

Engine Machine System IC

1 Overview

Quality Requirement Category: Automotive

Features

- Voltage pre-regulator
- Integrated 5 V regulator
- 2 integrated 5 V trackers
- · Standby regulator
- Separate internal supply
- Voltage monitoring
- · High speed CAN interface with wake-up by bus
- LIN interface with high speed mode for K-Line operation
- Variable reluctance sensor interface
- Microsecond Channel interface (MSC) with low voltage differential signal (LVDS) inputs pads for low EME
- SPI and direct control inputs for high flexibility
- Main relay driver
- Ignition Key detection with key off delay output
- · Wake-up input
- · Engine off timer
- 4 low-side power stages especially to drive injectors (R_{on} = 550 m Ω) with enable input
- 3 low-side power stages ($R_{on} = 350 \text{ m}\Omega$)
- 6 push pull stages for driving on-board MOSFET with drain feedback
- 7 low-side power stages especially to drive relays ($R_{on} = 1.5 \Omega$), one with delayed switch off functionality

1

- 4 half bridge stages for high flexibility, one with delayed switch off functionality
- 4 push pull stages for driving on- and off- board IGBT with back supply suppression and high voltage capability
- · Open-load, short-to-GND and short-to-BAT diagnostic
- Overtemperature and short-to-BAT protection
- Monitoring watchdog module
- AEC Qualified

Engine Machine System IC

Overview

Description

The TLE8888-1QK is a U-Chip suitable for automotive engine management systems. It contains the basic functionality to supply the microcontroller and the ECU, establish the communication on- and off- board and drive EMS typical actuators. Furthermore it controls the main relay driver.

Туре	Package	Marking
TLE8888-1QK	LQFP-100	TLE8888-1QK
TLE8888QK	LQFP-100	TLE8888QK
TLE8888-2QK	LQFP-100	TLE8888-2QK

Device Variants TLE8888QK and TLE8888-2QK

The device variants TLE8888QK and TLE8888-2QK differ from the main version TLE8888-1QK in the watchdog functionality.

The TLE8888QK has a fixed set of parameter for the watchdog (see datasheet addendum "TLE8888QK - Addendum").

For the TLE8888-2QK the watchdog function is disabled (see datasheet addendum "TLE8888-2QK - Addendum").

Only the main version TLE8888-1QK is described in this datasheet.

For order conditions please contact the nearest Infineon Technologies office.

Abbreviations

Symbol	Explanation
MSC	Microsecond channel
SPI	Serial peripheral interface
LVDS	Low voltage differential signal
EME	Electromagnetic emission
EMI	Electromagnetic interference
LIN	Local interconnect network
HS CAN	High speed controller area network

Table of Contents

1	Overview	1
2	Block Diagram	6
3	Pin Configuration	7
3.1	Pin Assignment	
3.2	Pin Definitions and Functions	7
4	General Product Characteristics	. 12
5	Operation Behavior	
5.1	Operation States	
5.2	Reset and Operation Modes	
5.3	Electrical Characteristics Operation Behavior	
6	Monitoring Watchdog Module (Signature Watchdog)	
6.1	Window Watchdog	
6.2	Functional Watchdog	
6.2.1 6.3	Question and Response Definition	
6.4	Total Error Counter Module	
6.5	Power-Down Counter	
6.6	Secure Shut Off Timer	
6.7	Operation State Definition and Reset Generation	
6.8	Synchronisation of Window Watchdog Sequence and Heartbeat	
6.9	Electrical Characteristics Monitoring Watchdog Module	. 44
7	Wake-Up Detection and Main Relay Driver	. 45
7.1	Wake-up Detection by Pin <i>KEY</i> and Key Off Delay	
7.2	Wake-up Detection by Pin <i>WK</i>	. 47
7.3	Main Relay Driver	
7.4	Engine Off Timer	
7.5	Electrical Characteristics Key Detection, Wake-up Detection and Main Relay Driver	. 55
8	Power Supply	
8.1	Pre-Regulator	
8.2	5 V Main Supply	
8.3	Sensor Supply	
8.4 8.5	IO Supply Standby Supply	
8.6	Charge Pump	
8.7	Voltage Monitoring	
8.8	Electrical Characteristics Power Supply	
9	Power Stages	. 64
9.1	Power Stage Control	
9.2	Power Stages Enable	. 66
9.3	Power Stages Configuration	
9.4	Special Function "Delayed Switch Off" for OUT17 and OUT21	. 67
9.5 9.6	Electrical Characteristics Direct Drive Inputs Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20	. 70

Engine Machine System IC

J.6.1	Protection of OUT / to OUT / and OUT /4 to OUT 20	
9.6.2	Diagnosis of OUT1 to OUT7 and OUT14 to OUT20	
9.6.3	Electrical Characteristics Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20	
9.7	Half Bridges OUT21 to OUT24	
9.7.1	Protection of Half Bridges OUT21 to OUT24	78
9.7.2	Diagnosis of Half Bridges OUT21 to OUT24	78
9.7.3	Electrical Characteristics Half Bridges	
9.8	Push Pull Stages OUT8 to OUT13 and DFB8 to DFB13	
9.8.1	Protection of OUT8 to OUT13	84
9.8.2	Diagnosis of OUT8 to OUT13	84
9.9	Electrical Characteristics Push Pull Stages OUT8 to OUT13	85
9.10	Push Pull Stages <i>IGN1</i> to <i>IGN4</i>	
9.10.1	Protection of <i>IGN1</i> to <i>IGN4</i>	
9.10.2	Diagnosis of <i>IGN1</i> to <i>IGN4</i>	87
9.11	Electrical Characteristics Push Pull Stages <i>IGN1</i> to <i>IGN4</i>	88
LO	VR and Hall Sensor Interface	90
L0.1	Signal Detection	
L0.2	Detection Modes	92
L0.3	Diagnosis for VR Sensor Signal Detection Modes	
L0.4	Electrical Characteristics VR Sensor Interface	97
l1	Local Interconnect Network (LIN)	
l1.1	Operation Modes	
11.2	Failure Modes in LIN/K-Line Operation	
11.2.1	Performance in Non Operation Supply Voltage Range	
11.2.2	Loss of Supply Voltage and GND Connection	
11.2.3	Bus Wiring Short to Battery or GND	
L1.2.4	TX Time Out	
11.2.5	Overtemperature Protection	
l1.3	Electrical Characteristics LIN	
L2	High Speed Controller Area Network (CAN) Transceiver	
l2.1	Functional Description	
12.2	Operation Modes	
12.2.1	Normal Operation Mode	
12.2.2	Receive Only Mode	
12.2.3	Power-Down Mode	
L2.2.4	Remote Wake-Up	
12.3	Diagnostic Functions	
12.3.1	CAN Bus Failure Detection	
12.3.2	Local Failure Detection	
L2.4	Electrical Characteristics CAN Transceiver	
L3	Microsecond Channel MSC	
13.1	Downstream Communication	
13.1.1	Downstream Supervisory Functions	
13.1.2	Command Frame	
13.1.3	Data Frame	
L3.2	Upstream Communication	117

Engine Machine System IC

19	Revision History	207
18	Package Outlines	206
17 17.1 17.2	Application Information Supply Systems VR Sensor Interface	203
16 16.1	EMC Requirements	
15.1 15.2 15.3	SPI SPI Protocol SPI Frame Definition Electrical Characteristics SPI	197 199
14.1.1 14.1.2 14.1.3 14.1.4 14.1.5	Command Register Diagnosis Register Status Register Configuration Register Control Register	130 144 155 162
14 14.1	Register and Commands Register Table	
13.3 13.4	Timing Characteristics Electrical Characteristics	

5

Block Diagram

Block Diagram 2

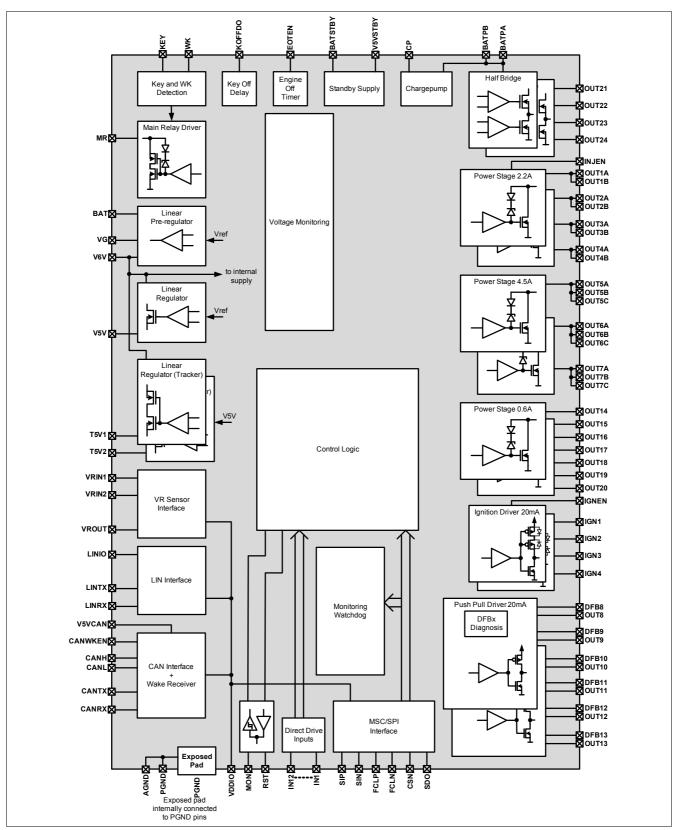


Figure 1 **Block Diagram**

3 Pin Configuration

3.1 Pin Assignment

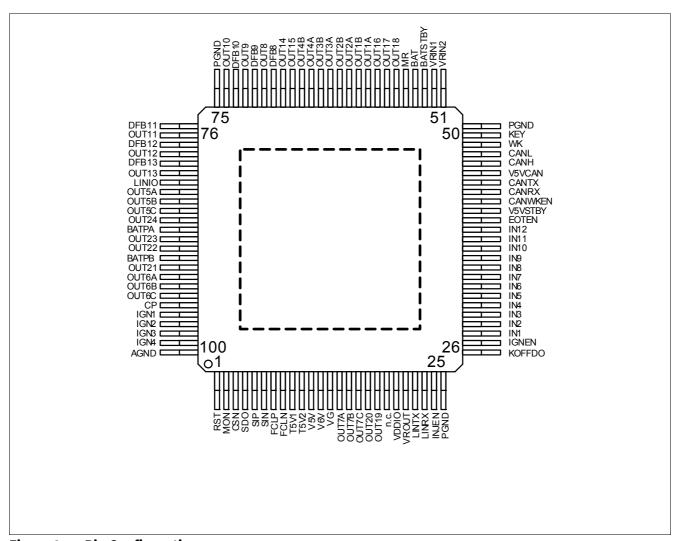


Figure 2 Pin Configuration

3.2 Pin Definitions and Functions

Pin	Symbol	Function	Function					
1	RST	IN/OUT	Reset; Bidirectional pin for reset functions					
2	MON	IN/OUT	itor; Bidirectional pin for monitoring functions					
3	CSN	IN	SC/SPI slave chip select; Single ended chip select for MSC and SPI					
4	SDO	OUT	C/SPI serial data output; Output for MSC and SPI					
5	SIP	IN	MSC/SPI Data input; positive data input of LVDS in MSC mode or single ended data input in SPI mode					

(infineon

Pin	Symbol	Function	Function					
6	SIN	IN	MSC data input or select input; negative data input of LVDS in MSC mode or select input for SPI mode					
7	FCLP	IN	MSC/SPI Clock input; positive clock input of LVDS in MSC mode or single ended clock input in SPI mode					
8	FCLN	IN	Select input or MSC clock input; negative clock input of LVDS in MSC mode or select input for single ended mode (SPI or MSC)					
9	T5V1	OUT	5 V tracker; Supply voltage for off- board sensors					
10	T5V2	OUT	5 V tracker; Supply voltage for off- board sensors					
11	V5V	OUT	5 V supply; Supply voltage for main functions of the ECU					
12	V6V	IN	Source of external pre-regulator					
13	VG	OUT	Gate of external pre-regulator					
14	OUT7A	OUT	Low-side power stage; Must be connected to <i>OUT7B</i> and <i>OUT7C</i> without any parasitic					
15	OUT7B	OUT	Low-side power stage; Must be connected to <i>OUT7A</i> and <i>OUT7C</i> without any parasitic					
16	OUT7C	OUT	Low-side power stage; Must be connected to <i>OUT7A</i> and <i>OUT7B</i> without any parasitic					
17	OUT20	OUT	Low-side small signal stage;					
18	OUT19	OUT	Low-side small signal stage;					
19	n.c.		leave open or connect to GND					
20	VDDIO	Supply	Supply input for logic level inputs and outputs					
21	VROUT	OUT	Output of variable reluctance sensor interface; Digital output to microcontroller					
22	LINTX	IN	Transmit digital input for LIN interface;					
23	LINRX	OUT	Receive digital output for LIN interface;					
24	INJEN	IN	Injector enable input;					
25	PGND	GND	Power ground; internally connected to cooling tab					
26	KOFFDO	OUT	Key off delay output;					
27	IGNEN	IN	Ignition enable input;					
28	IN1	IN	Parallel input; Input pin for direct control of power stage OUT1,					
29	IN2	IN	Parallel input; Input pin for direct control of power stage OUT2					
30	IN3	IN	Parallel input; Input pin for direct control of power stage OUT3					
31	IN4	IN	Parallel input; Input pin for direct control of power stage OUT4					
32	IN5	IN	Parallel input; Input pin for direct control of push pull state IGN1					
33	IN6	IN	Parallel input; Input pin for direct control of push pull state IGN2					
34	IN7	IN	Parallel input; Input pin for direct control of push pull state IGN3					
35	IN8	IN	Parallel input; Input pin for direct control of push pull state IGN4					
36	IN9	IN	Parallel input; Input pin for direct control of power stages, could be multiplexed to various stages					

Pin	Symbol	Function	Function
37	IN10	IN	Parallel input; Input pin for direct control of power stages, could be multiplexed to various stages
38	IN11	IN	Parallel input; Input pin for direct control of power stages, could be multiplexed to various stages
39	IN12	IN	Parallel input; Input pin for direct control of power stages, could be multiplexed to various stages
40	EOTEN	IN	Engine off timer enable input;
41	V5VSTBY	OUT	5 V standby supply; Supply voltage in sleep mode
42	CANWKE N	IN	Enable input for remote CAN wake-up;
43	CANRX	OUT	Receive digital output for CAN;
44	CANTX	IN	Transmit digital input for CAN;
45	V5VCAN	Supply	5 V supply input for CAN;
46	CANH	IN/OUT	CAN bus high;
47	CANL	IN/OUT	CAN bus low;
48	WK	IN	Wake-up input; Input signal and supply for MR
49	KEY	IN	Key input; Input signal and supply for MR
50	PGND	GND	Power ground; internally connected to cooling tab
51	VRIN2	IN	Differential input of variable reluctance sensor; Analog input from sensor
52	VRIN1	IN	Differential input of variable reluctance sensor; Analog input from sensor
53	BATSTBY	Supply	Battery input for standby supply; Battery supply voltage standby supply regulator
54	BAT	Supply	Battery; Supply voltage for main functions of the device.
55	MR	OUT	Low-side power stage for main relay;
56	OUT18	OUT	Low-side power stage;
57	OUT17	OUT	Low-side power stage;
58	OUT16	OUT	Low-side power stage;
59	OUT1A	OUT	Low-side power stage; Must be connected to <i>OUT1B</i> without any parasitic
60	OUT1B	OUT	Low-side power stage; Must be connected to <i>OUT1A</i> without any parasitic
61	OUT2A	OUT	Low-side power stage; Must be connected to <i>OUT2B</i> without any parasitic
62	OUT2B	OUT	Low-side power stage; Must be connected to <i>OUT2A</i> without any parasitic
63	OUT3A	OUT	Low-side power stage; Must be connected to <i>OUT3B</i> without any parasitic
64	OUT3B	OUT	Low-side power stage; Must be connected to <i>OUT3A</i> without any parasitic

(infineon

Pin	Symbol	Function	Function					
65	OUT4A	OUT	Low-side power stage; Must be connected to <i>OUT4B</i> without any parasitic					
66	OUT4B	OUT	Low-side power stage; Must be connected to <i>OUT4A</i> without any parasitic					
67	OUT15	OUT	Low-side power stage;					
68	OUT14	OUT	Low-side power stage;					
69	DFB8	IN	Prain Feedback; Related to OUT8					
70	OUT8	OUT	Push pull stage; To control on- board MOSFET					
71	DFB9	IN	Drain Feedback; Related to OUT9					
72	OUT9	OUT	Push pull stage; To control on- board MOSFET					
73	DFB10	IN	Drain Feedback; Related to OUT10					
74	OUT10	OUT	Push pull stage; To control on- board MOSFET					
75	PGND	GND	Power ground; internally connected to cooling tab					
76	DFB11	IN	Drain Feedback; Related to OUT11					
77	OUT11	OUT	Push pull stage; To control on- board MOSFET					
78	DFB12	IN	Drain Feedback; Related to OUT12					
79	OUT12	OUT	Push pull stage; To control on- board MOSFET					
80	DFB13	IN	Drain Feedback; Related to OUT13					
81	OUT13	OUT	Push pull stage; To control on- board MOSFET					
82	LINIO	IN/OUT	BUS for LIN interface;					
83	OUT5A	OUT	Low-side power stage; Must be connected to <i>OUT5B</i> and <i>OUT5C</i> without any parasitic					
84	OUT5B	OUT	Low-side power stage; Must be connected to <i>OUT5A</i> and <i>OUT5C</i> without any parasitic					
85	OUT5C	OUT	Low-side power stage; Must be connected to <i>OUT5A</i> and <i>OUT5B</i> without any parasitic					
86	OUT24	OUT	Half bridge stage;					
87	BATPA	Supply	Battery; Supply voltage for half bridges and the charge pump; must be connected to <i>BATPB</i> without any parasitic					
88	OUT23	OUT	Half bridge stage;					
89	OUT22	OUT	Half bridge stage;					
90	BATPB	Supply	Battery; Supply voltage for half bridges and the charge pump; must be connected to <i>BATPA</i> without any parasitic					
91	OUT21	OUT	Half bridge stage;					
92	OUT6A	OUT	Low-side power stage; Must be connected to <i>OUT6B</i> and <i>OUT6C</i> without any parasitic					
93	OUT6B	OUT	Low-side power stage; Must be connected to <i>OUT6A</i> and <i>OUT6C</i> without any parasitic					
94	OUT6C	OUT	Low-side power stage; Must be connected to <i>OUT6A</i> and <i>OUT6B</i> without any parasitic					
95	CP	OUT	Charge pump; add external capacitance to stabilise charge pump voltage					

Engine Machine System IC

Pin	Symbol	Function	Function			
96	IGN1	OUT	Push pull stage; To control on- or off- board IGBT			
97	IGN2	OUT	Push pull stage; To control on- or off- board IGBT			
98	IGN3	OUT	Push pull stage; To control on- or off- board IGBT			
99	IGN4	OUT	Push pull stage; To control on- or off- board IGBT			
100	AGND	GND	Signal ground; internally connected to PGND and cooling tab			
Cooling tab ¹⁾	PGND	GND	Power ground; internally connected PGND pins			

¹⁾ Cooling tab is also called exposed pad

Engine Machine System IC

General Product Characteristics

4 General Product Characteristics

General definition:

 $V_{\rm S}$ is the short cut for all battery supplies of the TLE8888-1QK (*BAT*, *BATPA*, *BATPB*, *BATSTBY*) unless otherwise specified

GND is the short cut for all grounds of the TLE8888-1QK (AGND, PGND) unless otherwise specified.

Table 1 Absolute Maximum Ratings¹⁾

 $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	es	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Voltages	1						1
BATPA, BATPB, OUT813, DFB813	V _{BATPA,MR} , V _{BATPB,MR} , V _{OUT813,MR} , V _{DFB813,MR} ,	-0.3	-	40	V	_	P_4.1
СР	$V_{\rm CP,MR}$	-0.3	_	45	V	$-0.3 V < V_{CP} - V_{BATPA} < 5 V$	P_4.2
OUT17, OUT1420	V _{OUT17,MR} , V _{OUT1420,MR}	-0.3	-	50	V	OUTn is switched off, clamping is allowed according Chapter 9.6	P_4.3
V6V	$V_{ m V6V,MR}$	-0.3	-	10	V	-	P_4.4
VG	$V_{\text{VG,MR}}$	-0.3	-	12	V	$V_{VG} - V_{V6V} < 5 \text{ V}$	P_4.5
V5V, V5VSTBY, VDDIO, V5VCAN	V _{V5V,MR} , V _{V5STBY,MR} , V _{VDIO,MR} , V _{V5VCAN,MR}	-0.3	-	5.5	V	-	P_4.6
T5V1, T5V2, IGN14	V _{T5V1,MR} , V _{T5V2,MR} , V _{IGN14,MR}	-1	-	40	V	-	P_4.7
BAT, BATSTBY, KEY, WK, MR	V _{BAT,MR} , V _{KEY,MR} , V _{WK,MR} , V _{BATSTBY,MR} , V _{MR,MR} ,	-16	_	40	V	_	P_4.8

Engine Machine System IC

General Product Characteristics

Table 1 Absolute Maximum Ratings¹⁾ (cont'd)

 $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	es	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
IN112, SIP, SIN, FCLP, FCLN, CSN, LINTX, CANTX, IGNEN, INJEN, CANWKEN, EOTEN	VIN112,MR, VFCLP,MR, VSIP,MR, VSIN,MR, VCSN,MR, VLINTX,MR, VIGNEN,MR, VIGNEN,MR, VINJEN,MR, VEOTEN,MR, VCANWKEN,MR	-0.3	-	5.5	V	-	P_4.9
SDO, RST,VROUT, LINRX, CANRX	$V_{\rm SDO,MR}$, $V_{\rm RST,MR}$,	-0.3	_	<i>VDDIO</i> + 0.3	V	both conditions must be observed	P_4.31
	$V_{ m VROUT,MR}, \ V_{ m LINRX,MR}, \ V_{ m CANRX,MR}$	-0.3	_	5.5	V		
MON, KOFFDO	$V_{\text{MON,MR}}$,	-0.3	_	<i>V5V</i> +0.3	٧	both conditions	P_4.10
	$V_{\text{KOFFDO,MR}}$	-0.3	_	5.5	V	must be observed	
VRIN1	$V_{\text{VRIN1,MR}}$	-0.3	-	40	V	VRIN2 open	P_4.11
VRIN2	$V_{\text{VRIN2_MR}}$	-0.3	-	40	V	VRIN1 open	P_4.12
LINIO, CANH, CANL	$V_{\text{LINIO,MR}}, \ V_{\text{CANH,MR}}, \ V_{\text{CANL,MR}}$	-40	_	40	V	-	P_4.13
OUT2124	V _{OUT2124,MR}	-0.3	_	BATPx+0	V	-	P_4.14
Currents							
DFB813	I _{DFB813,MR}	-5	_	5	mA	2)	P_4.15
Common Mode Input Current of VRIN1 and VRIN2	I _{VRIN,CM,MR}	-5	_	5	mA	$I_{VRIN,CM,MR} = I_{VRIN1} + I_{VRIN2}^{2)}$	P_4.16
Common Mode Input Current of VRIN1 and VRIN2, non permanent	I _{VRIN,CM,MR}	-15	_	15	mA	$I_{\text{VRIN,CM,MR}} = I_{\text{VRIN1}} + I_{\text{VRIN2}}^{2)}$, maximum duty cycle 60% and maximum on time of 1 ms, 100 h	P_4.34
Differential Current of VRIN1 and VRIN2	$\Delta I_{\text{VRIN,MR}}$	-50	-	50	mA	$\Delta I_{\text{VRIN},\text{MR}} = (I_{\text{VRIN1}} - I_{\text{VRIN2}})/2^2$	P_4.17
PGND	I _{PGND,MR}	-25	-	25	Α	-	P_4.18
IGN14	I _{IGN14,MR}	-50	_	_	mA	2)	P_4.19

Engine Machine System IC

General Product Characteristics

Absolute Maximum Ratings¹⁾ (cont'd) Table 1

 $T_i = -40^{\circ}$ C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	es	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Junction Temperature	$T_{\rm j}$	-40	_	150	°C	3)	P_4.20
Storage Temperature	$T_{\rm stg}$	-55	_	150	°C	_	P_4.21
ESD Susceptibility		•	•		•		
ESD Susceptibility	$V_{\rm ESDHBM}$	-2	_	2	kV	HBM ⁴⁾	P_4.22
ESD Susceptibility BAT, BATPA, BATPB, T5V1, T5V2, BATSTBY, KEY, WK, MR, OUT17, OUT1424, DFB813, IGN14, CANH, CANL, LINIO, VRIN1, VRIN2 to PGND	V _{ESD,HBM}	-4	-	4	kV	HBM ⁴⁾	P_4.23
ESD Susceptibility	$V_{\rm ESDCDM}$	-500	-	500	V	CDM ⁵⁾	P_4.24
ESD Susceptibility Pin 1, 25, 26, 50, 51, 75, 76, and 100	V _{ESD1, 25, 26,} 50, 51, 75, 76, 100	-750	_	750	V	CDM ⁵⁾	P_4.25

- 1) not subject to production test
- 2) Current has to be limited when maximum voltages are exceeded
- 3) according to qualification
- 4) ESD susceptibility, HBM according to EIA/JESD 22-A114F (1.5k Ω , 100 pF)
- 5) ESD susceptibility, Charged Device Model "CDM" EIA/JESD22-C101 or ESDA STM5.3.1

Notes

(corner pins)

- 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

Engine Machine System IC

General Product Characteristics

Table 2 Functional Range

 $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol	Values			Unit		Number	
		Min.	Тур.	Max.		Test Condition		
Supply Voltage - Reduced Operation	V _{BAT,ro}	4.5	-	6	V	reduced operation range, main relay and delayed off power stages are on if enabled, remaining functions not working	P_4.26	
Supply Voltage - Low Drop Range	V _{BAT,ld}	6	-	9	V	low drop operation range, supply regulators working with supply out of the charge pump, standby supply regulator out of operation range	P_4.27	
Supply Voltage - Normal Operation range	$V_{BAT,nop}$	9	-	28	V	normal operation range ¹⁾	P_4.28	
Supply Voltage - Overvoltage Range	$V_{BAT,ov}$	28	-	40	V	overvoltage, power stages are switched off	P_4.29	
Supply Voltage transients ²⁾	$d_{VBAT}/d_{\rm t}$	-1	-	1	V/µs	-	P_4.30	

¹⁾ overtemperature due to bad $R_{\rm thJA}$ of the ECU or overload can happen

Note:

Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

Table 3 Thermal Resistance

Parameter	Symbol	Values		Values		Note or	Number
		Min.	Тур.	Max.		Test Condition	
Junction to Case ¹⁾	R_{thJC}	_	2.4	_	K/W	_	P_4.32
Junction to Ambient	R_{thJA}	_	_	_	K/W	2)	P_4.33

¹⁾ Not subject to production test, specified by design.

²⁾ not subject to production test, specified by design

²⁾ EIA/JESD 52_2, FR4, 80 × 80 × 1.5 mm; 35 × Cu, 5 × Sn; 300 mm²

Engine Machine System IC

(infineon

Operation Behavior

5 Operation Behavior

The TLE8888-1QK has implemented the whole supply of an ECU. Therefore a complex control logic is implemented to provide several operation states.

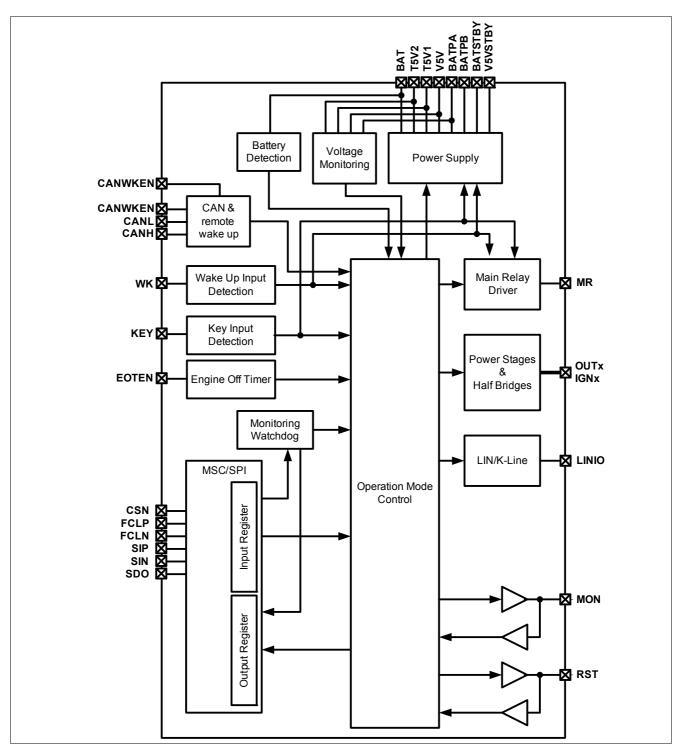
In this chapter

- · the ramp up and down behavior and
- the status of the TLE8888-1QK during special conditions like 5 V undervoltage

is described. For the description of the monitoring watchdog module see Chapter 6.

In **Figure 3** the block diagram with all blocks affecting the status of the device and the ECU are shown. Following blocks are influenced during the different operation states and reset functions:

- Serial Interface MSC/SPI: with the serial interface the setup of the device is done
- Key input detection: start signal from key switch (KL15)
- · Wake-up input detection: additional start signal e.g. from external CAN with wake-up by bus function
- Engine off timer: wake-up signal in comparator mode
- Power supply: ECU 5 V supply and 5 V sensor supplies, 5 V standby supply
- Voltage monitoring: supervision of all supplies (BAT, V5V, T5V1, T5V2)
- Main relay driver: controls external main relay to switch battery voltage to an ECU supply pin (see also application setups in Chapter 17)
- Power stages and half-bridges control block
- LIN/K-Line: transmission mode depends on operation state of the ECU
- CAN: transmission mode depends on operation state of the ECU, remote wake-up function
- Reset outputs MON and RST
- Monitoring watchdog module: signature watchdog for safety applications
- Operation Mode Control


The operation mode control block consists of:

- ramp up and down sequence control logic
- the reset control logic and
- status output logic.

Engine Machine System IC

Operation Behavior

Block diagram operation mode control Figure 3

5.1 **Operation States**

In Figure 4 the state diagram of the whole ramp up and down sequence is shown. There are seven operation states:

ECU sleep state: KEY and WK input are "low", no wake-up signals from engine off timer or CAN are active, main relay is off, the whole ECU inclusive TLE8888-1QK is not supplied, 5 V standby supply is working if pin BATSTBY is supplied, engine off timer and CAN wake-up circuits are active if enabled and supplied.

Engine Machine System IC

- Supply ramp up state: KEY input or wake¹⁾ are "high" and the supply of the TLE8888-1QK starts working, the voltage of V6V, V5V, T5V1 and T5V2 are ramping up but the voltage levels are below the undervoltage threshold. For wake-up by wake¹⁾ the ramp up of the main supply has to be finished before the ramp up timer overflow. The main relay is switched on depending on the voltage level at the pin BAT (see Chapter 7.2)
- Normal operation state: KEY input or wake are "high" and main relay is switched on depending on the
 voltage level at the pin BAT or the status of bit MR in the status register OpStat0 (see Chapter 7.2), the
 whole ECU is supplied and the status of the different functions and registers is according Table 5 and
 Table 6.
- Afterrun state: KEY is "low" but afterrun enable bit is set and therefore the whole ECU is supplied, the
 status of the different functions and registers is according Table 5 and Table 6 and the microcontroller can
 execute afterrun routines
- Afterrun reset state: the reset procedure before direct reentry in normal operation is executed if bit AR =1
 in the configuration register OpConfig0
- General power-down state: the supplies of the ECU (V5V, T5V1, T5V2) are disabled and the power-down timer is counting, main relay remains in the switching status and the TLE8888-1QK is supplied to ensure the power-down (V5V drops down to 0 V) of the ECU, V5VSTBY is working if BATSTBY is supplied, all functions to external are disabled.
- Wake clear state: this state avoids permanent wake-up in failure cases. The wake clear command is executed (function according setting bit **WKCLR** in the command register **Cmd0**). All wake signals which are active after the supply ramp up and the general power-down state are reset.

Engine Machine System IC

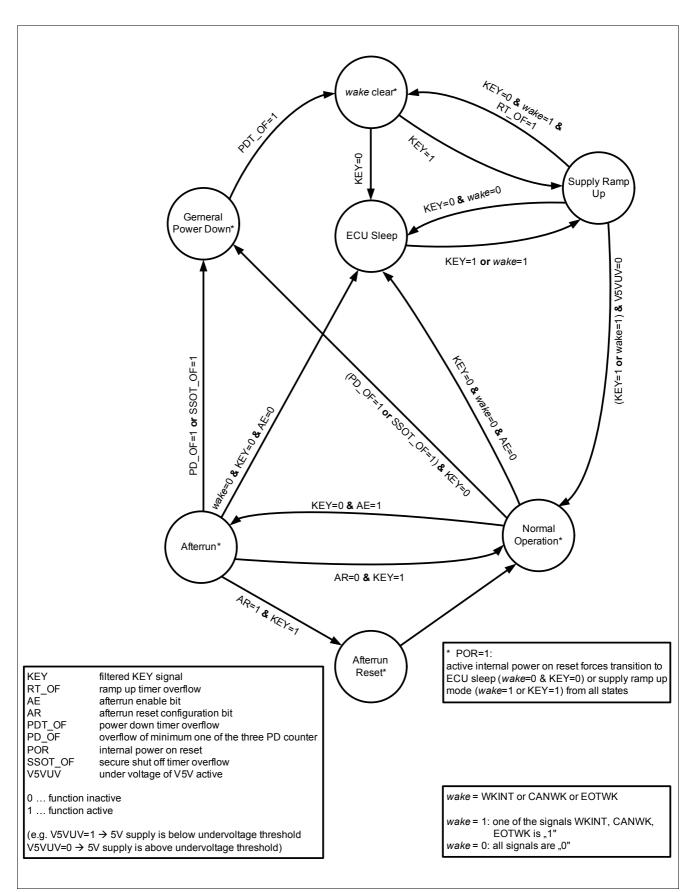


Figure 4 Operation state diagram

infineon

Operation Behavior

Description of the transitions:

 Table 4
 Operation State Transitions

Transition	Condition	Description
from all states to ECU sleep state	internal supply voltage < internal por threshold and <i>KEY</i> = 0 and wake ¹⁾ =0 ²⁾	internal power on reset is active and reset the whole digital logic, ECU sleep state is entered due to no wake-up signal at <i>KEY</i> or wake
from all states to supply ramp up state	internal supply voltage < internal por threshold and <i>KEY</i> = 1 or wake = 1 ²⁾	internal power on reset is active and reset the whole digital logic, supply ramp up state is entered due to a wake-up signal at <i>KEY</i> or wake
ECU sleep state to supply ramp up state	$KEY > V_{KEY,th}$ or wake = 1	With a "high" voltage at <i>KEY</i> or wake the wake-up of the TLE8888-1QK starts
Supply ramp up state to ECU sleep state	$KEY < V_{KEY,th}$ and wake = 0^{2}	The external supply ramp up is not finished but the wake- up signals are low
Supply ramp up state to wake clear state	KEY < $V_{KEY,th}$ and wake = 1^{2} and RT_OF = 1	The KEY signal is low and the wake-up signals are active. The ramp up timer has an overflow which indicates a ramp up problem of the external supply (e.g. short to GND). To avoid permanent high current consumption the internal wake signals must be reset to enter the ECU sleep state.
Supply ramp up state to normal operation state	$(KEY > V_{KEY,th} \text{ or}$ wake = 1) and $V5V > V_{uv,V5V}^{2}$	normal operation state is entered if the main supply voltage V5V is above the undervoltage threshold, KEY is high or one of the wake-up conditions are active
Normal operation state to afterrun state	$KEY < V_{KEY,th}$ and $AE = 1^{2}$	KEY is "low" and afterrun function is enabled: no changes in the setup of the TLE8888-1QK
Normal operation state to ECU sleep state	AE = 0 and KEY $< V_{KEY,th}$ and wake = 0^{2}	normal shut off
Normal operation state to general power-down state	(PD_OF = 1 or SSOT_OF = 1) and KEY $< V_{KEY,th}^{2}$	KEY is low and watchdog error shut off with overflow of the power-down counter or secure shut off due to expired secure shut off timer
Afterrun state to ECU sleep state	AE = 0 and KEY $< V_{KEY,th}$ and wake = 0^{2}	normal shut off in afterrun mode with the reset of the afterrun enable bit AE by the microcontroller
Afterrun state to general power-down state	PD_OF = 1 or SSOT_OF = 1	watchdog error shut off with overflow of the power-down counter or secure shut off due to expired secure shut off timer
Afterrun state to normal operation state	$KEY > V_{KEY,th}$ and $AR = 0^{2}$	reentry of normal operation with <i>KEY</i> on during afterrun operation, no reset is performed (AR = 0)
Afterrun state to afterrun reset state	$KEY > V_{KEY,th}$ and AR = 1^{2}	reentry of normal operation with <i>KEY</i> on during afterrun operation with reset (AR = 1)
Afterrun reset state to normal operation state		transition to normal operation with the next active internal clock edge after entry to the afterrun reset state

Engine Machine System IC

Operation Behavior

Table 4 Operation State Transitions (cont'd)

Transition	Condition	Description
General power-down state to wake clear state	PDT_OF = 1	with the power-down timer overflow the reset of the internal wake signals must be performed
Wake clear state to ECU sleep state	KEY < V _{KEY,th}	after reset of the internal wake signals and <i>KEY</i> is low the ECU sleep state is entered, no unwanted wake-up due to a failure condition will occur
Wake clear state to supply ramp up state	KEY> V _{KEY,th}	after reset of the internal wake signals and KEY is high the supply ramp up state is entered, no unwanted wake-up due to a failure condition at the CAN bus and pin WK will occur

¹⁾ wake = WKINT or CANWK or EOTWK (see Chapter 7.2, Chapter 7.4 and Chapter 12.2.4)

The two states:

- · normal operation
- afterrun

are reflected in the bit **OM** of the status register **OpStat0**.

The power-down time is defined with the bits **PDT** of the configuration register **OpConfig0**. In **Figure 5** a sequence with wake-up by *KEY* and go to sleep with afterrun mode is shown.

Wake wake wake Ramp UP/Down Statemachine Sieep Ramp Up Normal operation Afterrun ECU Sleep

Figure 5 Ramp up and down sequence diagram with wake-up by KEY and afterrun mode

5.2 Reset and Operation Modes

RST

ΑE

²⁾ including defined filter times

Engine Machine System IC

Operation Behavior

The TLE8888-1QK provides several supervision functions which lead to some dedicated reset states and special operation modes of the device and the ECU.

There are two bidirectional reset pins MON and RST implemented. For the behavior during reset of the reset pins MON and RST and the other status of the TLE8888-1QK see **Table 5** and **Table 6**.

Following reset functions and special states are implemented:

- Internal power on reset: the internal power on reset detection circuit monitors the voltage level of the
 internal supply. For an internal supply voltage below the internal power on reset threshold the whole
 digital logic of the TLE8888-1QK is reset which results in the ECU sleep state or supply ramp up state
 depending on the state of KEY and wake. If the voltage level for operation is high enough the 6 V pre
 regulator is working. The 5 V supplies are disabled till the internal supply level is over the power on
 threshold level.
- ECU power on reset: this is the reset at ramp up of the power supplies and the beginning of the operation. The pins RST and MON are pulled to GND to reset the microcontroller and all devices connected to the pin MON. The device is reset to the initial reset status. The reset is released with a voltage at pin V5V higher than the V5V Undervoltage Detection Hysteresis after tpu,r.
- Reset during undervoltage of the 5 V supply V5V: this reset occurs during undervoltage of the 5 V ECU supply. The pins RST and MON are pulled to GND to reset the microcontroller and all devices connected to the pin MON. The delayed switch off function is active regarding the configuration setup. The status of the main relay is according to the status of the wake-up pins KEY and WK and the voltage level of the supply pin BAT.
- State during undervoltage of the 5 V supplies T5V1 and T5V2: with the undervoltage detection of the tracker supplies diagnosis bits are set but there is no effect to the behavior of the device.
- Reset during overvoltage of the 5 V supply V5V: with the overvoltage detection of the 5 V ECU supply all
 functions of the device which have an effect externally or can lead to overcurrent or overtemperature are
 disabled (e.g. power stages, LIN/CAN/MSC/SPI communication). The pins RST and MON are low.
- State during overvoltage of the 5 V supplies T5V1 and T5V2: with the detection of overvoltage of the tracker supplies diagnosis bits are set but there is no effect to the behavior of the device.
- Power stages switch off during overvoltage of the battery supply BAT: For voltages at the supply pin BAT
 higher than the overvoltage threshold the power stages are disabled to avoid too high clamping energy
 during switch off. Damage of the switches is prevented.
- Watchdog reset: If the reset counter is incremented and the reset is enabled (bit **WDREN** = 1) the microcontroller is reset with a "low" at the pin *RST*. The power stages are disabled and the LIN/CAN communication is set to receive only mode.
- Software reset from microcontroller: with the software reset command (command register **CmdSR**) the software reset is activated. The device is reset to the reset status defined in **Table 5** and **Table 6**. The activation of the software reset triggers an increase of the power-down counter by 1.
- Reset with an external forced "low" at *RST*: With a detected "low" at the *RST* pin the TLE8888-1QK is reset to the reset status defined in **Table 5** and **Table 6**.
- Power stages switch off with an external forced "low" at MON: With a detected "low" at the MON pin the
 power stages are disabled (O1E to O24E, IGN1E to IGN4E are set to "0"). After MON=0 event the power
 stages must be enabled again.
- State with time out of the MSC communication: With the time out of the MSC communication the power stages are disabled (O1E to O24E, IGN1E to IGN4E are set to "0"). After the next valid received data frame the power stages must be enabled again.
- Afterrun reset: This reset is executed if the bit **AR** of register **OpConfig0** is 1 and the transition from afterrun state to normal operation is triggered (definition see **Table 6**).

