

Application Note AN-1102

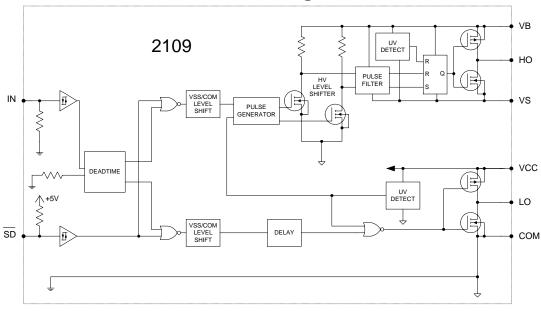
IRS210(9,94) and IR210(9,94) Comparison

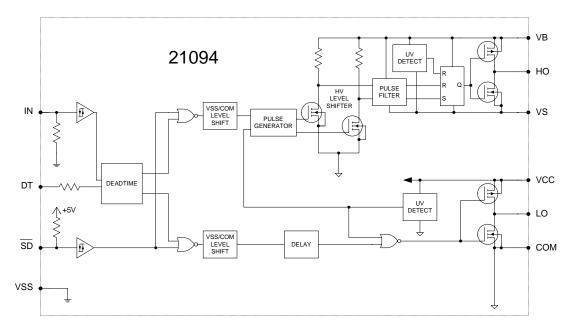
By Jason Nguyen, Min Fang, David New

Table of Contents

Introduction	Page 1
Block Diagrams	
Electrical Characteristic Differences	3
Figures	4
Summary	8

Introduction


The IRS210(9,94) are new HVIC products that replace the IR210(9,94) HVICs and are pin-to-pin compatible with their corresponding predecessors. In many cases, little or no change is necessary to use the new products. This application note describes the various differences between the IRS210(9,94) and the IR210(9,94) HVICs.


The IRS210(9,94) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.

www.irf.com AN-1102 1

Block Diagrams

The IRS2109 and IR2109 share the same block diagram. The IRS21094 and IR21094 share the same block diagram. There are no functional changes between corresponding part numbers.

www.irf.com AN-1102 2

Electrical Characteristic Differences

All measurement conditions remain unchanged unless noted. Parameters not mentioned in this document have not changed.

Absolute Maximum Ratings

There are no changes in the Absolute Maximum Ratings.

Recommended Operating Conditions

There are no changes in the Recommended Operating Conditions.

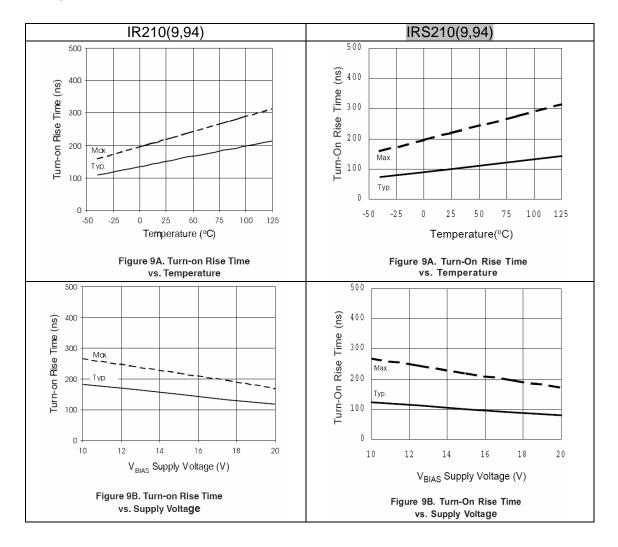
Dynamic Electrical Characteristics

Parameter		IR210(9,94)		IRS210(9,94)		
Symbol	Definition	typ	max	typ	max	Units
t _r	Turn-on rise time (Vs = 0 V)	150	220	100	220	ns
t _f	Turn-off fall time (Vs = 0 V)	50	80	35	80	113

