LED Drivers for High Power LEDs

ILD4035
350 mA Step Down LED Driver

Data Sheet
Revision 2.0, 2011-08-17

Industrial and Multimarket
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Revision History

<table>
<thead>
<tr>
<th>Revision 2.0, 2011-08-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
</tr>
<tr>
<td>Table 2</td>
</tr>
<tr>
<td>Figure 3</td>
</tr>
<tr>
<td>Table 4</td>
</tr>
<tr>
<td>Table 4</td>
</tr>
<tr>
<td>Table 4</td>
</tr>
<tr>
<td>Table 5</td>
</tr>
<tr>
<td>Table 6</td>
</tr>
<tr>
<td>Chapter 6.3</td>
</tr>
<tr>
<td>Chapter 6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revision 1.0, 2010-11-11</th>
</tr>
</thead>
</table>

Trademarks of Infineon Technologies AG

AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SMARTI™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPO-SYS™.

Other Trademarks

Last Trademarks Update 2010-10-26
Table of Contents

Table of Contents .. 4
List of Figures ... 5
List of Tables ... 6
1 Features ... 8
2 Product Brief .. 9
3 Maximum Ratings .. 11
4 Thermal Characteristics .. 12
5 Electrical Characteristics .. 14
 5.1 DC Characteristics .. 14
 5.2 Switching Characteristics ... 15
 5.3 Digital Signals ... 15
6 Basic Application Information .. 16
 6.1 Setting the average LED current ... 16
 6.2 Dimming of the LEDs .. 16
 6.3 Temperature Protection Circuit ... 19
 6.4 Switching Parameters .. 19
7 Application Circuit .. 28
8 Evaluation Board ... 28
9 Package Information ... 29
List of Figures

Figure 1 Block Diagram ... 9
Figure 2 Total Power Dissipation .. 12
Figure 3 Safe Operating Area .. 13
Figure 4 PWM Dimming ... 18
Figure 5 Application Circuit .. 28
Figure 6 ILD4035 on Evaluation Board ... 28
Figure 7 Package Outline SC74 .. 29
Figure 8 Recommended PCB Footprint for Reflow Soldering 29
Figure 9 Tape Loading ... 29
List of Tables

Table 1 Pin Definition and Function ... 10
Table 2 Maximum Ratings ... 11
Table 3 Maximum Thermal Resistance .. 12
Table 4 DC Characteristics ... 14
Table 5 Switching Characteristics .. 15
Table 6 Digital Control Parameter at Pin EN/PWM 15
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Detailed specifications of the LED driver</td>
</tr>
<tr>
<td>Table 2</td>
<td>Power consumption and efficiency data</td>
</tr>
<tr>
<td>Table 3</td>
<td>Compatibility with various LED types</td>
</tr>
<tr>
<td>Table 4</td>
<td>Regulatory compliance information</td>
</tr>
</tbody>
</table>

Note: For more detailed specifications and information, please refer to the full data sheet and revision 2.0 from Infineon, dated 2011-08-17.
1 Features

- Wide input voltage range: 4.5 V ... 40 V
- Internal switch for up to 400 mA average LED current
- Up to 95 % efficiency
- Over current protection
- Over voltage protection
- Temperature protection mechanism
- Inherent open-circuit LED protection
- Soft-start capability
- Low shut down current
- Analog and PWM dimming possible
- Typical 3 % output current accuracy
- Minimum external components required
- Small package: SC74

Applications

- LED driver for general lighting applications
- Retail, office and residential luminaires and downlights
- LED replacement lamps
- Architectural lighting

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Pin Configuration</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD4035</td>
<td>SC74-6-4</td>
<td>1 = V_S 2 = GND 3 = EN 4 = V_switch 5 = GND 6 = V_sense 35</td>
<td></td>
</tr>
</tbody>
</table>
2 Product Brief

The ILD4035 is a hysteretic step down LED driver IC for general lighting applications, which is capable to drive high power LEDs with average currents up to 400 mA.

The IC incorporates a wide input voltage range and an internal power switch. The output current level can be adjusted with an external sense resistor.

According to the multifunctional control pin the IC can be switched on and off by an external signal, which is also suitable to regulate brightness of the LEDs by PWM or analog voltage dimming.

Depending on the value of the switching inductor the switching frequency and the voltage ripple can be set.

The precise internal bandgap stabilizes the circuit and provides stable current conditions over temperature range.

To ensure a long lifetime of the LED system, the ILD4035 incorporates an overvoltage and an overcurrent protection.

