USIC
Universal Serial Interface Channel
XMC™ Microcontrollers
November 2014
Each USIC module provides two universal serial communication channels to interface with external devices. It is tailored for various serial protocols like UART, SPI, IIC and IIS. A shared 64 words FIFO buffer is available in each USIC module.

Key Feature

› Flexible serial interface that supports UART, SPI, IIC and IIS protocol
› Support for Standard, Dual and Quad SPI mode
› Shared FIFO buffer available in every USIC channel

Customer Benefits

› Common serial communication protocol are supported by one peripheral
› Direct hardware control of all signals needed for external memory device
› Offload CPU and CPU can perform other critical task
USIC Flexible Serial Interface Protocol

- USIC supports different serial communication protocols on every channel
 - UART, SSC/SPI, IIC, IIS
- This gives the user the flexibility to select the desired serial interface on each USIC channel
- This flexibility allows the user to have the same or different protocol on each USIC channel
USIC
Support Dual and Quad-SPI

› The transmit data can be shifted out one, two or four bits each time depending on the selected mode
› Receive data also can be shifted in one, two or four bits each time depending on the selected mode
› The data throughput on Quad-SPI is four times higher than the standard SPI
USIC FIFO Buffer Capability

- Total of 64 data words buffer entries shared between two channels for transmit and receive.
- User configurable FIFO buffer size.
- Offload CPU to perform other tasks while the USIC is transmitting.
USIC System Integration

USIC is interconnected with several modules in the MCU system.

- **NVIC** – To generate interrupt
- **GPIO** – Signal connection to the Input and Output pins
- **ERU** – If the input to USIC does not have direct connection to USIC, the signal can be mapped to ERU module and connected to USIC
- **CCU4** – Input signal to CCU4 module

Target applications

- Connectivity/Communication
Application Example
Interface with external flash via Quad SPI

Overview
In today’s market, there are SPI flash memory that support multiple I/O SPI capability. This means the transferring of data is done with multiple data lines using SPI protocols.

To support this feature, Dual and Quad SPI has been implemented into USIC module. Using quad SPI to interface with external flash, the data throughput is increase by four times over standard SPI.

This allows applications that require higher data transfer rate to external memory to be implemented using USIC. As the protocol is taken care by the USIC module, software implementation to transfer and receive data becomes simple and easy.

In Brief
USIC able to interface with external flash that support multi I/O via quad SPI communication where data throughput can be dramatically increased compared to the standard SPI communication.
Table of contents

1. Flexible Data Word and Data Frame Length Control
2. Transmit Control Information
3. Flexible Routing
4. Transfer Trigger Capability
5. Interrupt Events
6. Baud Rate Generation
7. Debugger Support
USIC - Highlight features
Flexible Data Word and Data Frame Length Control

› There are two options to handle data frame size
› Option 1: Known frame length
 - Set to a fixed length
 - Support up to 63-bit
Example: SPI in Master Mode

Data word = 8-bit; Data Frame = 32-bit
USIC - Highlight features
Flexible Data Word and Data Frame Length Control

› Option 2: Flexible frame length
 - Provide infinite frame length
 - The frame length can be dynamically controlled by End of frame bit

Example: SPI in Master Mode

Data word = 8-bit; Data Frame = 64 (infinite)
Transmit control information (TCI) is a 5-bit data generated automatically when the data to be transmit is written to the transmit buffer input location TBUFx or FIFO transmit buffer - INx (x = 00 – 31).

TCI can be used as an additional control parameter for various function such as:

- Dynamic change of data word length or data frame length
- Automatic slave select for SPI
- Channel select control for IIS
USIC - Highlight features
Transmit Control Information (2/3)

› Dynamic change of data word length
 - With correct configuration, TCI can be used to adjust data word length and to end the data frame.
 - Bit 3 – 0 of TCI configures the data word length and bit 4 of TCI indicates this is last data of the frame (End of Frame).

Example:
1) Writing data to TBUF07

 TBUF07 TCI = 0 0111
 End of Frame = 0 (not end of frame)
 Data word length = 8 bit

2) Writing data to TBUF23

 TBUF23 TCI = 1 0111
 End of Frame = 1 (Is end of frame)
 Data word length = 8 bit
Automatic Slave select

- TCI also can be used to trigger slave select signal automatically when USIC is operated in SPI Master mode.
- Total of 8 slave select signal available in each USIC channel and the generated 5-bit TCI value can control only Slave select signal 0 – 4.

