
AURIX™ TC3xx Microcontroller Training

V1.0.1

MPU_Memory_Protection_1

for KIT_AURIX_TC397_TFT
MPU Memory Protection

Please read the Important Notice and Warnings at the end of this document



Scope of Work

The MPU module is used to protect part of an array from read/write 

accesses.

The MPU module is configured to enable read/write access to the first half of 

an array.

To test the function of the read protection, each element of the array is read 

in a loop.

Two LEDs are used to indicate the progression of the CPU read accesses.

When the loop reads the last accessible element, the first LED is turned on.

The second LED is only turned on if the CPU reads an element which should 

be protected. 

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› Each CPU has a Memory Protection Unit that can restrict what memory ranges are 

allowed for each master (e.g. DMA, CPU) based on a master ID

› In AURIX™ TC3xx, the MPU supports:

– 18 data ranges that specify which memory ranges a master is allowed to access for 

data. Read and write permissions can be specified for each range

– 10 code ranges that specify which memory ranges the CPU is allowed to access 

for instructions

› In AURIX™ TC3xx, the CPU has 6 different protection sets (PRS) that specify which 

combination of data ranges and code ranges are active

› When the MPU is enabled, an instruction or data access outside of the specified MPU 

ranges selected by the active protection set immediately causes a CPU trap and 

optionally an alarm to the Safety Management Unit (SMU)

› The CPU Memory Protection Unit is one of the many AURIX™ safety mechanisms that 

help to protect against random hardware faults as well as systematic faults

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› The SRAMs monitored by the MPU are:

– Program Scratch-Pad SRAM (PSPR) of each CPU 

– Data Scratch-Pad SRAM (DSPR) of each CPU 

– Local Bus Memory Unit (LMU), when available in the device

› Protection Ranges are defined by a Lower Boundary and an Upper Boundary.

An address belongs to the range if:

– Lower Boundary <= Address < Upper Boundary

› The granularity of the memory protection ranges differ for data and code:

– Data protection ranges have a granularity of 8 bytes

– Code protection ranges have a granularity of 32 bytes

› The permission to access a memory location is the logical ‘OR’ of the memory range 

permissions. Where ranges intersect, the MPU grants the most permissive access

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› PRS0 automatically becomes active whenever a CPU interrupt or trap is triggered.

For this reason, it is commonly reserved for OS usage and PRS0 is typically configured 

to allow access to all valid code and data ranges

› It is possible for software to reconfigure the MPU range registers during runtime, but 

this takes more time than simply selecting a different active protection set

› A task that is not running in supervisor mode will not be able to change its active 

protection set, update the protection ranges, or disable the MPU monitoring.

This ensures that user level tasks cannot circumvent the protection in any way

Note: Masters in AURIX™ devices have different levels of privileges, where supervisor 

mode is the highest. This is a safety measure to ensure that no unintended changes are 

done to “sensitive” registers or memory areas.

Note: To ensure deterministic behavior in all implementations of TriCore™, a region at 

least twice the size of the largest memory accesses, minus one byte, should be left as a 

buffer between each memory protection region.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware Setup

This code example has been 

developed for the board 

KIT_A2G_TC397_5V_TFT.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuration of the MPU

To enable memory protection, the following steps have to be followed:

› Define the Data/Code Protection Ranges where access must be granted

› Define the type of access to grant in a defined Protection Set

– Enable read and/or write in case of definition of a Data Protection Range (DPR)

– Enable code execution in case of definition of a Code Protection Range (CPR)

› Select the active Protection Set

› Enable the memory protection

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Definition of Data Protection Ranges

The definition of a Data Protection Range is done through the function 

define_data_protection_range(), which sets the lower and upper boundaries of the given CPU 

Data Protection Range number.

The lower and upper boundaries are set by calling the intrinsic function __mtcr(), which moves 

contents of a data register to the addressed Core Special Function Register (CSFR).

__mtcr() performs a Move To Core Register (MTCR) TriCore™ instruction and is followed by 

an ISYNC instruction. 