In addition, the integrated thermal protection will reduce the output current to protect the LEDs and the IC against thermal stress.

![Block Diagram](ILD4035_Block_diagram.vsd)
Pin Definition

Table 1 Pin Definition and Function

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Pin Type</th>
<th>Buffer Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(V_s)</td>
<td>Input</td>
<td>–</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>GND</td>
<td>–</td>
<td>IC ground</td>
</tr>
<tr>
<td>3</td>
<td>EN / PWM</td>
<td>Input</td>
<td>–</td>
<td>Multifunctional pin:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Chip enable signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Analog dimming signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PWM dimming signal</td>
</tr>
<tr>
<td>4</td>
<td>(V_{\text{switch}})</td>
<td>Output</td>
<td>–</td>
<td>Power switch output</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>–</td>
<td>IC ground</td>
</tr>
<tr>
<td>6</td>
<td>(V_{\text{sense}})</td>
<td>Input</td>
<td>–</td>
<td>LED current sense input</td>
</tr>
</tbody>
</table>
Maximum Ratings

Table 2 Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>–</td>
<td>–</td>
<td>45 V</td>
</tr>
<tr>
<td>Peak output current</td>
<td>I_{Switch}</td>
<td>–</td>
<td>–</td>
<td>550 mA</td>
</tr>
<tr>
<td>Total power dissipation, $T_s \leq 85^\circ C$</td>
<td>P_{tot}</td>
<td>–</td>
<td>–</td>
<td>1000 mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>–</td>
<td>–</td>
<td>150 °C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{STG}</td>
<td>-65</td>
<td>–</td>
<td>150 °C</td>
</tr>
<tr>
<td>ESD capability at all pins</td>
<td>$V_{ESD HBM}$</td>
<td>–</td>
<td>–</td>
<td>4 kV</td>
</tr>
</tbody>
</table>

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
4 Thermal Characteristics

Table 3 Maximum Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction - soldering point</td>
<td>R_{thJS}</td>
<td>–</td>
<td>–</td>
<td>65 K/W</td>
</tr>
</tbody>
</table>

1) For calculation of R_{thJA} please refer to application note AN077 (Thermal Resistance Calculation).

![Figure 2 Total Power Dissipation](image)

Equation (1) gives an estimation for the power dissipation of ILD4035.

$$P_{tot} = 1.1 V \cdot I_{LED} \cdot duty\cdot cycle + f_{Switch} \cdot 1 \mu W \cdot I_{LED} / 350 \ mA$$

(1)
Figure 3 shows the safe operating area for the respective inductance values. The safe operating area consists of the minimum and maximum allowed average LED current and the resulting voltage overhead. The voltage overhead $V_{overhead}$ is the difference between the supply voltage V_S and the sum of the LED forward voltages $V_{\Sigma fLED}$.

Example calculation 1

3 LEDs in series, $V_{fLED} = 3\, \text{V}$, $I_{LED} = 350\, \text{mA}$, $V_S = 12\, \text{V}$

$$V_{overhead} = V_S - V_{\Sigma fLED} = 12\, \text{V} - 9\, \text{V} = 3\, \text{V}$$

\rightarrow any of the above coil values can be used

Example calculation 2

6 LEDs in series, $V_{fLED} = 3\, \text{V}$, $I_{LED} = 250\, \text{mA}$, $V_S = 24\, \text{V}$

$$V_{overhead} = V_S - V_{\Sigma fLED} = 24\, \text{V} - 18\, \text{V} = 6\, \text{V}$$

\rightarrow the coil values needs to be at least $68\, \mu\text{H}$

Outside the safe operating area the switching frequency, hysteretic peak current and associated power dissipation P_{tot} of ILD4035 will increase beyond the maximum ratings.
5 Electrical Characteristics

5.1 DC Characteristics
All parameters at $T_A = 25$ °C, unless otherwise specified.

$V_S = 12$ V, 3 LEDs, $R_{\text{sense}} = 303$ mΩ ($I_{\text{LED}} = 375$ mA), $L = 100$ μH, $V_{EN} = 3$ V, $V_{\text{LED}} = 3$ V