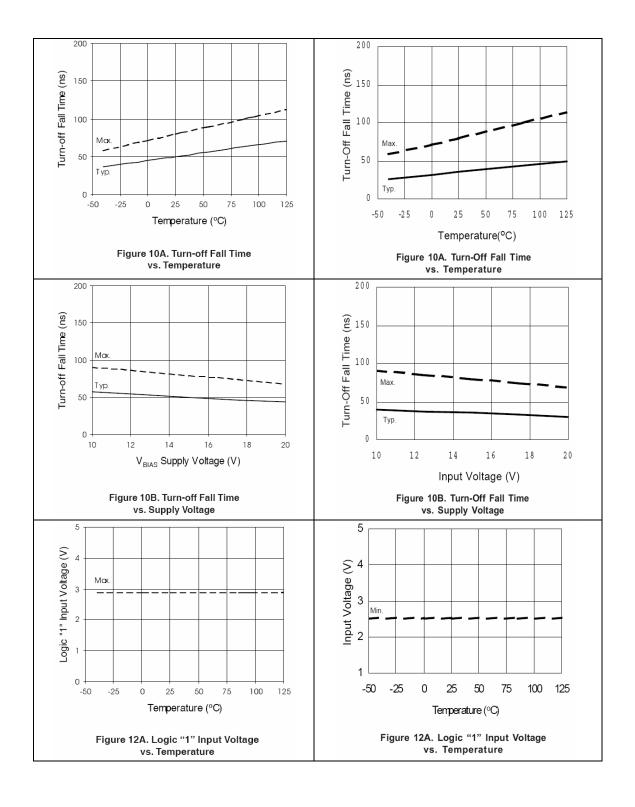
The IRS210(9,94) has faster rise and fall times when compared to the IR210(9,94).

Static Electrical Characteristics

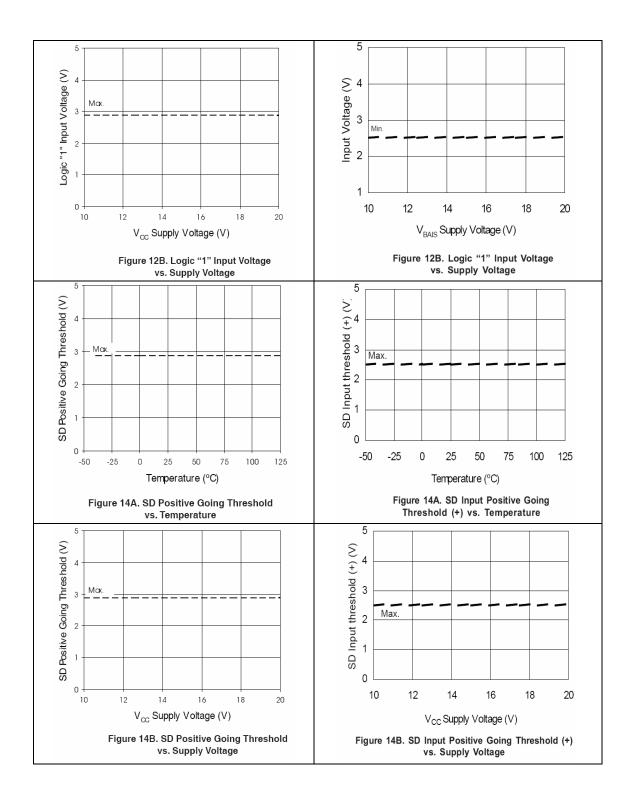
Parameter		IR210(9,94)			IRS210(9,94)			
Symbol	Definition	min	typ	max	min	typ	max	Units
V_{IH}	Logic "1" input voltage (V _{CC} = 10 V to 20 V)	2.9	-	-	2.5	-	-	
V _{IL}	Logic "0" input voltage (V _{CC} = 10 V to 20 V)	-	-	0.8	-	-	0.8	
V _{SD,TH+}	SD input positive going threshold	2.9	-	-	2.5	-	-	
V _{SD,TH} -	SD input negative going threshold	-	-	0.8	-	-	0.8	V
V _{OH}	High level output voltage, V _{BIAS} - V _o	-	0.8	1.4	-	0.05	0.2	
OII		lo = 20 mA		lo = 2 mA				
V _{OL}	Low level output voltage, V _O	-	0.3	0.6	-	0.02	0.1	
		Io = 20 mA		lo = 2 mA				
I _{O+}	Output high short circuit pulsed current (V _O = 0 V, VIN=Logic "1", PW <= 10 us)	120	200	-	120	290	-	mA
I _{O-}	Output low short circuit pulsed current (V _O = 15 V, VIN = Logic "0", PW <= 10 us)	250	350	-	250	600	-	IIIA

