYBCKIT-06254 Latest 2.X release « Industry-eading CapSense
CYBCKIT-064B052-4343W Latest 1.X release Full-speed USB
CYBCKIT-0645052-4343W Latest 1.X release = [EEE 802. 11a/b/g/n WLAN
CYBCPROTO-062-4343W Latest 1.X release
CYSCPROTO-D6253-4343W Latest 1.X release it Contents:
CVECPROTO-063-BLE Latest 1.X release + CYSOKIT-063-WIFI-BT evaluation board
CYECPROTO-064B051-BLE Latest 1.X release = * TFT display shield with a 2.4” TFT display, light sensor, 6-axis motion sensor, ~

Reading project (C: Users/CKF/mtw2. 3/3544/hw/Hello_World) information...

Successfully acquired project information.

Update Close

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 13

CYPRESS

g EMBEDDED IN TOMORROW™

D

Note There are several ways to open the Library Manager; refer to the Library Manager Guide for more details.

Getting Started

The Library Manager tool provides a field to select the Active BSP. It also includes two tabs to view and update BSPs and

Libraries.

Settings Help
Directory: | C:/Users/follettcjimtw2. 3/4109/hw-3-11-21/Hello_World

Project: C:/Users ffollettcjimtw2. 3/4109/hw-3-11-21/Hello_World

|Acti\c'e BSP: | CYBCKIT-062-WIFI-BT

Enter filter text ¥ B

Libraries

MName

» AIROC Bluetooth BSPs

» PMG1BSPs

b PSoC 4 BSPs

~ PSoC 6BSPs

CYBCEVAL-06252
CYBCEVAL-06252-LAI-4373M2
CYBCKIT-062-BLE
CY8CKIT-062-WIFI-BT (Active)
V| CYBCKIT-06252-43012

“ Shared Version

Latest 2.X release
2.0.0 release

2.1.0 release

2.1.0 release

CYBCKIT-06254
CYBCKIT-064B0S2-4343W 2.1.0 release
CYBCKIT-0645052-4343W 2.1.0 release
V| CYBCPROTO-062-4343W v 2.1.0 release
CYBCPROTO-06253-4343W 2.1.0 release
CY8CPROTO-063-BLE 2.1.0 release
CY8CPROTO-064B0S1-BLE 2.1.0 release
CYSCPROTO-064B0ST-55A 2.1.0 release
CY8CPROTO-064B053 2.1.0 release
CY8CPROTO-06451-5B 2.1.0 release
CYBLE-416045-EVAL 2.1.0 release
CYSBSYSKIT-01 2.1.0 release
CYSBSYSKIT-DEV-01 2.1.0 release
CYWIP6251-43012EVB-01 2.1.0 release
CYWIP6251-43438EVB-01 2.1.0 release
PSOCE-GENERIC 2.1.0 release

b XMC BSPs

BSPsl Libraries |

MName

display-oled-ssd1306

display-tft-st778%v
V| retarget-io
rgb-led

sensor-atmo-bmeGal

sensor-light

“ Shared

sensor-motion-bmile0

serial-flash
thermistor

21 udb-sdio-whd

whd-bsp-integration

+ BT Middleware libraries
* MCU Middleware
[# capsense

clib-support

dfu

freertos

littlefs
* P5oC 6 Base Libraries
(¥ mitb-hal-catl
mtb-pdl-catl
[# psocbermDp
Fi recipe-make-catla
PSoC & Middleware
WiFi Middleware libraries

- -

Version

1.0.1 release
1.0.1 release
1.1.1 release
1.2.0 release
1.0.0 release
1.0.1 release
1.0.1 release
1.1.0 release
2.0.0 release
1.1.1 release
1.1.2 release

A‘ 2.10.0 release
1.0.2 release

Latest 1.X release

1.5.0 release
1.5.1 release

1.5.2 release

1.7.0 release

Make changes to BSPs and libraries as follows:

m Select one or more check boxes under Name for the items to add. Deselect check boxes for items to remove.

m Specify whether items are shared (placed in the mtb_shared directory) or local to the application (placed in the libs
subdirectory) by selecting/deselecting the Shared check box.

m Choose an appropriate Version for each item.

Click Update to proceed with the changes. The status box displays various messages while applying changes, and then

indicates if the application was updated or not.

Successfully updated the project.

Reading project {C:/Users follett/mtw2. 3/4109/hw-3-11-21/Hello_World) information. ..

Successfully acquired project information.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

14

http://www.cypress.com/ModusToolboxLibraryManager

o CYPRESS

N> EMBEDDED IN TOMORROW Getting Started

2.4.2 make getlibs

In the MTB flow, the Project Creator tools and the Library Manager tool run the make getlibs command to search for all .mtb
files in the application directory. Each .mtb file contains information used when the application is created. These files are parsed,
and the libraries are cloned into a directory named mtb_shared.

If you ran the git clone command manually and did not use the Library Manager, then your application will contain only default
.mtb files. You must run the make getlibs command to parse those files and clone the libraries. However, if you want to use to
a different BSP than the default provided by the code example, you must first edit the makefile to update the TaRGET variable to
match the desired BSP. Then, you must add a .mtb file in the /deps subdirectory that includes a URL to the desired BSP
location.

Note ModusToolbox applications that use the LIB flow contain.lib files in the deps subdirectory. If an application uses the MTB
flow, then all .lib files are ignored.

When you are ready to update your application, open the appropriate shell (see CLI Set-up Instructions) and run the following
command in the application directory:

make getlibs

Note The make getlibs operation may take a long time to execute as it depends on your internet speed and the size of the
libraries that it is cloning. To improve subsequent library cloning operations, a cache directory named .modustoolbox/cache
exists in the $SHOME (Linux, macOS) and $USERPROFILE (Windows) directories.

2.5 Configure Settings for Devices, Peripherals, and Libraries

Depending on your application, you may want to update and generate some of the configuration code. While it is possible to
write configuration code from scratch, the effort to do so is considerable. ModusToolbox software provides applications called
configurators that make it easier to configure a hardware block or a middleware library. For example, instead of having to search
through all the documentation to configure a serial communication block as a UART with a desired configuration, open the
appropriate configurator to set the baud rate, parity, stop bits, etc.

Before configuring your device, you must decide how your application will interact with the hardware; see Application Layers.
That decision affects how you configure settings for devices, peripherals, and libraries.

IMPORTANT Before you make changes to settings in configurators, you should first copy the configuration information to the
application and override the BSP configuration or create a custom BSP. See details about BSPs in the Board Support Packages
chapter. If you make changes to a standard BSP library, it will cause the repo to become dirty. Additionally, if the BSP is in the
shared asset repository, changes will impact all applications that use the shared BSP. If this happens, refer to KBA231252.

The configurators can be run as GUIs to easily update various parameters and settings. Most can also be run as command line
tools to regenerate code as part of a script. For more information about configurators, see the Configurators section in the
ModusToolbox Software Overview chapter. Also, each configurator provides a separate document, available from the
configurator's Help menu, that provides information about how to use the specific configurator.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 15

https://community.cypress.com/docs/DOC-21498

CYPRESS

> EMBEDDED IN TOMORROW™ Getting Started

2.5.1 Configurator GUI Tools

You can open various configurator GUIs using the appropriate make command from the application directory. For example, to
open the Device Configurator, run:

make config

This opens the Device Configurator with the current application’s design.modus configuration file.

[Ci/Users/follettcj/mtw2.3/4108/ hw-3-11-21/Hello_World/libs/TARGET_CYACKIT-062-WIFI-BT/COMPONENT_BSP_DESIGN_MODUS/design.modus - Device Configurator 3.0 - O X

File Edit View Help

CVBCE247BZI-D54 | CYWAZWKUEG 5D (CapSense, etc.) 0 (CYBSP_CSD) - Paremeters @8

Periphersls | Pins | Analog-Routing | System | Peripheral-Clocks = DMA Frter filter fext.. £/9 18
3 = | [Name Value -

Enter filter text..

nieriterte 4|7 B s = ~ Peripheral Documentation

Resource Name(s) Persanality (7) Configuration Help | Open CSD Documentation

» Analog -

: Sf‘g’i’t‘:““”“a“”” Clock & | 8 bit Divider 3 clk (CYBSP_CSD_CLK_DIV, CYBSP_CS_CLK_DIV) [USED]

se
(7) Enable CapSense v

(2) Target CPU core Cortex M4
~ External Tools

~ _System .
CSD (CapSense, etc.) 0 CYBSP_CSD CSD-2.0 l

LCD Direct Drive 0
Mutti-Counter Watchdog Timer (MCWOT) 0 '7\ CapSense Configurator| Launch CapSense Configurator
Multi-Ceunter Watchdog Timer (MCWDT) 1

Real Time Clock (RTC)

CapSense Tuner Launch CapSense Tuner

Enable CSDADC

Enable CSDIDAC
~ CapSense Capacitors

CSD (CapSense, etc.) 0 (CYBSP_CSD) - Parameters | Code Preview

Motice List B®
—
OOENors I 0Warnings UOTasks o&\nfus
Fix Description = Location
Ready

As described under Tools Make Targets, you can use the make open command with appropriate arguments to open any
configurator. For example, to open the CapSense Configurator, run:

make open CY OPEN TYPE=capsense-configurator

You can also use the Eclipse IDE provided with ModusToolbox to open configurators. For example, if you select the “Device
Configurator” link in the IDE Quick Panel, the tool opens with the application’s design.modus file. Refer to the Eclipse IDE for
ModusToolbox User Guide for more details about the Eclipse IDE.

One other way to open BSP configurators (such as CapSense and SegLCD) is by using a link from inside the Device
Configurator. However, this does not apply to Library configurators (such as Bluetooth and USB).

2.5.2 Configurator CLI Tools

Most of the configurators can also be run from the command line. The primary use case is to re-generate source code based on
the latest configuration settings. This would often be part of an overall build script for the entire application. The command-line
configurator cannot change configuration settings. For information about command line options, run the configurator using the -
h option.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 16

https://www.cypress.com/MTBEclipseIDEUserGuide
https://www.cypress.com/MTBEclipseIDEUserGuide

o CYPRESS

> EMBEDDED IN TOMORROW Getting Started

2.6 Write Application Code

As in any embedded development application using any set of tools, you are responsible for the design and implementation of
the firmware. This includes not just low-level configuration and power mode transitions, but all the unique functionality of your
product. When writing application code, you must decide how the application will interact with the hardware; see Application

Layers.

ModusToolbox software is designed to enable your workflow. It includes an integrated Eclipse IDE, as well as support for Visual
Studio (VS) Code, IAR Embedded Workbench, and Keil pVision (see Exporting to IDES). You can also use a text editor and
command line tools. Taken together, the multiple resources available to you in ModusToolbox software: BSPs, configurators,
driver libraries, and middleware, help you focus on your specific application.

2.7 Build, Program, and Debug

After the application has been created, you can export it to an IDE of your choice for building, programming, and debugging.
You can also use command line tools. The ModusToolbox build system infrastructure provides several make variables to control
the build. So, whether you are using an IDE or command line tools, you edit the makefile variables as appropriate. See the
ModusToolbox Build System chapter for detailed documentation on the build system infrastructure.

Variable Description

TARGET Specifies the target board/kit. For example, CYSCPROTO-062-4343W
APPNAME Specifies the name of the application

TOOLCHAIN Specifies the build tools used to build the application

CONFIG Specifies the configuration option for the build [Debug Release]
VERBOSE Specifies whether the build is silent or verbose [true false]

ModusToolbox software is tested with various versions of the Toor.cHaAIN values listed in the following table. Refer to the release
information for each product for specific versions of the toolchains.

TOOLCHAIN Tools Host OS

GCC_ARM GNU Arm Embedded Compiler Mac OS, Windows, Linux
ARM Arm compiler Windows, Linux

IAR Embedded Workbench Windows

In the makefile, set the TooLcHAIN variable to the build tools of your choice. For example: TOOLCHAIN=GCC_ARM. There are
also variables you can use to pass compiler and linker flags to the toolchain.

ModusToolbox software installs the GNU Arm toolchain and uses it by default. If you wish to use another toolchain, you must
provide it and specify the path to the tools. For example, CY COMPILER PATH=<yourpath>. If this path is blank, the build
infrastructure looks in the ModusToolbox install directory.

2.7.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the Build Application link in the Quick Panel for the selected application.

QQuick Panel = 8

Eclipse IDE for
ModusToolbox®

» Start

~ Hello World (CYSCKIT-062-WIFI-BT}

I @, Build Hello_World Application

9 Clean Hello_World Application

» Launches

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 17

o CYPRESS

N> EMBEDDED IN TOMORROW Getting Started

Because the IDE relies on the build infrastructure, it does not use the standard Eclipse GUI to modify build settings. It uses the
build options specified in the makefile. This design ensures that the behavior of the application, its options, and the make
process are consistent regardless of the development environment and workflow.

If you do change settings in the makefile (for example, TARGET or CONFIG), you must re-create the launch configs using the link
in the Quick Panel; refer to the Eclipse IDE for ModusToolbox User Guide for more details.

2.7.2 Export to another IDE

If you prefer to use an IDE other than Eclipse, you can select the appropriate IDE from the Target IDE pull-down menu when
creating an application using the Project Creator tool. You can also use the appropriate make <ide> command. For example, to
export to Visual Studio Code, run:

make vscode

For more details about using other IDEs, see the Exporting to IDEs chapter. When working with a different IDE, you must
manage the build using the features and capabilities of that IDE.

2.7.3 Use Command Line

2.7.3.1 make build

When all the libraries are available (after executing make getlibs), the application is ready to build. From the appropriate shell,
type the following:

make build

This instructs the build system to find and gather the source files in the application and initiate the build process. In order to
improve the build speed, you may parallelize it by giving it a -5 flag (optionally specifying the number of processes to run). For
example:

make build -7j16

2.7.3.2 make program

Connect the target board to the machine and type the following in the shell:

make program

This performs an application build and then programs the application artifact (usually an .elf or .hex file) to the board using the
recipe-specific programming routine (usually OpenOCD). You may also skip the build step by using gprogram instead of
program. This will program the existing build artifact.

2.7.3.3 make debug/qdebug/attach
The following commands can be used to debug the application, as follows:
B nake debug — Build and program the board. Then launch the GDB server.
B nake gdebug — Skip the build and program steps. Just launch the GDB server.

B nake attach — Starts a GDB client and attaches the debugger to the running target.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 18

https://www.cypress.com/MTBEclipseIDEUserGuide

3 ModusToolbox Software Overview

&2 CYPRESS

EMBEDDED IN TOMORROW™

This chapter provides an overview of the ModusToolbox software environment. As described in the Introduction chapter,
ModusToolbox is set of Reference Flows, Products, and Solutions. From a practical standpoint, ModusToolbox is delivered in
various ways, such as Installation Resources, Code Examples, and BSPs & Libraries, and you only use the resources you need.
When you create applications, you use these resources and interact with the hardware through the Hardware Abstraction Layer
(HAL) and/or the Peripheral Driver Library (PDL).

The following block diagram shows a very high-level of the software available in ModusToolbox. This is not a comprehensive
list. It merely conveys the idea that there are multiple resources available to you.

User Application

ModusToolbox Software

Code Examples

Tools Installer Libraries
Infrastructure
Program & _ _ _
Support

Another important aspect of the ModusToolbox software is that each product is versioned. This ensures that each product can
be updated on an ongoing basis, but it also allows you to lock down specific versions of the tools for your specific environment.
See Product Versioning for more details.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 19

o CYPRESS

N> EVMBEDDED IN TOMORROW™ ModusToolbox Software Overview

3.1 Application Layers

There are four distinct ways for an application to interact with the hardware as shown in the following diagram:

‘ User Application

‘ HAL Structures ‘ ‘ Configurator Structures ‘ ‘ Manual Structures ‘ ‘ Register Read/Write ‘

‘ Hardware ‘

HAL Structures: Application code uses the HAL, which interacts with the PDL through structures created by the HAL
Configurator Structures: Application code uses PDL through structures created by a Configurator.

Manual Structures: Application code uses PDL through structures created manually.

Register Read/Write: Application code uses direct register read and writes.

Note that a single application may use different methods for different peripherals.

3.1.1 HAL

Using the HAL is more portable than the other methods. It is the preferred method for simpler functions and those that don't
have extremely strict flash size limitations. It is a high-level interface to the hardware that allows many common functions to be
done quickly and easily. This allows the same code to be used even if there are changes to pin assignments, different devices in
the same family, or even to a different family that may have radically different underlying architectures.

The advantages include:

m Easy hardware changes. Just change the pin assignment in the BSP and the code remains the same. For example, if
LED1 changes from PO_0 to PO_1, the code remains the same as long as the code uses the name LED1 with the HAL.
The only change is to the BSP pin assignment.

m Easy migration to a different device as product requirements change.

m Ability to use the same code base across multiple projects and generations, even if underlying architectures are
different.

The disadvantages include:

m The HAL may not support every feature that the hardware has. It supports the most common features but not all of
them to maintain simplicity.

m The HAL will use additional flash space. The additional flash depends on which HAL APIs are used.

3.1.2 PDL

The PDL is a lower-level interface to the hardware (but still simpler than direct register access) that supports all hardware
features. Usually the PDL goes hand-in-hand with Configurators, which will be described next. Since the PDL interacts with the
hardware at a lower level it is less portable between devices, especially those with different architectures.

The advantages/disadvantages are the exact opposite of those for the HAL. The main advantage is that it provides access to
every hardware feature.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 20

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

3.1.3 Configurators

Configurators make initial setup easier for hardware accessed using the PDL. The Configurators create structures that the PDL
requires without you needing to know the exact composition of each structure, and they create the proper structure based on
your selections. See Configurators for more information.

If you use the HAL for a peripheral, it will create the necessary structures for you, so you should NOT use a Configurator to set
them up. The HAL structure is accessible, and once you initialize a peripheral with the HAL you can view and even modify that
structure (that is, a HAL object). Keep in mind that the underlying structures are hardware-specific, so you may be sacrificing
portability if you modify the structure manually. There are a few exceptions. For example, it is reasonable to configure system
items (such as clocks) and use them with the HAL.

3.2 Installation Resources

The ModusToolbox tools package installer provides required and optional core resources for any application. This section
provides an overview of the available resources:

® Directory Structure

® Documentation

m |DE Support
m Tools

The installer does not include Code Examples or Libraries, but it does provide the tools to access them.

3.2.1 Directory Structure

Refer to the ModusToolbox Installation Guide for information about installing ModusToolbox. Once it is installed, the various
ModusToolbox top-level directories are organized as follows:

w ModusToolbox
docs 2.2
docs_2.3
ide_2.2
ide_2.3
tools_2.2
tools_2.3

Note This image shows ModusToolbox versions 2.2 and 2.3 installed. Your installation may only include ModusToolbox
version 2.3. Refer to the Product Versioning section for more details.

The ModusToolbox directory contains the following subdirectories for version 2.3:

m docs_2.3 - This is the top-level documentation directory. It contains various top-level documents and an html file with
links to documents provided as part of ModusToolbox. See Documentation for more information.

m ide 2.3:

O eclipse (or ModusToolbox.app on macOS) — This contains the optional Eclipse IDE for ModusToolbox. It
includes the ModusToolbox perspective, application management, code authoring and editing, build tools, and
debug capabilities. The IDE supports the C and C++ programming languages. It includes the GCC Arm build tools.
It supports debugging via OpenOCD or J-Link. For more details, refer to the Eclipse IDE for ModusToolbox User
Guide.

m tools_2.3: This contains all the various tools and scripts installed as part of ModusToolbox. See Tools for more
information.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 21

https://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxInstallGuide
https://www.cypress.com/MTBEclipseIDEUserGuide
https://www.cypress.com/MTBEclipseIDEUserGuide

o CYPRESS

N> EVMBEDDED IN TOMORROW™ ModusToolbox Software Overview

3.2.2 Documentation

The docs directory contains top-level documents and an HTML document with links to all the documents included in the
installation and on the web.

3.2.2.1 Release Notes

For the 2.3 release, the release notes document is for all of the ModusToolbox software included in the installation.

3.2.2.2 Top-Level Documents

This folder contains the Eclipse IDE documentation, the ModusToolbox Installation Guide, and this user guide. These guides
cover different aspects of using the IDE and various ModusToolbox tools.

3.2.2.3 Document Index Page

The doc_landing.html file provides links to all the documents included in the installation and on the web. This file is also
available from the IDE Help menu.

ModusToolbox® 2.3 Documentation

This page provides brief descriptions and links to various types of documentation included as part the ModusToolbox software.

Note: IMlany of these documents are also provided online at the ModusToolbox website. Also, some of the documents online might be more current than versions
installed on disk

Getting Started Documents

This section contains general documents to install and use ModusToolbox software, as well as use the provided Eclipse IDE.

