
AURIX™ TC3xx Microcontroller Training

V1.0.0

MCMCAN_Filtering_1

for KIT_AURIX_TC375_LK
MCMCAN acceptance filtering

Please read the Important Notice and Warnings at the end of this document

Scope of work

The initialization and configuration of several filter modes are used to

illustrate different acceptance filtering options.

The CAN messages are sent from CAN node 0 to CAN node 1 using Loop-

Back mode. Each transmitted CAN message contains a different message

ID and based on the filter configuration, the message is either accepted or

rejected by CAN node 1. Messages that passed acceptance filtering are

stored in RX FIFOs 0 and 1 or dedicated RX buffer based on the filter

configuration. Upon storing the messages, the interrupt service routine is

called and the content of the received CAN message is read. Once the

content of all the received messages is read, the received data is compared

to the transmitted data. If all messages are received without any error

detected, an LED is turned on to confirm successful message reception.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› MCMCAN is the new CAN interface replacing MultiCAN+ module from the

AURIX™ TC2xx family

› The MCMCAN module supports Classical CAN and CAN FD according

to the ISO 11898-1 standard and Time Triggered CAN (TTCAN)

according to the ISO 11898-4 standard

› The MCMCAN module consists of M_CAN as CAN nodes (in case of

AURIX™ TC37x device, 4 nodes) which are CAN FD capable. Each CAN

node communicates over two pins (TXD and RXD). Additionally, there is

an internal Loop-Back Mode functionality available for test purposes

› A configurable Message RAM is used to store the messages to be

transmitted or received. The message RAM is shared by all the CAN

nodes within an MCMCAN module

Copyright © Infineon Technologies AG 2021. All rights reserved.

Hardware setup

This code example has been developed

for the board KIT_A2G_TC375_LITE.

LED1 (1) is used for this example.

1

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

› The MCMCAN module supports acceptance filtering in hardware by configuring two sets of

acceptance filters, one for standard identifiers and one for extended identifiers. These filters

can be assigned to the dedicated RX Buffers or to RX FIFOs 0,1

› The main features of the acceptance filtering are as follows:

– Each filter element can be configured as:

– Range filter [from – to]

– Filter for one or two dedicated message IDs

– Classic bit mask filter

– Each filter element is configurable for acceptance or rejection filtering

– Each filter element can be enabled / disabled individually

– Filters are checked sequentially, execution stops with the first matching filter element

› In the User Manual, the flow for standard Message ID (11-bit Identifier) and extended

Message ID (29-bit Identifier) filtering is described by figures.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

› To demonstrate acceptance filtering mechanisms, the following example of the potential

application use case is given:

– Global filter requirements:

– Reject remote frames with standard IDs

– Reject remote frames with extended IDs

– Accept non-matching messages with standard IDs and store them to RX FIFO 1

– Reject non-matching messages with extended IDs

– Standard ID filter requirements:

– Reject messages with standard IDs in range [0x17-0x19]

– Accept messages with standard IDs in range [0x14-0x1A] and store them in RX FIFO 0

– Accept messages with standard IDs 0x184 or 0x187 and store them in RX FIFO 1

– Accept messages with standard ID 0x189 and store them in RX FIFO

– Accept messages according to standard ID 0x200 and mask 0x39F and store them in

RX FIFO 0

– Reject messages according to standard ID 0x201 and mask 0x39F

– Accept messages with standard ID 0x325 and store them in dedicated RX buffer at

index 0x2

– Accept messages with standard ID 0x326 and store them in dedicated RX buffer at

index 0x5

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

– Extended ID filter requirements:

