

About this document

Scope and purpose

KIT_PSoC4-HVMS-128K_LITE is a lite kit for the PSOC™ high-voltage (HV) mixed signal (MS) 128K microcontrollers, a fully integrated programmable embedded systems for automotive HMI, low-end body control, PTC heaters, safety applications, such as hands-on detect, passenger occupant detection, and other smart edge sensors. The system features an Arm® Cortex®-M0+ processor with programmable and reconfigurable analog and digital blocks.

It is a combination of a microcontroller with the following:

- A 12-bit SAR ADC
- Fifth-generation multi-sense converter (MSC) block supporting capacitive sensing (CAPSENSE™)
- Digital peripherals, such as PWMs
- Serial communication interfaces along with a LIN/CXPI interface with integrated PHY
- High-voltage subsystem to operate directly off the 12-V car battery

Intended audience

This document is intended for design engineers and evaluation for automotive HMI, low-end body control, PTC heaters, safety applications such as hands-on detect, passenger occupant detection, and other smart edge sensors.

Important notice

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits, and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing, and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN), and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third-party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify, and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Safety precautions

Note: Please note the following warnings regarding the hazards associated with development systems.

Table 1 Safety precautions

Warning: The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait for five minutes for the capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.

Warning: The evaluation or reference board is connected to the grid input during testing. Therefore, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.

Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires or perform maintenance work. Wait for five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.

Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Therefore, necessary precautions are required while handling the board. Failure to comply may cause injury.

Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing, or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.

Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

Table of contents

Abou	ut this document	1
mpo	ortant notice	2
Safet	ty precautions	3
Table	e of contents	4
1	KIT_PSoC4-HVMS-128K_LITE kit contents	5
1.1	Overview	
1.2	Block diagram	6
1.3	Board functions	7
2	Getting started	8
2.1	Initial jumper configuration	
2.2	Power up the lite kit	
2.2.1	Power from USB	ç
2.2.2	Power from wall adapter	g
2.3	Hands-on shipping firmware	10
2.3.1	· ·	
2.3.2	Software checks	11
3	Hardware	12
3.1	PSOC™ HVMS device	12
3.2	Power supply	12
3.3	CAPSENSE™ buttons	13
3.4	Potentiometer and temperature sensor	14
3.5	LIN and CXPI interfaces	
3.6	KitProg3 USB program interface	
3.7	Third-party debugger connector	
3.8	Extension headers	
3.8.1	!	
3.8.2		
3.8.3		
3.8.4		
3.8.5		
3.9	Other peripherals	
4	Programming and debugging	
4.1	Program using AutoFlash utility	
4.2	Program and debug using an IAR Embedded Workbench	
5	Schematics and designs	
5.1	KIT_PSoC4-HVMS-128K_LITE kit schematics	
5.2	KIT_PSoC4-HVMS-128K_LITE kit assembly drawings	
Refe	erences	36
Gloss	sary	37
Revis	sion history	38

KIT_PSoC4-HVMS-128K_LITE kit contents

KIT_PSoC4-HVMS-128K_LITE kit contents 1

The kit includes one main board and a USB cable.

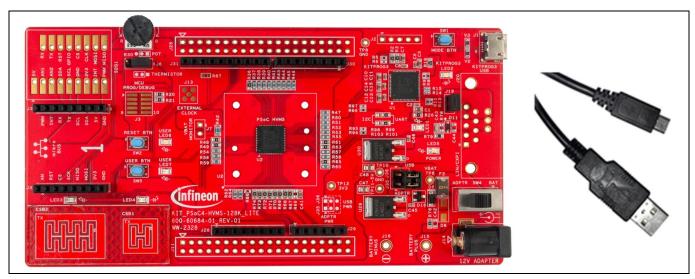


Figure 1 KIT_PSoC4-HVMS-128K_LITE kit contents

KIT PSoC4-HVMS-128K LITE kit contents

Overview 1.1

The KIT_PSoC4-HVMS-128K_LITE board can mount the 56-QFN package of PSOC™ 4 HVMS 128K microcontrollers (MCU). The kit features and blocks are shown in Figure 2.

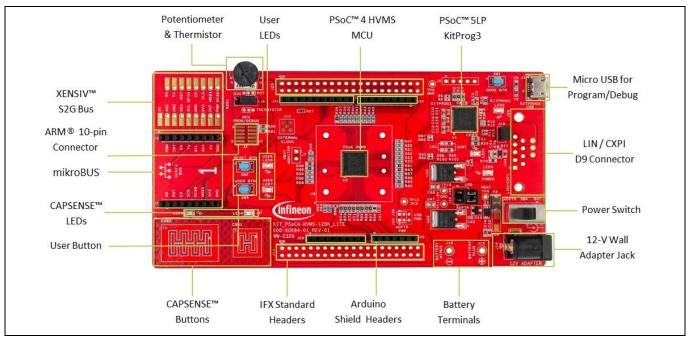
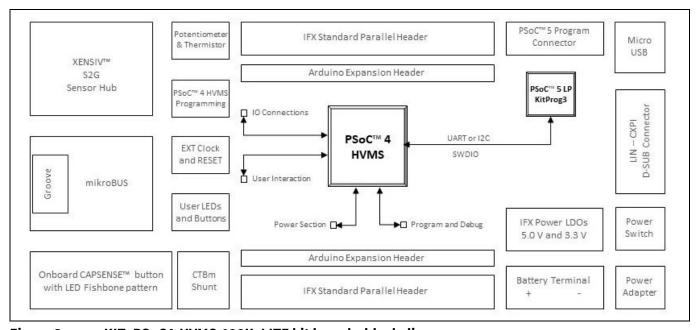



Figure 2 KIT_PSoC4-HVMS-128K_LITE board - top view

Block diagram 1.2

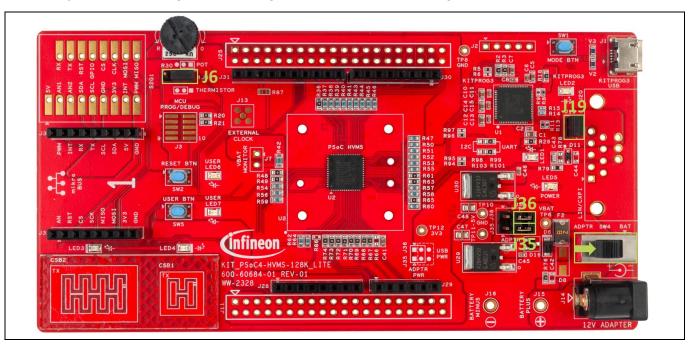
KIT_PSoC4-HVMS-128K_LITE kit board - block diagram Figure 3