Example:

1) Writing data to TBUF01

 TBUF01 TCI = 00001

 Slave Select \([7:0]\) = 0x01

 Enable Slave Select 0

2) Writing data to TBUF15

 TBUF15 TCI = 01111

 Slave Select \([7:0]\) = 0x0F

 Enable Slave Select 0, 1, 2 & 3
USIC - Highlight features
Flexible Routing

› Each channel offers several possible input and output pins
› Pin reconfiguration without resetting the device
› Refer to USIC-Interconnect chapter in device Reference Manual on the available pins for USIC transmit and receive pin

<table>
<thead>
<tr>
<th>USIC Channel</th>
<th>Data input</th>
<th>Data Output</th>
<th>Shift Clock Output (SCLK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input pin selection A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input pin selection G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output pin selection A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output pin selection G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCLK pin selection A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCLK pin selection E</td>
</tr>
</tbody>
</table>

Copyright © Infineon Technologies AG 2015. All rights reserved.
USIC - Highlight features Transfer Trigger capability

- Data transfer can be gated and only transfer when trigger signal is triggered.
- Events outside USIC module (i.e. CCU4 timer or input pin) can trigger a data transfer.
- Refer USIC-Interconnect chapter in device Reference Manual for the available pins for USIC Control Input.
Support various interrupt for every protocol

- Transmit Shift interrupt (TSI)
- Transmit Buffer interrupt (TBF)
- Standard Receive interrupt (RI)
- Received Start interrupt (RSI)
- Alternative Receive interrupt
- Data Lost interrupt

(e.g. UART data word)
USIC - Highlight features
Interrupt Events (2/2)

› Alternative Receive Interrupt
 - UART – Parity error occurs
 - SPI – Reception of first data word in a data frame
 - IIC – First data word of new data frame
 - IIS – Data for the right channel

› Support also protocol related interrupt
 - Some examples:
 - UART – Noise detection, Collision detection, Sync break detection..etc
 - SPI – MSLS event, Slave Select input event, Parity Error Interrupt
 - IIC – Start Condition, Stop Condition, ACK received, NACK received..etc
 - IIS – WA rising/ falling edge, WA end event, Trigger signal activation
USIC - Highlight features

Baud Rate Generation

- Dedicated baud rate generator available on each USIC channel to provide independent baud rate generation
- USIC baud rate can be selected from internal system frequency or external clock source
- Baud rate generator provides protocol specific signal generation
USIC - Highlight features
Debugger Support

› When received data read from received buffer (RBUF), the read status will change and new incoming data will be transferred to RBUF

› To prevent read status change during debugging, USIC offers receive buffer register for debugging (RBUFD)

› RBUFD is a mirrored register containing the same data as RBUF

Receive Buffer Register for Debugging

Read status remains unchanged after debugger read from RBUFD
General Information

› For latest updates, please refer to:
 http://www.infineon.com/xmc1000
 http://www.infineon.com/xmc4000

› For support:
 http://www.infineonforums.com/forums/8-XMC-Forum
<table>
<thead>
<tr>
<th>Support material:</th>
<th>Collaterals and Brochures</th>
<th>Technical Material</th>
<th>Videos</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Product Briefs</td>
<td>Application Notes</td>
<td>Technical Videos</td>
<td>Forums</td>
</tr>
<tr>
<td></td>
<td>Selection Guides</td>
<td>Technical Articles</td>
<td>Product Information Videos</td>
<td>Product Support</td>
</tr>
<tr>
<td></td>
<td>Application Brochures</td>
<td>Simulation Models</td>
<td>Videos Videos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presentations</td>
<td>Datasheets, MCDS Files</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press Releases, Ads</td>
<td>PCB Design Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kits and Boards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAVE™</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software and Tool Ecosystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infineon Media Center</td>
<td></td>
<td>Infineon Forums</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XMC Mediathek</td>
<td></td>
<td>Technical Assistance Center (TAC)</td>
</tr>
</tbody>
</table>
Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

All the images used in the trainings are free for commercial use or free for use with attribution and were designed by Freepik.
Part of your life. Part of tomorrow.