– Accept messages with extended ID 0x12222222 and store them in dedicated RX

buffer at index 0x0

– Accept messages with extended IDs in range [0x19999999-0x1BBBBBBB] and store

them in RX FIFO 1

– Accept messages with extended ID 0x1FFABCDE and store them in RX FIFO 0

– Accept messages with extended ID 0x16666666 and store them in RX FIFO 1

› Based on the given requirements for this example, we can define the following global,

standard ID, and extended ID filter elements configuration:

g_mcmcan.canNodeConfig.filterConfig.rejectRemoteFramesWithStandardId = TRUE;

g_mcmcan.canNodeConfig.filterConfig.rejectRemoteFramesWithExtendedId = TRUE;

g_mcmcan.canNodeConfig.filterConfig.standardFilterForNonMatchingFrames =

IfxCan_NonMatchingFrame_acceptToRxFifo1;

g_mcmcan.canNodeConfig.filterConfig.extendedFilterForNonMatchingFrames =

IfxCan_NonMatchingFrame_reject;

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

› The standard ID filter elements

configuration:

– SFT: Standard Filter Type

– SFEC: Standard Filter Element

Configuration

– SFID1: Standard Filter ID 1

– SFID2: Standard Filter ID 2

Filter

Element #

StdMsgk_S0(k=0-127)

SFT SFEC SFID1 SFID2

0 Range filter Reject 0x017 0x019

1 Range filter Store in RX FIFO 0 0x014 0x01A

2 Dual ID filter Store in RX FIFO 1 0x184 0x187

3 Dual ID filter Store in RX FIFO 0 0x189 0x189

4 Classic filter Store in RX FIFO 0 0x200 0x39F

5 Classic filter Reject 0x201 0x39F

6 Not applicable Store in RX Buffer 0x325 0x02 (dedicated RX buffer index)

7 Not applicable Store in RX Buffer 0x326 0x05 (dedicated RX buffer index)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

› The extended ID filter elements configuration:

– EFT: Extended Filter Type

– EFEC: Extended Filter Element Configuration

– EFID1: Extended Filter ID 1

– EFID2: Extended Filter ID 2

Filter

Element

#

ExtMsgk_F0/1(k=0-63)

EFT EFEC EFID1 EFID2

0
Not

applicable
Store in RX Buffer 0x12222222

0x00 (dedicated

RX buffer index)

1 Range filter Store in RX FIFO 1 0x19999999 0x1BBBBBBB

2 Dual ID filter Store in RX FIFO 0 0x1FFABCDE 0x1FFABCDE

3
Not

applicable
Store in RX FIFO 1 0x16666666 0x16666666

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

› To validate the different acceptance filtering options, a set of 25 CAN messages is

transmitted. All the CAN messages are acknowledged by the CAN node 1, but based

on the acceptance filter configuration certain received CAN messages are accepted

and stored while others are rejected accordingly

CAN

message #
Message ID

Data

Length (in

bytes / DLC

value)

Accept/

Reject

Matching Filter

Element

Storage

Destination

0 0x014 8 / 0x8 Accept
Standard ID filter

element #1
RX FIFO 0

1 0x015 8 / 0x8 Accept
Standard ID filter

element #1
RX FIFO 0

2 0x016 32 / 0xD Accept
Standard ID filter

element #1
RX FIFO 0

3 0x017 64 / 0xF Reject
Standard ID filter

element #0
Not applicable

4 0x018 12 / 0x9 Reject
Standard ID filter

element #0
Not applicable

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

CAN

message

#

Message ID

Data

Length (in

bytes /

DLC value)

Accept/

Reject

Matching Filter

Element

Storage

Destination

5 0x019 16 / 0xA Reject
Standard ID filter

element #0

Not

applicable

6 0x01A 32 / 0xB Accept
Standard ID filter

element #1
RX FIFO 0

7 0x184 4 / 0x4 Accept
Standard ID filter

element #2
RX FIFO 1

8 0x187 8 / 0x8 Accept
Standard ID filter

element #2
RX FIFO 1

9 0x189 8 / 0x8 Accept
Standard ID filter

element #3
RX FIFO 0

10 0x200 8 / 0x8 Accept
Standard ID filter

element #4
RX FIFO 0

11 0x201 8 / 0x8 Reject
Standard ID filter

element #5

Not

applicable

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

CAN

message

#

Message ID

Data

Length (in

bytes /

DLC value)