KIT_PSoC4-HVMS-128K_LITE kit contents

Board functions 1.3

Table 2 KIT_PSoC4-HVMS-128K_LITE kit board functions

#	Function	Specification	Remarks	Note
1	PSOC™ 4 HVMS MCU	CY8C4147LWE	U2: 56-QFN (0.5-mm pitch)	_
2	PSOC™ 5LP KitProg3	CY8C5868LTI-LP039	U1: 68-QFN	_
3	Power input	12-V wall adapter (1 A)	J14 (DC Jack)	_
4	Power input	Automotive battery input	J15/J16	No load
5	Power input	Power input select jumpers (USB or 12-V wall adapter)	J35/J36	-
ŝ	Power switch	Input power select switch	SW4	_
7	Power LED	VBAT monitor LED	LED5 (blue)	_
3	USB connector	Micro USB connector	J1	-
)	Power LED	USB VBUS monitor LED	LED2 (blue)	-
LO	Status LED	KitProg3 status LED	LED1 (Green)	-
11	Program connector	10-pin MIPI connector for MCU	J3	No load
L2	Program connector	2.54-pitch connector for KitProg3	J2 (5 pins)	No load
L3	CAPSENSE™ button	CSX button 100x100	CSB1	PCB tracks
L4	CAPSENSE™ button	CSX button 200x130	CSB2	PCB tracks
.5	CAPSENSE™ LEDs	Button LEDs for CAPSENSE™	LED3/LED4 (green)	_
L6	Temperature sensor selector	Temperature sensor select jumper (thermistor or potentiometer)	J6 (3 pins)	-
L7	LIN/CXPI connector	DSUB-9 connector for LIN/CXPI	J20	No load
L8	Resistors	Serial connect resistors (I2C or UART)	R98/R103 (I2C), R99/R101 (UART)	-
L9	CTBm shunt resistor	100 mΩ shunt resistor	R107	_
20	Extension header	40-pin (2-row) female header for CAPSENSE™ extension boards	J11/J25	No load
21	External clock	SMA connector for clock input	J13	No load
22	Test header	Current measurement header for MCU	J7	No load
23	Arduino headers	1x6 (1), 1x8 (2) and 1x10 (1) for Arduino compatibility	J29/J28/J30/J31	-
24	mikroBUS header	Two 1x8 mikroBUS headers	J32/J33	_
25	Groove connector	5-pin, 100mils, SMBus	J26	No load
26	XENSIV [™] S2G bus connector	Infineon's XENSIV™ bus sensor 17- pin interface	S2G1	No load
27	User LED	User LED connected to MCU	LED6 (red)	_
28	User LED	User LED connected to MCU	LED7 (green)	_
29	User switch	User push switch connects to MCU	SW5	_
30	Reset switch	System reset switch	SW2	_



Getting started

Getting started 2

Initial jumper configuration 2.1

The initial jumpers are configured according to the factory default settings.

Initial jumper configuration and switch setting Figure 4

Table 3 lists the jumper's configuration.

Table 3 Jumper details

Reference	Details	Default function	Alternate function
J6	Configure analog input connected to the IO port pin P5.3 of MCU	Potentiometer (1-2)	Thermister (2-3)
J19	Connects VBAT (12 V) to the LIN/CXPI bus voltage	LIN/CXPI bus (1-2)	-
J35, J36	Configures the power inputs for the entire board	5-V power from USB (2-3)	12-V power from the adapter (1-2)

Getting started

2.2 Power up the lite kit

The KIT_PSoC4-HVMS-128K_LITE kit can be powered either from the USB port or from the wall adapter. Set the appropriate jumper configuration before connecting any of the power sources.

To power up the lite kit, connect the Micro-USB cable between the lite kit and the host system. The same connection (KitProg3) also provides the programming and debugging over the CMSIS-DAP interface.

2.2.1 **Power from USB**

By default, the lite kit is configured to run on 5 V. Ensure the power jumpers J35 and J36 are closed on position (J35_2-J35_3 and J36_2-J36_3) for USB-powered configuration. In case of USB power, the different sections power requirements are as follows:

MCU power: VBAT from USB (5 V)

mikroBUS power: 5 V from USB (5 V) and 3V3 from LDO

XENSIV[™] bus power: 5 V from USB (5 V) and 3V3 from LDO

Arduino bus power: 5 V from USB (5 V) and 3V3 from LDO

IFX bus power: 5 V from USB (5 V) and 3V3 from LDO

Peripheral power: 3V3 from LDO

Power from wall adapter 2.2.2

The lite kit provides an option to run on 12 V from the power adapter or the automotive battery. Ensure the power jumpers J35 and J36 are closed on positions (J35_1-J35_2 and J36_1-J36_2) for a 12 V powered configuration. In case of the power adapter, the different sections power requirements are as follows:

MCU power: VBAT from power adapter (12 V)

mikroBUS power: 5 V from LDO (5 V) and 3V3 from LDO

XENSIV[™] bus power: 5 V from LDO (5 V) and 3V3 from LDO

Arduino bus power: 5 V from LDO (5 V) and 3V3 from LDO

IFX bus power: 5 V from LDO (5 V) and 3V3 from LDO

Peripheral power: 3V3 from LDO

To power up the lite kit from the battery or adapter, connect the wall adapter to J14, and slide SW4 to the adapter side. The power LED (LED5) lights up when the power switch is set to the wall adapter.

Getting started

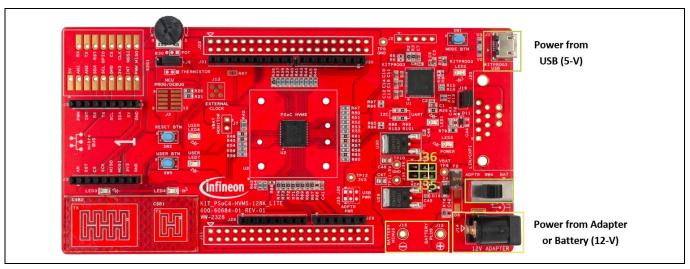


Figure 5 Available power inputs for lite kit

Note: With the USB Power mode, the PSOC™ 4 HVMS device supports LIN/CXPI slave configuration only.

2.3 Hands-on shipping firmware

The KIT_PSoC4-HVMS-128K_LITE kit comes with preinstalled firmware to check all the onboard peripherals. The firmware logs different events on the serial USB or LIN slave interface. For simplicity, the serial console is set as a default mode and all the events will be sent to the serial terminal with the fixed event IDs.

