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About this document 

Scope and purpose 

This document helps you understand all the various aspects of the ModusToolbox™ Machine Learning (ML) 
solution. 

Document conventions 

Convention Explanation 

Bold Emphasizes heading levels, column headings, menus and sub-menus 

Italics Denotes file names and paths. 

Courier New 
Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names, 

directories, command line inputs, code snippets 

File > New Indicates that a cascading sub-menu opens when you select a menu item 

Abbreviations and definitions 

The following define the abbreviations and terms used in this document: 

• ML – Machine Learning 

• NN –neural network  

• NPZ – NumPy array in zipped format [1]  

• TFLM – TensorFlow Lite for microcontrollers 

References 

Refer to the following documents and websites for more information as needed: 

• ModusToolbox™ tools package user guide  

• ModusToolbox™ Machine Learning Configurator guide  

• https://github.com/infineon/ml-inference  

• https://github.com/infineon/ml-middleware  

• https://github.com/infineon/ml-tflite-micro  

• https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-

machine-learning 

 

                                                                    

1  When unzipped, it provides validation data as NumPy arrays used by the tool. 

https://www.infineon.com/ModusToolboxUserguide
https://www.infineon.com/ModusToolboxMLConfig
https://github.com/infineon/ml-inference
https://github.com/Infineon/ml-middleware
https://github.com/infineon/ml-tflite-micro
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-machine-learning
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-machine-learning
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Overview 

1 Overview 

ModusToolbox™ is a set of tools to help you develop applications for Infineon devices. These tools include GUIs, 
command-line programs, software libraries, and third-party software that you can use in just about any 
combination you need. For more information, refer to the ModusToolbox™ tools package user guide. One part 
of the ModusToolbox™ ecosystem is the ML solution.  

The ML 2.0 solution is a set of tools, libraries, and middleware that will help you build, evaluate and benchmark 
pre-trained ML models. The ML libraries easily and efficiently run the inference on an Infineon MCU. These 

libraries and tools help you rapidly deploy neural network (NN)-based classification-type ML applications. 

Note: Data collection and training algorithms are not part of the ModusToolbox™ ML 2.0 release. 

The ML solution also provides a configurator to import pre-trained machine learning models and generate an 
embedded model (as C-code or binary file). This generated model can be used with the ML library along with 

your application code for a target device. The tool also lets you fit the pre-trained model of choice and evaluate 

its performance. 

The ML models are often created on standard training frameworks such as TensorFlow, Keras, and PyTorch. 
They are kept in various formats such as H5, TFLite, and ONNX, etc. The configurator converts the model to run 

in the Infineon MCU, as well as to run regression to assess performance degradation in the ML model, if any, in 
the process of conversion. If data is not available, it can load random data to do such verification. The most 
popular ML models are NN-based and the ModusToolbox™ ML tooling is targeted for NN-based ML models. 

During the assessment, you can validate the performance of the optimized model by checking performance 

against test data (accuracy), and visualize the implementation resource requirements, such as the number of 

cycles to run the inference engine and the memory size of the NN model and inference working memory. The 
report includes data on the inference engine when running on a computer (reference model with the best 

accuracy and higher memory requirements), and on the target device (limited hardware resources). 

For more information about the ML solution, visit this website: 

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-

machine-learning/ 

 

https://www.infineon.com/ModusToolboxUserguide
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-machine-learning/
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-machine-learning/
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2 Getting started 

To begin using the ML tools, you must first install the ModusToolbox™ tools package version 3.0.0 or higher. 
This tool is located on the Infineon website: 

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxpackmachinelearning 

Alternatively, you can use the Infineon Developer Center (IDC) to install the ModusToolbox™ tools package and 
Machine Learning pack. Download the IDC launcher using this link: 

https://www.infineon.com/cms/en/design-support/tools/utilities/infineon-developer-center-idc-

launcher/ 

After installing the IDC tool, open the launcher and search for the following tools and install them: 

• ModusToolbox tools package 3.0.0 or higher 

• ModusToolbox Machine Learning pack 

You must also install the QEMU tool on your computer. Refer to the Software requirements section for more 
details. 

After all the tools are installed, you can get started with a code example. Infineon provides ML code examples, 
which include README.md files that guide you through the process to create and configure the application. 

There are a few ways to do this: 

2.1 Creating a ModusToolbox™ application 

• If you're new to the ModusToolbox™ environment, use the Eclipse IDE for ModusToolbox™. Refer to the 

quick start guide as needed. 

• If you prefer not to use Eclipse, use the ModusToolbox™ Project Creator as a stand-alone tool and look 
for starter applications whose names start with "ML." Refer to the Project Creator user guide for more 

details. 

Note: If you created an application before installing the Machine Learning pack, you must run 

make getlibs or use the Library Manager Update button to regenerate files before using the 
configurator for that application. 

2.2 Downloading a code example 

The following are direct links to a couple of ML code examples: 

https://github.com/Infineon/mtb-example-ml-profiler 

https://github.com/Infineon/mtb-example-ml-gesture-classification 

As we add more code examples, you can access the complete list using the following link: 

https://github.com/Infineon?q=mtb-example-ml%20NOT%20Deprecated  

 

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxpackmachinelearning
https://www.infineon.com/cms/en/design-support/tools/utilities/infineon-developer-center-idc-launcher/
https://www.infineon.com/cms/en/design-support/tools/utilities/infineon-developer-center-idc-launcher/
https://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/ModusToolboxProjectCreator
https://github.com/Infineon/mtb-example-ml-profiler
https://github.com/Infineon/mtb-example-ml-gesture-classification
https://github.com/Infineon?q=mtb-example-ml%20NOT%20Deprecated
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3 Features and architecture 

The following diagram shows a very high-level view of what is available as part of ModusToolbox™ software. 
This is not a comprehensive list. It merely conveys the idea that there are multiple resources available to you. 

The ML solution is provided as a pack that you install in addition to the standard ModusToolbox™ tools 

package. The ML middleware is available through GitHub and used by the applicable code examples and 
reference designs. 

 

3.1 Features 

• Supports the TFLite and H5 Model format 

• Supports two types of inference engines: 

• TensorFlow Lite for microcontrollers (TFLM) inference engine 

• Infineon inference engine 

• Supports the following characteristics of NNs: 

• Core NN Kernels: MLP, GRU, Conv1d, Conv2d, LSTM 

• Support NN Kernels: flatten, dropout, reshape, input layer 

• Activations: relu, softmax, sigmoid, linear, tanh 

• Input Data Quantization Level: 

• 32-bit float 

• 16/8-bit integer 

• NN Weights Quantization Level: 

• 32-bit float 

• 16/8-bit integer 

• Regression Data Evaluation 

• Cycle and memory estimation 

• PC based inference engine 

• Target device-based inference engine (optimized) 
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3.2 Components 

The ModusToolbox™ ML solution consists of four major components: 

• ML Configurator: a GUI tool with options to load pre-trained models and test data. It also provides graphical 

plots and accuracy data when validating the optimized models against test data. 

• ML core tool: a collection of Python scripts (provided as an executable) to perform parsing, regression and 

conversion of NNs.  

• ML library: includes middleware helper functions, inference engine libraries to work with an NN model and 

input data. 

• ML code examples: a collection of applications on how to use the ML libraries. 

The following figure shows how these four assets interconnect with each other. 