Accept/

Reject

Matching Filter

Element

Storage

Destination

12 0x220 8 / 0x8 Accept
Standard ID filter

element #4
RX FIFO 0

13 0x221 8 / 0x8 Reject
Standard ID filter

element #5

Not

applicable

14 0x240 4 / 0x4 Accept
Standard ID filter

element #4
RX FIFO 0

15 0x241 64 / 0xF Reject
Standard ID filter

element #5

Not

applicable

16 0x260 12 / 0x9 Accept
Standard ID filter

element #4
RX FIFO 0

17 0x261 8 / 0x8 Reject
Standard ID filter

element #5

Not

applicable

18 0x325 4 / 0x4 Accept
Standard ID filter

element #6
RX Buffer #2

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

CAN

message

#

Message ID

Data

Length (in

bytes /

DLC value)

Accept/

Reject

Matching Filter

Element

Storage

Destination

19 0x326 32 / 0xD Accept
Standard ID filter

element #7
RX Buffer #5

20 0x327 8 / 0x8 Accept
Global filter

configuration
RX FIFO 1

21 0x12222222 8 / 0x8 Accept
Extended ID filter

element #0
RX Buffer #0

22 0x19999999 8 / 0x8 Accept
Extended ID filter

element #1
RX FIFO 1

23
0x1FFABCD

E
32 / 0xD Accept

Extended ID filter

element #2
RX FIFO 0

24 0x16666666 8 / 0x8 Accept
Extended ID filter

element #3
RX FIFO 1

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Application code can be separated into four segments:

› Initialization of the MCMCAN module with the accompanying node and filter elements

initialization, implemented in the initMCMCAN() function

› Initialization of the port pin connected to the LED (LED1 on the board). The LED is used to

verify the success of a CAN message reception. This is done inside the initLed() function

› Transmission of the configured CAN messages, implemented in the transmitCanMessage()

function

› Verification of the received CAN messages, implemented in the verifyCanMessage()

function

The additional Interrupt Service Routines (ISRs) are implemented:

› On dedicated RX buffer interrupt, the ISR reads the received CAN message (implemented

by canIsrRxBufferHandler() function)

› On RX FIFO 0 interrupt, the ISR reads the received CAN message (implemented by

canIsrRxFifo0Handler() function)

› On RX FIFO 1 interrupt, the ISR reads the received CAN message (implemented by

canIsrRxFifo1Handler() function)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

MCMCAN module initialization

Module initialization:

› A default CAN module configuration is loaded into the configuration structure by using the

function IfxCan_Can_initModuleConfig().

Afterwards, the initialization of the CAN module with the user configuration is done with the

function IfxCan_Can_initModule()

Source node initialization:

› A default CAN node configuration is loaded into the configuration structure by using the

function IfxCan_Can_initNodeConfig(). Source node is configured as CAN node 0

operating in the Loop-Back Mode. CAN node 0 is set to CAN FD long + fast frame mode and

the dedicated TX buffer is used to transmit the CAN messages. CAN node 0 is initialized by

calling IfxCan_Can_initNode() function

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

MCMCAN module initialization

Destination node initialization:

› A default CAN node configuration is loaded into the configuration structure by using the

function IfxCan_Can_initNodeConfig(). Destination node is configured as CAN node 1

operating in the Loop-Back Mode. CAN node 1 is set to CAN FD long + fast frame mode and

the dedicated RX buffers, RX FIFO 0 and RX FIFO 1 are used to receive the CAN

messages. In case the message is accepted by the acceptance filtering, different interrupt

service routines are triggered based on the received message storage destination. CAN

node 1 is initialized by calling IfxCan_Can_initNode() function. Finally, standard and

extended ID filter elements are initialized based on the configuration given at the slide 8 and

9. This is achieved by calling IfxCan_Can_setStandardFilter() and

IfxCan_Can_setExtendedFilter() functions

› All functions used for the MCMCAN module and node initialization are declared in the iLLD

header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Initialization of a pin connected to the LED

An LED is used to verify the success of a CAN message reception. Before using the LED, the

port pin to which the LED is connected must be configured.