Engine Machine System IC

 Table 5
 Overview Behavior at Reset and Operation Conditions (part 1)

Effect to functions:	Conditions									
	Internal power on reset	ECU power on reset	Undervoltage V5V	Undervoltage T5V1, T5V2	Overvoltage V5V ¹⁾	Overvoltage T5V1, T5V2	Overvoltage BAT			
notes	forces state change	only after transition from Supply Ramp Up to Normal Operation state for tpu,r	timing see Chapter 8.7 and Table 7	timing see Chapter 8.7	timing see Chapter 8.7 and Table 7	timing see Chapter 8.7	timing see Chapter 8.7			
V5VSTBY, V6V	en.	en.	en.	en.	en.	en.	en.			
V5V, T5V1, T5V2	dis.	en.	en.	en.	en.	en.	en.			
MSC/SPI communication	dis.	dis.	dis.	en.	dis.	en.	en.			
Main relay	en. ²⁾	en. ²⁾	en. ²⁾	en. ²⁾	en. ²⁾	en. ²⁾	en. ²⁾			
Low-side switches / Half bridges / Push Pull Driver	off/dis./off	off/dis./off	off/dis./off	no change	off/dis./off	no change	off/dis./off			
OUT17 and OUT21 with delayed switch off function	dis.	dis.	delayed switch off activated	en.	delayed switch off activated	en.	dis.			
LIN/CAN communication	dis.	rec. only, after release setup acc. bits CAN, LIN, CANWE, LINWE ³⁾	rec. only, after release setup acc. bits CAN, LIN, CANWE, LINWE ³⁾	acc. bits CAN, LIN, CANWE, LINWE	dis., after release setup acc. bits CAN, LIN, CANWE, LINWE	acc. bits CAN, LIN, CANWE, LINWE	acc. bits CAN, LIN, CANWE, LINWE			
MON (output function)	"low" ⁴⁾	"low"	"low"	no effect ⁵⁾	"low"	no effect ⁵⁾	no effect ⁵⁾			
RST (output function)	"low" ⁴⁾	"low"	"low"	no effect ⁵⁾	"low"	no effect ⁵⁾	no effect ⁵⁾			
Watchdog Sequence, Heartbeat Timer ⁶⁾	reset	reset	reset	no effect	reset	no effect	no effect			

Engine Machine System IC

Table 5 Overview Behavior at Reset and Operation Conditions (part 1) (cont'd)

Effect to functions:	Conditions	Conditions									
	Internal power on reset	ECU power on reset	Undervoltage V5V	Undervoltage T5V1, T5V2	Overvoltage V5V ¹⁾	Overvoltage T5V1, T5V2	Overvoltage BAT				
WWD Error Counter, FWD pass counter, Total error counter	reset	reset	reset	no effect	reset	no effect	no effect				
PD Counter	reset	reset	reset	no effect	reset	no effect	no effect				
Reset Counter; SSOT	reset	reset	reset	no effect	reset	no effect	no effect				
AR; CANWE; LINWE; FWDQUEST	reset	reset	reset	no effect	reset	no effect	no effect				
AE; WWDConfig0; WDConfig0; watchdog diagnosis bits	reset	reset	reset	no effect	reset	no effect	no effect				
Logic and MSC/SPI register bits ⁷⁾⁸⁾	reset	reset	reset, diagnosis bit is set	diagnosis bits are set	no effect	diagnosis bits are set	diagnosis bit is set				
EOTWK, CANWK, WKINT	no effect	no effect	reset	no effect	no effect	no effect	no effect				

- 1) for voltages greater than the maximum ratings of pin V5V behavior is not guaranteed
- 2) according the definition in **Chapter 7**
- 3) after release of RST (transition from low to high) there is a time delay of tdel,r before configuration is enabled
- 4) active pull down if supply voltage is high enough
- 5) pull up of open drain output is active
- 6) start of watchdog sequence after release of reset
- 7) valid for all register bits which are not described in **Table 5** or **Table 6**
- 8) During active delayed switch off mode some register bits related to the power stages are not reset, see Chapter 9.4

Engine Machine System IC

 Table 6
 Overview Behavior at Reset and Operation Conditions (part 2)

Effect to functions:	Conditions	Conditions										
	Watchdog reset	Safe State	SW reset	MON switch off	RST reset	MSC time out	afterrun res	set				
			from micro- controller	(input function)	(input function)		no reset AR=0	reset AR=1				
note	status during reset pulse top,r		status during reset pulse tint,r	masked by MON output function	masked by RST output function	status till next valid MSC communication						
V5VSTBY, V6V	en.	en.	en.	en.	en.	en.	en.	en.				
V5V, T5V1, T5V2	en.	en.	en.	en.	en.	en.	en.	en.				
MSC/SPI communication	dis.	en.	en.	en.	dis.	en.	en.	dis.				
Main relay	en. ¹⁾	en.	en. ¹⁾	en. ¹⁾	en. ¹⁾	en. ¹⁾	en. ¹⁾	en. ¹⁾				
Low-side switches / Half bridges / Push Pull Driver	off/dis./off	off/dis./off	off/dis./off ³⁾	off/dis./off	off/dis./off	off/dis./off	no change	off/dis./off				
OUT17 and OUT21 with delayed switch off function	no trigger if termination of delayed switch off function	no trigger if termination of delayed switch off function	dis. ³⁾	delayed switch off activated	delayed switch off activated	delayed switch off activated	en.	dis.				

Engine Machine System IC

Operation Behavior

Table 6 Overview Behavior at Reset and Operation Conditions (part 2) (cont'd)

Effect to functions:	Conditions	Conditions										
	Watchdog reset	Safe State	SW reset	MON switch off	RST reset	MSC time out	afterrun re	set				
			from micro- controller	(input function)	(input function)		no reset AR=0	reset AR=1				
LIN/CAN communication	acc. bits CAN, LIN, CANWE, LINWE	acc. bits CAN, LIN, CANWE, LINWE	acc. bits CAN, LIN, CANWE, LINWE	acc. bits CAN, LIN, CANWE, LINWE	rec. only, after release setup acc. bits CAN, LIN, CANWE, LINWE ²⁾	acc. bits CAN, LIN, CANWE, LINWE	acc. bits CAN, LIN, CANWE, LINWE	rec. only, after release setup acc. bits CAN, LIN, CANWE, LINWE ²⁾				
MON	"low"	"low"	"low" ³⁾	forced from outside	"low"	no effect ⁴⁾	no effect ⁴⁾	"low"				
RST	"low"	no effect ⁴⁾	no effect ⁴⁾	no effect ⁴⁾	forced from outside	no effect ⁴⁾	no effect ⁴⁾	"low"				
Watchdog Sequence, Heartbeat Timer ⁵⁾	reset	no effect	reset	no effect	reset	no effect	no effect	reset				
WWD Error Counter, FWD pass counter, Total error counter	reset	no effect	reset	no effect	reset	no effect	no effect	reset				
PD Counter	no effect	no effect	increment +1	no effect	no effect	no effect	no effect	no effect				
Reset Counter; SSOT	no effect	no effect	no effect	no effect	no effect	no effect	no effect ⁶⁾	no effect ⁶⁾				
AR; CANWE; LINWE; FWDQUEST	no effect	no effect	no effect	no effect	no effect	no effect	no effect	no effect				

Rev. 1.2

Engine Machine System IC

infineon

Operation Behavior

Table 6 Overview Behavior at Reset and Operation Conditions (part 2) (cont'd)

Effect to functions:	Conditions										
	Watchdog reset	Safe State	SW reset	MON switch off	RST reset	MSC time out	afterrun reset				
			from micro- controller	(input function)	(input function)		no reset AR=0	reset AR=1			
AE; WWDConfig0; WDConfig0; watchdog diagnosis bit	reset	no effect	reset	no effect	reset	no effect	no effect	reset			
Logic and MSC/SPI register bits ⁷⁾⁸⁾	no effect	no effect	reset	no effect	reset	diagnosis bit is set	no effect	reset			
EOTWK, CANWK, WKINT	no effect	no effect	no effect	no effect	no effect	no effect	no effect	no effect			

- 1) according the definition in **Chapter 7**
- 2) after release of RST (transition from low to high) there is a time delay of **tdel,r** before configuration is enabled
- 3) status for time top,r
- 4) pull up of open drain output is active
- 5) start of watchdog sequence after release of reset
- 6) SSOT reset due to KEY = 1
- 7) valid for all register bits which are not described in **Table 5** or **Table 6**
- 8) During active delayed switch off mode some register bits related to the power stages are not reset, see Chapter 9.4

Engine Machine System IC

Operation Behavior

Table 7 **Reset Time Definition**

Reset Function		Reset Time at RST Output	Related Status Bits in Register OpStat1	
internal power on rese	t		all registers are reset	
ECU power on reset		t _{pu,r}		
Undervoltage V5V		t _{pu,r}	V5VUVR	
Overvoltage V5V		t _{pu,r}	V5VOVR	
Watchdog reset		t _{op,r}	WDRES	
RST reset forced from o	outside	forced from outside	RSTR	
Software reset from mi	icrocontroller	no effect	all registers are reset ¹⁾	
Afterrun reset	AR ="0"	no effect		
	AR="1"	t _{op,r}	ARES	

¹⁾ internal reset with $t_{\rm int,r}$ active

After a reset with pin RST the configuration of the CAN and LIN bus is delayed by the time tdel,r to avoid that undefined microcontroller pins are affecting the buses. During this delay time the configuration bits can be changed by a write access to the register.

Engine Machine System IC

Operation Behavior

Electrical Characteristics Operation Behavior 5.3

Table 8 **Electrical Characteristics: Operation Behavior**

 $V_S = 13.5 \text{ V}$, $V_{VSV} = 5 \text{ V}$, $T_i = -40 ^{\circ}\text{C}$ to $+150 ^{\circ}\text{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Internal power on reset threshold	$V_{ m por,int,th}$	_	_	2.8	V	of internal supply voltage	P_5.3.1
Supply voltage range for	$V_{BATP,int}$	4.5	-	_	V	only valid if the	P_5.3.2
internal supply	$V_{ m V6V,int}$	3.5	_	-	V	charge pump has ramped up before voltage drop, both condition must be fulfilled to ensure no internal power on reset	
Power-Down Timer							
Power-down time 1	$t_{\rm pd,1}$	_	100	_	ms	_	P_5.3.3
Power-down time 2	$t_{\rm pd,2}$	_	200	_	ms	_	P_5.3.4
Power-down time 3	$t_{\rm pd,3}$	_	300	_	ms	_	P_5.3.5
Power-down time 4	$t_{\rm pd,4}$	_	400	_	ms	-	P_5.3.6
Power-down time accuracy	$t_{\sf pd,a}$	-10	-	+10	%	_	P_5.3.7
Ramp Up timer							
Ramp up time	$t_{\rm ru}$	185	_	650	ms	_	P_5.3.8
MON In- Output		·		·			
Input low level	V _{il}	_	_	0.29* <i>V</i>	V	-	P_5.3.10
Input high level	V _{ih}	0.7* <i>V</i> 5	-	-	V	-	P_5.3.11
Input hysteresis	V _{ihys}	0.1	_	1	٧	_	P_5.3.12
Pull up current	I _{imax}	-100	_	-	μΑ	$V_{\rm in} = 0 \text{ V},$ pull up to $V5V$	P_5.3.13
Input de-glitch time for low and high level detection	t _{i,d}	0.5	_	3.5	μs	-	P_5.3.14
Output low level operation	V _{ol}	-	-	0.7	V	$I_{\text{out}} = 2 \text{ mA};$ $V_{\text{V5V}} = 2.5 \text{ V}$	P_5.3.15
Output current capability	I _{omax}	15 ¹⁾	-	_	mA	V _{MON} = 5 V	P_5.3.16
RST In- Output		·		·		•	•
Input low level	V _{il}	-	_	0.29* <i>V</i> <i>DDIO</i>	V	-	P_5.3.17

Engine Machine System IC

Operation Behavior

Electrical Characteristics: Operation Behavior (cont'd) Table 8

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Input high level	V _{ih}	0.7* <i>VD</i> <i>DIO</i>	_	-	V	-	P_5.3.18
Input hysteresis	V _{ihys}	0.1	_	1	٧	_	P_5.3.19
Pull up current	I _{imax}	-100	_	-	μΑ	V _{in} = 0 V, pull up to <i>VDDIO</i>	P_5.3.20
Input de-glitch time for low and high level detection	t _{i,d}	0.5	_	3.5	μs	-	P_5.3.21
Output low level operation	V _{ol}	_	_	0.7	V	$I_{\text{out}} = 2 \text{ mA};$ $V_{\text{V5V}} = 2.5 \text{ V}$	P_5.3.22
Output current capability	I _{omax}	15 ¹⁾	_	-	mA	<i>V</i> _{RST} = 5 V	P_5.3.23
Reset Times		·		·			
Power up reset time	t _{pu,r}	12	16	20	μs	-	P_5.3.24
Operation reset time	t _{op,r}	1	2	4	μs	-	P_5.3.25
Internal reset time	t _{int,r}	_	-	1	μs	-	P_5.3.26
Delay time after reset	$t_{ m del,r}$	6	10	14	μs	_	P_5.3.27

¹⁾ Application must ensure that current into this pin does not exceed this value.

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

6 Monitoring Watchdog Module (Signature Watchdog)

The watchdog function is intended for a temporal and logical monitoring of the microcontroller's program sequence. In **Figure 6** the block diagram of the monitoring module is drawn. The module has an interface to the MSC/SPI block. The monitoring of the microcontroller is done by the separate check of the timing with the window watchdog and the logical operation check by the functional watchdog. Therefore the microcontroller must send a window watchdog service command for the window watchdog and four response bytes for the functional check. The results of the checks affect the corresponding counter (window watchdog error counter or functional watchdog pass counter). Additionally a total error counter module is implemented which detects the occurrence of watchdog errors (the timing check or the functional is not passed) and changes the status of the total error counter accordingly.

For the independent functional watchdog and the total error counter a heartbeat is implemented to define the increment timing of both functions.

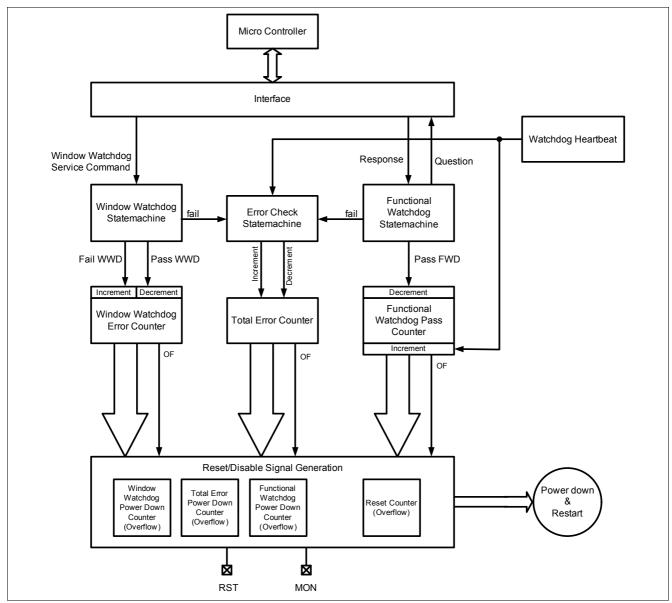


Figure 6 Block diagram of the Monitoring Watchdog Function

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

The status of the counters (window watchdog error counter, functional watchdog pass counter and total error counter) and the corresponding overflow signals are inputs to the watchdog reset, power-down counter and the secure shut off timer. This information is used to affect the operation status of the TLE8888-1QK and the status of the pins *MON* and *RST*.

The software of the microcontroller has to make sure that the program sequence and any safety critical parts of the microcontroller are self tested by performing related routines according to the received questions.

Table 9

Bit Name	Register	Туре	Description		
General	1	<u>I</u>			
WDRES	OpStat1 status		reset caused by watchdog (general status bit)		
RESC	WdStat0 status		reset counter value		
SSOTS	WdStat0 status		Secure shut off timer start status		
WDHBTPRE	WDHBTO status		heartbeat timer pre divider value		
WDHBT	WDHBT1	status	heartbeat timer value		
WDHBTP	WDConfig0 configuration		definition of heartbeat period for functional watchdog and total error counter		
CANWE	WDConfig1	configuration	CAN operation mode during safe state		
LINWE	WDConfig1 configurat		LIN operation mode during safe state		
WDREN	WDConfig1 configuration		watchdog reset enable		
FWDQG	WDConfig1	configuration	Functional watchdog question generation pattern setup		
	MSCReadWd0 command		Multi read command for WdStat0, TECStat, FWDStat0, FWDStat1, WdDiag, WWDStat, WDConfig0 and WWDConfig0		
	MSCReadWd1 command		Multi read command for WDHBT0, WDHBT1, WdStat0 and WdStat1		
	WDHBTPSyncC md	command	heartbeat period synchronization command		
WDHBTS	Cmd0	command	watchdog heartbeat timer sample command		
Window Wat	chdog				
WWDEC	WWDStat	status	value of error counter for window watchdog		
WWDSCR	WdStat0	status	Window watchdog service command received status		
WWDPDC	WdStat0	status	power-down counter value of window watchdog		
WWDECI	WWDConfig1	configuration	definition of the increment value of error counter for window watchdog		
WWDECD	WWDConfig1	configuration	definition of the decrement value of error counter for window watchdog		
WWDCWT	WWDConfig0	configuration	closed window time		
WWDOWT	WWDConfig0	configuration	open window time		
	WWDServiceC md	command	window watchdog service command		
WWDSCE	WdDiag	diagnosis	window watchdog service command too early		
WWDTO	WdDiag diagnosis		window watchdog time out		

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

Table 9	(cont'd)				
Bit Name	Register	Туре	Description		
WWDRES	WdDiag	diagnosis	reset caused by window watchdog		
Functional W	/atchdog	•			
FWDQUEST	FWDStat1	status	question definition		
FWDRESPC	FWDStat1	status	response counter		
FWDPC	FWDStat0	status	pass counter value of functional watchdog		
FWDPDC	WdStat1	status	power-down counter value of functional watchdog		
FWDPCI	FWDConfig	configuration	definition of the increment value of pass counter for functional watchdog		
FWDPCD	FWDConfig	configuration	definition of the decrement value of pass counter for functional watchdog		
FWDKQ	WDConfig1	configuration	Keep question function set up		
	FWDRespCmd	command	response write command		
	FWDRespSync Cmd	command	response write command with heartbeat synchronization at received response byte 0		
FWDREA	WdDiag	diagnosis	response error of actual question		
FWDREL	WdDiag	diagnosis	response error of last answer		
FWDRES	WdDiag	diagnosis	reset caused by functional watchdog		
Total Error C	Counter		•		
TEC	TECStat	status	total error counter value		
TECPDC	WdStat1	status	power-down counter value of total error counter part		
TECI	TECConfig	configuration	definition of the increment value of total error counter		
TECD	TECConfig	configuration	definition of the decrement value of total error counter		
TECRES	WdDiag	diagnosis	reset caused by total error counter		

6.1 Window Watchdog

For the timing check the microcontroller has to send periodically the window watchdog service command WWDServiceCmd. The window watchdog is triggered correctly if the command is received inside the open window of the window watchdog sequence. The check result is used to change the value of the window watchdog error counter. If the check is passed the counter will be decremented and for errors it will be incremented. Additionally a write access to configuration register WWDConfigO causes also an incrementation of the window watchdog error counter. The incrementation of the window watchdog error counter (Chapter 6.3). In Figure 7 the state machine of the window watchdog is shown.

The values for incrementation or decrementation can be set in the configuration register **WWDConfig1**. The window watchdog error counter is a 6 bit counter. The influence of the counter values to the operation behavior is shown in **Table 11** and **Table 12**.

The window watchdog sequence for the timing check consists of a closed window followed by an open window (see **Figure 8**). A watchdog sequence starts with:

- the release of a reset of the monitoring module (see Table 5 and Table 6 in Chapter 5.2)
- a window watchdog service command

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

- a write to the window time configuration register WWDConfig0
- a timer overflow of the watchdog timer

In **Figure 8** the two parts of one watchdog sequence are shown. After the power on reset it is running in an endless loop with the defined time for the open and closed window. It is only stopped at active reset signals or outside normal operating conditions **Table 5** and **Table 6** in **Chapter 5.2**.

The timing of the window watchdog sequence can be set with a write command to the configuration register **WWDConfig0** or directly with the data bits of the **WWDServiceCmd**. With a write access to the configuration register **WWDConfig0** the watchdog window sequence is started and the window watchdog error counter is incremented.

The check is passed if the command is received inside the open window. A command send too early or a missing command leads to an error. In the diagnosis register **WdDiag** the bit **WWDSCE** signalizes a window watchdog service command received too early and the bit **WWDTO** signalizes a time out (no window watchdog service command received before end of open window) of the last sequence. The diagnosis information is not cleared with the read out.

The bit **WWDSCR** in the status register **WdStat0** signalizes a received window watchdog service command at the last watchdog sequence. The reset of this bit is done with a readout of the bit or with the window watchdog time-out.

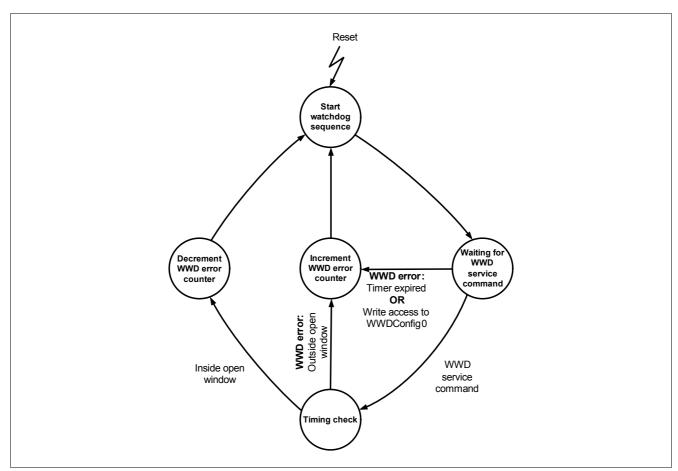


Figure 7 State Diagram of the Window Watchdog Module

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

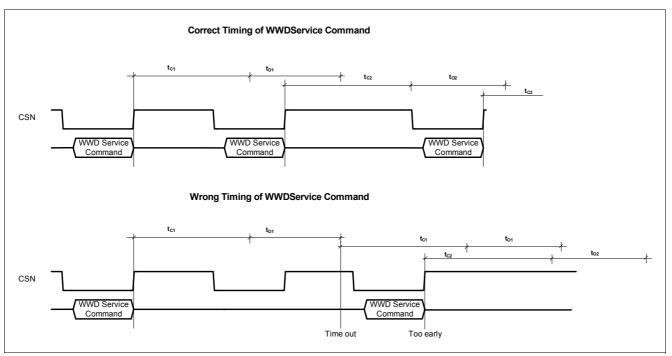


Figure 8 Watchdog Sequence Timing

6.2 Functional Watchdog

For the functional check the microcontroller has to send with the commands **FWDRespCmd** (functional watchdog response command) or **FWDRespSyncCmd** (functional watchdog response and synchronisation command) the right four response bytes to the actual question defined by the TLE8888-1QK. The response bytes are checked for correctness.

A pass of the check triggers a decrement of the functional watchdog pass counter. A functional watchdog error (FWD error) is not affecting the functional watchdog pass counter but it is used for the total error counter as an input signal (see **Chapter 6.3**). A FWD error is defined as:

- received response byte 0 with FWDRespCmd and minimum one of the response bytes are wrong
- received response byte 0 with FWDRespSyncCmd and minimum one of the response bytes are wrong
- the watchdog heartbeat timer period synchronisation command WDHBTPSyncCmd is received

In the diagnosis register **WdDiag** the bit **FWDREA** signalizes an error of the received response bytes to the actual question and the bit **FWDREL** signalizes an error of the response bytes of the last answer. With a read out the diagnosis bits are not cleared.

To detect that the functional check is missing a heartbeat is implemented. With an heartbeat event the functional watchdog pass counter is incremented. An heartbeat event occurs:

- with expiring of the heartbeat period timer or
- with receiving the watchdog heartbeat period synchronisation command WDHBTPSyncCmd (response counter is also reset) or
- with receiving the functional watchdog response and synchronisation command FWDRespSyncCmd if response byte 0 is received

The heartbeat period can be set by a write access to the configuration register **WDConfig0** or by the watchdog heartbeat period synchronisation command **WDHBTPSyncCmd**. If the data is 000 0000_B the value of the

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

heartbeat period is not changed.

Behavior of the heartbeat period in case of changing the period time:

- **WDHBTPSyncCmd**: the response counter and the heartbeat timer are reset and a heartbeat event is triggered, the new value of the period is executed with next period.
- write access to the configuration register **WDConfig0**: the new value of the period is effective after the write command. If the new value is lower than the actual heartbeat timer value then the heartbeat event is immediately triggered otherwise the actual period length is immediately changed to the new value.

The functional watchdog pass counter is a six bit counter (see status register **FWDStat0**). The values for incrementation or decrementation can be set in the configuration register **FWDConfig**. The influence of the counter values to the operation behavior is shown in **Table 11** and **Table 12**.

In **Figure 9** the state machine of the functional watchdog is shown. There are two possible principles available to serve the function watchdog:

- unsynchronized heartbeat and use of functional watchdog response command FWDRespCmd and write
 access to the configuration register WDConfig0 to change the heartbeat period time or
- heartbeat is started with receiving the functional watchdog response and synchronisation command FWDRespSyncCmd and use of the watchdog heartbeat period synchronisation command WDHBTPSyncCmd for changing the heartbeat period

The commands can be used in all possible combinations without restrictions. Using **FWDRespCmd** has the advantage that with fast correct responses the decrement of the functional watchdog pass counter can be speed up.

The bit **FWDKQ** in the configuration register **WDConfig1** is used to enable the keep question function for the functional watchdog. If the bit is set in case of a passed functional check the next functional check procedure is done with the same question if minimum one of the bits **WWDSCE** or **WWDTO** is set (window watchdog error).

Monitoring Watchdog Module (Signature Watchdog)

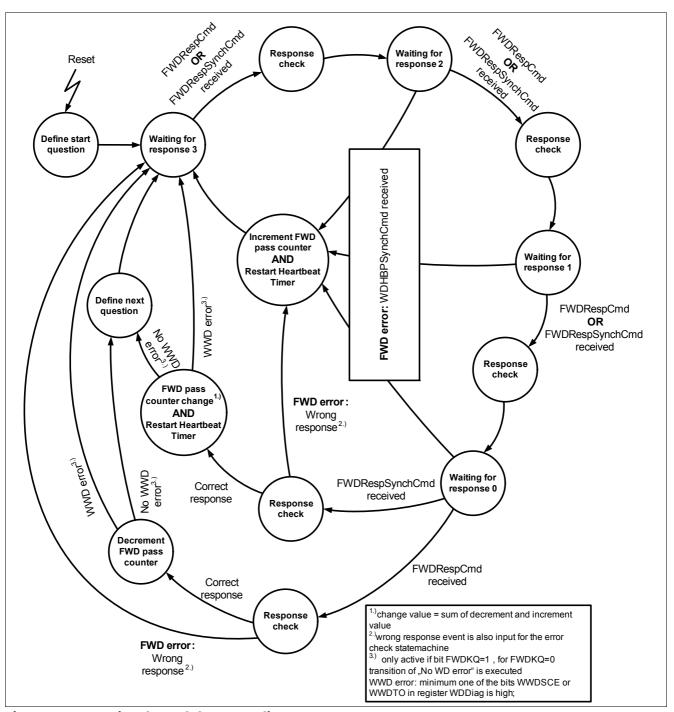


Figure 9 Functional Watchdog State diagram

6.2.1 Question and Response Definition

The bits FWDQUEST in the watchdog status register FWDStat1 represent the actual valid question.

The reset value is 0000_B and it will be changed regarding the definition of the state machine for the monitoring module (see **Figure 7**). The expected response is shown in **Table 10**. The answer of the microcontroller is done by a write access to the command registers **FWDRespCmd** or **FWDRespSyncCmd**.

The actual value of the bits **FWDRESPC** in the watchdog status register **FWDStat1** defines the interpretation of the 8 bit content of these commands as RESP3 to RESP0 (definition see **FWDRESPC**).

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

The definition of the next question is done with a pseudo random algorithm. With the bit **FWDQG** in the configuration register **WDConfig1** the generation algorithm for the questions is defined. There are two settings:

- question pattern length 16: 16 question repeated every 16th watchdog sequence with a minimum hamming distance of 3
- question pattern length 256: every 256 question the order of the 16 questions is repeated, minimum hamming distance is 1

Table 10 Questions and related Response

QUEST[3:0]	RESP3	RESP2	RESP1	RESP0
0	FF	0F	F0	00
1	В0	40	BF	4F
2	E9	19	E6	16
3	A6	56	A9	59
4	75	85	7A	8A
5	3A	CA	35	C5
6	63	93	6C	9C
7	2C	DC	23	D3
8	D2	22	DD	2D
9	9D	6D	92	62
A	C4	34	СВ	3B
В	8B	7B	84	74
С	58	A8	57	A7
D	17	E7	18	E8
E	4E	BE	41	B1
F	01	F1	0E	FE

6.3 Total Error Counter Module

The total error module is used to count the errors of the window watchdog and the functional watchdog. In **Figure 10** the error check state machine is shown. If a watchdog error of the functional or the window watchdog occurs the state machine enters the state "error occurred" and with the next heartbeat event (definition see **Chapter 6.2**) the total error counter is incremented.

The counter is also incremented if a functional watchdog error or at the same time a window watchdog error occurs by using the **FWDRespSyncCmd**. With the **WDHBTPSyncCmd** always an increment of the total error counter is done. A decrement of the total error counter is only possible by using the **FWDRespSyncCmd** and no errors are occurred.

The decrement and increment value of the total error counter can be set with the configuration register **TECConfig.** The status of the total error counter is available in the status register **TECStat**.

Monitoring Watchdog Module (Signature Watchdog)

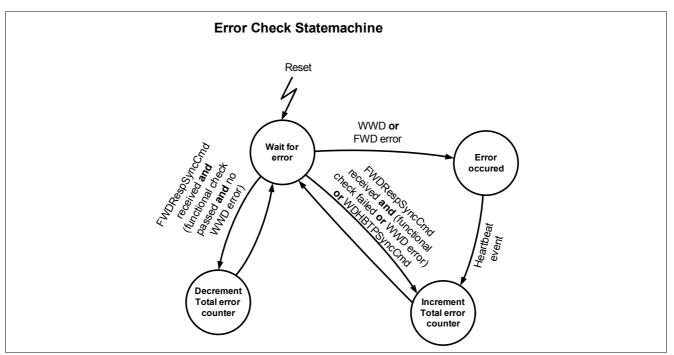


Figure 10 State diagram of the Error check State machine for the Total Error Counter Module

6.4 Watchdog Reset Counter

The watchdog reset counter is a three bit counter (bits **RESC** in **WdStat0**) and is triggered by an overflow of one of the three counters of the monitoring functions (see **Figure 11**). The reset counter can only be incremented by 1. Each time the watchdog reset counter changes the value a watchdog reset occurs depending on the status of watchdog reset enable bit **WDREN** in the configuration register **WDConfig1**. The counter stops counting if **WDREN** = "0" or at full scale. There are no further resets if full scale is reached. The behavior at the different reset conditions is defined in **Chapter 5.2 Table 5** and **Table 6**.

6.5 Power-Down Counter

There are three power-down counters with three bits implemented. The window watchdog power-down counter (bits **WWDPDC** in status register **WdStat0**) is triggered by an overflow of the window watchdog error counter, the functional watchdog power-down counter (bits **FWDPDC** in status register **WdStat1**) is triggered by an overflow of the functional watchdog pass counter and the total error power-down counter (bits **TECPDC** in status register **WdStat1**) is triggered by an overflow of the total error counter (see **Figure 11**).

If a trigger occurs the dedicated power-down counter is incremented by 1. Additionally all three power-down counters are incremented by 1 if a software reset occurs. The power-down counters are reset if the ready state is reached (see **Table 11** and **Table 12**).

With an overflow of minimum one of the three power-down counters a power-down of the TLE8888-1QK is performed if *KEY* is "low" (see **Chapter 5.1**). This function can not be disabled. The behavior at the different reset conditions is defined in **Chapter 5.2 Table 5** and **Table 6**.

6.6 Secure Shut Off Timer

The secure shut off timer (SSOT) is reset with KEY = 1 and the timer starts with an overflow of one of the three counters of the monitoring functions (see **Figure 11**) if it is enabled with KEY = 0. If the timer is expired after the **Secure shut off time** a power-down of the TLE8888-1QK is performed (see **Chapter 5.1**). The behavior at the different reset conditions is defined in **Chapter 5.2 Table 5** and **Table 6**.

Engine Machine System IC

Monitoring Watchdog Module (Signature Watchdog)

6.7 Operation State Definition and Reset Generation

The values of the three counter of the monitoring module are affecting the operation state of the TLE8888-1QK. There are three states defined:

- the safe state: this is the reset state. The bits **O1E** to **O24E** and **IGN1E** to **IGN4E** in the configuration register **OEConfig0** to **OEConfig3** are set to "0" to ensure that all actuators are switched off.
- ready state: the device can be operated without restrictions.
- watchdog reset: a reset is performed according the definition in Table 5 and Table 6.

The definition of the three states is shown in **Table 11**. The states are affecting the status of the pins *MON* and *RST*, the power-down counter, the secure shut off timer and the reset counter (definition see **Table 12**).

Table 11 Definition of Reset, Safe and Ready State

Safe State	WWDEC>32 _D OR FWDPC >32 _D OR TEC>32 _D
Ready State	WWDEC<33 _D AND FWDPC<33 _D AND TEC<33 _D
Watchdog Reset	WWDEC overflow OR FWDPC overflow OR TEC overflow (for all counters >63 _D)

Table 12 System Reaction to the watchdog status

	Ready State	Safe State	Watchdog Reset
RST	1	1	01)
MON	1	0	0
Power stages	no influence of normal operation	disabled	disabled
O1E to O24E, IGN1E to IGN4E	X	0	0
WWD error counter FWD pass counter Total error counter	no effect	no effect	reset ¹⁾
Reset counter	no effect	no effect	increment by 1
Window watchdog power-down counter Total error power-down counter Functional watchdog power-down	reset	no effect	increment by 1 regarding the overflow source
Secure shut off timer	no effect	no effect	start of timer with the first overflow if <i>KEY</i> = 0

¹⁾ occurs for the defined reset time if watchdog reset is enabled

Monitoring Watchdog Module (Signature Watchdog)

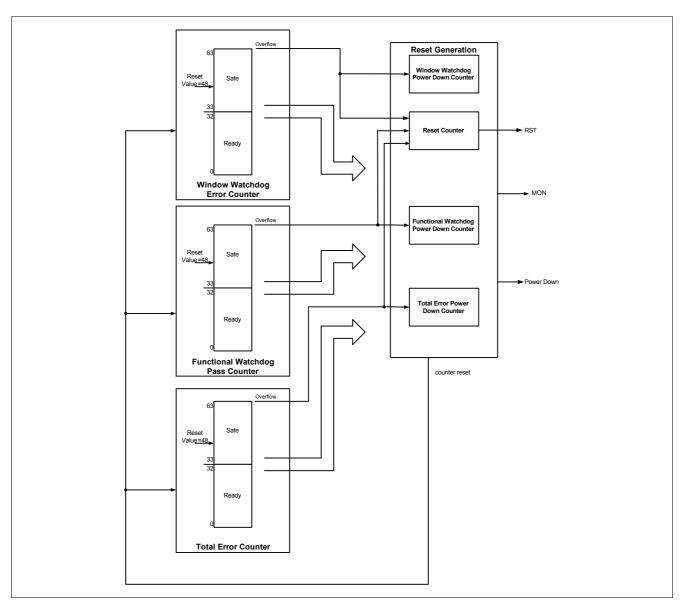


Figure 11 Block diagram of the Reset Generation

Behavior of the WWD error counter, the FWD pass counters and the total error counter in case of over and underflow:

The counters are designed to keep the same value:

- at incrementation if the new counter value is higher than the full scale value of the counter and
- at decrementation if the new counter value is lower than zero.

In Figure 12 an example is shown.

Monitoring Watchdog Module (Signature Watchdog)

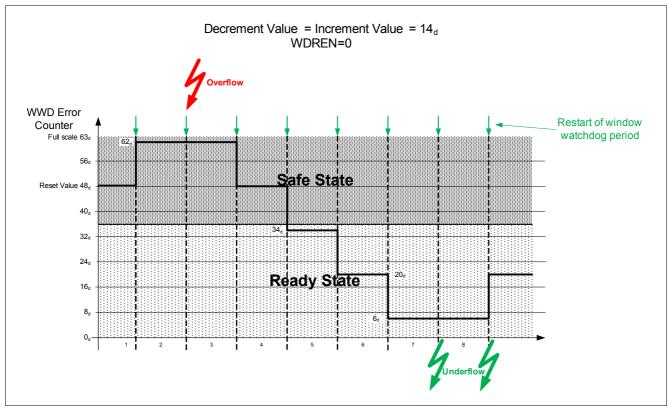


Figure 12 Example of WWD error counter behavior with decrement and increment value of 14d

6.8 Synchronisation of Window Watchdog Sequence and Heartbeat

In **Figure 13** the relation between the heartbeat clock generation, the total error counter and the window watchdog sequence generation is shown. The window watchdog sequence generation and the heartbeat period generation have the same clock base with the accuracy of **tw,a**.

The value of the pre-divider and the heartbeat timer can be read out with the status registers **WDHBT0** and **WDHBT1**. This can be used to measure the actual internal clock frequency. Therefore the value of the pre-divider and the heartbeat period counter must be sampled by sending a **Cmd0** command with an activated **WDHBTS** bit. With this command the value of the two registers are stored in the related status registers and the readout can be done.

With two sampled values the microcontroller can correct the time information by the value of the actual frequency of the TLE8888-1QK. With such a correction of the microcontroller timing check it is possible to use smaller open window times to improve the performance of the timing check. Additional it is possible to use this information for synchronization purpose for the check of the monitoring function of the TLE8888-1QK inside the microcontroller.

Monitoring Watchdog Module (Signature Watchdog)

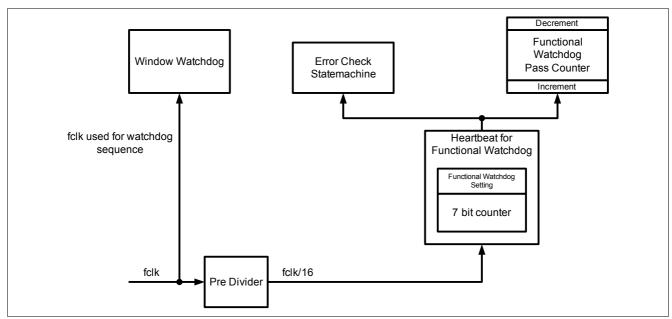


Figure 13 Clock Generation for the Watchdog Module

Monitoring Watchdog Module (Signature Watchdog)

6.9 Electrical Characteristics Monitoring Watchdog Module

Table 13 Electrical Characteristics: Monitoring Watchdog Module

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Symbol Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Window watchdog closed window time	$t_{ m WWD,ct}$	1.6	-	100.8	ms	63 values	P_6.8.1
Window watchdog closed window time step	$t_{ m WWD,ct}$	-	1.6	-	ms	-	P_6.8.2
Window watchdog open window time 1	$t_{ m WWD,ot1}$	-	3.2	-	ms		P_6.9.1
Window watchdog open window time 2	t _{WWD,ot2}	-	6.4	-	ms		P_6.9.2
Window watchdog open window time 3	t _{WWD,ot3}	-	9.6	-	ms		P_6.9.3
Window watchdog open window time 4	t _{WWD,ot4}	-	12.8	-	ms	-	P_6.8.3
Clock frequency accuracy for window watchdog sequence and heartbeat	t _{w,a}	-5	-	+5	%	-	P_6.8.4
Heartbeat time period	t _{HBT,pt}	1.6	-	203.2	ms	127 values	P_6.9.4
Secure shut off time	$t_{ extsf{SSOT}}$	18	20	22	min	_	P_6.8.5

infineon

Wake-Up Detection and Main Relay Driver

7 Wake-Up Detection and Main Relay Driver

The TLE8888-1QK integrates a complex wake-up functionality with two wake-up pins (*KEY* and *WK*), engine off timer, CAN wake-up and the main relay driver. There are several possibilities to initiate the start up of the device:

- a positive voltage at the pin KEY or at the pin WK
- a dominant pulse at the CAN inputs CANH and CANL for the wake-up time (description see Chapter 12)
- after expiration of the defined time of the engine off timer in comparator mode

With minimum one valid wake-up signal the pre regulator and the main supply start the ramping up due to voltage at the battery supply pin *BAT* and the drain of the external MOSFET of the pre regulator. The switch on of the main relay depends on the wake-up signal and the voltage level at the pin *BAT*. For a wake signal from the pin *KEY* the main relay is always switched on. For the other cases the main relay is only switched on if the voltage of the pin *BAT* is below the detection threshold.

With the bit **WKCLR** in the command register **Cmd0** the internal status of the detection at pin **WK**, engine off timer and CAN wake-up are reset (description see **Chapter 7.2**, **Chapter 7.4** and **Chapter 12.2.4**). The supply for the engine off timer and the CAN wake receiver is **V5VSTBY**.

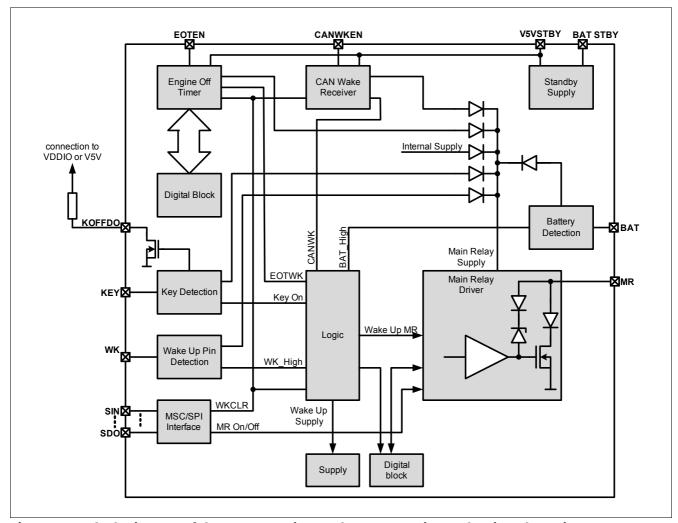


Figure 14 Block Diagram of the Key Detection, Wake-up Detection and Main Relay Driver

infineon

Wake-Up Detection and Main Relay Driver

Table 14 Switching Behavior of Main Relay at Start Up (Transition ECU Sleep to Supply Ramp Up Mode)

KEY=0, WK = EOTWK = CANWK=0	-	MR is switched off	Supply is off
KEY = 1, WK = EOTWK = CANWK= X	-	MR is switched on	Supply is switched
KEY = 0, WK or EOTWK or CANWK = 1	$BAT < V_{BAT,th}$	MR is switched on	on
KEY=0, WK or EOTWK or CANWK=1	$BAT > V_{BAT,th}$	MR is switched off	

7.1 Wake-up Detection by Pin KEY and Key Off Delay

The input pin *KEY* is implemented to detect the status of the key switch in the car. With a high signal the start up of the TLE8888-1QK is initiated. During start up the implemented circuitry provides also the supply for switching the main relay. A deglitch filter is implemented to be robust against disturbances (see **Figure 16**). After ramp up the supply of the main relay is provided by the internal supply. To provide a direct access from the *KEY* signal to actuators a key off delay function is implemented.

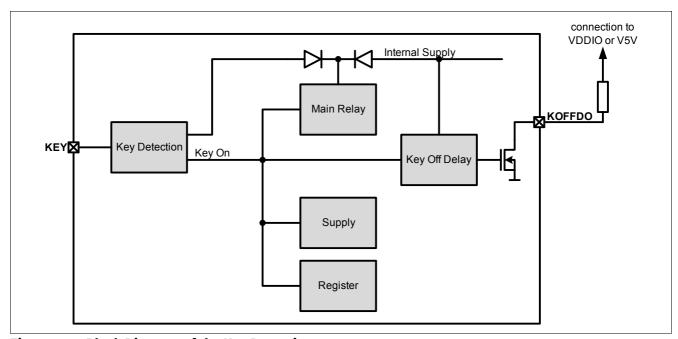


Figure 15 Block Diagram of the Key Detection

In **Figure 16** the effect of the filter time is shown. The status of the pin **KEY** including the filter time is reflected in bit **KEY** in the status register **OpStat0**.

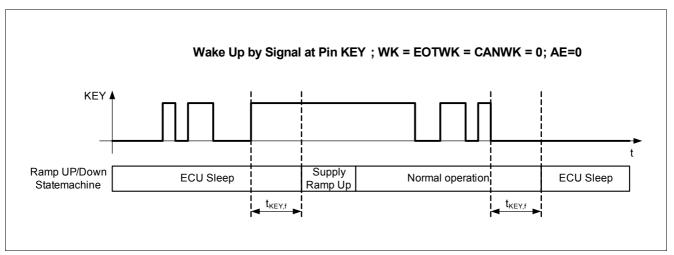


Figure 16 Function of Key detection filter time

The key off delay function provides the *KEY* signal at the open drain output *KOFFDO*. The positive edge is delayed by the **Key Detection Filter Time** and the negative edge by the **Key Off Delay Time 1** to **Key Off Delay Time 4** (according setup of the bits **KOD** in register **OpConfig0**) if the supply is available.