ML Tools

Pretrained 
NN Model

ML Code Examples

ML Library

Infineon 
Inference 

Engine Library 
(.a)

NN Model
[mtb_ml_models] 

(.h, .c, .bin)

ML Middleware (abstraction)
(.h , .c)

(mtb-example-ml-XYZ)

Regression Data
[mtb_ml_regression_data]

(.h, .c, .bin)

Validation 
Input/Output 

Data

ML Configurator 
GUI

(Executable)

ML Core Tools
(Python 

Executable)
NN Info

[info] 

(.txt, .json)

TFLM 
Inference 

Engine Library 
(.a)

 

3.3 Development flow 

 

ModusToolbox™ 
Setup

•Open MTB

•Choose 
Development kit

•Select ML code 
example project

Deep Learning 
Model Import 

•Open ML GUI 
from MTB

•Import Keras-
HDF5 or TFLite

•Generate/Import 
Test Data for 
validation

Pre-Validation

•Generate 
Embedded 
Model(.c/.h,bin)

•Check 
performance, 
tweak user 
inputs

Bench Validation

•Build/Program 
PSoC 6 with 
project

•Compare Pre-
validation data 
with bench 
results
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3.4 Hardware requirements 

This solution can run on any PSoC™ 6 MCU. When it comes to designing the NN, pay special attention to the 
memory size and performance requirements to run the inference engine on the target device. The 

recommended hardware/kit platform is the CY8CKIT-062S2-43012. Other PSoC™ 6-based platforms can be 
targeted as well, but please note the documentation and code examples may not work as expected. 

To better demonstrate the capability to run ML applications on the PSoC™ 6 MCU, sensor data needs to be 

sampled by the device. The CY8CKIT-028-SENSE IoT Sense Expansion kit provides a collection of sensors that 
are compatible with all Arduino-based PSoC™ 6 MCUs. For more details about this kit, visit this webpage: 
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-028-sense/. 

3.5 Software requirements 

In addition to installing the ModusToolbox™ tools package and Machine Learning pack, as described under 
Getting started, this ML solution also requires the open source software QEMU. You can download it at this 
page: 

https://www.qemu.org/download/ 

Please download and install version 6.2.0 based on your applicable operating system. If you have already 
installed a newer version of QEMU, we recommend that you uninstall it first. 

3.5.1 Windows 

On Windows, use the executable provided from the QEMU website (link). After installing, create a new system 

variable called IFX_MTBML_QEMU_PATH and set it to the folder path of the qemu-system-arm executable. For 

example: 

C:\Program Files\qemu (or whatever path you installed QEMU) 

 

Note: Ensure that the ML Configurator tool and Eclipse IDE for ModusToolbox™ 3.0 are closed when 

creating/updating the system variable. You might need to restart your computer. 

3.5.2 macOS 

On MacOS, install QEMU using these instructions for version 6.2.0: 

> wget https://raw.githubusercontent.com/Homebrew/homebrew-

core/71cdf768e447b09cf607adcd100060347678dc84/Formula/qemu.rb 

> export HOMEBREW_NO_INSTALL_CLEANUP=1 

> export HOMEBREW_NO_INSTALLED_DEPENDENTS_CHECK=1 

> brew install ./qemu.rb 

Note: You might need to install some other dependency packages for this installation. Please follow 

instructions from this link: 

https://brew.sh/ 

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-028-sense/
https://www.qemu.org/download/
https://qemu.weilnetz.de/w64/2021/qemu-w64-setup-20211215.exe
https://brew.sh/
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Once QEMU has been installed, you need to create a new system variable IFX_MTBML_QEMU_PATH and set it to 
the path where the QEMU was installed. For example, include the following command in your .bash_profile: 

> export IFX_MTBML_QEMU_PATH="/usr/local/opt/qemu/bin" 

3.5.3 Linux 

On Linux, if your distribution provides qemu-6.2.0 (e.g. Ubuntu 22.04) you can install via your package manager. 
Otherwise, build locally from the source code (version 6.2.0) downloaded from the QEMU website. Follow these 
build instructions: 

> wget https://download.qemu.org/qemu-6.2.0.tar.xz 

> tar xvJf qemu-6.2.0.tar.xz 

> cd qemu-6.2.0 

> ./configure --cc=gcc --cxx=g++ --target-list=arm-softmmu,aarch64-softmmu --

static --prefix=/usr/local/qemu-6.2.0 

> make 

> make install 

Note: You might need to install some other dependency packages for the build. Here is a list of 
commands to run first: 

sudo apt-get update 

sudo apt-get install build-essential 

sudo apt-get install ninja-build 

sudo apt-get install libglib2.0-dev 

sudo apt-get install -y libpixman-1-dev 

 

Once QEMU has been installed, you need to create a new system variable IFX_MTBML_QEMU_PATH and set it 

to the path provided to the ./configure --prefix argument. For example, include the following command in 

your ".profile" or ".bashrc": 

> export IFX_MTBML_QEMU_PATH="/usr/local/qemu-6.2.0/bin " 
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4 ModusToolbox™ ML Configurator 

The ML Configurator accepts a pretrained ML model and generates an embedded model (as a C header or 
binary file), which can be used along with your application code for a target device. The tool lets you fit the 

pretrained model of choice to the target device with a set of optimization parameters. The tool is provided as a 

GUI and a command line tool that provide the same functionality. The GUI includes its own user guide, 
available from the Help menu. The command line tool includes a -h switch to display the various options 
available.  

The following shows the design flow for a typical application. The ML Configurator forms a vital part in fitting 
the model to the target platform. 

 

The ML Configurator has two options for inference engine: 

• TFLM inference engine 

• Infineon inference engine 

Each option comes with a different set of configurations, as explained in the next sections. 

Note: The labeling, augmentation and training steps are handled by a third-party tool or machine 
learning framework, such as TensorFlow. 

Note: When generating code or validating a model with the ML Configurator, you might see some 

warning messages related to the TensorFlow AutoGraph module. These warnings should not 
cause any problem and can be safely ignored. For more information about this, access the link 
provided in the warning message. 

4.1 Choosing a model 

The first step when using the ML Configurator tool is to choose a pre-trained NN model. 

Note: There are many formats to define a NN model. The format of the NN depends on the platform used 
for training among other things.  

Note: The TensorFlow framework supports Keras-H5 and TFLite model format. When generating Keras-

H5 format with TensorFlow framework, you must use the TF v2.4.0 or later; otherwise, the model 
might fail when loading to the ML Configurator. 
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The following table shows some popular formats: 

Format Supported in v2.x? File extension Link 

Keras-H5 Yes .h5, .hdf5 https://keras.io/ 

Tensorflow-protobuf No .pb https://www.tensorflow.org/ 

TFLM Yes .tflite https://www.tensorflow.org/lite 

Caffe No .caffemodel .prototxt https://caffe.berkeleyvision.org/ 

PyTorch No .pkl https://pytorch.org/ 

Open NN Exchange No .onnx https://onnx.ai/ 

 

If using the TFLM inference engine with a Keras-H5 model and quantization enabled, you must also provide 
calibration data. The following table shows coverage items by each supported format. 