2.3.1 Hardware and tool setup

To check the preinstalled firmware on the KIT_PSoC4-HVMS-128K_LITE kit, follow these steps to set up and communicate with the host system:

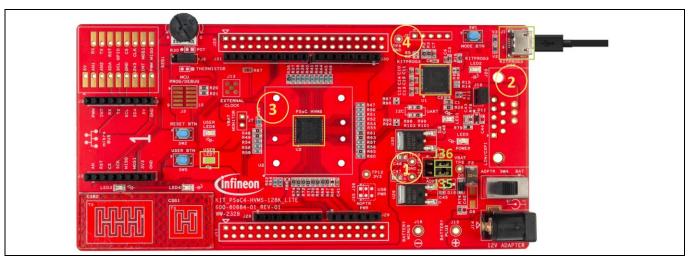


Figure 6 KIT_PSoC4-HVMS-128K_LITE kit and tool setup

- 1. Before powering up the lite kit, ensure that the power selection jumpers J35 and J36 are at the 5-V position.
- 2. Connect the USB cable from the PC to the lite kit. The lite kit is powered by the PC via the USB cable (5 V). Ensure that the power LED5 (blue LED) is turned ON.
- 3. When powered on, the PSOC™ HVMS device starts executing the pre-installed firmware, which is indicated by the blinking User LED7 (green LED).

Getting started

4. To communicate with the PC, set up TeraTerm on the PC to send and receive messages to or from the lite kit. Follow these configurations in the TeraTerm:

Port: COMx: KitProg3 USB-UART (COMx)

Speed: 115200

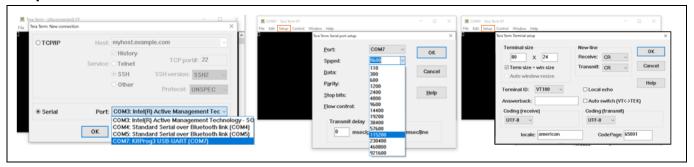


Figure 7 TeraTerm setup

2.3.2 Software checks

The lite kit comes with the pre-installed firmware and as soon as it is powered on, it will start executing. After completing the tool setup, follow these steps to check the firmware and lite kit features:

- 1. Reset the PSOC[™] HVMS device using the reset switch SW2; User LED7 starts blinking.
- 2. Press the user switch SW5 to toggle the user LED6 (red LED) and monitor the switch event in the TeraTerm window with event ID 1.
- 3. Touch on any of the CAPSENSE™ buttons CSB1 or CSB2 to trigger the event with event ID 2, and the same can be verified using the onboard LEDs (LED3 and LED4).
- 4. Move the potentiometer R30 to check the voltage applied to the ADC pin; the millivolt readings will be logged as event ID 3 on the TeraTerm window.

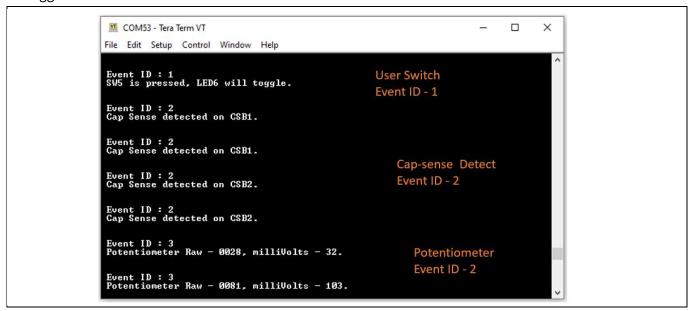


Figure 8 Firmware checks with onboard peripherals

Hardware 3

PSOC™ HVMS device 3.1

The KIT_PSoC4-HVMS-128K_LITE kit comes with the PSOC™ HVMS device CY8C4147LWE soldered onto the board. The board also has a provision to install the MCU socket; a supported socket part is given for reference.

IC socket description Table 4

Reference	Manufacturer	Part number	Size	Supported package
U2	Infineon Technologies	CY8C4147LWE	8 mm × 8 mm	56-QFN
Socket	Enplas Corporation	QFN-56AMG-0.5-005S-00	25 mm × 25 mm	56-QFN (8 x 8 mm)

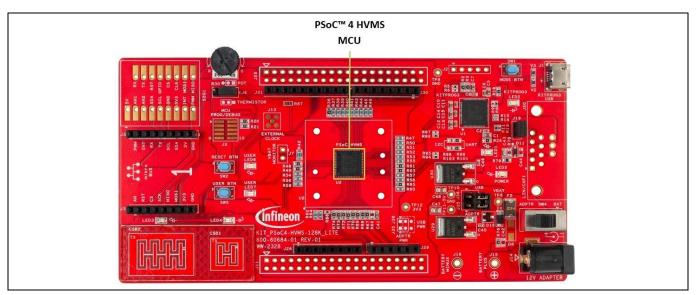


Figure 9 **PSOC™ HVMS device**

3.2 **Power supply**

The following are three power inputs:

- 5 V from the USB connector
- 12 V from the wall adapter
- 12 V from battery connector (optional)

The power switch SW4 controls the wall adapter and battery connector. The USB connector is diode-ORed with the VBAT input of the CPU. It is the main power supply for devices with VDDD = 3.3 V (see ordering information from PSOC™ HVMS datasheet [1]) and the cable comes with the kit package.

Hardware

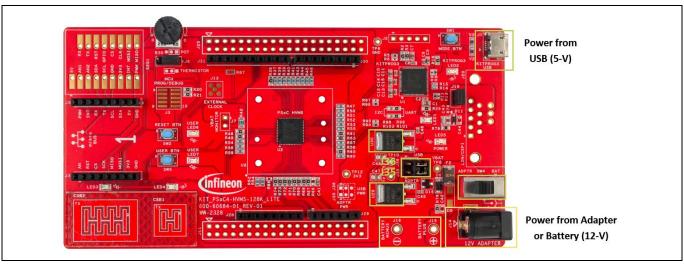


Figure 10 Power supply configuration on lite kit

Note:

- 1. By default, the KIT_PSoC4-HVMS-128K_LITE kit supports 5-V power input from the USB port. To change the power input configuration, remove the resistor from positions 2-3 of connectors J35 and J36 and install the resistor on positions 1-2 of connectors J35 and J36.
- 2. To power up the entire lite kit, two LDOs are used to generate the 5 V (U29) and 3.3 V (U30). If using USB (5 V) power, bypass the LDO used for generating 5 V (U29).

3.3 **CAPSENSE™** buttons

The KIT_PSoC4-HVMS-128K_LITE kit has two onboard CSX buttons (100 x 100 mm (CSB1) and 200 x 130 mm (CSB2)). The board uses a fishbone pattern for mutual-capacitance CAPSENSE™ buttons. The Tx terminal forms a box or ring around the button for shielding the Rx terminal from noise. There are interlaced Tx and Rx prongs inside the border to form an electric field (for more details, see AN85951- PSOC™ 4 and PSOC™ 6 MCU CAPSENSE™ design guide).

Two dedicated LEDs are available on board (LED3 and LED4) to indicate the events on the CSX buttons (CSB1 and CSB2).

Figure 11 CAPSENSE™ buttons on lite kit

3.4 Potentiometer and temperature sensor

The KIT_PSoC4-HVMS-128K_LITE kit has a temperature sensor and potentiometer onboard to evaluate the analog functions. The temperature sensor uses a thermistor (R29) with a divider resistor and the potentiometer (R30) uses a 250k variable resistor.