Table 4 DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Overall current consumption open load</td>
<td>I_S</td>
<td>–</td>
<td>–</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>$open$ load</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Overall current consumption open load</td>
<td>I_S</td>
<td>1.5</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>$open$ load</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Overall current consumption open load</td>
<td>I_S</td>
<td>1.8</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>$open$ load</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Overall standby current consumption</td>
<td>I_S</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>standby</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Overall standby current consumption</td>
<td>I_S</td>
<td>–</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>standby</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Enable voltage for standby mode</td>
<td>V_{EN}</td>
<td>–0.3</td>
<td>–</td>
<td>0.4</td>
</tr>
<tr>
<td>Enable voltage for analog dimming</td>
<td>V_{EN}</td>
<td>1</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current of multifunctional control pin</td>
<td>I_{EN}</td>
<td>–</td>
<td>50</td>
<td>140</td>
</tr>
<tr>
<td>Current of sense input</td>
<td>I_{sense}</td>
<td>–</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>Over temperature protection</td>
<td>$T_{S,TSD}$</td>
<td>–</td>
<td>113</td>
<td>–</td>
</tr>
</tbody>
</table>
5.2 Switching Characteristics

All parameters at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified.

$V_S = 12 \, \text{V}$, 3 LEDs, $R_{\text{sense}} = 303 \, \text{m}\Omega$ ($I_{\text{LED}} = 375 \, \text{mA}$), $L = 100 \, \mu\text{H}$, $V_{\text{EN}} = 3 \, \text{V}$, $V_{\text{LED}} = 3 \, \text{V}$

Table 5 Switching Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency</td>
<td>f_{Switch}</td>
<td>$- \quad 120 \quad -$</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Maximum switching frequency</td>
<td>$f_{\text{Switch max}}$</td>
<td>$- \quad - \quad 500$</td>
<td>kHz</td>
<td>for any coil value</td>
</tr>
<tr>
<td>Mean current sense threshold voltage</td>
<td>V_{sense}</td>
<td>$- \quad 114 \quad -$</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Sense threshold hysteresis</td>
<td>V_{sensehys}</td>
<td>$- \quad \pm 7.5 \quad -$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Residual voltage at collector of power transistor</td>
<td>$V_{\text{switch on}}$</td>
<td>$- \quad 1.1 \quad -$</td>
<td>V</td>
<td>output switch turned on</td>
</tr>
<tr>
<td>Output current accuracy</td>
<td>I_{outacc}</td>
<td>$- \quad \pm 3 \quad -$</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Digital Signals

All parameters at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified.

Table 6 Digital Control Parameter at Pin EN/PWM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage for power on</td>
<td>V_{On}</td>
<td>$2.5 \quad 3 \quad 40$</td>
<td>V</td>
<td>full LED current</td>
</tr>
<tr>
<td>Input voltage for power off</td>
<td>V_{Off}</td>
<td>$-0.3 \quad - \quad 0.4$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Min. power on puls duration</td>
<td>t_{On}</td>
<td>$10 \quad - \quad -$</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>
6 Basic Application Information

This section covers the basic information required for calculating the parameters for a certain LED application. For detailed application information please check the Application Note AN215 (Driving 1 W LEDs with ILD4035) or visit our web site http://www.infineon.com/led.appnotes

6.1 Setting the average LED current

The average output current for the LEDs is set by the external sense resistor \(R_{\text{sense}} \). To calculate the value of this resistor a first approximation can be calculated using Equation (2).

\[R_{\text{sense}} = \frac{V_{\text{sense}}}{I_{\text{LED}}} \]

(2)

Example calculation 1

\(V_S = 12 \ \text{V}, \ 100 \ \mu\text{H}, \ V_{f\text{LED}} = 3 \ \text{V}, \ 3 \text{ LEDs in series} \)

\(\rightarrow V_{\text{sense}} = 114 \ \text{mV} \)

\(I_{\text{LED}} = 375 \ \text{mA} \)

\(\rightarrow R_{\text{sense}} = 303 \ \text{m} \Omega \)

Example calculation 2

\(V_S = 24 \ \text{V}, \ 100 \ \mu\text{H}, \ V_{f\text{LED}} = 3 \ \text{V}, \ 6 \text{ LEDs in series} \)

\(\rightarrow V_{\text{sense}} = 106 \ \text{mV} \)

\(I_{\text{LED}} = 350 \ \text{mA} \)

\(\rightarrow R_{\text{sense}} = 303 \ \text{m} \Omega \)

An easy way to achieve these resistor values is to connect standard resistors in parallel

6.2 Dimming of the LEDs

Analog voltage dimming

The voltage level of the EN/PWM pin can be used for analog dimming of the LED current. To achieve a linear change in LED current versus control voltage the recommended voltage range at the EN/PWM pin is 1 V to 2 V.

