
AURIX™ TC2xx Microcontroller Training

V1.0.2

MULTICAN_GW_TX_FIFO_1

for KIT_AURIX_TC297_TFT
MULTICAN in GATEWAY mode using TX FIFO

Please read the Important Notice and Warnings at the end of this document



Scope of work

MULTICAN in Gateway mode is used to exchange data using a gateway 

with a TX FIFO structure between multiple nodes, implemented in the 

same device using Loop-Back mode.

The CAN messages are sent from CAN node 2 over CAN bus (in case of 

Loop-Back mode all nodes can access the internal bus). CAN node 0 

receives the transmitted messages but also immediately gateways the 

received data to CAN node 1. Three message objects allocated to CAN 

node 1 define a TX FIFO buffer structure. Immediately, upon the reception of 

the data via gateway, CAN node 1 transmits the received data. The data 

transmitted by the CAN node 1 is received by the CAN node 3. The content 

of the received data will be compared to the content of the transmitted CAN 

messages together with the FIFO status check and in case of success, a 

LED is turned on to confirm successful message reception.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› The MultiCAN+ module provides a communication interface which is fully 

compliant with CAN specification V2.0B (active) and to CAN FD 

ISO11898-1 DIS version 2014, providing communication up to 1 Mbit/s 

in Classical CAN (ISO 11898-1:2003(E)mode) and/or CAN FD up to 

5 Mbit/s (dependent on frequency and nodes)

› The MultiCAN+ module consists of several CAN nodes (in case of 

AURIX™ TC29x device, 4 nodes) which are CAN FD capable. Each CAN 

node communicates over two pins (TXD and RXD). Additionally, there is 

an internal Loop-Back Mode functionality available for test purposes

› All CAN nodes share a common set of 256 message objects. Each 

message object can be individually allocated to one of the CAN nodes. 

Besides serving as a storage container for incoming and outgoing 

frames, message objects can be combined to build gateways between 

the CAN nodes or to setup a FIFO buffer

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware setup

This code example has been 

developed for the board 

KIT_AURIX_TC297_TFT_BC-Step.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Application use case that is covered with this example:

NODE 2

ECU X

CAN BUS A

CAN BUS B

NODE 3

ECU Z

NODE 0

ECU Y

NODE 1

NODE 3

ECU Z

1 2

3 4

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Application use case short description:

› The internal Loop-Back mode allows to implement the previously shown application 

use case by using just one AURIX™ TC29x device with 4 CAN nodes

› In this example the Gateway mode functionality is used. The basic idea is to transfer 

data between two independent CAN buses without any CPU intervention

› Additionally, in case of high CPU load, it might be difficult to process a series of CAN 

frames in time. This might happen if multiple messages are received or must be 

transmitted in short time. For this reason, a FIFO buffer structure usage is shown in 

this example as well

– The CAN node 2 sends a CAN message over the CAN bus (in case of Loop-Back 

mode all nodes can access the internal bus)

– CAN node 0 receives the message and immediately gateways the received data to 

CAN node 1. Three message objects (MO1 as FIFO base object and MO2-MO3 as 

FIFO slave objects), allocated to CAN node 1, define a TX FIFO buffer structure

– Immediately upon the reception of the data via gateway, CAN node 1 transmits the 

received data

– The data transmitted by the CAN node 1 is received by the CAN node 3

1

2

3

4

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Graphical representation of the application use case 

NODE 2

ECU X

CAN BUS A

CAN BUS B

NODE 3

ECU Z

NODE 0

ECU Y
NODE 1

NODE 3

ECU Z

1 2

3 4

Base FIFO object

Second slave object

First slave object

Message object ID: 10 

CAN message ID: 0x444

Message object ID: 0

CAN message ID: 0x444

Message object ID: 1, 2 or 3 

CAN message ID: 0x777

Message object ID: 20

CAN message ID: 0x777

2a

2b 2d

2c

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Application code can be separated into four segments:

› Initialization of the MultiCAN+ module with the accompanying node and message 

objects initialization, implemented in the initMultican() function

› Initialization of the port pin connected to the LED (D107 on the board). The LED is 

used to verify the success of a CAN message reception. This is done inside the 

initLed() function

› Transmission of the configured CAN messages, implemented in the 

transmitCanMessages() function

› Verification of the received CAN messages, implemented in the verifyCanMessages()

function

An additional interrupt service routine (ISR) is implemented:

› On RX interrupt, the ISR reads the received CAN message and, in case of no errors, 

increments the counter to indicate the number of successfully received CAN messages 

(realized by canIsrRxHandler() function)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

MultiCAN+ module initialization

Initialization is performed in three phases:

› A default CAN module configuration is loaded into the configuration structure by using 

the function IfxMultican_Can_initModuleConfig(). 