Table 5 Thermistor description

Reference	Manufacturer	Part number	Description
R29	TDK Corporation	NTCG103JF103FT1S	10 kΩ, 1%, 1/8 W, 0402
R30	Bourns	3352T-1-254LF	POT, 250k, 20%, 1/2 W

Note: See the vendor page for resistance and temperature characteristics.

The source for temperature monitoring can be selected by jumper J6 between a thermistor (by closing positions 2-3) and a potentiometer (by closing positions 1-2).

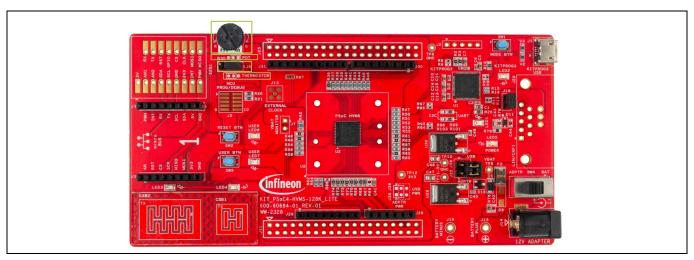


Figure 12 Temperature sensor block of lite kit

3.5 LIN and CXPI interfaces

The PSOC™ HVMS devices include a Local Interconnect Network (LIN)/Clock Extension Peripheral Interface (CXPI) transceiver and controller. It can connect the physical layer directly to the device. The KIT_PSoC4-HVMS-128K_LITE kit supports D-SUB9 male type connector and a 3-pin male connector (should be installed separately) for interfacing to the LIN/CXPI bus. The VBAT voltage is connected to pin 9 of the connector via a jumper J19.

Table 6 LIN/CXPI connector description

Reference	Manufacturer	Part number	Description
J20	NorComp Inc.	182-009-113R531	CONN D-SUB PLUG, 9POS
TP	Würth Elektronik	61300311121	Header Vertical, 3-pin, 2.54 mm

Note: To use LIN/CXPI on kit, connect the power adapter to the kit J14.

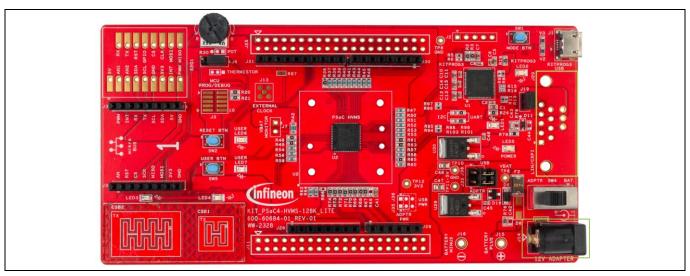


Figure 13 LIN/CXPI interface on lite kit

KitProg3 USB program interface 3.6

KitProg3 is the Infineon low-level communication firmware for programming and debugging. It provides communication between the programming tool (AutoFlash Utility) and a target PSOC™ HVMS device.

KitProg3 uses the industry-standard Serial Wire Debug (SWD) protocol. It uses CMSIS-DAP V2.0.0 and V1.2.0 as the bulk and HID endpoint transport mechanisms.

KitProg3 also supports bridging: USB-to-UART and USB-I2C. See the KitProg user guide Error! Reference source not found. for more information.

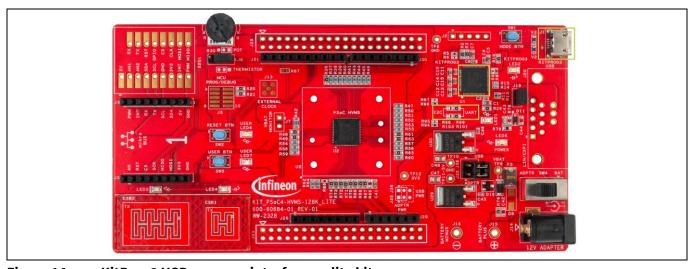


Figure 14 KitProg3 USB program interface on lite kit

Note:

By default, the bridging between the KitProg3 and CPU is configured for the USB-to- UART interface. To use the USB-I2C bridge on the kit, remove the resistors from the UART position and install resistors in the I2C position, see Figure 14.

3.7 Third-party debugger connector

The KIT_PSoC4-HVMS-128K_LITE kit supports an Arm® 10-pin MIPI connector for programming and debugging. The connector is wired-ORed with the KitProg3 program interface and is directly connected to the PSOC™ HVMS device through the SWD interface. The connector J3 should be assembled separately.

Table 7 Arm® 10-pin MIPI connector

Reference	Manufacturer	Part number	Description
J3	Samtec Inc.	FTSH-105-01-L-DV-K	Header Male, 10-pin, 1.27 mm, SMD

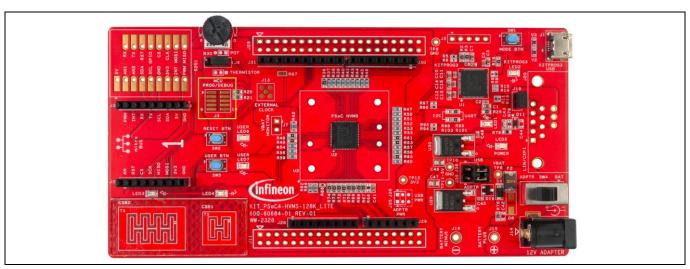


Figure 15 Third-party debugger connector on lite kit

3.8 Extension headers

The KIT_PSoC4-HVMS-128K_LITE kit provides a variety of header expansions to be compatible with the most popular interfaces. The kit is designed to have an Arduino-compatible connection header, Infineon standard connector interface, mikroBUS header, and XENSIV™ bus.

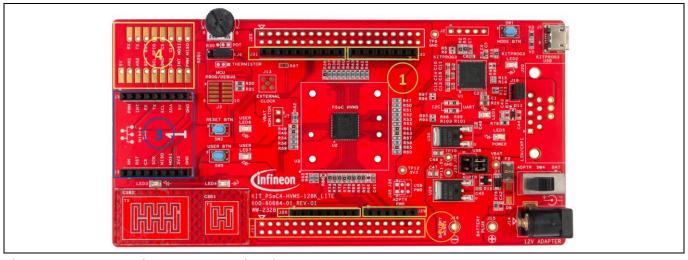


Figure 16 Extension headers on lite kit

Hardware

Arduino-compatible header 3.8.1

Pin assignment of Arduino-compatible connections Table 8

Connector	Pin number	Pin name	KIT_PSoC4-HVMS-128K_LITE connections
J28	1	NC	-
J28	2	IOREF	VDDIO
J28	3	RESET	XRES
J28	4	3V3	3P3V_LDO
J28	5	5V	5V_LDO
J28	6	GND	DGND
J28	7	GND	DGND
J28	8	VIN	VBAT
J29	1	A0	P5_2
J29	2	A1	P5_3
J29	3	A2	P5_4
J29	4	A3	P5_5
J29	5	A4/SDA	P5_0
J29	6	A5/SCL	P5_1
J30	1	D0/RX	P0_1
J30	2	D1/TX	P0_1
J30	3	D2	P0_5
J30	4	D3	P0_2
J30	5	D4	P0_3
J30	6	D5	P0_4
J30	7	D6	P3_3
J30	8	D7	P3_2
J31	1	D8	P3_0
J31	2	D9	P3_1
J31	3	D10/SS	P1_3
J31	4	D11/MOSI	P5_1
J31	5	D12/MISO	P5_0
J31	6	D13/SCK	P1_1
J31	7	GND	DGND
J31	8	AREF	VDDA
J31	9	SDA	P5_0
J31	10	SCL	P5_1