Format Coverage 

Keras-H5 

(Layers) 

Activation / Add / AveragePooling1D  / AveragePooling2D / BatchNormalization / Clipped RELU / 

Concatenate / Conv1D / Conv2D / Dense / DepthwiseConv2D / Dropout / Flatten / 

GlobalAveragePolling1D / GlobalAveragePooling2D / GlobalMaxPooling1D / GlobalMaxPooling2D / GRU[2] 

/ InputLayer / LeakyReLU / LSTM[2] / MaxPooling1D / MaxPooling2D / ReLU / Reshape / SeparableConv2D 

/ Softmax / Transpose / Upsampling 

TFLM 

(Operators) 

Abs / Add / Add_N / Arg_Max/ Arg_Min / Assign_Variable / Average_Pool_2D / Batch_To_Space_Nd / 

Call_Onc / Ceil / Concatenation / Conv_2D / Cos / CumSum / Depth_To_Space / Depthwise_Conv_2D / 

Dequantize / DetectionPostprocess / Elu / Equal / EthosU / Expand_Dims / Floor / Floor_Div / Floor_Mod 

/ Fully_Connected / Greater / Greater_Equal / Hard_Swish / L2_Normalization / L2_Pool_2D / Leaky_Relu 

/ Less / Less_Equal/  Log / Logical_And / Logical_Not / Logical_Or / Logistic / Max_Pool_2D / Maximum / 

Mean / Minimum / Mul / Neg / Not_Equal / Pack / Pad / PadV2 / Prelu / Quantize / Read_Variable / 

Reduce_Max / Relu / Relu6 / Reshape / Resize_Bilinear / Resize_Nearest_Neighbor / Round / Rsqrt / 

Shape / Sin /Softmax / Space_To_Batch_Nd / Space_To_Depth / Split / Split_V / Sqrt / Square / Squeeze 

/ Strided_Slice / Sub / Svdf / Tanh / Transpose / Transpose_Conv / Unpack / Var_Handle / Cast / 

CircularBuffer / Exp / Fill / Gather / GatherNd  / If / MirrorPad / Slice / ZerosLike 

4.2 Importing test data 

You can input your own test data for verification. Alternatively, you can use the ML Configurator to generate 
random test data for validation. To input the test data, click on the Validate in Desktop or Validate on Target 
tab and choose the desired settings. The data can be stored with the following dataset structures: 

4.2.1 In a single CSV file (ML format) 

The CSV file must contain only numeric data, no header and no sample ID columns. You must specify the first 
feature column and the number of features in the ML Configurator. You also must specify the first target column 
and the number of targets. The tool supports 1D feature data only. If your model requires 2D or 3D feature data, 

use the NPZ format instead. 

                                                                    

2  The GRU and LSTM layers from the Keras-H5 are not supported by the TFLM inference engine; only with the Infineon inference 

engine. 

https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/lite
https://caffe.berkeleyvision.org/
https://pytorch.org/
https://onnx.ai/
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4.2.2 In a single NPZ format file (uses NumPy) 

Features and labels can be loaded from a single NumPy compressed file. The feature and label must have been 
saved in the following order when creating the NumPy file: 

import numpy as np 

x = np.ones((n_samples, n_features)) 

y = np.ones((n_samples, n_labels)) 

np.savez('saved_features', x , y) 

In this example, we populate x and y with "ones". In a real scenario, you should populate with actual data, 
where n_samples is the number of samples; n_features is the number of features; and n_labels is the 
number of labels. 2D and 3D feature data are also supported, represented as: 

• 2D: (n_samples, a, b) 

• 3D: (n_samples, a, b, c) 

4.2.3 In a folder format 

This format separates the data by label. A base directory contains subfolders named by label, containing data 
files (nodes) with data for each label. The only supported node file formats are JPEG and CSV. 

4.3 Evaluating a model 

Based on the imported test data, you can feed the input test data to the inference engine emulated on the 
computer or in the target, then analyze the result from the inference engine with the output test data. You may 

also choose the quantization in which the output model needs to be generated. There are three options: 

• 8-bit 

• 16-bit [not available with TFLM] 

• Floating number 

The model conversion takes the reference model imported to the tool and converts it to C code for floating-
point and integer. The floating-point mode uses input and model weights that are 32-bit precision and the 

regression on this converted model yields the highest accuracy. Although floating-point is more accurate than 

integer mode, it requires the most memory, and is not always desirable to embed on the target device. Integer 
has the following fixed-point modes: 

• 16x16 bit precision (16-bit input, 16-bit weights) 

• 16x8 bit precision (16-bit input, 8-bit weights) 

• 8x8 bit precision (8-bit input, 8-bit weights) 

As a rough rule of thumb, the 16x16 format gives the best trade-off between model accuracy and size. 
Specifically for the PSoC™ 6 platform, 16-bit operations are more computationally efficient when compared to 

8-bit. A small degradation of accuracy can be expected when converting the floating-point model to integer 
modes. The ML Configurator converts and performs verification tests on both, and you can select which model 

best suits your specifications. 

In summary, take the following into consideration when selecting the model for the PSoC™ 6 platform. 

Model on Target Device Model Size Working Memory Cycles Requirements Accuracy Dynamic Range 

Floating-point  High High High High Excellent 

Fixed-point 16x16  Medium Medium Low Medium Good 

Fixed-point 16x8 Small Medium Medium Medium Good 

https://numpy.org/
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Model on Target Device Model Size Working Memory Cycles Requirements Accuracy Dynamic Range 

Fixed-point 8x8  Small Low Medium Low Low 

When validating the device on the PC, a report tells if the model passed or failed. It considers as a pass when 
the accuracy is equal or greater than 98%. 

In the ML Configurator, if you choose the Infineon Inference Engine , there is an "Advanced scratch memory 
optimization" check box, which is enabled by default. This feature reduces the amount of scratch memory 
required by the Infineon inference engine; however, it might affect the accuracy and/or the number of cycles of 

the inference engine. 

If you choose the TFLM inference engine  and provide a Keras-H5 model, a model calibration group box 

appears. You can input some calibration data to improve the accuracy of the model after quantization. The 

format options of this calibration data are the same as the one used for validation. If you provide a *.tflite 
model with the TFLM inference engine, there is no option to enable model quantization. However, if a *.tflite 

model was created using int8x8 quantization, you must indicate the imported model has such quantization in 
the ML Configurator. By default, it assumes the *.tflite model uses floating point. 

Another feature provided when using the TFLM inference engine is to run it without an interpreter (TFLM 

Interpreter-less), which can reduce the amount of memory required by the inference engine. However, this 

option doesn’t allow run the validation in desktop option, only in the target. For more information about this 
feature, refer to the TFLM inference engine library section. 

And last, the TFLM inference engine has also a feature to take advantage of sparsity if the trained model utilizes 

pruning. Note that this document does not cover any guidelines on how to prune a model during the training 

process. It assumes the developer provides a pre-trained pruned model, which then can be further optimized 

by packing sparse weights present in the model, saving memory when deploying the model to the target 
device. 

4.4 Exporting model on target device 

When the model has been converted with an acceptable accuracy and satisfied the memory requirements for 
the target device, it can now be exported on the target device. The ML Configurator generates a header file or 

binary file containing the simplified model with the desired quantization. It can also export regression data to 
profile the model in the target device.  

All this data can be exported to a directory you specify, which usually is part of the application in development. 
The following shows a summary of files exported by the tool. These files depend on the inference engine and 

quantization selected. 

Assume the name of the model is "NN" and the root folder is "mtb_ml_gen". The "<type>" can assume float, 
int8x8, int16x8, or int16x16, and the "<inference>" can assume tflm (runtime interpreter), tflm_less (interpreter-

less) or ifx (Infineon inference engine). 

