
 

Application note Please read the sections “Important notice” and “Warnings” at the end of this document Revision 1.00 

www.infineon.com  2023-08-01 

 

  

 
Z8F80483545 

Input capacitor (DCLINK) calculation 

For single phase motor bridge 

About this document 

Scope and purpose 

This application note provides information how to calculate and dimension the input capacitor (DCLINK 

capacitor) for single phase motor bridge to drive brushed DC motors.  

 

Intended audience 

Hardware engineers who develop single phase motor drivers.  
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1 Single phase half-bridge to drive a brushed DC motor  

1 Single phase half-bridge to drive a brushed DC motor  
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Figure 1 Half-bridge with high-side and low-side switches driving a brushed DC motor in PWM mode 

The input capacitor, also known as DCLINK capacitor, stabilizes the supply voltage and provides instantaneous 

current to the PWM operated half-bridge. 

Figure 1 shows a half bridge driving a brushed DC motor in PWM mode operation. During the on phase of the 

high-side switch (blue), current flows from the battery and out of the input capacitor (DCLINK capacitor) into 

the motor to spin it. 

During the off phase, the low-side switch (orange) is active and provides a freewheeling path for the motor 

current stored in the motor inductance.  
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2 Assumptions for the analysis and calculations  

2 Assumptions for the analysis and calculations 

For the analysis and calculations provided in this document, following assumptions are made: 

 

− The motor inductance is large enough to ensure that the motor current IMOT is continuous 

− The PWM frequency is high enough to ensure that the motor current IMOT is continuous 

− The battery current IBAT is a constant current with no AC components. All the AC current flowing into the 

power stage during PWM operation is provided by the DCLINK capacitor 

− Equivalent series inductance (ESL) of the DC link capacitor is neglected 
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3 Waveform analysis of PWM operated half-bridge   
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Figure 2 Idealized waveform analysis of a PWM operated motor half bridge 
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3 Waveform analysis of PWM operated half-bridge  

Waveform 1: 

Output voltage VOUT, PWM operated with duty cycle DC 

− The duty cycle DC is defined as: 

 

𝐷𝐶 =  
𝑇𝑂𝑁

𝑇
 

Equation 1 

− The average output voltage generated by the PWM’ed supply voltage VS (which is the battery voltage) is 

defined as: 

 

𝑉𝑂𝑈𝑇𝑎𝑣𝑔 =  𝐷𝐶 × 𝑉𝑆 

Equation 2 

Waveform 2: 

Motor current IMOT with average motor current IMOTavg and peak to peak ripple current IMOTpp 

− The motor current IMOT consists of the current through the high-side and low-side switches 

 

𝐼𝑀𝑂𝑇 = 𝐼𝐻𝑆 + 𝐼𝐿𝑆 

Equation 3 

Note: During the start-up of the DC motor, the motor current can be multiple times higher than the current 

under normal load condition, when the motor is spinning. The same applies when the motor is 

blocked. 

− The peak to peak motor ripple current IMOTpp is considered in this analysis as constant and should be 

measured for verification. IMOTpp depends on the motor operating condition, for example: 

 The motor does not turn during start-up or stall condition where no VBEMF is generated 

 Mechanical load is applied causing a voltage drop over the winding resistance of the motor 
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3 Waveform analysis of PWM operated half-bridge  

Waveform 3: 

Current in high-side switch IHS with high-side average current IHSavg and average motor current 

IMOTavg 

The blue area shows the current through the high-side switch IHS during TON. This area reflects the charge 

IMOTavg*TON. This charge must be provided in the end by the battery. The average current through the high-

side switch IHSavg over the period T is the constant average current provided by the battery (power supply) 

IBAT. The hatched area shows the charge provided by the battery IBAT (=IHSavg) * T (period). Both areas need 

to be equal and therefore: 

 

𝐼𝐵𝐴𝑇 × 𝑇 = 𝐼𝑀𝑂𝑇𝑎𝑣𝑔 ∗ 𝑇𝑂𝑁 = 𝐼𝑀𝑂𝑇𝑎𝑣𝑔 ∗ 𝐷𝐶 ∗ 𝑇 

Equation 4 

The battery current IBAT and the average current through the high-side switch IHSavg can be calculated by: 

 

𝐼𝐻𝑆𝑎𝑣𝑔 = 𝐼𝐵𝐴𝑇 = DC × 𝐼𝑀𝑂𝑇avg  

Equation 5 

Waveform 4: 

Current in low-side switch ILS with low-side average current ILSavg and IMOTavg 

The orange area shows the current through the low-side switch ILS. This is the freewheeling path for the motor 

current.  