The maximum achievable LED current is defined by resistor \(R_{\text{sense}} \). The maximum LED current will be achieved for \(V_{\text{EN}} \geq 2.5 \ \text{V} \). Below 0.4 V the ILD4035 is set to standby mode and the output is switched off. The typical dimming performance is shown in below figures.
PWM Dimming

Besides the analog dimming functionality the EN/PWM pin acts as input for a pulse width modulated (PWM) signal to control the dimming of the LED string. For PWM dimming the signal's logic high level should be at least 2.5 V and the PWM frequency should be lower than 5 kHz. For the ILD4035/4001 demo board a dimming frequency less than 330 Hz is recommended to maintain a maximum contrast ratio of 100:1. The achievable contrast ratio is shown on Figure 4 based on the measured average LED current deviating 3 dB from the linear reference. The maximum contrast ratio depends mainly on the rise time of the inductor current and is thus dependent on supply voltage, inductor size and LED string forward voltage.
Figure 4 PWM Dimming
6.3 Temperature Protection Circuit
ILD4035 incorporates a temperature protection circuit referring to the junction temperature of ILD4035. The higher the junction temperature of ILD4035 the lower the current of the LEDs. This feature helps to reduce the power dissipation of ILD4035 and the LEDs. Yet still the product specific maximum ratings for junction temperature need to be observed to avoid a permanent damage of the devices.

ILD4035 has been characterized on ILD4035/4001 application board heated from the backside without additional air flow on the circuit board surface besides natural convection. Design and layout of the circuit board as well as the air flow influence the thermal resistance junction to ambient $R_{th,jA}$ of ILD4035 and thus its junction temperature. Below figures show the LED current versus soldering point temperature T_S.

LED current versus T_S, $V_S = 12$ V

LED current (relative) versus T_S, $V_S = 12$ V

6.4 Switching Parameters
For all shown parameters ILD4035 has been measured on evaluation board ILD4035/4001 at $T_d = 25$ °C. Used LEDs have a typical forward voltage V_{fLED} of 3 V. For details see application note AN215 (Driving 1W LEDs with ILD4035) or visit our web site http://www.infineon.com/lowcostleddrivers.
$R_{\text{sense}} = 303 \, \text{m}\Omega$, $L = 47 \, \mu\text{H}$

I_{LED} versus V_S and Number of LEDs

$\text{Efficiency versus } V_S \text{ and Number of LEDs}$

$\text{Duty Cycle versus } V_S \text{ and Number of LEDs}$
ILD4035
350 mA Step Down LED Driver

Basic Application Information

\[R_{\text{sense}} = 303 \, \text{m} \Omega, \, L = 68 \, \mu\text{H} \]

\[I_{\text{LED}} \text{ versus } V_S \text{ and Number of LEDs} \]

\[f_{\text{Switch}} \text{ versus } V_S \text{ and Number of LEDs} \]

\[\text{Efficiency versus } V_S \text{ and Number of LEDs} \]

\[\text{Duty Cycle versus } V_S \text{ and Number of LEDs} \]
$R_{\text{sense}} = 303 \, \text{m}\Omega$, $L = 100 \, \mu\text{H}$

I_{LED} versus V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
$R_{\text{sense}} = 303 \, \text{m} \Omega, \ L = 220 \, \mu \text{H}$

I_{LED} versus V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
$R_{\text{sense}} = 367 \, \text{m}\Omega$, $L = 47 \, \mu\text{H}$

I_{LED} versus V_S and Number of LEDs

δ_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
$R_{\text{sense}} = 367 \, \text{m} \Omega$, $L = 68 \, \mu\text{H}$

I_{LED} versus V_S and Number of LEDs

V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
$R_{\text{sense}} = 367 \, \text{m}\Omega, \, L = 100 \, \mu\text{H}$

I_{LED} versus V_S and Number of LEDs

$\frac{f_{\text{Switch}}}{\text{kHz}}$ versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
Rsense = 367 mΩ, L = 220 μH

I\text{LED} versus \(V_S\) and Number of LEDs

\(f\text{Switch}\) versus \(V_S\) and Number of LEDs

Efficiency versus \(V_S\) and Number of LEDs

Duty Cycle versus \(V_S\) and Number of LEDs
7 Application Circuit

Figure 5 Application Circuit

8 Evaluation Board

Figure 6 ILD4035 on Evaluation Board
9 Package Information

Figure 7 Package Outline SC74

Figure 8 Recommended PCB Footprint for Reflow Soldering

Figure 9 Tape Loading