Folder / File Name Description 

/mtb_ml_gen/ Root folder. Name is chosen by the user 

/mtb_ml_gen/info/ General information folder about the model (for internal use only) 

/mtb_ml_gen/model_gen_dir/ Folder that stores modified/converted model files (for internal use only) 

/mtb_ml_gen/mtb_ml_models/ Folder that contains the model weights/bias and parameters 

     NN_<inference>_model_<type>.h Header file with model array [ifx,tflm] or function [tflm_less] declaration 

     NN_<inference>_model_<type>.c C file containing the flat-buffer array definition for weights/bias [ifx, tflm] 

     NN_<inference>_model_<type>.cpp C++ file containing the implementation of TFLM functions [tflm_less] 
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Folder / File Name Description 

     NN_<inference>_model_<type>.bin Weights/bias array in binary format [ifx, tflm] 

     NN_<inference>_model_prms.bin Parameters array in binary format [ifx only] 

/mtb_ml_gen/mtb_ml_regression_data/ Folder that contains regression data 

     NN_<inference>_x_data_<type>.h Header file with input data array declaration 

     NN_<inference>_x_data_<type>.c C file containing the input data array definition 

     NN_<inference>_x_data_<type>.bin Input data array in binary format 

     NN_<inference>_y_data_<type>.h Header file with output data array declaration 

     NN_<inference>_y_data_<type>.c C file containing the output data array definition 

     NN_<inference>_y_data_<type>.bin Output dt array in binary format 

Note: Multiple models can be stored in the same folder, since the name of the MODEL is used as a prefix 
for all the files. 

Note: Regression data generated for the "tflm" and "tflm_less" is the same, so the <inference> is set to 
"tflm" for both. 

The binary files are useful when storing the data in a file system in the target device. If using header files, the 
data is available as C arrays with the name format shown in the following table. The header file also provides 

some #define about the model: 

File name: NN_<inference>_model_<type.h> 

Array name Description 

NN_model_prms_bin[] Model parameters [ifx only] 

NN_model_bin[] Weights/bias [tfm, ifx] 

DEFINE name Description 

NN_MODEL_PRMS_BIN_LEN Length of the parameters array in bytes [ifx only] 

NN_MODEL_BIN_LEN Length of the weights/bias array in bytes [ifx, tflm] 

NN_ARENA_SIZE Size of the TFLM arena in bytes [tflm only] 

NN_MODEL_NUM_OF_LAYERS Number of layers [ifx only] 

NN_MODEL_NUM_OF_RESIDUAL_CONN Number of residual connections [ifx only] 

NN_MODEL_INPUT_DATA_SIZE Size of the input layer [ifx only] 

NN_MODEL_OUTPUT_DATA_SIZE Size of the output layer [ifx only] 

NN_MODEL_SIZE_OF_STATE_OUT Size of the state output [ifx only] 

NN_MODEL_SCRATCH_MEM_SIZE Size of the scratch memory in bytes [ifx only] 

 

File name: NN_<inference>_x/y_data_<type>.h 

Array name Description 

NN_x_data_bin[] Input data 

NN_y_data_bin[] Output data 

DEFINE name Description 

NN_X_DATA_BIN_LEN Length of the input data in bytes 

NN_Y_DATA_BIN_LEN Length of the output data in bytes 



  

User guide 14 002-32590 Rev. *H  

  2023-05-23 

ModusToolbox™ Machine Learning user guide 
  

ModusToolbox™ ML Configurator 

Note: The NN_<inference>_model_<type.h> file contains an array with the model weights. By default, it 
stores it in the flash and loads automatically to the RAM. There is an option to place this array in a 

specific section of the memory. Simply define the CY_ML_MODEL_MEM macro in the Makefile to a 

section available in the linker script. In terms of performance, the inference engine runs faster 
when placing the model weights in RAM, and slower if placing in the external memory. 

To place to the internal flash only, you can add: 

DEFINES+=CY_ML_MODEL_MEM=".constdata" 

To place to external memory, you can add: 

DEFINES+=CY_ML_MODEL_MEM=".cy_xip" 

Refer to the https://github.com/Infineon/mtb-example-psoc6-qspi-xip code example to properly 

setup the XIP mode using QSPI.  

This approach does not work with the PSoC™ 64 family, due to the protection settings to work in 
XIP mode. 

The following table shows the main differences between using C header files and binary files. 

File Format Requires File System Easy to Upgrade Access Scalability 

Header File Optional 
No. Part of the firmware 

image 

Easy. Directly access a 

variable in firmware 

Low. Usually placed on 

internal memory. 

Binary Recommended 
Yes. Update a file in the 

filesystem 

Hard. Need to open 

and load a file  

High. Usually placed 

on external memory 

When using the TFLM Interpreter-less feature, the model file generated contains functions instead of arrays. 

The following table shows a summary of the functions and defines. 

File name: NN_tflm_less_model_<type.h> 

Function name Description 

NN_init() Sets up the model with init and prepare steps 

NN_input(index) Returns the input tensor with the given index 

NN_output(index) Returns the output tensor with the given index 

NN_invoke() Runs inference for the model 

NN_inputs() Returns the number of input tensors 

NN_outputs() Returns the number of output tensors 

NN_input_ptr(index) Return the buffer pointer of input tensor 

NN_input_size(index) Return the buffer size of input tensor 

NN_input_dims_len(index) Return the dimension size of input tensor 

NN_input_dims(index) Return the dimension buffer pointer of input tensor 

NN_output_ptr(index) Return the buffer point of output tensor 

NN_output_size(index) Return the buffer size of the output tensor 

NN_output_dims_len(index) Return the dimension size of output tensor 

NN_output_dims(index) Return the dimension buffer pointer of output sensor 

DEFINE name Description 

NN_MODEL_CONST_DATA_SIZE Non-volatile data size used by this model 

NN_MODEL_INIT_DATA_SIZE Initialized volatile data size used by this model 

NN_MODEL_UNINIT_DATA_SIZE Uninitialized volatile data size used by this model 

https://github.com/Infineon/mtb-example-psoc6-qspi-xip
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The input regression data (x_data) contains not only the input data, but also the data input type, number of 
inputs in the first layer of the NN, the number of samples and the Q-format. Here is how to parse the data: 

Location Description 

byte 0 Data input type:  0 → Unknown 

                                   1 → Float 32-bit 

                                   2 → Integer 8-bit 

                                   3 → Integer 16-bit 

byte 1 

byte 2 

byte 3 

byte 4 

Number of samples in the dataset 
byte 5 

byte 6 

byte 7 

byte 8 

Number of nodes in the first layer (input) or 

frame size of the sample dataset 

byte 9 

byte 10 

byte 11 

byte 12 
Q-format of the sample dataset. Indicates 

the number of fraction bits 

[Only used for Infineon inference]  

byte 13 

byte 14 

byte 15 

byte 16 
Data samples 

byte … 
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4.5 Streaming regression data to the Device 

The ML 2.0 solution comes with a feature that enables streaming the regression data to the target device 
through the UART. Instead of storing the regression data locally, as explained in the previous section, the ML 

Configurator tool streams the exact same data to the target device. Here is the overall sequence diagram of the 
protocol in place. 

 

The simplest way to leverage the streaming capability is to use the mtb-example-ml-profiler code example. 

Ensure the operating system used to build this code example and run the ML configurator tool are the same. If 
they are different, the UART baud rate configured in the firmware needs to change to match the following 
speed: 

Operating System Windows Linux macOS 

UART baud rate  1 Mbps 1 Mbps 115.2 Kbps 

To change the baud rate in the code example, open the main.c file and set the correct speed to the 
cy_retarget_io_init() function. 

https://github.com/Infineon/mtb-example-ml-profiler
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4.6 Using command line 

The ML Configurator comes with a command line executable, named as ml-configurator-cli. To see all the 
options available, you can type: 

ml-configurator-cli –h 

This command prints the following message: 

 

The option --config requires a configuration file with extension MTBML, which is generated by the ML 
Configurator GUI. 