Waveform 5 + 6: 

Current in high-side switch with discharge (Q DCLINK discharge) and charge (Q DCLINK charge) of DCLINK 

capacitor, discharge current of DCLINK capacitor ICdisch, RMS current through the DCLINK capacitor  I 

RMS DCLINK 

During the on phase of the high-side switch TON, the current through the high-side switch consists of two 

components: 

− The constant battery current IBAT 

− The discharge current of the DCLINK capacitor ICdisch 

  

During the off phase of the high-side switch, the DCLINK capacitor is recharged by the battery current IBAT. 
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3 Waveform analysis of PWM operated half-bridge  

The DCLINK capacitor’s discharge current can be calculated by: 

 

ICdis𝑐ℎ = 𝐼𝑀𝑂𝑇𝑎𝑣𝑔 − 𝐼𝐵𝐴𝑇 =  𝐼𝑀𝑂𝑇𝑎𝑣𝑔 × (1 − 𝐷𝐶) 

Equation 6 

In steady state condition, the DCLINK capacitor’s charge and discharge during one period must be equal and 

therefore:  

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 

Equation 7 

The DCLINK’s discharge during TON can be calculated by: 

 

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = (𝐼𝐶𝑑𝑖𝑠𝑐ℎ) × 𝑇𝑂𝑁 

Equation 8 

Using Equation 1 and Equation 6 results in: 

 

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐼𝑀𝑂𝑇𝑎𝑣𝑔 × (1 − 𝐷𝐶) × 𝐷𝐶 ×  𝑇 

Equation 9 

The charge and discharge of the DCLINK capacitor results in an RMS current IRMSDCLINK. The calculation is 

explained in Chapter 7. 

Waveform7:  

Idealized supply voltage ripple VSpp at DCLINK capacitor 

The charge and discharge of the DCLINK capacitor leads to a voltage ripple at the supply voltage VS_DCLINK. 

The calculation of the voltage ripple VSpp is handled in Chapter 4.  
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4 Calculation of the DCLINK voltage ripple VSpp  

4 Calculation of the DCLINK voltage ripple VSpp 

ESR ESL

 

Figure 3 Equivalent circuit diagram of an (aluminum) electrolyte capacitor 

ESR: equivalent series resistance 

ESL: equivalent series inductance 

Note: The calculation of VSpp does not consider the ESL. The impact of the ESL on VSpp is compensated by 

an additional ceramic capacitor, see Chapter 6. 
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Figure 4 Idealized waveforms for supply voltage ripple VSpp calculation   

Figure 4 shows the idealized waveforms for the supply voltage ripple VSpp caused by discharging and charging 

the DCLINK capacitor. Equation 10 calculates the supply voltage ripple VSpp. It includes three components: 

− Voltage ripple caused by discharging and charging the capacitance of the DCLINK capacitor over one 

period 

− Voltage step caused by the ESR of the capacitor and the discharge current 

− Voltage step caused by the ESR of the capacitor and the charge current 

Figure 5 shows a scope plot with real waveforms of VSpp, IMOT, VOUT, and IBAT. For the measurement, the 

setup in Figure 6 was used. 
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4 Calculation of the DCLINK voltage ripple VSpp  
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Figure 5 Scope plot of VSpp, VOUT, IMOT, VSpp, IBAT  

ESR step by discharge current
ESR step by 
charge current

dVS by 
charge / 
discharge of 
capacitance

with:  𝑇 =
 

    

    = 𝐼𝑀𝑂𝑇𝑎𝑣𝑔 +    × 𝐼𝑀𝑂𝑇  ×  𝑆 + 
𝐼𝑀𝑂𝑇𝑎𝑣𝑔 × 1 − 𝐷𝐶 × 𝐷𝐶

𝐶𝐷𝐶𝐿𝐼𝑁 ×    𝑀
 

Equation 10: VSpp and its derivation 
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5 Calculating the DCLINK capacitor size  

5 Calculating the DCLINK capacitor size 

Solving Equation 10 for CDCLINK results in: 

 

    = (𝐼𝑀𝑂𝑇𝑎𝑣𝑔 +    × 𝐼𝑀𝑂𝑇  ) ×  𝑆 +  
𝐼 𝑂𝑇𝑎𝑣𝑔×( −𝐷𝐶)×𝐷𝐶

𝐶𝐷𝐶𝐿𝐼𝑁𝐾×    
 

𝐶𝐷𝐶𝐿𝐼𝑁 ×    𝑀 =  
𝐼𝑀𝑂𝑇𝑎𝑣𝑔 × (1 − 𝐷𝐶) × 𝐷𝐶

    − (𝐼𝑀𝑂𝑇𝑎𝑣𝑔 +    × 𝐼𝑀𝑂𝑇  ) ×  𝑆 
 

𝐶𝐷𝐶𝐿𝐼𝑁  =
1

   𝑀
 × (

𝐼𝑀𝑂𝑇𝑎𝑣𝑔 × (1 − 𝐷𝐶) × 𝐷𝐶

    − (𝐼𝑀𝑂𝑇𝑎𝑣𝑔 +    × 𝐼𝑀𝑂𝑇  ) ×  𝑆 
) 

Equation 11 Calculation of DCLINK capacitance 

Note: For an operating condition with given DC, IMOTavg, IMOTpp, ESR, and VSpp, the DCLINK capacitance 

increases with lower PWM frequency and decreases with higher PWM frequency. 