Name Description

ModusToolbox Installation Guide This document describes how to install the ModusToolbox software on Windows, Linux, and macQS.

This document lists and describes features for this release of ModusToolbox. It also includes known issues
and workarounds and important design impacts you should know.

This document provides an overall user guide for ModusToolbox GUI and CLI tools, including getting started
and exporting to various IDEs, including Visual Studio Cede, IAR Embedded Workbench, and Keil pVision.

ModusToolbox Release Notes

ModusToolbox User Guide

Eclipse IDE for ModusToolbox This is a short step-by-step guide specifically for using the Eclipse-based IDE to create and build
Quick Start Guide applications for ModusToolbox.

EZLDrSéL:BE for ModusToolbox This guide also focuses on the Eclipse IDE, covering more details about the IDE and software features.
Eclipse Survival Guide This document is also online only. It offers tips on using the Eclipse envirenment.

EULA End user license agreement; provided on disk as part of installation.

Configurator and Tool Documents

These documents are located in the "tools" directory in each individual configurator and tool "docs” subfolder.

Name Description
Project Creator Guide Covers how to use the stand-alone tool to create projects for ModusToolbox.

3.2.3 IDE Support

ModusToolbox includes an optional Eclipse IDE that is a full-featured, cross-platform IDE. ModusToolbox also provides support
for Visual Studio (VS) Code, IAR Embedded Workbench, and Keil pVision. See the Exporting to IDEs chapter for more details.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 22

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

3.2.4 Tools

The tools_2.3 folder contains the following tools:

W tools_2.3
bt-configurator
capsense-configurator
cfg-backend-cli
cymcuelftool-1.0
device-configurator
dfuh-tool
driver_media
er-pd-configurator
fuw-loader
gee
jre
library-rmanager
make
modus-shell
openocd
project-creator
proxy-helper
python
gspi-configurator
secure-policy-configurator
seglcd-configurator

smartio-configurator

usbdev-configurator

3.2.4.1 Configurators

Each configurator is a cross-platform tool that allows you to set configuration options for the corresponding hardware peripheral
or library. When you save a configuration, the tool generates the C code or configuration file used to initialize the hardware or
library with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration options. They can
be used stand alone, in conjunction with other configurators, or as part of a complete application. All of them are installed during
the ModusToolbox installation. Each configurator provides a separate guide, available from the configurator's Help menu.

Configurators perform tasks such as:
m Displaying a user interface for editing parameters
m Setting up connections such as pins and clocks for a peripheral
m Generating code to configure middleware
Note Some configurators may not be useful for your application.
Configurators store configuration data in an XML data file that provides the desired configuration. Each configurator has a

"command line" mode that can regenerate source based on the XML data file. Configurators are divided into two types: BSP
Configurators and Library Configurators.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 23

o CYPRESS

g EMBEDDED IN TOMORROW

ModusToolbox Software Overview

The following diagram shows a high-level view of the configurators in a typical application.

Application

—— main.c

TARGET_<BSP_NAME>

Configurator CapSense
,,,,,,,,,,,,,,,,,,,,,,, —
Tuner
BSP Configurators
—{ GeneratedSource I: -
.c/.h files
Library Configurators

| design.cybt ‘ G Bluetooth =

an.cy - ~| Configurator o

. UsSB
— design.cyushdev = & Configurator »

L{ COMPONENT_BSP_DESIGN_MODUS

—{GeneratedSource I-‘. -t

"~ clhfiles

Smart 110
Configurator

Device
Configurator

A
k.

—— design.modus

t Ad

i i QSPI
[desioneveeR = ™ configurator
[
—— design.cysegled - . SegLCD

Configurator
I
CapSense

A
Y

—— design.cycapsense

BSP configurators configure the hardware on a specific device. This can be a board provided by Cypress, a Cypress partner, or
a board that you create that is specific to your application. Some of these configurators interact with the design.modus file to
store and communicate configuration settings between different configurators. Code generated by a BSP Configurator is stored
in a directory named GeneratedSource, which is in the same directory as the design.modus file. This is generally located in the
BSP for a given target board. Some of the BSP configurators include:

Device Configurator: Set up the system (platform) functions such as pins, interrupts, clocks, and DMA, as well as the
basic peripherals, including UART, Timer, etc. See Device Configurator Guide for more details.

CapSense Configurator: Configure CapSense hardware, and generate the required firmware. This includes tasks such
as mapping pins to sensors and how the sensors are scanned. See CapSense Configurator Guide for more details.

There is also a CapSense Tuner to adjust performance and sensitivity of CapSense widgets on the board connected to
your computer. See CapSense Tuner Guide for more details.

QSPI Configurator: Configure external memory and generate the required firmware. This includes defining and
configuring what external memories are being communicated with. See QSPI| Configurator Guide for more details.

Smart I/O™ Configurator: Configure the Smart I/0. This includes Chip, I/O, Data Unit, and LUT signals between port
pins and the HSIOM. See Smart I/O Configurator Guide for more details.

SegLCD Configurator: Configure LCD displays. This configuration defines a matrix Seg LCD connection and allows you
to setup the connections and easily write to the display. See SegLCD Configurator Guide for more details.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 24

https://www.cypress.com/ModusToolboxDeviceConfig
https://www.cypress.com/ModusToolboxCapSenseConfig
https://www.cypress.com/ModusToolboxCapSenseTuner
https://www.cypress.com/ModusToolboxQSPIConfig
https://www.cypress.com/ModusToolboxSmartIOConfig
http://www.cypress.com/ModusToolboxSegLCDConfig

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

Library configurators support configuring application middleware. Library configurators do not read nor depend on the
design.modus file. They generally create data structures to be consumed by software libraries. These data structures are
specific to the software library and independent of the hardware. Configuration data is stored in a configurator-specific XML file
(for example, *.cybt, *.cyusbdev). Any source code generated by the configurator is stored in a GeneratedSource directory in the
same directory as the XML file. Some of the Library configurators include:

m Bluetooth Configurator: Configure Bluetooth settings. This includes options for specifying what services and profiles to
use and what features to offer by creating SDP and/or GATT databases in generated code. This configurator supports
both PSoC MCU and WICED Bluetooth applications. See Bluetooth Configurator Guide for more details.

USB Configurator: Configure USB settings and generate the required firmware. This includes options for defining the
‘Device’ Descriptor and Settings. See USB Configurator Guide for more details.

3.2.4.2 Other Tools

ModusToolbox software includes other tools that provide support for application creation, device firmware updates, and so on.
All tools are installed by the ModusToolbox Installer. With rare exception each tool has a user guide located in the docs directory
beside the tool itself. Most user guides are also available online.

Other Tools Details Documentation

project-creator Create a new application. This tool is a stand-alone tool, available as a GUI and a User Guide
command-line tool (CLI).

library-manager Add, remove, or update libraries and BSP used in an application; edits the makefile User Guide

cymcuelftool Merges CMO+ and CM4 application images into a single executable. Typically launched User Guide is in the

from a post-build script. This tool is not used by most applications. tool's docs directory

dfuh-tool Use the Device Firmware Update Host tool to communicate with a PSoC® 6 MCU that has | User Guide
already been programmed with an application that includes device firmware update
capability. Provided as a GUI and a command-line tool. Depending on the ecosystem you
target, there may be other over-the-air firmware update tools available.

3.24.3 Utilities

ModusToolbox software includes some additional utilities that are often necessary for application development. In general you
use these utilities transparently.

Utility Description

GCC Supported toolchain installed by ModusToolbox.

GDB The GNU Project Debugger is installed as part of GCC.

JRE Java Runtime Environment; required by the Eclipse IDE integration layer.

3.2.4.4 Build System Infrastructure

The build system infrastructure is the fundamental resource in ModusToolbox software. It serves three primary purposes:
m create an application, update and clone dependencies
m create an executable

m provide debug capabilities

A makefile defines everything required for your application, including:
m target hardware (board/board support package to use)
m source code and libraries to use for the application
®m ModusToolbox tools version, as well as compiler toolchain to use
m compiler/assembler/linker flags to control the build

m assorted variables to define things like file and directory locations

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 25

https://www.cypress.com/ModusToolboxBLEConfig
https://www.cypress.com/ModusToolboxUSBConfig
https://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxProjectCreatorGuide
http://www.cypress.com/ModusToolboxLibraryManagerGuide
https://www.cypress.com/ModusToolboxDFUHostTool

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

The build system automatically discovers all .c, .h, .cpp, .S, .a, .o files in the application directory and subdirectories, and uses
them in the application. The makefile can also discover files outside the application directory. You can add another directory
using the CY SHAREDLIB PATH variable. You can also explicitly list files in the SOURCES and INCLUDES make variables.

Each library used in the application is identified by a .mtb file. This file contains the URL to a git repository, a commit tag, and a
variable for where to put the library on disk. For example, a capsense.mtb file might contain the following line:

http://github.com/cypresssemiconductorco/capsense#latest-v2.X#$$SASSET REPO$$/capsense/latest-v2.X

The build system implements the make getlibs command. This command finds each .mtb file, clones the specified repository,
checks out the specified commit, and collects all the files into the specified directory. Typically, the make getlibs command is
invoked transparently when you create an application or use the Library Manager, although you can invoke the command
directly from a command line interface. See ModusToolbox Build System for detailed documentation on the build system
infrastructure.

3.2.4.5 Program and Debug Support

ModusToolbox software supports the Open On-Chip Debugger (OpenOCD) using a GDB server, and supports the J-Link debug
probe. For the Mbed OS ecosystem, ModusToolbox supports Arm Mbed DAPLink.

You can use various IDEs to program devices and establish a debug session (see Exporting to IDES). For programming,
Cypress Programmer is available separately. It is a cross-platform application for programming Cypress PSoC 6 devices. It can
program, erase, verify, and read the flash of the target device.

Cypress Programmer and the Eclipse IDE use KitProg3 low-level communication firmware. The firmware loader (fw-loader) is a
software tool you can use to update KitProg3 firmware, if you need to do so. The fw-loader tool is installed with the
ModusToolbox software. The latest version of the tool is also available separately in a GitHub repository.

Tool Description Documentation

Programming Tools
page, go to the
documentation tab

Cypress Programmer functionality is built into ModusToolbox Software. Cypress

Cypress Programmer . .
yp 9 Programmer is also available as a stand-alone tool.

A simple command line tool to identify which version of KitProg is on a Cypress kit, and readme.txt file in the tool

fw-loader easily switch back and forth between legacy KitProg2 and current KitProg3. directory

This tool is managed by fw-loader, it is not available separately. KitProg3 is Cypress’ low-
KitProg3 level communication/debug firmware that supports CMSIS-DAP and DAPLIink (for Mbed User Guide
0S). Use fw-loader to upgrade your kit to KitProg3, if needed.

OpenOCD A Cypress-specific implementation of OpenOCD is installed with ModusToolbox software. Developer’'s Guide
DAPLink Support is implemented through KitProg3 DAPLink Handbook

3.3 Code Examples

All current ModusToolbox examples can be found through the GitHub code example page. There you will find links to examples
for the Bluetooth SDK, PSoC 6 MCU, PSoC 4, among others. For most code examples, you can use git clone or the Project
Creator tool to create an application and use it directly with ModusToolbox tools. For some examples, like Mbed OS, you will
need to follow the directions in the code example repository to instantiate the example. Instructions vary based on the nature of
the application and the targeted ecosystem.

In the ModusToolbox build infrastructure, any example application that requires a library downloads that library automatically.

You can control the versions of the libraries being downloaded and also their location on disk, and whether they are shared or
local to the application. Refer to the Library Manager Guide for more details.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 26

http://openocd.org/doc/doxygen/html/index.html
https://www.cypress.com/products/psoc-programming-solutions
https://github.com/cypresssemiconductorco/Firmware-loader
https://www.cypress.com/products/psoc-programming-solutions
https://www.cypress.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/doc/doxygen/html/index.html
https://os.mbed.com/handbook/DAPLink
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/ModusToolboxLibraryManager

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

3.4 BSPs & Libraries

In addition to the installer and code examples, there are many other parts of ModusToolbox that are provided as libraries. These
libraries are essential for taking full advantage of the various features of the various devices. When you create a ModusToolbox
application, the system downloads all the libraries your application needs. See ModusToolbox Build System chapter to
understand how all this works.

3.4.1 Board Support Packages

The Board Support Package (BSP) is a central feature of ModusToolbox software. The BSP specifies several critical items for
the application, including:

m hardware configuration files for the device (for example, design.modus)
m startup code and linker files for the device

m other libraries that are required to support a kit

BSPs are aligned with our development/evaluation kits; they provide files for basic device functionality. A BSP typically has
a design.modus file that configures clocks and other board-specific capabilities. That file is used by the ModusToolbox
configurators. A BSP also includes the required device support code for the device on the board. You can modify the
configuration to suit your application.

Cypress releases BSPs independently of ModusToolbox software as a whole. This search link finds all currently available BSPs
on the Cypress GitHub site.

The search results include links to each repository, named TARGET_kitnumber. For example, you will find links to repositories
like TARGET CY8CPROTO-062-4343W. Each repository provides links to relevant documentation. The following links use this
BSP as an example. Each BSP has its own documentation.

The information provided varies, but typically includes one or more of:

® an APl reference for the BSP

m the BSP Overview

® alink to the associated kit page with kit-specific documentation

A BSP is specific to a board and the device on that board. For custom development, you can create or modify a BSP for your
device. See the Board Support Packages chapter for how they work and how to create your own for a custom board.

3.5 Libraries

All current ModusToolbox libraries can be found through the GitHub ModusToolbox Software page. A ModusToolbox application
can use different libraries based on the Active BSP. In general, there are several categories of libraries:

®m Common Library Types: Most BSPs have some form of the following types of libraries:
O Abstraction Layers — This is usually the RTOS Abstraction Layer.
O Base Libraries — These are core libraries, such as core-lib and core-make.
O Board Utilities — These are board-specific utilities, such as RGB LED support or BTSpy.

O MCU Middleware — These include MCU-specific libraries such as freeRTOS or Clib support.

m AIROC Bluetooth Libraries: For the AIROC Bluetooth BSPs, there specific libraries that do not apply to any other
BSPs, including:

O BTSDK Chip Libraries
0O BTSDK Core Support
O BTSDK Shared Source Libraries

O BTSDK Utilities and Host/Peer Apps

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 27

https://github.com/cypresssemiconductorco?q=TARGET_
https://github.com/cypresssemiconductorco/TARGET_CY8CPROTO-062-4343W
https://cypresssemiconductorco.github.io/TARGET_CY8CPROTO-062-4343W/html/modules.html
https://cypresssemiconductorco.github.io/TARGET_CY8CPROTO-062-4343W/html/md_bsp_boards_mt_bsp_user_guide.html
https://www.cypress.com/documentation/development-kitsboards/psoc-6-wi-fi-bt-prototyping-kit-cy8cproto-062-4343w
https://github.com/cypresssemiconductorco/modustoolbox-software#libraries

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

m BSP-Specific Base Libraries: BSP-specific libraries include mtb-hal, mtb-pdl, and recipe-make. Some of these are
identified as device-specific using the following categories:
O catl/catla = PSoC 6 (mtb-hal-catl, recipe-make-catla, etc.)
O cat2 = PSoC 4 and XMC (mtb-hal-cat2, mtb-pdl-cat2)
O cat3 = XMC (recipe-make-cat3)
m PSoC 6 Additional Libraries: Due to the nature of the PSoC 6 MCU, plus the combo devices, certain PSoC 6 BSPs

have additional libraries, including:
O BT Middleware Libraries — These are for the BTStack and Bluetooth FreeRTOS.
O PSoC 6 Middleware — These are libraries specific to the PSoC 6 MCU, such as EMEEPROM and DFU.

O Wi-Fi Middleware Libraries — These are libraries for AnyCloud applications for enabling Wi-Fi and Bluetooth on a
PSoC 6 hosted CYW43xxx device.

Each library is delivered in its own repository, complete with documentation. The following information includes links to each
repository, and various resources associated with each library. Go to each repository to see what releases are available for that
library.

3.6 Product Versioning

ModusToolbox products include tools and firmware that can be used individually, or as a group, to develop connected
applications for Cypress devices. Cypress understands that you want to pick and choose the ModusToolbox products you use,
merge them into your own flows, and develop applications in ways we cannot predict. However, it is important to understand that
every tool and library may have more than one version. The tools package that provides the set of tools also has its own
version. This section describes how ModusToolbox products are versioned.

3.6.1 General Philosophy

ModusToolbox is not a monolithic entity. Libraries and tools in the context of ModusToolbox are effectively “mini-products” with
their own release schedules, upstream dependencies, and downstream dependent assets and applications. We deliver libraries
via GitHub, and we deliver tools though the ModusToolbox installation package.

All ModusToolbox products developed by Cypress follow the standard versioning scheme:
m If there are known backward compatibility breaks, the major version is incremented.
® Minor version changes may introduce new features and functionality, but are “drop-in” compatible.

m Patch version changes address minor defects. They are very low-risk (fix the essential defect without unnecessary
complexity).

Code Examples include various libraries automatically. Prior to the ModusToolbox 2.3 release, these libraries were typically the
latest versions. As of the 2.3 release, when you create a new application from a code example, any of the included libraries
specified with a “latest-style” tag are converted to the “release-vX.Y.Z” style tag.

If you use the Library Manager to add a library to your project, the tool automatically finds and adds any required dependent
libraries. As of the 2.3 release using the MTB flow, these dependencies are created using “release-vX.Y.Z” style tags. The tool
also creates and updates a file named locking_commit.log in the deps subdirectory inside your application directory. This file
maintains a history of all latest to release conversions made to ensure consistency with any libraries added in the future.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 28

o CYPRESS

N> EMBEDDED IN TOMORROW ModusToolbox Software Overview

3.6.2 Tools Package Versioning

The ModusToolbox tools installation package is versioned as MAJOR.MINOR.PATCH. The file located at
<install_path>/ModusToolbox/tools_2.3/version-2.3.0.xml also indicates the build number.

Every MAJOR.MINOR version of ModusToolbox products is installed by default into <install_path>/ModusToolbox. So, if you
have multiple versions of ModusToolbox installed, they are all installed in parallel in the same ModusToolbox directory, as
follows:

v ModusToolbox
docs 2.2
docs 2.3
ide_2.2
ide_2.3
tools_2.2

tools 2.3

3.6.3 Multiple Tools Versions Installed

When you run make commands from the command line, a message displays if you have multiple versions of the “tools” directory
installed and if you have not specified a version to use.

BN ~/examples_2.3/Hello_Werld - [m] el

I-BT.mk

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 29

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

3.6.4 Specifying Alternate Tools Version

By default, the ModusToolbox software uses the most current version of the tools directory installed. That is, if you have
ModusToolbox version 2.2 and 2.3 installed, and if you launch the Eclipse IDE from the ModusToolbox 2.2 installation, the IDE
will use the tools from the “tools_2.3” directory to launch configurators and build an application. This section describes how to
specify the path to the desired version.

3.6.4.1 System Variable

The overall way to specify a path other than the default “tools” directory, is to use a system variable named cy _Toors paTHs. On
Windows, open the Environment Variables dialog, and create a new System Variable:

Edit System Variable X

Variable pame: [v rooLs_patHs |

Variable value: | C:/Users/X¥Z/ModusToolbox/tools_2.2 ‘
Browse Directory... Browse Eile... Cancel

Note: Use a Windows style path, (that is, not like /cygdrive/c/). Also, use forward slashes. For example:
C:/Users/XYZ/ModusToolbox/tools_2.2

Use the appropriate method for setting variables in macOS and Linux for your system.

3.6.4.2 Eclipse IDE Workspace Setting

The Eclipse IDE provided with ModusToolbox includes a setting to specify the tools path that applies only to a specific
workspace.

Select Windows > Preferences > ModusToolbox Tools.

[Preferences [m] x
type filter text MeodusToolbox Tools < A

General

C/Cr+ Common tools location | C:\Users\CKF\ModusToclbox\tools_2.2 Browse...

Help

Install/Update

MCU

MedusToolbox Tools

Myiyn

Remote Development

Run/Debug

Team

Terminal

Restore Defaults Apply

@ i i

Then, in the Common tools location field, click the Browse... button and navigate to the appropriate “tools” directory to use.

Note This will generate messages in the IDE console indicating that is using the appropriate tools path.

3.6.4.3 Specific Project Makefile

To preserve a specific “tools” path for the specific project, edit that project’'s makefile, as follows:

If you install the IDE in a custom location, add the path to its

"tools X.Y" folder (where X and Y are the version number of the tool
folder).

