Diode
Rapid Switching Emitter Controlled Diode

IDW75D65D1
Emitter Controlled Diode Rapid 1 Dual Anode Series
Rapid Switching Emitter Controlled Diode

Features:

- Qualified according to JEDEC for target applications
- 650V Emitter Controlled technology
- Temperature stable behaviour of key parameters
- Low forward voltage (V_F)
- Ultra fast recovery
- Low reverse recovery charge (Q_{rr})
- Low reverse recovery current (I_{rrm})
- 175°C junction operating temperature
- Pb-free lead plating
- RoHS compliant

Applications:

- AC/DC converters
- Boost diode in PFC stages
- Free wheeling diodes in inverters and motor drives
- General purpose inverters
- Switch mode power supplies

Package pin definition:

- Pin 1 - anode
- Pin 2 and backside - cathode
- Pin 3 - anode

Key Performance and Package Parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>V_{rrm}</th>
<th>I_t</th>
<th>$V_F, T_{vj}=25°C$</th>
<th>T_{vjmax}</th>
<th>Marking</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDW75D65D1</td>
<td>650V</td>
<td>75A</td>
<td>1.35V</td>
<td>175°C</td>
<td>D75ED1</td>
<td>PG-TO247-3</td>
</tr>
</tbody>
</table>
Table of Contents

- Description ... 2
- Table of Contents .. 3
- Maximum Ratings .. 4
- Thermal Resistances ... 4
- Electrical Characteristics ... 4
- Electrical Characteristics Diagrams ... 7
- Package Drawing .. 10
- Testing Conditions ... 11
- Revision History ... 12
- Disclaimer .. 12
Maximum Ratings

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage, $T_{vj} \geq 25^\circ C$</td>
<td>V_{RRM}</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Diode forward current, limited by $T_{vj\text{max}}$</td>
<td>I_F</td>
<td>150.0</td>
<td>A</td>
</tr>
<tr>
<td>$T_C = 25^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C = 100^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode pulsed current, t_p limited by $T_{vj\text{max}}$</td>
<td>$I_{F\text{puls}}$</td>
<td>225.0</td>
<td>A</td>
</tr>
<tr>
<td>Diode surge non repetitive forward current</td>
<td>$I_{F\text{SM}}$</td>
<td>580.0</td>
<td>A</td>
</tr>
<tr>
<td>$T_C = 25^\circ C$, $t_p = 10.0\text{ms}$, sine halfwave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>326.0</td>
<td>W</td>
</tr>
<tr>
<td>$T_C = 25^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C = 100^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>T_{vj}</td>
<td>-40...+175</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-55...+150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature, wave soldering 1.6mm (0.063in.) from case for 10s</td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Mounting torque, M3 screw</td>
<td>M</td>
<td>0.6</td>
<td>Nm</td>
</tr>
<tr>
<td>Maximum of mounting processes: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Resistances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Max. Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode thermal resistance, $^3)$ junction - case</td>
<td>$R_{th(j-c)}$</td>
<td></td>
<td>0.46</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction - ambient</td>
<td>$R_{th(j-a)}$</td>
<td></td>
<td>40</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Electrical Characteristics, at $T_{vj} = 25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td>$I_F = 75.0\text{A}$</td>
<td>-</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{vj} = 25^\circ C$</td>
<td>-</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{vj} = 125^\circ C$</td>
<td>-</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{vj} = 175^\circ C$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>$V_R = 650\text{V}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{vj} = 25^\circ C$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{vj} = 175^\circ C$</td>
<td>-</td>
<td>3000.0</td>
</tr>
</tbody>
</table>

1) Maximum current for pin 1 and pin 3 is 80A (value limited by bondwire).
2) For a balanced current flow through pins 1 and 3.
3) Please be aware that in nonstandard load conditions, due to high $R_{th(j-c)}$, T_{vj} close to $T_{vj\text{max}}$ can be reached.
Electrical Characteristic, at $T_{jm} = 25^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Characteristic</td>
<td></td>
<td></td>
<td>min.</td>
<td>typ.</td>
</tr>
<tr>
<td>Internal emitter inductance1 measured 5mm (0.197 in.) from case</td>
<td>L_E</td>
<td></td>
<td>-</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Switching Characteristics, Inductive Load

