VADC
Versatile Analog to Digital Converter
XMC™ Microcontrollers
August 2014
The VADC converts analog signals into digital values. Up to 12 bits resolution at 1 MSamples/sec enables highly accurate signal measurement for currents, voltages, temperatures, etc.

Key Feature

- Flexible sequencing scheme
- 2 independent sample and hold unit
- Triggering and gating conversions

Customer Benefits

- 3 sophisticated and flexible request sources for requesting conversions
- Simultaneous sampling
- Triggering and gating conversions
VADC
Flexible sequencing (1/2)

- 3 request sources allows a sophisticated sequencing
 - Queue source → up to 8 channels in 8 stages FIFO with any channel combination possible
 - Refill, source event generation and trigger can be configured individually for any entry in the queue

```
<table>
<thead>
<tr>
<th>ReFill</th>
<th>Channel Selection</th>
<th>Trigger</th>
<th>Interrupt</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch1</td>
<td>ch1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch1</td>
<td>ch1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch5</td>
<td>ch3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch3</td>
<td>ch5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch0</td>
<td>ch0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
VADC
Flexible sequencing (2/2)

- Scan source → up to 8 channels. Converts from higher number selected until lowest channel number selected.

- Background source → a scan source that is able to request conversions in all channels in the microcontroller. It is typically the lowest priority source.
VADC
2 independent sample and hold units

- The arbitration winner is sampled in the A/D. The sequencer will recognize the group and will allocate in the corresponding result handling.
VADC
Triggering and gating conversions

› Conversion can be triggered by external events, continuously or by software events
› Full connectivity to other modules for application relevant triggering-gating
› One signal can trigger different groups to allow simultaneous sampling
› A gating mechanism hinders the triggering of a conversion as long as the gating signal is not released
The VADC is intelligently connected to other peripherals in the microcontroller, such as CCU8, BCCU or NVIC for triggering-gating on the input side and event generation such as interrupt events in the output side.

This provides a perfect starting point for real time applications where the hardware triggering of conversions or signalization of events (i.e. overcurrents) have to happen in a deterministic way with minimum jitter.

Target applications

- Motor Control
- Intelligent Lighting
- Power Conversion
- General Purpose
Application Example
Fast Compare

Overview
Fast compare mode generates a fast result of a single bit. This bit indicates if the result is above or below a certain preprogrammed reference value. Some hysteresis (delta) can be built around this threshold in order to avoid oscillations.

In Brief
Fast comparison of an analog voltage with a threshold
Application Example
Limit Checker

Overview
The limit checker permits the control of an analog signal so that when the signal increases or decreases above or below some configurable value, an event can be trigger and an action can be executed.

As an example, a limit checker can detect an overvoltage and generate a stop signal to a timer to avoid damage on the hardware.

In Brief
Place some boundaries to create 3 bands in the analog range in order to control the result limits.
Application Example
External multiplexers

Overview

The EMUX controller is able to provide the selecting signals for an external multiplexer. This is synchronized to channel conversion so when the EMUX channel (CH3 in picture) is converted, the EMUX controller detects this and executes a configurable sequencing of the selected signals.

In Brief

VADC includes an External Multiplexer controller
Application Example
Blanking time

Overview

Some signals might present oscillations after stepping to a different value. During this oscillation, the value sampled by a continuous converting VADC, is not relevant and can be gated through a timer until the signal is settled.

In Brief

Gate a continuous running conversion when the information is not relevant for the application.
Application Example
FIFO on high sampling rate conversions

Overview
Some applications require extreme fast conversions. On the other hand, the CPU load (control loop for example) might load the CPU in a way that can limit how fast the results of the VADC conversions are read. In these cases, the VADC FIFO result structure will help to conserve results safely, avoiding overwriting, without having to force the CPU to read or slow down the converting rate.

Up to a 16 stages FIFO can be built by means of concatenating result registers. Data reduction mechanisms (filtering, accumulation) as well as event generation is still valid and applicable.

In Brief
Use a FIFO structure to store results in a safe way
Application Example
Synchronous conversions (1/2)

In Brief
Sample several signals synchronously.

Overview
In many occasions, algorithms request the usage of several analog values that are measured at the same time.

As an example, one could compute the power, for example at a load, by multiplying the current and voltage on it. This calculation would only make sense in case both signals were measured at the exact same point in time.

XMC1000 allows to measure 2 signals in parallel. The master will request a conversion in its groups. This will automatically lead the request of the same channel number in the slave group. The rest of the VADC features can be used such as result handling, event generation, limit check, etc.
Synchronous conversions: possible sequencing
Table of contents

1. Result post processing
2. Service request generation
3. Flexible reference voltage scheme
4. Input channel gain
5. Safety features
VADC
Result post processing

› Up to 16 result registers per group for 8 channels
› Additional Global result register accessible from any group in the microcontroller
› A data reduction mechanism can execute filtering (FIRs, IIRs), differentiation, or accumulation without loading the CPU
› Wait for read mode blocks new writes in a result register before the content has been read to avoid loss of data
› Result events signalize the existence of a new result
3 different types of service requests can be generated:

- **Request source event**: channel converted in queue source or sequence finished in a scan source
- **Channel event**: indicates a channel conversion has finished or in case of limit checker, indicates the corresponding event
- **Result event**: a new result is available

The events can be linked to a NVIC node for code execution or to a signal for connectivity to other peripherals.
2 different kind of request lines are available:

- **Group specific** are only accessible from the group where the event is generated. Background source events are not included here.

- **Common** request lines. Can be accessed from any group and even from the background source events.
Use a flexible reference scheme: internal or external reference possible. Use alternate reference to have an additional reference level for special measurements.

- Keep 5 V ADC reference even when supplying XMC™ with lower voltages (1.8 V till 3 V)
A gain stage can be applied to all analog channels in XMC™ to compensate low amplitude signals.

The input voltage is multiplied then by a value 1, 3, 6, 12 that can be set differently for different channels.
VADC offers a set of safety functionalities including:

- Broken wire detection for detecting the malfunction of a trace-wire
- Multiplexer diagnostics can test the existing connection between pins and the internal converter input
Support material:

<table>
<thead>
<tr>
<th>Collaterals and Brochures</th>
<th>Technical Material</th>
<th>Videos</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Product Briefs</td>
<td>› Application Notes</td>
<td>› Technical Videos</td>
<td>› Forums</td>
</tr>
<tr>
<td>› Selection Guides</td>
<td>› Technical Articles</td>
<td>› Product Information Videos</td>
<td>› Product Support</td>
</tr>
<tr>
<td>› Application Brochures</td>
<td>› Simulation Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>› Presentations</td>
<td>› Datasheets, MCDS Files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>› Press Releases, Ads</td>
<td>› PCB Design Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.infineon.com/XMC</td>
<td>www.infineon.com/XMC</td>
<td>Infineon Media Center</td>
<td>Infineon Forums</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kits and Boards</td>
<td>Technical Assistance Center (TAC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAVE™</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software and Tool Ecosystem</td>
<td></td>
</tr>
</tbody>
</table>
The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

All the images used in the trainings are free for commercial use or free for use with attribution and were designed by Freepik.
Part of your life. Part of tomorrow.