Afterwards, the initialization of the CAN module with the user configuration is done with 

the function IfxMultican_Can_initModule()

› A default CAN node configuration is loaded into the configuration structure by using the 

function IfxMultican_Can_Node_initConfig(). Initialization of the CAN nodes (0, 1, 2, 

and 3) with the different CAN node ID values and definition of Loop-Back Mode usage 

for all nodes is done with the function IfxMultican_Can_Node_init()

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

MultiCAN+ module initialization

› A default CAN message object configuration is loaded into the configuration structure 

by using the function IfxMultican_Can_MsgObj_initConfig(). 

The initialization of the CAN message objects with different configurations is done by 

the IfxMultican_Can_MsgObj_init() function

All functions used for the MultiCAN+ module initialization are declared in the iLLD header 

IfxMultican_Can.h.

Due to the multiple message objects used in this application use case and the complexity 

of their configuration, following slides cover the configuration of each message object.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Message objects configuration

› Gateway source object (MO0):
– canMsgObjConfig.msgObjId = 0 – defines the message object ID
– canMsgObjConfig.messageId = 0x444 – defines the CAN message ID used during arbitration phase 

(shares the same ID with message object 10 (MO10))
– canMsgObjConfig.msgObjCount = 2 – defines the number of FIFO slave objects that is used as 

gateway DESTINATION object
– canMsgObjConfig.frame = IfxMultican_Frame_receive – defines the message object as a receive 

message object
– canMsgObjConfig.firstSlaveObjId = 2 – defines the first slave object of the FIFO to be the first 

message object after TX FIFO base object 
– canMsgObjConfig.gatewayTransfers = TRUE – enables gateway transfers (defines this message 

object as gateway source object)
– canMsgObjConfig.gatewayConfig.copyDataLengthCode = TRUE – copies data length code of the 

gateway source object to a gateway destination object
– canMsgObjConfig.gatewayConfig.copyData = TRUE – copies data content of the gateway source 

object to a gateway destination object
– canMsgObjConfig.gatewayConfig.copyId = FALSE – does NOT copy identifier (ID) of the gateway 

source object to a gateway destination object
– canMsgObjConfig.gatewayConfig.enableTransmit = TRUE – enable setting TXRQ bit in the 

gateway destination object
– canMsgObjConfig.gatewayConfig.gatewayDstObjId = 2 – defines the first slave object of the FIFO 

as the gateway destination object

Gateway source object (MO0) is assigned to CAN Node 0.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Message objects configuration

› Gateway destination object (implemented as TX FIFO object) 

(MO1 as FIFO base object and MO2-MO3 as the FIFO slave objects):

– canMsgObjConfig.msgObjId = 1 – defines the message object ID

– canMsgObjConfig.messageId = 0x777 – defines the CAN message ID used during 

arbitration phase (shares the same ID with message object 20 (MO20))

– canMsgObjConfig.msgObjCount = 2 – defines the size of the structure (more than 1 

message object specifies FIFO structure: MO2 and MO3)

– canMsgObjConfig.frame = IfxMultican_Frame_transmit – defines the message object 

as a transmit message object (TX FIFO in this case)

– canMsgObjConfig.firstSlaveObjId = 2 – defines the first slave object of the FIFO to be 

the first message object after TX FIFO base object

Gateway destination object (MO1 and MO2-MO3) is assigned to CAN Node 1.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Message objects configuration

› Source standard message object (MO10):

– canMsgObjConfig.msgObjId = 10 – defines the message object ID

– canMsgObjConfig.messageId = 0x444 – defines the CAN message ID used during 

arbitration phase (shares the same ID with message object 0 (MO0))