CY TOOLS_PATHS+=C:/Users/XYZ/ModusToolbox/tools_ 2.2

]

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 30

CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

3.6.5 Tools and Configurators Versioning

Every tool and configurator follow the standard versioning scheme and include a version.xml file that also contains a build
number.

3.6.5.1 Configurator Messages

Configurators indicate if you are about to modify the configuration file (for example, design.modus) with a newer version of the
configurator, as well as if there is a risk that you will no longer be able to open it with the previous version of the configurator:

An older file format was detected. The file can be safely viewed but saving the file
! in this tool will update its format making it no longer open in older tools,

Last saved with: Tools Package 1.1
Current: Tools Package 2.2.0.2468 (Ci/Users/CKF/ModusToolbox/tools_2.2)

C/Users/CKF/mtw1.1/234/new-test/BlinkyLED_mainapp/design.modus

oK

Configurators will also indicate if you are trying to open the existing configuration with a different, backward and forward
compatible version of the Configurator.

Notice List (]3]
ocl Errors | 0 Warnings U 0Tasks o4lnfcs
Fix Description ~ Location
o The design file was last saved with a different version of the tools than will be used to perform code generation on save, Last saved with: desi "
Tools Package 2.0. Current: Tools Package 2.1.0.1205 (C:/Users/CKF/ModusToolbox/tools_2.1). 1gnmocus
Re WL 1 enabled. tﬁwp sEaRup Wil B sTower because clock conFlguraElon Tannot continue until the WLO 15 ready. See the device
7B7I-D54:
i datasheet for WCO startup timing. If WCO is not required during startup, consider starting it in main() for faster chip startup. CY8C6247871-D54: WCO
(i] There are reserved routing resources. See the Analeg Route Editor for more information. CYBC6247B71-D54: Routing Resources
i] There are reserved routing resources, See the Analeg Route Editor for maere information. CYW4343WKUBG: Routing Resources

Note: If using the command line, the build system will notify you with the same message.

3.6.6 GitHub Libraries Versioning

GitHub libraries follow the same versioning scheme: MAJOR.MINOR.PATCH. The GitHub libraries, besides the code itself, also
provide two files in MD format: README and RELEASE. The latter includes the version and the change history.

The versioning for GitHub libraries is implemented using GitHub tags. These tags are captured in the manifest files (see the
Manifest Files chapter for more details). The Project Creator tool parses the manifests to determine which BSPs and
applications are available to select. The Library Manager tool parses the manifests and allow you to see and select between
various tags of these libraries. When selecting a particular library of a particular version, the .mtb file gets created in your
project. These .mtb files are a link to the specific tag. Refer to the Library Manager User Guide for more details about tags.

Once complete with initial development for your project, Cypress recommends you switch to specific “release” tags. Otherwise,
running the make getlibs command will update the libraries referenced by the .mtb files, and will deliver the latest code
changes for the major version.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 31

http://www.cypress.com/ModusToolboxLibraryManager

o CYPRESS

N> EVMBEDDED IN TOMORROW ModusToolbox Software Overview

3.6.7 Dependencies Between Libraries

The following diagram shows the dependencies between libraries.

GitHub

‘ bsp.git ‘ ‘ capsense.git ‘

‘ core-lib.git ‘ ‘ retarget-io.git ‘

‘ core-make.git ‘ ‘ . ‘

A A v hJ A A

release XYZ
all tags MTB Manifests
latest.release. XYz ~————— ™
L A
Application Project
Creator
All point to — bsp.mtb Update
GitHub . the tags
core-lib.mth Library
core-make.mtb Manager

capsense.mtb

|— retarget-io.mtb

There are dependencies between the libraries. There are two types of dependencies:

3.6.7.1 Dependencies via .mtb files

Dependencies for various libraries are specified in the manifest file. Only the top-level application will have .mtb files for the
libraries it directly includes.

3.6.7.2 Regular C Dependencies via #include

Cypress Libraries only call the documented public interface of other Libraries. Every library declares its version in the header.
The consumer of the library including the header checks if the version is supported, and will notify via #error if the newer version
is required. Examples of the dependencies:

m The Device Support library (PDL) driver is used by the Middleware.

m The configuration generated by the Configurator depends on the versions of the device support library (PDL) or on the
Middleware headers.

Similarly, if the configuration generated by the Configurator of the newer version than you have installed, the notification via the

build system will trigger asking you to install the newer version of the ModusToolbox. ModusToolbox has a fragmented
distribution model. Users are allowed and empowered to update libraries individually.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 32

4 ModusToolbox Build System

& CYPRESS

- EMBEDDED IN TOMORROW"™

This chapter covers various aspects of the ModusToolbox build system. Refer to Using the Command Line for getting started
information about using the command line tools. This chapter is organized as follows:

®m Overview

m Application Types
B BSPs

m make getlibs

® Adding source files

® Pre-builds and post-builds
® Program and debug

® Available make targets

® Available make variables

4.1 Overview

The ModusToolbox build system is based on GNU make. It performs application builds and provides the logic required to launch
tools and run utilities. It consists of a light and accessible set of makefiles deployed as part of every application. This structure
allows each application to own the build process, and it allows environment-specific or application-specific changes to be made
with relative ease. The system runs on any environment that has the make and git utilities. For a “how to” document about the
ModusToolbox makefile system, refer to https://community.cypress.com/docs/DOC-18994. Also, as described in the Getting
Started chapter, you can run the make help command to get details on the various targets and variables available.

The ModusToolbox Command Line Interface (CLI) and supported IDEs all use the same build system. Hence, switching
between them is fully supported. Program/Debug and other tools can be used in either the command line or an IDE
environment. In all cases, the build system relies on the presence of ModusToolbox tools included with the ModusToolbox
installer.

The tools contain a start.mk file that serves as a reference point for setting up the environment before executing the recipe-
specific build in the base library. The file also provides a get1ibs make target that brings libraries into an application. Every
application must then specify a target board on which the application will run. These are provided by the <BSP>.mk files
deployed as a part of a board support package (BSP) library.

The majority of the makefiles are deployed as git repositories (called “repos”), in the same way that libraries are deployed in the
ModusToolbox software. There are two separate repos: core-make used by all recipes and a recipe-make-xxx that contains
BSP/target specific details. These are the minimum required to enable an application build. Together, these makefiles form the
build system.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 33

https://community.cypress.com/docs/DOC-18994

o CYPRESS

B> EMBEDDED IN TOMORROW ModusToolbox Build System

4.2 Application Types

The build system supports the following application types:

® Normal application — The application consists of one application makefile. The build process creates one artifact. All
prebuilt libraries are brought in at link time. A normal application is constructed by defining the APPNAME variable in
the application makefile.

Library application — The application consists of one application makefile. The sources are built into a library. These
libraries may be linked in as part of a Normal application build. A library application is constructed by defining the
LIBNAME variable in the application makefile.

The library applications are usually placed as companions to normal applications. These normal applications specify their
dependency on library applications by including them in the DEPENDENT LIB PATHS make variable. They also drive the build
process of the library applications by defining a shared 1ibs make target. For example:

DEPENDENT LIB PATHS=../bspLib
shared libs:
make -C ../bspLib build -j

4.3 BSPs

An application must specify a target BSP through the TarcET variable in the makefile. Cypress provides reference BSPs for its
development kits. Use these as a reference to construct your own BSP. For more information about BSPs, refer to the Board
Support Packages chapter.

® When using the Project Creator to create an application, it provides the selected BSP and updates the makefile.

m Use the Library Manager to add, update, or remove a BSP from an application. You can also add a .mtb file that
contains the URL and a version tag of interest in the application.

4.4 make getlibs

When you run the make getlibs command, the build system finds all the .mtb files in the application directory and performs
git clone operations on them. A .mtb file contains a git URL to a library repo, a specific tag for a version of the code, and a
variable to specify the location to store the library.

The getlibs target finds and processes all .mtb files and uses the git command to clone or pull the code as appropriate. The
target also calls the library-manager-cli tool to generate .mtb files for indirect dependencies. Then, it checks out the specific tag
listed in the .mtb file. The Project Creator and Library Manager invoke this process automatically.

B The getlibs target must be invoked separately from any other make target (for example, the command make getlibs
build is not allowed and the makefiles will generate an error; however, a command such as make clean buildis
allowed).

m The getlibs target performs a git fetch on existing libraries but will always checkout the tag pointed to by the
overseeing .mtb file.

B The getlibs target detects if users have modified the Cypress code and will not overwrite their work. This allows you
to perform some action (for example commit code or revert changes, as appropriate) instead of overwriting the
changes.

The build system also has a print1libs target that can be used to print the status of the cloned libraries.

441 repos
The cloned libraries are located in their individual git repos in the directory pointed to by the cy GeTries paTH variable (for

example, /deps). These all point to the “cypress” remote origin. You can point your repo by editing the .git/config file or by
running the git remote command.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 34

o CYPRESS

B> EMBEDDED IN TOMORROW ModusToolbox Build System

If the repos are modified, add the changes to your source control (git branch is recommended). When make getlibs is run (to
either add new libraries or update libraries), it requires the repos to be clean. You may also use the .gitignore file for adding
untracked files when running make getlibs. See also KBA231252.

4.5 Adding source files

Source and header files placed in the application directory hierarchy are automatically added by the auto-discovery mechanism.
Similarly, library archives and object files are automatically added to the application. Any object file not referenced by the
application is discarded by the linker. The Project Creator and Library Manager tools run the make getlibs command and
generate a mth.mk file in the application's libs subdirectory. This file specifies the location of shared libraries included in the
build.

The application makefile can also include specific source files (sources), header file locations (1NcLUDES) and prebuilt libraries
(Lpr1Bs). This is useful when the files are located outside of the application directory hierarchy or when specific sources need to
be included from the filtered directories.

4.5.1 Auto-Discovery

The build system implements auto-discovery of Cypress library files, source files, header files, object files, and pre-built libraries.
If these files follow the specified rules, they are guaranteed to be brought into the application build automatically. Auto-discovery
searches for all supported file types in the application directory hierarchy and performs filtering based on a directory naming
convention and specified directories, as well as files to ignore. If files external to the application directory hierarchy need to be
added, they can be specified using the sourcEs, INCLUDES, and L.I1Bs make variables.

Auto-discovery of source code (source and headers) has no depth limit (it uses the “find” tool). Auto-discovery of other types of
files do have a depth limit, including:

® .mtb file depth
.mk file of the selected TARGET

m device support library discovery

m configurator file discovery
The default depth limit for these files is five directories deep. They can be changed to up to nine directories deep by setting the
following options in the makefile:

CY UTILS SEARCH DEPTH=9
CY LIBS SEARCH DEPTH=9

To control which files are included/excluded, the build system implements a filtering mechanism based on directory names and
.cyignore files.

4511 .cyignore

Prior to applying auto-discovery and filtering, the build system will first search for .cyignore files and construct a set of directories
and files to exclude. It contains a set of directories and files to exclude, relative to the location of the .cyignore file. The .cyignore
file can contain make variables. For example, you can use the searcH_ variable to exclude code from other libraries as shown
for the "Test" directory in a library called <library-name>:

$ (SEARCH_<library-name>/Test
The cy IGNORE variable can also be used in the makefile to define directories and files to exclude.

Note The cy_1GNORE variable should contain paths that are relative to the application root. For example, ./srcl.

4512 TOOLCHAIN_<NAME>

Any directory that has the prefix “TOOLCHAIN_" is interpreted as a directory that is toolchain specific. The “NAME” corresponds
to the value stored in the ToorLcHAIN make variable. For example, an IAR-specific set of files is located under a directory named
TOOLCHAIN_IAR. Auto-discovery only includes the TOOLCHAIN_<NAME> directories for the specified TOOLCHAIN. All others
are ignored. ModusToolbox supports IAR, ARM, and GCC_ARM.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 35

https://community.cypress.com/docs/DOC-21498

o CYPRESS

B> EMBEDDED IN TOMORROW ModusToolbox Build System

4513 TARGET_<NAME>

Any directory that has the prefix “TARGET_" is interpreted as a directory that is target specific. The “NAME” corresponds to the
value stored in the TARGET make variable. For example, a build with TARGET=CY8CPROTO-062-4343w ignores all TARGET _
directories except TARGET_CY8CPROTO-062-4343W.

Note The TARGET _ directory is often associated with the BSP, but it can be used in a generic sense. E.g. if application sources
need to be included only for a certain TARGET, this mechanism can be used to achieve that.

Note The output directory structure includes the TARGET name in the path, so you can build for target A and B and both artifact
files will exist on disk.

4.5.1.4 CONFIG_<NAME>

Any directory that has the prefix “CONFIG_" is interpreted as a directory that is configuration (Debug/Release) specific. The
“NAME” corresponds to the value stored in the conrF1G make variable. For example, a build with CONFIG=CustomBuild ignores
all CONFIG_ directories, except CONFIG_CustomBuild.

Note The output directory structure includes the CONFIG name in the path, so you can build for config A and B and both artifact
files will exist on disk.

4.5.1.5 COMPONENT_<NAME>

Any directory that has the prefix “COMPONENT_" is interpreted as a directory that is component specific. The “NAME”
corresponds to the value stored in the coMpoNENT make variable. For example, consider an application that sets
COMPONENTS+=comp1. Also assume that there are two directories containing component-specific sources:

COMPONENT compl/src.c
COMPONENT comp2/src.c

Auto-discovery will only include COMPONENT_comp1l/src.c and ignore COMPONENT_comp2/src.c. If a specific component
needs to be removed, either delete it from the comMpoNENTS variable or add it to the DISABLE COMPONENTS variable.

45.1.6 BSP Makefile

Auto-discovery will also search for a <TARGET>.mk file (aka BSP makefile). If no matching TARGET makefile is found, it will fail
to build. This makefile can also be manually specified by setting it in the cy EXTRA INCLUDES variable.

4.5.1.7 Multi-project application with imported BSP
When you use an imported BSP to create a multi-project application, the system copies the BSP into an application root folder.

For these types of applications, the Project Creator tool creates an importedbsp.mk file for each project with a SEARCH variable
and relative path to the imported BSP. For example:

SEARCH+=<relative path to BSP folder>
If you do not use the Project Creator tool, you must create the files manually in each project directory.

In addition, when make getlibs is run, it updates the mth.mk file with the following line:

-include ${CY INTERNAL APP PATH}/importedbsp.mk

The "-" in front of "include" tells the make system to perform a conditional include. It only includes the file if it exists. If the file
doesn't exist, the system does not issue a warning.

4.6 Pre-builds and Post-builds

A pre-build or post-build operation is typically a script file invoked by the build system. Such operations are possible at several
stages in the build process. They can be specified at the application, BSP, and recipe levels.

You can pre-build and post-build arguments in the application makefile. For example:

PREBUILD=command -argl -arg2

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 36

o CYPRESS

B> EMBEDDED IN TOMORROW ModusToolbox Build System

If you want to run more than one command, separate them with a semicolon (;). For example:

PREBUILD=commandl -argl; command2 -argl -arg2

The sequence of execution in a build is as follows:

1.

2.

8.

BSP pre-build — Defined using cy Bsp PREBUILD variable.
Application pre-build — Defined using PREBUILD variable.

Source generation — Defined using cy RECIPE GENSRC variable.
Recipe pre-build — Defined using cy RECIPE PREBUILD Variable.
Source compilation and linking.

Recipe post-build — Defined using cy RECIPE POSTBUILD variable.
BSP post-build — Defined using cy Bsp poSTBUILD variable.

Application post-build — Defined using posTBUILD variable.

The variable value is the relative path to the script to be executed.

Note Pre-builds happen after the auto-discovery process. Therefore, if the pre-build steps generate any source files to be
included in a build, they will not be automatically included until the subsequent build. In this scenario, this step should use the
$ (shell) function directly in the application makefile instead of using the provided pre-build make variables. For example:

$ (shell bash ./custom_gen.sh ARGl ARG2)

4.7 Program and Debug

The programming step can be done through the CLI by using the following make targets:

B program— Build and program the board.

B gprogram — Skip the build step and program the board.

® debug — Build and program the board. Then launch the GDB server.

B gdebug — Skip the build and program steps. Just launch the GDB server.

B attach — Starts a GDB client and attaches the debugger to the running target.

For CLI debugging, the attach target must be run on a separate shell instance. Use the GDB commands to debug the
application.

4.8 Available Make Targets

A make target specifies the type of function or activity that the make invocation executes. The build system does not support a
make command with multiple targets. Therefore, a target must be called in a separate make invocation. The following tables list
and describe the available make targets for all recipes.

4.8.1 General Make Targets

Target Description

all

Same as build. That is, builds the application.
This target is equivalent to the build target.

getlibs Clones the repositories and checks out the identified commit.

The repos are cloned to the libs directory. By default, this directory is created in the application directory. It may be directed to
other locations using the CY_GETLIBS_PATH variable.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 37

A

ws CYPRESS

> EMBEDDED IN TOMORROW ModusToolbox Build System
Target Description
build Builds the application.
The build process involves source auto-discovery, code-generation, pre-builds, and post-builds. For faster incremental builds,
use the gbuild target to skip the auto-discovery step.
gbuild Quick builds the application using the previous build's source list.
When no other sources need to be auto-discovered, this target can be used to skip the auto-discovery step for a faster
incremental build.
program Builds the artifact and programs it to the target device.
The build process performs the same operations as the build target. Upon successful completion, the artifact is programmed to
the board.
gprogram Quick programs a built application to the target device without rebuilding.
This target allows programming an existing artifact to the board without a build step.
debug Builds and programs. Then launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.
qgdebug Skips the build and program step and does Quick Debug; that is, it launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.
attach Starts a GDB client and attaches the debugger to the running target.
clean Cleans the /build/<TARGET> directory.
The directory and all its contents are deleted from disk.
help Prints the help documentation.
Use the CY HELP=<name of target or variable> to see the verbose documentation for a given target or a variable.

4.8.2 IDE Make Targets

Target

Description

eclipse

Generates Eclipse IDE launch configs and project files.

This target expects the CY IDE PRJNAME variable to be set to the name of the application as defined in the Eclipse IDE. For
example, make eclipse CY IDE PRJINAME=AppV1. If this variable is not defined, it will use the APPNAME for the launch
configs. This target also generates .cproject and .project files if they do not exist in the application root directory.

Note Project generation requires Python 3 to be installed and present in the PATH variable.

Note To skip project creation and only create the launch configs, set CY MAKE IDE=eclipse.

vscode

Generates VS Code IDE json files.

This target generates VS Code json files for debug/program launches, IntelliSense, and custom tasks. These overwrite the
existing files in the application directory except for settings.json.

ewarm8

Generates IAR-EW version 8 IDE .ipcf file.

This target requires to have TOOLCHAIN=IAR set . It generates an IAR Embedded Workbench v8.x compatible .ipcf file that can
be imported into IAR-EW. The .ipcf file is overwritten every time this target is run.

Note Application generation requires Python 3 to be installed and present in the PATH variable.

uvision5

Generates Keil pVision v5 IDE .cpdsc, .gpdsc, and .cprj files.

This target requires to have TOOLCHAIN=ARM set. It generates a CMSIS compatible .cpdsc and .gpdsc files that can be imported
into Keil uVision v5. Both files are overwritten every time this target is run.

Note Application generation requires Python 3 to be installed and present in the PATH variable.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 38

A
s

~a»” EMBEDDED IN TOMORROW

CYPRESS

ModusToolbox Build System

4.8.3 Tools Make Targets

Target

Description

open

Opens/launches a specified tool. This is intended for use by the Eclipse IDE. Use make config, config bt, or
config usbdev instead

This target accepts two variables: CY OPEN TYPE and CY OPEN_FILE. At least one of these must be provided. The
tool can be specified by setting the CY OPEN TYPE variable. A specific file can also be passed using the

CY OPEN FILE variable. If only CY OPEN FILE is given, the build system will launch the default tool associated with
the file’s extension.

Supported types are: bt-configurator capsense-configurator capsense-tuner device-configurator
dfuh-tool library-manager project-creator gspi-configurator seglcd-configurator smartio-
configurator usbdev-configurator

modlibs

Launches the library-manager executable for updating libraries.
The Library Manager can be used to add/remove libraries and to upgrade/downgrade existing libraries.

config

Runs the Device Configurator on the target *.modus file.
If no existing device-configuration files are found, the configurator is launched to create one.

config bt

Runs the Bluetooth Configurator on the target *.cybt file.
If no existing bt-configuration files are found, the configurator is launched to create one.

config usbdev

Runs the USB Configurator on the target *.cyusbdev file.
If no existing usbdev-configuration files are found, the configurator is launched to create one.

config secure

Runs the Secure Policy Configurator.
This configurator is intended only for devices that support secure provisioning.

