Diode

Emitter Controlled 4 Medium Power Technology
IDC73D120T8M

Data Sheet
Table of Contents

Features and Applications..3
Mechanical Parameters...3
Maximum Ratings ..4
Static and Electrical Characteristics ..4
Further Electrical Characteristics ..4
Chip Drawing ...5
Revision History ..6
Relevant Application Notes ...6
Legal Disclaimer ..7
Diode Chip in Emitter Controlled 4 Medium Power Technology

Features:
- 1200V Emitter Controlled 4 technology
- 110μm chip
- Soft, fast switching
- Low reverse recovery charge
- Small temperature coefficient

Recommended for:
- Low / medium power modules

Applications:
- Low / medium power drives

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>V_R</th>
<th>I_{f_n}</th>
<th>Die Size</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDC73D120T8M</td>
<td>1200V</td>
<td>150A</td>
<td>9.00mm x 8.15mm</td>
<td>Sawn on foil</td>
</tr>
</tbody>
</table>

Mechanical Parameters

- Die size: 9.00 x 8.15 mm²
- Area total: 73.35 mm²
- Anode pad size: 8.026 x 7.196 μm
- Silicon thickness: 110 μm
- Wafer size: 200 mm

Maximum possible chips per wafer: 358

- Passivation frontside: Photoimide
- Pad metal: 3200nm AlSiCu
- Backside metal: Ni Ag – system
- To achieve a reliable solder connection it is strongly recommended not to consume the Ni layer completely during production process
- Die bond: Electrically conductive epoxy glue and soft solder
- Wire bond: Al, ≤500μm
- Reject ink dot size: ∅ 0.65mm; max 1.2mm

Storage environment (<6 months)

- for original and sealed MBB bags: Ambient atmosphere air, temperature 17°C – 25°C
- for open MBB bags: Acc. IEC 62258-3; Section 9.4 Storage Environment.
Maximum Ratings
In general, from reliability and lifetime point of view, the lower the operation junction temperature and/or the applied voltage, the greater the expected lifetime of any semiconductor device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td>$T_{vj}=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous forward current 1</td>
<td>I_F</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current 2</td>
<td>I_{FRM}</td>
<td>-</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_{vj}</td>
<td>-</td>
<td>-40...+175</td>
<td>°C</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>$T_{vj,op}$</td>
<td>-</td>
<td>-40...+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Static Characteristics (tested on wafer), $T_{vj}=25^\circ C$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>$V_R=1200V$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cathode-anode breakdown voltage</td>
<td>V_{BR}</td>
<td>$I_R=0.25mA$</td>
<td>1200</td>
<td>-</td>
</tr>
<tr>
<td>Forward voltage drop</td>
<td>V_F</td>
<td>$I_F=45A$</td>
<td>1.03</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Electrical Characteristics 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage drop $T_{vj}=25^\circ C$</td>
<td>V_F</td>
<td>$I_F=150A$</td>
<td>1.35</td>
<td>2.05</td>
</tr>
<tr>
<td>Forward voltage drop $T_{vj}=150^\circ C$</td>
<td>V_F</td>
<td>$I_F=150A$</td>
<td>-</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Further Electrical Characteristics
Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

Application example
FS150R12KT4
Rev. 2.1

1 Depending on thermal properties of assembly.
2 Not subject to production test - verified by design/characterization.
Chip Drawing

Die-Size 9000 µm x 8150 µm

A = Anode pad
Bare Die Product Specifics

Test coverage at wafer level cannot cover all application conditions. Therefore it is recommended to test all characteristics which are relevant for the application at package level, including RBSOA and SCOSA.

Description

AQL 0.65 for visual inspection according to failure catalogue

Electrostatic Discharge Sensitive Device according to MIL-STD 883

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Subjects (major changes since last revision)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Final data sheet</td>
<td>22.08.2016</td>
</tr>
</tbody>
</table>

Relevant Application Notes
IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.