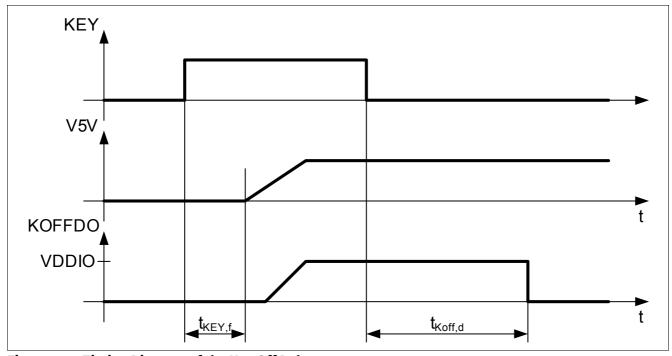


Figure 17 Timing Diagram of the Key Off Delay

7.2 Wake-up Detection by Pin *WK*

The pin *WK* is used e.g. for an external CAN device with wake-up function on the ECU. With a high signal the start up of the TLE8888-1QK is initiated. During ramp up the supply for the main relay circuit is provided by the active wake-up pin *WK*. After ramp up the supply of the main relay circuit is provided by the internal supply. In **Figure 18** the block diagram of the wake-up detection by pin *WK* is shown.

infineon

Wake-Up Detection and Main Relay Driver

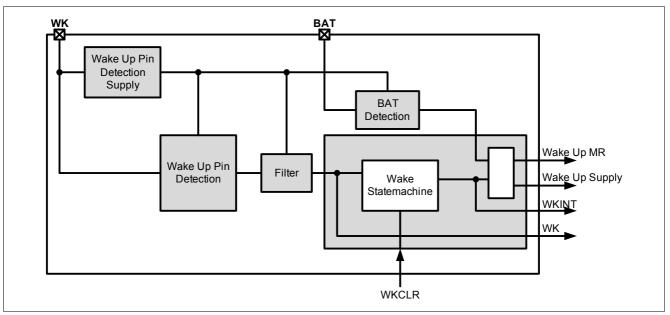


Figure 18 Block Diagram of the Wake-up Detection

For wake-up by pin *WK* special functions are implemented.

- main relay is switched on depending on the voltage level at pin BAT (see Table 14)
- power-down procedure in case of a permanent WK = "1" and a blocked micro-controller (see description in Chapter 5.1 Operation States)
- wake clear bit WKCLR in the command register Cmd0 to clear the internal wake-up signal in case of permanent WK = "1" signal
- deglitch filter of t_{WK} for positive and negative edge at pin WK

In **Figure 19** the effect of the filter time is shown. The status of the pin *WK* including the filter time is reflected in bit **WK** in the status register **OpStat0**.

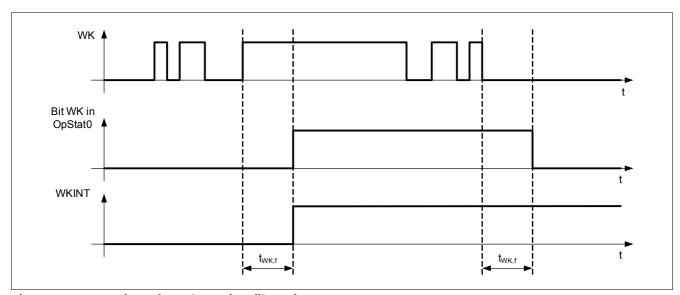


Figure 19 Function of WK detection filter time

To realize the power-down procedure an internal wake-up signal WKINT is used (status see bit **WKINT** in the status register **OpStat0**). In **Figure 20** the state diagram of the internal wake signal generation is shown. With

Wake-Up Detection and Main Relay Driver

a positive edge at pin *WK* the internal signal WKINT is set to "1" and a wake-up is triggered. With a wake-up clear command (set bit **WKCLR** to "1" in command register **Cmd0**) WKINT is reset (see **Figure 22**). The next wake-up by pin *WK* is only detected with a positive edge at pin *WK*. A permanent high level at pin *WK* doesn't lead to permanent wake-up situation. Details of the operation behavior see **Chapter 5.1 Operation States**.

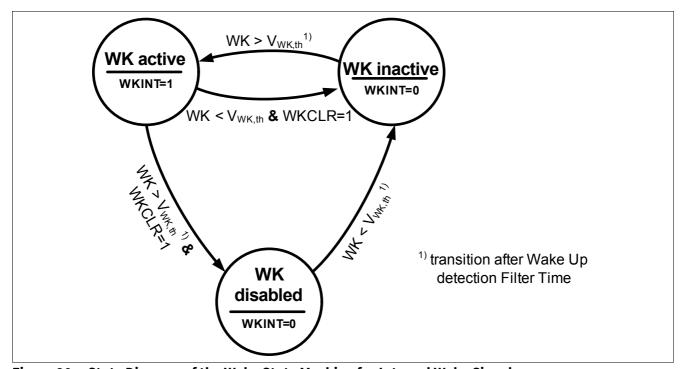


Figure 20 State Diagram of the Wake State Machine for Internal Wake Signal

At the beginning of the functional diagram of **Figure 21** a normal wake-up sequence with a wake signal of the pin *WK* is shown. In the second part of the diagram the signal of pin *WK* stick at high (e.g. short to battery) and the microcontroller must send a wake clear command (bit **WKCLR** = 1 in command register **Cmd0**) for entering the ECU sleep mode. With a low at pin *WK* the wake state machine is set to the state "WK inactive" and a wake-up by pin *WK* is enabled.

infineon

Wake-Up Detection and Main Relay Driver

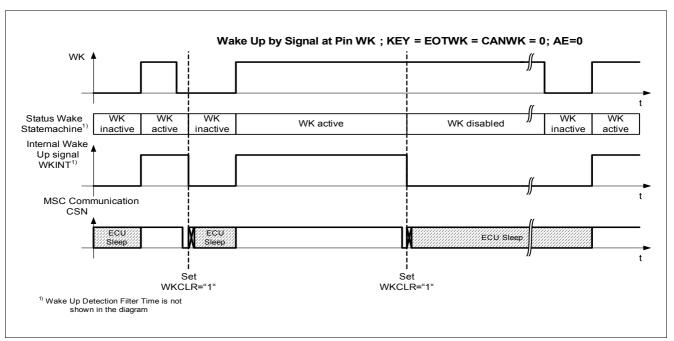


Figure 21 Functional Diagram for Internal Wake Signal

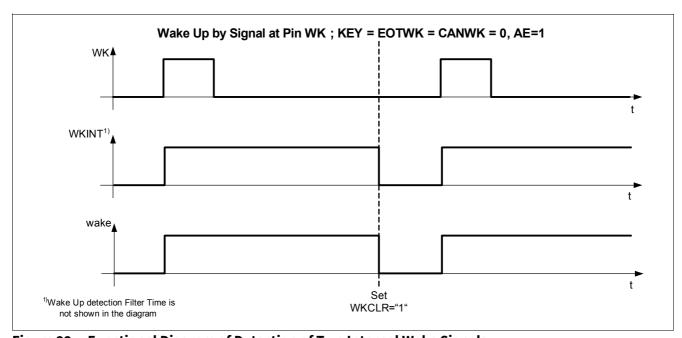


Figure 22 Functional Diagram of Detection of Two Internal Wake Signals

7.3 Main Relay Driver

The main relay driver is designed to switch on the main relay of engine management applications. It integrates a reverse protected low-side switch with active clamping freewheeling. The output is protected against overload with an overtemperature detection and an overcurrent protection circuit. At low battery voltage (*V5V* main supply is below undervoltage detection threshold e.g. during cranking) the main relay stays on. The on resistance is related to the supply voltage at pin *BAT* and is defined down to 4.5 V.

The main relay is automatically switched on with a wake-up signal according to **Table 14**. The main relay is normally switched off automatically according the power-down procedure defined in **Chapter 5**.

With write access to the command bit MRON of the command register Cmd0 the main relay can be switched

Engine Machine System IC

Wake-Up Detection and Main Relay Driver

additionally by MSC/SPI control according to the status of *KEY*, *WK*, EOTWK and CANWK (see **Table 15**). The status of the main relay is available in the status register **OpStat0** bit **MR**.

Table 15 Effect of MSC/SPI Write Command Bit MRON

KEY=0, WK = EOTWK = CANWK = X	MR is switched according to write command
KEY=1, WK = EOTWK = CANWK = X	MR is always switched on

The main relay driver is protected against overcurrent and overtemperature. In the case of overcurrent and/or overtemperature the output is switched off and is switched on again after release of the failure condition. This leads to a repetitive switching. A minimum off time **tMR,off** is implemented to ensure no destruction due to repetitive switching.

7.4 Engine Off Timer

The engine off timer is integrated to measure the time in ECU sleep mode. Additionally the comparator mode is implemented to wake-up the TLE8888-1QK after a defined time. It is internally supplied out of the standby supply pin *V5VSTBY*. With the pin *EOTEN* the function is enabled with a connection to *V5VSTBY* and disabled with a connection to *AGND*. It consists of an oscillator optimized for low current operation, a counter and a comparator. The counter counts up to 36 hours and if the counter value reaches the comparator threshold an internal wake-up signal is generated. The activation of the comparator mode is done with a definition of a comparator threshold greater than 0000H in configuration registers **EOTConfig0** and **EOTConfig1**. There are two operation modes implemented:

- Counter Mode: only counter is working, no wake-up with comparator threshold
- Comparator Mode: counter operation like counter mode, additional wake-up with comparator threshold In comparator mode the internal EOTWK flag is set if the counter is equal to compare value in the configuration registers EOTConfig0 and EOTConfig1. The reset of the EOTWK flag is done with the bit WKCLR in the command register Cmd0 if the counter value is not equal to the compare value.

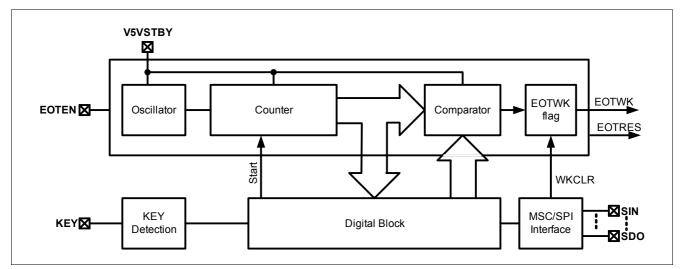


Figure 23 Block Diagram Engine Off Timer

The start of the counter can be configured with the bit **EOTCONF** in the configuration register **OpConfig0** to

- start by KEY signal (reset value) and
- start by MSC command

Engine Machine System IC

Wake-Up Detection and Main Relay Driver

With the falling edge of the *KEY* signal or with the execution of the MSC command the counter is reset and starts counting (see **Figure 24**). The start command is performed with setting the bit **EOTS** to "1" in the command register **Cmd0**.

The status bit **EOTRES** (register **OpStat1**) is implemented to highlight that a standby reset has happened. With the start of the counter this bit is reset. Therefore the status of this bit must be readout before the start of the engine off timer.

The 24 bits of the counter are available in the status register **EOTStat0**, **EOTStat1** and **EOTStat2**. For easier access to the engine off timer status the multiple read command **MSCReadDiag0EOT** is implemented.

After wake-up the counter doesn't stop counting. A readout of the counter value doesn't stop counting. With this behavior it is possible to measure the counting time with the microcontroller (see **Figure 25**).

With a read out of two counter values in a defined time a correction factor can be calculated (difference of counter values divided by the time between the two read outs). With this measurement of the correction factor only the variation caused by the temperature of the timer are effective. The absolute variations are corrected by the correction factor. There are no restrictions for the measurement time but due to the resolution of the counter a minimum measurement time Δt of 1 s is recommended.

After power-up of the engine off timer circuit with a supply ramp up at pin *V5VSTBY* the counter value and the comparator threshold are reset to the reset value. Additionally the bit **EOTRES** in the status register **OpStat1** is set to "1".

Any other resets like ECU power on reset have no impact to the engine off timer counter. The compare configuration register **EOTConfig0** and **EOTConfig1** are cleared with an ECU power on reset.

The counter stops counting at full scale. If a standby supply reset occurs the counter stops counting and is reset to "0".

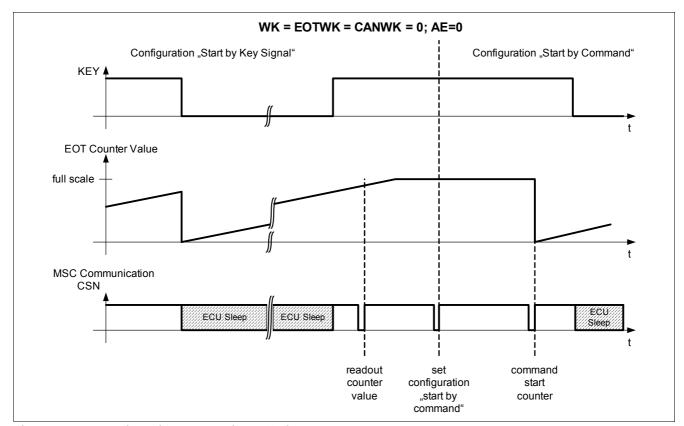


Figure 24 Function Diagram Engine Off Timer Counter Mode

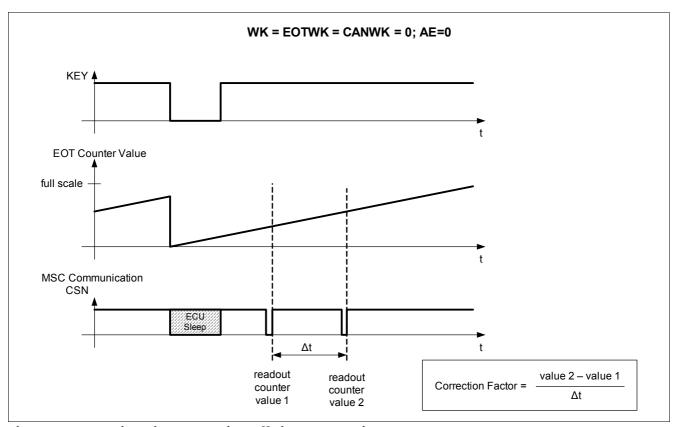
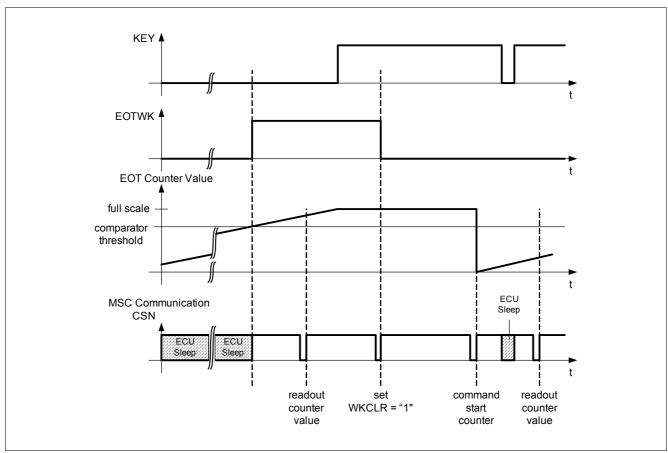


Figure 25 Function Diagram Engine Off Timer Correction Factor Measurement

In comparator mode there is no difference in the behavior of the counter as described above. Additionally a comparator threshold different to 0000H for wake-up is defined in the configuration register **EOTConfig0** and **EOTConfig1**. The comparator mode is enabled with a threshold value different to 0000_H. If the counter value is equal to the comparator threshold the internal wake-up signal EOTWK (status see bit **EOTWK** in the status register **OpStat0**) of the TLE8888-1QK is active (see **Figure 26**).

With a wake-up clear command (set bit **WKCLR** to "1" in command register **Cmd0**) the internal EOTWK signal is reset.


Table 16 Counter Definition

EOTC[23:0]		
000000 _H	reset value	
000001 _H to FFFFFF _H	1/128 s to 131071 s = 36 h + 24 min + 31 s	time resolution 1/128 s

Table 17 Comparator Threshold Definition

EOTTH[15:0]		
0000 _H	reset value	comparator mode disabled
0001 _H to FFFF _H	2 s to 131070 s = 36 h + 24 min + 30 s	comparator mode enabled, time resolution 2 s

Function Diagram Engine Off Timer Comparator Mode Figure 26

7.5 Electrical Characteristics Key Detection, Wake-up Detection and Main Relay Driver

Table 18 Electrical Characteristics Key Detection

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Key On Detection Threshold	$V_{KEY,th}$	3.6	_	4.5	V	rising edge	P_7.5.1
Key On Detection Hysteresis	$V_{KEY,h}$	140	250	400	mV	_	P_7.5.2
Input Current during wake-up	I _{KEY}	-	_	0.55	mA	$V_{KEY} = 5 V^{1)}$	P_7.5.3
Input Current after wake-up	I _{KEY}	-	-	0.7	mA	$V_{\text{KEY}} = V_{\text{BAT}}$ = 4.5 V	P_7.5.31
Key Detection Filter Time	t _{KEY,f}	7.5	16	24	ms	V _{KEY} = 5 V	P_7.5.4
Key Off Delay Time 1	t _{KEYoff,d,1}	100	_	200	ms	_	P_7.5.5
Key Off Delay Time 2	t _{KEYoff,d,2}	200	_	400	ms	_	P_7.5.6
Key Off Delay Time 3	t _{KEYoff,d,3}	400	_	800	ms	_	P_7.5.7
Key Off Delay Time 4	t _{KEYoff,d,4}	800	_	1600	ms	_	P_7.5.8
Output KOFFDO			•	•	•		
Output Current Capability	I _{KOFFDO}	15 ²⁾	-	_	mA	$V_{KOFFDO} = 5 V$	P_7.5.9
KOFFDO Output Low Level	$V_{KOFFDO,low}$	-	-	0.4	V	I _{KOFFDO} < 1 mA	P_7.5.30

¹⁾ not subject to production test, specified for design

Table 19 Electrical Characteristics Wake-up Detection

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Wake-up Detection Threshold	$V_{ m WK,th}$	3.6	-	4.5	V	rising edge	P_7.5.10
Wake-up Detection Hysteresis	$V_{\mathrm{WK,h}}$	140	250	400	mV	_	P_7.5.11
Input Current during Wake-up	I _{WK}	-	-	0.55	mA	$V_{WK} = 5 V^{1)}$	P_7.5.12
Wake-up Detection Filter Time	t _{WK,f}	1	2	3.5	ms	V _{WK} = 5 V	P_7.5.13
Battery Detection Threshold	$V_{Bat,th}$	3.5	-	5	V	V _{WK} = 5 V	P_7.5.14

¹⁾ not subject to production test, specified by design

²⁾ Application must ensure that current into this pin does not exceed this value.

Engine Machine System IC

Wake-Up Detection and Main Relay Driver

Electrical Characteristics Main Relay Driver

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm i}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
MR Operation Current	I _{MR}	_	_	0.8	Α	-	P_7.5.15
MR Overcurrent Limitation	I _{MR,oc}	0.8	_	1.5	Α	-	P_7.5.16
MR On Voltage	$V_{\rm MR}$	_	_	1.35	V	I _{MR} = 0.3 A	P_7.5.17
MR switch off time in failure case	t _{MR,off}	16	27	-	ms	in case of overcurrent and/or over- temperature	P_7.5.32
MR On Voltage at Low Battery Voltage, low temperature	$V_{MR,l,LT}$	-	-	1.1	V	$I_{\rm MR}$ = 0.1 A, $V_{\rm BAT}$ = 4.5 V (decreasing) $T_{\rm J}$ < 25°C	P_7.5.18
MR On Voltage at Low Battery Voltage, high temperature	$V_{MR,l,HT}$	-	-	1.05	V	$I_{\rm MR}$ = 0.1 A, $V_{\rm BAT}$ = 4.5 V (decreasing) $T_{\rm J}$ > 25°C	P_7.5.19
MR Clamping Voltage	$V_{MR,cl}$	40	_	60	٧	I _{MR} = 0.2 A	P_7.5.20
MR Clamping Energy ¹⁾	E _{MR,cl}	-	-	6.5	mJ	$I_{MR} < 0.3 \text{ A},$ $T_{j} = 150^{\circ}\text{C},$ 40*106 cycles	P_7.5.21
MR leakage current in off mode, positive voltage	I _{MR.leak,pos}	-	-	5	μΑ	$V_{\text{MR}} = 13.5 \text{ V},$ $V_{\text{KEY}} = 0 \text{ V} \text{ and}$ $V_{\text{WK}} = 0 \text{ V}$	P_7.5.22
MR leakage current in off mode, negative voltage	I _{MR.leak,neg}	-100	-	_	μΑ	$V_{\text{MR}} = -13.5 \text{ V},$ $V_{\text{KEY}} = 0 \text{ V} \text{ and}$ $V_{\text{WK}} = 0 \text{ V}$	P_7.5.23

¹⁾ not subject to production test

Electrical Characteristics Engine Off Timer

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm i}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		Test Condition	
Oscillator Accuracy	$\Delta f_{\text{osc,a}}$	-30	_	+30	%	$V_{V5VSTBY} = 5 V$	P_7.5.24
Oscillator Frequency Variation over Temperature	$\Delta f_{ m osc,T}$	-5	-	+5	%	$V_{V5VSTBY} = 5 \text{ V},$ $T_j = -40^{\circ}\text{C to}$ 85°C , one single device	P_7.5.25
Counter Resolution	$C_{EOT,r}$	-	1/128	_	s	_	P_7.5.26

Engine Machine System IC

Wake-Up Detection and Main Relay Driver

Electrical Characteristics Engine Off Timer (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		Test Condition	
Counter Full Scale	$C_{EOT,fs}$	_	_	24	bit	_	P_7.5.27
		-	131071	-	S	_	
Additional current consumption at pin <i>BATSTBY</i> for enabled engine off timer function	I _{EOTSUP}	-	-	10	μΑ	V _{V5VSTBY} = 5 V and no wake-up	P_7.5.28
Additional current consumption at pin <i>BATSTBY</i> for enabled engine off timer function and wake-up ¹⁾	I _{EOTSUP,w}	_	-	450	μА	V _{V5VSTBY} = 5 V and wake-up	P_7.5.29

¹⁾ not subject to production test, specified by design

Power Supply

8 Power Supply

The power supply unit generates the internal supply (including supply for CAN and pre-drivers, voltage reference and current biasing), the main supply voltage for the ECU (V5V) and sensor supplies for off- board sensors (T5V1 and T5V2). All supplies start working by the wake-up signal generated by the key and wake-up detection (see **Chapter 7.2** for details).

A linear pre-regulator with an external logic level power MOSFET is implemented to keep the power dissipation of the TLE8888-1QK low. The precise voltage supplies for the ECU and the sensor supplies are integrated inclusive the power transistor. All supplies with low drop functionality (main supply V5V, pre-regulator, sensor supplies T5V1/T5V2) are using an integrated charge pump to provide low drop behavior at low battery voltages.

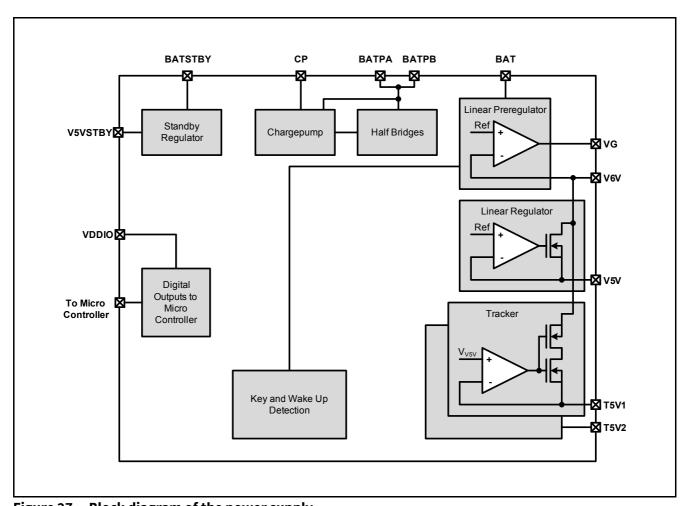


Figure 27 Block diagram of the power supply

8.1 Pre-Regulator

The pre-regulator uses an external logic level power MOSFET and regulates the voltage at pin V6V. The voltage at the pin is also the input voltage for the main supply of the ECU (V5V), the sensor supplies (T5V1, T5V2) and the internal supply. The circuit is designed for low drop operation.

It's not allowed to load the external MOSFET with anything else than V6V. The function of the pre-regulator is guaranteed with the MOSFET IPD30N06S2L-23 of Infineon.

Power Supply

8.2 5 V Main Supply

The 5 V main supply is designed to supply the ECU including microcontroller and e.g. other power chips. Out of V6V a high accurate voltage is provided at the pin V5V. The pin and the circuit is protected against overload and short circuit. For stabilization and ripple reduction an external buffer capacitor is required. For low drop operation of the regulator the pins BATPA and BATPB must be supplied.

8.3 Sensor Supply

There are two sensor supplies integrated providing an output voltage based on V5V as reference. Out of V6V a high accurate voltage is provided at the pins T5V1 and T5V2. The pins and the circuits are protected against overload, short circuit and reverse supply back to V6V. For stabilization and ripple reduction external buffer capacitors are required. For low drop operation of the regulator the pins BATPA and BATPB must be supplied.

8.4 IO Supply

The TLE8888-1QK provides an IO supply pin *VDDIO* for 3.3 V and 5 V microcontroller interfaces. This pin is used for the supply of the output driver and defines the output level of all logical interface pins.

8.5 Standby Supply

The TLE8888-1QK integrates a standby supply which is supplied by the pin *BATSTBY* and provides a 5 V output supply at pin *V5VSTBY*. It is not allowed to connect this pin to any other supply.

8.6 Charge Pump

There is a charge pump integrated to supply the half bridges out of *BATPA* and *BATPB*. A capacitor has to be connected on the PCB (between *CP* and *BATPA/BATPB*) to buffer the voltage and reduce the ripple. It's not allowed to apply any external load to the pin *CP*.

8.7 Voltage Monitoring

The TLE8888-1QK provides voltage monitoring of the main ECU supply *V5V*, the sensor supplies *T5V1* and *T5V2* and the battery voltage. In **Chapter 5.2** the effect to the status of theTLE8888-1QK is described. All detection thresholds are implemented with a hysteresis and a filter time to suppress disturbances.

The status of the over- and undervoltage detection of *BAT*, *T5V1* and *T5V2* are available in the diagnosis resister **Diag0** and the bits **BATOV**, **T1UV**, **T1OV**, **T2UV** and **T2OV**.

Under- and overvoltage of *V5V* leads to a reset of the microcontroller (see **Table 5** in **Chapter 5.2**). After release of the reset the cause of the reset is available in the status register **OpStat1** (bits **V5VUVR** and **V5VOVR**).

Power Supply

Electrical Characteristics Power Supply 8.8

Electrical Characteristics Power Supply

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm i}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	es.	Unit	Note or	Number
		Min.	Тур	Max.		Test Condition	
current consumption at pins BATPA, BATPB, BAT and V6V	I _{BAT,sum}	-	-	50	mA	static, all "off", no PWM and MSC/SPI communication	P_8.8.1
Pre-Regulator							
Pre-Driver Output Voltage V6V	$V_{ m V6V}$	5.5	6	6.5	V	with respect to AGND, with external MOS FET IPD30N06S2L-23	P_8.8.2
Gate Output Voltage <i>VG</i>	DV_{VG}	4	-	7.5	V	$V_{V6V} = 5.5 \text{ V};$ $DV_{VG} = V_{VG} - V_{V6V}$	P_8.8.3
Gate Output Voltage <i>VG</i> at low Supply	$DV_{VG,l}$	1.7	_	-	V	$V_{\rm BATPx} = 4.5 \text{ V},$ $I_{\rm VG} = 1 \mu\text{A};$ $DV_{\rm VG} = V_{\rm VG} - V_{\rm V6V}$	P_8.8.4
Buffer Capacitor at V6V ¹⁾	C _{V6V}	1	20	1000	μF	2) 3)	P_8.8.37
ESR of Buffer Capacitance at $V6V^{(1)}$	ESR _{V6V}	0.01		2	Ω	for C_{V6V} < 15 μ F, f_{ESR} = 10 kHz	P_8.8.38
ESR of Buffer Capacitance at $V6V^{(1)}$	ESR _{V6V}	0.5		2	Ω	for $15 \mu F < C_{V6V} < 20 \mu F$, $f_{ESR} = 10 \text{ kHz}$	P_8.8.39
ESR of Buffer Capacitance at $V6V^{1)}$	ESR _{V6V}	1		2	Ω	for 20 μ F < C_{V6V} < 1000 μ F, f_{ESR} = 10 kHz	P_8.8.40
Buffer Capacitor at VG ¹⁾	C_{VG}	_	4.7	15	nF	2)3)	P_8.8.41
ESR of Buffer Capacitance at $VG^{1)}$	ESR _{VG}	_	_	1	Ω	<i>f</i> _{ESR} = 10 kHz	P_8.8.42
5 V Main Supply <i>V5V</i>			"		"		1
Output Voltage V5V	V _{V5V}	4.9	_	5.1	V	-5 mA < I _{V5V} < -500 mA, with respect to <i>AGND</i>	P_8.8.5
Voltage Drop <i>V6V-V5V</i> at low Supply	V _{V5V,d}	_	_	0.6	V	$I_{V5V} = -500 \text{ mA};$ $V_{BAT} = V_{BATPx} = V_{KEY}$ $= V_{V6V} = 4.5 \text{ V}$	P_8.8.6
Voltage Drop <i>V6V-V5V</i> at low Supply and low temperature	$V_{ m V5V,d,CT}$	_	_	0.45	V	$T_{\rm j}$ = -40°C; $I_{\rm V5V}$ = -500 mA; $V_{\rm BAT} = V_{\rm BATPx} = V_{\rm KEY}$ = $V_{\rm V6V}$ = 4.5 V ¹⁾	P_8.8.7
Current Limitation	I _{V5V,lim}	-1200	-	-500	mA	_	P_8.8.8

Engine Machine System IC

Power Supply

Table 22 Electrical Characteristics Power Supply (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	es .	Unit	Note or Test Condition	Number
		Min.	Typ	Max.			
Buffer Capacitor at V5V ¹⁾	C _{V5V}	0.1	10	220	μF	2)3)	P_8.8.9
ESR of Buffer Capacitance at $V5V^{\!\scriptscriptstyle (1)}$	ESR _{V5V}	0.01		2	Ω	for $C_{V5V} < 10 \mu F$, $f_{ESR} = 10 \text{ kHz}$	P_8.8.43
ESR of Buffer Capacitance at $V5V^{\!\scriptscriptstyle (1)}$	ESR _{V5V}	0.1		2	Ω	for 10 μ F < C_{V5V} < 47 μ F, f_{ESR} = 10 kHz	P_8.8.44
ESR of Buffer Capacitance at $V5V^{1)}$	ESR _{V5V}	0.5		2	Ω	for $47 \mu F < C_{V5V} < 220$ $\mu F, f_{ESR} = 10 \text{ kHz}$	P_8.8.45
Sensor Supplies <i>T5V1</i> and <i>T5V2</i>	1				1		
Output voltage tracking accuracy	DV _{T5Vx}	-10	-	10	mV	$DV_{T5Vx} = V_{V5V} - V_{T5Vx},$ $4 \text{ V} < V_{V5V} < 5.1 \text{ V},$ $V_{V6V} > 5.5 \text{ V},$ $V_{IGNx} \ge 0 \text{ V}$	P_8.8.10
Current Limitation	I _{T5Vx,lim}	-300	_	-100	mA		P_8.8.11
Buffer Capacitor at $\emph{T5V1}$ and $\emph{T5V2}^{1)}$	C _{T5Vx}	-	-	400	nF		P_8.8.12
IO Supply <i>VDDIO</i>							
IO Supply Voltage Range	V_{VDDIO}	3	_	5.5	V	_	P_8.8.13
Current Consumption at pin VDDIO	I _{DDIO}	_	_	2	mA	$V_{\text{VDDIO}} = 5 \text{ V},$ INx = 0 V, CSN = LINTX = CANTX = 5 V, MON and RST open ¹⁾	P_8.8.14
Standby Supply <i>V5VSTBY</i>	1						I
Output Voltage <i>V5VSTBY</i>	V_{V5VSTBY}	4.75	-	5.25	V	-10 μA < <i>I</i> _{V5VSTBY} < -15 mA	P_8.8.15
Total Standby Current Consumption at pins <i>BATSTBY</i> , <i>BAT</i> , <i>V6V</i> and <i>MR</i>	I _{STBY}	-	-	120	μΑ	ECU sleep mode, $T_{\rm j}$ = 25°C, $I_{\rm V5VSTBY}$ = 0 mA, $V_{\rm BATSTBY}$ = $V_{\rm BAT}$ = $V_{\rm MR}$ = 13.5 V, EOTEN = CANWK EN = 0 V	P_8.8.16
Buffer Capacitor at V5VSTBY1)	C _{V5VSTBY}	27	100	270	nF	2)3)	P_8.8.46
ESR of Buffer Capacitance at V5VSTBY ¹⁾	ESR _{V5VSTBY}	0.01	_	1	Ω		P_8.8.47
Charge Pump							

Data Sheet

Engine Machine System IC

Power Supply

Table 22 Electrical Characteristics Power Supply (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	es	Unit	Note or	Number	
		Min.	Тур	Max.		Test Condition		
Charge pump Output Voltage	DV _{CP}	4	5	7	V	$DV_{CP} = V_{CP} - V_{BAT}$ no external load currents	P_8.8.17	
Charge pump Output Voltage at low supply	DV _{CP}	3.5	-	-	V	$V_{\text{BAT}} = 4.5 \text{ V after}$ start up, $DV_{\text{CP}} = V_{\text{CP}} - V_{\text{BATPx}}$	P_8.8.18	
Buffer Capacitor at <i>CP</i> ¹⁾	C_{CP}	-	4.7	_	nF		P_8.8.19	
Voltage Monitoring								
V5V Undervoltage Detection Threshold, decreasing	V _{UV,V5V,dec}	4.45	_	4.7	V	$V_{ m V5V}$ decreasing	P_8.8.20	
V5V Undervoltage Detection Threshold, increasing	V _{UV,V5V,inc}	4.45	_	4.8	V	V _{V5V} increasing	P_8.8.21	
V5V Undervoltage Detection Hysteresis	$V_{\rm Hys,UV,V5V}$	10	50	_	mV	_	P_8.8.22	
V5V Undervoltage Filter Time	$t_{\rm f,UV,V5V}$	5	10	15	μs	-	P_8.8.23	
T5V1 and T5V2 Undervoltage Detection Threshold	V _{UV,T5Vx,dec}	4.45	_	4.7	V	V_{TSVx} decreasing	P_8.8.24	
T5V1 and T5V2 Undervoltage Detection Threshold	V _{UV,T5Vx,inc}	4.45	-	4.8	V	$V_{\scriptscriptstyle{T5Vx}}$ increasing	P_8.8.25	
T5V1 and T5V2 Undervoltage Detection Hysteresis	V _{Hys,UV,T5Vx}	10	50	-	mV	-	P_8.8.26	
T5V1 and T5V2 Undervoltage Filter Time	$t_{ m f,UV,T5Vx}$	5	10	15	μs	-	P_8.8.27	
V5V Overvoltage Detection Threshold	V _{OV,V5V}	5.2	-	5.6	V	V _{V5V} increasing	P_8.8.28	
V5V Overvoltage Detection Hysteresis	V _{Hys,OV,V5V}	10	-	100	mV	-	P_8.8.29	
V5V Overvoltage Filter Time	$t_{\rm f,OV,V5V}$	5	10	15	μs	-	P_8.8.30	
T5V1 and T5V2 Overvoltage Detection Threshold	V _{OV,T5Vx}	5.2	-	5.6	V	$V_{\scriptscriptstyle T5Vx}$ increasing	P_8.8.31	
T5V1 and T5V2 Overvoltage Detection Hysteresis	$V_{\rm Hys,OV,T5Vx}$	10	-	100	mV	-	P_8.8.32	
T5V1 and T5V2 Overvoltage Filter Time	$t_{\rm f,OV,T5Vx}$	5	10	15	μs	-	P_8.8.33	
BAT Overvoltage Detection Threshold	$V_{ m OV,BAT}$	28	-	30.4	V	V _{BAT} increasing	P_8.8.34	

Engine Machine System IC

Power Supply

Table 22 Electrical Characteristics Power Supply (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol Values			Unit	Note or	Number	
		Min.	Тур	Max.		Test Condition	
BAT Overvoltage Detection Hysteresis	$V_{Hys,BAT}$	50	_	500	mV	_	P_8.8.35
BAT Overvoltage Filter Time	$t_{\sf f,OV,BAT}$	5	10	15	μs	_	P_8.8.36

¹⁾ not subject to production test, specified by design

²⁾ Defined minimum value is needed for regulator stability. Application might need higher value than minimum.

³⁾ additionally in parallel a capacitance up to 0.1^*C_{VxV} and low ESR is allowed

Power Stages

9 **Power Stages**

In the TLE8888-1QK there are 14 low-side power stages, 4 half bridges, 4 push-pull outputs for on board and external ignition driver and 6 push-pull outputs for on board MOSFETs implemented. The 14 low-side power stages are designed for various inductive and resistive loads, 4 stages to drive especially injectors, 3 with a higher operating current to drive e.g. O2-heaters and 7 stages to drive relays.

For the injector output stages (OUT1 to OUT4) the common enable input INJEN and for the ignition outputs the common enable input IGNEN are implemented. The half bridges can be used with high or low-side load, with active or passive freewheeling or in full bridge configuration.

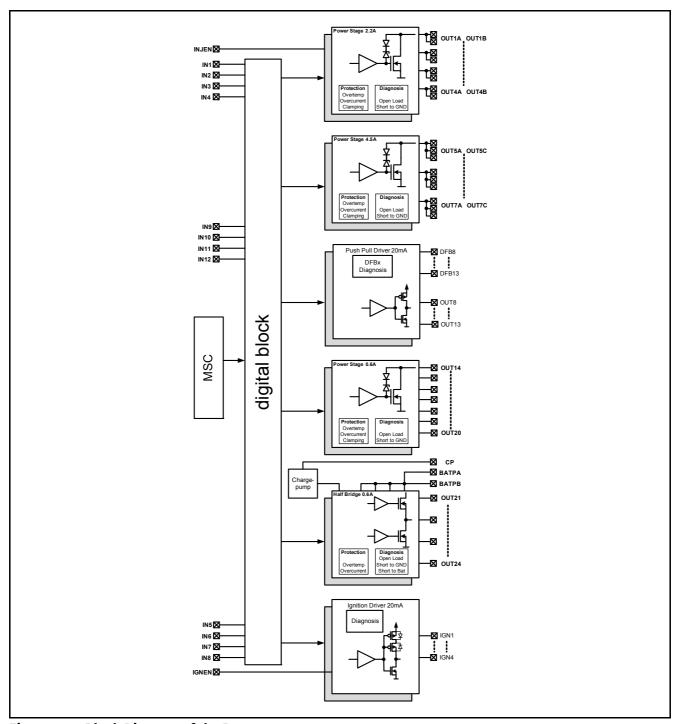


Figure 28 **Block Diagram of the Power stages**

TLE8888-1QK Engine Machine System IC

Power Stages

Table 23 Overview Power Stages

	Туре	maximum operation current	Ron	active clamping	Diagnosis in on	Diagnosis in off
OUT1 to OUT4	Low-side switch	2.2 A	550 mW	yes	overcurrent (short to battery) overtemperature	open load short to GND overtemperature
OUT5 to OUT7	Low-side switch	4.5 A	350 mW	yes	overcurrent (short to battery) overtemperature	open load short to GND overtemperature
OUT8 to OUT13	5 V push pull output	20/- 20 mA	-	no	at pin DFBx: short to battery at pin OUTx: overvoltage	at pin DFBx: open load short to GND at pin OUTx: overvoltage
OUT14 to OUT20	Low-side switch	0.6 A	1.5 W	yes	overcurrent (short to battery) overtemperature	open load short to GND overtemperature
OUT21 to OUT24	Half bridge	0.6 A	2.4 W	no	overcurrent (short to battery/short to GND) overtemperature	open load short to battery/short to GND overtemperature
IGN1 to IGN4	5 V push pull output	20 /- 20 mA	-	no	short to battery short to GND open load	short to battery

9.1 Power Stage Control

The output stages will be controlled either by the MSC/SPI data frame or command frame and the control register **Cont0** to **Cont3** (see **Chapter 14.1.5**) or the direct drive inputs *IN1* to *IN12*. The configuration which control mode is active is done in the configuration register **DDConfig0** to **DDConfig3** (see **Chapter 14.1.4**). A "1" in the control register/data frame bit or a "high" at the direct drive inputs switches on the corresponding output.

In **Table 24** the assignment of the direct drive inputs to the output stages is shown. The set up is valid for MSC and SPI operation.

The status of the power stages is also affected by the operation state and conditions of the TLE8888-1QK and is described in **Chapter 5**. All power stages are switched off if a micro channel time out occurs. Description of the effect to the control of the power stages see **Chapter 13.1.1**, **Downstream Supervisory Functions**.

Power Stages

Table 24 **Direct Drive Input Assignment to Output Stages**

Input	Output	Note
IN1 to IN4	OUT1 to OUT4	configuration for direct drive: bits O1DD to O4DD of the configuration register DDConfig0
		fix assignment of the inputs to the outputs
IN5 to IN8	IGN1 to IGN4	configuration for direct drive: bits IGN1DD to IGN4DD of the configuration register DDConfig3 fix assignment of the inputs to the outputs
IN9 to IN12	OUT5 to OUT24	configuration for direct drive: bits O5DD to O24DD of the configuration registers DDConfig0 to DDConfig2 assignment of input pins: configuration register InConfig0 to InConfig3 only 4 of this output stages can be switched directly

All direct drive inputs have implemented a pull down current source to define the input voltage. For a multiple assignment of two direct drive inputs for one output stage (wrong configuration) the output is switched off independent of the status of the direct drive inputs.

9.2 **Power Stages Enable**

To enable the power stages a central output enable bit **OE** is defined. The status of the bit is shown in the status register OpStat1 and can be set with the command register CmdOE. Additional a dedicated output enable bit for each output is defined (see register OEConfig0 to OEConfig3) to avoid uncontrolled repetitive switching in failure case. These enable bits are reset by the protection function of each channel and block switch on of the channels. The bits could not be set if a protection function is active.

With setting the central enable bit to "1" all dedicated output enable bits are set to "1" (if no protection function is active) and all channels are enabled and can be controlled according their configuration.

With setting the central enable bit to "0" all dedicated output enable bits are set to "0" and all channels are disabled.

For the injector channels OUT1 to OUT4 the common enable input INJEN must be set to "high" and for the ignition outputs IGN1 to IGN4 the common enable input IGNEN must be set to "high" to enable the channels.

Procedure to switch on after failure condition occurred:

- Read out of diagnosis bits
- Second read out to verify that the failure conditions are not remaining
- Set of the dedicated output enable bit of the affected channel if the diagnosis bit is not active anymore
- Switch on of the channel

Switch off during battery overvoltage:

To protect the power stages against high energy during freewheeling they are switched off for battery voltages greater than the "BAT Overvoltage Detection Threshold" (see Table 22 in Chapter 8.8).

Power Stages

9.3 Power Stages Configuration

The power stages can be configured according the configuration bits in the configuration registers **OutConfig0** to **OutConfig0**, **BriConfig0** and **IGNConfig**. The direct drive input configuration is described in **Table 24**.

Table 25 Configuration Overview Power Stages

	Configuration	Configuration Register
OUT1 to OUT4	overcurrent: current limitation or switch off diagnosis in off: pull down current activated/deactivated	OutConfig0
OUT5 to OUT7	overcurrent: current limitation or switch off diagnosis in off: pull down current activated/deactivated	OutConfig1
OUT8 to OUT13	at pin DFBx: diagnosis in off: pull down current activated/deactivated diagnosis in on: short to battery detection thresholds	OutConfig2 and OutConfig3 bits 0 to 3
OUT14 to OUT20	mode set up: delayed switch off mode for <i>OUT17</i> overcurrent: current limitation or switch off diagnosis in off: pull down current activated/deactivated (<i>OUT14</i> to <i>OUT17</i>) pull up and down current activated/deactivated (<i>OUT18</i> to <i>OUT20</i>)	OutConfig3 bits 4 and 5, OutConfig4, OutConfig5
OUT21 to OUT24	mode set up: active or passive freewheeling high- or low-side switch mode half or full bridge mode delayed switch off mode for OUT21	BriConfig0 and BriConfig1
IGN1 to IGN4	open load in activation/deactivation open load current setting open load detection time	IGNConfig

9.4 Special Function "Delayed Switch Off" for *OUT17* and *OUT21*

A special set up for the control behavior of *OUT17* and *OUT21* is implemented. With the delayed switch off functionality the outputs are suited to drive loads (e.g. starter relay) which must be on during very low battery voltages even if the microcontroller is in reset e.g. due to undervoltage. In this operation conditions all other power stages are normally switched off.

