MOSFET

StrongIRFET™ 2 Power-Transistor

Features
- Optimized for a wide range of applications
- N-Channel, normal level
- 100% avalanche tested
- Pb-free lead plating; RoHS compliant
- Halogen-free according to IEC61249-2-21

Product validation
Qualified according to JEDEC Standard

Table 1 Key Performance Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS}</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS(on),max}$</td>
<td>5.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>I_D</td>
<td>99</td>
<td>A</td>
</tr>
<tr>
<td>Q_{GSS}</td>
<td>43</td>
<td>nC</td>
</tr>
<tr>
<td>Q_G</td>
<td>36</td>
<td>nC</td>
</tr>
</tbody>
</table>

Type / Ordering Code	Package	Marking	Related Links
IPP055N08NF2S | PG-TO220-3 | 055N08NS | - |
Table of Contents

Description ... 1
Maximum ratings ... 3
Thermal characteristics .. 3
Electrical characteristics .. 4
Electrical characteristics diagrams 6
Package Outlines ... 10
Revision History ... 11
Trademarks ... 11
Disclaimer ... 11
1 Maximum ratings
at $T_A=25$ °C, unless otherwise specified

Table 2 Maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous drain current<sup>1</sup></td>
<td>I_D</td>
<td>-</td>
<td>-</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{GS}=10$ V, $T_C=25$ °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{GS}=10$ V, $T_C=100$ °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{GS}=6$ V, $T_C=100$ °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{GS}=10$ V, $T_A=25$ °C, $R_{thJA}=40$ °C/W<sup>2</sup></td>
</tr>
<tr>
<td>Pulsed drain current<sup>3</sup></td>
<td>$I_{D,pulse}$</td>
<td>-</td>
<td>-</td>
<td>396</td>
</tr>
<tr>
<td>Avalanche energy, single pulse<sup>4</sup></td>
<td>E_{AS}</td>
<td>-</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>Gate source voltage</td>
<td>V_{GS}</td>
<td>-20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>-</td>
<td>-</td>
<td>107</td>
</tr>
<tr>
<td>Operating and storage temperature</td>
<td>T_J, T_{stg}</td>
<td>-55</td>
<td>-</td>
<td>175</td>
</tr>
</tbody>
</table>

2 Thermal characteristics

Table 3 Thermal characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction - case</td>
<td>R_{thJC}</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>Thermal resistance, junction - ambient, 6 cm<sup>2</sup> cooling area<sup>2</sup></td>
<td>R_{thJA}</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Thermal resistance, junction - ambient, minimal footprint</td>
<td>R_{thJA}</td>
<td>-</td>
<td>-</td>
<td>62</td>
</tr>
</tbody>
</table>

¹ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature as specified. For other case temperatures please refer to Diagram 2. De-rating will be required based on the actual environmental conditions.

² Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air.

³ See Diagram 3 for more detailed information

⁴ See Diagram 13 for more detailed information
3 Electrical characteristics

at \(T_j=25 \, ^\circ\text{C} \), unless otherwise specified

Table 4 Static characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Drain-source breakdown voltage</td>
<td>(V_{(BR)DSS})</td>
<td>80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>(V_{GS(th)})</td>
<td>2.2</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>(I_{DSS})</td>
<td>-</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Gate-source leakage current</td>
<td>(I_{GS})</td>
<td>-</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Drain-source on-state resistance</td>
<td>(R_{DS(on)})</td>
<td>-</td>
<td>4.8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>6.3</td>
<td>7.9</td>
</tr>
<tr>
<td>Gate resistance</td>
<td>(R_G)</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>Transconductance (^2)</td>
<td>(g_{fs})</td>
<td>46</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5 Dynamic characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{iss})</td>
<td>-</td>
<td>2500</td>
<td>-</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td>-</td>
<td>420</td>
<td>-</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rss})</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{d(on)})</td>
<td>-</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>-</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{d(off)})</td>
<td>-</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>-</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6 Gate charge characteristics \(^3\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>(Q_{gs})</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Gate charge at threshold</td>
<td>(Q_{g(th)})</td>
<td>-</td>
<td>7.4</td>
<td>-</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{gd})</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Switching charge</td>
<td>(Q_{sw})</td>
<td>-</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Gate charge total (^2)</td>
<td>(Q_g)</td>
<td>-</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>Gate plateau voltage</td>
<td>(V_{plateau})</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Output charge</td>
<td>(Q_{oss})</td>
<td>-</td>
<td>43</td>
<td>-</td>
</tr>
</tbody>
</table>

1) \(R_{DS(on)} \) is specified at a distance of 1.8 mm distance to the package body; mounting at a larger distance increases the overall package resistance of approximately 0.04 m\text{Ohm}\/mm per leg.

2) Defined by design. Not subject to production test.