If the configurator is not used to generate a .mtbml file, then one must be generated before using the ml-

configurator-cli tool. The following example should be used as a template. The JSON file must have an 

extension of .mtbml and use UTF-8 encoding. 

Formatted JSON example: 

{ 

    "app": "ML", 

    "calibration_data": { 

        "active_state": true, 

        "feat_col_count": 784, 

        "feat_col_first": 1, 

        "input_calibration_type": "ML", 

        "input_format": "JPEG", 

        "path": "test_data/test_data.csv", 

        "target_col_count": 1, 

        "target_col_first": 0 

    }, 

    "filetype": "modustoolbox-ml-configurator", 

    "formatVersion": "3", 

    "lastSavedWith": "ML Configurator", 

    "lastSavedWithVersion": "2.0.0", 

    "model": { 

        "framework": "TFLITE", 

        "optimization_ifx": "SIZE", 

        "optimization_tflm": false, 

        "path": "pretrained_models/small_mlp_mnist.h5", 

        "quantization": { 

            "float32": true, 

            "int16x16": false, 

            "int16x8": false, 

            "int8x8": true 

        }, 

        "sparsity_tflm": false, 

Options: 

  -?, -h, --help              Displays help on commandline options. 

  --help-all                  Displays help including Qt specific options. 

  -v, --version               Displays version information. 

  -c, --config <config_file>  Path to the 

                              configuration file. 

  -o, --output-dir <dir>      The path to the 

                              generated source directory. It is either an 

                              absolute path or a path relative to the 

                              configuration file parent directory. 

  --convert                   Analyze and convert 

  --evaluate                  Evaluate 
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        "tflm_model_quantization": "FLOAT" 

    }, 

    "name": "TEST_MODEL", 

    "output_dir": "mtb_ml_gen", 

    "target": "PSoC6", 

    "toolsPackage": "ModusToolbox Machine Learning Pack 2.0.0" 

    "validation": { 

        "feat_col_count": 784, 

        "feat_col_first": 1, 

        "input_format": "JPEG", 

        "input_type": "ML", 

        "max_samples": 1000, 

        "path": "test_data/test_data.csv", 

        "quantization": { 

            "float32": true, 

            "int16x16": true, 

            "int16x8": true, 

            "int8x8": true 

        }, 

        "target": { 

            "target_quantization": "int8x8" 

        }, 

        "target_col_count": 1, 

        "target_col_first": 0 

    }     

} 

The JSON breakdown table gives a description of each object and can be used to edit the example JSON file. All 

fields need to be included, even if not used. 

JSON Breakdown: 

Objects Description Value 

calibration_data 

active_state Enables or disables model calibration section 
true 

false 

feat_col_count Number of feature columns Integer 

feat_col_first Index of first feature column Integer 

input_calibration_type Input data type 

NPZ 

FOLDER 

ML 

input_format 
Only used if input_calibration_type=ML. Format type for the 

input data. 

JPEG 

CSV 

path Path to calibration data String path 

target_col_count Number of target columns Integer 

target_col_first Index of first target column Integer 

Filetype 

filetype Identifies the file type modustoolbox-ml-configurator 

Model 

framework Inference engine 
KERAS 

TFLITE 
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Objects Description Value 

optimization_ifx 

Enables or disables the "advanced scratch memory 

optimization" setting for "ifx" inference engine.  

• "SIZE" (default) – enables "advanced scratch memory 

optimization" setting  

• "SPEED" – disables "advanced scratch memory 

optimization" setting 

SIZE 

SPEED 

optimization_tflm 

Enables or disables the "tflm_interpreter_less" setting for 

"tflm" inference engine.  

• false (default) – disables "tflm interpreter less" setting,  

• true – enables "tflm interpreter less" setting. 

true 

false 

path 
Path to model file. If the path is relative, it is evaluated with 

respect to the location of the configuration file. 
String path 

sparsity_tflm 
Enable use of a memory-efficient packed format for any 

sparse weights present in the model 

true 

false 

tflm_model_ 

quantization 

Define if the tflite model was created using fixed-point or 

floating point. 

FLOAT 

INT8X8 

model.quantization 

float32 Generate source for quantization type  

true 

false 

int16x16 Generate source for quantization type  

int16x8 Generate source for quantization type  

int8x8 Generate source for quantization type  

name 

name Project name (used as output file prefix) User defined 

output_dir 

output_dir 
Output directory. If the path is relative, it is evaluated with 

respect to the location of the configuration file. 
String path 

target 

target Specifies the device, always set to PSoC6 PSoC6 

validation 

feat_col_count Number of feature columns Integer 

feat_col_first Index of first feature column (0-based) Integer 

input_format Format type for the input data 

CSV 

BIN 

JPEG 

input_type Input data type, can be PRNG, NPZ, FOLDER, or ML 

PRNG 

NPZ 

FOLDER 

ML 

max_samples Number of random samples to generate Integer [0~1000] 

path 

Path to validation input data file or folder. If the path is 

relative, it is evaluated with respect to the location of the 

configuration file. 

Path 

validation.quantization 

float32 Validate quantized model type (true or false) true 

false int16x16 Validate quantized model type (true or false) 
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Objects Description Value 

int16x8 Validate quantized model type (true or false) 

int8x8 Validate quantized model type (true or false) 

validation.target 

target_quantization Which quantization type to use for "Evaluate on Target" 

int8x8 

int16x8 

int16x16 

float32 

target_col_count Number of feature columns Integer 

target_col_first Index of first target column (0-based). Integer 

app 

app Application type. Currently, it only accepts “ML”. ML 

formatVersion 

formatVersion 

File format version. The version described here is 3. The tool 

should refuse to load files with a higher version that the 

tool’s maximum supported version. The file format version 

is incremented when a breaking change is made to the 

format. Adding an optional field is not a breaking change. 

Changing the type of an existing field is a breaking change. 

3 

lastSavedWith 

lastSavedWidth 
Tool that was last saved with. Currently, it only accepts “ML 

Configurator” 
ML Configurator 

lastSavedWithVersion 

lastSavedWidthVersion 

Tool version that was last saved with. The version descried 

here is 2.0.0. The tool version is incremented when a new 

release is publicly available. 

2.0.0 

toolsPackage 

toolsPackage 
Name of the package. Currently, it only accepts 

“ModusToolbox Machine Learning Pack 2.0.0” 

ModusToolbox Machine 

Learning Pack 2.0.0 
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5 ModusToolbox™ ML embedded libraries 

For the ML 2.0 solution, there are three middleware assets deployed as ModusToolbox™ libraries: 

• ML Infineon inference engine  

• TFLM inference engine 

• ML middleware 

5.1 ML Infineon inference engine library 

5.1.1 Adding the library 

The ML-inference engine library is available as an ModusToolbox™ asset. Use the following GitHub link: 

https://github.com/infineon/ml-inference 

You can add a dependency file (MTB format) under the deps folder or use the Library Manager to add it in your 

project. It is available under Library > Machine Learning > ml-inference 

In the Makefile of the project, you need to define the quantization to be deployed. Note that you can only 

choose one type of quantization. In the COMPONENTS parameter, add one of the following: 

• ML_FLOAT32: use 32-bit floating-point for the weights and output/input data 

• ML_INT16x16: use 16-bit fixed-point for the weights and output/input data 

• ML_INT16x8: use 16-bit fixed-point for the output/input data and 8-bit for the weights 

• ML_INT8x8: use 8-bit fixed-point for the weights and output/input data 

5.1.2 Using the library 

There are four steps to use the ML-inference engine library.  