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Characteristic, at $T_{jm} = 25^\circ\text{C}$</td>
<td></td>
<td></td>
<td>min.</td>
<td>typ.</td>
</tr>
<tr>
<td>Diode reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_{jm} = 25^\circ\text{C}$, $V_R = 400\text{V}$, $I_F = 75.0\text{A}$, $di/dt = 1000\text{A/}\mu\text{s}$, $L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>108</td>
</tr>
<tr>
<td>Diode reverse recovery charge</td>
<td>Q_{rr}</td>
<td>$V_R = 400\text{V}$, $I_F = 40.0\text{A}$, $di/dt = 200\text{A/}\mu\text{s}$, $L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>1.25</td>
</tr>
<tr>
<td>Diode peak rate of fall of reverse recovery current during t_b</td>
<td>di/dt</td>
<td>$L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>19.9</td>
</tr>
<tr>
<td>Diode reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_{jm} = 25^\circ\text{C}$, $V_R = 400\text{V}$, $I_F = 75.0\text{A}$, $di/dt = 1000\text{A/}\mu\text{s}$, $L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>127</td>
</tr>
<tr>
<td>Diode reverse recovery charge</td>
<td>Q_{rr}</td>
<td>$V_R = 400\text{V}$, $I_F = 40.0\text{A}$, $di/dt = 200\text{A/}\mu\text{s}$, $L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>0.48</td>
</tr>
<tr>
<td>Diode peak rate of fall of reverse recovery current during t_b</td>
<td>di/dt</td>
<td>$L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>6.4</td>
</tr>
<tr>
<td>Diode reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_{jm} = 175^\circ\text{C}$, $V_R = 400\text{V}$, $I_F = 75.0\text{A}$, $di/dt = 1000\text{A/}\mu\text{s}$, $L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>174</td>
</tr>
<tr>
<td>Diode reverse recovery charge</td>
<td>Q_{rr}</td>
<td>$V_R = 400\text{V}$, $I_F = 75.0\text{A}$, $di/dt = 1000\text{A/}\mu\text{s}$, $L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>4.16</td>
</tr>
<tr>
<td>Diode peak reverse recovery current</td>
<td>I_{rrm}</td>
<td>$L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>37.9</td>
</tr>
<tr>
<td>Diode peak rate of fall of reverse recovery current during t_b</td>
<td>di/dt</td>
<td>$L_\sigma = 30\text{nH}$, $C_\sigma = 40\text{pF}$, switch IGZ100N65H5.</td>
<td>-</td>
<td>-1170</td>
</tr>
</tbody>
</table>

1 For a balanced current flow through pins 1 and 3.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode reverse recovery time</td>
<td>(t_{rr})</td>
<td>- 184</td>
<td>ns</td>
</tr>
<tr>
<td>Diode reverse recovery charge</td>
<td>(Q_{rr})</td>
<td>- 1.64</td>
<td>(\mu \text{C})</td>
</tr>
<tr>
<td>Diode peak reverse recovery current</td>
<td>(I_{rrm})</td>
<td>- 13.2</td>
<td>A</td>
</tr>
<tr>
<td>Diode peak rate of fall of reverse recovery current</td>
<td>(di/dt)</td>
<td>- 62</td>
<td>(\text{A}/\mu \text{s})</td>
</tr>
</tbody>
</table>

Conditions:
- \(T_v = 125^\circ \text{C} \)
- \(V_R = 400 \text{V} \)
- \(I_k = 40.0 \text{A} \)
- \(di/dt = 200 \text{A}/\mu \text{s} \)
- \(L_\sigma = 30 \text{nH} \)
- \(C_\sigma = 40 \text{pF} \)
- Switch IGZ100N65H5.
Figure 1. Power dissipation as a function of case temperature ($T_{jc}=175^\circ C$)