3) See “Gate charge waveforms” for parameter definition.
Table 7 Reverse diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode continuous forward current</td>
<td>I_S</td>
<td>-</td>
<td>-</td>
<td>82</td>
<td>A</td>
<td>$T_C=25 , ^\circ C$</td>
</tr>
<tr>
<td>Diode pulse current</td>
<td>$I_{S,\text{pulse}}$</td>
<td>-</td>
<td>-</td>
<td>396</td>
<td>A</td>
<td>$T_C=25 , ^\circ C$</td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{SD}</td>
<td>-</td>
<td>0.94</td>
<td>1.2</td>
<td>V</td>
<td>$V_{GS}=0 , V, , I_F=60 , A, , T_J=25 , ^\circ C$</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>ns</td>
<td>$V_R=40 , V, , I_R=60 , A, , \frac{dI_R}{dt}=500 , \text{A/µs}$</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{rr}</td>
<td>-</td>
<td>154</td>
<td>-</td>
<td>nC</td>
<td>$V_R=40 , V, , I_R=60 , A, , \frac{dI_R}{dt}=500 , \text{A/µs}$</td>
</tr>
</tbody>
</table>
4 Electrical characteristics diagrams

Diagram 1: Power dissipation

![Power dissipation diagram](image)

\[P_{\text{tot}} = f(T_C) \]

Diagram 2: Drain current

![Drain current diagram](image)

\[I_D = f(T_C); \quad V_{GS} \geq 10 \text{ V} \]

Diagram 3: Safe operating area

![Safe operating area diagram](image)

\[I_D = f(V_{DS}); \quad T_C = 25 ^\circ \text{C}; \quad D = 0; \quad \text{parameter: } t_p \]

Diagram 4: Max. transient thermal impedance

![Max. transient thermal impedance diagram](image)

\[Z_{\text{thJC}} = f(t_p); \quad \text{parameter: } D = t_p/T \]
Diagram 5: Typ. output characteristics

\[I_D = f(V_{DS}), \ T_j=25 \, ^\circ C; \text{parameter: } V_{GS} \]

Diagram 6: Typ. drain-source on resistance

\[R_{DS(on)} = f(I_D), \ T_j=25 \, ^\circ C; \text{parameter: } V_{GS} \]

Diagram 7: Typ. transfer characteristics

\[I_D = f(V_{GS}), \ |V_{DS}|>2|I_D|R_{DS(on)\text{max}}; \text{parameter: } T_j \]

Diagram 8: Typ. drain-source on resistance

\[R_{DS(on)} = f(V_{GS}), \ I_D=60 \, A; \text{parameter: } T_j \]
Diagram 9: Normalized drain-source on resistance

\[R_{\text{DS(on)}}(\text{normalized to } 25^\circ C) = f(T_j) \]

\[I_D = 60 \text{ A}, \ V_{GS} = 10 \text{ V} \]

Diagram 10: Typ. gate threshold voltage

\[V_{\text{GS(th)}} = f(T_j), \ V_{GS} = V_{DS}; \ \text{parameter: } I_D \]

Diagram 11: Typ. capacitances

\[C = f(V_{DS}); \ V_{SS} = 0 \text{ V}; \ f = 1 \text{ MHz} \]

Diagram 12: Typ. forward characteristic of reverse diode

\[I_F = f(V_{SD}); \ \text{parameter: } T_j \]
Diagram 13: Avalanche characteristics

\[I_{AV} [\mu A] \]

\[t_{AV} [\mu s] \]

\[10^{-1} \]

\[10^{0} \]

\[10^{1} \]

\[10^{2} \]

\[10^{3} \]

\[150 ^\circ C \]

\[100 ^\circ C \]

\[25 ^\circ C \]

\(I_{AS} = f(t_{AV}) \); \(R_{GS} = 25 \Omega \); parameter: \(T_{j, start} \)

Diagram 14: Typ. gate charge

\[Q_{gate} [nC] \]

\[V_{GS} [V] \]

\[0 \]

\[5 \]

\[10 \]

\[15 \]

\[20 \]

\[25 \]

\[30 \]

\[35 \]

\[40 \]

\[4 \]

\[2 \]

\[6 \]

\[8 \]

\[10 \]

\[16 \ V \]

\[40 \ V \]

\[64 \ V \]

\(V_{GS} = f(Q_{gate}) \), \(I_{D} = 60 \ A \) pulsed, \(T_{j} = 25 ^\circ C \); parameter: \(V_{DD} \)

Diagram 15: Drain-source breakdown voltage

\[V_{BR(DSS)} [V] \]

\[T_{j} [^\circ C] \]

\[-75 \]

\[-50 \]

\[-25 \]

\[0 \]

\[25 \]

\[50 \]

\[75 \]

\[100 \]

\[125 \]

\[150 \]

\[175 \]

\[200 \]

\[76 \]

\[78 \]

\[80 \]

\[82 \]

\[84 \]

\[86 \]

\[88 \]

\(V_{BR(DSS)} = f(T_{j}) \); \(I_{D} = 1 \ mA \)

Diagram Gate charge waveforms

\(V_{GS} \)

\(Q_{g} \)

\(V_{g(t)} \)

\(Q_{g(t)} \)

\(Q_{sw} \)

\(Q_{gd} \)

\(Q_{gs} \)

Final Data Sheet 9

Rev. 2.1, 2022-06-15
5 Package Outlines

NOTES:
DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS
GATE BURRS ARE LESS THAN 0.5 mm

Figure 1 Outline PG-TO220-3, dimensions in mm
Revision History

IPP055N08NF2S

Revision: 2022-06-15, Rev. 2.1

Previous Revision

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Subjects (major changes since last revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2020-12-18</td>
<td>Release of final version</td>
</tr>
<tr>
<td>2.1</td>
<td>2022-06-15</td>
<td>Skip condition "Operating and storage tempt.", update trr and Qrr, footnotes and Diagram 12</td>
</tr>
</tbody>
</table>

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:
erratum@infineon.com

Published by
Infineon Technologies AG
81726 München, Germany
© 2022 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.