5.1.2.1 Step 1: Get required memory for the inference engine 

One of the data arrays generated by the ML Configurator Tool contains the model parameters. If using binary 
file, it is placed in the NN_model_prms.bin. If using C array header, it is placed in NN_model_all.h > 

NN_model_prms_bin[]. 

Use the Cy_ML_Model_Parse() function to extract information from the NN model. It tells how much memory 
is required by the persistent and scratch memory, the input layer size and the number inference classification 

output size. 

https://github.com/infineon/ml-inference
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5.1.2.2 Step 2: Allocate memory 

Once you know how much memory is required by the persistent and scratch memory, allocate it in your 
application. Here is an example in C on how to perform Steps 1 and 2. 

#include "NN_model_all.h" 

... 

cy_stc_ml_model_info_t model_xx_info; 

 

count = Cy_ML_Model_Parse(NN_model_prms_bin, &model_xx_info); 

if (count > 0) /* Model parsing successful */ 

{ 

   persistent_mem = (char*) malloc(model_xx_info.persistent_mem*sizeof(char)); 

   scratch_mem = (char*) malloc(model_xx_info.scratch_mem*sizeof(char)); 

} 

Alternatively, you can allocate it statically based on the MACROs provided by the ML middleware. Refer to the 

ML middleware library section. 

5.1.2.3 Step 3: Initialize model and get model container/object 

After allocating memory, you can initialize the interference engine by providing pointers to the memory and the 
model weights. Here is an example in C using float quantization: 

#include "NN_model_all.h" 

... 

void *model_xx_obj; 

 

result = Cy_ML_Model_Init(&model_xx_obj,      // NN model data container pointer 

                          &NN_model_flt_bin,  // NN model parameter buffer pointer 

                          persistent_mem,     // Pointer to allocated persistent  

                          scratch_mem,        // Pointer to allocated scratch mem 

                          &model_xx_info);    // Pointer to model info structure 

 

5.1.2.4 Step 4: Run the inference engine 

The last step is to run the inference engine. In this step, the input data can come from sensors or from the 

regression data. Here is an example in C using float quantization. 

result = Cy_ML_Model_Inference(&model_xx_obj, // NN model data container pointer 

                               in_buffer,     // Input buffer 

                               out_buffer,    // Output buffer 

                               NULL);         // Not used in floating-point 

Note: The last argument of the function above is only used in fixed-point. This argument is the pointer to 

input data fixed-point Q factor. The function overwrites this argument with the output data fixed-
point Q factor.  

5.1.3 Verifying the inference 

The ML inference engine library integrates a profiling mechanism to obtain the number of cycles the library 
takes to execute. To make this work, the application needs to implement the following function: 

int Cy_ML_Profile_Get_Tsc(uint32_t *val) 
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This function needs to return a counter value that shows how many CPU cycles have passed. One way to 
implement this is to run a timer continuously that triggers an interrupt every second to increment a variable to 

represent how many seconds passed. On calling Cy_ML_Profile_Get_Tsc, it gets the number of seconds 

passed and combine with the current counter. Then it translates the result in CPU cycles.  

To actually enable the profiling from the ML-inference engine library, a few functions need to be called. Here is 

the flow: 

1. Call Cy_ML_Profile_Init() to initialize the profiling or disable all profiling features enabled. 

2. Call Cy_ML_Profile_Print() after feeding all the regression data. 

 

An example using the regression data generated by the ML Configurator tool and the profiling integrated in the 
ML-inference engine library is available in this link (this example uses the ML middleware): 

https://github.com/infineon/mtb-example-ml-profiler 

There are a few options for printing profiling and debugging information based on the configuration provided 
to the Cy_ML_Profile_Init() function, as shown in the following list: 

Constants Description 

CY_ML_PROFILE_LAYER   
Enable layer profiling. It prints general information of each layer of the ML model, 

such as average cycle, peak cycle and peak frame.  

CY_ML_PROFILE_MODEL 
Enable the ML model profiling. It prints general information about the ML model, 

such as average cycle, peak cycle and peak frame. 

CY_ML_PROFILE_FRAME  
Enable the per frame profiling. It prints general information for each frame, such as 

number of cycles per frame. 

CY_ML_LOG_LAYER_OUTPUT Enable the layer output logging. It prints the output values generated by each layer. 

CY_ML_LOG_MODEL_OUTPUT 
Enable the model output logging. It prints the output values generated by the 

inference engine. 

Note: Although you can derive any of the combinations above by ORing them, certain combinations 

might affect the profiling results due to additional printing activity. The recommended profile 

settings that work without affecting the results are listed below. 

Constants Description 

CY_ML_PROFILE_DISABLE 0 

CY_ML_PROFILE_ENABLE_MODEL CY_ML_PROFILE_MODEL 

CY_ML_PROFILE_ENABLE_LAYER CY_ML_PROFILE_LAYER   

CY_ML_PROFILE_ENABLE_MODEL_PER_FRAME CY_ML_PROFILE_MODEL | CY_ML_PROFILE_FRAME  

CY_ML_PROFILE_ENABLE_LAYER_PER_FRAME CY_ML_LOG_LAYER_OUTPUT | CY_ML_PROFILE_FRAME  

CY_ML_LOG_ENABLE_MODEL_LOG CY_ML_LOG_MODEL_OUTPUT 

When using the regression data, the output of the inference engine needs to be compared against a reference. 
If the result matches between the regression data and the inference engine output, it contributes to the final 

calculation of the model accuracy, which is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

https://github.com/infineon/mtb-example-ml-profiler
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5.2 TFLM inference engine library 

The TFLM library is runs machine learning models on Infineon microcontrollers. The TFLM library is available as 
a ModusToolbox™ asset. Use the following GitHub link: 

https://github.com/infineon/ml-tflite-micro 

You can add a dependency file (mtb format) under the deps folder or use the Library Manager to add it in your 
project. It is available under Library > Machine Learning > ml-tflite-micro. 

This document does not provide details on how to use the TFLM APIs written in C++. It is recommended to use 

our machine learning abstraction middleware, explained in the ML middleware library section. For more 
general information about the TFLM, including examples and documentation, refer to this link: 

https://www.tensorflow.org/lite/microcontrollers  

Infineon provides the following methods to deploy machine learning models using the TFLM inference engine: 

• TFLM runtime interpreter: Uses an interpreter to process a machine learning model deployed as binary 

data. This allows easy updates on the deployed model or the need to inference multiple models in the 

application. 

• TFLM interpreter-less: Does not require a run-time interpreter; instead uses pre-generated code to 

execute the inference. This allows smaller binary and less overhead on inference execution. 