4.8.4 Utility Make Targets

Target Description
progtool Performs specified operations on the programmer/firmware-loader.
This target expects user-interaction on the shell while running it. When prompted, you must specify the command(s) to
run for the tool.
bsp Generates a TARGET_GEN board/kit from TARGET.
This target generates a new Board Support Package with the name provided in TARGET GEN based on the current
TARGET. The TARGET GEN variable must be populated with the name of the new TARGET. Optionally, you may define
the target device (DEVICE GEN) and additional devices (ADDITIONAL DEVICES GEN) such as radios. For example:
make bsp TARGET GEN=NewBoard DEVICE GEN=CY8C624ABZI-S2D44
ADDITIONAL DEVICES GEN=CYW4343WKUBG
update bsp Change the device in a custom BSP generated by the make bsp command.
This target changes the device set in a custom Board Support Package generated by the make bsp command. The
TARGET GEN variable will specify the Board Support Package to modify. The DEVICE GEN variable will specify the new
target device of the BSP. For example:
make update bsp TARGET GEN=NewBoard DEVICE GEN=CY8C624ABZI-S2D44
lib2mtbx Convert .lib files to .mtbx files

This will recursively look for .lib files in CONVERSION PATH and create equivalent .mtbx files adjacent to them. The type
of .mtbx file is determined by the CONVERSION TYPE variable. This can be either [local] or [shared]. The default is
[local].

import deps

Import dependent .mtbx files of a given path into the application.

This will recursively look for .mtbx files in IMPORT PATH, copy them to the application's deps directory and rename them
to .mtb files. Note that the import process is not applicable for applications using .lib files. These libraries must instead
be situated in the application directory.

get_app info

Prints the application info for the Eclipse IDE for ModusToolbox.
The file types can be specified by setting the CY CONFIG FILE EXT variable. For example, make get app info
CY_CONFIG _FILE EXT="modus cybt cyusbdev"

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

39

A

ws CYPRESS

s> EMBEDDED IN TOMORROW ModusToolbox Build System
Target Description
get _env_info Prints the make, git, and, application repo info.

This allows a quick printout of the current application repo and the make and git tool locations and versions.

printlibs Prints the status of the library repos.
This target parses through the library repos and prints the SHA1 commit. It also shows whether the repo is clean (no
changes) or dirty (modified or new files).

check Checks for the necessary tools.

Not all tools are necessary for every build recipe. This target allows you to get an idea of which tools are missing if a
build fails in an unexpected way.

4.9 Available Make Variables

The following variables customize various make targets. They can be defined in the application makefile or passed through the
make invocation. The following sections group the variables for how they can be used.

4.9.1 Basic Configuration Make Variables

These variables define basic aspects of building an application. For example:

make build TOOLCHAIN=GCC ARM CONFIG=CustomConfig -j8

Variable

Description

TARGET

Specifies the target board/kit (that is, BSP). For example, CYSCPROTO-062-4343W.
Example usage: make build TARGET=CY8CPROTO-062-4343W

APPNAME

Specifies the name of the application. For example, "AppV1" > AppV1.elf.
Example usage: make build APPNAME="AppV1"
This variable is used to set the name of the application artifact (programmable image). It also signifies that the application will

build for a programmable image artifact that is intended for a target board. For applications that need to build to an archive
(library), use the LIBNAME variable.

Note This variable may also be used when generating launch configs when invoking the ec1lipse target.

LIBNAME

Specifies the name of the library application. For example, "LibV1" > LibV1.a.
Example Usage: make build LIBNAME="LibVv1l"
This variable is used to set the name of the application artifact (prebuilt library). It also signifies that the application will build an

archive (library) that is intended to be linked to another application. These library applications can be added as dependencies
to an artifact producing application using the DEPENDENT LIB_ PATHS variable.

TOOLCHAIN

Specifies the toolchain used to build the application. For example, GCC_ARM.
Example Usage: make build TOOLCHAIN=IAR CY COMPILER PATH="<path>/IAR Systems/Embedded Workbench
8.4/arm/bin"

Supported toolchains for this include GCC_ARM, IAR, and ARM.

CONFIG

Specifies the configuration option for the build [Debug Release].

Example Usage: make build CONFIG=Release

The CONFIG variable is not limited to Debug/Release. It can be other values. However in those instances, the build system will
not configure the optimization flags. Debug=lowest optimization, Release=highest optimization.

The optimization flags are toolchain specific. If you go with your custom config, then you can manually set the optimization flag
in the CFLAGS.

VERBOSE

Specifies whether the build is silent [false] or verbose [true].
Example Usage: make build VERBOSE=true
Setting VERBOSE to true may help in debugging build errors/warnings. By default, it is set to false.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 40

A

ws CYPRESS

g EMBEDDED IN TOMORROW

ModusToolbox Build System

4.9.2 Advanced Configuration Make Variables

These variables define advanced aspects of building an application.

Variable

Description

SOURCES

Specifies C/C++ and assembly files outside of application directory.
Example Usage (within makefile): SOURCES+=path/to/file/Sourcel.c

This can be used to include files external to the application directory. The path can be both absolute or relative to
the application directory.

INCLUDES

Specifies include paths outside of the application directory.

Example Usage (within makefile): INCLUDES+=path/to/headers

Note These MUST NOT have -1 prepended. The path can be either absolute or relative to the application
directory.

DEFINES

Specifies additional defines passed to the compiler.
Example Usage (within makefile): DEFINES+=EXAMPLE DEFINE=0x01
Note These MUST NOT have -D prepended.

VFP_ SELECT

Selects hard/soft ABI for floating-point operations [softfp hardfp]. If not defined, this value defaults to softfp.
Example Usage (within makefile): VFP_SELECT=hardfp

CFLAGS

Prepends additional C compiler flags.

Example Usage (within makefile): CFLAGS+= -Werror -Wall -02

Note If the entire C compiler flags list needs to be replaced, define the CY RECIPE CFLAGS make variable with
the desired C flags. The values should be space separated.

CXXFLAGS

Prepends additional C++ compiler flags.
Example Usage (within makefile): CXXFLAGS+= -finline-functions

Note If the entire C++ compiler flags list needs to be replaced, define the CY RECIPE CXXFLAGS make variable
with the desired C++ flags. Usage is similar to CFLAGS.

ASFLAGS

Prepends additional assembler flags.
Note If the entire assembler flags list needs to be replaced, define the CY RECIPE ASFLAGS make variable with
the desired assembly flags. Usage is similar to CFLAGS.

LDFLAGS

Prepends additional linker flags.
Example Usage (within makefile): LDFLAGS+= -nodefaultlibs

Note If the entire linker flags list needs to be replaced, define the CY RECIPE LDFLAGS make variable with the
desired linker flags. Usage is similar to CFLAGS.

LDLIBS

Includes application-specific prebuilt libraries.
Example Usage (within makefile): LDLIBS+=. . /MyBinaryFolder/binary.o

Note If additional libraries need to be added using -1 or -L, add to the CY RECIPE EXTRA LIBS make
variable. Usage is similar to CFLAGS.

LINKER SCRIPT

Specifies a custom linker script location.

Example Usage (within makefile): LINKER SCRIPT=path/to/file/Custom Linkerl.ld
This linker script overrides the default.

Note Additional linker scripts can be added for GCC via the LDFLAGS variable as a -L option.

PREBUILD

Specifies the location of a custom pre-build step and its arguments. This operation runs before the build recipe's
pre-build step.

Example Usage (within makefile): PREBUILD=python example script.py

Note BSPs can also define a pre-build step. This runs before the application pre-build step.

If the default pre-build step needs to be replaced, define the CY RECIPE PREBUILD make variable with the
desired pre-build step.

POSTBUILD

Specifies the location of a custom post-build step and its arguments. This operation runs after the build recipe's
post-build step.

Example Usage (within makefile): POSTBUILD=python example script.py

Note BSPs can also define a post-build step. This runs before the application post-build step.

Note If the default post-build step needs to be replaced, define the CY RECIPE POSTBUILD make variable with
the desired post-build step.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 41

o CYPRESS

~a»” EMBEDDED IN TOMORROW

ModusToolbox Build System

Variable

Description

COMPONENTS

Adds component-specific files to the build.

Example Usage (within makefile): COMPONENTS+=CUSTOM CONFIGURATION

Create a directory named COMPONENT_<VALUE> and place your files. Then provide <VALUE> to this make
variable to have that feature library be included in the build.

For example, create a directory named COMPONENT_ACCELEROMETER. Then include it in the make variable:
COMPONENT=ACCELEROMETER. If the make variable does not include the <VALUE>, then that library will not be

included in the build.
Note If the default COMPONENT list must be overridden, define the CY COMPONENT LIST make variable with the
list of component values.

DISABLE COMPONENTS

Removes component-specific files from the build.
Example Usage (within makefile): DISABLE COMPONENTS=BSP_DESIGN MODUS
Include a <VALUE> to this make variable to have that feature library be excluded in the build. For example, to

exclude the contents of the COMPONENT_BSP_DESIGN_MODUS directory, set
DISABLE COMPONENTS=BSP DESIGN MODUS as shown.

DEPENDENT LIB PATHS

List of dependent library application paths. For example, ../bspLib.

Note This variable replaces the SEARCH LIBS AND INCLUDES variable.

An artifact-producing application (defined by setting APPNAME) can have a dependency on library applications
(defined by setting LIBNAME). This variable defines those dependencies for the artifact-producing application.
The actual build invocation of those libraries is handled at the application level by defining the shared libs
target. For example:

shared libs:
make -C ../bspLib build -j

DEPENDENT APP PATHS

List of dependent application paths. For example, ../cy_mOp_image.

The main application can have a dependency on other artifact producing applications (defined by setting
APPNAME). This variable defines those dependencies for the main application. The artifacts of these dependent
applications are translated to c-arrays and are brought into the main application as regular c-files and are
compiled and linked. The main application also generates a "standalone" variant of the main application that does
not include the dependent applications.

SEARCH

List of paths to include in auto-discovery. For example, ../mtb_shared/lib1.

When get1ibs is run for applications that use .mtb files, a file is generated in ./libs/mtb.mk. This file
automatically populates the SEARCH variable with the locations of the libraries in the shared repo location (set by
the CY GETLIBS SEARCH PATHand CY GETLIBS SHARED NAME variables). The SEARCH variable can also
be used by the application to include other directories to auto-discovery.

IMPORT_PATH

Path to .mtbx dependency files to import into the application.

This variable must be defined when calling import deps. Any .mtbx dependency file found in this directory will
be imported into the application.

Note This is not applicable for applications using .lib files.

CONVERSION_PATH

Path to the .lib files to convert to .mtbx files.
This variable must be defined when calling 1ib2mtbx. Any .lib file found in this directory will be converted.

CONVERSION TYPE

(optional) Defines the type of .mtbx file to create.

This variable can be set to [local] or [shared]. The default type is [local]. If [local], the library will be deposited in
the application's CY GETLIBS PATH directory when performing getlibs. If [shared], the library will be
deposited (when running get1libs) in the shared location as defined by CY GETLIBS SHARED PATH and

CY GETLIBS_ SHARED NAME.

FORCE

Optional) Force overwrite existing files.
When this variable is set [true], 1ib2mtbx overwrites any existing .mtbx files.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

42

o CYPRESS

~a»” EMBEDDED IN TOMORROW

ModusToolbox Build System

4.9.3 BSP Make Variables

These variables are used with the make bsp target.

Variable Description

DEVICE Device ID for the primary MCU on the target board/kit (set by TARGET.mK).
The device identifier is mandatory for all board/kits.

TARGET_GEN | Name of the new target board/kit.
Example Usage: make bsp TARGET GEN=MyBSP
This is a mandatory variable when calling the bsp make target. It is used to name the board/kit files and directory.

DEVICE_GEN | (Optional) Device ID for the primary MCU on the new target board/kit.

Example Usage: make bsp TARGET GEN=MyBSP DEVICE GEN=CY8C624ABZI-S2D44

This is an optional variable when calling the bsp make target to replace the primary MCU on the board (overwrites DEVICE).
If it is not defined, the new board/kit will use the existing DEVICE from the board/kit that it is copying from.

4.9.4 Getlibs Make Variables

These variables are used with the make getlibs target.

Variable

Description

CY GETLIBS NO CACHE

Disables the cache when running getlibs.
Example Usage: make getlibs CY GETLIBS NO CACHE=true
To improve the library creation time, the get1ibs target uses a cache located in the user's home directory

($HOME for macOS/Linux and $USERPROFILE for Windows). Disabling the cache allows 3rd-party libraries
to be brought in to the application using .mtb files just like the Cypress libraries.

CY GETLIBS OFFLINE

Use the offline location as the library source.

Example Usage: make getlibs CY GETLIBS OFFLINE=true

Setting this variable signals to the build system to use the offline location (Default:
<HOME>/.modustoolbox/offline) when running the get1ibs target. The location of the offline content can be
changed by defining the CY_GETLIBS_OFFLINE_PATH variable.

CY GETLIBS PATH

Absolute path to the intended location of libs directory.
Example Usage: make getlibs CY GETLIBS PATH="path/to/directory"

The library repos are cloned into a directory named, libs (default: <CY_APP_PATH>/libs). Setting this
variable allows specifying the location of the libs directory to be elsewhere on disk.

CY_GETLIBS_DEPS_PATH

Absolute path to where the library-manager stores .mtb and .lib files. Usage is similar to CY GETLIBS PATH.

Setting this path allows relocating the directory that the library-manager uses to store the .mtb / .lib files in
your application. The default location is in a directory named /deps (Default: <CY_APP_PATH>/deps).

Note This variable requires ModusToolbox tools_2.1 or higher.

CY_GETLIBS_CACHE_ PATH

Absolute path to the cache directory. Usage is similar to CY GETLIBS PATH.

The build system caches all cloned repos in a directory named /cache (Default:
<HOME>/.modustoolbox/cache). Setting this variable allows the cache to be relocated to elsewhere on disk.
To disable the cache entirely, set the CY_GETLIBS_NO_CACHE variable to [true].

Note This variable requires ModusToolbox tools_2.1 or higher.

CY_GETLIBS_OFFLINE_ PATH

Absolute path to the offline content directory. Usage is similar to CY_GETLIBS_PATH.

The offline content is used to create/update applications when not connected to the internet (Default:
<HOME>/.modustoolbox/offline). Setting this variable allows to relocate the offline content to elsewhere on
disk.

Note This variable requires ModusToolbox tools_2.1 or higher.

CY GETLIBS SEARCH PATH

Relative path to the top directory for get1ibs operation. Usage is similarto CY GETLIBS PATH.
The getlibs operation by default executes at the location of the CY APP PATH. This can be overridden by
specifying this variable to point to a specific location.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 43

o CYPRESS

~a»” EMBEDDED IN TOMORROW

ModusToolbox Build System

Variable

Description

CY GETLIBS SHARED PATH

Relative path to the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the <LOCATION> field begins with

$$SASSET_ REPOS$, then the repo is deposited in the path specified by the CY GETLIBS SHARED PATH
variable. The default location is one directory level above the current application directory (Default: ../). This is
used with CY GETLIBS SHARED NAME variable, which specifies the directory name.

CY_GETLIBS_SHARED_ NAME

Directory name of the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the <LOCATION> field begins with

$SASSET REPOSS, then the repo is deposited in the directory specified by the CY GETLIBS SHARED NAME
variable. The default directory name is “mtb_shared”. This is used with CY_GETLI%S_SHARETD_PATH a
variable, which specifies the directory path.

495 Path Make Variables

These variables are used to specify various paths.

Variable

Description

CY APP_PATH

Relative path to the top-level of application. For example, ./

Settings this path to other than ./ allows the auto-discovery mechanism to search from a root directory location
that is higher than the application directory. For example, CY APP PATH=../../ allows auto-discovery of

files from a location that is two directories above the location of ./makefile.

CY BASELIB PATH

Relative path to the base library. For example, ./libs/recipe-make-catla

This directory must be relative to CY APP PATH. It defines the location of the library containing the recipe
makefiles, where the expected directory structure is <CY_BASELIB_PATH>/make. All applications must set the
location of the recipe base library. For applications using .mtb files, the BSP's TARGET.mk file sets this variable
and therefore the application does not need to.

CY BASELIB CORE PATH

Relative path to the core base library. For example, ./libs/core-make

This directory must be relative to CY APP_PATH. It defines the location of the library containing the core make
files, where the expected directory structure is <CY_BASELIB_CORE_PATH>/make. All applications must set
the location of the core base library.

For applications using .mtb files, the BSP's TARGET.mk file sets this variable and therefore the application does
not need to. This variable is not applicable for applications using the combined base library (such as recipe-
make-catla).

CY EXTAPP PATH

Relative path to an external application directory. For example, ../external

This directory must be relative to CY APP PATH. Setting this path allows incorporating files external to

CY APP_ PATH. o

For example, CY EXTAPP PATH=../external lets auto-discovery pull in the contents of ../external directory
into the build.

Note This variable is only supported in CLI. Use the shared 1ibs mechanism and DEPENDENT LIB PATHS
for tools and IDE support.

Note The same functionality exists in the SEARCH variable. Using the SEARCH variable is preferred over

CY EXTAPP_ PATH.

CY COMPILER PATH

Absolute path to the compiler (default: GCC_ARM in CY _TOOLS_DIR).

Setting this path allows custom toolchains to be used instead of the defaults. This should be the location of the
/bin directory containing the compiler, assembler, and linker. For example:

CY COMPILER PATH="C:/Program Files (x86)/IAR Systems/Embedded Workbench 8.4/arm/"

CY_TOOLS_DIR

Absolute path to the tools root directory.

Example Usage: make build CY TOOLS_ DIR="path/to/ModusToolbox/tools x.y"

Applications must specify the tools_<version> directory location, which contains the root makefile and the
necessary tools and scripts to build an application. Application makefiles are configured to automatically search
in the standard locations for various platforms. If the tools are not located in the standard location, you may
explicitly set this.

CY BUILD LOCATION

Absolute path to the build output directory (default: pwd/build).

The build output directory is structured as /TARGET/CONFIG/. Setting this variable allows the build artifacts to
be located in the directory pointed to by this variable.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

44

o CYPRESS

~a»” EMBEDDED IN TOMORROW

ModusToolbox Build System

Variable

Description

CY PYTHON PATH

Specifies the path to a specific Python executable.
Example Usage: CY PYTHON PATH="path/to/python/executable/python.exe"
For make targets that depend on Python, the build system looks for Python 3 in the user's PATH and uses that

to invoke python. If you have a version of Python installed in a non-default location and do not have a path set
for it, you can set CY PYTHON PATH as a System Variable. In Windows, you must use forward slashes in the

path to the Python executable.

CY_ DEVICESUPPORT_ PATH

Relative path to the devicesupport.xml file.

This path specifies the location of the devicesupport.xml file for the Device Configurator. It is used when the
configurator needs to be run in a multi-application scenario.

TOOLCHAIN MK PATH

Specifies the location of a custom TOOLCHAIN.mk file.
Defining this path allows the build system to use a custom TOOLCHAIN.mk file pointed to by this variable.
Note The make variables in this file should match the variables used in existing TOOLCHAIN.mk files.

4.9.6 Miscellaneous Make Variables

These are miscellaneous variables used for various make targets.

Variable

Description

CY IGNORE

Adds to the directory and file ignore list. For example, .ffilel.c ./incl
Example Usage: make build CY IGNORE="path/to/file/ignore file"

Directories and files listed in this variable are ignored in auto-discovery. This mechanism works in
combination with any existing .cyignore files in the application.

CY SKIP RECIPE

Skip including the recipe makefiles.

Setting this to [true/1] allows the application to not include any recipe makefiles and only include the start.mk
file from the tools install.

CY SKIP CDB

Skip creating .cdb files.

Constant Database (CDB) files are generated during the build process. Setting this to [true] allows the build
process to skip the .cdb files creation.

CY EXTRA INCLUDES

Specifies additional makefiles to add to the build.
Example Usage: make build CY EXTRA INCLUDES="./customl.mk"

This variable provides a way of injecting additional make files into the core make files. It can be used when
including the make file before or after start.mk in the application makefile is not possible.

CY LIBS SEARCH DEPTH

Directory search depth for .mtb files (default: 5).

Example Usage: make getlibs CY LIBS SEARCH DEPTH=7

This variable controls how deep the search mechanism in get1ibs looks for .mtb files.
Note Deeper searches take longer to process.

CY _UTILS_SEARCH_ DEPTH

Directory search depth for .cyignore and TARGET.mk files (default: 5).
Example Usage: make getlibs CY UTILS SEARCH DEPTH=7

This variable controls how deep the search mechanism looks for .cyignore and TARGET.mk files. Min=1,
Max=9.

