
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the 
company that originally developed the product. Please note that Infineon will continue 
to offer the product to new and existing customers as part of the Infineon product 
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product 
portfolio does not lead to any changes to this document. Future revisions will occur 
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the 
ordering part numbers listed in the datasheet for ordering.



 

www.cypress.com Document Number. 002-20191 Rev. *D 1 

AN220191 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

Author: Hitoshi Ogawa 

Associated Part Family: Traveo™ II Family CYT2/CYT3/CYT4 Series 
Related Application Notes: See Related Documents 

  

This application note describes how to use DMA controllers (P-DMA and M-DMA) in Cypress Traveo II Family MCUs. 

DMA controllers can transfer data from a source to a destination without CPU intervention. The application note 

illustrates how to configure DMA for peripheral-to-memory, memory-to-peripheral, and memory-to-memory data 

transfers. 

Contents 

1 Introduction .................................................................. 1 
1.1 Features .............................................................. 2 
1.2 Block Diagram ..................................................... 3 

2 Operation Overview ..................................................... 5 
2.1 Disable/Enable P-DMA/M-DMA .......................... 5 
2.2 Configure Channel .............................................. 5 
2.3 Configure Descriptor ........................................... 6 
2.4 Disable/Enable P-DMA/M-DMA Channel .......... 12 

3 P-DMA Use Cases .................................................... 12 
3.1 1D Transfer (Memory-to-Peripheral) ................. 12 

3.2 1D Transfer (Peripheral-to-Memory) ................. 14 
3.3 Descriptor Chaining .......................................... 15 
3.4 2D Transfer (Peripheral-to-Memory) ................. 18 
3.5 CRC Transfer .................................................... 19 

4 M-DMA Use Case ..................................................... 21 
4.1 Memory-to-Memory (Memory Copy) ................. 21 

5 Glossary .................................................................... 23 
6 Related Documents ................................................... 24 
Document History ............................................................ 25 
Worldwide Sales and Design Support ............................. 26 

1 Introduction 

This application note describes how to use the Direct Memory Access (DMA) Controller in Cypress Traveo II family 
MCUs.  

DMA controllers can seamlessly transfer data between memory and on-chip peripherals, or between memories without 
CPU intervention. This allows the CPU to handle other tasks while the DMA controller transfers data. 

Both P-DMA and M-DMA have multiple independent DMA channels. Each DMA channel has a separate DMA request 
input that initiates the transaction and can independently transfer data. See the device datasheet for the number of 
DMA channels available for each device. 

This series supports two types of DMA controllers: Peripheral DMA (P-DMA) and Memory DMA (M-DMA). P-DMA is 
used for peripheral-to-memory and memory-to-peripheral low-latency data transfers for many channels. M-DMA is used 
for memory-to-memory high-memory-bandwidth data transfer for a small number of channels. 

These DMA controllers have a descriptor that specifies the transfer operation, and it corresponds flexibly to various 
applications. Descriptors can be chained; it is possible to have circular lists. 

This application note explains the functioning of DMA controllers in the series, initial configuration, and data transfer 
operations with use cases. 

To understand the functionality described and terminology used in this application note, see the “Direct Memory Access” 
chapter of the Architecture Technical Reference Manual (TRM). 

 

 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 2 

1.1 Features 

Table 1 compares P-DMA with M-DMA, which have similar registers and descriptor structures.  

Table 1. P-DMA/M-DMA Features 

Feature P-DMA M-DMA 

Focuses on Low latency High memory bandwidth 

Useful for Transfer between peripheral and memory Transfer between memories 

Transfer engine Shared all channels Dedicated for each channel 

Transfer size 8-bit, 16-bit, 32-bit 8-bit, 16-bit, 32-bit 

Channel priority 
▪ Four levels 

▪ Preemptable 

Four levels 

Descriptor 
Type 

▪ Single transfer 

▪ 1D / 2D transfer 

▪ CRC transfer 

▪ Single transfer 

▪ 1D/2D transfer 

▪ Memory copy 

▪ Scatter 

Descriptor 

▪ Source and destination address 

▪ Transfer size 

▪ Descriptor type 

▪ Trigger-in type (four types) 

▪ Trigger-out type (four types) 

▪ Interrupt type (four types) 

▪ Descriptor chaining 

▪ Source and destination address 

▪ Transfer size 

▪ Descriptor type 

▪ Trigger-in type (four types) 

▪ Trigger-out type (four types) 

▪ Interrupt type (four types) 

▪ Descriptor chaining 

Trigger input 

▪ Hardware trigger 

▪ Software trigger 

▪ Trigger output (tr_out) 

▪ Software trigger 

▪ Trigger output (tr_out) 

 

P-DMA can be also used for transfers between memories, but the transfer bandwidth may not be enough when 
compared with M-DMA. M-DMA can also be used for transfers between memory and peripherals, but the transfer 
latency may not be low when compared with P-DMA. 