 

Practical usage of Equation 11 to calculate an appropriate DCLINK capacitor size: 

 VSpp voltage ripple ~ 1Vpp (or defined by application requirements) 

 Duty cycle DC: max voltage ripple occurs @  ~ 70% - 80% DC, see also Figure 8 

 IMOT/IMOTpp: to be measured or derived from motor specification 

 ESR: to be derived from DCLINK capacitor datasheet 
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6 Compensate VSpp voltage spike with ceramic bulk capacitor  

6 Compensate VSpp voltage spike with ceramic bulk capacitor 
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Figure 6 Measurement setup using BTN9970 high current half-bridge 

Measurement setup, evaluation board DC-Shield_BTN9970LV: 

− BTN9970 half-bridge 

− Load circuitry: instead of a motor, a load of 250 mH inductance + 1,86 Ω was used 

− CDCLINK: 330 mF SMD aluminum electrolyte capacitor with 65 m ESR (measured) 

− Lfilter: 33mH inductor to block AC currents from battery 

− C11: 10 mF X7R ceramic bulk capacitor  

− C110: 100nF ceramic capacitor 

VSpp
no spikes

VOUT

IOUT

VSpp 
spikes

VOUT

IOUT

 

Figure 7 VSpp voltage ripple with (left) and without (right) ceramic bulk capacitor 

The ceramic capacitor C11 is a low impedance current source during the switching event when the high-side 

switch turns on and takes over the motor current. The current through the switch rises immediately from 0 to 

the value of IMOTavg- 0.5 x IMOTpp, see Figure 2, waveform 3. 

The capacitor C11 reduces the emission into the VS supply line. 
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7 Calculating the DCLINK RMS current  

7 Calculating the DCLINK RMS current  

To select an appropriate DCLINK capacitor the RMS current through the capacitor needs to be estimated. 

The RMS current is in general defined by: 

 

𝐼 𝑀𝑆𝐷𝐶𝐿𝐼𝑁 =  √(
 

𝑇
× ∫ 𝐼𝐷𝐶𝐿𝐼𝑁 (𝑡)2 × 𝑑𝑡

𝑇

0
) 

Equation 12 

Solving the integral for piecewise liner waveforms results in: 

 

𝐼 𝑀𝑆𝐷𝐶𝐿𝐼𝑁 =  √(𝐷𝐶 × (𝐼𝑀𝑂𝑇avg2 × (1 − 𝐷𝐶) +
 

 2
× 𝐼𝑀𝑂𝑇  2)) 

Equation 13 
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8 Practical validation of VSpp / measurement versus calculation  

8 Practical validation of VSpp / measurement versus calculation 

The equations were validated in practice with the measurement setup in Figure 6.  

A PWM frequency of 20 kHz was used. The duty cycle varied from 10% to 90%. 

The ESR of 65 mΩ for the DCLINK capacitor was determined by measurement in the lab. The capacitance of 

330 µF is specified in the datasheet. 

Comments to the curve traces shown in Figure 8 : 

 IMOTavg measured: In the used setup, the average motor current increases linearly with the duty cycle 

DC 

 IMOTpp measured: The motor peak to peak ripple current reaches its maximum at 50% DC 

 The course of the traces VSPP calculated and VSPP measured show a reasonably good match. 

Differences are most likely caused by measurement inaccuracy. The maximum peaks at ~ 70% to 80% 

DC 

 The DCLINK RMS current ICRMS calculated has the peak around 70% to 80% DC. 

 

Figure 8 Currents and VSpp supply voltage ripple versus duty cycle DC 
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9 The impact of cold temperatures on DCLINK performance  

9 The impact of cold temperatures on DCLINK performance 

When selecting a DCLINK capacitor, the ESR behavior versus temperature, in particular for cold temperatures, 

should be considered. In the example shown in Figure 9 the VSpp voltage almost doubles at cold temperatures 

from 450mVpp to 800mVpp due to the increase of ESR at cold temperature. 

Room temperature Cold condition (~  5°C) @ aluminum capacitor achieved with cold spray

450mV VSpp

Room temperature

VOUT VOUT

Cold (cold spray)

IOUT IOUT

800mV VSpp

 

Figure 9 Impact of cold temperature to the DCLINK aluminum electrolyte capacitor 
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10 Other things worth to look at  

10 Other things worth to look at 

In this document the steady state operating condition for a DC motor was considered. 

In the real application other operating conditions need to be considered, such as: 

 Inrush current during motor start-up and stall current condition, when the rotor is locked. This leads 

to much higher motor currents 

 Operation of the motor bridge in overcurrent detection (for example, when the motor is defect or has 

a short to GND or VBAT) 
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