Figure 2. Collector current as a function of case temperature ($V_{GE} \geq 15\,V, T_{jc}=175^\circ C$)

Figure 3. Diode transient thermal impedance as a function of pulse width ($D=t_p/T$)

Figure 4. Typical reverse recovery time as a function of diode current slope ($V_R=400\,V$)
Figure 5. Typical reverse recovery charge as a function of diode current slope
\((V_{R}=400\text{V})\)

Figure 6. Typical reverse recovery current as a function of diode current slope
\((V_{R}=400\text{V})\)

Figure 7. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope
\((V_{R}=400\text{V})\)

Figure 8. Typical diode forward current as a function of forward voltage
Figure 9. Typical diode forward voltage as a function of junction temperature
Emitter Controlled Diode Rapid 1 Dual Anode Series

PG-TO247-3

DIM	**MILLIMETERS**	**INCHES**
A | 4.83 - 5.21 | 0.190 - 0.205
A1 | 2.27 - 2.54 | 0.089 - 0.100
A2 | 1.85 - 2.16 | 0.073 - 0.085
b | 1.07 - 1.32 | 0.042 - 0.052
b1 | 1.90 | 0.075
b2 | 1.90 - 2.16 | 0.075 - 0.085
b3 | 3.87 | 0.151
b4 | 3.13 | 0.123
c | 0.65 - 0.88 | 0.026 - 0.035
D | 20.80 - 21.10 | 0.819 - 0.831
D1 | 16.25 - 17.65 | 0.640 - 0.695
D2 | 0.85 - 1.35 | 0.033 - 0.053
E | 15.70 - 16.13 | 0.618 - 0.635
E1 | 13.10 | 0.516
E2 | 3.68 - 5.10 | 0.145 - 0.201
E3 | 2.80 | 0.109
L | 19.80 - 20.32 | 0.780 - 0.800
L1 | 4.10 - 4.47 | 0.161 - 0.176
\(dP \) | 3.50 - 3.70 | 0.138 - 0.146
Q | 5.49 | 0.216
S | 6.04 - 6.30 | 0.238 - 0.248

Dimensions

- **A**: 4.83 - 5.21 mm (0.190 - 0.205 inches)
- **A1**: 2.27 - 2.54 mm (0.089 - 0.100 inches)
- **A2**: 1.85 - 2.16 mm (0.073 - 0.085 inches)
- **b**: 1.07 - 1.32 mm (0.042 - 0.052 inches)
- **b1**: 1.90 mm
- **b2**: 1.90 - 2.16 mm (0.075 - 0.085 inches)
- **b3**: 3.87 mm
- **b4**: 3.13 mm
- **c**: 0.65 - 0.88 mm (0.026 - 0.035 inches)
- **D**: 20.80 - 21.10 mm (0.819 - 0.831 inches)
- **D1**: 16.25 - 17.65 mm (0.640 - 0.695 inches)
- **D2**: 0.85 - 1.35 mm (0.033 - 0.053 inches)
- **E**: 15.70 - 16.13 mm (0.618 - 0.635 inches)
- **E1**: 13.10 mm
- **E2**: 3.68 - 5.10 mm (0.145 - 0.201 inches)
- **E3**: 2.80 mm
- **L**: 19.80 - 20.32 mm (0.780 - 0.800 inches)
- **L1**: 4.10 - 4.47 mm (0.161 - 0.176 inches)
- **dP**: 3.50 - 3.70 mm (0.138 - 0.146 inches)
- **Q**: 5.49 mm
- **S**: 6.04 - 6.30 mm (0.238 - 0.248 inches)
IDW75D65D1
Emitter Controlled Diode Rapid 1 Dual Anode Series

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure C. Definition of diode switching characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit
Parasitic inductance L_{par}, parasitic capacitor C_{par}, relief capacitor C_{rel} (only for ZVT switching)
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the
application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,
including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon
Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems
and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon
Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support,
automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be
endangered.