Note Deeper searches take longer to process.

CY IDE PRJNAME

Name of the Eclipse IDE application.
Example Usage: make eclipse CY IDE PRJINAME="AppV1"

This variable can be used to define the file and target application name when generating Eclipse launch
configurations in the eclipse target.

CY CONFIG FILE EXT

Specifies the configurator file extension. For example, *.modus.
Example Usage: make get app info CY CONFIG FILE EXT="modus cybt cyusbdev"

This variable accepts a space-separated list of configurator file extensions to search when running the
get_app info target.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

45

CYPRESS

g EMBEDDED IN TOMORROW

ModusToolbox Build System

Variable

Description

CY SUPPORTED TOOL TYPES

Defines the supported tools for a BSP.

Example Usage (bsp.mk): CY SUPPORTED TOOL TYPES+=seglcd-configurator

BSPs can define the supported tools that can be launched using the open target. The supported tool types
are bt-configurator, capsense-configurator, capsense-tuner, device-configurator,
dfuh-tool, library-manager, project-creator, gspi-configurator, seglcd-
configurator, smartio-configurator, and usbdev-configurator. The BSP can make
adjustments to the default recipe if needed.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

46

5 Board Support Packages

& CYPRESS

- EMBEDDED IN TOMORROW"™

5.1 Overview

A BSP provides a standard interface to a board's features and capabilities. The APl is consistent across Cypress kits. Other
software (such as middleware or an application) can use the BSP to configure and control the hardware. BSPs do the following:

initialize device resources, such as clocks and power supplies to set up the device to run firmware.
contain default linker scripts and startup code that you can customize for your board.

contain the hardware configuration (structures and macros) for both device peripherals and board peripherals.

provide abstraction to the board by providing common aliases or names to refer to the board peripherals, such as
buttons and LEDs.

® include the libraries for the default capabilities on the board. For example, the BSP for a kit with CapSense capabilities
includes the CapSense library.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 47

o CYPRESS

g EMBEDDED IN TOMORROW™

Board Support Packages

5.2 What’s in a BSP

This section presents an overview of the key resources that are part of a BSP. Using the MTB flow, applications can share BSPs
and libraries. BSPs that are local to the application are located in the libs subdirectory, while shared BSPs are located in the

mtb_shared directory adjacent to the application directory. For more details about library management, refer to the Library
Manager User Guide.

The following shows a typical PSoC 6 BSP located in the application's libs subdirectory on the left. It also shows a shared BSP
located in the mth_shared directory on the right.

v % > Hello World
) Includes
(= build
% > deps

v = libst

(% COMPONENT_CMOP
[y COMPONENT_CM4
[deps

[y docs

[cybsp_types.h

[cybsp.c

[cybsph

[R system_psoc6.h

[y CYBCKIT-062-WIFI-BT.mk
5 EULA

|5 LICENSE

[locate recipe.mk

¥ README.md

[¥ RELEASE.md

|5 versionxml

~ (2 TARGET_CYBCKIT-062-WIFI-ET
(5 COMPONENT_BSP_DESIGM_MODUS

capsense.mtb
core-lib.mtb

udb-sdio-whd.mth

v 1§ > Hello_World |

= Includes
= build

(y > deps

(=% images

= libs

[main.c

|5 LICENSE
[> Makefile
5 makefile.init
¥, README.md
B Archives
(= capsense
= core-lib

= core-make
(= mtb-hal-cat!

= mth-pdi-cat]

= psocBemip

(= recipe-make-catia
(= retarget-io

v (= TARGET_CYBCKIT-062-WIFI-BT
v (= latest-v2.X

(7= COMPONENT_CMOP

core-make.mtb 7= COMPONENT_CM4
mith.mk (= deps

mitb-hal-cat! mtb = docs
mtb-pdl-cat!.mth [5] cybsp_typesh
psecBemip.mth [€ cybsp.c
recipe-make-catla.mth [cybsp.h

[0 system_psocBh

(7= COMPONENT_BSP_DESIGMN_MODUS

[main.c & CVECKIT-062-WIFI-ET.mk
5 LICENSE EuLA
[> Makefile

| LICENSE
[& locate _recipe.mk
README.md
RELEASE.md

= versionxml
= udb-sdio-whd

|5 makefileinit

README.md
=% mtb_shared

Note For BTSDK v2.8 and later, shared BSPs and some shared libraries are located in subdirectories in the mtb_shared
directory. For example:

== mth_shared
= core-make
v (= wiced_btsdk
v (= dev-kit
(= baselib
~ [bsp

v (= TARGET_CYW920706WCDEVAL

v [release-v2.8.0
YWI20706WCDEVAL_24Mhz_SFLASH.btp
YWO2070EWCDEVAL_24Mhz.cgs
YWO20706WCDEVAL_40Mhz_SFLASH.btp
YWO20706WCDEVAL_40Mhz.cgs
YWO20706WCDEVAL_SFLASH.btp
|Z CYW920706WCDEVAL.cgs
L@ CYWI20706WCDEVAL.mk
|= LICENSE.txt
[& makefile
platfarm.c
[README.md
art.hex
ersionxml
wiced_platform.h
= btsdk-include
= btsdk-tools

For BTSDK v2.7 and earlier, shared BSPs and libraries can be found in the same structure, but without the leading mtb_shared
directory as shown in the previous image.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 48

https://www.cypress.com/ModusToolboxLibraryManager
https://www.cypress.com/ModusToolboxLibraryManager

o CYPRESS

Nap” EMBEDDED IN TOMORROW Board SUppOI’t Packages

The following sections describe the various files and directories in a typical BSP:

5.2.1 COMPONENT_BSP_DESIGN_MODUS

This directory contains the configuration files (such as design.modus) for use with various BSP configurator tools, including
Device Configurator, QSPI Configurator, and CapSense Configurator. At the start of a build, the build system invokes these
tools to generate the source files in the GeneratedSource directory. See Modifying the BSP Configuration for a Single
Application to learn how the application can override this component.

5.2.2 COMPONENT
Some applications may have additional "COMPONENT" subdirectories. These directories are conditional, based on what the

BSP is being built for. For example, the PSoC 6 BSPs include COMPONENT directories to restrict which files are used when
building for the Arm Cortex M4 or MO+ core.

5.2.3 deps Subdirectory

The deps subdirectory inside the BSP contains .lib files from earlier versions of ModusToolbox. This is not the same as the deps
subdirectory inside the application that contains the .mtb files. See Typical Application Contents for more details.

5.2.4 docs Subdirectory

The docs subdirectory contains the documentation in HTML format for the selected BSP.

5.2.5 Support Files

Different BSPs will contain various files, such as the API interface to the board's resources. For example, a typical PSoC 6 BSP
contains the following:

m cybsp.c/.h —You need to include only cybsp.h in your application to use all the features of a BSP. Call cybsp_init
() from cybsp.c to initialize the board.

m cybsp_types.h — This currently contains Doxygen comments. It is intended to contain the aliases (macro definitions) for
all the board resources, as needed.

® system_psoc6.h — This file provides information about the chip initialization that is done pre- main().

5.2.6 <BSP_NAME>.mk

This file defines the pevice and other BSP-specific make variables such as coMpoNENTS. These are described in the
ModusToolbox Build System chapter. It also defines board-specific information such as the device ID, compiler and linker flags,
pre-builds/post-builds, and components used with this board implementation.

5.2.7 locate_recipe.mk

This is a helper file for the BSP to specify the path to the core and recipe makefiles that are included as dependent libraries.

5.2.8 README/RELEASE.md

These are documentation files. The README.md file describes the BSP overall, while the RELEASE.md file covers changes
made to version of the BSP.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 49

o CYPRESS

Nap” EMBEDDED IN TOMORROW Board Support Packages

5.2.9 BTSDK-Specific BSP files

BTSDK BSPs may optionally provide the following types of files:

m wiced_platform.h — Platform specific structures to define hardware information such as max number of GPIOs, LEDs
or.user buttons available

m makefile — Provided to support LIB flow applications (BTSDK 2.7 and earlier). Not used in MTB flow BTSDK 2.8 or later
applications.
® * hex — binary application image files that are used as part of the embedded application creation, program, and/or OTA

(Over-The-Air) upgrade processes.
m platform*.c/h — Platform specific source and header files used by platform and application initialization functions.

m <BSP_NAME>*.cgs — Patch configuration records in text format, can be multiple copies supporting various board
configurations.

m <BSP_NAME>*.btp — Configuration options related to building and programming the application image, can be multiple
copies supporting various board configurations.

5.3 Creating your Own BSP

In most cases before you do any real design work on your application, you should create a BSP for your device and/or board.
This allows you to configure the settings for your own custom hardware or for different linker options. Plus, you can save the
BSP for use in future applications.

There are two basic methods to create a BSP; each involves creating an application. Using the first method, specify the closest-
matching BSP to your intended BSP. In this case, you usually have to remove various settings and options that you don't need.
For the second method, specify a "generic" BSP template when creating your application. In this case, your BSP is essentially
built from scratch, and you need to add and configure settings and options for your needs.

Regardless of the method you choose, the basic process is the same for both:
1. Create a simple example application. Use a BSP that is close to your goal or select a "generic" BSP.
2. Navigate to the application directory, and run the make bsp target. Specify the new board name by passing the value to the
TARGET GEN Variable. This this is the minimum required. For example, to create a BSP called MyBSP:
make bsp TARGET GEN=MyBSP
Optionally, you may use DEVICE_GEN specify a new device if it is different than the one included with the original BSP. For
example:
make bsp TARGET GEN=MyBSP DEVICE GEN=CY8C624ABZI-S52D44
The make bsp command creates a new BSP with the provided name at the top of the application project. It automatically

copies the relevant startup and linker scripts into the newly created BSP, based on the device specified by the DEVICE GEN
option.

It also creates .mtbx files for all the BSP's dependences. The Project Creator tool uses these files when you import your
custom BSP into that tool. These files can also be used with the make import deps command if you need to manually
include the custom BSP's dependencies. Refer to the Library Manager User Guide for details about managing BSPs and
libraries for custom BSPs.

Note The BSP used as your starting point may have library references (for example, capsense.lib or udb-sdio-whd.lib) that
are not needed by your custom BSP. You can delete these from the BSP's deps subdirectory. Be sure to remove the
corresponding .mtbx files as well.

3. Import dependencies using a make target. Note that the path to the BSP including TaRGET must be included in the
command. For example, if you have a custom BSP called MyBSP in the application's root directory:

make import deps IMPORT PATH=TARGET MyBSP

The command above finds the .mtbx files from the provided BSP and uses them to create direct dependencies in the
application's deps directory.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 50

https://www.cypress.com/ModusToolboxLibraryManager

o CYPRESS

Nap” EMBEDDED IN TOMORROW Board SUppOI’t Packages

4. Update the application's makefile TARGET variable to point to your new BSP. For example:

TARGET=MyBSP

5. Optionally, update libraries in the application to make sure all the dependencies are aligned.

make getlibs

6. Open the Device Configurator to customize settings in the new BSP's design.modus file for pin names, clocks, power
supplies, and peripherals as required. Also, address any issues that arise.

7. Start writing code for your application.

If using an IDE, you need to generate/regenerate the configuration settings to reflect the new BSP. Use the appropriate
command(s) for the IDE(s) that are being used. For example:

make vscode
Note Use make help to see all supported IDE make targets. See also the Exporting to IDEs chapter in this document.

If you want to re-use a custom BSP on multiple applications, you can copy it into each application or you can put it into a version
control system such as Git. See the Manifest Files chapter for information on how to create a manifest to include your custom
BSPs and their dependencies if you want them to show up as standard BSPs in the Project Creator and Library Manager.

5.4 Modifying the BSP Configuration for a Single Application

In cases where you don't want to create a BSP, you can modify the BSP configuration for a single application (such as different
pin or peripheral settings). However, you should not typically modify the BSP directly since that results in changes to the BSP
library. This would prevent you from updating the repository in the future, and it may affect other applications in the same
workspace. Instead, use the following process to create a custom set of configuration files for a specific application:

1. Create a directory at the root of the application to hold any custom BSP configuration files. For example:
Hello_World/ COMPONENT_CUSTOM_DESIGN_MODUS

This is a recommended best practice. In an upcoming step, you will modify the makefile to include files from that directory
instead of the directory containing the default configuration files in the BSP.

2. Create a subdirectory for each target that you want to support in your application. For example:
Hello_World/ COMPONENT_CUSTOM_DESIGN_MODUS/TARGET_CY8CKIT-062S2-43012

The subdirectory name must be TARGET_<board name>. Again, this is a recommended best practice. If you only ever
build with one BSP, this directory is not required, but it is safer to include it.

The build system automatically includes all source files inside a directory that begins with TARGET _, followed by the target
name for compilation, when that target is specified in the application's makefile. The file structure appears as follows. In this
example, the COMPONENT_BSP_DESIGN_MODUS directory for this application is overridden for just one target:
CYB8CKIT-062S2-43012.

(== build
v = COMPOMENT_CUSTOM_DESIGN_MODUS
(= TARGET_CYBCKIT-D6252-43012
= deps
= libs
L€ main.c
Makefile

3. Copy the design.modus file and other configuration files (that is, everything from inside the original BSP's
COMPONENT_BSP_DESIGN_MODUS directory), and paste them into the new directory for the target.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 51

o CYPRESS

N> EMBEDDED IN TOMORROW Board SUppOI’t Packages

4.

6.

In the application's makefile, add the following lines. For example:

DISABLE COMPONENTS += BSP DESIGN MODUS
COMPONENTS += CUSTOM DESIGN MODUS

Note The makefile already contains blank pIsaBLE COMPONENTS and COMPONENTS lines where you can add the appropriate
names.

The first line disables the configuration files from the original BSP since they are now in different directory.

The second line is required to specify the new directory to include your custom configuration files, and to ensure that the
init_cycfg all function is still called from the cybsp_init function. The init cycfg all function is used to initialize the
hardware that was set up in the configuration files.

Customize the configuration files as required, such as using the Device Configurator to open the design.modus file and
modify appropriate settings.

Note When you first create a custom configuration for an application, the Eclipse IDE Quick Panel entry to launch the
Device Configurator may still open the design.modus file from the original BSP instead of the custom file. To fix this, click
the Refresh Quick Panel link.

When you save the changes in the design.modus file, the source files are generated and placed under the
GeneratedSource directory. The file structure appears as follows:

#;P Binaries

ﬁj Archives
(= build
w 22 COMPOMENT_CUSTOM_DESIGN_MODUS
w (= TARGET_CYBCKIT-06252-43012
(== GeneratedSource
cyreservedresources.list

design.cycapsense
design.cyqspi
design.modus

= deps

(= libs

When finished customizing the configuration settings, you can build the application and program the device as usual.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 52

6

6.1 Overview

Manifest Files

&= CYPRESS

- EMBEDDED IN TOMORROW

Manifests are XML files that tell the Project Creator and Library Manager how to discover the list of available boards, example
projects, libraries and library dependencies. There are several manifest files.

m The “super-manifest” file contains a list of URLs that software uses to find the board, code example, and middleware
manifest files.

m The “app-manifest” file contains a list of all code examples that should be made available to the user.

® The “board-manifest” file contains a list of the boards that should be presented to the user in the new project creation
tool as well as the list of BSP packages that are presented in the Library Manager tool. There is also a separate BSP
dependencies manifest that lists the dependent libraries associated with each BSP.

® The “middleware-manifest” file contains a list of the available middleware (libraries). Each middleware item can have
one or more versions of that middleware available. There is also a separate middleware dependencies manifest that
lists the dependent libraries associated with each middleware library.

Beginning with ModusToolbox 2.2, there are two versions of manifest files: the existing ones for the LIB flow and earlier versions
of ModusToolbox, and new ones for the MTB flow (aka "fv2"). The existing super-manifest file for use with ModusToolbox 2.1
and earlier contains only references to manifests that contain items that support the LIB flow. The new super-manifest file for
use with ModusToolbox 2.2 and later contains references to all the manifest files.

Tools

Super manifests

Data manifests

ModusToolbox 2.0
ModusToolbox 2.1

ModusToolbox 2.2

l

versions of tools

Manifest data that can be seen by all

Super manifest Super manifest
mib-super-manifest.xmi mib-super-manifest-iv2 xml
Application manifests for FV 1.0
fP—> mtb-ce-manifestxml te—~
mib-bt-app-manifest xml
' 7\
Application manifests for FV 2.0
mib-ce-manifest-fv2.xmi le—A1 Manifest data that can only been seen by
mib-bt-app-manifest-fu2 xml tools that support flow version 2.0
< >
Board manifests for FV 1.0
— mib-bsp-manifest xml te—1
mtb-bt-bsp-manifest xmi
{ 7\
Board manifests for FV 2.0
mib-bsp-manifest-fv2 xml le—1
mtb-bi-bsp-manifest-v2.xml
< =
Middleware manifests for FV 1.0
mib-mw-manifest xml
mib-bi-mw-manifest.xml
mtb-wifi-mw-manifest xml
r ~
Middleware manifests for FV 2.0
mtb-mw-manifest-iv2 xml
mib-bi-mw-manifest-ivz.xml
mib-wifi-mw-manifest-fv2 xml
<
' N 7\
Dependencies manifests
mtb-mw-dependencies-manifest xml|
mitb-bt-mw-dependencies-manifest xmi
ndenci ifest xml
mtb-bsp-dependencies-manifest xml
L pendencies-manifest.xml

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

53

o CYPRESS

> EMBEDDED IN TOMORROW Manifest Files

6.2 Create Your Own Manifest

By default, the ModusToolbox tools look for Cypress manifest files maintained on a Cypress server. So, the initial lists of BSPs,
code examples, and middleware available to use are limited to the Cypress manifest files. You can create your own manifest
files on your servers or locally on your machine, and you can override where ModusToolbox tools look for manifest files.

To use your own examples, BSPs, and middleware, you need to create manifest files for your content and a super-manifest that
points to your manifest files. To see examples of the syntax of super-manifest and manifest files, you can look at the Cypress
provided files on GitHub:

® Super Manifest: https://github.com/cypresssemiconductorco/mtb-super-manifest

Code Example Manifest: https://github.com/cypresssemiconductorco/mtb-ce-manifest

]
® BSP Manifest (including dependencies): https://github.com/cypresssemiconductorco/mtb-bsp-manifest
]

Middleware Manifest (including dependencies): https://github.com/cypresssemiconductorco/mtb-mw-manifest

Make sure you look at the "fv2" manifest files if you are using the MTB flow.

The manifest system is flexible, and there are multiple paths you can follow to customize the manifests.
B You can customize a super-manifest file and override the default file used by the tools.

B You can create secondary super-manifest files that identify additional content. The tools will merge your additional
content with the default super-manifest.

® You can modify or replace any of the default manifest files (code example, BSP, etc.) with custom files, so long as your
custom super-manifest file points to those rather than the default files.

6.2.1 Overriding the Standard Super-Manifest

The location of the standard super-manifest file is hard coded into all of the tools. However, you may override this location by
setting the CyRemoteManifestOverride environment variable. When this variable is set, the tools use the value of this variable
as the location of the super-manifest file and the hard-coded location is ignored. For example:

CyRemoteManifestOverride=https://myURL.com/mylocation/super-manifest.xml

6.2.2 Secondary Super-Manifest

In addition to the standard super-manifest file, you can specify additional super-manifest files. This allows you to add additional
items (BSPs, code examples, libraries) along with the standard items. Do this by creating a file called manifest.loc in a hidden
directory in your home directory named .modustoolbox:

<user_home>/.modustoolbox/manifest.loc

For example, a manifest.loc file may have:

This points to the IOT Expert template set
https://github.com/iotexpert/mtb2-iotexpert-manifests/raw/master/iotexpert-super-manifest.xml

Note You can point to local super-manifest and manifest files by using file:/// with the path instead of https://. For example:
file:///C:/MyManfests/my-super-manifest.xml

If the manifest.loc file exists, then each line in this file is treated as the URL to a super-manifest file. These are called the
secondary or custom super-manifest files. The format of these files is exactly like the standard super-manifest file. Each of the
custom super-manifest files are treated as separate super-manifest files. See the Conflicting Data section for dealing with
conflicts.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 54

https://github.com/cypresssemiconductorco/mtb-super-manifest
https://github.com/cypresssemiconductorco/mtb-ce-manifest
https://github.com/cypresssemiconductorco/mtb-bsp-manifest
https://github.com/cypresssemiconductorco/mtb-mw-manifest

o CYPRESS

N> EMBEDDED IN TOMORROW Manifest Files

6.2.3 Processing

The process for using the manifest files is the same for all tools that use the data. The first step is to access the super-manifest
file(s) to obtain a list of manifest files for each of the categories that the tool cares about. For example, the Library Manager tool
cares about the board and middleware manifests.