With the bits **O17D** in the configuration register **OutConfig4** and **O21D** in the configuration register **BriConfig1** both outputs can be configured to:

- normal control mode according description in Chapter 9.1
- delayed switch off mode

For delayed switch off mode *OUT17* and *OUT21* must be configured as controlled by MSC/SPI (bits **O17DD/O21DD** in configuration register **DDConfig2** are set to "0")

Delayed switch off mode for *OUT21* is only allowed in high- or low-side switch configuration. Fullbridge configuration is not allowed.

The delayed switch off mode keeps the two outputs on for the time **ton,del** after an trigger event. With the trigger events in normal control mode the outputs are switched off.

Engine Machine System IC

Power Stages

In delayed switch off mode the delayed switch off timer starts with following trigger events:

The channel must be on before a trigger event, switch on of all channels during the delayed switch off mode is not possible

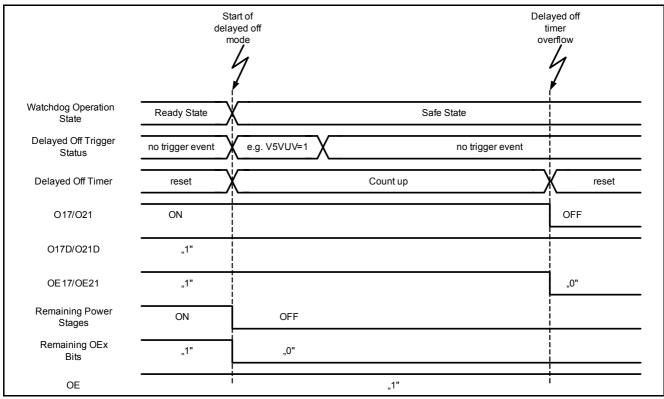
- undervoltage of the main supply V5V is detected
- or overvoltage of the main supply V5V is detected
- · or the MSC time out occurs
- or an active signal ("0") at pin MON
- or an active signal ("0") at pin RST

With the bit **RDOT** in the command register **Cmd0** the delayed switch off timer is restarted and the on time is increased.

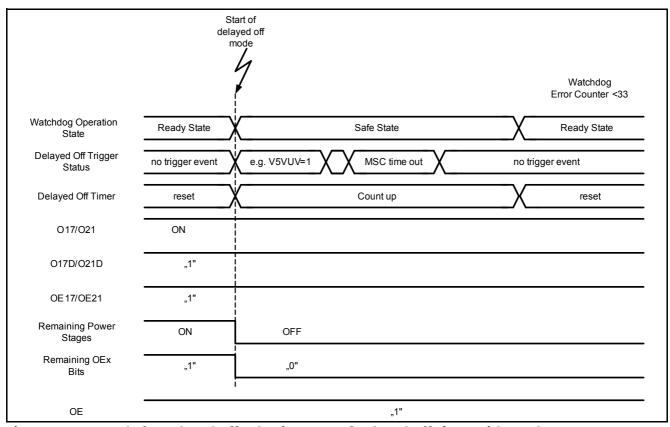
The delayed off mode is terminated with following events:

- · overflow of delayed off timer
- O17/O21 are switched off with command CmdOE, set control register bits O17ON/O21ON or the configuration register bits O17E/O21E to "0"
- O17D/O21D are set to "0"
- Ready State is active and no trigger event is active

The outputs are switched off immediately if an internal power on reset occurs. According to the definition in **Chapter 5.1** if the conditions for a state change to ECU sleep mode are fulfilled the delayed off is terminated and the transition is executed.


Normally the related register bits of *OUT17* and *OUT21* are reset during undervoltage of the main supply *V5V* or an active signal ("0") at pin *RST* (definition see **Table 5** and **Table 6** in **Chapter 5.2**). In delayed switch off configuration following register bits are not reset:

- OE in status register OpStat1
- O17E, O21E in configuration register OEConfig2
- 017D, 017OL, 017OC in configuration register OutConfig4
- O21F, O21M in configuration register BriConfig0
- O21D in configuration register BriConfig1


For illustration in Figure 29 and Figure 30 two examples for the delayed switch off mode for are shown.

Power Stages

Example for Delayed Off Behavior: Overflow of Delayed Off Timer

Example for Delayed Off Behavior: Stop of Delayed Off Timer with Ready State

Power Stages

Electrical Characteristics Direct Drive Inputs 9.5

Electrical Characteristics Direct Drive Inputs

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol Values				Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Direct Drive Inputs IN1 to IN12		1	1				1
Low Level Input Voltage	$V_{\text{IN,l}}$	-0.3	_	0.9	٧	_	P_9.5.1
High Level Input Voltage	$V_{\rm IN,h}$	2	_	V_{VDDIO}	٧	_	P_9.5.2
Input Voltage Hysteresis	$V_{\rm IN,hys}$	50	200	-	mV	_	P_9.5.3
Pull Down Current	I _{IN,pd}	25	_	100	μΑ	$V_{\text{IN}} = V_{\text{VDDIO}}$	P_9.5.4
Pull Down Current	I _{IN,pd}	2.4	_	_	μΑ	V _{IN} = 0.6 V	P_9.5.5
Delayed Switch Off for OUT17 and	OUT21	•	•				
Switch On Time in Delayed Switch Off Mode	t _{on,del}	400	_	800	ms	_	P_9.5.6

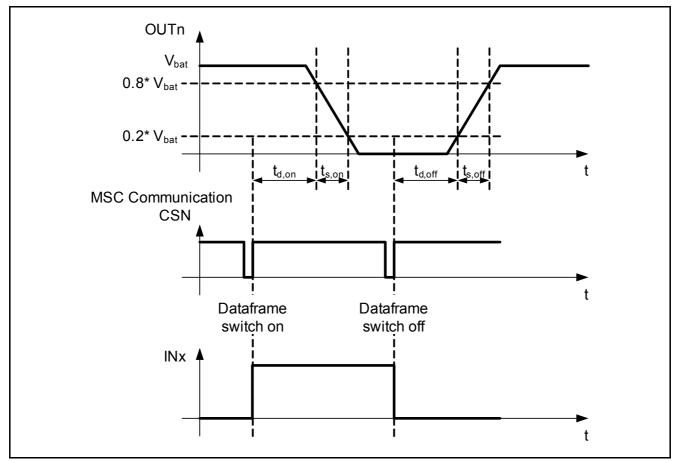


Figure 31 Switching Behavior

9.6 Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20

The low-side switches are designed to withstand repetitive clamping events which occurs in automotive applications. The outputs are fully protected and various diagnosis functions are implemented.

They are controlled and enabled like all power stages according the description in **Chapter 9.1** and **Chapter 9.2**. To enable the low-side switches *OUT1* to *OUT4* additionally the enable pin *INJEN* must be "high".

The outputs are fully protected against overcurrent and overtemperature and various diagnosis functions are implemented. For the description of the diagnosis function see **Chapter 9.6.2**.

All power stages are switched off if a micro channel time out occurs. Description of the effect to the control of the power stages see **Chapter 13.1.1**, **Downstream Supervisory Functions**.

9.6.1 Protection of OUT1 to OUT7 and OUT14 to OUT20

The outputs are fully protected against overcurrent and overtemperature.

The current protection of the power stages *OUT1* to *OUT7* and *OUT14* to *OUT20* can be configured to current limitation or switch off in case of overcurrent (configuration register *OutConfig0*, *OutConfig1*, *OutConfig3* to *OutConfig5* bits *O1OC* to *O7OC* and *O14OC* to *O2OOC*). In failure case (e.g. short to battery) the output current of the low-side switches are always limited and an overcurrent condition is detected if the overcurrent signal is valid longer than the "*Overcurrent Detection Filter Time*". With the detection the corresponding diagnosis bits are set according the priority shown in *Table 27* and for switch off configuration additionally the output is switched off.

To cover all failure conditions the overtemperature protection is implemented. Especially for the overcurrent limitation configuration the overtemperature is the only protection function against overload. After exceeding the temperature threshold the outputs are switched off till the temperature is decreased by the "Overtemperature Hysteresis".

For the procedure to switch on an affected channel after failure condition see **Chapter 9.2**.

9.6.2 Diagnosis of OUT1 to OUT7 and OUT14 to OUT20

For the low-side outputs various diagnosis function are implemented. For short to battery in on diagnosis the protection function overcurrent and overtemperature are used to set the diagnosis information and for open load and short to GND (SCG) in off a special circuit is implemented.

To detect the open load/short to GND a push pull circuits is active which leads to the function of the voltage and currents of the outputs shown in **Figure 32**. With the defined detection threshold the load condition can be detected.

With the off signal of the output stage the open load/short to GND detection circuit is enabled. To suppress disturbances the output of the detection circuit is stored in the diagnosis register **OutDiag0** to **OutDiag4** after the "**Diagnosis Filter Time for open load and short to GND in off**" $t_{\text{diag,f}}$ and according the priority shown in **Table 27**. With the readout of the diagnosis register the content is updated to the actual diagnosis.

For the outputs *OUT1* to *OUT7* and *OUT14* to *OUT17* the diagnosis pull down current of the open load/short to GND in off detection could be switched off (see configuration register **OutConfig1** to **OutConfig4**). With deactivated pull down current open load in off detection is not active and the diagnosis information 10B will never occur and is deactivated. With deactivated pull down current the short to GND detection is active.

For the outputs *OUT18* to *OUT20* the diagnosis pull up and down currents could be switched off (bits **O180L** and **O200L** in configuration register **OutConfig5**). In this case no diagnosis information in off is active and the bits O18DIAG1, O19DIAG1 and O20DIAG1 are "0".

In **Figure 32** the behavior open load/short to GND in off detection of the output current as a function of the output voltage is shown.

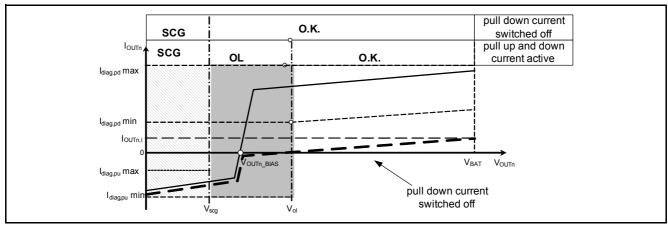


Figure 32 Output behavior with active diagnosis in off

Table 27 Description of Diagnosis Information

OnDIAG[1:0]	Priority (1 = highest priority)	Description
00	4	no failure
01	1	short circuit to battery (overcurrent) or overtemperature
10	2	open load in off ^{1) 2)}
11	3	short circuit to ground in off ²⁾

¹⁾ no open load in off detection with deactivated pull down current

9.6.3 Electrical Characteristics Low-Side Switches *OUT1* to *OUT7* and *OUT14* to *OUT20*

Table 28 Electrical Characteristics Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
OUT14, n = 1 to 4							
Operation Current	I _{OUTn}	-	-	2.2	Α		P_9.6.1
Limitation Current in Overcurrent condition	I _{OUTn,lim}	2.2	_	4	А		P_9.6.2
Overcurrent Detection Filter Time	t _{oc,f}	40	-	70	μs		P_9.6.3
On Resistance	$R_{\rm OUTn,on}$		-	550	mΩ	I _{OUTn} = 2.2 A	P_9.6.4
Clamping Voltage	$V_{\rm OUTn,cv}$	50	-	60	٧	I _{OUTn} = 0.2 A	P_9.6.5
Repetitive Clamping Energy	E _{OUTn,cl}	_	_	4	mJ	$I_{OUTn} < 1.4 \text{ A},$ $T_j = 125^{\circ}\text{C},$ $648*106 \text{ cycles}^{1)}$	P_9.6.6

²⁾ no open load and short to GND in off signalization for OUT18 to OUT20 if pull up and down currents are switched off

Table 28 Electrical Characteristics Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20 (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Leakage Current 1	/OUTn,l,1	-	-	5	μΑ	$V_{\text{OUTn}} = 13.5 \text{ V},$ $V_{\text{BAT}} = 0 \text{ V},$ $T_{\text{j}} = 60^{\circ} \text{C}^{1)2)}$	P_9.6.7	
Leakage Current 2	IOUTn,l,2	_	_	10	μΑ	$V_{OUTn} = 28 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_j = 60^{\circ} \text{C}^{1/2}$	P_9.6.8	
Leakage Current 3	/OUTn,l,3	_	_	20	μΑ	$V_{OUTn} < 28 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_j = 150^{\circ}\text{C}^{2)}$	P_9.6.9	
Turn On Delay Time	t _{d,on}	1	_	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.10	
Turn Off Delay Time	$t_{ m d,off}$	1	_	8	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.11	
Switch On Time	t _{s,on}	1.8	_	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.12	
Switch Off Time	t _{s,off}	1.8	_	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.13	
OUT57, n = 5 to 7							<u> </u>	
Operation Current	I _{OUTn}	_	-	4.5	Α		P_9.6.14	
Limitation Current in Overcurrent condition	$I_{\rm OUTn,lim}$	4.5	_	8	А		P_9.6.15	
Overcurrent Detection Filter Time	t _{oc,f}	40	-	70	μs		P_9.6.16	
On Resistance	R _{OUTn,on}		-	350	mΩ	I _{OUTn} = 3 A	P_9.6.17	
Clamping Voltage	$V_{\rm OUTn,cv}$	50	-	60	V	I _{OUTn} = 0.2 A	P_9.6.18	
Repetitive Clamping Energy	E _{OUTn,cl}	_	_	22	mJ	$I_{OUTn} < 1.05 \text{ A},$ $T_j = 125^{\circ}\text{C},$ $1*109 \text{ cycles}^{1)}$	P_9.6.19	
Leakage Current 1	/OUTn,l,1	_	_	5	μΑ	$V_{OUTn} = 13.5 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_i = 60^{\circ} \text{C}^{1/2}$	P_9.6.20	
Leakage Current 2	/OUTn,l,2	-	-	10	μА	$V_{OUTn} = 28 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_i = 60^{\circ} \text{C}^{1/2}$	P_9.6.21	
Leakage Current 3	/OUTn,l,3	_	-	30	μА	$V_{OUTn} < 28 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_j = 150^{\circ}\text{C}^{2}$	P_9.6.22	

Table 28 Electrical Characteristics Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20 (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Turn On Delay Time	t _{d,on}	1	_	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.23
Turn Off Delay Time	$t_{ m d,off}$	1	_	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.24
Switch On Time	t _{s,on}	1.4	-	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.25
Switch Off Time	t _{s,off}	1.4	-	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 2.2 \text{ A},$ resistive load ³⁾	P_9.6.26
OUT1420, n = 14 to 20							
Operation Current	I _{OUTn}	-	-	0.6	Α		P_9.6.27
Limitation Current in Overcurrent condition	I _{OUTn,lim}	0.6	_	1.5	А		P_9.6.28
Overcurrent Detection Filter Time	t _{oc,f}	40	-	70	μs		P_9.6.29
On Resistance	$R_{\rm OUTn,on}$		-	1.5	Ω	I _{OUTn} = 0.6 A	P_9.6.30
OUT17 On Resistance at Low Battery Voltage	R _{OUT17,on,l}		-	1.7	Ω	$I_{OUTn} = 0.1 \text{ A},$ $V_{BATPx} = 4.5 \text{ V}$	P_9.6.31
Clamping Voltage	$V_{\rm OUTn,cv}$	50	-	60	V	I _{OUTn} = 0.2 A	P_9.6.32
Repetitive Clamping Energy	$E_{OUTn,cl}$	-	_	6.5	mJ	$I_{OUTn} < 0.3 \text{ A},$ $T_j = 125^{\circ}\text{C},$ $40*106 \text{ cycles}^{1)}$	P_9.6.33
Leakage Current 1	/OUTn,l,1	-	_	5	μΑ	$V_{OUTn} = 13.5 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_j = 60^{\circ} \text{C}^{1)2}$	P_9.6.34
Leakage Current 2	/OUTn,l,2	-	_	15	μΑ	$V_{OUTn} = 28 \text{ V},$ $V_{BAT} = 0 \text{ V},$ $T_{j} = 60^{\circ} \text{C}^{1)2}$	P_9.6.35
Leakage Current 3	/OUTn,l,3	-	_	35	μΑ	$V_{\text{OUTn}} = 28\text{V}, V_{\text{BAT}} = 0\text{V},$ $T_{\text{j}} = 150^{\circ}\text{C}^{2)}$	P_9.6.36
Turn On Delay Time	t _{d,on}	1	-	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 0.3 \text{ A},$ resistive load ³⁾	P_9.6.37
Turn Off Delay Time	t _{d,off}	1	-	7	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 0.3 \text{ A},$ resistive load ³⁾	P_9.6.38

Electrical Characteristics Low-Side Switches OUT1 to OUT7 and OUT14 to OUT20 (cont'd) Table 28

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values	5	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Switch On Time	t _{s,on}	1.1	-	5.6	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 0.3 \text{ A},$ resistive load ³⁾	P_9.6.39
Switch Off Time	t _{s,off}	1.1	_	5.6	μs	$V_{\text{OUTn}} = 13.5 \text{ V},$ $I_{\text{OUTn}} = 0.3 \text{ A},$ resistive load ³⁾	P_9.6.40
Delayed Off Time after trigger event for <i>OUT17</i>	$t_{ m off,del}$	400	-	800	ms		P_9.6.41
Diagnosis OUT1 to 7 and OUT14 to	20						
Overtemperature Switch Off Threshold	$T_{\rm OUTn,ot}$	150	-	200	°C	1)	P_9.6.42
Overtemperature Hysteresis	T _{OUTn,ot,hy}	_	10	-	°C	1)	P_9.6.43
Open Load in Off Detection Threshold	V _{ol}	<i>V5V</i> - 0.15	V5V	<i>V5V</i> + 0.15	V		P_9.6.44
Short to GND in Off Detection Threshold	V _{scg}	0.6* <i>V</i> 5 <i>V</i> - 0.15	0.6* <i>V5V</i>	0.6* <i>V</i> 5 <i>V</i> +0. 15	V		P_9.6.45
Diagnosis Pull Up Current	I _{diag,pu}	-270	-	-150	μΑ	$V_{\text{OUTn}} = 0 \text{ V},$ $V_{\text{IGNx}} \ge 0 \text{ V}$	P_9.6.46
Diagnosis Pull Down Current	I _{diag,pd}	280	-	500	μΑ	$V_{\text{ol}} < V_{\text{OUTn}} < V_{\text{BAT}},$ $V_{\text{IGNx}} \ge 0 \text{ V}$	P_9.6.47
Diagnosis Filter Time for open load and short to GND in off	$t_{ m diag,f}$	60	-	135	μs		P_9.6.48
Direct Drive Inputs INJEN							
Low Level Input Voltage	$V_{\text{IN,l}}$	-0.3	_	0.9	V		P_9.6.49
High Level Input Voltage	$V_{\rm IN,h}$	2	_	V_{VDDIO}	V		P_9.6.50
Input Voltage Hysteresis	$V_{\rm IN,hys}$	50	200		mV		P_9.6.51
Pull Down Current	I _{IN,pd}	25	_	100	μΑ	$V_{\text{IN}} = V_{\text{VDDIO}}$	P_9.6.52
Pull Down Current	I _{IN,pd}	2.4	_	_	μΑ	V _{IN} = 0.6 V	P_9.6.53

¹⁾ Parameter is not subject of production test, specified by design

²⁾ additionally diagnosis currents are active in operation mode; exception OUT18 to OUT20 in diagnosis current switch off configuration

³⁾ see Figure 31

9.7 Half Bridges OUT21 to OUT24

The TLE8888-1QK integrates 4 half bridges which can be used as half bridge, full bridge, low-side power stage or high-side power stage. They are fully protected against overload and overtemperature and diagnosis fits to the chosen setup of the load. For the description of the diagnosis function see **Chapter 9.7.2**.

They are controlled and enabled like all power stages according the description in **Chapter 9.1** and **Chapter 9.2**. In **Table 29** the effect of **O21E** to **O24E** and **O21ON** to **O24ON** to the high-side and low-side switch of the half bridge is shown.

The half bridges can be configured via MSC/SPI for high- or low-side loads (setup see Figure 33) and for passive or active freewheeling (freewheeling is done with bulk diode or actively with switching on the freewheeling path). In Table 29 the configuration is shown. With the bits O21M to O24M of the configuration register BriConfig0 the switching mode is defined. With this configuration the low or the high-side transistor is defined to switch on the load. For low-side switch mode the load is connected to the battery, for high-side switch mode the load is connected to GND (see Figure 33). With the bits O21F to O24F of the configuration register BriConfig0 the freewheeling behavior is defined. The freewheeling is done for low-side switch mode with the high-side transistors. For passive freewheeling the bulk diode is used and the freewheeling transistor is always off. For the active freewheeling mode the freewheeling transistor is on during an off signal. This is the so called half bridge mode. The alternate switching of the high-side and low-side switch is done with a break before make phase. The definition of the switching mode is important for the correct diagnosis in off (see Chapter 9.7.2). The bits FB1E and FB2E (full bridge enable) are only used for the diagnosis in off for full bridge set up. FB1E = "1" is used for loads connected between OUT21 and OUT22. FB2E = "1" is used for loads connected between OUT23 and OUT24. The diagnosis in off setup is changed to the special situation of full bridge mode. The setting with O21M to O24M and O21F to O24F are valid.

Note: for full bridge set up the same set up for the two half bridges is recommended!

Table 29 Configuration of the Half Bridge

OnM	OnF ¹⁾	OnE ¹⁾	OnON = 1 ¹⁾	OnON = 0 ¹⁾	Description
0	0	0	high-side = off low-side = off	high-side =off low-side = off	low-side switch mode and passive freewheeling at high- side: ²⁾ both switches are disabled
0	0	1	high-side = off low-side = on	high-side = off low-side = off	low-side switch mode and passive freewheeling at high-side: ²⁾ high-side switch always off, bulk diode of high-side switch is used for passive freewheeling
0	1	0	high-side = off low-side = off	high-side =off low-side= off	low-side switch mode and active freewheeling at high- side: ²⁾ both switches are disabled
0	1	1	high-side = off low-side = on	high-side =on low-side= off	low-side switch mode and active freewheeling at high- side: ²⁾ high-side switch on during freewheeling
1	0	0	high-side = off low-side= off	high-side =off low-side= off	high-side switch mode and passive freewheeling at low- side: ²⁾ both switches are disabled

Table 29 Configuration of the Half Bridge (cont'd)

OnM	OnF ¹⁾	OnE ¹⁾	OnON = 1 ¹⁾	OnON = 0 ¹⁾	Description
1	0	1	high-side = on low-side= off	high-side =off low-side= off	high-side switch mode and passive freewheeling at low-side: ²⁾ low-side switch always off, bulk diode of low-side switch is used for passive freewheeling
1	1	0	high-side = off low-side= off	high-side =off low-side= off	high-side switch mode and active freewheeling at low- side: ²⁾ both switches are disabled
1	1	1	high-side =on low-side= off	high-side =off low-side= on	high-side switch mode and active freewheeling at low- side: ²⁾ low-side switch on during freewheeling

- 1) n=21 to 24 for the selected half bridge channel
- 2) setup definition see Figure 33

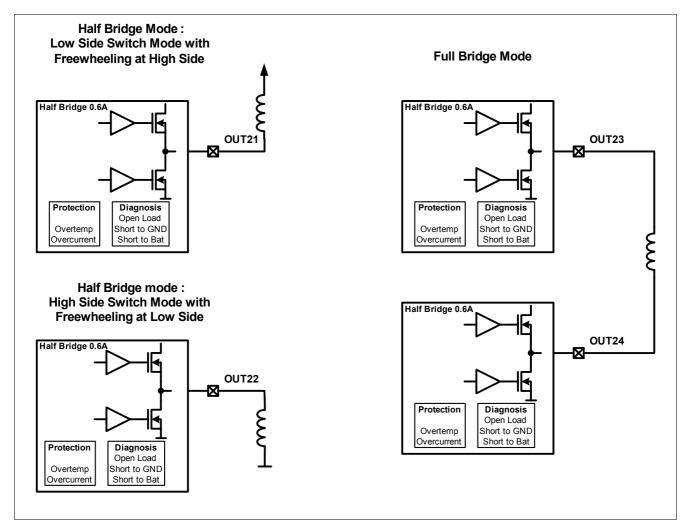


Figure 33 Load setups for half and full bridge mode

9.7.1 Protection of Half Bridges *OUT21* to *OUT24*

The half bridge outputs are fully protected against overcurrent and overtemperature.

In failure case (e.g. short to GND) the affected transistor is switched off after the "Overcurrent Switch Off Filter Time" and the diagnosis bit is set. The half bridge output is high ohmic (tristate).

To cover all failure conditions the overtemperature protection is implemented. After exceeding the temperature threshold the half bridge outputs are switched off till the temperature is decreased by the "Overtemperature Hysteresis".

For the procedure to switch on an affected channel after failure condition see Chapter 9.2.

9.7.2 Diagnosis of Half Bridges OUT21 to OUT24

For the half bridge outputs various diagnosis function are implemented. For short to battery and short to GND in on diagnosis the protection function overcurrent is used (diagnosis bits **0210C** to **0240C** in diagnosis register **BriDiag1**). Overtemperature is signalized with the diagnosis bits **B10T** and **B20T** in diagnosis register **BriDiag1**. For open load and short to GND (SCG) in off a special circuit is implemented. The diagnosis bits **021DIA** to **024DIA** in diagnosis register **BriDiag0** are set according the setup of the channels and according the priority shown in **Table 30**.

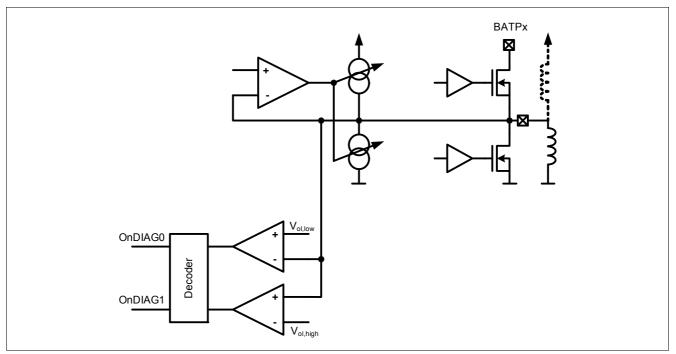


Figure 34 Open Load and Short to GND/Battery Detection Circuit for Half Bridge Configuration (Lowor High-Side Load)

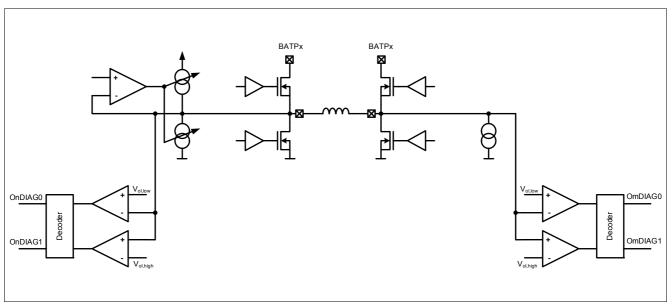


Figure 35 Open Load and Short to GND/Battery Detection Circuit for Full Bridge Configuration

In **Figure 36** and **Figure 37** the behavior of the output current as a function of the output voltage in the different configurations are shown.

The detection in off for open load is the same for both settings but for the short detection there is a difference for low-side and high-side switch mode.

- · Hig-side switch mode: short to battery detection in off
- · Low-side switch mode: short to GND detection in off

Figure 36 Output Behavior in Off for Low-Side Switch Configuration with Open Load and Short to GND Detection

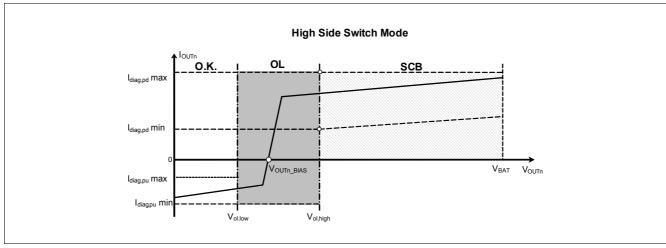


Figure 37 Output Behavior in Off for High-Side Switch Configuration with Open Load and Short to Battery Detection

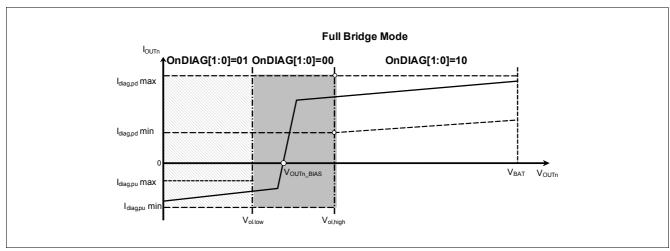


Figure 38 Output Behavior in Off for Full Bridge Mode Configuration

The detection is active if the high-side and the low-side switch are off and the diagnosis activation timer $t_{\rm br,diag,act}$ starts counting. For activation of the open load in off detection in active freewheeling configuration the half bridge must be disabled by setting the bits **O21E** to **O24E** of configuration register **OEConfig2** to "low", for passive freewheeling a normal off signal (*IN9* to *IN12* or **O210N** to **O240N** in control register **Cont2** is set to "low") is sufficient. For full bridge mode both half bridges must be off or disabled regarding the setting of the half bridge. After the **Bridge Diagnosis Activation Time** $t_{\rm br,diag,act}$ the output of the detection circuit is stored in the diagnosis register **BriDiag0** according the priority shown in **Table 30**. After activation of the open load in off detection a filter time $t_{\rm br,diag,f}$ to suppress disturbances is implemented. The diagnosis register bits are set after the specified filter times. With the readout of the diagnosis register the content is updated to the actual diagnosis.

In **Table 30** the definition of the diagnosis bits for single switch usage is defined, in **Table 31** the definition for full bridge mode.

Note: especially for full bridge mode it is recommended to read out the diagnosis register twice due to transition states and possible misleading diagnosis register entries

Table 30 Description of Diagnosis Information Single Switch Usage

OnDIAG[1:0] ¹⁾	Priority (1 = highest priority)	High-Side Switch Mode	Low-Side Switch Mode		
00	3	no failure	no failure		
01	2	open load in off	n.a.		
10	2	n.a.	open load in off		
11	1	short circuit to battery in off	short circuit to ground in off		

¹⁾ n from 21 to 24

Note:

For high-side switch mode (low-side load) after start up there will be a short to ground detection before the output is configured to high-side load and the diagnosis bits are set to "11". This detection is not right and it is recommended to read out the diagnosis registers twice after start up to avoid wrong diagnosis information.

Table 31 Description of Diagnosis Information in Full Bridge Mode

OnDIAG[1:0] ¹⁾	OmDIAG[1:0] ¹⁾	Full Bridge Mode
00	00	no failure
Single Failure		
00	01	open load in off (or double fault open load and short to GND at OUT22 /OUT24)
10	10	short circuit to battery in off
01	01	short circuit to ground in off (or double fault open load and short to GND at <i>OUT21 / OUT23</i>
Double Failure	1	
00	10	open load and short circuit to bat at OUT22/OUT24 in off
01	10	short circuit to ground at <i>OUT21 / OUT23</i> and short circuit to battery at <i>OUT22 / OUT24</i> in off
10	01	short circuit to battery at <i>OUT21 /OUT23</i> and short circuit to ground or open load at <i>OUT22 /OUT24</i> in off
Remaining Cor	mbinations	
10	00	not existing or transition states after switch off
XX	11	
11	xx	
01	00	

¹⁾ n = 21 and m=22 or n=23 and m=24

9.7.3 Electrical Characteristics Half Bridges

TLE8888-1QK Engine Machine System IC

Table 32 Electrical Characteristics Half Bridges

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
OUT2124, n = 21 to 24							
Operation Current	I _{OUTn}	_	-	0.6	Α		P_9.1
Overcurrent Switch Off Threshold	I _{OUTn,oc}	0.6	_	1.5	Α		P_9.2
Overcurrent Switch Off Filter Time	t _{oc,f}	0.5	-	2	μs		P_9.3
On Resistance	R _{OUTn,on}		_	2.4	Ω	I _{OUTn} = 0.3 A	P_9.4
OUT21 On Resistance at Low Battery Voltage, low temperature	R _{OUT21,on,l}		_	2.4	Ω	$I_{OUTn} = 0.1 \text{ A},$ $V_{BAT} = 4.5 \text{ V}$ $T_{j} < 100^{\circ}\text{C}$	P_9.5
OUT21 On Resistance at Low Battery Voltage, high temperature	R _{OUT21,on,l}		_	2.6	Ω	$I_{OUTn} = 0.1 \text{ A},$ $V_{BAT} = 4.5 \text{ V}$ $T_j > 100^{\circ}\text{C}$	P_9.6
Leakage Current, low-side	/OUTn,l,l ow	_	_	20 ¹⁾	μΑ	V _{OUTn} = 13.5 V	P_9.7
Leakage Current, high-side	/OUTn,l,h	-20 ¹⁾	-	_	μΑ	V _{OUTn} = 0 V	P_9.8
Turn On Delay Time ²⁾	t _{d,on}	_	-	10	μs	I _{OUTn} = 0.3 A, resistive load	P_9.9
Turn Off Delay Time ²⁾	t _{d,off}	0.1	-	10	μs	I _{OUTn} = 0.3 A, resistive load	P_9.10
Switch On Time ²⁾	t _{s,on}	0.9	-	2.5	μs	I _{OUTn} = 0.3 A, resistive load	P_9.11
Switch Off Time ²⁾	t _{s,off}	0.9	-	2.5	μs	I _{OUTn} = 0.3 A, resistive load	P_9.12
Diagnosis OUT21 to 24		1			1	,	1
Overtemperature Switch Off Threshold	$T_{\rm OUTn,ot}$	150	_	200	°C	3)	P_9.13
Overtemperature Hysteresis	T _{OUTn,ot,hy}	_	10	_	°C	3)	P_9.14
Open Load in Off Detection Threshold High Limit	V _{ol,high}	0.9* <i>V5V</i> -0.2	0.9* <i>V5V</i>	0.9* <i>V5V</i> +0.2	V		P_9.15
Open Load in Off Detection Threshold Low Limit	V _{ol, low}	0.5* <i>V</i> 5 <i>V</i> -0.2	0.5* <i>V5V</i>	0.5* <i>V5V</i> +0.2	V		P_9.16
Diagnosis Pull Up Current	I _{diag,pu}	-980	-	-220	μΑ		P_9.17
Diagnosis Pull Down Current	I _{diag,pd}	150	-	300	μΑ		P_9.18
Bridge Diagnosis Activation Time	$t_{ m br,diag,act}$	60	-	135	μs		P_9.19
Bridge Diagnosis Filter Time	t _{br,diag, f}	0.5	-	2	μs		P_9.20

¹⁾ In operation leakage current covered by open load current

Engine Machine System IC

- 2) see **Figure 31** for timing definition
- 3) not subject to production test, specified by design

9.8 Push Pull Stages OUT8 to OUT13 and DFB8 to DFB13

These 5 V push pull stages are designed for driving on-board MOSFETs. The outputs are fully protected and various diagnosis functions are implemented.

They are controlled and enabled like all power stages according the description in **Chapter 9.1** and **Chapter 9.2**. In off ("0" in control register or "low" at the configured direct drive input pin) the low-side transistor of the push/pull stage is on and forces a "low voltage level at the pin.

9.8.1 Protection of *OUT8* to *OUT13*

There are functions implemented to detect short to battery at the external MOSFET and to protect the driver outputs.

For the short to battery detection feedback pins *DFB8* to *DFB13* are implemented to sense the voltage at the drain of the external MOSFET. The short to battery detection in on is done by comparing the voltage level of the drain feedback pins with the short to bat detection threshold.

A short is detected after the "Short to Battery Detection Filter Time". In case of short to battery the output is switched off and the corresponding diagnosis bits in the diagnosis register OutDiag1 to OutDiag3 are set according the priority shown in Table 33. There are four different thresholds, "Short to Battery Detection Threshold in On 1" to "Short to Battery Detection Threshold in On 4", implemented so that the detection threshold can be adapted to the used MOSFET. The diagnosis of the push pull stages can be set in three groups. The configuration is done with the bits PPOD to PP2D in the configuration register OutConfig2 and OutConfig3.

The protection of the driver output pins is done by comparing the output voltage on the pins *OUT8* to *OUT13* with the "Overvoltage Detection Threshold". An overvoltage (e.g. short to battery) is detected after the "Overvoltage Diagnosis Filter Time" and the corresponding diagnosis bits in the diagnosis register PPOVDiag is set. In case of overvoltage high and low-side transistors of the push pull driver are switched off (high ohmic state).

9.8.2 Diagnosis of OUT8 to OUT13

For the push pull stages *OUT8* to *OUT13* various diagnosis functions for the external MOSFETs are implemented. The open load, short to ground in off and short to battery in on detection is done via the drain feedback *DFB8* to *DFB13*. The diagnosis pull down current of the open load/short to ground in off detection can be switched off (see configuration register **OutConfig2**). With deactivated pull down current open load in off detection is not active and the diagnosis information of OnDIAG[1:0] = 10B will never occur. With deactivated pull down current the short to ground detection is active.

In Figure 39 the behavior of the output current as a function of the output voltage is shown.

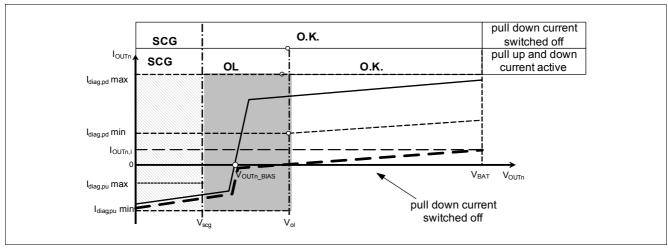


Figure 39 Output behavior in off with open load and short to GND detection of DFB8 to DFB13

Whenever the push pull stages are off the open load/short to GND detection circuit is enabled. To suppress disturbances the output of the detection circuit is stored in the diagnosis register **OutDiag1** to **OutDiag3** after the **Diagnosis Filter Time for Open Load and Short to GND in Off Detection** $t_{\rm diag,f}$ and according the priority shown in **Table 33**. With the readout of the diagnosis register the content is updated to the actual diagnosis.

Table 33 Description of Diagnosis Information (DFB8 to DFB13)

OnDIAG[1:0]	Priority (1 = highest priority)	Description
00	4	no failure
01	1	short circuit to battery
10	2	open load in off ¹⁾
11	3	short circuit to ground in off

¹⁾ no open load in off detection with deactivated pull down current

9.9 Electrical Characteristics Push Pull Stages *OUT8* to *OUT13*

Table 34 Electrical Characteristics Push Pull Stages OUT8 to OUT13

Stages on or off, $V_S = 13.5 \text{ V}$, $V_{VSV} = 5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		Test Condition	
OUT813, n = 8 to 13	<u> </u>						
High Level Output Voltage	$V_{\rm OUTn,h}$	4	-	5.5	V	I _{OUTn} = -5 mA	P_9.8.1
Low Level Output Voltage	$V_{\rm OUTn,l}$	-	_	0.6	V	<i>I</i> _{OUTn} = 5 mA	P_9.8.2
Pull up current	I _{OUTn,pu}	-	-	-20	mA	V _{OUTn} = 0 V, OUTn on	P_9.8.3
Pull down current	I _{OUTn,pd}	20	_	_	mA	V _{OUTn} = 5 V, OUTn off	P_9.8.4

Table 34 Electrical Characteristics Push Pull Stages OUT8 to OUT13 (cont'd)

Stages on or off, $V_S = 13.5 \text{ V}$, $V_{VSV} = 5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to $+150 ^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Overvoltage Detection Threshold	$V_{\rm OUTn,ov,th}$	5.5	_	7.7	٧		P_9.8.5	
Overvoltage Diagnosis Filter Time	t _{OUTn,ov,f}	5	_	10	μs		P_9.8.6	
Diagnosis <i>DFB8</i> to <i>DFB13</i>		•			•			
Short to Battery Detection Threshold in On 1	$V_{DFBn,sb,1}$	90	125	150	mV	referred to PGND	P_9.8.7	
Short to Battery Detection Threshold in On 2	$V_{DFBn,sb,2}$	180	225	250	mV	referred to PGND	P_9.8.8	
Short to Battery Detection Threshold in On 3	$V_{DFBn,sb,3}$	350	400	450	mV	referred to PGND	P_9.8.9	
Short to Battery Detection Threshold in On 4	$V_{DFBn,sb,4}$	0.7	0.8	0.9	V	referred to PGND	P_9.8.10	
Short to Battery Detection Filter Time	$V_{DFBn,sb,fl}$	10	_	15	μs		P_9.8.11	
Open Load in Off Detection Threshold	V _{ol}	<i>V5V</i> -0.2	V5V	<i>V5V</i> + 0.2	V		P_9.8.12	
Short to GND in Off Detection Threshold	V _{scg}	0.5* <i>V</i> 5 <i>V</i> -0.2	0.5* <i>V5V</i>	0.5* <i>V</i> 5 <i>V</i> +0. 2	V		P_9.8.13	
Diagnosis Pull Down Current in Off	I _{diag,pd}	220	_	600	μΑ	V _{DFBn} = 13.5 V	P_9.8.14	
Diagnosis Pull Up Current in Off	I _{diag,pu}	-300	_	-100	μΑ	V _{DFBn} = 0 V	P_9.8.15	
Diagnosis Filter Time for Open Load and Short to GND in Off Detection	t _{diag,f,off}	60	_	135	μs		P_9.8.16	
Pull Down Current in On	I _{diag,pd,on}	_	_	1.8	μΑ	$V_{DFBn} = 5 \text{ V}$	P_9.8.17	

9.10 Push Pull Stages IGN1 to IGN4

The *IGN1* to *IGN4* are 5 V push pull stages for on- and off-board ignition power stages (e.g. with IGBTs, darlington transistors). For off board ignition power stages the outputs *IGN1* to *IGN4* are equipped with a back supply suppression (in case of a short circuit from *IGN1* to *IGN4* to battery there is no parasitic current flow back to 5 V).

They are controlled and enabled like all power stages according the description in **Chapter 9.1** and **Chapter 9.2**. Additionally a "high" at the pin *IGNEN* is needed to enable the outputs. In off ("0" in control register or "low" at the configured direct drive input pin or *IGNEN* is "low") the low-side transistor of the push/pull stage is on and forces a "low voltage level at the pin.

The outputs are fully protected and various diagnosis functions are implemented.

9.10.1 Protection of IGN1 to IGN4

The protection of the outputs is done by detecting short to battery and short to ground. This is done by comparing the output voltage level with the "Short to Battery Detection Threshold and Short to Ground"

TLE8888-1QK Engine Machine System IC

Detection Threshold". To suppress disturbances the output signal of the short to GND and short to battery detection circuit is stored in the diagnosis register **IgnDiag** after the "**Diagnosis Filter Time for Short to GND and Battery Detection**" $t_{\text{diag,f,sc}}$ and according the priority shown in **Table 35**.

During detected short to GND the output is switched off (low-side transistor of push/pull stage is on), during detected short to battery the output is high ohmic (tristate).

The short to battery detection is always active. The short to ground detection is enabled with the on signal of the output stage.

Additionally an overtemperature protection is implemented. There is one common sensor for *IGN1* and *IGN2* and one for *IGN3* and *IGN4*.

9.10.2 Diagnosis of IGN1 to IGN4

An open load detection during the switch on phase is implemented and can be enabled with the bit **IOLA** in the configuration register **IGNConfig**. In **Figure 40** the detection principle is shown. When the open load detection in on is enabled, first the output is pulled up by a defined current, which is set by the bits **IOLI** in the configuration register **IGNConfig**.