In both cases, this version of the library provides two types of quantization – floating point and 8-bit integer. To 
use this library, the following COMPONENTS and DEFINES are required:  

• If using TFLM runtime interpreter: 

DEFINES+=TF_LITE_STATIC_MEMORY  

COMPONENTS+=ML_TFLM_INTERPRETER IFX_CMSIS_NN 

• If using TFLM interpreter-less: 

DEFINES+=TF_LITE_STATIC_MEMORY TF_LITE_MICRO_USE_OFFLINE_OP_USER_DATA 

COMPONENTS+=ML_TFLM_INTERPRETER_LESS IFX_CMSIS_NN 

• If using floating point: 

COMPONENTS+=ML_FLOAT32 

• If using 8-bit integer: 

COMPONENTS+=ML_INT8x8 

5.3 ML middleware library 

This library works as an abstraction layer to the Infineon and TFLM inference engine libraries. It implements all 
the steps described in the previous sections in two main functions: 

mtb_ml_model_init() : to initialize the model   

mtb_ml_model_run()  : to run the inference engine 

The library also provides helper MACROs to include the model files generated by the ML Configurator tool. For 
example, if a model was generated using the output file prefix "test_model", you can use: 

#include MTB_ML_INCLUDE_MODEL_FILE(test_model)            // Model file 

#include MTB_ML_INCLUDE_MODEL_X_DATA_FILE(test_model)     // Regression data X 

#include MTB_ML_INCLUDE_MODEX_Y_DATA_FILE(test_model)     // Regression data Y 

https://github.com/infineon/ml-tflite-micro
https://www.tensorflow.org/lite/microcontrollers
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The mtb_ml_model_init() function has an option to skip the parsing and memory allocation by providing 
pointers for the scratch and persistent memories (for Infineon inference engine only). The application can use 

the following helper MACROs to know how much memory to allocate: 

// Infineon inference engine 

MTB_ML_MODEL_SCRATCH_MEM_SIZE(test_model) 

MTB_ML_MODEL_PERSISTENT_MEM_SIZE(test_model) 

// TFLM inference engine 

MTB_ML_MODEL_ARENA_SIZE(test_model) 

To access the data arrays generated for the model, use the following MACROs: 

MTB_ML_MODEL_NAME_STR(test_model)    // String for the model name 

MTB_ML_MODEL_BIN_DATA(test_model)    // Populates the model binary structure 

MTB_ML_MODEL_X_DATA_BIN(test_model)  // Regression data input array 

MTB_ML_MODEL_Y_DATA_BIN(test_model)  // Regression data output array 

The following table shows the steps for the two initialization methods: 

Method 1: Using internal memory allocation 

mtb_ml_model_t *model_object; 

 

/* NN model data */ 

mtb_ml_model_bin_t model_bin = {MTB_ML_MODEL_BIN_DATA(model_test)}; 

 

/* Initialize the model */ 

mtb_ml_model_init(&model_bin, NULL, &model_object); 

 

Method 2: Using external memory allocation 

mtb_ml_model_t *model_object; 

 

#if defined(COMPONENT_MTB_ML_IFX) 

/* Allocate the persistent and scratch memories */ 

   uint8_t persistent_mem[MTB_ML_MODEL_PERSISTENT_MEM_SIZE(test_model)]; 

   uint8_t scratch_mem[MTB_ML_MODEL_SCRATCH_MEM_SIZE(test_model)]; 

   mtb_ml_model_buffer_t mem_buf = {persistent_mem, scratch_mem}; 

#elif defined(COMPONENT_ML_TFLM_INTERPRETER)) 

   uint8_t tensor_arena[MTB_ML_MODEL_ARENA_SIZE(test_model)]; 

   mtb_ml_model_buffer_t mem_buf = {tensor_arena, 

                                    MTB_ML_MODEL_ARENA_SIZE(test_model)}; 

#endif 

 

/* NN model data */ 

mtb_ml_model_bin_t model_bin = {MTB_ML_MODEL_BIN_DATA(model_test)}; 

 

/* Initialize the model */ 

mtb_ml_model_init(&model_bin, &mem_buf, &model_object); 

 

Note: Using ML_TFLM_INTERPRETER_LESS, only method 1 applies. 

This library also comes with a set of APIs to handle streaming data from the ML Configurator tool. It handles the 

UART connection and what profiling and debugging features to enable. There are two main functions to call: 

mtb_ml_stream_init() : execute mtb_ml_model_profile_config() and 

mtb_ml_model_init() 

 

mtb_ml_stream_task() : execute mtb_ml_model_run() and mtb_ml_model_log() 
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The following link provides an example using the streaming feature of this solution: 

https://github.com/infineon/mtb-example-ml-profiler 

This library also comes with helper functions that: 

• convert floating-point to fixed-point and vice versa  

• quantize the inputs  

• dequantize outputs  

• return the index of the maximum value in an array  

These functions leverage some of the Arm DSP instructions to improve performance. To enable DSP, add the 

following component/define to the Makefile: 

COMPONENTS+=CMSIS_DSP 

DEFINES+=MTB_ML_HAVING_CMSIS_DSP 

 

https://github.com/infineon/mtb-example-ml-profiler
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6 ModusToolbox™ ML core tools 

The ML core tools are the backend utilities which the ML Configurator tool interacts with to perform a variety of 
features: 

• Parsing a JSON file for details on the model, data and configuration 

• Creating random data for regression 

• Alternative to using random data, imported data can be created [3]  

• Loading pretrained Keras H5 model and parsing them for ModusToolbox™ ML relevant information 

• Performing model reference evaluation on the specified dataset to determine a base floating-point 

collection for reference metrics 

• Converting the pretrained or trained model to a library C code for embedding and use on the PSoC™ 6 MCU 

and as part of the ModusToolbox™ ecosystem 

• Saving log files for output and debugging purposes during and after their operation 

• Regression data generation, tests and cross-domain verification 

• Stream regression data to the target device 

This tool is written using Python scripts and released as an executable, which is available with the Machine 

Learning pack. It is meant to be used with the ML Configurator only. 

 

                                                                    

3  This reads data from files structure in one of the ModusToolbox™ ML formats. 
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7 ModusToolbox™ ML integration 

The easiest way to run the ML solution with PSoC™ 6 MCUs is by leveraging the code available in the ML code 
examples.  

7.1 Using an RTOS 

If using an RTOS, the most effective way to integrate the inference engine in your project is to use the ML 

middleware library to wrap all interactions with the ML Inference Engine library. You can have a single task or 
multiple tasks to handle different functions of the application. The following example shows a task handling all 

related machine learning functions. 

Main Task ML Task

Initialize system

Creates RTOS task

Runs RTOS scheduler

Initialize the ML Model
mtb_ml_model_init()

Run inference engine
mtb_ml_model_run()

Process sensor data

Process output

 

As the RTOS typically handles memory management, you need to ensure that the RTOS heap has enough 

memory for the scratch and persistent memory required by the inference engine, which can be quite large 
depending on the model being executed. 

7.2 Handling inputs and outputs 

The ML inference engine can use both floating-point and fixed-point inputs. One good practice before feeding a 

NN is to normalize the input. There are different types of normalization in statistics. In this section, we refer to 
the min-max feature scaling type. If the input data is not normalized in the embedded firmware due to limited 
hardware resources, the training framework tool also cannot normalize the input data. The input data fed to 
the inference engine and the training algorithm need to match.  

If using floating-point as input, the normalization is straight forward. It depends on the maximum and 

minimum value of the sensor, and the normalization range. Usually the normalization is between [0,1] or [-1,1]. 
Use the following formula to normalize: 

𝑁𝑁 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 = 𝑁𝑀𝐴𝑋 − (𝑆𝑀𝐴𝑋 − 𝑆𝑒𝑛𝑠𝑜𝑟 𝐷𝑎𝑡𝑎) ×
𝑁𝑀𝐴𝑋 − 𝑁𝑀𝐼𝑁

𝑆𝑀𝐴𝑋 − 𝑆𝑀𝐼𝑁
 

https://en.wikipedia.org/wiki/Feature_scaling


  

User guide 29 002-32590 Rev. *H  

  2023-05-23 

ModusToolbox™ Machine Learning user guide 
  

ModusToolbox™ ML integration 

Where SMAX and SMIN are the maximum and minimum value the sensor can produce, and NMAX and NMIN are the 
normalization range. If the sensor data needs to be filtered, or subjected to some sort of processing (besides 

normalization), it must mimic the steps of the training. 