The second step is to retrieve the manifest data from each manifest file and merge the data into a single global data model in
the tool. See the Conflicting Data section for dealing with conflicts.

There is no per-file scoping. All data is merged before it is presented. The combination of a super manifest file and the merging
of all of the data allows various contributors, including third party contributors, to make new data available without requiring
coordinated releases between the various contributors.

The following table shows how manifests are processed:

Source Syntax Effect
valid URL (e.g., file:/// ... or http:// ...) Use that URL to fetch the super-manifest.
CyRemoteManifestOverride | Fragment (e.g., my/manifests/super- Append the home directory to the front (e.g.,
manifest.xml file:///c/Users/benh/my/manifests/super-manifest.xml)
valid URL (e.qg., file:/ll ... or http:// ...) Use that URL to fetch the super-manifest.

Append the directory in which manifest.loc resides (e.g.,

manifest.loc i -
Frag_ment (e.g., my/manifests/super file:/llc/Users/benh/.ModusToolbox/my/manifests/super-
manifest.xml .
manifest.xml)
Manifest URIs valid URI (e.g., file:/// ... or http:// ...) Use that URI to fetch the manifest.

Append the directory in which source super-manifest resides

fragment (e.g., my/manifests/manifest.xml) (e.q.,
file:///c/Users/benh/.modustoolbox/my/manifests/manifest.xml

Manifest URIs from a local
super-manifest file

Append the home directory to the front (e.g.,
file://lc/Users/benh/my/manifests/manifest.xml)

Manifest URIs from a remote

super-manifest file fragment (e.g., my/manifests/manifest.xml)

6.2.4 Conflicting Data

Ultimately, data from all of the super-manifest and manifest files are combined into a single data collection of BSPs, code
examples, and middleware. During the collation of this data, there may be conflicting data entries. There are two types of
conflicts.

The first kind is a conflict between data that comes from the primary super-manifest (and linked manifests) and data that comes
from the custom super-manifest (and linked manifests). In this case, the data in the custom location overwrites the data from the
standard location. This mechanism allows you to intentionally override data that is in the standard location. In this case, no error
or warning is issued. It is a valid use case.

The second kind of conflict is between data coming from the same source (that is, both from primary or both from secondary). In
this case, an error message is printed and all pieces of conflicting data are removed from the data model. This is done because
in this case, it is not clear which data item is the correct one.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 55

o CYPRESS

> EMBEDDED IN TOMORROW Manifest Files

6.3 Using Offline Content

In normal mode, ModusToolbox tools look for Cypress manifest files maintained on GitHub and downloads the firmware libraries
from git repositories referenced by the manifests. If a network connection to online resources is not available, you can download
a copy of all manifests and content, and then point the tools to use this copy in offline mode. This section describes how to
download, install, and use the offline content.

IMPORTANT ModusToolbox libraries are updated frequently, and the offline content does not always have the latest versions
available. We strongly recommend using the online content whenever possible. See https:/community.cypress.com/docs/DOC-
19903 for more details.

1. Download modustoolbox-offline-content.zip from the Cypress website:

https://www.cypress.com/products/modustoolbox-software-environment

2. If you do not already have a hidden directory named .modustoolbox in your home directory, create one. Using Cygwin on
Windows for example:

mkdir -p "S$USERPROFILE/.modustoolbox”
3. Extract the ZIP archive to the /.modustoolbox sub-directory in your home directory. The resulting path should be:
~/.modustoolbox/offline

The following is a Cygwin on Windows command-line example to use for extracting the content:

unzip -gbod "SUSERPROFILE/.modustoolbox" modustoolbox-offline-content.zip

Note If you previously installed a copy of the offline content, you should delete the existing ~/.modustoolbox/offline directory
before extracting the archive. Using Cygwin on Windows for example:

rm -rf "SUSERPROFILE/.modustoolbox/offline"

4. To use the Project Creator GUI or Library Manager GUI in offline mode, select Offline from the Settings menu (refer to the
appropriate user guide for details).

Note Make sure cyrRemoteManifestOverride variable is not set when you use offline mode.

5. To use the Project Creator CLI in offline mode, execute the tool with the --off1ine argument. For example:

project-creator-cli --board-id CY8CPROTO-062-4343W --app-id mtb-example-psoc6-hello-world --
offline

6. The Project Creator and Library Manager tools execute the make getlibs command under the hood to download/update
the firmware libraries. To execute the make getlibs targetin offline mode, pass the cy GETLIBS OFFLINE=true argument:

make getlibs CY GETLIBS OFFLINE=true

To override the location of the offline content, set the cy GETLIBS OFFLINE PATH variable:

make getlibs CY GETLIBS OFFLINE=true CY GETLIBS OFFLINE PATH="~/custom/offline/content"

Refer to the ModusToolbox Build System chapter for more details about make targets and variables.

7. Once network connectivity is available, you can use the Library Manager tool to update the ModusToolbox project
previously created offline to use the latest available content. Or you can execute the make getlibs command without the
CY GETLIBS OFFLINE argument.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 56

https://community.cypress.com/docs/DOC-19903
https://community.cypress.com/docs/DOC-19903
https://www.cypress.com/products/modustoolbox-software-environment

o CYPRESS

> EMBEDDED IN TOMORROW Manifest Files

6.4 Access Private Repositories

You can extend the custom manifest with additional content from git repositories (repos) hosted on GitHub or any other online
git server. To access private git repos, you must configure the git client so that the ModusToolbox Project Creator and Library
Manager tools can authenticate over HTTP/HTTPS protocols without an interactive password prompt.

Note While you can host libraries on private repos, the custom content manifest must be accessible without authentication (that
is, it cannot be hosted on a private git repo).

To configure git credentials for non-interactive remote operations over HTTP protocols, refer to the git documentation:

® https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

B https://git-scm.com/docs/git-credential-store

The simplest way is to configure a git-credential-store and save the HTTP credentials is in a plain text file. Note that this option
is less secure than other git credential helpers that use OS credentials storage.

The following steps show how to configure a git client to access GitHub private repositories without a password prompt:

1. Login to GitHub and go to Personal access tokens: https://github.com/settings/tokens

2. Click Generate new token to open the New personal access token screen.
3. Onthat screen:

a. Type some text in the Note field.

b. Under Select scopes, click on repo.

c. Click Generate token (scroll down to see the button).

d. Copy the generated token.

4. Open an interactive shell (for example, modus-shell\Cygwin.bat on Windows), and type the following commands (replace
the user name and token with your information):

git config --global credential."https://github.com".helper store

GITHUB USER=<your-github-username>

GITHUB TOKEN=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX # generated at https://github.com/settings/tokens
echo "https://$GITHUB USER:$GITHUB TOKEN@github.com" >> ~/.git-credentials

After entering the commands, you can clone private GitHub repositories without an interactive user/password prompt.

Note A GitHub account password can be used instead of GITHUB TOKEN, in case the 2FA (two-factor authentication) is not
enabled for the GitHub account. However, this option is not recommended.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 57

https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/docs/git-credential-store
https://github.com/settings/tokens

/ Exporting to IDEs

&= CYPRESS

- EMBEDDED IN TOMORROW

7.1 Overview

This chapter describes how to export a ModusToolbox application to various supported IDEs in addition to the provided Eclipse
IDE. As described Getting Started chapter, the Project Creator tool includes a Select Target IDE option that generates files for
the selected IDE. Also, as noted in the ModusToolbox Build System chapter, the make command includes various targets for the
following IDEs:

m Visual Studio (VS) Code — make vscode
® |AR Embedded Workbench — make ewarm8 TOOLCHAIN=IAR

m Keil pVision — make uvision5 TOOLCHAIN=ARM

7.2 Import to Eclipse

The easiest way to create a ModusToolbox application for Eclipse is to use the Eclipse IDE included with the ModusToolbox
software. ModusToolbox includes an Eclipse plugin that provides links to launch the Project Creator tool and then import the
application into Eclipse. For details, refer to the Eclipse IDE for ModusToolbox Quick Start Guide or User Guide.

If you already have a ModusToolbox application created some other way than through the included Eclipse IDE, you can import
that application for use in Eclipse as follows:

1. Open the Eclipse IDE included with ModusToolbox, and select File > Import... > ModusToolbox > ModusToolbox
Application Import.

& import a x

Select \‘

Select an import wizard:

type filter text |

= General
= T/
= Git
= Install
~ (= MedusToolbox
[ModusToolbox Application Import
(= Run/Debug
(= Team

@ < Back Einish Cancel

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 58

http://www.cypress.com/ModusToolboxQSG
https://www.cypress.com/MTBEclipseIDEUserGuide

o CYPRESS

> EMBEDDED IN TOMORROW™ EXpOfting to IDEs

2. Click Next >. In the Project Location field, click the Browse... button; navigate to and select the application’s directory.

Project information.

Enter the directory of the ModusToolbox project to be imported.

Project Lacation: | C:\Users\CKF\mtw2.2\2345\hw\Hello_World Browse ...

@ <Back Next > [

3. Click Finish.

The application displays in the Eclipse IDE Project Explorer.

7.3 Exportto VS Code

This section describes how to export a ModusToolbox application to VS Code.

7.3.1 Prerequisites
®m ModusToolbox 2.3 software and application
® VS Code version 1.42.x or later
® VS Code extensions. Install the following.
Note These versions change often; use the most current.

O C/C++ tools

D O4AM 35

O Cortex-Debug

Cortex-Debug 034
comex ARM Cortex-M GDB Debugger support for VsCode

marus25

m For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

59

https://www.segger.com/downloads/jlink

o CYPRESS

> EMBEDDED IN TOMORROW™ EXpOfting to IDEs

7.3.2 Process Example
1. Create a ModusToolbox application.
a. If you use the Project Creator tool, choose "VS Code" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), and navigate to the
application directory, and run the following command:

make vscode
Either process generates json files for debug/program launches, IntelliSense, and custom tasks.

Note Any time you update/patch the tools for your application(s), that path information might change. So you will need to
regenerate the needed support files by running the make vscode command or update them manually.

2. Open the VS Code tool.
a. To open the application and the mtb_shared directory in the same workspace, select File > Open Workspace...

File Edit Selection View Go Run

Ctri+N

Ctrl+Shift+N

Ctri+0
Open Folder... Ctrl+K Ctri+O

Open Workspace...

Open Recent

Navigate to the application directory and select the <application_name>.code-workspace file.
If you have several applications in the workspace, you can add them using Add workspace folder...

b. To open just the application and select File > Open Folder...

File Edit Selection View Go Debug

Ctrl+N

Ctrl+Shift+N

Open File... Ctrl+0

Open Folder... Ctrl+K Ctrl+0
Open Workspace...

Open Recent

Note On macOS, this command is File > Open...
Navigate to and select the application directory, and then click Select Directory.
3. When your application opens in the VS Code IDE, select Terminal > Run Build Task...

Terminal Help

New Terminal Ctrl+Shift+

Split Terminal Ctrl+Shift+5

Run Task...

Run Build Task... Ctrl+Shift+B

Run Active File

Run Selected Text

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 60

3

CYPRESS

N> EMBEDDED IN TOMORROW EXpOfting to IDEs

4. Then, select Build: Build [Debug]. After building, the VS Code terminal should display messages similar to the following:

Internal Flash (Available)
Internal Flash (Utilized)

Internal SRA
Total Internal SRAM (|

Terminal will be reused by tasks, press any key to close it.

7.3.2.1 To Debug using KitProg3/MiniProg4

Click the Run and Debug icon on the left and then click the Play button.

) FEile Edit Selection ew G Terminal Help

BUG [> Launch PSoC6 CM4 (KitProg3_MiniProgd)

 VARIABLES

The VS Code tool runs in debug mode.

File Edit Selection View Go Run Terminal Help main.c - Hello_World -
RUN P> Launch PSoC6 CM4 (KitProg3_MiniProgd) - : o 0O
~ VARIABLES
~ Local
esult:
> Global

> Static

main(

DEBUG COMSOLE

DPT

CALL STACK PAUSED ON START
main.c 97

< BREAKPOINTS
> CORTEX PERIPHERALS
‘CORTEX REGISTERS > |
¥ releasev200* O ®0A0 &> Launch PSoC6 CM4 (KitProg3_MiniProgd) (Hello World) In97,Col 1 Spaces4 UTFE LF € M & 0

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 61

o CYPRESS

N> EMBEDDED IN TOMORROW EXpOfting to IDEs

7.3.2.2 To Debug using J-Link

You can use a J-Link debugger probe to debug the application.

1.

3.

Navigate to and open the global settings.json file. If there is no such file, then create one. The file is located here by default:
O Windows: %APPDATA%/Code/User/settings.json

O macOS: $HOME/Library/Application Support/Code/User/settings.json

O Linux: $SHOME/.config/Code/User/settings.json

Add the path to the J-Link GDB server. For example:

{"cortex-debug.JLinkGDBServerPath": "C:/Program Files (x86)/SEGGER/JLink/JLinkGDBServerCL"}
O Windows: "cortex-debug.JLinkGDBServerPath": "<JLinkInstallDir>/JLinkGDBServerCL"

O macOS/Linux:; "cortex-debug.JLinkGDBServerPath": "<JLinkInstallDir>/JLinkGDBServer"

Note The J-Link path can be configured in the local application's settings, if needed.

> lib

gitignore

Click the Run and Debug icon, select Launch PSOC6 CM4 (JLink) config, and click the Play button.

File Edit Selection View Go Run Terminal Help
RUN P> Launch PSoC6 CM4 (JLink) v @& &2 -

~ VARIABLES

~ BREAKPOINTS

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 62

o CYPRESS

Nap” EMBEDDED IN TOMORROW EXpOfting to IDEs

7.4 Export IAR EWARM (Windows Only)

This section describes how to export a ModusToolbox application to IAR Embedded Workbench and debug it with CMSIS-DAP
or J-Link.

7.4.1 Prerequisites
®m ModusToolbox 2.3 software and application

m Python 3.7 is installed in the tools_2.3 directory, and the make build system has been configured to use it. You don't
need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure your
system is configured correctly to use Python 3.7. Use the cy_PYTHON PATH as appropriate.

m |AR Embedded Workbench version 8.42.2 or later
m PSoC 6 Kit (for example, CYSCPROTO-062-4343W) with KitProg3 FW

® For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink Windows.exe

7.4.2 Process Example
1. Create a ModusToolbox application.
a. If you use the Project Creator tool, choose "IAR" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate to the
application directory, and run the following command:

make ewarm8 TOOLCHAIN=IAR
Note Alternately, you can edit the application’s makefile to specify the IAR toolchain.
An IAR connection file appears in the application directory. For example:
mtb-example-psoc6-capsense-buttons-slider-freertos.ipcf
2. Start IAR Embedded Workbench.

3. Onthe main menu, select Project > Create New Project > Empty project and click OK.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 63

https://www.segger.com/downloads/jlink/JLink_Windows.exe

o CYPRESS

> EMBEDDED IN TOMORROW™ EXpOI'ting to IDEs

4. Browse to the ModusToolbox application directory, enter an arbitrary application name, and click Save.

@ savehs X
R e Users » wvmed » CapSenseButtonsandSliderFreeRTOS w | O Search CapSenseButtonsandS.. 0
Organize v New folder == a
4 3D Objects () Mame Date modified Type Size
I Desktop .git 13 File folder
[E Documents build 1. File folder
; Downloads images 13.02.2020 12:44 File folder
J, Music libs 13.02.2020 12:44 File folder
&= Pictures
B videos
o Windows (C)
. v
File name: | mtb-example-psoch-capsense-buttons-slider-freertos ~
Save as type: | Project Files (*.ewp) ~
~ Hide Folders Save Cancel

5. After the application is created, select File > Save Workspace, enter an arbitrary workspace name and click Save.
6. Select Project > Add Project Connection and click OK.

7. On the Select IAR Project Connection File dialog, select the .ipcf file and click Open:

© Select IAR Project Connection File

&« * 4 » Volodymyr Medvid » CapSenseButtonsandSliderFreeRTOS v O Search CapSenseButtonsandS... 0@
Organize = MNew folder == » [N 0
-~ - . -
I This PC Name Date modified Type
P 3D Objects git File folder
I Desktop build File folder
@ Documents images File folder
libs File folder
‘ Downloads
. settings File folder
J’ Music D mth-example-psoch- capsense-buttons-slider-freertos.ipcf IPCF File
&= Pictures
m Videos
25 Windows (C)
¥ Network i ¢ Py
File name: | mtb-example-psocé-capsense-buttons-slider-freertos.ipef v| IAR Project Cennection File (*.i) ~

8. On the main menu, Select Project > Make.

9. Connect the PSoC 6 kit to the host PC.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

64

CYPRESS

g EMBEDDED IN TOMORROW™

7.4.2.1 To Use KitProg3/MiniProg4

1.
for details. The tool

is in the following directory by default:

<user_home>/ModusToolbox/tools_2.3/fw-loader/bin/

2.

Options for node "mib-example- psoct

6-capsense-buttons-slider-freertos”

Category:

General Options

Static Analysis

Runtime Chedking
€/C++ Compiler Setup
Assembler
Output Converter Driver
Custom Build

Factary Settings

Download Images Multicore Exdra Options Plugins

Runto

[cmsi

Build Actions

5 DAP v [main

Linker
Simulator

CADI

CMSIS DAP

GDEB Server

THet
Iink/I-Trace

TI Stellaris
Nu-Link:

PE micro

STAINK
Third-Party Driver
TIMSP-FET
TIXDS

|G \debuggerCypress\PSoCEAC YBCE,

Cancel

3.

Select Project > Options > Debugger and select CMSIS-DAP in the Driver list:

Exporting to IDEs

As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See the KitProg3 User Guide

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Buid
Build Actions
Linker
Debugger
Simulator
CADI
GDB Server
I-jet
J-Link/)-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver

Factory Settings

Setup Interface Breakpoints
Probe config Probe configuration fie
® Auto vemide default
From fie
Explicit

Select
Interface Expicit probe configuration
ITAG Multitarget debug system
® SWD
Target with muitiple CPUs
Interface speed
2MHz

TI MSP-FET
TIXDS

OK

Cancel

4. Click OK.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

Select the CMSIS-DAP node, switch the interface from JTAG to SWD, and set the Interface speed to 2MHZ.

65

https://www.cypress.com/documentation/development-kitsboards/kitprog-user-guide

CYPRESS

EMBEDDED IN TOMORROW™

N 4

Exporting to IDEs

Select Project > Download and Debug.

The IAR Embededed Workbench starts a debugging session and jumps to the main function.