– canMsgObjConfig.frame = IfxMultican_Frame_transmit – defines the message object 

as a transmit message object

Source standard message object (MO10) is assigned to CAN Node 2

› Destination standard message object (MO20):

– canMsgObjConfig.msgObjId = 20 – defines the message object ID

– canMsgObjConfig.messageId = 0x777 – defines the CAN message ID used during 

arbitration phase (shares the same ID with message object 1 (MO1))

– canMsgObjConfig.frame = IfxMultican_Frame_receive – defines the message object 

as a receive message object

– canMsgObjConfig.rxInterrupt.enabled = TRUE – enables interrupt generation in case 

of CAN message reception

– canMsgObjConfig.rxInterrupt.srcId = IfxMultican_SrcId_1 – defines the interrupt node 

pointer to be used in case of an interrupt

Destination standard message object (MO20) is assigned to CAN Node 3

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Initialization of a pin connected to the LED

An LED is used to verify the success of a CAN message reception. Before using the LED, a port 

pin to which the LED is connected must be configured.

› First step is to set the port pin to level “HIGH”; this keeps the LED turned off as a default 

state (IfxPort_setPinHigh() function)

› Second step is to set the port pin to push-pull output mode with the 

IfxPort_setPinModeOutput() function

› Finally, the pad driver strength is defined through the function IfxPort_setPinPadDriver()

All functions are declared in the iLLD header IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Transmission of CAN messages

Before the CAN messages are transmitted, a number of CAN messages need to be initialized. 

The user can change the number of CAN messages by modifying 

NUMBER_OF_CAN_MESSAGES macro value. The TX messages (messages that will be 

transmitted) are initialized with the combination of predefined content and current CAN message 

value. The RX messages (messages where the received CAN message will be stored) are 

initialized with invalid ID, data, and length value. After successful CAN transmission the values 

are replaced with the valid content. Following each CAN message transmission, a code 

execution waits until the received data has been read by the interrupt service routine. 

› Initialization of both TX and RX messages is done by using IfxMultican_Message_init()

› A CAN message is transmitted by using IfxMultican_Can_MsgObj_sendMessage(). A 

CAN message is continuously transmitted as long as the returned status is 

IfxMultican_Status_notSentBusy (this status occurs if there is a pending transmit request) 

The function IfxMultican_Message_init() is declared in the iLLD header IfxMultican.h while 

the IfxMultican_Can_MsgObj_sendMessage() function is declared in the iLLD header 

IfxMultican_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Verification of CAN messages

After successful reception of all expected CAN messages, the Current Object Pointer (CUR) 

values of the gateway source and of the destination message objects are checked. 

This check is performed by comparing the CUR pointer value given in the Message Object 

FIFO/Gateway Pointer Register (FGPR) of the related message object to the expected value. 

The function IfxMultican_MsgObj_getPointer() returns the pointer to the related message 

object.

Finally, the check is performed to verify the success of CAN message transmission and 

reception by comparing the received ID, data, and length value with the transmitted ones. In 

case of success, the LED is turned on (IfxPort_setPinLow()) to indicate the correctness of the 

received messages and consequently the correctness of the CAN transmission.

The function IfxMultican_MsgObj_getPointer() is declared in iLLD header IfxMultican.h while 

the IfxPort_setPinLow() function is declared in iLLD header IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Interrupt Service Routine (ISR)

An ISR is triggered by the successful CAN message reception.

› The RX ISR reads the received CAN message with the 

IfxMultican_Can_MsgObj_readMessage() function. Based on the return status, the code 

execution can end up in an infinite loop due to the erroneous return status. If a non-

erroneous return status is present, then a global variable g_isrRxCount is incremented. This 

variable is used as a counter to indicate the number of successfully received CAN messages

The function is declared in the iLLD header IfxMultican_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, observe the following 

behavior:

› Check that the LED (1) is 

turned on (correct CAN 

messages’ content has been 

received, valid CUR pointers in 

both gateway source and 

destination message object 

have been observed)

1

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.2 Added figure describing application use case

V1.0.1 Update of version to be in line with the code example’s version

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2021. All rights reserved.



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
MULTICAN_GW_TX_FIFO_1
_KIT_TC297_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