Hardware

Infineon standard header 3.8.2

Pin assignment of Infineon standard connections Table 9

Connector	Pin number	Pin name	KIT_PSoC4-HVMS-128K_LITE connections
J11	1	3V3	3P3V_LDO
J11	2	GND	DGND
J11	39	GND	DGND
J11	40	5V	5V_LDO
J25	1	3V3	3P3V_LDO
J25	2	GND	DGND
J25	39	GND	DGND
J25	40	5V	5V_LDO

mikroBUS-compatible header 3.8.3

Table 10 Pin assignment of mikroBUS-compatible connections

Connector	Pin number	Pin name	KIT_PSoC4-HVMS-128K_LITE connections
J32	1	AN	P5_6
J32	2	RST	P0_5
J32	3	CS	P1_2
J32	4	SCK	P1_1
J32	5	MISO	P5_0
J32	6	MOSI	P5_1
J32	7	3V3	3P3V_LDO
J32	8	GND	DGND
J33	1	GND	DGND
J33	2	5V	5V_LDO
J33	3	SDA	P0_1
J33	4	SCL	P0_0
J33	5	TX	P0_1
J33	6	RX	P0_0
J33	7	INT	P0_6
J33	8	PWM	P0_4

Hardware

XENSIV™ header 3.8.4

Table 11 Pin assignment of XENSIV[™] bus connections

Connector	Pin number	Pin name	KIT_PSoC4-HVMS-128K_LITE connections
S2G1	1	5V	5V_LDO
S2G1	2	AN1	P5_6
S2G1	3	AN2	P5_7
S2G1	4	SDA	P0_1
S2G1	5	SCL	P0_0
S2G1	6	GND	DGND
S2G1	7	3V3	3P3V_LDO
S2G1	8	INT	P3_2
S2G1	9	PWM	P0_2
S2G1	10	MISO	P5_0
S2G1	11	MOSI	P5_1
S2G1	12	CLK	P1_1
S2G1	13	CS	P1_6
S2G1	14	GPIO	P3_1
S2G1	15	RST	P3_0
S2G1	16	TX	P0_1
S2G1	17	RX	P0_0

Groove header 3.8.5

Pin assignment of Groove bus connections Table 12

Connector	Pin number	Pin name	KIT_PSoC4-HVMS-128K_LITE connections
J26	1	SCL	P5_1
J26	2	SDA	P5_0
J26	3	3V3	3P3V_LDO
J26	4	GND	DGND

Other peripherals 3.9

The GPIO pins are grouped into ports; a port can have up to eight GPIOs. See Table 13 for GPIO pin assignments of the KIT_PSoC4-HVMS-128K_LITE board. Table 13 shows the connection to other peripherals.

Table 13 **GPIO** pins used by peripherals

GPIO pin assignment	Description
XRES pin	Connected to an external reset switch (SW2) with a 0.1-μF capacitor
User switch	SW5 (GPIO P5.5)
User LEDs	LED7 (GPIO P0.6 - green), LED6 (GPIO P0.7 - red)
External clock input	J13 (GPIO P0.1)
CTBm shunt resistor	100 mΩ shunt resistor R107 (connected across GPIO P7.0 and GPIO P7.1)

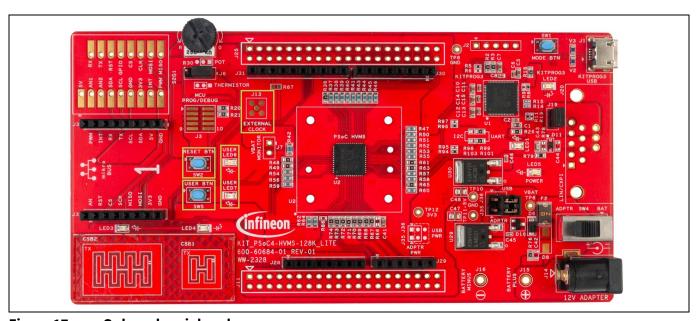
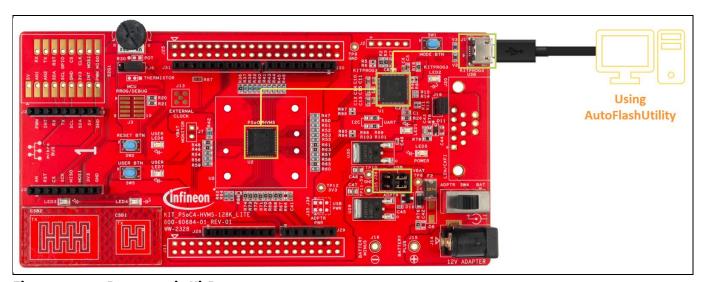


Figure 17 **Onboard peripherals**

Programming and debugging

Programming and debugging 4


4.1 **Program using AutoFlash utility**

Download and install the AutoFlash utility (contact Technical support to obtain the program tool).

The AutoFlash utility is a flexible, cross-platform, integrated application to allow programming Infineon devices. It can perform program, erase, verify, and read operations on the flash of the target device. It can target an entire device, a specific region, a sector, and even a byte in a device.

To program the PSOC™ HVMS device (CPU) using the AutoFlash utility, connect the Micro-USB cable to the board. The board gets the power supply from the USB bus power and the same will be used for programming.

The MCU flash data is programmed via the PSOC™ 5 LP device in KitProg3, which is the Infineon low-level communication firmware for programming and debugging. See the PSOC™ programmer user guide and KitProg3 user guide **Error! Reference source not found.** for more information.

Program via KitProg3 Figure 18

- 1. Connect the Micro-USB cable from the host system to the lite kit.
- 2. Open a command prompt and navigate to the AutoFlashUtility installation path: cd C:\Program Files (x86)\Infineon\Auto Flash Utility 1.x\bin\
- 3. Copy and paste the executable file cm0plus.hex or cm0plus.out into the bin folder.
- 4. Enter the following command in the command prompt on your PC. openocd -s ../scripts -f interface/kitprog3.cfg -c "transport select swd" -f target/psoc4hv_a0.cfg -c "program cm0plus.hex verify exit"
- 5. Wait for the "program completed" message to appear on the command prompt.
- 6. Reset the lite kit using the reset button SW2.