@ mib-example a edde ench IDE - Arm 8.42.2 - O
File Edit View Project Debug Disassembly CMSISDAP Tools Window Help
DoRe = 88 2C 1< Q28R ORAL RB=GCcO 0 3r il @3 -
‘Workspace ¥ & X | AR Information Center for Arm main.c x v Registers 1 w B X Disassembly v ox
Debug - fo Fna[] G CurentCPL V| Goto Memary
Files 3 . ~ Value Disassembly ~
B @ mtb-example-psocé-capse.. ¥ GMINIMAL_STACK SIZE) 0x00000000 0x1000 dede: Ozesh8 0x0a40
|1 8 mt-exarnple-psoc6-capsen QMINTMAL STACK SIZE) 0xE0D0EDES 0x1000 dee2: OzaB06
008000000 0x1000 deed: Dxf7ff OxfscO
72 /ro 1 000600305 break:
73 #define SINGLE ELEMENT QUEUE (1u) 0=00000000 0x1000 'deef: Oxe7dl
u 000000000 break:
e 000000000 01000 'dcea: Dxe7d0
L R DR =itoorszs e s
Eill | |* Function Rame: main() 0xFC120C38 0x1000'dcf0: 0x000d' 0007
3; T 00 detd. DannDE 4240
80 peoint. This function sets up user tasks and then starts [M=EITEEG G-AID et B=NEED BEes
o the RTOS scheduler.) T 010000550 ssn{” Bkpt 1"}
cveta.c 82 0200000000 CY_HALT
[cycfy_capsense.c 83 0=60000000 01000 'defe: Oxbe01
cycfy_clacks.c a1 000000000
cycfy_peripherals.c 85 | + 0x1000 dofe: 0=4770
cyclg_pins.c B6 L A A KRR AR RA AR AR AR AR AR KA R EARRARRARRA AR AR AR AR int main{void)
cycfy_gspi_memslate % 87 int main(void) 0x0B0EFA00 T
cycly_routing.c CEI=N 0x1000DE7E nain
cycty_system.c 89 cy_rslt_t result; # PRIMASK 000000001
B starup_psoc6_02_r: 90 ® BASEPRI 000000000 result = oybsp_init():
systerm_psock_cmd.c s1 4 #BASEPRI_MAY 0x00000000 0x1000°dd02: Oxf7fe Oxfbdf
E) capsense_task.c £8 resule = cybsp inic(): ®FAULTMASK 000000000 if (result != CY_RSLT_SU
— &) copsense_taskh & # CONTROL 0=00000004 0x1000'dd06: 0=2800
— B FreeRTOSConfigh £ [t Board CYCLECOUNTER 25188 01000 'dd08: Dxd0D1
d_task.c z?[] if (zesult CCTIMERL 25188 CY_ASSERT (D) :

F— B led_taskh i ct RSSERT () CCTIHER? 25188 0x1000'dd0a: Dxf76f OxEEE?
ain.c o |) o o CCSTEF 25188 —enable_irq():
mib-examplepsocé-capsen = 0x1000'dde: Oxb662

B Output e led_comnand_data_q = =Q
101
102 0x1000'dd10: 0x2200
1030 : 0x1000'dd12: 0x2108
qu : 0x1000'dd14: 0x2001
105 . 0x1000'dd16: 0=f747 Oxfffdv
b- P b i < > v« > |« >
Debug Log v B X CallStack v ax
Loa % nain
Thu Fel 13, 2020 13:36:3% Target reset [call nain + Oxdl
Thu Feb 13. 2020 13:36:38 DMAC/Trace: Configuring platform side SW0 component
Thu Feb 13. 2020 13:36:38 INFO: Configuring frace using 'swainit 0=0xE005_E002| |_0002)' setting
Thu Feb 13 2020 13:36:3 INFO: SWO race mode is not supported by the prohe (use Het/-{et Trace probe) - trace is disak
v
< >
Build DebugLog < >
Ready Ln 87, Col 15 UTF-8 CAP NUM OVR BEE

7.4.2.2 To use MiniProg4 with PSoC 6 Single Core and PSoC 6 256K

For a single-core PSoC 6 MCU, you must specify a special type of reset, as follows:

Category: Factory Settings

General Options.
Static Analysis

Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Buid
Build Actions
Unker
Debugger

Simulator

CADI

GDB Server

Ijet
J-Uink/)-Trace

TI Stellaris
Nu-Unk

PE micro
ST-LINK
Third-Party Driver

Setup Interface Breakpoints
Reset

Hardware

Duration

Log communication

Delay after:

500 ms

Emulator

Aways promet for probe
selection

Serial no

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

o CYPRESS

g EMBEDDED IN TOMORROW™

7.4.2.3 To Use J-Link

You can use a J-Link debugger probe to debug the application.

1. Open the Options dialog and select the Debugger item under Category.

2. Then select J-Link/J-Trace as the active driver:

Options for node "mtb-example-psoct-capsense-buttons-slider-freertos”

Category Factoy Seftings
General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver Runte
Custom Buid JLink/J-Trace v [main
Build Actions
Simulator
Linker CADI
CHISIS DAP
Simulator GDB Server
CcADI et
CMSIS DAP Tl Stellaris
GDB Server Mu-Link
et PE micro
- ST-LINK
I-Link/3-Tr
T g:"‘ e Third-Party Driver
ars TIMSPFET
Nu-Link TI XDS IG\debugger\Cypress\PSoCE\CYBCE| |
PE micro
STLINK
Third-Party Driver
TIMSP-FET
TI¥DS
el

3.

Options for node "mtb-example- psoc6-capsense-buttons-slider-freertos"

e Factory Settings
General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Connection Breakpoints
Assembler Communication
Qutput Converter (® USB: Serial no:
Custom Build
Build Actions OICPAP: |IP address
Linker IF address: |aaa bbb cce.ddd Serial o
Debugger
Simulator Interface JTAG sean chain
AG s i wit i s
CADI OuTAG JTAG scan chain with multiple targets
CMSIS DAP) TAP rumber: [0
GDE Server @S - X
et e Scan chain contains non-Am devices
Sl Proceeding i
TI Stellaris
Mu-Link [Log commurication
PE micro $PROJ_DIRS\cspycomm log
ST-LINK
Third-Party Driver
TIMSP-FET
TIXDS
Cancel

Note For PSoC 64 MCU, you must specify a special type of reset, as follows:

Factory Settings

Setup Connection Breakpoirts

Reset
Core -
JTAG/SWD speed Clock setup
O Autg
Initial | 1000 kHz CPU clock: l:l MHz
@ Fred kHz SWOclock: [JAuto
Adepve 20 e

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

Exporting to IDEs

Select the J-Link/J-Trace item under Category, and under the Connection tab, switch the interface to SWD:

Connect a J-Link debug probe to the 10-pin adapter (needs to be soldered on the prototyping kits), and start debugging.

67

A
s

N 4

7.5

CYPRESS

EMBEDDED IN TOMORROW

Export to Keil pVision 5 (Windows Only)

This section describes how to export ModusToolbox application to Keil pVision and debug it with CMSIS-DAP or J-Link.

7.5.1
]

7.5.2

Prerequisites
ModusToolbox 2.3 software and application

Python 3.7 is installed in the tools_2.3 directory, and the make build system has been configured to use it. You don't
need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure your
system is configured correctly to use Python 3.7. Use the cy pPyTHON PATH as appropriate.

Keil uVision version 5.28 or later
PSoC 6 Kit (for example, CYSCPROTO-062-4343W) with KitProg3 Firmware

For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink_Windows.exe

Process Example

1. Create a ModusToolbox application.

a.

b.

If you use the Project Creator tool, choose "ARM MDK" from the Target IDE pull down menu.

If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate to the
application directory, and Run the following command:

make uvision5 TOOLCHAIN=ARM

Note Alternately, you can edit the application’s makefile to specify a toolchain.

This generates the following files in the application directory:

O mtb-example-psoc6-hello-world.cpdsc
O mtb-example-psoc6-hello-world.cprj

O mtb-example-psoc6-hello-world.gpdsc

The cpdsc file extension should have the association enabled to open it in Keil pVision.

Exporting to IDEs

2. Double-click the mth-example-psoc6-hello-world file (either *.cpdsc or *.cprj, depending on version). This launches the Keil
MVision IDE. The first time you do this, the following dialog displays:

Missing Required Packs

% Mot installed required packs for Project
y' 'mib-example-psocé-hello-world’

Cypress.PSoCe_DFP.]

Do you want to install them?

3. Click Yes to install the device pack. You only need to do this once.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

68

https://www.segger.com/downloads/jlink/JLink_Windows.exe

CYPRESS

g EMBEDDED IN TOMORROW

Exporting to IDEs

4. Follow the steps in the Pack Installer to properly install the device pack.

Pack Unzip: Cypress PSoC6_DFP 1.0.0 X

License Agreement

Pleasze read the fallowing license agreement carefully.

To continue with SETUP, you must accept the terms of the Licenze Agreement. To accept the
agreement, click the check box below.

CYPRESS END USER LICEMSE AGREEMENT

PLEASE READ THIS END USER LICENSE AGREEMENT [“Agreement”’) CAREFULLY BEFORE
DOWHNLOADING, INSTALLING, COPYIMG, OR USIMG THIS SOFTWARE AND

ACCOMPANYING DOCUMENTATION. BY DOWNLOADING, INSTALLING, COFYING OR

USING THE SOFTWARE, vOU ARE AGREEING TO BE BOUND BY THIS AGREEMENT. IF

OU DO WNOT AGREE TO ALL OF THE TERMS OF THIS AGREEMEMT, PROMPTLY RETURN
AWND DO WOT USE THE SOFTwWaRE. IFYOU HAVE PURCHASED THIS LICEWSE TO THE
SOFTWARE, ¥OUR RIGHT TO RETURN THE SOFT'WARE EXPIRES 30 DaY'3S AFTERYOUR .,

PR AT AR ARCIEE ORS TO T A kAl Dme A e e m

[| agree ta ar:‘ghe terms of the preceding License Agreement

| Cancel |

uVision

."-I Software Packs folder has been modified.
" Reload Packs?

1=
o

Note In some cases, you may see the following error message:
SSL caching disabled in Windows Internet settings. Switched to offline mode.

See this link for how to solve this problem: https://developer.arm.com/documentation/ka002253/latest

When complete, close the Pack Installer and close the Keil pVision IDE. Then double-click the .cpdsc/.cprj file again and the
application will be created for you in the IDE.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 69

https://developer.arm.com/documentation/ka002253/latest

5.

6.

CYPRESS

EMBEDDED IN TOMORROW™

Exporting to IDEs

Right-click on the mtb-example-psoc6-hello-world directory in the pVision Project view, and select Options for Target

'<application-name>' ...

KA C\Users\wmed\mtb-example-psocB-hella-worldimth-example-psoct-hello-world.uvprojx - pWision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEH@| ¥ LR 90|« | PRrRAR|EEELE B
@ - £ dE e D@

1 | mtb-example-psocs-hellc a&

i

=% Project: mtbh-example-ps
£ 45 mtb-example-pso

BE‘ Saurce |,& Ciptions for Target ‘mtb-example-psoct-hello-waorld'...
11 mainc Add Group...

R 4 TARGET_CYSCR 4 Manage Project ltems..,

o @ capsense Rebuild all target files

@ core-lib _

& psocbecmOp T

EJ--‘ psocthal Show Include File Dependencies

% psocepdl

- retarget-io

On the dialog, select the C/C++ (ACB6) tab.
O Check that the Language C version was automatically set to c99.
O Select "AC5-like warnings" in the Warnings drop-down list.

O Select "-Os balanced" in the Optimization drop-down list.

Options for Target 'mtb-example-psoct-hello-world'

Device I Tanget | Output | Listing I User C/C++ (ACE) IAsrn | Linker I Debug I Util'rtiesl

— Preprocessor Symbols

Define: I
Undefine: I

— Language / Code Generation

[~ Execute-only Code Wamings: |ACSHike Wamings ;I Language C: Ic‘JB vI
Emimization: I-Os balanced LI I [Tum W ﬁ;ﬂﬁ:ﬂ;&g{?’ Language C++: ICHBB vl

[Link-Time Optimization I | Wmis i v Short enums/wchar
A (& WWamings
[~ Split Load and Store Muttiple [~ [MISRA Compatible pendent [~ use RTTI

[¥ One ELF Section per Function [~ Read-Write Position Independent |~ Mo Auto Includes
|”E:t:: I..\nﬂb-example-psocﬁhelloworld;.\Jibs J
Misc I
Controls
Compiler | -std=c99 arget=am-am-none-eabi mcpu=cortex-m4 mipu=pv4-sp-d16 mfloat-abi=hard ~
c‘;t”ff"d fnio-tti funsigned-char fshort-enums fshort-wehar
ring v

QK I Cancel Defaults Help

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

70

D

N 4

7.

8.
9.

CYPRESS

EMBEDDED IN TOMORROW™

Select the Debug tab, and select KitProg3 CMSIS-DAP as an active debug adapter:

KA Options for Target 'mtb-example-psocé-hello-world'

" Use Simulator with restrictions Settings

Device] Tanget] Output] Listing] User] C/C++ {ACE}] Asm] Linker Debug] Lkilities]

* Use: |CMSIS-DAP Debugger

[~ Limit Speed to Real-Time

[v Load Application at Startup
Initialization File:

| o e |

Restore Debug Session Settings

[+ Breakpoints [v Toolbox

[+ Watch Windows & Peformance Analyzer
[v System Viewer

¥ Run to main()

[+ Memoary Display

J-LINK / J-TRACE Cortex
Iv/{lond Models Cortex-M Debugger
Initializatid ST-Link Debugger
’— MULink Debugger
Pemicro Debugger
Stellaris ICDI
Restors &b UDA Debuager
[v ErdAtera Blaster Cortex Debugger

j Settings
A

b main()

[z]

v W Tl XDS Debugger

T WINaOWS
[v Memory Display

v System Viewer

[~ Wam i outdated Executable is loaded

CPUDLL: Parameter: Driver DLL: Parameter:
|SAF~!MCM3.DLL |-F~:EMAP -MPU |SAF~!MCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|DCM.DLL |1:(:M4 |TCM.DLL |1:<:M4

[~ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

o]

Cancel

Defaults |

Help

Click OK to close the Options dialog.

Select Project > Build target.

Exporting to IDEs

Build Output g

compiling cy_retarget_io.c... ~

linking...

\1ibs\TARGET CYSCPROTO-082-4343W\COMPONENT CM4\TOOLCHAIN RRM\cyScéxxa_cm4_dual.sct (144): warning: LE329W: Pattern *(.cy_ramfunc) only matches removed unused sections.

\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCEAIN RRM\CYyScéxxa cmd_dual.sct(l70): warning: L6314W: No SSCtion Matches pattern * (.Cy_app_signature) .

\1ibs\TARGET CYSCPROTO-082-4343W\COMPONENT CM4\TOOLCHAIN ARM\cyScéxxa_cmd dual.sct (180): warning: L&314W: No section matches pattern *(.cy_em ceprom) .

.\11bs\TARGET_CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHAIN_RRM\C : warning: L6314W: No s=Ction matches pattern * (.cy_sflash_user_data).

\1ibs\TARGET CYSCPROTO-0&2-4343W\COMPONENT CM4\TOOLCHAIN RRM\c : warning: L&314W: No section matches pattern *(.cy sflash nar).

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHAIN_ARM\c warning: L6314W: No section matches pattern *(.cy_sflash_public_key) .

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN RRM\c _cmd_ .sct(216): warning: LE314W: No section matches pattern * (.Cy_Toc_partl).

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHAIN_ARM\cyScéxxa_cm4_dual.sct (225): warning: L6314W: No section matches pattern *(.Cy_rtoc_part2).

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN RRM\cy3céxxa_cmé4 dual.sct(235): warning: LE314W: No section matches pattern *(.cy_xip).

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHAIN_ARM\cyScéxxa_cm4_dual.sct (245): warning: L6314W: No section matches pattern *(.cy_efuse).

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN RRM\cy3céxxa_cmé4_dual.sct(253): warning: LE314W: No section matches pattern *(.cymeta).

Program Size: Code=19998 RO-data=8386 RW-data=440 ZI-data=-l037896

Finished: 0 information, 11 warning and 0 error messages.

. \mtb-example-psocé-hello-world_build\mtb-example-psocé-hello-world.axf" - 0 Error(s), 11 Warning(s).

Build Time Elapsed: 00:01:31 ~
CMSIS-DAP Debugger CAP NUM SCRL OVR R/W

To suppress the linker warnings about unused sections defined in the linker scripts, add “6314,6329” to the Disable
Warnings setting in the Project Linker Options.

10. Connect the PSoC 6 kit to the host PC.

11. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See KitProg3 User Guide for

details. The tool is located in this directory by default:

<user_home>/ModusToolbox/tools_2.3/fw-loader/bin/

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

71

https://www.cypress.com/documentation/development-kitsboards/kitprog-user-guide

o CYPRESS

g EMBEDDED IN TOMORROW™

12. Select Debug > Start/Stop Debug Session.

Exporting to IDEs

K2 C\Users\vmed\mith-example-psoc-hella-worldymth-example-psocé-hello-world.uvpraj - pVision - O >
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help

NBEA@ & B9 |@= | BRMR|EEELE B JERe | @-|e
PO wrFu | ORBEaR B-B-R-2-8H-| %

Registers a1 B Disassembly [|

Register I Value I: Ox10006EDC 4770 BX 1r -
=B Ox10006ED2 0000 MCVS rd,z0

R RO 0x1000 oot R -
R1 00800 ml: cy_rslt_t result:
30000 102: J* Imitialize the device and board peripherals =/
103: result = cybsp_init():
104:
aAr e Mo e . E_xw_a e e e e e e - X A
L4 >
0x0800... U] mainc |] outilsh v X
(x0800... g5 | *+ intc ~
Ox1000... ag o
(= 1000... a7 R R R AR AN A AN A AN A AN A AN AARA
OxEDD... 98 int main(void)
Ow080F... [ag |{
O 1000... 100 cy_:cslt_t result;
(x1000... 101
Ix6100... 102 /* Initialize the device and board peripherals */

- 103 result = cybsp init():

B 104
I'?'l"'"l:rrtemal 105 /* Board init failed. Stop program execution */

- 7 Mode Thread -l 106 if (result != CY_RSLT_SUCCESS)

H e meoa 107 I Fi ¥
[iE] Project | =5 Registers < o
Command o E call stack + Locals n B3
Load "C:\\Users‘\\wvmed\\mtb-example-psocé-hello-wo: Name Location/Value Type

=% main (e 10006ED int () -
< > @ result <not in scope> auto—uin'v

> ‘I T—
ASS5IGN BreakDisable BreakEnable BreakKill BreakListl QhCallstack+ Locals Memory 1

CMSIS-DAP Debugger

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

72

-

w CYPRESS

EMBEDDED IN TOMORROW™

You can view the system and peripheral registers in the SVD view.

Exporting to IDEs

File Edit View Project

Registers

Redgister | Value |

0xD80FF8
0x100023
0x10006E
(x610000 g

-

Intemal
Mode Thread

A |

El Project = Registers

Command

Flash

Debug

NS @ s o@ 9 o
HEBO BTG
3 E Disassembly

Peripherals Toaols

System Viewer 13

Core Peripherals

0x10006EDO 4770 BX
0x10006EDZ 0000 MCVS
Q9: {
100: cy_rslt t resi
101:
102: /* Initialize
103: result = cybs]
104:
v fe meea iosa
£
] maine] g_utils.h
a6 L
o7 L
88 int main(void)
P ss B
100 cy_rslt_t res
101
102 /* Initialize
103 result = cybs
104
105 /* Board init
106 if (result '=
107 {
1ine Y AeeRDT
£

Load

<

"Ci\\Users\\vmed\ \mntb-example-psocé-hello-wWor

>

SVCS Window Help

BACKUP

, |V | cruss

CsD0
DMAC
DwW
EFUSE
FAULT
FLASHC
GPIO
HSIOM

IPC
LCDO
LPCOMP
PASS
PDMO
FERI
PROFILE
FPROT
SAR

5CB
SDHC
SMARTIC
SMIFD
SRSS
TCPWM
USBFS0

AS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet

K23 C\Users\vmed\mtb-example-psoc-hello-world\mtb-example-psoct-hello-world.uvprojx - pVisien

- O X
% MR+ a-|eocd & |E-| %
] - @ o
| o E cpuss il |
"
Property Value
= IDENTITY (0 DD0DOFO3 il
p v
board peripherals *;
NS ol
PC 0x00
- -
B B MS 0xOF
3 - CM4_STATUS 000000010
X SLEEPING]
2 SLEEPDEEP (]
PWR_DOMNE el
FAST_INT_DIV 000
g cwcn
i board peripherals CMA_INTO_STATUS
ch N s
rogram execution */ L CRAA KT CTATIIC _LI
3) FAST_INT_DIV A
[Bits 15..8] RW (@ 0x40200008) Specifies the
¥ || fast clock divider (from the high frequency
> clock "clk_hf' to the peripheral clock W
lurﬂ i |
iress: I -

CMSIS-DAP Debugger

11: 0.00091820 sec L]

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

73

CYPRESS

g EMBEDDED IN TOMORROW™

D

7.5.2.1 To Use KitProg3/MiniProg4, CMSIS-DAP, ULink2, and ULink Pro debuggers

1. Select the Device tab in the Options for Target dialog and check that M4 core is selected:
Options for Target 'mtb-example-psoct-gpio-interrupt’ X
Device |Targe1| Outputl Listingl User I C/Cs+ {.M.CG}I Asm I Lirlkerl Debugl Util'rtiesl
ISoﬂware Packs LI
Vendor: Cypress Software Pack
Device: CY8C6247BZ1-D54 Cortex-Md Pack: |Cypress.PSoC6_DFP.1.0.0
Toolset: ARM URL: hitp://www keil.com/pack/
Search: I
4 CYSCE247BZI-D54 :I PSoC 62 (Perfformance Line): Dual-core Cortex-M4/M0+ MCL series
with programmable digital and analog peripherals, advanced
€3 CvaC6247BZI-D34: Cortex MOp graphics, CapSense, crypto and secure boot security.
E| CYBCE247BZ1-D54:Cortex-M4
% CVBCE247FDI-D02
[CYBCE247FDI-D32
[CVBCE247FDN-DS2 J
[CVBCE247FTI-D52
[CYBCE247WI-D54
[CVBCE248A7I-52D14
m e DE
0K | Cancel | Defauts | Help
2. Select the Debug tab and click “Settings” to display the dialog Target Driver Setup:

Options for Target 'mtb-example-psocé-gpio-interrupt’

Device I Target I Output I Listing I User I C/C++ {.RCG}I Asm I Linker Debug | Ltilties I

