
AURIX™ TC3xx Microcontroller Training

V1.0.0

MCMCAN_FD_1

for KIT_AURIX_TC375_LK
MCMCAN FD data transmission

Please read the Important Notice and Warnings at the end of this document



Scope of work

MCMCAN in Flexible Data-Rate mode is used to exchange data 

between two nodes, implemented in the same device using Loop-Back 

mode.

The CAN messages are sent from CAN node 0 to CAN node 1 using Loop-

Back mode. Both CAN nodes are set to CAN Flexible Data-rate mode (CAN 

FD). After each CAN message transmission and successful reception, an 

interrupt is generated. Inside the interrupt service routine, the content of the 

received CAN message is read. In case of the successful read operation, the 

received data is compared to the transmitted data. If all messages are 

received without any error detected, the LED is turned on to confirm 

successful message reception.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› MCMCAN is the new CAN interface replacing MultiCAN+ module from the 

AURIX™ TC2xx family

› The MCMCAN module supports Classical CAN and CAN FD according 

to the ISO 11898-1 standard and Time Triggered CAN (TTCAN) 

according to the ISO 11898-4 standard

› The MCMCAN module consists of M_CAN as CAN nodes (in case of 

AURIX™ TC37x device, 4 nodes) which are CAN FD capable. Each CAN 

node communicates over two pins (TXD and RXD). Additionally, there is 

an internal Loop-Back Mode functionality available for test purposes

› A configurable Message RAM is used to store the messages to be 

transmitted or received. The message RAM is shared by all the CAN 

nodes within an MCMCAN module

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware setup

This code example has been developed 

for the board KIT_A2G_TC375_LITE.

LED1 (1) is used for this example.

1

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

› This code example covers the following four different CAN FD use cases. 

The definition of these use cases is provided in the “g_useCaseConf” 

table

CCCRi

.FDOE

CCCRi

.BRSE

TxMsgk_T1

.FDF

TxMsgk_T1

.BRS

TxMsgk_T0

.XTD
Transmit Behavior

1 1 0 0 0
Classical CAN frames 

with standard ID

(ISO 11898-1)

1 1 0 0 1
Classical CAN frames 

with extended ID

(ISO 11898-1)

1 1 1 0 0
Long frame with standard 

ID

1 1 1 1 1
Long + Fast frame with 

extended ID

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Application code can be separated into four segments:

› Initialization of the MCMCAN module with the accompanying node and message 

objects initialization, implemented in the initMcmcan() function

› Initialization of the port pin connected to the LED (LED1 on the board). The LED is 

used to verify the success of the CAN messages reception. This is done inside the 

initLed() function

› Transmission of the configured CAN messages, implemented in the 

transmitCanMessage() function

› Verification of the received CAN messages, implemented in the 

verifyCanMessage() function

An additional Interrupt Service Routine (ISR) is implemented:

› On RX interrupt, the ISR reads the received CAN message and, in case of no 

errors, increments the counter to indicate the number of successfully received 

CAN messages (implemented in canIsrRxHandler() function)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

MCMCAN module initialization

Initialization is performed as follows:
› A default CAN module configuration is loaded into the configuration structure by 

using the function IfxCan_Can_initModuleConfig(). 
Afterwards, the initialization of the CAN module with the user configuration is done 
with the function IfxCan_Can_initModule()

› A default CAN node configuration is loaded into the configuration structure by 
using the function IfxCan_Can_initNodeConfig(). Initialization of the CAN nodes 
(CAN node 0 and 1) with the different CAN node ID values and definition of Loop-
Back Mode usage for both nodes is done with the function 
IfxCan_Can_initNode(). CAN node 0 is defined as “source node” while CAN node 
1 represents a “destination node”. Both nodes are set to CAN FD long + fast frame 
mode. Dedicated TX buffer is used to transmit the CAN message, while the 
reception is handled by the RX FIFO 0 structure. Finally, upon the CAN message 
reception, the interrupt will be triggered

All functions used for the MCMCAN module and node initialization are declared in the
iLLD header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Initialization of a pin connected to the LED

An LED is used to verify the success of a CAN message reception. Before using the 

LED, the port pin to which the LED is connected must be configured.

› First step is to set the port pin to level “HIGH”; this keeps the LED turned off as a 

default state (IfxPort_setPinHigh() function)

› Second step is to set the port pin to push-pull output mode with the 

IfxPort_setPinModeOutput() function

› Finally, the pad driver strength is defined through the function 

IfxPort_setPinPadDriver()

All functions are declared in the iLLD header IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Transmission of CAN messages

Before a CAN message is transmitted, two CAN messages (TX and RX) need to be 

initialized. The TX message is configured based on the current CAN FD use case 

(see slide 5 for more details). The TX message data content (data content that is 

transmitted) is initialized with the combination of current data payload byte and 

current CAN message value, using the following format:

The RX message (message where the received CAN message is stored) is initialized 

with the default configuration (after successful CAN transmission, the values are 

replaced with the valid content). Additionally, both the TX and RX message data 

content need to be invalidated. No additional CAN message is transmitted until the 

received data has been read by the interrupt service routine. 

bit 7 6 5 4 3 2 1 0

data

content

g_currentCan

Message

range: 0 - 3

currentDataPayloadByte

range: 0 - 63

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Transmission of CAN messages

› Initialization of both TX and RX messages is done by using 

IfxCan_Can_initMessage() function

› Invalidation of both TX and RX message data content by using the memset() 

function

› A CAN message is transmitted by using the IfxCan_Can_sendMessage()

function. A CAN message will be continuously transmitted as long as the returned 

status is IfxCan_Status_notSentBusy (this status occurs if there is a pending 

transmit request)

The functions IfxCan_Can_initMessage() and IfxCan_Can_sendMessage() are 

declared in the iLLD header IfxCan_Can.h. The function memset() is declared in the 

standard C library header string.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Verification of CAN messages

After successful reception of each CAN message, several checks are performed:

1. Message ID check (check that the received message ID matches the transmitted 

one). Verifies that both standard and extended IDs have been received

2. Message length check (check that the received message length matches the 

transmitted one). The check is covering both classical CAN and CAN FD frame 

sizes

3. Frame mode check (check that the received FD Format (FDF) and Bit Rate 

Switching (BRS) bit field values match with the transmitted ones)

4. Expected valid data check (check that the received data matches with the 

expected one). Both classical CAN and CAN FD data content is covered

5. Invalid data check (check that the invalid data has not been modified with the 

CAN transmission)

If no error has been observed, the g_status variable holds 

CanCommunicationStatus_Success value upon returning from the 

verifyCanMessage() function.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Interrupt Service Routine (ISR)

An ISR is triggered by the successful CAN message reception.

› RX interrupt service routine clears the pending interrupt flag by using 

IfxCan_Node_clearInterruptFlag() function and reads the received CAN 

message with the IfxCan_Can_readMessage() function. Once the received CAN 

message has been read, the global variable g_isrRxCount is incremented. This 

variable is used as a counter to indicate the number of successfully received CAN 

messages

The functions IfxCan_Node_clearInterruptFlag() is declared in the iLLD header

IfxCan.h while the function IfxCan_Can_readMessage() is declared in the iLLD

header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, observe the following behavior:

› Check that the LED1 (1) 

is turned on (all CAN messages

have been successfully 

received and all checks have 

been passed)

1

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-03
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
MCMCAN_FD_1_KIT_TC375_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