The ISYNC instruction ensures that the effects of the Core Special Function Register (CSFR) 

update are correctly seen by all following instructions. An ISYNC must always be performed 

after an MTCR instruction.

The Tasking intrinsic function __mtcr() automatically generates an ISYNC instruction after 

calling MTCR; when using different compilers the ISYNC instruction call is ensured by the 

__isync() function called between the #if - #endif directives.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Definition of Code Protection Ranges

The definition of a Code Protection Range is done through the function 
define_code_protection_range(), which sets the lower and upper boundaries of the given 
CPU Code Protection Range number.

The lower and upper boundaries are set by calling the intrinsic function __mtcr().

Configuration of Read Access for a Data Protection Range

The read access to a Data Protection Range (DPR) is provided with the function 
enable_data_read(), which enables the read access to the given DPR on the addressed 
Protection Set.

To enable the read access, first the CPU Data Protection Read Enable register (CPU_DPRE) is 
read with the intrinsic function __mfcr(), the bit corresponding to the given DPR is set, and 
finally the modified value is stored back to the register with the intrinsic function __mtcr()
(essentially, a load-modify-store operation, which ensures that previously made changes are not 
overwritten).

__mfcr() moves contents of the addressed Core Special Function Register (CSFR) into a data 
register by calling the TriCore™ instruction Move From Core Register (MFCR).

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuration of Write Access for a Data Protection Range

The write access to a Data Protection Range is provided with the function enable_data_write(), 

which enables the write access to the given DPR on the addressed Protection Set.

To enable the write access, first the CPU Data Protection Write Enable register (CPU_WPRE) is 

read with the intrinsic function __mfcr(), the bit corresponding to the given DPR is set, and 

finally the modified value is stored back to the register with the intrinsic function __mtcr().

Configuration of Code Execution Access for a Code Protection Range

The code execution access to a Code Protection Range (CPR) is provided with the function 

enable_code_execution(), which enables the code execution access of the given CPR on the 

addressed Protection Set.

To enable code execution access, first the CPU Code Protection Execute Enable register 

(CPU_CPXE) is read with the intrinsic function __mfcr(), the bit corresponding to the given CPR 

is set, and finally the modified value is stored back to the register with the intrinsic function 

__mtcr().

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Selection of the Active Protection Set

The active protection set is selected with the function set_active_protection_set(), which sets 

the PRS bitfield of the Program Status Word (PSW) register accordingly to the given parameter.

The set_active_protection_set() function needs to be declared as inline because the PSW is 

one of the registers automatically saved to the Context Save Area (CSA) when a function is 

called.

If this function was not declared as inline, the Upper Context (16 registers including the PSW) 

would be automatically saved to the CSA and re-loaded when the function returns, thus losing 

the change to the PSW.

By default, the active Protection set is the Protection Set 0.

Activation of Memory Protection

The memory protection is enabled with the function enable_memory_protection(), which turns 

on the memory protection by setting the PROTEN bitfield of the System Configuration 

(SYSCON) register.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuration and Control of the LEDs

The LEDs are turned on and off by controlling the port pins to which they are connected using 

methods from the iLLD headers IfxPort.h.

In the function init_LEDs() the LED port pins are configured to output push-pull mode using the 

function IfxPort_setPinModeOutput(), then they are immediately turned off with the function 

IfxPort_setPinHigh().

During program execution, the LEDs are turned on in case the first and second half of the array 

are accessible. The port pins are controlled with the function switch_LED_ON() which calls the 

iLLD function IfxPort_setPinLow() for the addressed LED port pin.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, perform the following steps:

› Run the example and check that 

– LED1 is on (meaning that the 

first half of the array was 

accessible in the memory)

– LED2 is off (meaning that the 

second half of the array was 

NOT accessible in the memory)

LED1
LED2

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.1 Fixed function name to configure the port pin

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2021. All rights reserved.



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
MPU_Memory_Protection_1_
KIT_TC397_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