The output voltage, which is passed to the detection circuit, is filtered ("Diagnosis Filter Time for Open Load Detection") to suppress disturbances. After the open load time ("Open Load Time 1" to "Open Load Time 4"selected in configuration register IGNConfig bits IOLT) the filtered output is compared with the Open Load Detection Threshold Vol. The diagnosis register IgnDiag is set if the filtered output is higher than the Open Load Detection Threshold and the output is fully switched on.

The failures are stored in the diagnosis register according the priority shown in **Table 35** with "1" is the highest priority. With the readout of the diagnosis register **IgnDiag** the content is updated to the actual diagnosis.

Table 35 Description of Diagnosis Information (IGN1 to IGN4)

IGNnDIAG[1:0]	Priority (1 = highest priority)	Description
00	4	no failure
01	1	short circuit to battery or overtemperature
10	2	open load
11	3	short circuit to ground in on

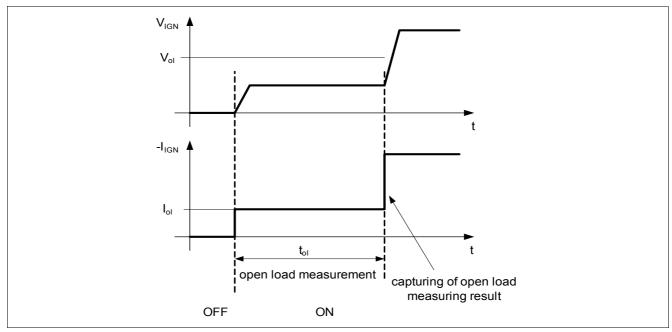


Figure 40 Ignition Output Open Load Detection

9.11 Electrical Characteristics Push Pull Stages IGN1 to IGN4

Table 36 Electrical Characteristics Push Pull Stages

Stages on or off, $V_S = 13.5 \text{ V}$, $V_{VSV} = 5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
IGN14, n = 1 to 4			1				I
High Level Output Voltage	$V_{IGNn,h}$	4.35	_	_	٧	I _{IGNn} = -15 mA,	P_9.9.1
Low Level Output Voltage	$V_{IGNn,l}$	_	-	0.6	٧	I _{IGNn} = 5 mA	P_9.9.2
Pull up current	I _{IGNn,pu}	_	-	-20	mA	$V_{IGNn} = 0 \text{ V, IGNn on}$	P_9.9.3
Pull down current	I _{IGNn,pd}	20	-	_	mA	V_{IGNn} = 5 V, IGNn off	P_9.9.4
Leakage current	I _{L_IGNn}	_	-	120	μΑ	V _{IGNn} = 13.5 V	P_9.9.5
Leakage current to V5V	I _{L_IGNn,V5V}	_	-	1	μΑ	V _{IGNn} = 13.5 V	P_9.9.26
Overtemperature Switch Off Threshold	$T_{IGNx,ot}$	150	-	200	°C	1)	P_9.9.6
Overtemperature Hysteresis	$T_{\rm IGNx,ot,hys}$		10		°C	1)	P_9.9.7
Diagnosis IGN1 to IGN4		•	•				
Short to Battery Detection Threshold	$V_{IGNn,scb}$	6.4	_	7.5	V		P_9.9.8
Short to Ground Detection Threshold	V _{scg}	1.6	-	2.3	V		P_9.9.9
Diagnosis Filter Time for Short to GND and Battery Detection	t _{diag,f,sc}	5	-	10	μs		P_9.9.10

TLE8888-1QK **Engine Machine System IC**

Electrical Characteristics Push Pull Stages (cont'd) Table 36

Stages on or off, $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol		Values	5	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Open Load Detection Threshold	V _{ol}	4	_	4.5	٧		P_9.9.11
Open Load Switch On Current 1	I _{olf,1}	-120	-100	-40	μΑ		P_9.9.12
Open Load Switch On Current 2	I _{olf,2}	-500	-400	-300	μΑ		P_9.9.13
Open Load Switch On Current 3	I _{olf,3}	-1.2	-1	-0.4	mA		P_9.9.14
Open Load Switch On Current 4	I _{olf,4}	-5	-4	-2.5	mA		P_9.9.15
Open Load Time 1	$t_{\text{ol,1}}$	50	60	70	μs		P_9.9.16
Open Load Time 2	$t_{\rm ol,2}$	210	250	290	μs		P_9.9.17
Open Load Time 3	<i>t</i> _{ol,3}	450	510	570	μs		P_9.9.18
Open Load Time 4	$t_{\rm ol,4}$	690	775	860	μs		P_9.9.19
Diagnosis Filter Time for Open Load Detection	$t_{ m diag,f,olf}$	6	10	14	μs		P_9.9.20
Direct Drive Inputs <i>IGNEN</i>	-	*					
Low Level Input Voltage	$V_{\text{IN,l}}$	-0.3	_	0.9	٧		P_9.9.21
High Level Input Voltage	$V_{\rm IN,h}$	2	_	V_{VDDIO}	٧		P_9.9.22
Input Voltage Hysteresis	$V_{\rm IN,hys}$	50	200	_	mV		P_9.9.23
Pull Down Current	I _{IN,pd}	25	_	100	μΑ	$V_{\text{IN}} = V_{\text{VDDIO}}$	P_9.9.24
Pull Down Current	I _{IN,pd}	2.4	_	-	μΑ	V _{IN} = 0.6 V	P_9.9.25

¹⁾ Parameter is not subject of production test, specified by design

10 VR and Hall Sensor Interface

The variable reluctance (VR) sensor interface converts an output signal of a VR sensor into a push-pull logic level signal suited for microcontroller input ports. To achieve the best accuracy for the positive and the negative edge of the *VROUT* signal the switching point is the zero crossing. For robustness against disturbances the next zero crossing is enabled only if a signal peak (minimum or maximum of the signal) is detected. The amplitude of the VR sensor signal is limited by an internal clamping circuit to avoid damage of the device due to overvoltage caused by the VR sensor signal.

There are three operation modes for VR sensor applications and one Hall sensor mode implemented. The manuel VR sensor mode with static setup of the detection parameter under control of the microcontroller via MSC/SPI and an auto mode with an adaptive algorithm to ensure best detection performance. The semi auto mode is less accurate then the auto mode.

The diagnosis VR sensor interface setup could be done by measuring the voltage between the two input pins during diagnosis mode. Additionally three diagnosis bits for short to battery, short to GND and open load (directly at the pins) are available.

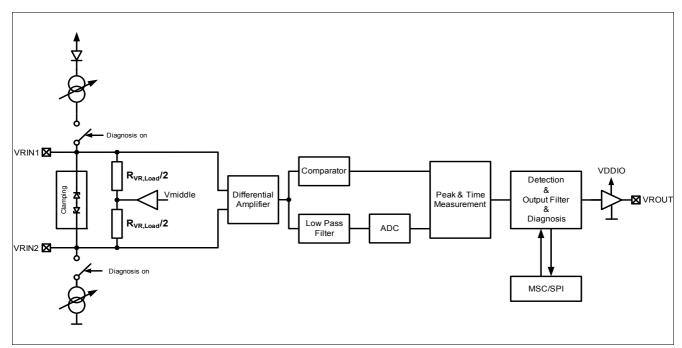


Figure 41 VR Sensor Interface Block diagram

10.1 Signal Detection

The signal detection for Hall sensor mode is a comparator with the switching threshold **VVRIN1,th, hall** and the hysteresis **VVRIN1,hys, hall**. The detection of the VR signal consist of the zero crossing detection, peak detection and the output filter. At the input there is a clamping circuit between the pins **VRIN1** and **VRIN2** suited to clamp the maximum current of VR sensors.

The zero crossing detection ensures that the influence of the input signal slope is eliminated for both edges. To avoid disturbances due to the floating input signal a middle voltage is applied with the integrated load resistance. The clamping circuit between the pins *VRIN1* and *VRIN2* clamps the input voltage in both direction to protect the input structures. The clamping is suited for VR sensors with a maximum output current of **ΔIVR**, clamp (see **Table 37**).

The peak detection is done by measuring the voltage difference by the analog to digital converter and the detection of the slope of the input signal. If the gradient of the slope changes the sign the next zero crossing detection is enabled. The detection of the sign is done by comparing the absolute value of the signal with the

peak detection threshold (**VVR**,**peak**,**min**,**1** to **VVR**,**peak**,**min**,**4** according setup). A sign change is only valid if the absolute value of the signal is larger than peak detection threshold (**VVR**,**peak**,**min**,**1** to **VVR**,**peak**,**min**,**4** according setup) for a time longer than the peak detection time **tVR**,**peak**,**min**,**1** to **tVR**,**peak**,**min**,**2** according setup (see **Figure 42**).

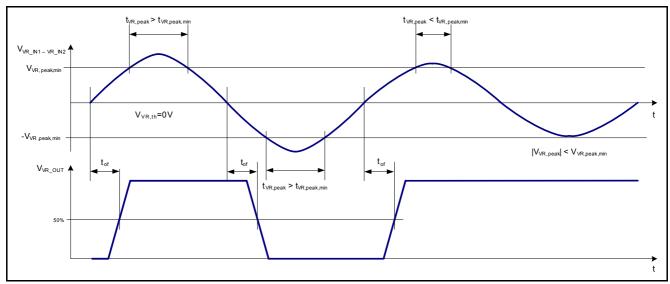


Figure 42 Timing Characteristics of the VR Sensor Interface

The output filter is implemented for all operation modes to suppress disturbances with high frequencies. The function is shown in **Figure 43**. The output signal *VROUT* is filtered with the time **tof,1**. The output signal of the internal zero crossing detection must be stable for a time longer than **tof,1**.

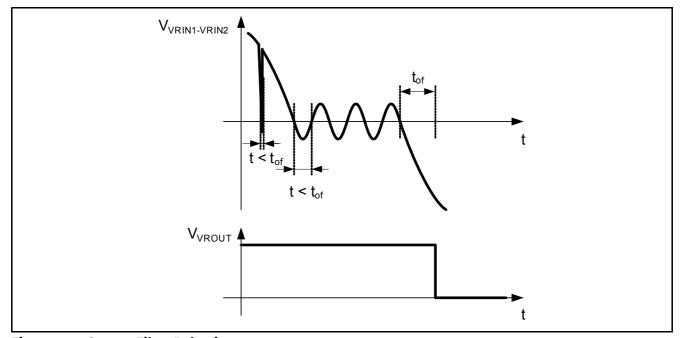


Figure 43 Output Filter Behavior

Following parameters could be set by MSC/SPI communication:

 peak detection threshold VVR,peak,min,1 to VVR,peak,min,4 with the bits VRSPV in the configuration register VRSConfig0

Engine Machine System IC

VR and Hall Sensor Interface

- peak detection time tVR,peak,min,1 to tVR,peak,min,2 with the bit VRSPT in the configuration register
 VRSConfig0
- output filter time tof,1 to tof,4 with the bits VRSF in the configuration register VRSConfig0

10.2 Detection Modes

The TLE8888-1QK integrates four detection modes:

- auto detection mode for VR sensor signals
- manual detection mode for VR sensor signals
- · semi auto detection mode for VR sensor signals
- detection mode for Hall sensor signals

To select the various detection modes the bits **VRSM** in the configuration register **VRSConfig1** must be set.

Auto detection mode for VR sensor signals: In the auto detection mode an algorithm is setting all parameters to the optimal values to achieve the best detection behavior. The peak detection time is set due to the actual speed value, the peak detection threshold is set due to the level of the previous peaks. The output filter time (tof,1 to tof,4) is set by the microcontroller independently to increase the robustness against short disturbances at the inputs. Write access to the registers bits of VRSPT and VRSPV are ignored in auto detection mode.

Semi auto detection mode for VR sensor signals: The algorithm of the semi auto mode is based on less number of measurement information as the auto detection mode. This leads to a simpler implementation of the detection algorithm. The output filter time (tof,1 to tof,4) is set by the microcontroller independently to increase the robustness against short disturbances at the inputs. Write access to the registers bits of VRSPT and VRSPV are ignored in semi auto detection mode.

Manual detection mode for VR sensor signals: In the manual detection mode the microcontroller has the full control of all parameters of the detection and the algorithm of the auto detection modes are disabled. The settings are done via the MSC/SPI interface.

Detection mode for Hall sensor signals: For the Hall sensor mode the pin *VRIN2* is forced internally to the switching threshold **VVRIN1**, **th**, **hall**. The detection principle is a comparator with hysteresis. Write access to the registers bits of **VRSPT** and **VRSPV** are ignored in the detection mode for Hall sensor signals. The diagnosis is disabled. With this set up the number of external devices is reduced (see **Chapter 17.2**).

Note: Switching between the different configurations must be avoided with active signals at the inputs VRIN1 and VRIN2.

10.3 Diagnosis for VR Sensor Signal Detection Modes

The TLE8888-1QK integrates three different diagnosis modes for the VR sensor interface:

- short to GND/short to battery diagnosis mode: detection of short to GND or short to battery directly at pins VRIN1 and VRIN2
- open load diagnosis mode: detection of open load directly at pins VRIN1 and VRIN2
- ADC measurement mode: measurement of the voltage between the pins VRIN1 and VRIN2

The modes are defined in the configuration register **VRSConfig1** with the bits **VRSDIAGM**.

The diagnosis of the VR sensor is done by activating the diagnosis mode with the bits **VRSDIAGM** in the configuration register **VRSConfig1** and starting diagnosis measurement with the bit **VDIAGS** in the command register **Cmd0**. With the activation of the VRS diagnosis mode at *VRIN1* a pull up current source to the internal supply and at *VRIN2* a pull down current source is applied (current configuration with bits **VRSI_SC** for short to GND/short to battery diagnosis mode, **VRSI_OL** for open load diagnosis mode and **VRSI_ADC** for ADC

Engine Machine System IC

VR and Hall Sensor Interface

measurement mode in the configuration registers VRSConfig1 and VRSConfig2). To avoid bad influence of the time constants of the external circuitry the timing of the measurement is controlled by the microcontroller. The sequence is shown in Figure 44.

The end of the diagnosis procedure triggered by the start command is signalized by the correspondent data valid bits VRSDV_SC (short to GND and short to battery diagnosis mode), VRSDV_OL (open load diagnosis mode) in diagnosis register VRSDiago and VRSDV_ADC (ADC measurement mode) in the diagnosis register VRSDiag1.

For the detection thresholds see parameter Short to GND detection threshold, Short to battery detection threshold and Open load detection threshold. The output of the ADC measurement is defined by the parameter ADC measurement gain and ADC measurement offset.

The result of the diagnosis is available in the diagnosis register VRSDiagO with the bits VRSG (short to GND detection), VRSB (short to battery detection) and VRSOL (open load detection directly at the pins). The digital value of the ADC measurement is available in the register VRSDiag1 with the bits VRSD. This ADC value can be used by the microcontroller to define additional error detection conditions different to the defined short to GND, short to battery and open load thresholds.

The data valid bits are reset with start of the corresponding diagnosis or with the readout of the register.

Note:

In detection mode for Hall sensor signals the diagnosis is deactivated and the values of VRSDIAGM and VRSI_SCin the register VRSConfig1, VRSI_ADC and VRSI_OL in register **VRSConfig2** and the start command **VDIAGS** in the register **Cmd0** are ignored.

Engine Machine System IC

VR and Hall Sensor Interface

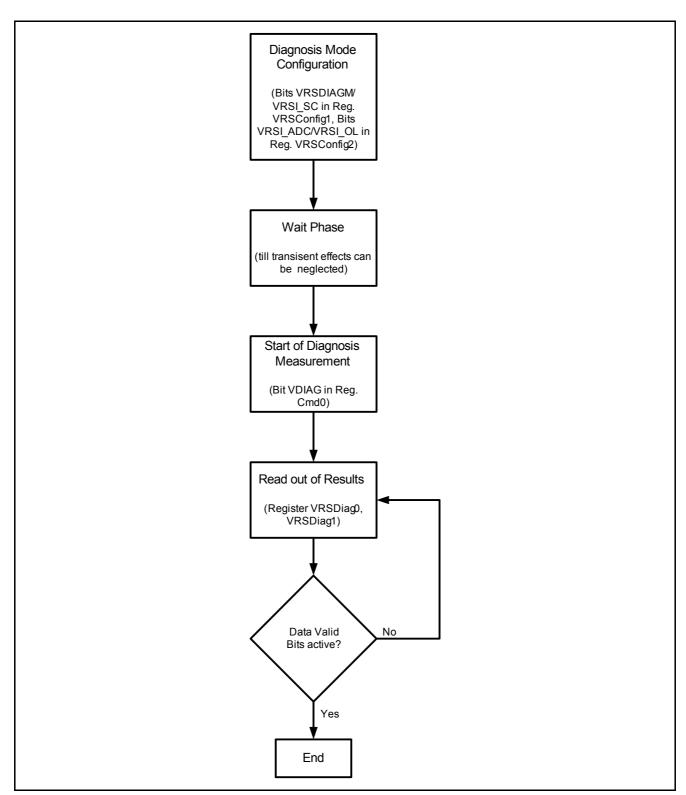


Figure 44 VRS Flow Chart

For the measurement the internal circuits are changed. In **Figure 45**, **Figure 46** and **Figure 47** the block diagram of the different setups are shown.

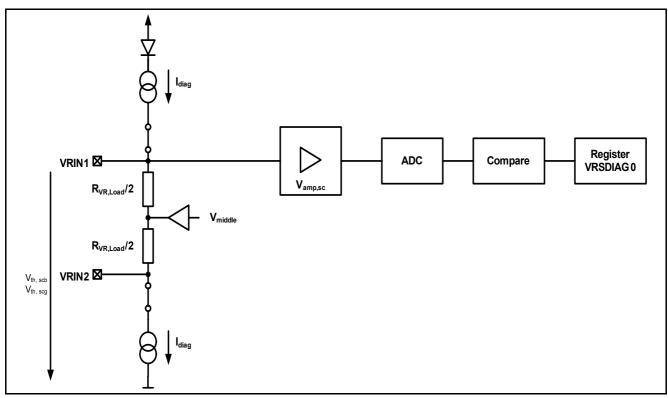


Figure 45 VRS Diagnosis Block Diagram for Short to GND and Short to Battery Measurement

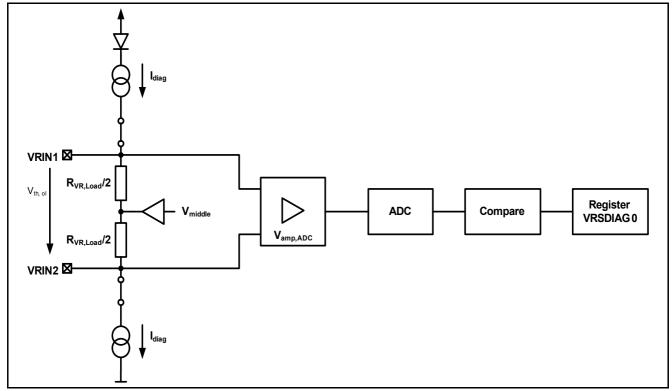


Figure 46 VRS Diagnosis Block Diagram for Open Load Measurement

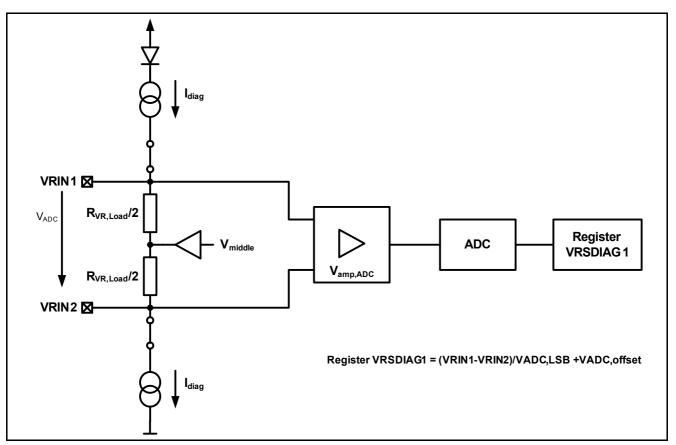


Figure 47 VRS Diagnosis Block Diagram for ADC Measurement

10.4 Electrical Characteristics VR Sensor Interface

Table 37 Electrical Characteristics: VR Sensor Interface

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Values		Unit	Note or	Number		
		Min.	Тур.	Max.		Test Condition	
Input Characteristics:							
VR Sensor Interface Detection Threshold	$V_{ m VR,th}$	-30	0	30	mV		P_10.4.1
minimum amplitude for peak detection 1	$V_{\rm VR,peak,min,1}$	_	50	-	mV	reset value	P_10.4.2
minimum amplitude for peak detection 2	$V_{\rm VR,peak,min,2}$	_	150	-	mV		P_10.4.3
minimum amplitude for peak detection 3	V _{VR,peak,min,3}	_	350	-	mV		P_10.4.4
minimum amplitude for peak detection 4	V _{VR,peak,min,4}	-	550	-	mV		P_10.4.5
minimum time for peak detection 1	t _{VR,peak,min,1}	_	10	-	μs	reset value 1 kHz sinusoidal signal	P_10.4.6
minimum time for peak detection 2	t _{VR,peak,min,2}	_	250	-	μs	1 kHz sinusoidal signal	P_10.4.7
VR Sensor Interface Load Resistance	$R_{ m VR,Load}$	50	75	110	kΩ		P_10.4.9
VR Sensor Interface Input Clamping Current	$\Delta I_{ m VR,clamp}$	_	-	50	mA	$\Delta I_{VR,clamp} = (I_{VRIN1} - I_{VRIN2})/2$	P_10.4.1
VR Sensor Interface Input Clamping Voltage	$\Delta V_{ m VR,clamp}$	2	-	3	V	$\Delta V_{\text{VR,clamp}} = V_{\text{VRIN1}} $ V_{VRIN} , $I_{\text{VR,calmp}} = 50 \text{ mA}$	P_10.4.1
Switching threshold voltage at pin <i>VRIN1</i> for Hall Sensor Mode	V _{VRIN1,th, hall}	0.9	-	2	V	no load at pin VRIN2¹)	P_10.4.2
Switching hysteresis pin VRIN1 for Hall Sensor Mode	V _{VRIN1,hys, hall}	0.35	0.5	-	V	no load at pin VRIN2	P_10.4.1
Middle voltage level normal mode	V _{middle}	1.9	2.25	2.5	V		P_10.4.1
VRS Diagnosis:		•	•	<u> </u>			
Middle voltage level diagnosis mode	V _{middle}	0.9	1.3	1.65	V		P_10.4.1
Diagnosis measurement time	t _{conv}	_	7	8	μs		P_10.4.1

Engine Machine System IC

VR and Hall Sensor Interface

Electrical Characteristics: VR Sensor Interface (cont'd) Table 37

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Symbol Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Diagnosis current accuracy	I _{diag, acc}	-30%	-	+30%		VRIN1 = VRIN2 = V _{middle} ; typ. values see register VRSConfig1 and VRSConfig2	P_10.4.14
Short to GND detection threshold	$V_{th,scg}$	0.8	-	1.1	V		P_10.4.15
Short to battery detection threshold	$V_{th,scb}$	2.8	-	3.3	V		P_10.4.16
Open load detection threshold	$V_{th,ol}$	0.9	-	1.2	V		P_10.4.17
ADC measurement input range	$V_{ADC,r}$	-1.5	-	1.5	V		P_10.4.8
ADC measurement gain	$V_{ADC,LSB}$	_	49	_	mV	valid from 6 _d to 70 _d	P_10.4.31
ADC measurement offset	$V_{ADC,offset}$	_	37 _d	_			P_10.4.32
Output Characteristics:							
Low Level Output Voltage - Low Output Current	$V_{\text{VR_OUT,L,l}}$	-	_	0.4	V	$I_{VR_OUT} = 100 \mu A$	P_10.4.21
Low Level Output Voltage - High Output Current	$V_{\text{VR_OUT,L,h}}$	-	-	1.5	V	I _{VR_OUT} = 1 mA	P_10.4.22
High Level Output Voltage - Low Output Current	$V_{\text{VR_OUT,H,l}}$	VDDIO- 0.4	-	-	V	<i>I</i> _{VR_OUT} = -100 μA	P_10.4.23
High Level Output Voltage - High Output Current	$V_{\text{VR_OUT,H,h}}$	VDDIO- 1.5	-	-	V	$I_{VR_OUT} = -1 \text{ mA}$	P_10.4.24
Transfer Characteristics:		'	•	1		•	*
Output Filter Time 1	$t_{ m of,1}$	1	2	3	μs	reset value	P_10.4.25
Output Filter Time 2	t _{of,2}	5	6	7.5	μs		P_10.4.26
Output Filter Time 3	<i>t</i> _{of,3}	9.5	11	13	μs		P_10.4.27
Output Filter Time 4	<i>t</i> _{of,4}	19	21	23	μs		P_10.4.28

¹⁾ external circuitry for hall mode see **Chapter 17.2**

infineon

Local Interconnect Network (LIN)

11 Local Interconnect Network (LIN)

The LIN interface is designed for in-vehicle networks using data transmission up to 20 kbit/s. The implementation of the physical layer is according to LIN specification revision 2.1 for slave nodes and is compatible with lower versions like revision 2.0 and 1.3¹⁾. *LINTX* is the transmit-data input from the microcontroller, *LINIO* is the bidirectional LIN bus signal and *LINRX* is the receive-data output to the microcontroller. The transmitted data stream at *LINTX* is converted to the LIN bus signal at *LINIO*. *LINRX* reflects the received data at *LINIO* with a logic signal suited for 3.3 V and 5 V microcontroller interfaces.

The detection thresholds at LINIO are related to the power supply BATPA²).

The LIN interface of the TLE8888-1QK is compatible to the physical layer definition of the K-Line (ISO 9141) standard. For K-Line operation no additional settings are necessary.

A flash mode for high speed operation can be selected with the communication interface (MSC or SPI). There is no bus wake-up function implemented.

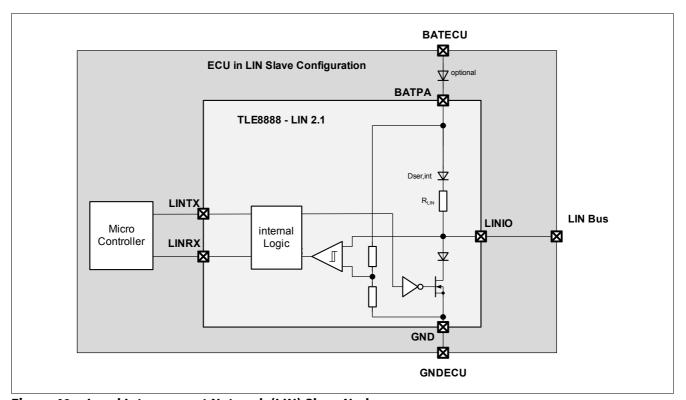


Figure 48 Local Interconnect Network (LIN) Slave Node

The LIN interface in the TLE8888-1QK is implemented according the requirements of the standard for slave nodes. For master setup an external pull up resistor (typ. 1 k Ω , see definition in LIN specification) and a diode must be connected to *LINIO* and *BATPA* on the ECU (see **Figure 49**).

¹⁾ see LIN specification revision 2.1 chapter 6.2

²⁾ BATPA is identical to the internal supply voltage VSUP defined in LIN specification revision 2.1

Local Interconnect Network (LIN)

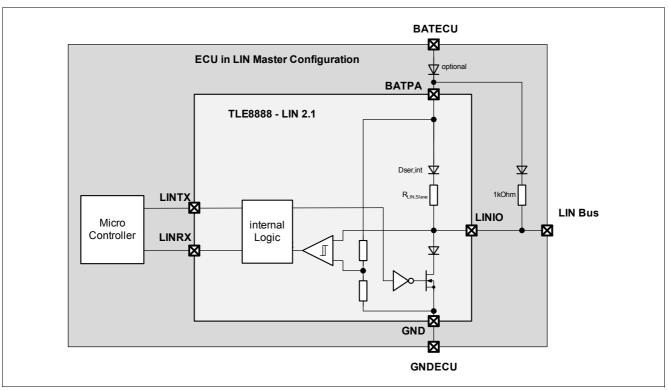


Figure 49 Local Interconnect Network (LIN) Master Node

11.1 Operation Modes

The interface can be configured for three operation modes:

- LIN/K-Line Mode: operation according LIN specification revision 2.1 with a maximum speed of 20 kbit/s and K-Line standard ISO 9141
- · Receive Only Mode: transmission of data is disabled
- Flash Mode: operation up to 115 kbit/s is possible, slope control and current limitation are deactivated

The selection of the modes is done with setting the bits **LIN** in the register **ComConfig1** via communication interface (MSC or SPI). The operation mode after power on reset is defined by reset value of the register.

11.2 Failure Modes in LIN/K-Line Operation

In the LIN specification a special behavior of the interface is required for some failure conditions. This behavior is also active if a K-Line node is used.

11.2.1 Performance in Non Operation Supply Voltage Range

For supply voltages out of operation range the interface may still operate, but communication is not guaranteed. For *LINTX* = 'high' (recessive) the interface shall not drive *LINIO* to dominant state and if *LINIO* is in recessive state the *LINRX* output shall provide a 'high' (recessive).

11.2.2 Loss of Supply Voltage and GND Connection

During loss of supply voltage or GND connection the interface shall not interfere with the communication of other LIN nodes. Upon return of connection, normal operation shall resume without any intervention on the LIN bus line (pin *LINIO*).

Engine Machine System IC

Local Interconnect Network (LIN)

11.2.3 Bus Wiring Short to Battery or GND

The LIN interface is protected against short to battery or short to GND. Upon remove of the fault, normal operation shall resume without any intervention on the LIN bus line (pin *LINIO*).

11.2.4 TX Time Out

The TX time out function is implemented to prevent the bus line from being blocked by a permanent 'low' at the pin LINTX caused by an error at the ECU or the microcontroller. If the LINTX signal is 'low' (dominant) for $t > t_{timeout}$ the transmission of the LINTX signal to the bus is deactivated and the LIN output stage is disabled.

The transmission is reactivated, after a rising edge at *LINTX* was detected. The implemented time out feature requires a minimum data rate of 1600 bit/s.

The time out function can be disabled with the configuration bit **LINTOE** in the configuration register **ComConfig1**.

11.2.5 Overtemperature Protection

The LIN bus output *LINIO* is protected against overload with an overtemperature protection. In case of overtemperature the output transistor is switched off and the diagnosis bit **LINOT** in the diagnosis register **ComDiag** is set. The configuration register is not changed.

Local Interconnect Network (LIN)

Electrical Characteristics LIN 11.3

Table 38 **Electrical Characteristics: LIN**

 $V_S = 13.5 \text{ V}$, $V_{VSV} = 5 \text{ V}$, $T_i = -40 ^{\circ}\text{C}$ to $+150 ^{\circ}\text{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Supply voltage range for normal operation	$V_{BATPA,LIN}$	7	-	18	V	acc. Param 10 LIN Spec. Rev. 2.1	P_11.3.1
Limitation Current at LINIO for driver dominant state	I _{LINIO,lim}	40	_	200	mA	acc. Param 12 LIN Spec. Rev. 2.1	P_11.3.2
Leakage Current at LINIO for bus dominant state and driver off	I _{LINIO,leak,dom}	-1	_	_	mA	acc. Param 13 LIN Spec. Rev. 2.1 $V_{\text{LINIO}} = 0 \text{ V}$ $V_{\text{BAT}} = 12 \text{ V}$	P_11.3.3
Leakage Current at LINIO for bus recessive state	I _{LINIO,leak,rec}	_	_	20	μΑ	acc. Param 14 LIN Spec. Rev. 2.1 $V_{\rm LINIO} > V_{\rm BAT}$	P_11.3.4
Current at LINIO during GND loss	I _{LINIO,no_GND}	-1	_	1	mA	acc. Param 15 LIN Spec. Rev. 2.1 $GND = V_S$ $0 \text{ V} < V_{\text{LINIO}} < 18 \text{ V}$ $V_{\text{BAT}} = 12 \text{ V}$	P_11.3.5
Current at LINIO during power supply loss	I _{LINIO,no_Sup}	-	_	20	μΑ	acc. Param 16 LIN Spec. Rev. 2.1 $GND = V_S = 0 \text{ V}$ $0 \text{ V} < V_{LINIO} < 18 \text{ V}$	P_11.3.6
Receiver Dominant State	$V_{LINIO,dom}$	-	-	0.4* <i>V</i> _B	V	acc. Param 17 LIN Spec. Rev. 2.1	P_11.3.7
Receiver Recessive State	V _{LINIO,rec}	0.6* <i>V</i> B ATPA	-	-	V	acc. Param 18 LIN Spec. Rev. 2.1	P_11.3.8
Receiver switching threshold center voltage	$V_{LINIO,cnt}$	0.475* V _{BATPA}	-	0.525* V _{BATPA}	V	acc. Param 19 LIN Spec. Rev. 2.1 $V_{\text{LINIO,cnt}} = (V_{\text{th,}} \\ dom + V_{\text{th,rec}})/2$	P_11.3.9
Hysteresis of switching threshold	V_{Hys}	-	-	0.175* V _{BATPA}	V	acc. Param 20 LIN Spec. Rev. 2.1 $V_{\rm Hys} = V_{\rm th,rec}$ - $V_{\rm th,dom}$	P_11.3.10
Voltage drop at internal serial diode D _{ser,int}	V _D	0.4	-	1	V	acc. Param 21 LIN Spec. Rev. 2.1	P_11.3.11
Resistance of internal slave resistor Rslave	$R_{\text{LIN,Slave}}$	20	-	60	kΩ	acc. Param 26 LIN Spec. Rev. 2.1	P_11.3.12

Engine Machine System IC

Local Interconnect Network (LIN)

Table 38 Electrical Characteristics: LIN (cont'd)

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	it Note or Test Condition	Number
		Min.	Тур.	Max.			
Duty cycle 1	D_1	0.396	-	-	-	acc. Param 27 LIN Spec. Rev. 2.1	P_11.3.13
Duty cycle 2	D ₂	-	-	0.581	-	acc. Param 28 LIN Spec. Rev. 2.1	P_11.3.14
Duty cycle 3	D ₃	0.417	_	-	-	acc. Param 29 LIN Spec. Rev. 2.1	P_11.3.15
Duty cycle 4	D_4	-	_	0.59	-	acc. Param 30 LIN Spec. Rev. 2.1	P_11.3.16
Propagation delay of receiver rising edge	$t_{\rm rx,pd,r}$	-	-	6	μs	acc. Param 31 LIN Spec. Rev. 2.1	P_11.3.17
Propagation delay of receiver falling edge	t _{rx,pd,f}	_	_	6	μs	acc. Param 31 LIN Spec. Rev. 2.1	P_11.3.18
Propagation delay symmetry of receiver	$t_{\rm rx,pd,sym}$	-2	_	2	μs	acc. Param 32 LIN Spec. Rev. 2.1	P_11.3.19
TX Dominant Time Out Time	$t_{\sf timeout}$	6	12	20	ms	min. data rate of 1600bit/s required	P_11.3.20
Bus Recessive Output Voltage	$V_{BUS,rec}$	0.8* <i>V</i> _B	_	-	V		P_11.3.21
Bus Dominant Output Voltage	$V_{BUS,do}$	-	_	1.4	V	$V_{\text{BATPA}} = 7 \text{ V}$ $R_{\text{pu}} = 500 \Omega$	P_11.3.22
Bus Dominant Output Voltage	$V_{BUS,do}$	-	_	2.2	V	$V_{\text{BATPA}} = 18 \text{ V}$ $R_{\text{pu}} = 500 \Omega$	P_11.3.23
LINIO Input Capacitance	C _{LINIO}	-	15	25	pF	1)	P_11.3.24
Overtemperature Switch Off Threshold	$T_{LIN,ot}$	150	-	200		1)	P_11.3.25
Overtemperature Hysteresis	$T_{\rm LIN,ot,hys}$	-	10	_		1)	P_11.3.26
LINRX Output Characterist							
Low Level Output Voltage - Low Output Current	$V_{\text{LINRX,L,l}}$	_	_	0.4	V	/ _{LINRX} = 100 μA	P_11.3.27
Low Level Output Voltage - High Output Current	$V_{LINRX,L,h}$	-	-	1.5	V	I _{VR_OUT} = 1 mA	P_11.3.28
High Level Output Voltage - Low Output Current	$V_{\text{LINRX,H,I}}$	VDDIO- 0.4	-	-	V	<i>I</i> _{LINRX} = -100 μA	P_11.3.29
High Level Output Voltage - High Output Current	$V_{LINRX,H,h}$	VDDIO- 1.5	-	-	V	I _{LINRX} = -1 mA	P_11.3.30
LINTX Input Characteristic	s		1	l			1
Low Level Input Voltage	$V_{\text{LINTX,l}}$	-0.3	-	0.9	V		P_11.3.31

Local Interconnect Network (LIN)

Electrical Characteristics: LIN (cont'd) Table 38

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	Values		Note or	Number
		Min.	Тур.	Max.		Test Condition	
High Level Input Voltage	$V_{\text{LINTX,h}}$	2	_	V_{VDDIO}	٧		P_11.3.32
Input Voltage Hysteresis	$V_{\rm IN,hys}$	50	200	-	mV		P_11.3.33
Pull Up Current	I _{LINTX,pu}	-100	_	-25	μΑ	V _{LINTX} = 0 V	P_11.3.34
Pull Up Current	I _{LINTX,pu}	-	-	-2.4	μΑ	<i>V</i> _{LINTX} = <i>VDDIO</i> -0.6 V	P_11.3.35

¹⁾ Not subject to production test, specified by design

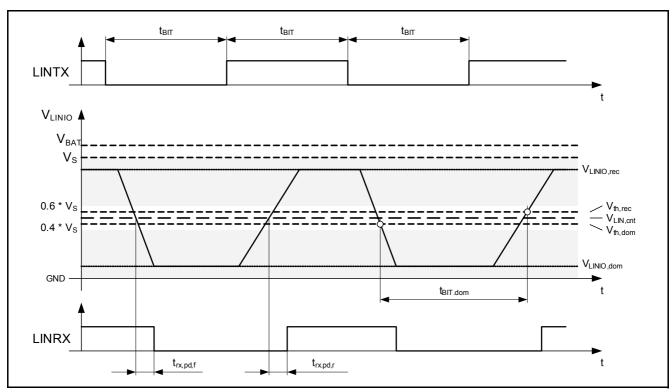


Figure 50 Timing Diagram of the LIN Interface

High Speed Controller Area Network (CAN) Transceiver

12 High Speed Controller Area Network (CAN) Transceiver

The Controller Area Network (CAN) is a serial bus system that connects microcontroller, sensors and actuators for real-time control applications.

The integrated CAN interface provides the physical layer of the CAN according to ISO 11898. It is suitable for high speed differential data transmission and reception. It works as an interface between the CAN protocol controller and the physical bus lines.

Remote wake-up function with a dominant signal at the bus lines is implemented.

12.1 Functional Description

The high speed CAN is a two wire differential network which allows data transmission rates up to 1Mbit/s. The input CANTX and the output CANRX are connected to the microcontroller of the ECU. As shown in Figure 51, the CAN has a receive unit and a output driver stage, allowing the transceiver to send data to the bus line and monitor data from the bus lines at the same time. It converts the serial data stream available at the transmit data input CANTX into a differential output signal at CANH and CANL. The receiver stage monitors CANH and CANL and converts the differential voltage to a serial data stream at CANRX.

The supply of the CAN transceiver is done out of *V5VCAN*, the wake receiver is supplied out of *V5VSTBY*. The pin *V5VCAN* must be connected directly to the 5 V supply pin *V5V*. In order to optimize EMC performance a ceramic capacitor **CV5VCAN** should be connected to the pins *V5VCAN* and *PGND* (pin **50**).

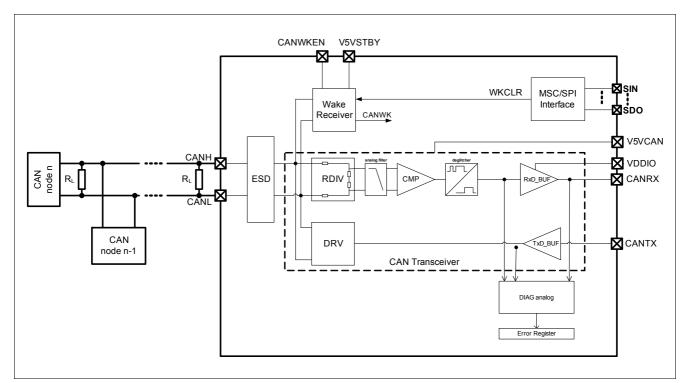


Figure 51 High speed CAN topology

12.2 Operation Modes

Four different operation modes are available. Regardless of the supply status the CAN interface does not disturb the communication on the bus line.

Engine Machine System IC

High Speed Controller Area Network (CAN) Transceiver

12.2.1 Normal Operation Mode

In normal operation mode the CAN transceiver sends the serial data stream available at the pin *CANTX* to the CAN bus while at the same time the data available at the CAN bus is monitored at the *CANRX* pin. In normal operation mode all functions are active:

- The driver output is active and drives data from the CANTX pin to the CAN bus.
- The receiver unit is active and provides the data from the CAN bus to the CANRX pin.
- The failure detection is active.

12.2.2 Receive Only Mode

In the receive only mode the CAN transceiver can still receive data from the bus, but the driver output stage is disabled and therefore no data can be sent to the CAN bus. All other functions are active:

- The driver output is disabled and data which is available at the *CANTX* pin will be blocked and not communicated to the CAN bus.
- The receiver unit is active and provides the data from the CAN bus to the CANRX pin.
- The failure detection is active.

12.2.3 Power-Down Mode

If the TLE8888-1QK is not supplied the bus communication is not allowed to be disturbed. Therefore the resistors of the receiver unit are switched off and the bus input pins CANH and CANL are high resistive.

12.2.4 Remote Wake-Up

The wake receiver is internally supplied from the standby supply pin *V5VSTBY*. The wake-up function is enabled by an external connection of the pin *CANWKEN* to the standby supply pin *V5VSTBY*. The wake function is disabled by an external connection to *AGND* and the current consumption of the wake-up circuit is reduced to leakage currents only.

In "ECU Sleep" state a dominant signal at CANH and CANL for longer than the CAN Wake-up filter time preceded by a recessive signal causes an internal wake-up and the internal wake signal CANWK is set. With a wake clear command (set bit WKCLR to "1" in command register Cmd0) CANWK is reset (status see bit CANWK in the status register OpStat0). The next wake-up is only detected with a transition from recessive to dominant. With this implementation of the wake-up procedure, bus line dominant clamping does not lead to permanent wake-up.

In Figure 52, Figure 53 and Figure 54 the behavior is shown.

High Speed Controller Area Network (CAN) Transceiver

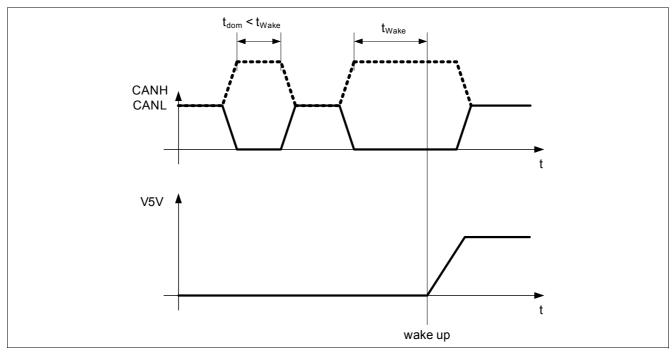
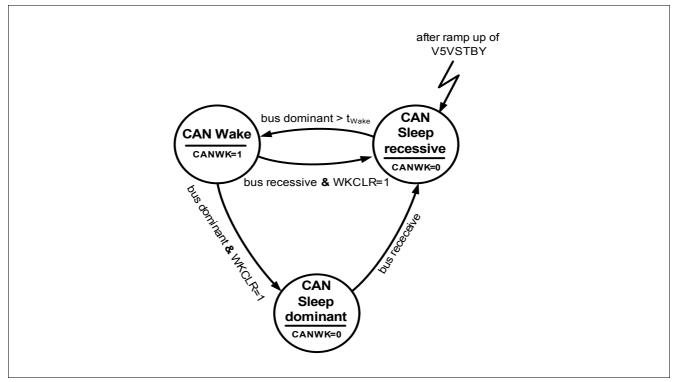



Figure 52 CAN Remote Wake-up

107

Figure 53 CAN Wake-up State machine

High Speed Controller Area Network (CAN) Transceiver

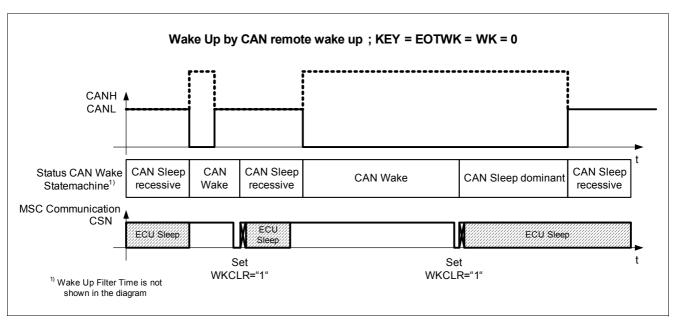


Figure 54 State Transitions at CAN Remote Wake-up

12.3 Diagnostic Functions

The CAN transceiver has an implemented diagnostic unit. Bus failures and local failures can be detected.