When dealing with fixed-point inputs, the data needs to be in the fixed-point (integer) format where fractional 
bits are specified using the Q format. As an example, a signed 16-bit number can be represented in Q15 format 

for maximum precision if the number is in [-1, 1] range, the most significant bit is the sign bit and the other bits 
are fractional bits. You can also specify the number of integer bits such as Q14 to use 1 sign bit and 1 integer bit. 
Here are some examples. 

Q format Max value (Integer) Min Value (Integer) Max value (Float) Min value (Float) 

q15 (16-bit) 32767 (0x7FFF) -32768 (0x8000) +1.0 – 2-15 -1.0 

q7 (8-bit) 127 (0x7F) -128 (0x80) +1.0 – 2-7 -1.0 

q14 (16-bit) 32767 (0x7FFF) -32768 (0x8000) +2.0 – 2-14 -2.0 

To normalize the input sensor data to the desire Q format, use the following formula. 

𝑁𝑁 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 =
(2𝑄+1 − 1) × (𝑆𝑒𝑛𝑠𝑜𝑟 𝐷𝑎𝑡𝑎 − 𝑆𝑀𝐴𝑋) + (2𝑄 − 1) × (𝑆𝑀𝐴𝑋 − 𝑆𝑀𝐼𝑁)

𝑆𝑀𝐴𝑋 − 𝑆𝑀𝐼𝑁
 

If you want to convert the NN input data to unsigned integer, sum the result of the above formula with 2Q. 

7.2.1 Using Infineon Inference Engine 

When feeding the inference engine with the function Cy_ML_Model_Inference(), you need to provide which 

Q format you are using as argument. The function then returns the Q format of the output buffer. If you need to 
convert the result to floating point, use the following code: 

q_format = 15; // Use q15 format for the input data 

result = Cy_ML_Model_Inference(&model_xx_obj, // NN model data container pointer 

                               in_buffer,     // Input buffer 

                               out_buffer,    // Output buffer 

                               &q_format);    // Pointer to Q format 

float q_norm = 1.0f / (float) (1 << q_format); 

for (int i = 0; i < output_size; i++) 

{ 

    float_buffer[i] = out_buffer[i] * q_form; 

} 

Alternatively, you can use the helper function mtb_ml_utils_int_to_flt() that comes with the ML 

Middleware library. 

When feeding the inference engine with the function mtb_ml_model_run(), you can provide which Q format 
you are using through the function mtb_ml_model_set_input_q_fraction_bits(). And you can use the 
function mtb_ml_model_get_output() to acquire the Q format output.  

Note: This function is only used in the beginning during the initialization of the model. 

 

You only need to use the Q format functions if using fixed-point interference engine. 
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7.2.2 Using TFLM Inference Engine 

The TFLM inference engine does not require Q format when using the integer quantization. Internally, it uses 
asymmetric quantization, which uses a zero-point and scaler variables. The following equation applies: 

𝐹𝑙𝑜𝑎𝑡𝑉𝑎𝑙𝑢𝑒 =  (𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑉𝑎𝑙𝑢𝑒 –  𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡)  ∗  𝑆𝑐𝑎𝑙𝑒𝑟 

The zero-point and scaler values are defined during the model calibration, which requires the user to provide 

some calibration data when generating the model files. The input and output of a TFLM model might have 
different values for the zero-point and scaler. 

To quantize the results from float to integer, you can use the mtb_ml_utils_model_quantize() function, 
which converts a given input float array to integer using the input zero-point and scaler from the model. This 

information is stored internally in the mtb_ml_model_t structure. 

To de-quantize the results to some meaningful value, you can use the mtb_ml_utils_model_dequantize() 

function, which provides the float representation of the model’s output by using the output zero-point and 

scaler from the model. 

For TFLM inference using int8x8 quantization, the model calibration data plays an important role on the 

accuracy of the model. If the data provided is not representative enough to stimulate the network to get good 

estimates of activation value statistics (min/max value range), it can result in poor network performance. In 
extreme cases, assertions in the reference TFLITE interpreter built in to TensorFlow may fail, causing 
TensorFlow to abort without providing a meaningful error-status return. 

7.3 Memory and CPU requirements 

When using the ML inference engines (Infineon and TFLM), different types of memory blocks are required and 

special attention is required to allocate them. The following table provides a summary of what is required at a 
minimum: 

Memory block Inference Engine Location Description 

Model weights Infineon / TFLM Flash 
Contains the model weights. It can be very large, requiring to 

be stored in the external memory. 

Model parameters Infineon Flash Contains the model parameters. Usually only a few bytes. 

Scratch Memory Infineon SRAM 
Temporary memory that can be discarded after each frame is 

processed. 

Persistent Memory Infineon SRAM 
Temporary memory that persists on each frame and used by 

the next frame. 

Tensor arena TFLM SRAM 
A combination of scratch and persistent memory, handle 

automatically by the TLFM inference engine 

Input Buffer Infineon / TFLM SRAM 

Buffer storing the input data to the NN. It depends on how 

many nodes in the input layer. Some types of NN have a huge 

number of inputs, for example, when processing images. 

Output Buffer Infineon / TFLM SRAM 

Buffer storing the output data to the NN. It depends on how 

many nodes in the output layer. There is a hard limit of 64 

nodes in the output layer. 

Regression Input Data Infineon / TFLM Flash 

Only used for regression. Usually it is very large and require to 

be stored in external flash. With the ML 2.0 solution, we 

recommend to stream regression data. 

Regression Output 

Data 
Infineon / TFLM Flash 

Only used for regression. Usually it is very large and require to 

be stored in external flash. With the ML 2.0 solution, we 

recommend to stream regression data. 
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In terms of CPU requirements, it is important to understand what is the sample rate, the sensor processing 
time, the inference engine time and output processing time. The following graphic shows an example how the 

CPU handles the bandwidth on every task. 

Raw Data 
Processing

Inference Engine
Output 

Processing
CPU Idle or 

other tasks running
Raw Data 

Processing
Inference Engine

Output 
Processing

 

The total amount of time it takes to do all the processing around the data needs to be smaller than the period 

of the sampling rate. Choosing a different quantization for the inference engine can drastically reduce the 

cycles time, at the cost of using more memory. See the Evaluating a Model section. 
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Revision history 

Revision Date Description 

** 2021-03-12 New tool. 

*A 2021-04-29 
Added information for the dataset structures. 

Updated table of files generated by the ML Configurator. 

*B 2021-08-18 Updated instructions based on ModusToolbox™ ML 1.2 solution. 

*C 2021-09-14 

Add information about the "Advanced scratch memory optimization" check box in the ML 

Configurator. 

Clarified the note about the array with the model weights, and how to add to internal flash 

and external memory. 

*D 2022-07-15 

Updated instructions based on ModusToolbox™ ML 2.0 solution. 

Added support for TensorFlow Lite for Microcontrollers. 

Added more information to the ml-coretools section. 

Added list of layers/operators coverage supported by TFLite and Keras formats 

Added JSON field parameters table for MTBML format 

Updated list of files generated by the ML Configurator 

*E 2022-08-23 

Updated getting started instructions. 

Added note about TFLM inference using int8x8 quantization. 

Added information about the sparsity feature. 

*F 2022-10-10 
Added instructions to install QEMU 

Added note about warning messages when generating/validating the model 

*G 2022-11-10 
Updated links to Infineon website to download/install the pack. 

Updated QEMU installation instructions. 

*H 2023-05-23 

Explained the usage of the mtb_ml_utils_quantize() function. 

Removed support for 2D and 3D feature data for CSV format. 

Added instructions to enable CMSIS_DSP component. 
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