Programming and debugging

4.2 Program and debug using an IAR Embedded Workbench

Download and install the latest AutoPDL for the PSOC™ HV devices on the target system. Install the AutoPDL outside the default program files to allow the IAR to access and create temporary files.

Follow the installation steps given in "PSoC4HV_AutoPDL-MW_InstallationManual.pdf" inside the "Product" folder. Install the below executables:

Table 14 **Executables**

File	Description
Product\PSoC4HV_AutoPDL-MW_V1.4.0.exe	AutoPDL Driver and Middleware package
Sample\PSoC4HV_DeviceHeaderFiles_V1.4.0.exe	PSOC™ HV Device Headers
Sample\PSoC4HV_AutoPDL_CodeExample_V1.0.1.exe	PSOC™ HV Device Specific Examples

Note:

The code example package "PSoC4HV_AutoPDL_CodeExample_V1.0.1.exe" is specifically released for the KIT_PSOC4-HVMS-128K_LITE kit.

Open the "PSoC4HV_AutoPDL-MW_V1.4.0_DeliveryNotes.pdf" from the installation folder of the AutoPDL and download the same version of IAR EWARM supported by the AutoPDL as mentioned in the document.

Download the software and run the installation (note that the installation might take some time). When you open the IAR EWARM for the first time, select the license in the license wizard. If you do not have the license, it is strongly recommended to register for a 'code size limited' license type.

The PSOC™ HVMS lite kit is now ready to use after a successful environment setup (USB driver installation, AutoPDL installation and IAR installation).

The IAR EWARM supports the debugging and programming using the Flash Program mode only.

The PSOC™ HV devices have a CM0+ core and the AutoPDL workspace details for the same are listed in Table 15.

Table 15 IAR flash workspaces and functions

Workspace	Application core	Number of cores supported	Details
Single-core CM0+ workspace "psoc4hvms128k_flash_cm0plus_template"	Yes	Single	Single-core download and debug for CM0+
psoc mmsizon_nasn_emoplas_template			core.

Do the following to download and debug using the CM0+ core workspace:

1. Start IAR EWARM and open the AutoPDL template workspace file from: AutoPDL_Installation_Directory \examples\Tools\psoc4hvms128\psoc4hvms128k_flash_cm0plus_template

Programming and debugging

Figure 19 **Selecting CM0+ single-core template**

2. Select the workspace revision **Debug** from the drop-down list under **Workspace**, as shown in Figure 20.

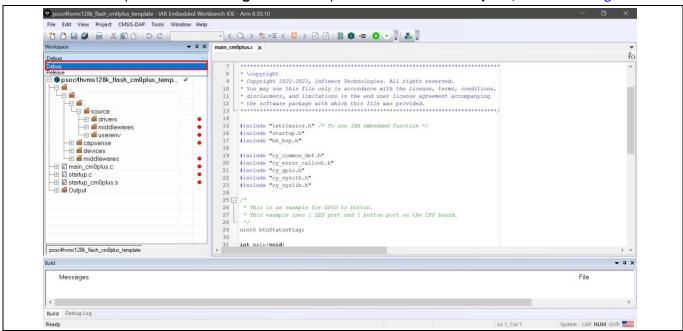


Figure 20 **Selecting workspace revision**

Programming and debugging

3. Open "cy_pdl_config.h" present under "userenv" folder and select device for HVMS128K, as shown in Figure 21.

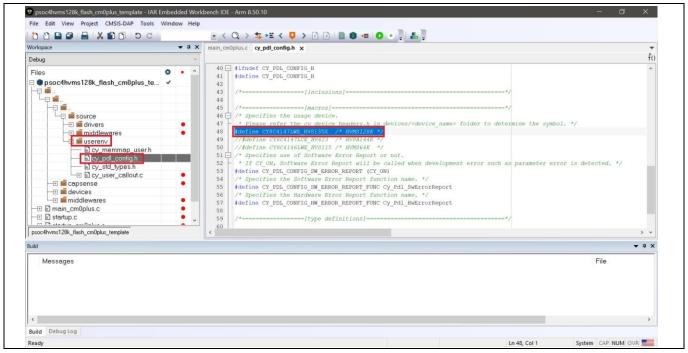


Figure 21 Selecting target device

4. Right-click psoc4hvms128k_flash_cm0plus_template - Debug and select Rebuild All.

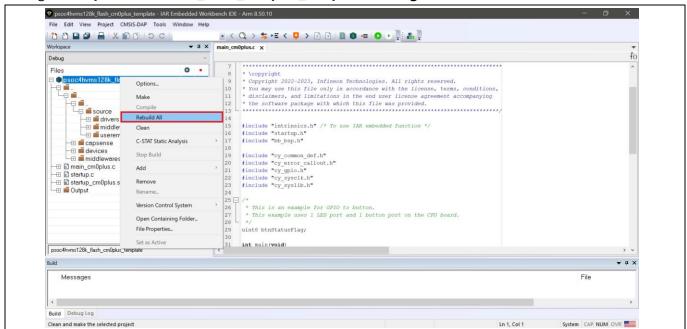


Figure 22 Rebuilding workspace revision

Programming and debugging

5. The rebuild process starts. Check for errors and warnings in the **Build** log.

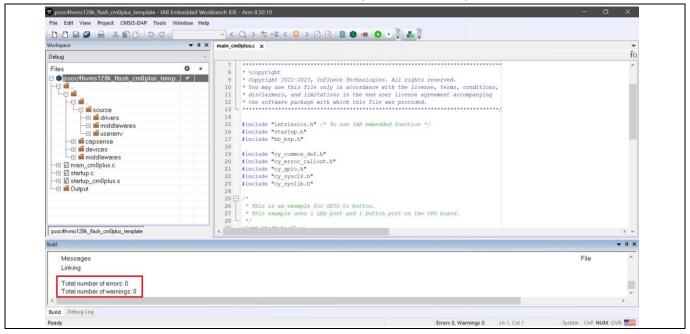


Figure 23 Checking build status in build log

6. To load the program to the flash region of the CM0+ core, click the green **Download and Debug** icon.

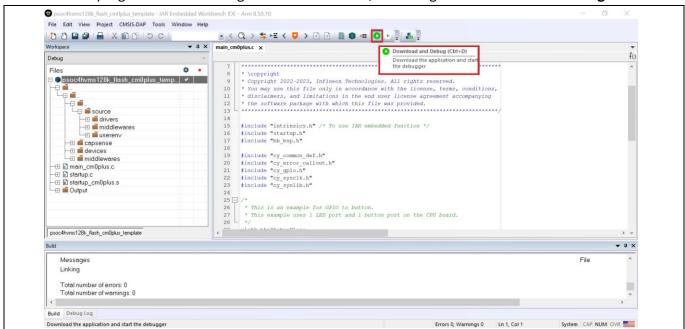


Figure 24 **Downloading and debugging**

Programming and debugging

7. Click the **Go** button to start executing the code from MCU.

Note: You can also use the function keys in the Debug window: Go (F5), Step over (F10), Step into (F11), and Download and Debug (Ctrl+D).