12.3.1 CAN Bus Failure Detection

In normal operation the CAN transceiver can detect following bus failure:

Bus line dominant clamping (bit CANBDC in diagnosis register ComDiag)

Following bus failures can't be detected (outputs are protected):

- CANH shorted to GND
- CANL shorted to GND
- CANH shorted to low voltage supply
- CANL shorted to low voltage supply
- CANH shorted to $V_{\rm Bat}$
- CANL shorted to V_{Bat}
- CANH open
- CANL open
- CANH shorted to CANL

12.3.2 Local Failure Detection

In normal operation the CAN transceiver can detect following local failures:

- CAN TX dominant time-out (bit CANTXTO in diagnosis register ComDiag)
- Overtemperature (bit CANOT in diagnosis register ComDiag)

In case of failure detection only the corresponding diagnosis register bits are changed. No change in the configuration occurs.

Engine Machine System IC

High Speed Controller Area Network (CAN) Transceiver

12.4 Electrical Characteristics CAN Transceiver

Table 39 Electrical Characteristics: CAN Transceiver

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
CANH voltage, recessive state	V _{CANH,rec}	2	2.5	3	V	no load	P_12.4.1
CANL voltage, recessive state	$V_{CANL,rec}$	2	2.5	3	V	no load	P_12.4.2
CANH voltage, dominant state	$V_{CANH,dom}$	2.75	3.5	4.5	V		P_12.4.3
CANL voltage, dominant state	$V_{CANL,dom}$	0.5	1.5	2.25	V		P_12.4.4
Differential output bus voltage, dominant state	$V_{\rm diff,out,dom}$	1.5	2	3	V	4.75 V < V _{V5VCAN} < 5.25 V	P_12.4.5
Common mode bus voltage, dominant and recessive state	V _{CM}	-12	-	12	V	4.75 V < V _{V5VCAN} < 5.25 V	P_12.4.6
External Termination resistor	R_{L}	100	120	130	Ω		P_12.4.7
Differential input voltage, recessive state	$V_{\rm diff,n,rec}$	-1	_	0.5	V		P_12.4.8
Differential input voltage, dominant state	$V_{\rm diff,in,dom}$	0.9	-	5	V		P_12.4.9
Differential receiver hysteresis	V _{diff,hys}	20	100	-	mV		P_12.4.10
Common mode input resistance	R _{in}	5	-	50	kΩ		P_12.4.11
Bit time	$t_{\scriptscriptstyle B}$	1	_	_	μs		P_12.4.12
Propagation delay time CANTX to CANRX recessive to dominant	$t_{ m pd,rec,dom}$	_	-	255	ns		P_12.4.13
Propagation delay time CANTX to CANRX dominant to recessive	$t_{ m pd,dom,rec}$	-	-	255	ns		P_12.4.14
Propagation delay time CANTX to CANH/CANL recessive to dominant	t _{pd,out,dom}	_	-	140	ns	$T_{\rm j} = 25^{\circ} {\rm C;}^{1)}$ $C_{\rm CANH/CANL} < 10 \ {\rm pF}$	P_12.4.15
Propagation delay time CANTX to CANH/CANL dominant to recessive	t _{pd,out,rec}	_	-	140	ns	$T_{\rm j} = 25^{\circ} {\rm C}^{1)};$ $C_{\rm CANH/CANL} < 10 \rm pF$	P_12.4.16

Engine Machine System IC

High Speed Controller Area Network (CAN) Transceiver

Table 39 Electrical Characteristics: CAN Transceiver (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Bus line dominant clamping detection time	$t_{ m bus,cl,dom}$	4	-	7	ms		P_12.4.17
CANTX dominant detection time	t _{CANTX,cl,dom}	4	-	7	ms		P_12.4.18
V5VCAN buffer capacitance ¹⁾	C _{V5VCAN}		2		μF	recommended for optimized EMC performance	P_12.4.19
Overtemperature Switch Off Threshold	$T_{CAN,ot}$	150	_	200	°C	1)	P_12.4.20
Overtemperature Hysteresis	$T_{\rm CAN,ot,hys}$	_	10	_	°C	1)	P_12.4.21
CANRX Output Characteris							
Low Level Output Voltage - Low Output Current	$V_{\text{CANRX,L,l}}$	_	_	0.4	V	/ _{CANRX} = 100 μA	P_12.4.22
Low Level Output Voltage - High Output Current	$V_{CANRX,L,h}$	-	-	1.5	V	I _{CANRX} = 1 mA	P_12.4.23
High Level Output Voltage - Low Output Current	$V_{\text{CANRX,H,I}}$	VDDIO- 0.4	-	_	V	<i>I</i> _{CANRX} = -100 μA	P_12.4.24
High Level Output Voltage - High Output Current	$V_{CANRX,H,h}$	VDDIO- 1.5	-	_	V	I _{CANRX} = -1 mA	P_12.4.25
CANTX Input Characteristi	cs		11.	- 1	"		1
Low level input voltage	$V_{\text{CANTX,I}}$	-0.3	_	1	V		P_12.4.26
High level input voltage	$V_{\text{CANTX,h}}$	2	_	V_{V5VCAN}	V		P_12.4.27
Input voltage hysteresis	$V_{\text{CANTX,hys}}$	50	200	_	mV		P_12.4.28
Pull up current	I _{CANTX,pu}	-100	_	-25	μΑ	V _{CANTX} = 0 V	P_12.4.29
Wake Receiver							
Differential input voltage, recessive state, low power mode	$V_{ m diff,rec,lp}$	-1	_	0.4	V	4.75V < V _{V5VSTBY} < 5.25 V	P_12.4.30
Differential input voltage, dominant state, low power mode	$V_{\rm diff,dom,lp}$	1.15	-	5	V	4.75 V < V _{V5VSTBY} < 5.25 V	P_12.4.31
Common mode bus voltage, low power mode	$V_{CM,lp}$	-12	-	12	V	4.75 V < V _{V5VSTBY} < 5.25 V	P_12.4.32
CAN Wake-up filter time	t _{wake,CAN}	0.75	-	5	μs	4.75 V < V _{V5VSTBY} < 5.25 V	P_12.4.33
Additional current consumption in low power mode at pin <i>BATSTBY</i>	I _{CANWK}	-	_	35	μА	$0 V \le V_{CANH} \le 5 V,$ $0 V \le V_{CANL} \le 5 V$	P_12.4.34

110

Engine Machine System IC

High Speed Controller Area Network (CAN) Transceiver

1) Not subject to production test, specified by design

Microsecond Channel MSC

13 Microsecond Channel MSC

The bidirectional microsecond channel (MSC) is a serial interface which is especially optimized to connect peripheral devices via serial link to microcontroller. The serial communication link is built up by a fast synchronous downstream channel from microcontroller to the device and an asynchronous upstream channel (referenced to downstream clock). The downstream interface can be "low voltage differential" (FCLN, FCLP, SIN, SIP, CSN) or "single ended" (FCLP, SIP, CSN).

Via MSC, the microcontroller controls the outputs and logic of the device including the diagnosis and monitoring module. Read data is requested by microcontroller via downstream communication and returned by the device via MSC upstream channel.

Multiple "power devices" with MSC for downstream operation are possible. The device is selected by *CSN*. The MSC logic is internally supplied and referenced to *AGND*.

The behavior of the MSC interface during reset is described in **Table 5** and **Table 6** in **Chapter 5.2**.

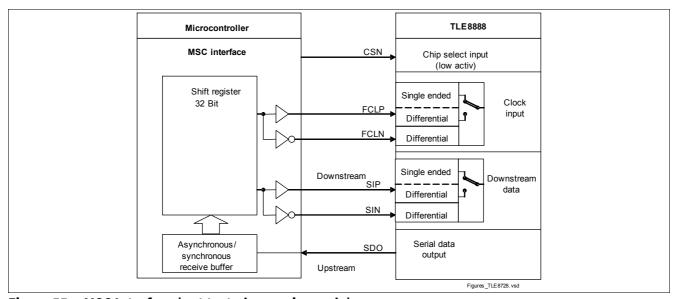


Figure 55 MSC Interface (not tested, overview only)

13.1 Downstream Communication

Downstream frames are synchronous serial frames with clock and data line.

The physical interface for downstream communication can be "low voltage differential" or "single ended" type. Both interface types are using individual pins (*FCLN*, *FCLP*, *SIN* and *SIP*) and common pins (*CSN* and *SDO*). For single ended interface *FCLN* and *SIN* have to be connected to *VDDIO*. For low voltage differential interface both input voltage levels must be within the defined input voltage range.

The frames and the behavior of the communication are the same in differential and single ended mode. Differential inputs for downstream data are *SIP* and *SIN*; the differential input signal *SIP* – *SIN* is the same logical signal as *SIP* alone in single ended mode and SI will be used in the description for both types of communication. The clock pins are *FCLP* and *FCLN*, the differential clock *FCLP* – *FCLN* is the same logical signal as *FCLP* in single ended mode and CLK will be used in the description for both types of communication.

There is one input *CSN* for chip select, and one output *SDO* for upstream data. The device is always the slave in this communication link.

The *CSN* signal enables receiver circuits automatically during a downstream frame transmission.

Two types of downstream frames are defined:

Engine Machine System IC

Microsecond Channel MSC

- Command frames (selection bit = "1")
- Data frames (selection bit = "0")

The device MSC uses non inverting polarity for SI and CLK: SI changes its state with the rising edge of CLK and is sampled with the falling edge; a logic '1' is a 'high level' on SI, and a logic '0' is a 'low level' on SI. Data at SI is latched by the device on the falling edge of CLK.

The *CSN* input is active low during the active phases of command or data frames. An active enable signal validates the SI input signal. Outside the active phase (*CSN* line is at high level) data at SI is ignored.

It is possible to drive multiple "power devices" with shared CLK and SI lines and individual CSN signal.

Command frames and data frames may be sent in any sequence (with a passive phase of at least 2 CLK-cycles after each frame).

Table 40 Execution of commands

Event on MSC downstream	upstream busy	upstream idle
valid read command frame	ignored	executed
valid write command frame	executed ¹⁾	executed
valid data frame	accepted	accepted
invalid command	ignored	ignored
invalid data frame	ignored	ignored

¹⁾ only after tprep, sr or tprep, mr, see also Chapter 13.2

The serial clock CLK must be active (toggling) during upstream communication even when no command frame or data frame is transmitted.

The clock period of CLK is defined as t_{FCL} , maximum downstream clock rate is f_{FCLmax} .

The active phase of a downstream frame starts with the falling edge of the signal on *CSN* and ends with the rising edge. *CSN* changes its state with the rising edge of clock CLK.

infineon

Microsecond Channel MSC

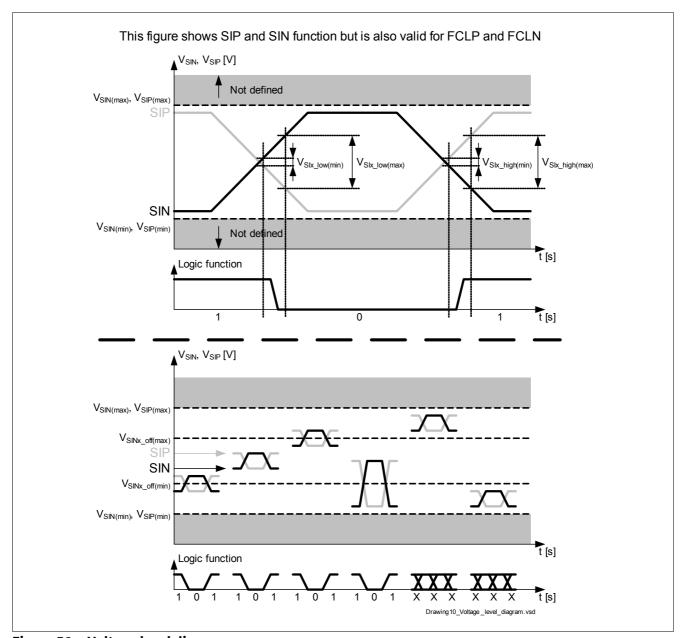


Figure 56 Voltage level diagram

13.1.1 Downstream Supervisory Functions

A command- or data frame is interpreted as valid, if it has the correct number of CLK pulses (a frame has a length of 17 clock pulses). Clock pulses are counted at the falling edge of the signal.

There is no parity check.

If TLE8888-1QK receives no valid data frame for $t > t_{MSC_mon}$, the device switches off the output stages (all output stage control bits are set to "0"), the bits **O1E** to **O24E** in the configuration registers **OEConfig0** to **OEConfig3** are set to "0" and the MSC time out failure bit in the register **ComDiag** is set to "1". The MSC time out failure bit is reset by a readout of the register **ComDiag** and all output stages remain off. For switching on the stages the bits **O1E** to **O24E** in the configuration registers **OEConfig0** to **OEConfig3** must be set to "1" and the control bits must be set. Outputs which are configured to be driven directly with the direct drive inputs are switched according the input level of the pins *IN1* to *IN12* after set of the bits **O1E** to **O24E**.

Engine Machine System IC

infineon

Microsecond Channel MSC

13.1.2 Command Frame

A command frame always starts with a high level bit (command selection bit). The number of command bits of the active phase of a command frame is fixed to 16. A command is executed only if the number of transmitted bits of an active command frame is equal to 17.

The length of the command frame's passive phase $t_{\rm CPP}$ must be a minimum of 2 * $t_{\rm FCL}$ (2 clock pulses).

Alternatively the passive phase can consist in $t_{CPP} = t_{FCL}$ (1 clock pulse) followed by a frame of wrong length (4...8 bits, with or without *CSN* active low) and a second $t_{CPP} = t_{FCL}$ (1 clock pulse).

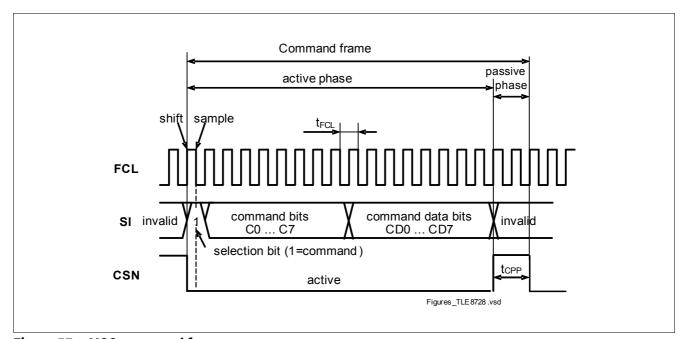


Figure 57 MSC command frame

Content of a command frame (LSB transmitted first)

Table 41 Command frame

Bit #	Description
0 (first bit)	= '1': command selection bit
18	Command [C0C7]
916	Data for the command [CD0CD7]

The least significant (LSB) bit of a command is transmitted first

13.1.3 Data Frame

A data frame always starts with a low level bit (data selection bit). The number of the data bits of the active phase of a data frame is fixed to 28 bit.

A data frame is accepted if the actual length is the expected length 29.

MSC Monitoring t_{MSC_mon} is re triggered by any data frame with correct length (no other error detection mechanism is implemented).

The length of the data frame's passive phase $t_{\rm DPP}$ must be a minimum of 2 * $t_{\rm FCL}$ (2 clock pulses).

Microsecond Channel MSC

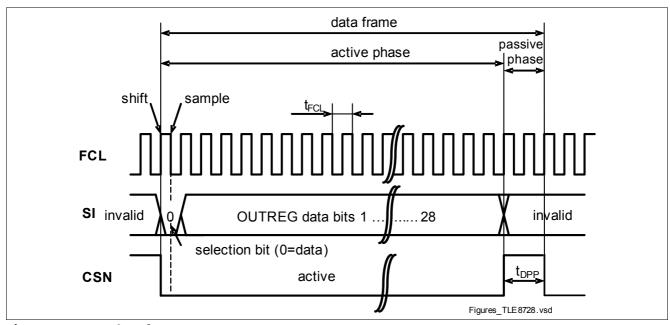


Figure 58 MSC data frame

Table 42 Data frame

OUTREG Bit	Description
0 (first bit)	= '0': data selection bit
1	O140N ¹⁾
2	O110N ¹⁾
3	O24ON ¹⁾
4	O130N ¹⁾
5	IGN1ON ¹⁾
6	IGN2ON ¹⁾
7	O5ON ¹⁾
8	O10N ¹⁾
9	O15ON ¹⁾
10	IGN3ON ¹⁾
11	O2ON ¹⁾
12	O220N ¹⁾
13	O9ON ¹⁾
14	O23ON ¹⁾
15	O19ON ¹⁾
16	O16ON ¹⁾
17	O18ON ¹⁾
18	O20ON ¹⁾
19	O8ON ¹⁾
20	O40N ¹⁾
21	O170N ¹⁾

Engine Machine System IC

Microsecond Channel MSC

Table 42 Data frame (cont'd)

OUTREG Bit	Description
22	O10ON ¹⁾
23	O21ON ¹⁾
24	O7ON ¹⁾
25	O6ON ¹⁾
26	O3ON ¹⁾
27	IGN4ON ¹⁾
28	O12ON ¹⁾

¹⁾ Definition see Chapter 14.1.5.

There is no parity bit in the data frame.

The data is stored in the control register **Cont0** to **Cont3**.

13.2 Upstream Communication

The serial data output *SDO* is the synchronous serial data signal of the upstream channel and is always single ended. The polarity is 'non inverting polarity'– i.e. a low level bit at *SDO* is stored in the microcontroller as a logic '0', and a high level bit at *SDO* is stored in the microcontroller as a logic '1'. The frequency for *SDO* is derived from CLK by an internal divider and can be configured via MSC.

The output of *SDO* can be configured as an open drain or an push pull output. The set is done with the bit **MSCO** in the configuration register **ComConfigO**. The full range of up stream frequency divider settings in the configuration register **ComConfigO** bits **MSCF** is valid for the push pull output configuration.

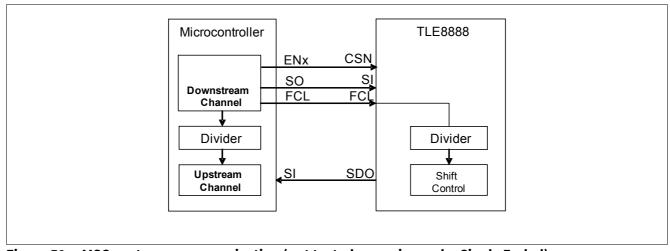


Figure 59 MSC upstream communication (not tested, overview only, Single Ended)

The data frame could be defined with 12 and 16 bit according the setting of **MSCUF** in the configuration register **ComConfig0**. In **Figure 60** the formats are shown. The address bits A2 and A3 are used for the selection of the upstream data register in the microcontroller.

Definition of Address Bits A0 to A3 in 16 Bit Upstream Mode:

• Fixed A0 to A3 Value:

The value of the address bits A0 to A3 is fixed according the definition of **MSCA** in the configuration register **ComConfig1** at the rising edge of *CSN* of the read command. For read out with multiple read out commands the value of A0 to A3 does not change.

Engine Machine System IC

Microsecond Channel MSC

Multiple Read Command Mode:
 This mode is especially for the multiple read commands and the configuration of the microcontroller in UD3 interrupt mode. A2 and A3 are used in this mode to define the upstream data register (UD0 -UD3) and a number of n times 4 of upstream frames. A0 is defined as read overflow and A1 is defined as read busy.

Table 43 Definition of A0 in Multiple Read Command Mode for 16 Bit Upstream Format

A0	Description
0	No read command is ignored
1	A read command was sent during upstream communication. This read command was ignored and this is signalized with A0 = 1

Table 44 Definition of A1 in Multiple Read Command Mode for 16 Bit Upstream Format

A1	Description
0	last upstream frame; after finish of this frame next transmitted read command will be executed
1	Upstream activities required by an multiple read commands are ongoing

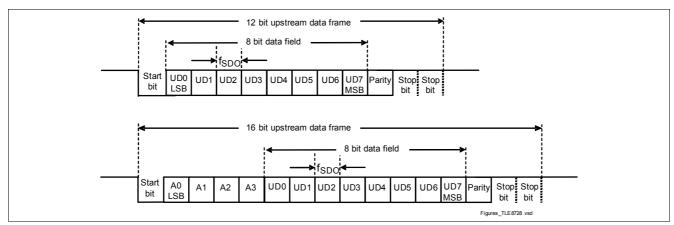


Figure 60 MSC upstream frame

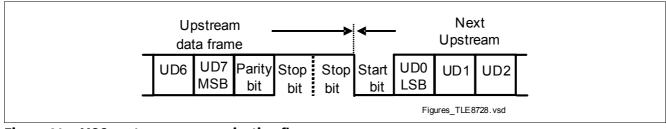


Figure 61 MSC upstream communication flow

Table 45 12 Bit Upstream Frame

Bit	description
0	start bit, always '0'
1-8	upstream data bits UD07

Engine Machine System IC

Microsecond Channel MSC

Table 45 12 Bit Upstream Frame (cont'd)

Bit	description
9	parity bit (The parity bit is set in order to achieve an even number of '1' in Bits UD07+Parity)
10, 11	stop bits, always '1'

Table 46 16 Bit Upstream Frame

Bit	description
0	start bit, always '0'
1-4	address bits A03
5-12	upstream data bits UD07
9	parity bit (The parity bit is set in order to achieve an even number of '1' in Bits UD07+Parity)
10, 11	stop bits, always '1'

Transmission of the registers via upstream starts within $t_{\rm MSC_RSP}$ after read command has been received. During an ongoing upstream communication the device will ignore further read commands until the upstream data transfer is finished. A new read command is accepted if the rising edge CSN arrives after the last stop bit has been sent. Data frames are executed independently of ongoing read requests. Write commands are ignored during MSC upstream preparation time for single read command tprep,sr or MSC upstream preparation time for multi read command tprep,mr (see Figure 62). After that time the write commands are executed also during ongoing upstream communication. If the write command is changing the register which is in transmission, the old register content will be sent. With setting the command bit MSCUPS in the command register Cmd0 the running upstream transmission is stopped and all remaining read request of a multiple read command are cleared.

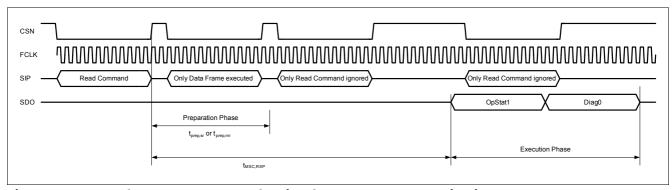


Figure 62 Example MSC upstream and active downstream communication

infineon

Microsecond Channel MSC

13.3 Timing Characteristics

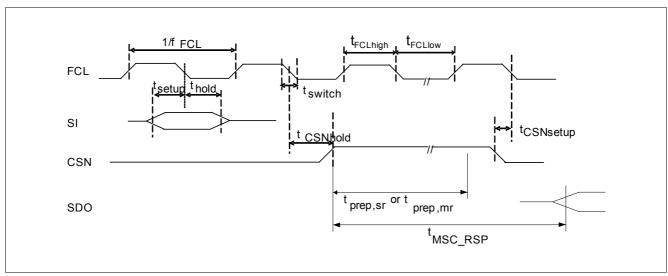


Figure 63 MSC timing

The downstream clock within the device must be active during an upstream data frame transmission (i.e. each answer to a READ command).

The upstream response time t_{MSC_RSP} describes the time between end of read command (rising edge of *CSN*) to beginning of up-stream communication (falling edge of start bit).

13.4 Electrical Characteristics

Table 47 Electrical Characteristics: Microsecond Channel

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Pin CSN				<u> </u>			
Input comparator low level	$V_{\rm CSN_low}$	-0.3	_	0.8			P_13.4.1
Input comparator high level	V_{CSN_high}	1.6	_	5.5	V	_	P_13.4.2
Input comparator hysteresis	$V_{\rm CSN_hys}$	0.1	_	0.5	V	_	P_13.4.3
Input capacitance ¹⁾	C _{CSN}			12	pF	_	P_13.4.4
Input current Internal pull up current source to VDDIO	I _{CSN}	-25	-	-3	μΑ	0 V < V _{CSN} < 2 V	P_13.4.5
Pins FCLP, FCLN MSC Differe	ntial Mode	1	1	1		1	1
Input voltage range	$V_{\text{FCLP}}, V_{\text{FCLN}}$	0.8	-	1.6	V	_	P_13.4.6

Engine Machine System IC

Microsecond Channel MSC

Table 47 Electrical Characteristics: Microsecond Channel (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Differential input high detection level, $V_{\text{FCLx}_\text{high}} = V_{\text{FCLP}} - V_{\text{FCLN}}$	$V_{\sf FCLx_high}$	_	-	125	mV	-	P_13.4.7	
Differential input low detection level, $V_{\text{FCLx_low}} = V_{\text{FCLP}} - V_{\text{FCLN}}$	V _{FCLx_low}	-125	-	-	mV	-	P_13.4.8	
Differential input hysteresis	$V_{\sf FCLx,hys}$	50		200	mV		P_13.4.53	
Input voltage offset, $V_{\text{FCLx}_\text{off}} = 0.5 * (V_{\text{FCLP}} + V_{\text{FCLN}})$	V _{FCLx_off}	1.05	_	1.4	V	-	P_13.4.9	
Differential capacitance between; FCLP and FCLN	C _{FCLx}	-	-	8	pF	1)	P_13.4.10	
Input pull down current	I _{FCLN}	3	-	25	μΑ	$1 V < V_{FCLx} < V_{VDDIO}$	P_13.4.12	
Pins FCLP Single Ended Mode						_		
Input comparator low level	V_{FLCP_low}	-0.3	_	0.8			P_13.4.13	
Input comparator high level	V_{FLCP_high}	1.6	_	5.5	V	_	P_13.4.14	
Input comparator hysteresis	V_{FLCP_hys}	0.1	_	0.5	V	_	P_13.4.15	
Input capacitance	$C_{ t FLCP}$			12	pF	1)	P_13.4.16	
Input pull down current	I _{FLCP}	3	-	25	μΑ	$1 \text{ V} < V_{\text{FCLP}} < V_{\text{VDDIO}}$	P_13.4.17	
Clock Frequency			·					
FCLP, FCLN frequency	f _{FCLx}	_	_	23	MHz		P_13.4.18	
FCL frequency single ended mode	f _{FCL}	-	-	12.5	MHz		P_13.4.19	
Pins SIP, SIN MSC Differential	Mode		,	,		-	1	
Input voltage range	$V_{\rm SIP}, V_{\rm SIN}$	0.8	_	1.6	V	_	P_13.4.20	
Differential input high detection level, $V_{SIx_high} = V_{SIP} - V_{NSI}$	V _{SIx_high}	_	-	125	mV	-	P_13.4.21	
Differential input low detection level, $V_{\text{SIx_low}} = V_{\text{SIP}} - V_{\text{SIN}}$	V _{SIx_low}	-125	_	_	mV	-	P_13.4.22	
Differential input hysteresis	$V_{\rm SIx,hys}$	50		200	mV		P_13.4.54	
Input voltage offset, $V_{\text{SIx_Off}} = 0.5 * (V_{\text{SIP}} + V_{\text{SIN}})$	V _{SIx_Off}	1.05	-	1.4	V	-	P_13.4.23	
Differential capacitance between SIP and SIN	C _{SIx}	-	-	8	pF	1)	P_13.4.24	

Engine Machine System IC

Microsecond Channel MSC

Table 47 Electrical Characteristics: Microsecond Channel (cont'd)

 $V_{\rm S}$ = 13.5 V, $V_{\rm VSV}$ = 5 V, $T_{\rm j}$ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number	
		Min.	Тур. Мах			Test Condition		
Input pull down current	I _{SIN}	3	-	25	μΑ	$1 \text{ V} < V_{\text{SIx}} < V_{\text{VDDIO}}$	P_13.4.26	
Pin SIP Single Ended Mode								
Input comparator low level	$V_{\sf SIP_low}$	-0.3	-	0.8			P_13.4.27	
Input comparator high level	V_{SIP_high}	1.6	-	5.5	V	-	P_13.4.28	
Input comparator hysteresis	$V_{\sf SIP_hys}$	0.1	_	0.5	V	_	P_13.4.29	
Input capacitance	C _{SIP}			12	pF	1)	P_13.4.30	
Input pull down current	I _{SIP}	3	_	25	μΑ	$1 \text{ V} < V_{\text{SIP}} < V_{\text{VDDIO}}$	P_13.4.31	
Pin SDO open drain set up						,		
SDO output low level	$V_{\text{SDO_low}}$	_	_	0.8	V	I_{SDO} < 4 mA;	P_13.4.32	
	V_{SDO_low}	_	-	0.4	V	I_{SDO} < 1 mA	P_13.4.33	
SDO passive output high voltage	$V_{SDO_high,p}$	V _{DDIO} – 1.5	V_{DDIO}	_	V	no load	P_13.4.34	
Output current capability	I _{SDO_max}	15 ²⁾	-	-	mA	$V_{SDO} = 5 \text{ V} \text{ and}$ $V_{VDDIO} = 5 \text{ V}$	P_13.4.35	
SDO pull-up current source	I _{SDO_high}	-50	-	-10	μΑ	$0 \text{ V} < V_{\text{SDO}} < 2 \text{ V},$ SDO in tristate, pull up to $VDDIO$	P_13.4.36	
SDO (high level = inactive) pin capacity	C _{SDO}	-	-	10	pF	measured with bias voltage of 1 V ¹⁾	P_13.4.37	
SDO frequency; maximum upstream frequency with external pull-up	f _{SDO}	500	-	-	kHz	$C_L = 15 \text{ pF}^{1)}$	P_13.4.38	
Pin SDO push pull set up			"	J.	"		-1	
SDO output low level	V _{SDO_low;}	_	-	0.8	V	I _{SDO} < 4 mA;	P_13.4.39	
	$V_{ extsf{SDO_low}}$	_	-	0.4	V	<i>I</i> _{SDO} < 1 mA	P_13.4.40	
SDO active output high voltage	$V_{SDO_high,a}$	V _{DDIO} - 0.4	-	-	V	<i>I</i> _{SDO} = 100 μA	P_13.4.41	
Timing Characteristics ³⁾	+					1	+	
Data hold time	t_{hold}	10	-	_	ns	-	P_13.4.42	
Data Setup time	t _{setup}	10	-	_	ns	-	P_13.4.43	
Switching time	t _{switch}	_	_	3	ns	1)	P_13.4.44	
FCL low time	t _{FCLlow}	13	_	_	ns	_	P_13.4.45	
FCL high time	t _{FCLhigh}	13	_	_	ns	_	P_13.4.46	

Engine Machine System IC

Microsecond Channel MSC

Table 47 Electrical Characteristics: Microsecond Channel (cont'd)

 V_S = 13.5 V, V_{VSV} = 5 V, T_j = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Values		Unit	Note or	Number			
		Min. Typ.		Max.		Test Condition		
CSN setup time	t _{CSNsetup}	10	-	-	ns	_	P_13.4.47	
CSN hold time	t _{CSNhold}	10	-	-	ns	_	P_13.4.48	
MSC data time-out monitoring	t _{MSC_mon}	60	-	135	μs	_	P_13.4.49	
MSC upstream preparation time for single read command		-	_	0.9 + 4* <i>t</i> _{FCL}	μs		P_13.4.11	
MSC upstream preparation time for multi read command	$t_{prep,mr}$	-	_	1.8 + 4* <i>t</i> _{FCL}	μs		P_13.4.25	
MSC upstream response time; up-stream divider independent	t _{MSC_RSP}	-	_	100	μs		P_13.4.50	
Required idle time after command	t _{CPP}	2/f _{FCL} (2 clock pulses)	-	-	S	-	P_13.4.51	
Required idle time after data frame	t _{DPP}	2/f _{FCL} (2 clock pulses)	-	-	S	-	P_13.4.52	

¹⁾ not subject to production test, specified by design

²⁾ Application must ensure that current into this pin does not exceed this value.

³⁾ See Figure 57, Figure 58 and Figure 63

Engine Machine System IC

Register and Commands

14 Register and Commands

In **Chapter 14.1** to **Chapter 14.1.5** detailed descriptions and definitions of the registers and commands are shown. General definition for all registers and commands are described below.

Offset Address

The offset address used for the register address is mapped to the command bits from C1 to C7. In **Figure 64** an example is shown. Maximum allowed address is 7F_H.

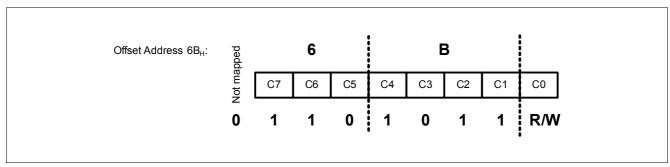


Figure 64 Mapping Offset Address to the Command Bits

Read Access

A read access to a register is done by sending a "0" for the bit C0 of the command frame of the MSC or the SPI frame. All register bits are updated constantly. With the positive edge of *CSN* of a valid read command the internal register information is loaded into the output shift register. The communication via *SDO* to the microcontroller is according the serial interface mode MSC or SPI. Therefore the read information is related to the time of the positive edge of *CSN*.

Write Access

A write access to a register is done by sending a "1" for the bit C0 of the command frame of the MSC or the SPI frame or with the data frame of the MSC communication. With the positive edge of *CSN* of a valid write access for read/write register the bits are set and for command registers the defined function is executed (e.g. multiple read command).

Command Register

These registers are write only registers. Following functions are executed:

- Main relay switching with bits MRON and MRSE in command register Cmd0: In all states where a serial communication with the TLE8888-1QK is allowed the main relay can be switched. This is done by enabling the command with a "1" for MRSE and a "0" for switch off or a "1" for switch on for MRON. Switch off of the main relay leads for an application with supply of the ECU over the main relay path to a power-down.
- VRS diagnosis start with bit VDIAGS in command register Cmd0: With a "1" the VRS diagnosis is started. A
 "0" leads to no action.
- Stop of a MSC upstream communication with bit MSCUPS in command register Cmd0: With a "1" the upstream communication is stopped immediately. This leads during an upstream to invalid communication. This command is implemented to stop especially multiple read communication. A "0" leads to no action. For SPI mode this command has no effect.
- Start of the engine off timer with bit **EOTS** in command register **Cmd0**: With a "1" the engine off timer is started if the configuration is set accordingly. A "0" leads to no action.

Engine Machine System IC

Register and Commands

- Restart of the delayed off timer with bit **RDOT** in command register **Cmd0**: With a "1" the delayed off timer is reset and started again. A "0" leads to no action.
- Wake-up signal clear with bit WKCLR in command register Cmd0: With a "1" all internal wake-up signals (WKINT, CANWK, EOTWK) are reset. A "0" leads to no action.
- Response write command FWDRespCmd and FWDRespSyncCmd: With the write access to these registers
 the 8 bit response byte is sent to the TLE8888-1QK. The interpretation of the sent response byte is done
 according the description in Chapter 6.
- Multiple read command MSCReadWd0 to MSCReadWd1: Multiple read commands are only allowed for MSC setup of the serial interface. The number of read register is defined by a "1" in the data bits of the command. The chosen register is sent in the order MSB down to LSB (see Figure 65).
 In SPI setup a multiple read command is an invalid communication.
 During a multi read upstream read commands are ignored, write commands are allowed. To stop an upstream operation use the command MSCUPS.
- Software reset command CmdSR: With the execution of this command the software reset of the TLE8888-1QK is performed according Table 6 in Chapter 5.
- Central output enable command CmdOE: With the execution of this command the central output enable bit is set or reset. For the description of the functionality see Chapter 9.2. The status of the central enable bit is available in register OpStat1.
- Lock command **CmdLOCK**: With the execution of this command the lock bit is set or reset. This bit is used to lock some configuration registers (see **Table 49**) to avoid a change of these register e.g. during operation. The status of the lock bit is available in register **OpStat1**.

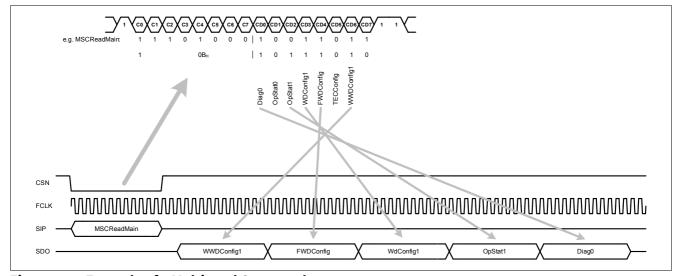


Figure 65 Example of a Multi read Command

Diagnosis Register

The diagnosis register bits are set according the asynchronous detection circuits. The reset of the diagnosis bits is done with the read out of the registers if the failure condition is not detected anymore.

Central Overtemperature Bit COT in Diagnosis Register Diag0

The central overtemperature bit is an OR combination of all overtemperature detection signals which leads to active diagnosis bits. With at least one active overtemperature diagnosis the central overtemperature bit is "1", with no active overtemperature diagnosis this bit is "0". All other diagnosis signals doesn't change the status of the central overtemperature bit.

Engine Machine System IC

Register and Commands

Central Failure Bit CF in Diagnosis Register Diag0

The central failure bit is an OR combination of diagnosis bits (see Table 48). If one or more of these diagnosis bits are active then the central failure bit is "1". If all are inactive the central failure bit is "0". The overtemperature diagnosis doesn't change the status of the central failure bit.

Overview of Diagnosis Registers an Bits affecting the Central Failure Bit Table 48

Register	Offset	Bit(s)	Note
ComDiag	024 _H	MSCTO, COMFE, CANBDC, CANTXTO	
OutDiag0 to OutDiag4	026 _H to 029 _H	all bits	central failure bit not set if only overtemperature is detected
PPOVDiag	02A _H	all bits	
BriDiag0	02B _H	all bits	
BriDiag1	02C _H	only overcurrent bits	
IgnDiag	02D _H	all bits	
WdDiag	02E _H	WWDTO, WWDSCE, FWDREL, FWDREA	

Engine Off Timer Register EOTStat0 to EOTStat2, EOTConfig0 and EOTConfig1

These register are located in the standby block and are supplied by the standby supply. They are not reset with the power on reset of the digital block.

Registers affected by the Lock Bit

Table 49 Overview of Register affected by the Lock Bit

Register	Offset
OutConfig0	040 _H
OutConfig1	041 _H
OutConfig2	042 _H
OutConfig3	043 _H
OutConfig4	044 _H
OutConfig5	045 _H
BriConfig0	046 _H
BriConfig1	047 _H
IGNConfig	048 _H
VRSConfig1	04A _H
VRSConfig2	04B _H
OpConfig0	04E _H
ComConfig0	04F _H
ComConfig1	050 _H

Engine Machine System IC

Register and Commands

 Table 49
 Overview of Register affected by the Lock Bit (cont'd)

Register	Offset
EOTConfig0	051 _H
EOTConfig1	052 _H
InConfig0	053 _H
InConfig1	054 _H
InConfig2	055 _H
InConfig3	056 _H
DDConfig0	057 _H
DDConfig1	058 _H
DDConfig2	059 _H
DDConfig3	05A _H
WDConfig1	064 _H

14.1 Register Table

Table 50 Register Overview

Register Short Name	Register Long Name	Offset Address	Reset Value
Cmd0		001 _H	00 _H
MSCReadWd0		003 _H	00 _H
MSCReadDiag0EOT		004 _H	00 _H
MSCReadDiag1		005 _H	00 _H
MSCReadCont		006 _H	00 _H
MSCReadConfig0		007 _H	00 _H
MSCReadConfig1		008 _H	00 _H
MSCReadConfig2		009 _H	00 _H
MSCReadOEConfig		00A _H	00 _H
MSCReadMain		00B _H	00 _H
MSCReadWd1		00C _H	00 _H
WWDServiceCmd		015 _H	00 _H
FWDRespCmd		016 _H	00 _H
FWDRespSyncCmd		017 _H	00 _H
NDHBTPSyncCmd		018 _H	00 _H
CmdSR		01A _H	00 _H
CmdOE		01C _H	00 _H
CmdLOCK		01E _H	00 _H
Diag0		020 _H	00 _H
Diag1		021 _H	00 _H
/RSDiag0		022 _H	00 _H
/RSDiag1		023 _H	00 _H
ComDiag		024 _H	00 _H
OutDiag0		025 _H	00 _H
OutDiag1		026 _H	00 _H
OutDiag2		027 _H	00 _H
OutDiag3		028 _H	00 _H
OutDiag4		029 _H	00 _H
PPOVDiag		02A _H	00 _H
BriDiag0		02B _H	00 _H
BriDiag1		02C _H	00 _H
gnDiag		02D _H	00 _H
WdDiag		02E _H	00 _H
EOTStat0		031 _H	00 _H

128

TLE8888-1QK Engine Machine System IC

Table 50 Register Overview (cont'd)

Register Short Name Register Long Name	Offset Address	Reset Value
EOTStat1	032 _H	00 _H
EOTStat2	033 _H	00 _H
OpStat0	034 _H	00 _H
OpStat1	035 _H	00 _H
WWDStat	036 _H	30 _H
FWDStat0	037 _H	30 _H
FWDStat1	038 _H	30 _H
TECStat	039 _H	30 _H
WdStat0	03A _H	00 _H
WdStat1	03B _H	00 _H
WDHBT0	03C _H	00 _H
WDHBT1	03D _H	00 _H
OutConfig0	040 _H	FF _H
OutConfig1	041 _H	3F _H
OutConfig2	042 _H	3F _H
OutConfig3	043 _H	30 _H
OutConfig4	044 _H	3F _H
OutConfig5	045 _H	3F _H
BriConfig0	046 _H	00 _H
BriConfig1	047 _H	00 _H
IGNConfig	048 _H	00 _H
VRSConfig0	049 _H	00 _H
VRSConfig1	04A _H	00 _H
VRSConfig2	04B _H	00 _H
OpConfig0	04E _H	09 _H
ComConfig0	04F _H	A4 _H
ComConfig1	050 _H	0D _H
EOTConfig0	051 _H	00 _H
EOTConfig1	052 _H	00 _H
InConfig0	053 _H	00 _H
InConfig1	054 _H	00 _H
InConfig2	055 _H	00 _H
InConfig3	056 _H	00 _H
DDConfig0	057 _H	00 _H
DDConfig1	058 _H	00 _H
DDConfig2	059 _H	00 _H
DDConfig3	05A _H	00 _H
OEConfig0	05B _H	00 _H

Engine Machine System IC

Table 50 Register Overview (cont'd)

Register Short Name	Register Long Name	Offset Address	Reset Value
OEConfig1		05C _H	00 _H
OEConfig2		05D _H	00 _H
OEConfig3		05E _H	00 _H
WWDConfig0		05F _H	FF _H
WWDConfig1		060 _H	77 _H
FWDConfig		061 _H	F7 _H
TECConfig		062 _H	77 _H
WDConfig0		063 _H	47 _H
WDConfig1		064 _H	03 _H
Cont0		07B _H	00 _H
Cont1		07C _H	00 _H
Cont2		07D _H	00 _H
Cont3		07E _H	00 _H

The registers are addressed wordwise.