*

Manage Component Viewer Description Files ... |

" Use Simulator with restrictions Settings | & Use: ICMSIS-DAF‘ Debugger LII Settings I
™ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run to main{) ¥ Load Application at Startup ¥ Run to main{)
Initialization File: Initialization File:
|] e |] o] Ede |
Restore Debug Session Settings —————————————————— Restore Debug Session Settings ——————————————————
¥ Breakpoints v Toolbox V¥ Breakpoints [V Toolbax
[¥ Watch Windows & Peformance Anatyzer ¥ Watch Windows
¥ Memory Display v System Viewer ¥ Memory Display ¥ System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
ISAF{MCME‘..DLL I-F{EMAF‘ -MPU ISAF{MCME‘..DLL I-I‘u'IPU
Dialog DLL: Parameter: Diglog DLL: Parameter:
pcm.DLL [pCa TcmDLL [pCa
[~ Wam if outdated Executable is loaded [~ Wam if outdated Executable is loaded

0K | Cacd | Defauts | Help

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

Exporting to IDEs

74

o CYPRESS

g EMBEDDED IN TOMORROW™

3. Onthe Target Driver Setup dialog, on the Debug tab, select the following:

O set Port to “SW”

O set Max Clock to “1 MHZz”

O set Connect to “Normal”

O set Reset to “WVECTRESET”

O enable Reset after Connect option

~CMSIS-DAP - JTAG/SW Adapter —
|Cypress MiniProg# (CMSIS-D; » |

Serial Mo: |0516198B022374
Firmware Version: IZ.D.D
7 5wl Pot:flsw |

M Clock [iHe -]

CMSIS-DAP Cortex-M Target Driver Setup

Debug |Trc|ce I Flash Downloadl Pack I

€ WManual Configuration

% Automatic Detection

acd || Defete | | Updae |

ID CODE: I

—~ SW Device
IDCODE | Device Name | vz
SWDIO | @ 1x6BAD2477 ARM CoreSight SW-DP Up |

Device Mame: I

AP

IDxDZ

— Debug

Connect & Reset Options

Connect: §Nomal

- Hese‘t:IEECTHI:bI:I v|I

[~ Stop after Reset

[¥ Cache Code
¥ Cache Memory

Cache Options Download Options

[~ Verify Code Download
[~ Download to Flash

ok | Cancel

4. Select the Flash Download tab and select “Reset and Run” option after download, if needed:

CMSIS-DAP Cortex-M Target Driver Setup

DEbI-IQI Trace Flash Download |F'ack I

 Download Function

LOAD " Erase Full Chip ¥ Program

Fi % Erase Sectors [Ver
C oot e [T

RAM for Algorithm

Start: |MBDZ€-H}D Size: | 00008000

r— Programming Algorithm

| Device Size | Device Type |
ics P

Address Range |

*

CY8Choo SFLASH_TOCZ Tk On-chip Fash 16007C00H - 16007FFFH
CYBCEox_SFLASH_PKEY kR On-chip Flash 16005A00H - 160065FFH
CY8Choo SFLASH_LUSER 2 On-chip Fash 16000800H - 16000FFFH
CYBCEoo _WFLASH 3 On-chip Fash 14000000H - 14007FFFH
CYBCEoT_sect256KE M On-chip Flash 10000000H - 100FFFFFH
Start: | Size:
Add | Femove |
ok | Cancel | Help

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

Exporting to IDEs

75

o CYPRESS

g EMBEDDED IN TOMORROW™

5. Select the Pack tab and check if Cypress PSoC6 DFP is enabled:

Debug I Trace I Flash Download Pack |

Debug Description
Pack: Cypress.PSoC6_DFP.1.0.0

¥ Enable ™ Enable Flash Sequences

I Log Sequences: ID:"-.C‘,'P"-Imp"-new"-.KeiIiject"-.CYSCKIT—DEZ—WIFI-BT‘-.EM"-n'ltb-exampIe-psocB-gpio-inter

Configuration: I Edit... |

CMSIS-DAP Cortex-M Target Driver Setup *

QK I Cancel Help

7.5.2.2 To Use J-Link debugger

1. Make sure you have J-Link software version 6.62 or newer.

Exporting to IDEs

2. Select the Debug tab in the Options for Target dialog, select J-LINK / J-TRACE Cortex as debug adapter, and click

“Settings”:

Options for Target 'mth-example-psoc-gpio-interrupt’

Dievice I Target I Qutput I Listing I User I C/C++ {.ﬂ.CG}I Asm I Linker Debug | Litilties I

Manage Component Viewer Description Files ... |

™ Use Simulator with restrictions Settings | * Use: IJ-LINK,-"J-TH;&.CE Cortex ;I Settings I
™ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run to main() V¥ Load Application at Startup V¥ Run to main()
Initialization File: Initialization File:
| | e || = Edi |
Restore Debug Session Seftings ——————————————————— Restore Debug Session Settings ———————————————————
v Breakpaints ¥ Toolbaox | Breakpaints ¥ Toolbaz
V¥ Watch Windows & Performance Analyzer V¥ Watch Windows
V¥ Memary Display V¥ System Viewer V¥ Memary Display [V System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
[SARMCM3.DLL |-REMAP -WPU [SARMCM3.DLL | -MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
[pcmpLL [pCh4 fTcMDLL [pCh4
[Wam if outdated Executable is loaded [~ Wam f outdated Executable is loaded

oK Cancel Defautts | Help

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

76

&= CYPRESS

> EMBEDDED IN TOMORROW™ EXpOI'ting to IDEs

3. Click OK in the Device selection message box:

MY Cortex JLink/JTrace Target Driver Setup

Debug |Trace | Riash Download |
—J-Link # J-Trace Adapter ———— ~JTAG Device Chain

5N: || vl Move
Device: TEE Up |
HW : dil : I ol Downl
P

Bl -Link

The selected device "CYBCE247EZI-D54: CORTEX-M4" is unknown to this version of the J-Link software.

2 J-Link V6.62 Device Selection 7

Proper device selection is required to use the J-Link internal flash leaders

{ "B Please make sure that 2t least the core J-Link shall connect to, is selected,
[
for flash download or unlimited flash breskpoints.

For some devices which require 2 specizl handling, selection of the correct device is important.

o]

4. Select appropriate target in Wizard:

H SEGGER J-Link V6.62b - Target device settings *
Selected Device: CYBCExx7_CM4 Litle Endian + | Core #0 ~+

Manufacturer Device Core MumCores Flash Size RAM Size £

Cypress CYBCHxb_CM4 Cortex-M4 1 512KB + 32 K. 32KB

Cypress CYBCHxb_CM4_sect236KB Cortex-M4 1 512KB + 32 K. 32KB

Cypress CY8CHT_CMOp Cortex-MD 1 1MB + 32KB.. 32KB

Cypress CYBCET_CMOp_sect236KB Cortex-MD 1 1MB + 32KB.. 32KB

Cypress CY8CHed_CMOp_sect256KB_tm Cortex-MO 1 1TME + 32KB... 32KB

Cypress CY8CHeT_CMOp_tm Cortex MO 1ME + 32KB.. 32KB
CYECEoT_CM4 _ 1MB - 32KB

Cypress CYBCHT_CM4_sect236KB Cortex-M4 1MB+ 32KB.. 32KB

Cypress CY8ChoA_CMOp Cortex-M0 1 2MB + 32KB.. 32KB

Cypress CY8CHoA_CMOp_sect256KB Cortex-M0 1 2MB + 32KB.. 32KB

Cypress CYBCEd_CMOp_sect256KB_t.. Cortex-MO 1 2MB + 32KB.. 32KB

Cypress CYBCEA_CMOp_tm Cortex-MD 1 2MB + 32KB... 32KB

Cypress CYBCEaA_CM4 Cortex-M4 1 2MB + 32KB... 32KB

Cypress CYBChaA_CM4_sect256KB Cortex-M4 1 2MB + 32KB... 32KB

Cypress CYBL10hoox Cortex-M0 1 128 KB 16 KB v

= e an e e wan . e A . J

Cancel

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 77

o CYPRESS

g EMBEDDED IN TOMORROW™

5. Goto Debug tab in Target Driver Setup dialog and select:
O setPort to “SW”
O setMax Clock to “1 MHz”
O set Connect to “Normal”
O set Reset to “Normal”

O enable Reset after Connect option

Cortex JLink/Trace Target Driver Setup

Debug |T|E|ce I Flash Downloadl

HW - V1010 di: I V6.62d

FW . |J-Link V10 compiled Jan 7 2(

Add I Delete | Updatel IR len: I

—d-Link # J-Trace Adapter —————— ~ SW Device
sN: [50107842 -] IDCODE | Device Name | tove
Freice I-Link SWD | &) x6BAD2477 ARM CoreSight SW-DP Up |

% Automatic Detection 1D CODE: I
€ tanual Configuration Device Name; I

Cache Options Download Options

Reset:fNomal <[l [CacheCods [~ Verfy Code Download

V¥ Cache Memory [~ Download to Flash

~Interface TCPAP Misc
& USE " TCPAP AEETTE FEIE .
IP-Address Port (Auto:) Autodetect | ik Info |
Scan | = .
[1Z7. 0.0 .1 [0 Pra | JLirk Crd |
State: ready

ok | Cancel |

Apply

Exporting to IDEs

6. Select the Flash Download tab in Target Driver Setup dialog and select “Reset and Run” option after download if needed:

Cortex JLink/JTrace Target Driver Setup

Debug | Trace Fash Download |

— Download Function RAM for Algorithm

Start: [(x08026400 Size: 8000

r— Programming Algorithm

| Device Size | Device Type | Address Range
CY8CHoo_SFLASH_TOC2 Tk On-chip Flash 16007C00H - 16007FFFH
CYBCHoo_SFLASH_PKEY * On-chip Flash 16005A00H - 160065FFH
CYBCEoo_SFLASH_USER s On-chip Flash 16000800H - 16000FFFH
CYBCEoo_WFLASH 324 On-chip Flash 14000000H - 14007FFFH
CYBCEo7_sect256KB Ll On-chip Flash 10000000H - 100FFFFFH
Start: I Size:

Add I Remaove |

*

OK I Cancel

Apply

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

78

o CYPRESS

g EMBEDDED IN TOMORROW™

7.5.2.3 Program External Memory

1. Download internal flash as described above.

Notice “No Algorithm found for: 18000000H - 1800FFFFH” warning.

Exporting to IDEs

2. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for On-chip Flash

and add programming algorithm for External Flash SPI:

CIMSIS-DAP Cortex-M Target Driver Setup

Debug I Trace Hash Download | Pack I

— Download Function RAM for Algorithm
LORD " Frase Full Chip ¥ Program
F; ' Erase Sectors [V Verfy Start: (08026400 Size:lfbd]DDDEDDD
" DonotErase ¥ Resetand Run

— Programming Algorthm

CY8CEeoo SFLASH_TOC2 On-chip Flash 16007C00H - 16007FFFH
CY8CEoo_SFLASH_PKEY On-chip Flash 16005A00H - 160065FFH
CY8CEoo_SFLASH_USER On-chip Flash 16000800H - 16000FFFH
CY8CEoes_WFLASH On-chip Flash 14000000H - 14007FFFH
CY8CEx7_sect?56KB On-chip Flash 10000000H - 100FFFFFH
Start: |[b:1GDD?CDD Size: 00000400
o |
oK | Cancel | Help
CMSIS-DAP Cortex-M Target Driver Setup
De-bugl Trace Flash Download |F‘E|c:k I
— Diownload Function RAM faor Algarthm
LOAD i~ Erase Ful Chip |7 Program
_F % Erase Sectors [V Verfy Start: (08026400 Size: | k00002000
i DonotEmse |¥ Resetand Run
— Programming Algorithm
Deschptiorn fice of i e Address Bange
CYBCEoo_SMIF 128M Ext. Flash SPI 18000000H - 1FFFFFFFH
Start: [(18000000 Size: |(x08000000
Add | Remaove |
ok | Cancel | Help

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

79

CYPRESS

g EMBEDDED IN TOMORROW™

3. Download flash.

Notice warnings:
O No Algorithm found for: 10000000H - 1000182FH

O No Algorithm found for: 10002000H - 10007E5BH
O No Algorithm found for: 16007C0OOH - 16007DFFH

7.5.2.4 Erase External Memory

1.
and add programming algorithm for External Flash SPI:

CMSIS-DAP Cortex-M Target Driver Setup

Debug | Trace FHash Download | Pack |

RAM for Algorithm

— Download Function
LORAD " Erase Ful Chip ¥ Program
_‘Fi @ FErase Sectors [Verfy

¢ Donot Erase [Reset and Run

Start: | (08026400 Size: |(x00008000

P ing Algorithm

On-chip Fash 16007C00H - 16007FFFH
On-chip Flash 16005A00H - 160065FFH
On-chip Flash 16000800H - 16000FFFH
On-chip Flash 14000000H - 14007FFFH
On-chip Flash 10000000H - 100FFFFFH

CY8CHoo_SFLASH_TOC2
CY8CEoo_SFLASH_PKEY

CY8CHoo_SFLASH_USER
CYBCEoo_WFLASH
CYBCEo7_sect256KB

Start: I[k‘IGDD?CDD Size: | 00000400

Add |I Remove I

CMSIS-DAP Cortex-M Target Driver Setup X
Debug I Trace Hash Download | Pack I

— Download Function RAM for Algorithm

LOAD " Erase Ful Chip ¥ Program

_‘Fi % Erase Sectors [V Verify Start: | (08026400 Size: |2<D0008000

" Donot Erase [V Reset and Run
— Programming Algorithm
escrhption eyice S j 1] 3 LaNge
CYBCho_SMIF 128M Ext. Flash SP 13000000H - 1FFFFFFFH
Start:ltbdRDDDDDD Size: | (08000000
Add | Remave |
Help

2. Click Flash > Erase in menu bar.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J

Exporting to IDEs

Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for On-chip Flash

80

Document Revision History

& CYPRESS

- EMBEDDED IN TOMORROW"™

Document Title: ModusToolbox™ 2.3 User Guide

Document Number: 002-29893

Revision Date Description of Change

i 3/24/2020 New document.

*A 3/27/2020 Updates to screen captures and associated text.
*B 4/1/2020 Fix broken links.

*C 4/29/2020 Fix incorrect link.

*D 8/28/2020 Updates for ModusToolbox 2.2.

*E 9/23/2020 Corrections to Build System and Board Support Packages chapters.
*F 9/29/2020 Added links to KBAs; updated text for cyignore.
*G 10/2/2020 Added details for BTSDK v2.8 BSPs/libraries.

*H 1/14/2021 Updated Manifest chapter and fixed broken links.
*| 3/23/2021 Updates for ModusToolbox 2.3.

*J 5/24/2021 Updated information for creating a custom BSP.

ModusToolbox™ 2.3 User Guide, Document Number: 002-29893 Rev. *J 81

	Contents
	1 Introduction
	1.1 About this Guide
	1.2 What is ModusToolbox?
	1.2.1 Supported Devices
	1.2.2 Development Tools
	1.2.3 Run-Time Software

	1.3 Partner Ecosystems

	2 Getting Started
	2.1 Install and Configure Software
	2.1.1 GUI Set-up Instructions
	2.1.2 CLI Set-up Instructions

	2.2 Get Help
	2.2.1 GUI Documentation
	2.2.1.1 Eclipse IDE
	2.2.1.2 Configurator and Tool Guides

	2.2.2 Command Line Documentation
	2.2.2.1 make help
	2.2.2.2 CLI Tools

	2.3 Create Applications
	2.3.1 Project Creator Tools
	2.3.1.1 Project Creator GUI
	2.3.1.2 project-creator-cli

	2.3.2 git clone
	2.3.3 Typical Application Contents
	2.3.3.1 Application Directory
	2.3.3.2 mtb_shared Directory

	2.4 Update BSPs and Libraries
	2.4.1 Library Manager
	2.4.2 make getlibs

	2.5 Configure Settings for Devices, Peripherals, and Libraries
	2.5.1 Configurator GUI Tools
	2.5.2 Configurator CLI Tools

	2.6 Write Application Code
	2.7 Build, Program, and Debug
	2.7.1 Use Eclipse IDE
	2.7.2 Export to another IDE
	2.7.3 Use Command Line
	2.7.3.1 make build
	2.7.3.2 make program
	2.7.3.3 make debug/qdebug/attach

	3 ModusToolbox Software Overview
	3.1 Application Layers
	3.1.1 HAL
	3.1.2 PDL
	3.1.3 Configurators

	3.2 Installation Resources
	3.2.1 Directory Structure
	3.2.2 Documentation
	3.2.2.1 Release Notes
	3.2.2.2 Top-Level Documents
	3.2.2.3 Document Index Page

	3.2.3 IDE Support
	3.2.4 Tools
	3.2.4.1 Configurators
	3.2.4.2 Other Tools
	3.2.4.3 Utilities
	3.2.4.4 Build System Infrastructure
	3.2.4.5 Program and Debug Support

	3.3 Code Examples
	3.4 BSPs & Libraries
	3.4.1 Board Support Packages

	3.5 Libraries
	3.6 Product Versioning
	3.6.1 General Philosophy
	3.6.2 Tools Package Versioning
	3.6.3 Multiple Tools Versions Installed
	3.6.4 Specifying Alternate Tools Version
	3.6.4.1 System Variable
	3.6.4.2 Eclipse IDE Workspace Setting
	3.6.4.3 Specific Project Makefile

	3.6.5 Tools and Configurators Versioning
	3.6.5.1 Configurator Messages

	3.6.6 GitHub Libraries Versioning
	3.6.7 Dependencies Between Libraries
	3.6.7.1 Dependencies via .mtb files
	3.6.7.2 Regular C Dependencies via #include

	4 ModusToolbox Build System
	4.1 Overview
	4.2 Application Types
	4.3 BSPs
	4.4 make getlibs
	4.4.1 repos

	4.5 Adding source files
	4.5.1 Auto-Discovery
	4.5.1.1 .cyignore
	4.5.1.2 TOOLCHAIN_<NAME>
	4.5.1.3 TARGET_<NAME>
	4.5.1.4 CONFIG_<NAME>
	4.5.1.5 COMPONENT_<NAME>
	4.5.1.6 BSP Makefile
	4.5.1.7 Multi-project application with imported BSP

	4.6 Pre-builds and Post-builds
	4.7 Program and Debug
	4.8 Available Make Targets
	4.8.1 General Make Targets
	4.8.2 IDE Make Targets
	4.8.3 Tools Make Targets
	4.8.4 Utility Make Targets

	4.9 Available Make Variables
	4.9.1 Basic Configuration Make Variables
	4.9.2 Advanced Configuration Make Variables
	4.9.3 BSP Make Variables
	4.9.4 Getlibs Make Variables
	4.9.5 Path Make Variables
	4.9.6 Miscellaneous Make Variables

	5 Board Support Packages
	5.1 Overview
	5.2 What’s in a BSP
	5.2.1 COMPONENT_BSP_DESIGN_MODUS
	5.2.2 COMPONENT
	5.2.3 deps Subdirectory
	5.2.4 docs Subdirectory
	5.2.5 Support Files
	5.2.6 <BSP_NAME>.mk
	5.2.7 locate_recipe.mk
	5.2.8 README/RELEASE.md
	5.2.9 BTSDK-Specific BSP files

	5.3 Creating your Own BSP
	5.4 Modifying the BSP Configuration for a Single Application

	6 Manifest Files
	6.1 Overview
	6.2 Create Your Own Manifest
	6.2.1 Overriding the Standard Super-Manifest
	6.2.2 Secondary Super-Manifest
	6.2.3 Processing
	6.2.4 Conflicting Data

	6.3 Using Offline Content
	6.4 Access Private Repositories

	7 Exporting to IDEs
	7.1 Overview
	7.2 Import to Eclipse
	7.3 Export to VS Code
	7.3.1 Prerequisites
	7.3.2 Process Example
	7.3.2.1 To Debug using KitProg3/MiniProg4
	7.3.2.2 To Debug using J-Link

	7.4 Export IAR EWARM (Windows Only)
	7.4.1 Prerequisites
	7.4.2 Process Example
	7.4.2.1 To Use KitProg3/MiniProg4
	7.4.2.2 To use MiniProg4 with PSoC 6 Single Core and PSoC 6 256K
	7.4.2.3 To Use J-Link

	7.5 Export to Keil µVision 5 (Windows Only)
	7.5.1 Prerequisites
	7.5.2 Process Example
	7.5.2.1 To Use KitProg3/MiniProg4, CMSIS-DAP, ULink2, and ULink Pro debuggers
	7.5.2.2 To Use J-Link debugger
	7.5.2.3 Program External Memory
	7.5.2.4 Erase External Memory

	Document Revision History