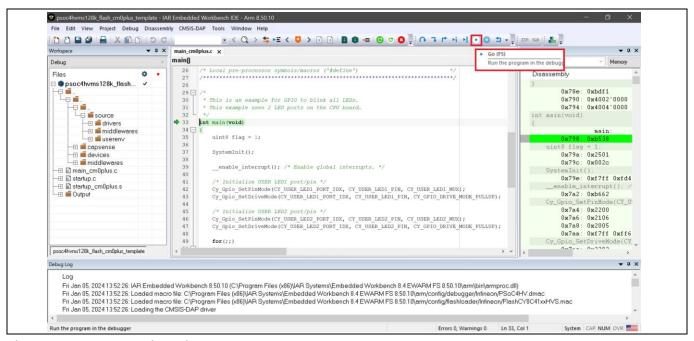


Figure 25 Debugging with CM0+ core

8. In free-running execution, user LED6 and user LED7 should start blinking on the board.

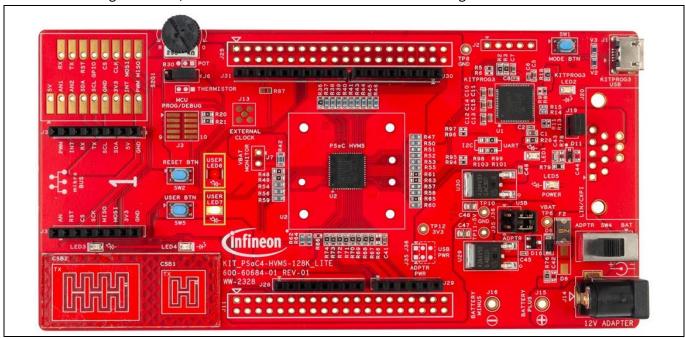


Figure 26 Blinking user LED6 and user LED7

Schematics and designs

Schematics and designs 5

KIT_PSoC4-HVMS-128K_LITE kit schematics 5.1

The section provides the KIT_PSoC4-HVMS-128K_LITE kit schematics.