14.1.1 Command Register

С	md0		Offset Res 001 _H					Reset Valu 00	
	7 WKCLR	6 RDOT	5 EOTS	4 MSCUPS	3 WDHBTS	2 VDIAGS	1 MRON	0 MRSE	Ī
	W	w	w	w	W	W	w	W	

Field	Bits	Туре	Description
WKCLR	7	w	Wake-up Signal Clear Command:
			$0_{\rm B}$, no action $1_{\rm B}$, initiated clear of internal wake signals Reset: $0_{\rm B}$

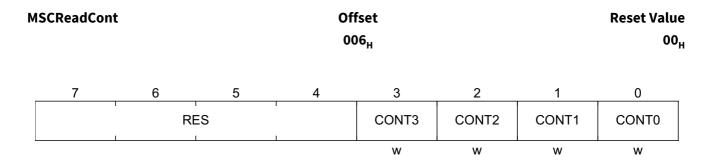
Field	Bits	Туре	Description
RDOT	6	w	Restart Delayed off Timer Command: 0_B , no action 1_B , delayed off timer is restarted Reset: 0_B
EOTS	5	w	Engine Off Timer Start Command: 0_B , no action 1_B , start counter Reset: 0_B
MSCUPS	4	w	MSC Upstream Stop Bit Command: 0 _B , no influence to upstream transmission 1 _B , upstream communication is stopped Reset: 0 _B
WDHBTS	3	w	Watchdog Heartbeat Timer Sample Command: 0_B , no action 1_B , Watchdog Heartbeat Timer sampled (WDHBT0 and WDHBT1) Reset: 0_B
VDIAGS	2	w	VRS Diagnosis Measurement Start Command: 0 _B , no measurement 1 _B , start of VRS diagnosis measurement Reset: 0 _B
MRON	1	w	Main Relay On Command (active if MRSE = 1): 0_B , initiated main relay is switched off 1_B , initiated main relay is switched on Reset: 0_B
MRSE	0	w	Main Relay Switching Enable: 0 _B , main relay switching by bit MRON not enabled 1 _B , main relay switching enabled: value of MRON executed Reset: 0 _B

M	1SCReadWd0				fset)3 _H			Reset Value	
	7	6	5	4	3	2	1	0	
	WWDCONF IG0	WDCONFI G0	WWDSTAT	WDDIAG	FWDSTAT 1	FWDSTAT 0	TECSTAT	WDSTAT0	

Field	Bits	Туре	Description
WWDCONFIG	7	w	Read Status Register WWDConfig0
0			$0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WDCONFIGO	6	W	Read Status Register WDConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WWDSTAT	5	W	Read Status Register WWDStat $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WDDIAG	4	W	Read Configuration Register WdDiag $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
FWDSTAT1	3	W	Read Configuration Register FWDStat1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
FWDSTAT0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B ,
TECSTAT	1	W	Read Diagnosis Register TECStat $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WDSTAT0	0	W	Read Status Register WdStat0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

MSCReadDiag0EOT	Offset	Reset Value
	004 _H	00 _H

7	6	5	4	3	2	1	0
PPOVDIA G	DIAG1	EOTSTAT 2	EOTSTAT 1	EOTSTAT 0	COMDIAG	VRSDIAG 1	VRSDIAG 0
W	W	W	W	W	W	W	W


Field	Bits	Type	Description
PPOVDIAG	7	W	Read Diagnosis Register PPOVDiag $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
DIAG1	6	W	Read Diagnosis Register Diag1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
EOTSTAT2	5	W	Read Status Register EOTStat2 0_B , no action 1_B , multi read operation executed (order MSB to LSB) Reset: 0_B
EOTSTAT1	4	W	Read Status Register EOTStat1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
EOTSTAT0	3	W	Read Status Register EOTStat0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
COMDIAG	2	W	Read Diagnosis Register ComDiag $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
VRSDIAG1	1	W	Read Diagnosis Register VRSDiag1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
VRSDIAG0	0	W	Read Diagnosis Register VRSDiag0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

MSCReadDiag1	Offset	Reset Value
	005 _H	00 _H

7	6	5	4	3	2	1	0
IGNDIAG	BRIDIAG 1	BRIDIAG 0	OUTDIAG 4	OUTDIAG 3	OUTDIAG 2	OUTDIAG 1	OUTDIAG 0
W	W	W	W	W	W	W	W

Field	Bits	Туре	Description
IGNDIAG	7	w	Read Diagnosis Register IgnDiag $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
BRIDIAG1	6	w	Read Diagnosis Register BriDiag1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
BRIDIAG0	5	w	Read Diagnosis Register BriDiag0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTDIAG4	4	w	Read Diagnosis Register OutDiag4 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTDIAG3	3	w	Read Diagnosis Register OutDiag3 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTDIAG2	2	w	Read Diagnosis Register OutDiag2 0_B , no action 1_B , multi read operation executed (order MSB to LSB) Reset: 0_B
OUTDIAG1	1	w	Read Diagnosis Register OutDiag1 0_B , no action 1_B , multi read operation executed (order MSB to LSB) Reset: 0_B
OUTDIAG0	0	w	Read Diagnosis Register OutDiag0 0 _B , no action 1 _B , multi read operation executed (order MSB to LSB) Reset: 0 _B

Field	Bits	Туре	Description
CONT3	3	w	Read Control Register Cont3 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
CONT2	2	w	Read Control Register Cont2 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
CONT1	1	w	Read Control Register Cont1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
CONTO	0	w	Read Control Register Cont0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

M	1SCReadConf	fig0			fset 97 _H	Reset Value 00 _H			
	7	6	5	4	3	2	1	0	
	BRICONF IG1	BRICONF IG0	OUTCONF IG5	OUTCONF IG4	OUTCONF IG3	OUTCONF IG2	OUTCONF IG1	OUTCONF IG0	
	W	W	w	w	w	W	W	w	

Field	Bits	Туре	Description
BRICONFIG1	7	w	Read Configuration Register BriConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
BRICONFIGO	6	W	Read Configuration Register BriConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTCONFIG5	5	w	Read Configuration Register OutConfig5 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

Engine Machine System IC

Field	Bits	Type	Description
OUTCONFIG4	4	w	Read Configuration Register OutConfig4 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTCONFIG3	3	w	Read Configuration Register OutConfig3 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTCONFIG2	2	w	Read Configuration Register OutConfig2 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTCONFIG1	1	w	Read Configuration Register OutConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OUTCONFIGO	0	w	Read Configuration Register OutConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

MSCReadConfig1	Offset	Reset Value
	008 _H	00 _H

7	6	5	4	3	2	1	0
EOTCONF	EOTCONF	VRSCONF	VRSCONF	OPCONFI	COMCONF	COMCONF	IGNCONF
IG1	IG0	IG1	IG0	G0	IG1	IG0	IG
W	W	W	W	W	W	W	W

Field	Bits	Туре	Description
EOTCONFIG1	7	w	Read Configuration Register EOTConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
EOTCONFIG0	6	W	Read Configuration Register EOTConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

Engine Machine System IC

Field	Bits	Туре	Description
VRSCONFIG1	5	W	Read Configuration Register VRSConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
VRSCONFIG0	4	w	Read Configuration Register VRSConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OPCONFIG0	3	w	Read Configuration Register OpConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
COMCONFIG1	2	w	Read Configuration Register ComConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
COMCONFIGO	1	w	Read Configuration Register ComConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
IGNCONFIG	0	w	Read Configuration Register IGNConfig $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

MSCReadConfig2	Offset	Reset Value
	009 _H	00 _H

7	6	5	4	3	2	1	0
INCONFI	INCONFI	INCONFI	INCONFI	DDCONFI	DDCONFI	DDCONFI	DDCONFI
G3	G2	G1	G0	G3	G2	G1	G0
W	W	W	W	W	W	W	W

Field	Bits	Type	Description
INCONFIG3	7	w	Read Configuration Register InConfig3
			$0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

Field	Bits	Туре	Description
INCONFIG2	6	w	Read Configuration Register InConfig2 0_B , no action 1_B , multi read operation executed (order MSB to LSB) Reset: 0_B
INCONFIG1	5	w	Read Configuration Register InConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
INCONFIG0	4	w	Read Configuration Register InConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
DDCONFIG3	3	w	Read Configuration Register DDConfig3 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
DDCONFIG2	2	w	Read Configuration Register DDConfig2 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
DDCONFIG1	1	w	Read Configuration Register DDConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
DDCONFIG0	0	w	Read Configuration Register DDConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

M	ISCReadOEC	onfig			fset IA _H			Reset Value	
	7	6	5	4	3	2	1	0	
		RES		VRSCONF IG2	OECONFI G3	OECONFI G2	OECONFI G1	OECONFI G0	
			•	W	W	W	W	W	

Field	Bits	Type	Description
VRSCONFIG2	4	W	Read Configuration Register VRSConfig2 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OECONFIG3	3	W	Read Configuration Register OEConfig3 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OECONFIG2	2	W	Read Configuration Register OEConfig2 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OECONFIG1	1	W	Read Configuration Register OEConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OECONFIG0	0	W	Read Configuration Register OEConfig0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

MSCReadMain					fset B _H		Reset Va		
	7	6	5	4	3	2	1	0	
	RES	WWDCONF IG1	TECCONF IG	FWDCONF IG	WDCONFI G1	OPSTAT1	OPSTAT0	DIAG0	
		W	W	W	W	W	W	W	

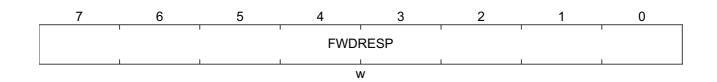
Field	Bits	Туре	Description
WWDCONFIG 1	6	w	Read Status Register WWDConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
TECCONFIG	5	w	Read Status Register TECConfig $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

Field	Bits	Type	Description
FWDCONFIG	4	W	Read Status Register FWDConfig $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WDCONFIG1	3	W	Read Status Register WDConfig1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OPSTAT1	2	W	Read Status Register OpStat1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
OPSTAT0	1	W	Read Status Register OpStat0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
DIAGO	0	W	Read Diagnosis Register Diag0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

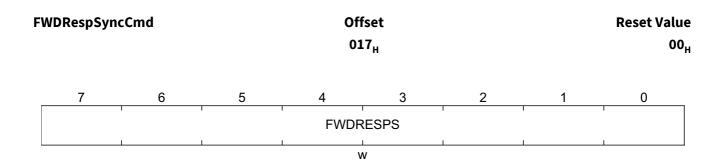
N	ISCReadWd1				fset IC _H	Reset Value 00 _H			
	7	6	5	4	3	2	1	0	
		RI	ES	1	WDSTAT1	WDSTAT0	WDHBT1	WDHBT0	
					W	W	W	W	

Field	Bits	Туре	Description
WDSTAT1	3	w	Read Status Register WdStat1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WDSTAT0	2	w	Read Status Register WdStat0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

Engine Machine System IC


Field	Bits	Туре	Description
WDHBT1	1	w	Read Status Register WDHBT1 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$
WDHBT0	0	w	Read Status Register WDHBT0 $0_{\rm B}$, no action $1_{\rm B}$, multi read operation executed (order MSB to LSB) Reset: $0_{\rm B}$

WWDServiceCmd				Offset 015 _H				Reset Valu		
	7	6	5	4	3	2	1	0		
			wwD	CWTC		WWD	OWTC			
_		1	\	٨/	1	1	\/\			

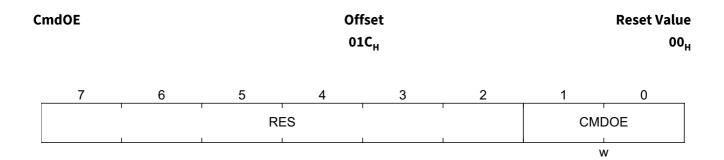

Field	Bits	Туре	Description
WWDCWTC	7:2	w	Window Watchdog Closed Window Time Write Command: Set WWDCWT in register WWDConfig0 0000000 _B , no change - old setting used for open and closed window 000001 _B , 1,6 ms
			111111 _B , 100,8 ms Reset: 000000 _B
WWDOWTC	1:0	W	Window Watchdog Open Window Time Write Command: Set WWDOWT in register WWDConfig0 00_B , 3,2 ms 01_B , 6,4 ms 10_B , 9,6 ms 11_B , 12,8 ms
			Reset: 00 _B

FWDRespCmd	Offset	Reset Value
	016 _H	00 _H

Field	Bits	Туре	Description
FWDRESP	7:0	w	Functional Watchdog Response Byte Write Command
			Reset: 00 _H

Field	Bits	Туре	Description
FWDRESPS	7:0	W	Functional Watchdog Response Byte Write and Heartbeat Synchronisation Command
			Reset: 00 _H

V	VDHBTPS ync	Cmd			fset 18 _H	Reset Value 00 _H			
	7	6	5	4	3	2	1	0	
	RES		'	'	WDHBTPC			<u> </u>	
		•	1	1	W				


TLE8888-1QK Engine Machine System IC

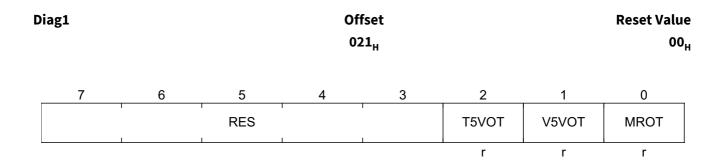
Field	Bits	Туре	Description
WDHBTPC	6:0	w	Heartbeat Timer Period Write and Synchronisation Command:
			Set WDHBTP in register WDConfig0
			0000000 _B , no change
			0000001 _B , 1,6 ms
			0000010 _B , 3,2 ms
			1111111 _B , 203,2 ms
			Reset: 00000000 _B

CmdSR				Of 01	Reset Value 00 _H				
	7	6	5	4	3	2	1	0	
		RES						DSR	
				A/	1				

Field	Bits	Туре	Description
CMDSR	1:0	w	Software Reset Command
			00 _B , No action
			01 _B , No action
			10 _B , No action
			11 _B , Initiate software reset
			Reset: 00 _B

Field	Bits	Туре	Description				
CMDOE	1:0	w	Global Output Enable Command				
			00 _B , No action				
			01 _B , Set Bit OE to 0				
			10 _B , Set Bit OE to 1				
			11 _B , No action				
			Reset: 00 _B				

CmdLOCK				Off: 01	Reset Value 00 _H					
	7	6	5	4	3	2	11	0		
	RES						CMDLOCK			
								W		


Field	Bits	Description	
CMDLOCK	1:0	w	Configuration Lock Command
			00 _B , No action
			01 _B , Set Bit LOCK to 0
			10 _B , Set Bit LOCK to 1
			11 _B , No action
			Reset: 00 _B

14.1.2 Diagnosis Register

D	iag0			Offset 020 _H				Reset Value 00 _H		
	7	6	5	4	3	2	1	0		
	V6VOV	T2OV	T2UV	T10V	T1UV	BATOV	CF	СОТ		
	r	r	r	r	r	r	r	r		

Field	Bits	Type	Description
V6VOV	7	r	Overvoltage Diagnosis Bit of 6 V Supply V6V: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B
T20V	6	r	Overvoltage Diagnosis Bit of Tracker Output T5V2: $0_{\rm B}$, no overvoltage $1_{\rm B}$, overvoltage Reset: $0_{\rm B}$
T2UV	5	r	Undervoltage Diagnosis Bit of Tracker Output T5V2: 0_B , no undervoltage 1_B , undervoltage Reset: 0_B
T10V	4	r	Overvoltage Diagnosis Bit of Tracker Output T5V1: 0_B , no overvoltage 1_B , overvoltage Reset: 0_B
T1UV	3	r	Undervoltage Diagnosis Bit of Tracker Output T5V1: 0_B , no undervoltage 1_B , undervoltage Reset: 0_B
BATOV	2	r	Battery Overvoltage Diagnosis Bit: 0 _B , no battery overvoltage 1 _B , battery overvoltage Reset: 0 _B
CF	1	r	Central Failure Diagnosis Bit: 0_B , no failure 1_B , failure of minimum one diagnostic detected Reset: 0_B
сот	0	r	Central Overtemperature Diagnosis Bit: $0_{\rm B}$, no overtemperature $1_{\rm B}$, overtemperature of minimum one temperature sensor Reset: $0_{\rm B}$

Field	Bits	Туре	Description	
T5VOT	2	r	Tracker Overtemperature Diagnosis Bit:	
			0 _B , no overtemperature	
			$1_{\rm B}$, overtemperature	
			Reset: 0 _B	
V5VOT	1	r	V5V Regulator Overtemperature Diagnosis Bit:	
			0 _B , no overtemperature	
			1_{B} , overtemperature	
			Reset: 0 _B	
MROT	0	r	Main Relay Overtemperature Diagnosis Bit:	
			0 _B , no overtemperature	
			1 _B , overtemperature	
			Reset: 0 _B	

V	RSDiag0				fset 2 _H		Reset Value 00 _H		
	7	6	5	4	3	2	1	0	
		RES		VRSDV_O L	VRSDV_S C	VRSOL	VRSB	VRSG	
				r	r	r	r	r	

Field	Bits	Туре	Description
VRSDV_OL	4	r	Open Load Measurement Data Valid Bit 0 _B , measurement data not valid 1 _B , measurement data valid Reset: 0 _B
VRSDV_SC	3	r	Short to GND/Bat Measurement Data Valid Bit 0 _B , measurement data not valid 1 _B , measurement data valid Reset: 0 _B
VRSOL	2	r	VRS Open Load Diagnosis Bit: 0 _B , no open load 1 _B , open load Reset: 0 _B
VRSB	1	r	VRS Short to Battery Diagnosis Bit: 0 _B , no short to battery 1 _B , short to battery Reset: 0 _B

Engine Machine System IC

Field	Bits	Туре	Description
VRSG	0	r	VRS Short to GND Diagnosis Bit:
			0 _B , no short to GND
			1 _B , short to GND
			Reset: 0 _B

V	RSDiag1				set 3 _H			Reset Valu	
	7	6	5	4	3	2	1	0	
	VRSDV_A DC		1	1	VRSD	ı	1	1	
	r				r				_

Field	Bits	Туре	Description
VRSDV_ADC	7	r	ADC Measurement Data Valid Bit
			0 _B , measurement data not valid
			1 _B , measurement data valid
			Reset: 0 _B
VRSD	6:0	r	VRS Diagnosis Measurement Result Register
			Reset: 0000000 _B

C	ComDiag			Of 02	Reset Vali				
	7	6	5	4	3	2	1	0	
	RES		LINOT	CANOT	CANTXTO	CANBDC	COMFE	мѕсто	
			r	r	r	r	r	r	

Field	Bits	Туре	Description
LINOT	5	r	LIN Overtemperature Diagnosis Bit:
			0 _B , no overtemperature
			1 _B , overtemperature
			Reset: 0 _B

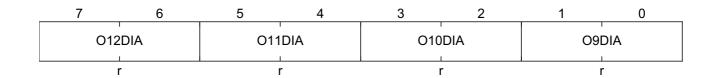
TLE8888-1QK Engine Machine System IC

Field	Bits	Type	Description
CANOT	4	r	CAN Overtemperature Diagnosis Bit: 0_B , no overtemperature 1_B , overtemperature Reset: 0_B
CANTXTO	3	r	CAN TX Dominant Time Out Error Diagnosis Bit: 0_B , no error 1_B , TX dominant time out error Reset: 0_B
CANBDC	2	r	CAN Bus Line Dominant Clamp Error Diagnosis Bit: 0_B , no error 1_B , bus dominant clamp error Reset: 0_B
COMFE	1	r	Communication Frame Error Diagnosis Bit: 0_B , no MSC/SPI frame error 1_B , MSC/SPI frame error Reset: 0_B
мѕсто	0	r	MSC Time Out Failure Diagnosis Bit: 0_B , no failure 1_B , MSC time out Reset: 0_B

C	outDiag0			Offset 025 _H			Reset Value 00 _H		
	7	6	5	4	3	2	1	0	
	O4DIA		O3D	IA	O2I	OIA	01[DIA	
	r	•	r			•	r	,	

Field	Bits	Туре	Description	
O4DIA	7:6	r	Output4 Diagnosis Bits: see below	
			Reset: 00 _B	
O3DIA	5:4	r	Output3 Diagnosis Bits: see below	
			Reset: 00 _B	
O2DIA	3:2	r	Output2 Diagnosis Bits: see below	
			Reset: 00 _B	

Engine Machine System IC


Field	Bits	Туре	Description
O1DIA	1:0	r	Output1 Diagnosis Bits:
			00 _B , no failure
			01 _B , short circuit to bat (overcurrent) or overtemperature
			10 _B , open load in off
			11 _B , short circuit to ground in off
			Reset: 00 _B

0	outDiag1				fset 26 _H			Reset Value 00 _H
	7	6	5	4	3	2	1	0
	081	DIA	070	DIA	061	AIC	O5I	OIA
		·	r		ľ	•	ľ	

Field	Bits	Туре	Description
O8DIA	7:6	r	Output8 (DFB8) Diagnosis Bit:
			00 _B , no failure
			01 _B , short circuit to bat
			10 _B , open load in off
			11 _B , short circuit to ground in off
			Reset: 00 _B
O7DIA	5:4	r	Output7 Diagnosis Bits: see below
			Reset: 00 _B
O6DIA	3:2	r	Output6 Diagnosis Bits: see below
			Reset: 00 _B
O5DIA	1:0	r	Output5 Diagnosis Bits:
			00 _B , no failure
			01 _B , short circuit to bat (overcurrent) or overtemperature
			10 _B , open load in off
			11 _B , short circuit to ground in off
			Reset: 00 _B

OutDiag2	Offset	Reset Value
	027 _H	00 _H

Field	Bits	Туре	Description
O12DIA	7:6	r	Output12 (DFB12) Diagnosis Bit: see below Reset: 00 _B
O11DIA	5:4	r	Output11 (DFB11) Diagnosis Bit: see below Reset: 00 _B
O10DIA	3:2	r	Output10 (DFB10) Diagnosis Bit: see below Reset: 00 _B
O9DIA	1:0	r	Output9 (DFB9) Diagnosis Bit: 00 _B , no failure 01 _B , short circuit to bat 10 _B , open load in off 11 _B , short circuit to ground in off Reset: 00 _B

0	utDiag3				fset 28 _H			Reset Value 00 _H
	7	6	5	4	3	2	1	0
	016	BDIA	O15I	OIA	O14	IDIA	O13	DIA
		r	r		1	r	r	•

Field	Bits	Туре	Description
O16DIA	7:6	r	Output16 Diagnosis Bit: see below Reset: 00_B
O15DIA	5:4	r	Output15 Diagnosis Bit: see below Reset: 00 _B
O14DIA	3:2	r	Output14 Diagnosis Bit: 00_B , no failure 01_B , short circuit to bat (overcurrent) or overtemperature 10_B , open load in off 11_B , short circuit to ground in off Reset: 00_B

TLE8888-1QK Engine Machine System IC

Field	Bits	Туре	Description
O13DIA	1:0	r	Output13 (DFB13) Diagnosis Bit:
			00 _B , no failure
			01 _B , short circuit to bat
			10 _B , open load in off
			11 _B , short circuit to ground in off
			Reset: 00 _B

0	utDiag4				fset 19 _H			Reset Value 00 _H
	7	6	5	4	3	2	1	0
	020	DIA	O19	DIA	O18	DIA	0171	DIA
L		r		r		· ·	r	

Field	Bits	Туре	Description
O20DIA	7:6	r	Output20 Diagnosis Bits: see below Reset: 00_B
O19DIA	5:4	r	Output19 Diagnosis Bits: see below Reset: 00 _B
O18DIA	3:2	r	Output18 Diagnosis Bits: see below Reset: 00 _B
O17DIA	1:0	r	Output17 Diagnosis Bits: 00_B , no failure 01_B , short circuit to bat (overcurrent) or overtemperature 10_B , open load in off 11_B , short circuit to ground in off Reset: 00_B

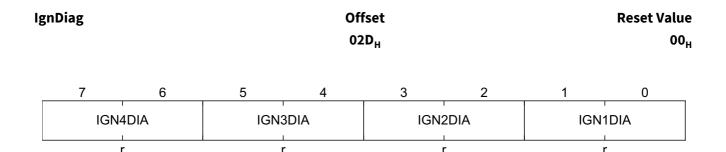
P	POVDiag				fset A _H			Reset Valu	
	7	6	5	4	3	2	1	0	_
	RES		O130V	O120V	O110V	O100V	O9OV	O8OV	
	<u> </u>		r	r	r	r	r	r	

Field	Bits	Type	Description
0130V	5	r	Output13 Overvoltage Diagnosis Bit: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B
0120V	4	r	Output12 Overvoltage Diagnosis Bit: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B
0110V	3	r	Output11 Overvoltage Diagnosis Bit: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B
0100V	2	r	Output10 Overvoltage Diagnosis Bit: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B
090V	1	r	Output9 Overvoltage Diagnosis Bit: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B
080V	0	r	Output8 Overvoltage Diagnosis Bit: 0 _B , no overvoltage 1 _B , overvoltage Reset: 0 _B

BriDiag0				Off 02		Reset Value 00 _H			
	7	6	5	4	3	2	1	0	
	O24	DIA	O23I	DIA	O22	DIA	O21	IDIA	
		r	r			r		r	_

Field	Bits	Туре	Description
O24DIA	7:6	r	Output24 Diagnosis Bits (in off) Reset: 00 _B
O23DIA	5:4	r	Output23 Diagnosis Bits (in off) Reset: 00_B

152


Field	Bits	Туре	Description
O22DIA	3:2	r	Output22 Diagnosis Bits (in off)
			Reset: 00 _B
O21DIA	1:0	r	Output21 Diagnosis Bits (in off)
			Reset: 00 _B

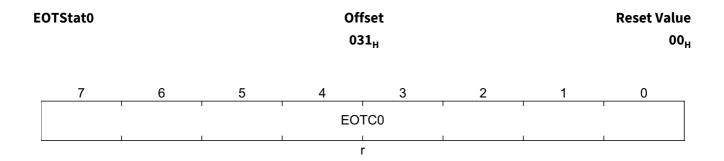
BriDiag1				Of 02	Reset Value				
	7	6	5	4	3	2	1	0	
	RE	:S	B2OT	В1ОТ	O24OC	O23OC	O22OC	O21OC	
			r	r	r	r	r	r	

Field	Bits	Type	Description
B2OT	5	r	Output23,24 Overtemperature Diagnosis Bit $0_{\rm B}$, no overtemperature $1_{\rm B}$, overtemperature Reset: $0_{\rm B}$
B1OT	4	r	Output21,22 Overtemperature Diagnosis Bit $0_{\rm B}$, no overtemperature $1_{\rm B}$, overtemperature Reset: $0_{\rm B}$
0240C	3	r	Output24 Overcurrent Diagnosis Bit 0_B , no overcurrent 1_B , overcurrent Reset: 0_B
0230C	2	r	Output23 Overcurrent Diagnosis Bit 0_B , no overcurrent 1_B , overcurrent Reset: 0_B
0220C	1	r	Output22 Overcurrent Diagnosis Bit 0_B , no overcurrent 1_B , overcurrent Reset: 0_B
0210C	0	r	Output21 Overcurrent Diagnosis Bit $0_{\rm B}$, no overcurrent $1_{\rm B}$, overcurrent Reset: $0_{\rm B}$

153

Field	Bits	Туре	Description
IGN4DIA	7:6	r	Ignition 4 Output Diagnosis Bits: see below Reset: 00 _B
IGN3DIA	5:4	r	Ignition 3 Output Diagnosis Bits: see below Reset: 00 _B
IGN2DIA	3:2	r	Ignition 2 Output Diagnosis Bits: see below Reset: 00 _B
IGN1DIA	1:0	r	Ignition 1 Output Diagnosis Bits: 00 _B , no failure 01 _B , short circuit to bat or overtemperature 10 _B , open load 11 _B , short circuit to ground in on Reset: 00 _B

W	/dDiag				fset LE _H			Reset Value	
	7	6	5	4	3	2	1	0	
	RES	TECRES	FWDRES	WWDRES	FWDREA	FWDREL	WWDSCE	WWDTO	
		r	r	r	r	r	r	r	


Field	Bits	Туре	Description
TECRES	6	r	Reset caused by TEC:
			0 _B , no reset (caused by TEC) happened
			1 _B , reset (caused by TEC) happened
			Reset: 0 _B

TLE8888-1QK Engine Machine System IC

Field	Bits	Туре	Description
FWDRES	5	r	Reset caused by Functional Watchdog: 0 _B , no functional watchdog reset happened 1 _B , functional watchdog reset happened Reset: 0 _B
WWDRES	4	r	Reset caused by Window Watchdog: 0 _B , no window watchdog reset happened 1 _B , window watchdog reset happened Reset: 0 _B
FWDREA	3	r	Functional Watchdog Response Error of Actual Running Sequence Diagnosis Bit: 0_B , no error 1_B , error Reset: 0_B
FWDREL	2	r	Functional Watchdog Response Error of Last Sequence Diagnosis Bit: 0_B , no error 1_B , error Reset: 0_B
WWDSCE	1	r	Window Watchdog Service Command too Early Diagnosis Bit: 0_B , service command in time 1_B , service command too early Reset: 0_B
WWDTO	0	r	Window Watchdog Time Out Diagnosis Bit: 0_B , no time out 1_B , time out Reset: 0_B

14.1.3 Status Register

Field	Bits	Туре	Description
EOTC0	7:0	r	Engine Off Timer Counter Value Bits: (Bit 7 - 0)
			Reset: 00 _H

E	OTStat1				fset 32 _н			Reset Valu 00	
	7	6	5	4	3	2	1	0	,
				EO	TC1				
		1			r	1		L	1

Field	Bits	Туре	Description
EOTC1	7:0	r	Engine Off Timer Counter Value Bits: (Bit 15 - 8)
			Reset: 00 _H

E	OTStat2			Offset 033 _H				Reset Value	
	7	6	5	4	3	2	1	0	
		1		EO'	TC2			' 	
		•	•		r		•		

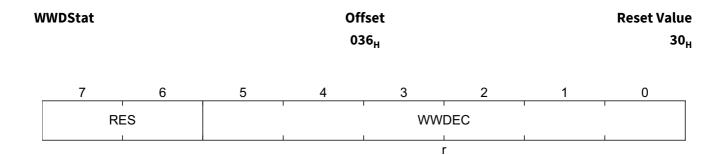
Field	Bits	Туре	Description
EOTC2	7:0	r	Engine Off Timer Counter Value Bits: (Bit 23 - 16)
			Reset: 00 _H

OpStat0	Offset	Reset Value
	034 _H	00 _H

	7	6	5	4	3	2	1	0
	EOTWK	CANWK	WKINT	MON	MR	ОМ	WK	KEY
L	r	r	r	r	r	r	r	r

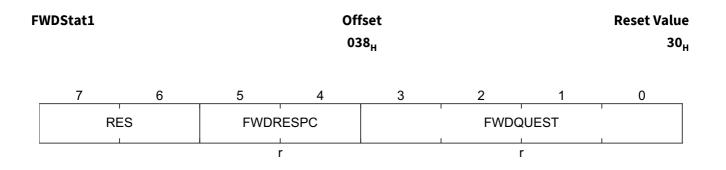
Field	Bits	Туре	Description
EOTWK	7	r	Status of internal EOTWK signal: 0 _B , EOTWK is inactive 1 _B , EOTWK is active Reset: 0 _B
CANWK	6	r	Status of internal CANWK signal: 0 _B , CANWK is inactive 1 _B , CANWK is active Reset: 0 _B
WKINT	5	r	Status of internal WKINT signal: 0_B , WKINT is inactive 1_B , WKINT is active Reset: 0_B
MON	4	r	MON Pin Status Bit: 0_B , active (low) 1_B , inactive (high) Reset: 0_B
MR	3	r	Main Relay Switch On Status Bit: 0_B , off 1_B , on Reset: 0_B
ОМ	2	r	Operation Mode Bit: 0 _B , normal operation 1 _B , afterrun mode Reset: 0 _B
WK	1	r	WK Status Bit (filtered): 0_B , WK = 0 1_B , WK = 1 Reset: 0_B
KEY	0	r	KEY Status Bit (filtered): 0 _B , KEY = 0 1 _B , KEY = 1 Reset: 0 _B

OpStat1	Offset	Reset Value
	035 _H	00 _H


Engine Machine System IC

7	6	5	4	3	2	1	0
LOCK	OE	EOTRES	RSTR	V5VOVR	V5VUVR	WDRES	ARES
r	r	r	r	r	r	r	r

Field	Bits	Type	Description
LOCK	7	r	Configuration Lock Status Bit:
			0 _B , Configuration registers unlocked
			1 _B , Configuration registers locked
			Reset: 0 _B
OE	6	r	Global Output Enable Status Bit:
			0 _B , outputs disabled and control register are reset
			1 _B , outputs enabled
			Reset: 0 _B
EOTRES	5	r	Engine Off Timer Reset Status Bit:
			0 _B , no EOT reset happened
			$1_{\rm B}$, EOT reset happened Reset: $0_{\rm B}$
DCTD	4		
RSTR	4	r	Reset caused by external RST Reset: (only valid if no internal power on reset occurs)
			0 _R , no external RST reset happened
			1 _B , external RST reset happened
			Reset: 0 _B
V5VOVR	3	r	Reset caused by V5V Overvoltage Reset: (only valid if no internal
			power on reset occurs)
			0 _B , no V5V overvoltage reset happened
			1 _B , V5V overvoltage reset happened
			Reset: 0 _B
V5VUVR	2	r	Reset caused by V5V Undervoltage Reset: (only valid if no internal
			power on reset occurs)
			0 _B , no V5V undervoltage reset happened
			1 _B , V5V undervoltage reset happened
			Reset: 0 _B
WDRES	1	r	Reset caused by Watchdog Reset: (only valid if no internal power
			on reset occurs) 0 _B , no watchdog reset happened
			1 _B , watchdog reset happened
			Reset: 0 _B
ARES	0	r	Reset caused by Afterrun Reset: (only valid if no internal power on
			reset occurs)
			0 _B , no afterrun reset happened
			1 _B , afterrun reset happened
			Reset: 0 _B



Field	Bits	Туре	Description
WWDEC	5:0	r	Window Watchdog Error Counter Value Reset: 110000 _B

F	WDStat0				fset 87 _H			Reset Value 30 _H
	7	6	5	4	3	2	1	0
	RE	S	'		FWD	PC		
Į			1		r			

Field	Bits	Туре	Description
FWDPC	5:0	r	Functional Watchdog Pass Counter Value
			Reset: 110000 _B

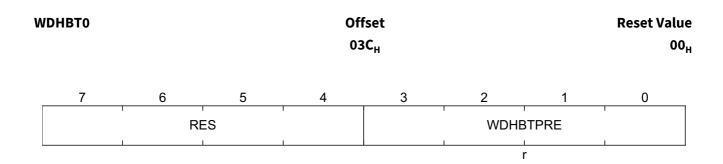
Field	Bits	Туре	Description
FWDRESPC	5:4	r	Functional Watchdog Response Counter Value Reset: 11 _B
FWDQUEST	3:0	r	Functional Watchdog Question Reset: 0000 _B

TECStat				Off 03	Reset Val 3				
,	7	6	5	4	3	2	1	0	_
RES				TE	EC				
L			1			•		1	_

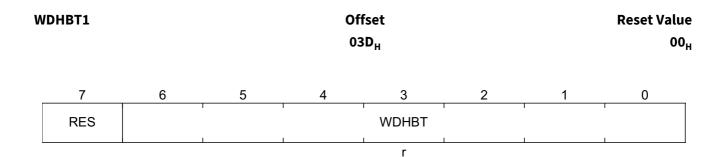
Field	Bits	Туре	Description
TEC	5:0	r	Total Error Counter Value
			Reset: 110000 _B

٧	VdStat0				set A _H			Reset Valu	ue 0 _H
	7	6	5	4	3	2	1	0	_
	WWDSCR	SSOTS		WWDPDC			RESC		
	r	r		r			r		_

Field	Bits	Туре	Description
WWDSCR	7	r	Window Watchdog Service Command received $0_{\rm B}$, No Service Command received $1_{\rm B}$, Service Command received Reset: $0_{\rm B}$
SSOTS	6	r	Secure Shut Off Timer Start Status Bit: 0_B , timer reset 1_B , timer started Reset: 0_B


Engine Machine System IC

Field	Bits	Туре	Description
WWDPDC	5:3	r	Window Watchdog Power-Down Counter Value
			Reset: 000 _B
RESC	2:0	r	Reset Counter Value
			Reset: 000 _B


V	VdStat1				set B _H			Reset Value 00 _H		
	7	6	5	4	3	2	1	0		
	RES			TECPDC			FWDPDC			
			•	r			r			

Field	Bits	Туре	Description
TECPDC	5:3	r	Total Error Power-Down Counter Value
			Reset: 000 _B
FWDPDC	2:0	r	Functional Watchdog Power-Down Counter Value
			Reset: 000 _B

Field	Bits	Туре	Description
WDHBTPRE	3:0	r	Sampled Watchdog Heartbeat Timer Predivider Value Reset: 0000 _B

Field	Bits	Туре	Description
WDHBT	6:0	r	Sampled Watchdog Heartbeat Timer Value
			Reset: 0000000 _B

14.1.4 Configuration Register

OutConfig0 locked with LOCK = 1

0	OutConfig0		Reset Value FF,					
	7	6	5	4	3	2	1	0
	O4OL	O4OC	O3OL	O3OC	O2OL	020C	010L	010C
	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
O4OL	7	rw	Output4 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
040C	6	rw	Output4 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
030L	5	rw	Output3 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B

Field	Bits	Туре	Description
030C	4	rw	Output3 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
020L	3	rw	Output2 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
020C	2	rw	Output2 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
010L	1	rw	Output1 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
010C	0	rw	Output1 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B

OutConfig1 locked with LOCK = 1

OutConfig1				Of 04	Reset Valu 3				
	7	6	5	4	3	2	1	0	_
	RES		O7OL	070C	O6OL	O6OC	O5OL	O5OC	
			rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description	
070L	5	rw	Output7 Open Load Set Up: 0 _B , pull down current deactivated	
			1 _B , fully functional Reset: 1 _B	
070C	4	rw	Output7 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B	

Engine Machine System IC

Field	Bits	Туре	Description
O6OL	3	rw	Output6 Open Load Set Up: 0_B , pull down current deactivated 1_B , fully functional Reset: 1_B
060C	2	rw	Output6 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
O5OL	1	rw	Output5 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
050C	0	rw	Output5 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B

OutConfig2 locked with LOCK = 1

OutConfig2			Offset 042 _H				Reset Value 3F,		
	7	6	5	4	3	2	1	0	
	PP0D		O13OL	O12OL	O110L	O100L	O9OL	O8OL	
	rw		rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
PP0D	7:6	rw	Diagnosis in On Set Up for OUT8 and OUT9: 00 _B , typ. 125 mV short to bat in on threshold 01 _B , typ. 225 mV short to bat in on threshold 10 _B , typ. 400 mV short to bat in on threshold 11 _B , typ. 0.8 V short to bat in on threshold Reset: 00 _B
0130L	5	rw	Output13 Open Load Set Up: 0_B , pull down current deactivated 1_B , fully functional Reset: 1_B
0120L	4	rw	Output12 Open Load Set Up: 0_B , pull down current deactivated 1_B , fully functional Reset: 1_B

Field	Bits	Туре	Description
0110L	3	rw	Output11 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
0100L	2	rw	Output10 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
O9OL	1	rw	Output9 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
O8OL	0	rw	Output8 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B

OutConfig3 locked with LOCK = 1

OutConfig3			Offset 043 _H				Reset Value 30 _H		
	7	6	5	4	3	2	1	0	_
	RES		O140L	O14OC	PP	2D	PF	1D	
			rw	rw	r\	N	r	W	1

Field	Bits	Туре	Description
0140L	5	rw	Output14 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
0140C	4	rw	Output14 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
PP2D	3:2	rw	Diagnosis in On Set Up for OUT12 and OUT13: 00 _B , typ. 125 mV short to bat in on threshold 01 _B , typ. 225 mV short to bat in on threshold 10 _B , typ. 400 mV short to bat in on threshold 11 _B , typ. 0.8 V short to bat in on threshold Reset: 00 _B

Engine Machine System IC

Field	Bits	Туре	Description
PP1D	1:0	rw	Diagnosis in On Set Up for OUT10 and OUT11:
			00 _B , typ. 125 mV short to bat in on threshold
			01 _B , typ. 225 mV short to bat in on threshold
			10 _B , typ. 400 mV short to bat in on threshold
			11 _B , typ. 0.8 V short to bat in on threshold
			Reset: 00 _B

OutConfig4 locked with LOCK = 1

C	outConfig4		Offset 044 _H							
	7	6	5	4	3	2	1	0		
	RES	O17D	O170L	0170C	O16OL	O16OC	O15OL	O15OC		
		rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Type	Description
017D	6	rw	Output17 Delayed Off Set Up: 0_B , no delayed off function 1_B , delayed off function activated Reset: 0_B
0170L	5	rw	Output17 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
0170C	4	rw	Output17 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
0160L	3	rw	Output16 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B
0160C	2	rw	Output16 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
0150L	1	rw	Output15 Open Load Set Up: 0 _B , pull down current deactivated 1 _B , fully functional Reset: 1 _B

Engine Machine System IC

Field	Bits	Туре	Description
0150C	0	rw	Output15 Overcurrent Protection Set Up:
_			0_{B} , current limitation in case of overcurrent 1_{B} , switch off in case of overcurrent Reset: 1_{B}

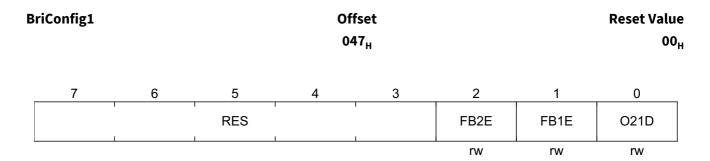
OutConfig5 locked with LOCK = 1

C	OutConfig5				fset I5 _H			Reset Value 3F _H	
	7	6	5	4	3	2	1	0	
	RE	S	O20OL	O20OC	O19OL	O190C	O18OL	O18OC	
			rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
0200L	5	rw	Output20 Open Load Set Up: 0_B , pull down and pull up current deactivated 1_B , fully functional Reset: 1_B
O200C	4	rw	Output20 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
0190L	3	rw	Output19 Open Load Set Up: 0_B , pull down and pull up current deactivated 1_B , fully functional Reset: 1_B
0190C	2	rw	Output19 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B
0180L	1	rw	Output18 Open Load Set Up: 0 _B , pull down and pull up current deactivated 1 _B , fully functional Reset: 1 _B
O180C	0	rw	Output18 Overcurrent Protection Set Up: 0_B , current limitation in case of overcurrent 1_B , switch off in case of overcurrent Reset: 1_B

TLE8888-1QK Engine Machine System IC

BriConfig0 locked with LOCK = 1


В	riConfig0				fset 16 _H			Reset Valu 00	
	7	6	5	4	3	2	1	0	
	O24F	O24M	O23F	O23M	O22F	O22M	O21F	O21M	
	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description	
024F	7	rw	Output24 Freewheeling Mode Set Up: 0 _B , passive freewheeling mode 1 _B , active freewheeling mode Reset: 0 _B	
O24M	6	rw	Output24 Mode Set Up: 0 _B , low-side switch mode 1 _B , high-side switch mode Reset: 0 _B	
023F	5	rw	Output23 Freewheeling Mode Set Up: 0 _B , passive freewheeling mode 1 _B , active freewheeling mode Reset: 0 _B	
О23М	4	rw	Output23 Mode Set Up: 0 _B , low-side switch mode 1 _B , high-side switch mode Reset: 0 _B	
022F	3	rw	Output22 Freewheeling Mode Set Up: 0 _B , passive freewheeling mode 1 _B , active freewheeling mode Reset: 0 _B	
O22M	2	rw	Output22 Mode Set Up: 0 _B , low-side switch mode 1 _B , high-side switch mode Reset: 0 _B	
021F	1	rw	Output21 Freewheeling Mode Set Up: 0 _B , passive freewheeling mode 1 _B , active freewheeling mode Reset: 0 _B	
O21M	0	rw	Output21 Mode Set Up: 0 _B , low-side switch mode 1 _B , high-side switch mode Reset: 0 _B	