› First step is to set the port pin to level “HIGH”; this keeps the LED (low-level active) turned

off as a default state (IfxPort_setPinHigh() function)

› Second step is to set the port pin to push-pull output mode with the

IfxPort_setPinModeOutput() function

› Finally, the pad driver strength is defined through the function IfxPort_setPinPadDriver()

All functions are declared in the iLLD header IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Transmission of CAN messages

Before a CAN message is transmitted, TX message needs to be initialized with the default

configuration (IfxCan_Can_initMessage() function). Default configuration is then modified

based on the current filter use case (see the slides 10-13 for more details). Complete TX

message data content (data content that is transmitted) is firstly invalidated (memset() function)

and then initialized with the combination of current data payload word and current filter use

case, using the following format:

bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0
g_currentFilterUseCase

range: 0 - 24
0 0 0 0 0 0 0 0

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

currentDataPayload

Word

range: 0 - 15

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Transmission of CAN messages

The RX message (container where the received CAN message is stored) is initialized with the

default configuration (after successful acceptance filtering, the values are replaced with the valid

content). Additionally, RX message parameters such as “messageID”, “dataLenghtCode”,

“frameMode”, and the RX message data content need to be invalidated (memset() function).

After the complete initialization of the TX and RX messages and the message data content, the

TX message is transmitted. A CAN message is transmitted by using the

IfxCan_Can_sendMessage() function. A CAN message is continuously transmitted as long as

the returned status is IfxCan_Status_notSentBusy (this status occurs if there is a pending

transmit request). The following transmission is delayed by 1 ms using wait() function allowing

the destination node to perform acceptance filtering and to store the received message before

next transmission.

The functions IfxCan_Can_initMessage() and IfxCan_Can_sendMessage() are declared in

the iLLD header IfxCan_Can.h. The function memset() is declared in the standard C library

header string.h. The function wait() is declared in the iLLD header Bsp.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Verification of CAN messages

After successful reception of each CAN message, several checks are performed. The expected

result of each check depends if the message is expected to be accepted or rejected:

1. Message ID check (check that the received message ID matches the transmitted one).

Verifies that both standard and extended IDs have been received

2. Message length check (check that the received message length matches the transmitted

one). The check is covering both classical CAN and CAN FD frame sizes

3. Frame mode check (check that the received FD Format (FDF) and Bit Rate Switching (BRS)

bit field values match with the expected ones)

4. Storage destination check (check that the received message storage destination matches

with the expected one)

5. Expected valid data check (check that the received data matches with the expected one).

Both classical CAN and CAN FD data content is covered

6. Invalid data check (check that the invalid data has not been modified with the CAN

transmission)

If no error has been observed, the g_status variable holds

CanCommunicationStatus_Success value upon returning from the verifyCanMessage()

function.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Interrupt Service Routines (ISRs)

The ISRs are triggered by the successful CAN message reception. Based on the received

message storage destination, different ISRs are triggered, but they all share the same

functionality:

› Clear the pending interrupt flag by using IfxCan_Node_clearInterruptFlag() function and

read the received CAN message with the IfxCan_Can_readMessage() function

The functions IfxCan_Node_clearInterruptFlag() is declared in the iLLD header IfxCan.h while

the function IfxCan_Can_readMessage() is declared in the iLLD header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

After code compilation and flashing the device, observe the following behavior:

› Check that the LED1 (1) is turned on (all

expected CAN messages have been

successfully received and all checks have

been passed)

1

Copyright © Infineon Technologies AG 2021. All rights reserved.

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-03
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
MCMCAN_Filtering_1_KIT_TC375_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