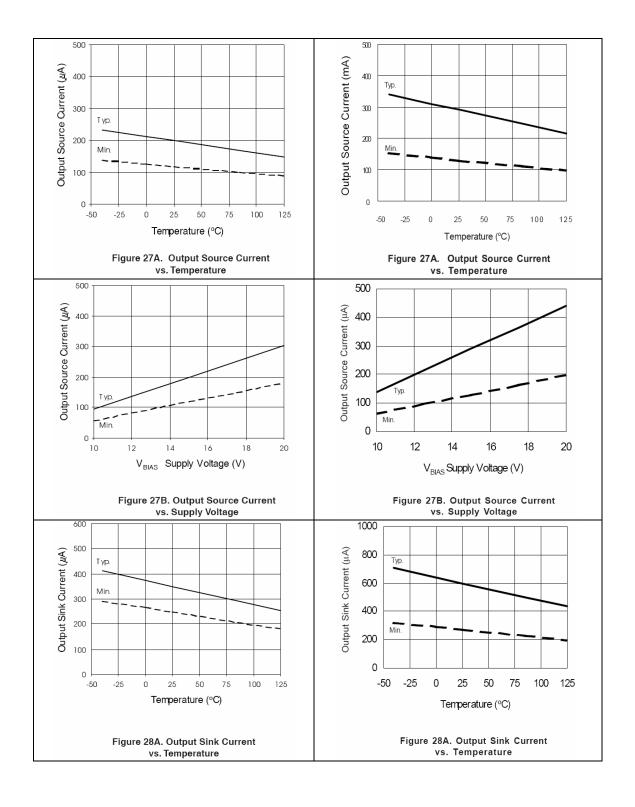

With the IRS210(9,94),

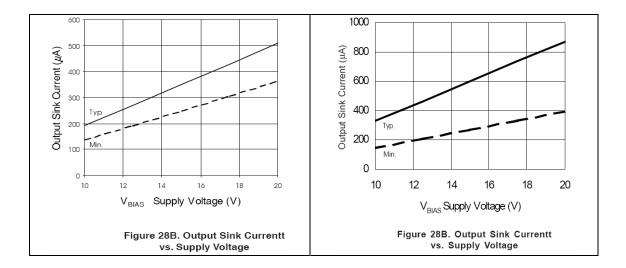
- 1. The V_{IH} and $V_{SD, TH+}$ are reduced to 2.5 V for better 3.3 V logic compatibility.
- 2. The V_{OH} and V_{OL} are tested using a new standardized test condition of Io=2 mA. The output driver's on resistance is lower for IRS210(9,94), which improves immunity against the Miller effect.
- 3. The typical values for I_{O+} and I_{O-} are increased, which allows faster switching.



Figures


This figures shown in this section compare figures shown in the IR210(9,94) (left column) and IRS210(9,94) (right column) datasheets. Illustrations that have not changed between the two datasheets have not been included in this section.





Summary

As shown by this document, the IRS210(9,94) and the IR210(9,94) are very similar with only a few negligible parametric differences.