Engine Machine System IC

BriConfig1 locked with LOCK = 1

Field	Bits	Туре	Description
FB2E	2	rw	Full Bridge 2 Enable Bit: 0 _B , Output 23 and 24 are not used in full bridge configuration 1 _B , Output 23 and 24 are used in full bridge configuration Reset: 0 _B
FB1E	1	rw	Full Bridge 1 Enable Bit: $0_{\rm B}$, Output 21 and 22 are not used in full bridge configuration $1_{\rm B}$, Output 21 and 22 are used in full bridge configuration Reset: $0_{\rm B}$
O21D	0	rw	Output21 Delayed Off Set Up: 0_B , no delayed off function 1_B , delayed off function activated Reset: 0_B

IGNConfig locked with LOCK = 1

I	GNConfig			Off 04				Reset Value	
	7	6	5	4	3	2	1	0	
		RES	1	IOI	LT	IOL	I	IOLA	
				rv	v	rw		rw	

Field	Bits	Туре	Description
IOLT	4:3	rw	Ignition Time Setting for Open Load Detection:
			00_B , $64 \mu s$
			01 _B , 256 μs
			10 _B ,512 μs
			11 _B ,768 μs
			Reset: 00 _B
IOLI	2:1	rw	Ignition Current Setting for Open Load Detection:
			00 _B ,-100 μA
			01 _B , -400 μA
			10 _B ,-1 mA
			11 _B , -4 mA
			Reset: 00 _B
IOLA	0	rw	Ignition Open Load Detection Activation:
			0 _B , no open load detection
			1 _B , open load detection active
			Reset: 0 _B

V	RSConfig0				fset 19 _H		Reset \		
	7	6	5	4	3	2	1	0	
VRSPV			RES	'	VR	SF	VRSPT		
L	r	W	1	1		rv	V	rw	

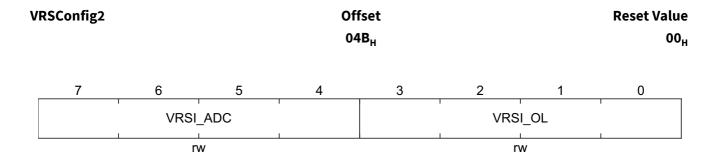
Field	Bits	Туре	Description
VRSPV	7:6	rw	VRS Peak Voltage Detection Set Up:
			00 _B , 50 mV
			01 _B , 150 mV
			10 _B , 350 mV
			11 _B , 550 mV
			Reset: 00 _B
VRSF	2:1	rw	VRS Output Filter Time Set Up:
			00 _B , 1 μs, reset value
			01 _B , 5 μs
			10 _B , 10 μs
			11 _B , 20 μs
			Reset: 00 _B

170

Engine Machine System IC

Field	Bits	Туре	Description
VRSPT	0	rw	VRS Peak Time Set Up:
			0_{B} , 10 μs, reset value 1_{B} , 250 μs Reset: 0_{B}

VRSConfig1 locked with LOCK = 1


V	RSConfig1				fset IA _H			Reset Value 00 _H
	7	6	5	4	3	2	1	0
	, ,	VRS	i_sc		VRS	М	VRSE	DIAGM
	l	n	W	1	rw		r	w

Field	Bits	Type	Description
VRSI_SC	7:4	rw	Current setting for short to GND/Bat measurement
			0000 _B , 10 μA
			0001 _B , 20 μA
			0010 _B , 30 μA
			0011 _B , 40 μA
			0100 _B , 50 μA
			0101 _B , 60 μA
			0110 _B , 70 μA
			0111 _B , 80 μA
			1000 _B , 100 μA
			1001 _B , 120 μA
			1010 _B , 140 μA
			1011 _B , 160 μA
			1100 _B , to full scale (0b1111) 160 μA
			Reset: 0000 _B
VRSM	3:2	rw	VRS/Hall Sensor Mode Set Up:
			00 _B , auto detection mode for VR sensor signals (reset value)
			01 _B , semi auto detection mode for VR sensor signals
			10 _B , manuel detection mode for VR sensor signals
			11 _B , Hall sensor mode
			Reset: 00 _B
VRSDIAGM	1:0	rw	VRS Diagnosis Mode Set Up:
			00 _B , normal detection mode
			01 _B , short to GND/Bat diagnosis mode
			10 _B , open load diagnosis mode
			11 _B , ADC diagnosis mode
			Reset: 00 _B

Engine Machine System IC

VRSConfig2 locked with LOCK = 1

Field	Bits	Туре	Description
VRSI_ADC	7:4	rw	Current setting for ADC measurement
			0000 _B , 10 μA
			0001 _B , 20 μA
			0010 _B , 30 μA
			0011 _B , 40 μA
			0100 _B , 50 μA
			0101 _B , 60 μA
			0110 _B , 70 μA
			0111 _B , 80 μA
			1000 _B , 100 μA
			1001 _B , 120 μA
			1010 _B , 140 μA
			1011 _B , 160 μA
			1100 _B , to full scale (0b1111) 160 μA
			Reset: 0000 _B
VRSI_OL	3:0	rw	Current setting for open load measurement
			0000 _B , 10 μA
			0001 _B , 20 μA
			0010 _B , 30 μA
			0011 _B , 40 μA
			0100 _B , 50 μA
			0101 _B , 60 μA
			0110 _B , 70 μA
			0111 _B , 80 μA
			1000 _B , 100 μA
			1001 _B , 120 μA
			1010 _B , 140 μA
			1011 _B , 160 μA
			1100 _B , to full scale (0b1111) 160 μA
			Reset: 0000 _B

172

TLE8888-1QK Engine Machine System IC

rw

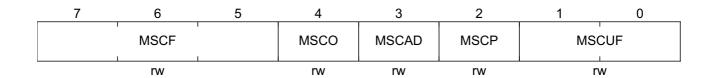
OpConfig0				Off	Reset Value				
				04	IE _H			09)н
	7	6	5	4	3	2	1	0	
	RES	K	OD	EOTCONF	AR	AE	PI	DT]

rw

rw

rw

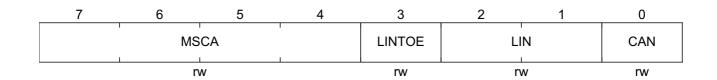
rw


Field	Bits	Туре	Description
KOD	6:5	rw	Key Off Delay Set Up: 00 _B ,100 ms 01 _B ,200 ms 10 _B ,400 ms 11 _B ,800 ms Reset: 00 _B
EOTCONF	4	rw	Engine Off Timer Configuration: 0_B , timer start with negative edge of KEY signal 1_B , timer start with command EOTS in register Cmd0 Reset: 0_B
AR	3	rw	Afterrun Reset Behavior Set Up: 0 _B , no afterrun reset 1 _B , afterrun reset Reset: 1 _B
AE	2	rw	Afterrun Enable: 0 _B , no afterrun mode 1 _B , afterrun mode Reset: 0 _B
PDT	1:0	rw	Power-Down Time Set Up: 00 _B ,100 ms 01 _B ,200 ms 10 _B ,300 ms 11 _B ,400 ms Reset: 01 _B

ComConfig0 locked with LOCK = 1

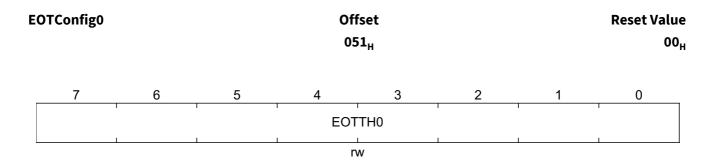
ComConfig0 Offset Reset Value 04F_H A4_H

Engine Machine System IC

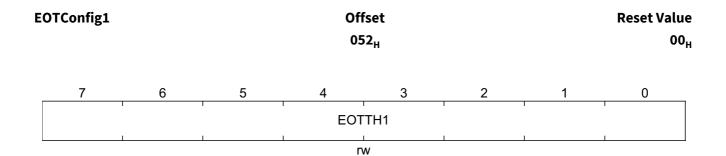


Field	Bits	Type	Description
MSCF	7:5	rw	MSC Upstream Frequency Divider Set Up:
			000 _B , Division by 64
			001 _B , Division by 4
			010 _B , Division by 8
			011 _B , Division by 16
			100 _B , Division by 32
			101 _B , Division by 64
			110 _B , Division by 128
			111 _B , Division by 256
			Reset: 101 _B
MSCO	4	rw	MSC SDO Definition:
			0 _B , open drain
			1 _B , push pull
			Reset: 0 _B
MSCAD	3	rw	MSC Address Definition A0 to A3:
			0 _B , value of A2 to A3 are incremented with each read command
			1 _B , A0 to A3 values are fixed to the values of MSCA[3:0]
			Reset: 0 _B
MSCP	2	rw	MSC Upstream Parity Format Set Up:
			0 _B , odd parity
			1 _B , even parity
			Reset: 1 _B
MSCUF	1:0	rw	MSC Upstream Address Format Setup:
			00 _B , upstream format without address
			01 _B , upstream format with address
			10 _B , upstream format with address
			11 _B , upstream format with address
			Reset: 00 _B

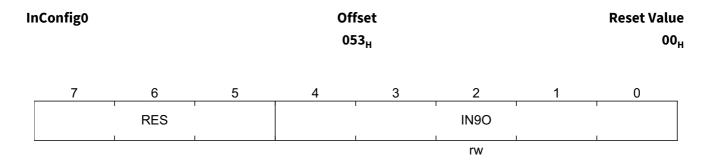
ComConfig1 locked with LOCK = 1


 $\begin{array}{ccc} {\rm ComConfig1} & {\rm Offset} & {\rm Reset\,Value} \\ & {\rm 050_H} & {\rm 0D_H} \end{array}$

Field	Bits	Туре	Description	
MSCA	7:4	rw	MSC Upstream Address for MSCAD = 1 Reset: 0000 _B	
LINTOE	3	rw	LIN TX Time OUT Function Enable: 0_B , TX time out function disabled 1_B , TX time out function enabled Reset: 1_B	
LIN	2:1	rw	Operation Mode: 00 _B , receive only mode 01 _B , LIN/K-line operation 10 _B , flash mode 11 _B , receive only mode Reset: 10 _B	
CAN	0	rw	CAN Operation Mode: 0 _B , receive only mode 1 _B , high speed CAN mode Reset: 1 _B	


EOTConfig0 locked with LOCK = 1

Field	Bits	Туре	Description
EOTTH0	7:0	rw	Engine Off Timer Comparator Threshold: (Bit 7 - 0)
			Reset: 00 _H


EOTConfig1 locked with LOCK = 1

Field	Bits	Туре	Description
EOTTH1	7:0	rw	Engine Off Timer Comparator Threshold: (Bit 15 - 8) Reset: 00 H

InConfig0 locked with LOCK = 1

Field	Bits	Туре	Description
IN9O	4:0	rw	Direct control Input9 Assignment: See Table 51 Reset: 00000 _R

Additional Table with Constants

This table describes more than 16 constants.

Table 51 Constant Values

Name and Description	Value
	00000 _B
output5	
	00001 _B
output6	_
	00010 _B
output7	
	00011 _B
output8	_

Engine Machine System IC

Table 51 Constant Values (cont'd)

Name and Description	Value
	00100 _B
output9	
output10	00101 _B
output10	00110 _B
output11	OOIIOB
	00111 _B
output12	
output13	01000 _B
outputis	01001 _B
output14	o zasaz B
	01010 _B
output15	
output16	01011 _B
outputto	01100 _B
output17	В
	01101 _B
output18	01110
output19	01110 _B
·	01111 _B
output20	
	10000 _B
output21	10001
output22	10001 _B
•	10010 _B
output23	
output24	10011 _B
output24	

InConfig1 locked with LOCK = 1

InConfig1	Offset	Reset Value
	054 _H	00 _H

Field	Bits	Туре	Description
IN100	4:0	rw	Direct control Input10 Assignment:
			See Table 52
			Reset: 00000 _B

Additional Table with Constants

This table describes more than 16 constants.

Table 52 **Constant Values**

Name and Description	Value
	00000 _B
output5	
output6	00001 _B
	00010 _B
output7	00010 _B
	00011 _B
output8	
	00100 _B
output9	
output10	00101 _B
	00110 _B
output11	B
	00111 _B
output12	
	01000 _B
output13	04004
output14	01001 _B
IF	01010 _B
output15	7-3-1 _B
	01011 _B
output16	
	01100 _B
output17	
output18	01101 _B
σαιραίτο	

Engine Machine System IC

Table 52 Constant Values (cont'd)

Name and Description	Value
	01110 _B
output19	
	01111 _B
output20	
	10000 _B
output21	
	10001 _B
output22	
	10010 _B
output23	
	10011 _B
output24	

InConfig2 locked with LOCK = 1

InConfig2				fset 55 _H			Reset Val 0	ue 0 _H	
	7	6	5	4	3	2	1	0	_
		RES				IN110			
				•		rw			_

Field	Bits	Туре	Description
IN110	4:0	rw	Direct control Input11 Assignment:
			See Table 53 Reset: 00000 _R

Additional Table with Constants

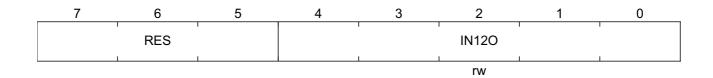
This table describes more than 16 constants.

Table 53 Constant Values

Name and Description	Value
	00000 _B
output5	
	00001 _B
output6	
	00010 _B
output7	

Engine Machine System IC

Table 53 Constant Values (cont'd)


Value
00011 _B
20122
00100 _B
00101 _B
22112
00110 _B
00111 _B
01000 _B
01001 _B
01010 _B
01011 _B
01100 _B
01101 _B
01110 _B
01111 _B
10000 _B
10001 _B
10010 _B
10011 _B
_

InConfig3 locked with LOCK = 1

InConfig3	Offset	Reset Value
	056 _н	00 _H

Engine Machine System IC

Field	Bits	Туре	Description
IN120	4:0	rw	Direct control Input12 Assignment:
			See Table 54
			Reset: 00000 _B

Additional Table with Constants

This table describes more than 16 constants.

Table 54 Constant Values

Value
00000 _B
00001 _B
00010 _B
OOOTOB
00011 _B
00100 _B
00101 _B
00110 _B
00==0B
00111 _B
01000 _B
01001
01001 _B
01010 _B
01011 _B
01100 _B
01101
01101 _B

Engine Machine System IC

Table 54 Constant Values (cont'd)

Name and Description	Value
	01110 _B
output19	
	01111 _B
output20	
	10000 _B
output21	
	10001 _B
output22	
	10010 _B
output23	
	10011 _B
output24	

DDConfig0 locked with LOCK = 1

DDConfig0					fset 57 _H			Reset Value 00 _H
	7	6	5	4	3	2	1	0
	O8DD	O7DD	O6DD	O5DD	O4DD	O3DD	O2DD	O1DD
	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description	
O8DD	7	rw	Output8 Direct Drive Control: see below Reset: 0 _B	
O7DD	6	rw	Output7 Direct Drive Control: see below Reset: 0 _B	
O6DD	5	rw	Output6 Direct Drive Control: see below Reset: 0 _B	
O5DD	4	rw	Output5 Direct Drive Control: see below Reset: 0 _B	
O4DD	3	rw	Output4 Direct Drive Control: see below Reset: 0 _B	
O3DD	2	rw	Output3 Direct Drive Control: see below Reset: 0_B	
O2DD	1	rw	Output2 Direct Drive Control: see below Reset: 0 _B	

Engine Machine System IC

Field	Bits	Туре	Description
O1DD	0	rw	Output1 Direct Drive Control:
			$0_{\rm B}$, controlled by MSC/SPI interface $1_{\rm B}$, controlled by Direct Drive Input Reset: $0_{\rm B}$

DDConfig1 locked with LOCK = 1

D	DConfig1			Offset 058 _H				Reset Value 00 _H		
	7	6	5	4	3	2	1	0		
	O16DD	O15DD	O14DD	O13DD	O12DD	O11DD	O10DD	O9DD		
	rw	rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Туре	Description	
O16DD	7	rw	Output16 Direct Drive Control: see below Reset: 0 _B	
O15DD	6	rw	Output15 Direct Drive Control: see below Reset: 0 _B	
O14DD	5	rw	Output14 Direct Drive Control: see below Reset: 0 _B	
O13DD	4	rw	Output13 Direct Drive Control: see below Reset: 0 _B	
O12DD	3	rw	Output12 Direct Drive Control: see below Reset: 0 _B	
O11DD	2	rw	Output11 Direct Drive Control: see below Reset: 0 _B	
O10DD	1	rw	Output10 Direct Drive Control: see below Reset: 0 _B	
O9DD	0	rw	Output9 Direct Drive Control: 0 _B , controlled by MSC/SPI interface 1 _B , controlled by Direct Drive Input Reset: 0 _B	

DDConfig2 locked with LOCK = 1

DDConfig2	Offset	Reset Value
	059 _H	00 _H

183

TLE8888-1QK Engine Machine System IC

Field	Bits	Type	Description	
O24DD	7	rw	Output24 Direct Drive Control: see below Reset: 0 _B	
O23DD	6	rw	Output23 Direct Drive Control: see below Reset: 0 _B	
O22DD	5	rw	Output22 Direct Drive Control: see below Reset: 0 _B	
O21DD	4	rw	Output21 Direct Drive Control: see below Reset: 0 _B	
O20DD	3	rw	Output20 Direct Drive Control: see below Reset: 0 _B	
O19DD	2	rw	Output19 Direct Drive Control: see below Reset: 0 _B	
O18DD	1	rw	Output18 Direct Drive Control: see below Reset: 0 _B	
O17DD	0	rw	Output17 Direct Drive Control: 0 _B , controlled by MSC/SPI interface 1 _B , controlled by Direct Drive Input Reset: 0 _B	

DDConfig3 locked with LOCK = 1

DDConfig3					fset 6A _H			Reset Value	
	7	6	5	4	3	2	1	0	
		RES			IGN4DD	IGN3DD	IGN2DD	IGN1DD	
			•		rw	rw	rw	rw	

Field	Bits	Туре	Description	
IGN4DD	3	rw	Ignition Output4 Direct Drive Control: see below Reset: 0 _B	
IGN3DD	2	rw	Ignition Output3 Direct Drive Control: see below Reset: 0 _B	

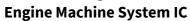
184

Engine Machine System IC

Field	Bits	Туре	Description
IGN2DD	1	rw	Ignition Output2 Direct Drive Control: see below Reset: 0 _R
IGN1DD	0	rw	Ignition Output1 Direct Drive Control: 0 _B , controlled by MSC/SPI interface 1 _B , controlled by Direct Drive Input Reset: 0 _B

C	EConfig0			Of 05			Reset Value 00 _H		
	7	6	5	4	3	2	1	0	Т
	O8E	O7E	O6E	O5E	O4E	O3E	O2E	O1E	
	rw	rw	rw	rw	rw	rw	rw	rw	1

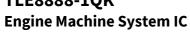
Field	Bits	Type	Description
O8E	7	rw	Output8 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
07Е	6	rw	Output7 Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B
O6E	5	rw	Output6 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O5E	4	rw	Output5 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O4E	3	rw	Output4 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O3E	2	rw	Output3 Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B


Engine Machine System IC

Field	Bits	Туре	Description
O2E	1	rw	Output2 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O1E	0	rw	Output1 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B

0	EConfig1					Reset Value 00 _H 0 O9E rw			
	7	6	5	4	3	2	1	0	
	O16E	O15E	O14E	O13E	O12E	O11E	O10E	O9E	
	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
O16E	7	rw	Output16 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O15E	6	rw	Output15 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O14E	5	rw	Output14 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O13E	4	rw	Output13 Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B
O12E	3	rw	Output12 Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B



Field	Bits	Туре	Description
011E	2	rw	Output11 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O10E	1	rw	Output10 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
09Е	0	rw	Output9 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B

0	EConfig2		Offset 05D _H							
	7	6	5	4	3	2	1	0		
	O24E	O23E	O22E	O21E	O20E	O19E	O18E	O17E		
	rw	rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Туре	Description
O24E	7	rw	Output24 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O23E	6	rw	Output23 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O22E	5	rw	Output22 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O21E	4	rw	Output21 Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B

Field	Bits	Туре	Description
O20E	3	rw	Output20 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O19E	2	rw	Output19 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B
O18E	1	rw	Output18 Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B
O17E	0	rw	Output17 Enable Bit: 0_B , output disabled 1_B , output enabled Reset: 0_B

C	EConfig3				fset SE _H			Reset Value
	7	6	5	4	3	2	1	0
		RI	ES		IGN4E	IGN3E	IGN2E	IGN1E
			1	1	rw	rw	rw	rw

Field	Bits	Type	Description
IGN4E	3	rw	Ignition 4 Output Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B
IGN3E	2	rw	Ignition 3 Output Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B
IGN2E	1	rw	Ignition 2 Output Enable Bit: 0 _B , output disabled 1 _B , output enabled Reset: 0 _B

Engine Machine System IC

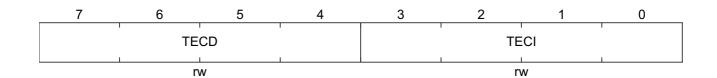
Field	Bits	Туре	Description
IGN1E	0	rw	Ignition 1 Output Enable Bit:
			0 _B , output disabled 1 _B , output enabled Reset: 0 _B

WWDConfig0				Of 05			Reset Valu FF	et Value FF _H	
,	7	6	5	4	3	2	1	0	-
	WWDCWT						WWD	OWT	
rw							rw		1

Field	Bits	Туре	Description
WWDCWT	7:2	rw	Window Watchdog Closed Window Time:
			000000 _B , no change - old setting used for open and closed window
			000001 _B , 1,6 ms
			111111 _B , 100,8 ms
			Reset: 111111 _B
WWDOWT	1:0	rw	Window Watchdog Open Window Time:
			00 _B , 3,2 ms
			01 _B , 6,4 ms
			10 _B , 9,6 ms
			11 _B , 12,8 ms
			Reset: 11 _B

WWDConfig1					fset 60 _H			Reset Value 77 _H
	7	6	5	4	3	2	1	0
	<u>'</u>	WWDECD				WWI	DECI	
		r	w	1	•	r	W	

Field	Bits	Туре	Description	
WWDECD	7:4	rw	Window Watchdog Error Counter Decrement:	
			0000 _B , -1	
			0001 _B , -2	
			1111 _B , -16	
			Reset: 0111 _B	
WWDECI	3:0	rw	Window Watchdog Error Counter Increment:	
			0000 _B , +1	
			0001 _B , +2	
			1111 _B , +16	
			Reset: 0111 _B	


F	WDConfig				fset 51 _H			Reset Valu F7	
	7	6	5	4	3	2	1	0	
		FWDPCD				FWE	PCI		
		rv		1	1	n	N	1	

Field	Bits	Туре	Description	
FWDPCD	7:4	rw	Functional Watchdog Pass Counter Decrement:	
			0000 _B , -1	
			0001 _B , -2	
			1111 _B , -16	
			Reset: 1111 _B	
FWDPCI	3:0	rw	Functional Watchdog Pass Counter Increment:	
			0000 _B , +1	
			0001 _B , +2	
			1111 _B , +16	
			Reset: 0111 _B	

TECConfig	Offset	Reset Value
	062 _H	77 _H

Engine Machine System IC

Field	Bits	Туре	Description	
TECD	7:4	rw	Total Error Counter Decrement:	
			0000 _B , -1	
			0001 _B , -2	
			1111 _B , -16	
			Reset: 0111 _B	
TECI	3:0	rw	Total Error Counter Increment:	
			0000 _B , +1	
			0001 _B , +2	
			1111 _B , +16	
			Reset: 0111 _B	


V	VDConfig0				iset i3 _H			Reset Valu 47	
	7	6	5	4	3	2	1	0	7
	RES		<u> </u>	I	WDHBTP	<u> </u>	I		

Field	Bits	Туре	Description
WDHBTP	6:0	rw	Watchdog Heartbeat Timer Period:
			0000000 _B , no change
			0000001 _B , 1,6 ms
			0000010 _B , 3,2 ms
			1111111 _B , 203,2 ms
			Reset: 1000111 _B

WDConfig1 locked with LOCK = 1

WDConfig1	Offset	Reset Value
	064 _H	03 _H

Field	Bits	Type	Description
FWDKQ	4	rw	Functional Watchdog Keep Question Setup: 0 _B , No influence to question generation in case of window watchdog error 1 _B , Keep question in case of window watchdog error Reset: 0 _B
FWDQG	3	rw	Functional Watchdog Question Generation: 0 _B , Question period 16 1 _B , Question period 256 Reset: 0 _B
WDREN	2	rw	Watchdog Reset Enable Bit: 0_B , reset disabled 1_B , reset enabled Reset: 0_B
LINWE	1	rw	LIN Operation Mode during Watchdog Error Setup: 0_B , receive only mode 1_B , according ComConfig1.LIN Reset: 1_B
CANWE	0	rw	CAN Operation Mode during Watchdog Error Setup: 0_B , receive only mode 1_B , according ComConfig1.CAN Reset: 1_B

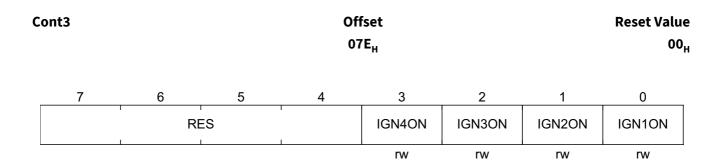
14.1.5 Control Register

C	ont0				fset ′B _H			Reset Valu	
	7	6	5	4	3	2	1	0	
	O8ON	O7ON	O6ON	O5ON	O4ON	O3ON	O2ON	O1ON	
	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Type	Description
O8ON	7	rw	Output8 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
070N	6	rw	Output7 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
O6ON	5	rw	Output6 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
O5ON	4	rw	Output5 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
O4ON	3	rw	Output4 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
030N	2	rw	Output3 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
O2ON	1	rw	Output2 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
010N	0	rw	Output Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B

C	ont1				fset ′C _H			Reset Value	
	7	6	5	4	3	2	1	0	
	O16ON rw	O15ON rw	O14ON rw	O13ON rw	O12ON rw	O11ON rw	O10ON rw	O9ON rw	

193



Field	Bits	Туре	Description
0160N	7	rw	Output16 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0150N	6	rw	Output15 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0140N	5	rw	Output14 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
0130N	4	rw	Output13 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
0120N	3	rw	Output12 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0110N	2	rw	Output11 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0100N	1	rw	Output10 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
O9ON	0	rw	Output9 Switch on Control Bit: $0_{\rm B}$, off $1_{\rm B}$, on Reset: $0_{\rm B}$

C	ont2				fset 'D _H			Reset Value	
	7	6	5	4	3	2	1	0	
	O24ON	O23ON	O22ON	O210N	O20ON	O190N	O18ON	O17ON	
	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Type	Description
0240N	7	rw	Output24 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0230N	6	rw	Output23 Switch on Control Bit: 0 _B , off 1 _B , on Reset: 0 _B
0220N	5	rw	Output22 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
O210N	4	rw	Output21 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0200N	3	rw	Output20 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0190N	2	rw	Output19 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0180N	1	rw	Output18 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
0170N	0	rw	Output17 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B

TLE8888-1QK Engine Machine System IC

Field	Bits	Туре	Description
IGN4ON	3	rw	Ignition Output4 Switch on Control Bit: 0 _B , off 1 _B , on
			Reset: 0 _B
IGN3ON	2	rw	Ignition Output3 Switch on Control Bit: $0_{\rm B}$, off $1_{\rm B}$, on Reset: $0_{\rm B}$
IGN2ON	1	rw	Ignition Output2 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B
IGN1ON	0	rw	Ignition Output1 Switch on Control Bit: 0_B , off 1_B , on Reset: 0_B

196

SPI

15 SPI

Alternatively to the MSC communication interface a SPI interface is available. It uses the pins *SIP*, *SDO*, *CSN* and *FCLP*. The configuration is done via the pins *FCLN* and *SIN*. *FCLN* must be connected to *VDDIO* and *SIN* must be connected to *AGND*. In SPI mode the output stage of the pin *SDO* is set to push pull operation (definition and description see **Chapter 13.2** and **Chapter 13.4**).

The definition of the registers is the same as for the MSC communication (see **Chapter 14**), only the frame is SPI specific (see **Figure 67** and **Chapter 15.1**). Multiple read commands are not allowed.

There is no monitoring of valid transmissions implemented (like MSC monitoring, see **Chapter 13.1.1**).

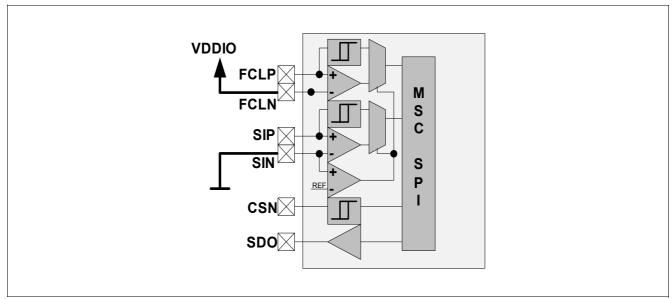


Figure 66 Block diagram of the SPI interface

15.1 SPI Protocol

The principle of the SPI communication is shown in **Figure 67**. The message from the microcontroller must be sent LSB first. The data from the *SDO* pin is sent LSB first. The TLE8888-1QK samples data from the *SIP* pin on the falling edge of *FCLP* and shifts data out of the *SDO* pin on the rising edge of *FCLP*. Each access must be terminated by a rising edge of *CSN*.

All SPI messages must be exactly 16 bits long, otherwise the SPI message is discarded and the bit **COMFE** in diagnosis register **ComDiag** is set to "1".

There is one message delay in the response to each message (i.e. the response for message N will be returned during message N+1).

There are two valid access possible:

- Write access to registers with write permission: the answer is 1 for the R/W bit, the address and the content of the register
- Read access to register with read permission: the answer is 0 for the R/W bit, the address and the content of the register

Everything else is not executed.

Write access to multiple read commands are also not valid in SPI mode.

Engine Machine System IC

SPI

<u>Status Flag Indication:</u> after the falling edge of *CSN* and before the first rising edge of *FCLP* the level of the *SDO* indicates an OR combination of the status of the central failure bit **CF** and the central overtemperature bit **COT** of the diagnosis register **Diag0**.

With this feature during every SPI communication a check of the diagnosis status can be done without additional read access of the diagnosis register.

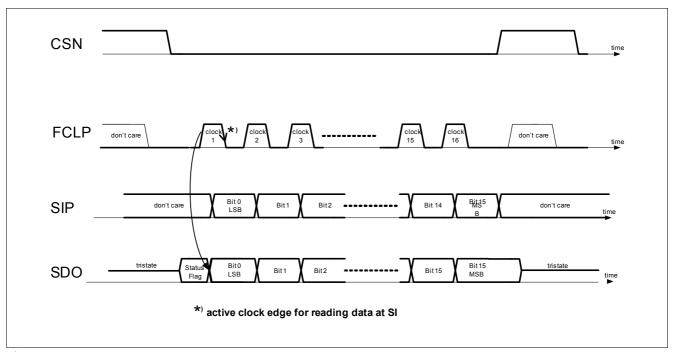
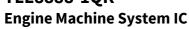


Figure 67 SPI Protocol

SPI Answers:

- during power on reset: SPI commands are ignored, SDO is always tristate
- <u>after power on reset:</u> the address and the content of the status register **OpStat0** is transmitted with the next SPI transmission
- during watchdog reset: SPI commands are ignored, SDO has the value of the status flag
- <u>after watchdog reset:</u> the address and the content of the diagnosis register **FWDStat1** is transmitted with the first SPI transmission after the low to high transition of *RST*
- <u>after a read or write command:</u> the address and content of the selected register is transmitted with the next SPI transmission (for not existing addresses or wrong access mode the data is always "0")
- <u>after an invalid communication frame:</u> the address and the content of the diagnosis register **Diag0** is transmitted with the next SPI transmission and the bit **COMFE** in diagnosis register **ComDiag** is set to "1"

Engine Machine System IC


SPI

15.2 SPI Frame Definition

Overview SPI Frame

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CD7	CD6	CD5	CD4	CD3	CD2	CD1	CDO	С7	C6	C 5	C4	С3	C2	C1	СО	

Field	Bits	Туре	Description
CO	0		R/W Bit: defines the access to the register
C[7:1]	[7:1]		Address Bits, definition see Chapter 14
CD[7:0]	[15:8]		Data Bits, definition see Chapter 14

SPI

Electrical Characteristics SPI 15.3

Electrical Characteristics Communication

 $V_S = 13.5 \text{ V}$, $V_{VSV} = 5 \text{ V}$, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin, (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
SPI detection threshold for SIN	VFCLN_SPI	0.3	-	0.7	V		P_15.1	
Single ended mode detection threshold for <i>FCLN</i>	VFCLN_singl e	2	_	3	V		P_15.2	
SDO						see Chapter 13.4	P_15.3	
Input low level (SIP, FCLP, CSN)	VINn_L	-0.3	_	0.8	V		P_15.4	
Input high level (SIP, FCLP, CSN)	VINn_H	1.6	_	5.5	V		P_15.5	
Input hysteresis (SIP, FCLP, CSN)	VINn_Hys	0.1	-	0.5	V		P_15.6	
Clock frequency	fSPI	_	-	5	MHz		P_15.7	

Engine Machine System IC

infineon

EMC Requirements

16 EMC Requirements

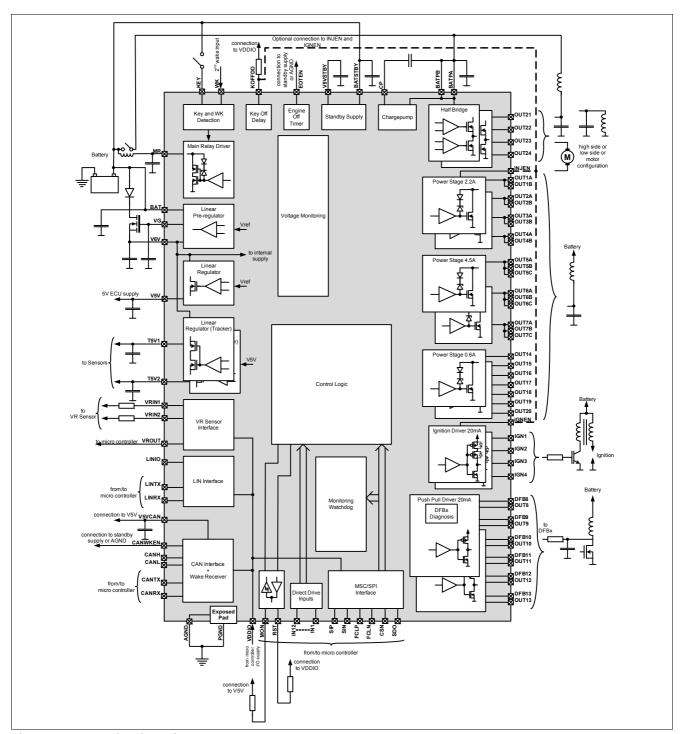
16.1 ISO Pulse Tests

Definitions for all ISO pulse test on application including the TLE8888-1QK are regarding standard ISO 7637-2:2011. The following amplitude definitions for the tests are required:

- Pulse 3a: VS = -140 V, all outputs available on ECU connector
- Pulse 3b: VS = 140 V, all outputs available on ECU connector
- Pulse 5: VS = +38.5 V (clamped), td = 400 ms (ECU reset is permitted under this test, outputs will be switched off)

The tests are performed only on application level.

Application Information 17


The information in this chapter is given as a hint for the implementation of the device only and shall Note:

not be regarded as a description or warranty of a certain functionality, condition or quality of the

device.

These are very simplified examples of application circuits. The functions must be verified in the real Note:

application.

Application Diagram Figure 68

17.1 Supply Systems

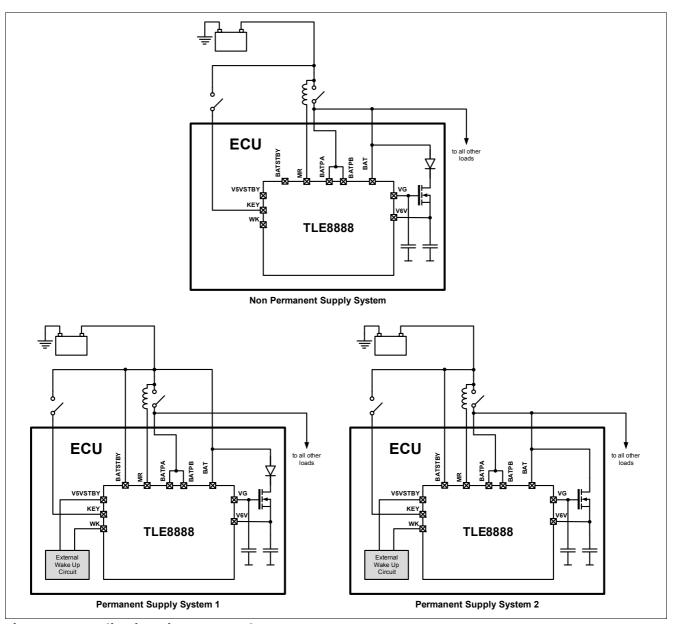


Figure 69 Application Diagram Supply Systems

In **Figure 69** three setups for connecting the battery supply to the TLE8888-1QK are shown. With non permanent battery supply there is no standby supply available and all functions related to this supply (e.g. engine off timer) are not active. Wake-up could be done by a signal at the pins *KEY* and *WK*.

In a permanent supply system the standby supply is permanently connected to the battery and all functions related to this supply can be enabled (e.g. CAN remote wake-up). The pins *BATPA* and *BATPB* must be connected to the switched battery supply because there is no special mode to reduce the current consumption in standby mode. The pin *BAT* and the external MOSFET of the pre regulator are allowed to be connected permanently to the battery.

17.2 VR Sensor Interface

For Hall sensor signal detection in **Figure 70** and **Figure 71** different proposals for the external devices are shown. For the description of the set ups see **Chapter 10**.

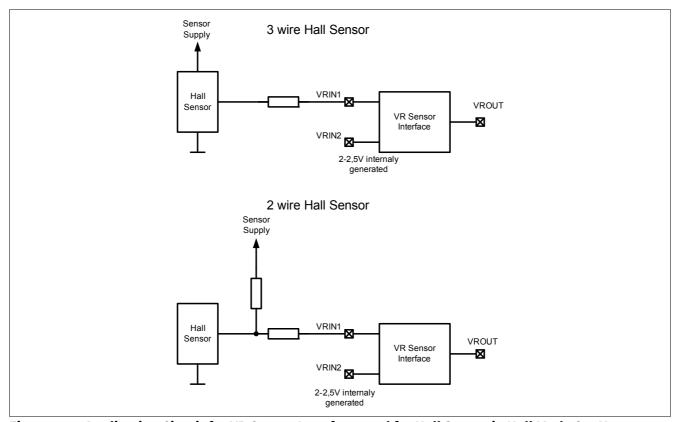


Figure 70 Application Circuit for VR Sensor Interface used for Hall Sensor in Hall Mode Set Up

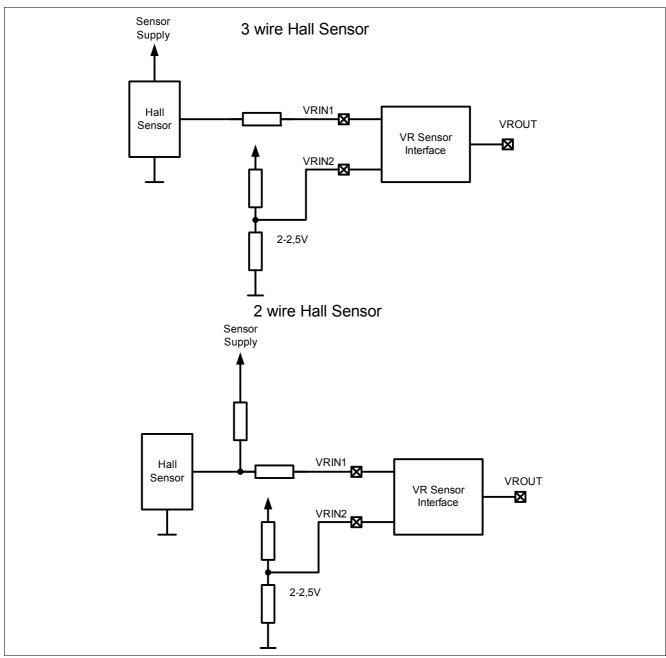


Figure 71 Application Circuit for VR Sensor Interface used for Hall Sensor in Auto, Semi Auto and Manual Detection Mode Set Up

18 Package Outlines

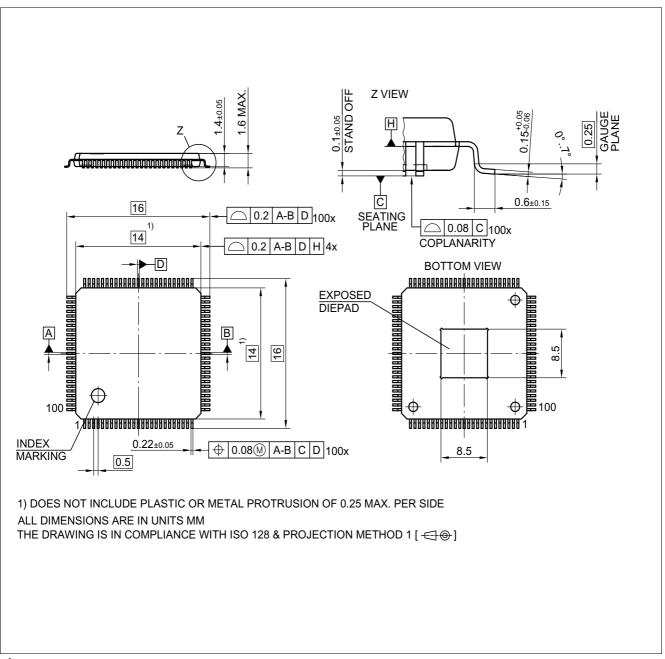


Figure 72 LQFP-100

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

TLE8888-1QK **Engine Machine System IC**

Revision History

Revision History 19

Revision	Date	Changes
V1.2	2017-02-10	updated to new layout, package picture (page 5) and package outline picture (page 206) updated, paragraph below package outline picture removed
V1.1	2014-08-20	on all pages: general name changed to "TLE8888-1QK" and date and revision
V1.1	2014-08-20	page 5 and 6: 2 device types added
V1.1	2014-08-20	page 29: parameter P_5.3.24 min/max changed
V1.1	2014-08-20	page 52: parameter P_7.5.2 and P_7.5.11 max defined
V1.1	2014-08-20	page 57: parameter P_8.8.38, P_8.8.39, P_8.8.40, P_8.8.42, P_8.8.43 and P_8.8.44 definition improved
V1.1	2014-08-20	page 58: parameter P_8.8.45 definition improved
V1.1	2014-08-20	page 62: table 25 corrected
V1.1	2014-08-20	page 100: PGND reference pin changed
V1.1	2014-08-20	page 2, 9, 10, 11, 17, 18, 20, 21, 22, 26, 38, 39, 43, 44, 45, 48, 49, 52, 56, 58, 196: missing variable names added
V1.0	2014-03-13	Data Sheet

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, Canpak™, CIPOS™, CIPURSE™, CoolGan™, CoolGan™, CoolMos™, CoolMos™, CoolSiC™, Dave™, Di-Pol™, DirectFet™, DrBlade™, EasyPIM™, EconoBridge™, EconoDual™, EconoPack™, EconoPack™, EconoPim™, EiceDriver™, eupec™, Fcos™, Ganpowir™, Hexfet™, Hitfet™, HybridPack™, iMotion™, IRam™, Isoface™, Isopack™, LeDrivir™, Litix™, Mipaq™, Modstack™, my-d™, Novalithic™, Optiga™, Optimos™, Origa™, Powiraudio™, Powirstage™, PrimePack™, PrimeStack™, Profet™, Pro-Sil™, Rasic™, Real3™, SmartLewis™, Solid Flash™, Spoc™, StrongIrFet™, SupirBuck™, Tempfet™, Trenchstop™, Tricore™, UHVic™, XHP™, XMc™.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-02-10 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.