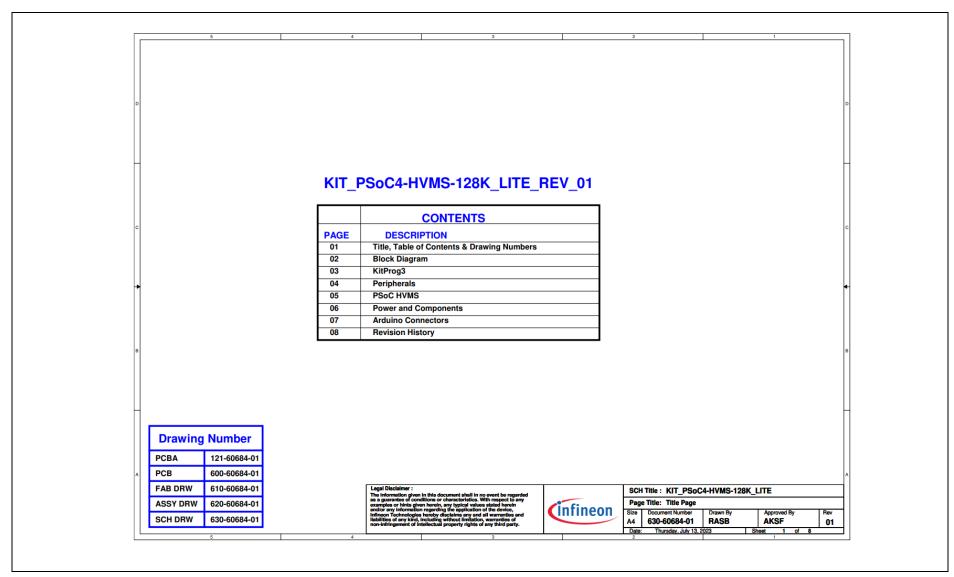


Figure 27 KIT_PSoC4-HVMS-128K_LITE kit schematic


User guide

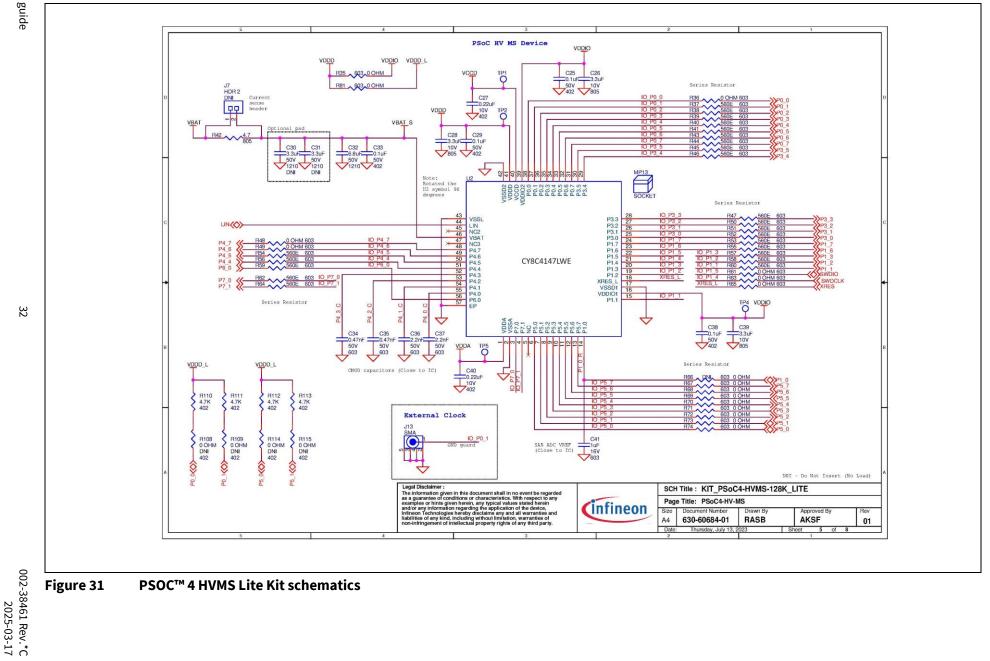


Figure 31 **PSOC™ 4 HVMS Lite Kit schematics**

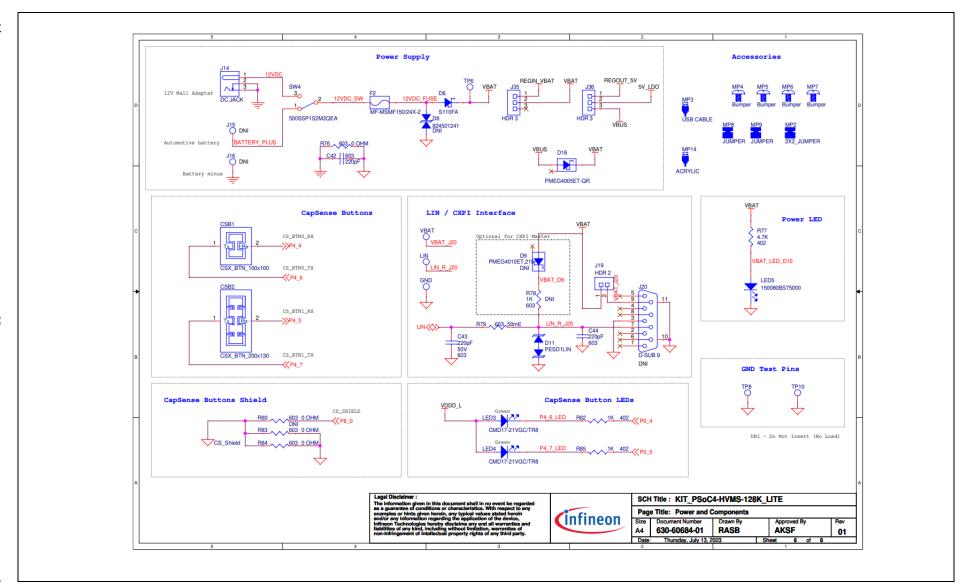


Figure 32 PSOC[™] 4 HVMS Lite Kit power and components schematics

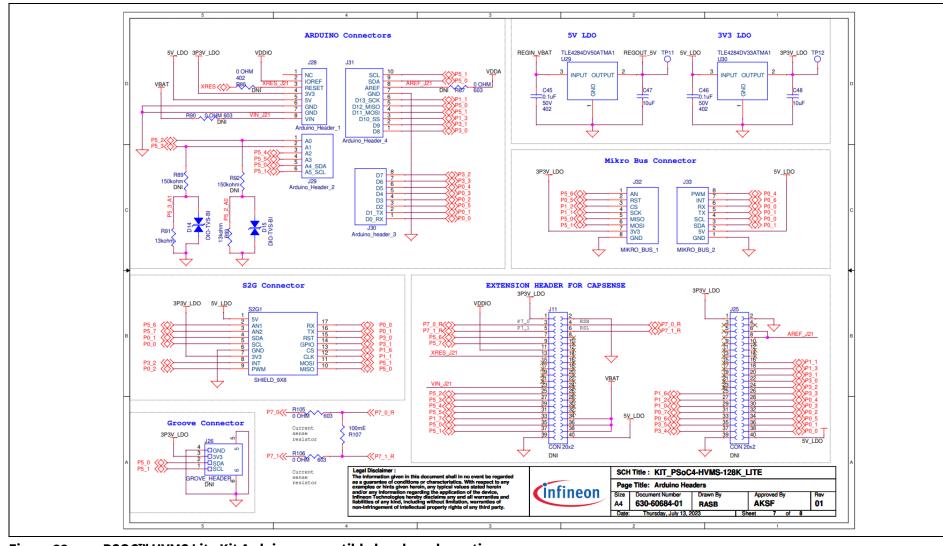


Figure 33 PSOC™ HVMS Lite Kit Arduino-compatible header schematics

Schematics and designs

5.2 KIT_PSoC4-HVMS-128K_LITE kit assembly drawings

This section shows the KIT_PSoC4-HVMS-128K_LITE kit assembly drawings.

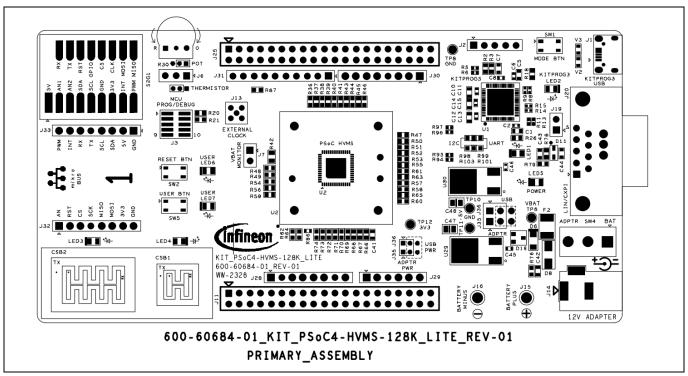


Figure 34 KIT_PSoC4-HVMS-128K_LITE kit assembly drawing – top view

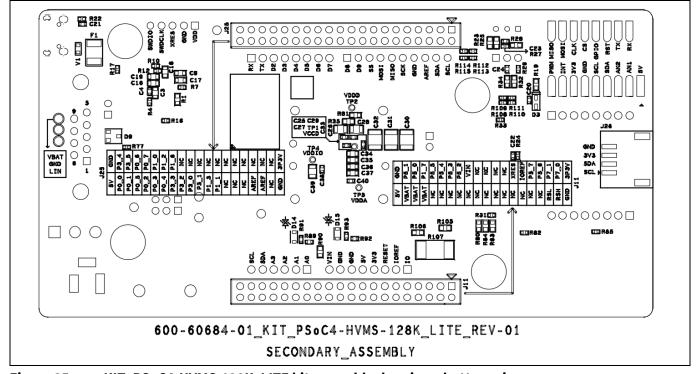


Figure 35 KIT_PSoC4-HVMS-128K_LITE kit assembly drawing - bottom view

References

References

Datasheet

Contact Infineon Support to obtain this document.

[1] CY8C41x7, PSOC™ 4 High Voltage (HV) Mixed Signal (MS) Automotive MCU Based on 32-bit Arm® Cortex®-M0+

Glossary

Glossary

CSD

capacitive sigma-delta

CSX

CAPSENSE™ mutual sensing

CXPI

clock extension peripheral interface

НМІ

human machine interface

HVMS

high-voltage mixed signal

LED

light emitting diode

LIN

local interconnect network

MCU

microcontroller

MSC

multi-sense converter

PCB

printed circuit board

PWM

pulse width modulation

SAR ADC

successive approximation resistor analog-to-digital converter

USB

Universal Serial Bus

Revision history

Revision history

Document revision	Date	Description of changes
**	2023-08-22	Initial release.
*A	2023-09-22	Updated the document title.
		Updated About this document.
		Updated Table 2.
*B	2024-02-06	Updated pointer from 3P3V to 3V3 in section 2.2.1 and section 2.2.2.
		Updated AutoPDL in section 4.2.
*C	2025-03-17	Updated note for LIN in section 3.5.
		Removed the "restricted" status from the document header.
		Updated the "PSOC™" branding throughout the document.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners. PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this document or others shall be deemed to refer to PSOC™.

Edition 2025-03-17 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference 002-38461 Rev.*C

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.