In P-DMA, when preemptable, a higher-priority pending channel can preempt the current channel between single 
transfers. M-DMA does not have the preemptable functionality because it would degrade the overall memory bandwidth. 

The descriptor determines the DMA transfer specification. The descriptor type determines the type of DMA transfer 

operation. Both DMAs support single transfer, 1D transfer, and 2D transfer as descriptor types. In addition, P-DMA 

supports CRC transfer, while M-DMA supports memory copy and scatter. See Section 2.3.1 for details of each 
descriptor type. Descriptors can be chained by storing the pointer of the next descriptor in the current descriptor. A 
descriptor chain is also referred to as a descriptor list. 

Trigger inputs such as hardware trigger, software trigger, and trigger output (tr_out) are input via the trigger multiplexer, 
which is a peripheral function outside DMA. The trigger multiplexer routes triggers from potential sources to destinations. 
See the “Trigger Multiplexer” chapter of the Architecture TRM for more details. 

P-DMA supports hardware trigger, software trigger, and trigger output (tr_out) as trigger inputs, while M-DMA supports 
only software trigger and trigger output (tr_out). See the device datasheet for hardware triggers available. The software 
trigger is implemented by the trigger multiplexer function. Both DMAs can use the trigger output as their own input 
trigger. See Section 2.3.2 for each trigger functionality. 

 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 3 

1.2 Block Diagram 

Figure 1 shows the P-DMA block diagram. 

Figure 1. P-DMA Block Diagram 

P-DMATrigger 

Multiplexer

tr_in[] Pending 

Triggers

Priority 

Decoder
Data Transfer Engine

Bus Master I/FBus 

Slave I/F

MMIO 

Registers

Interrupt 

Logic

Status Control

tr_out[]

Interrupts[]

Memory

Hardware Triggers

CH 1

CH 0

CH n

tr_in[0]

tr_in[1]

tr_in[n]

・

・

・

・

・

・

Software Triggers

 

P-DMA consists of channels (CH0 – CHn), a pending trigger block, priority decoder, data transfer engine, and the 
interrupt logic. The P-DMA transfer engine is shared by all channels. See the Architecture TRM for details of each block.  

As mentioned earlier, P-DMA trigger inputs can be a hardware trigger, software trigger, or trigger output (tr_out). These 
triggers are input via the trigger multiplexer. 

The trigger output (tr_out) can be used as its own trigger input, or it can be used as the trigger input to trigger different 
transfers of other channels. 

The memory that is used to store descriptors is outside the DMA block. When the transfer engine activates the next 
pending channel, the transfer engine reads the descriptor corresponding to the channel from the memory and starts 
the transfer. 

Figure 2 shows M-DMA block diagram. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 4 

Figure 2. M-DMA Block Diagram 

M-DMA

Pending Trigger

Channel Logic

Priority 

Decoder

Bus Master

I/F

Data Transfer 

Engine

Bus Slave I/F MMIO Registers

Channel Logic

Channel Logic

……...

Memory

Trigger 

Multiplexer

tr_in[]

Software Triggers

tr_in[0]

tr_in[1]

tr_in[CH_NR-1]

Channel State

Interrupt 

Logic
Interrupts[]

tr_out[]

 

The M-DMA block consists of the channel logic, priority decoder, and registers. The channel logic itself stores the 
pending trigger and hosts the current channel state and data transfer engine. M-DMA has transfer engines dedicated 
for each channel. See the Architecture TRM for details of each block. 

As trigger inputs, M-DMA supports software trigger and its own trigger output (tr_out). These trigger inputs are input 
via the trigger multiplexer. Note that unlike P-DMA, M-DMA does not support hardware triggers. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 5 

2 Operation Overview 

Figure 3 shows how to configure P-DMA and M-DMA. 

Figure 3. General Configuration of P-DMA/M-DMA 

 

Start

Disable P-DMA/M-DMA

Configure Channel

Configure Descriptor

Enable P-DMA/M-DMA

End

Enable P-DMA/M-DMA Channel

Enable peripherals for triggering 

DMAs

Is setting of all channel
to be used completed ?

Yes

No

 

In this example, channel, descriptor, and channel enable are configured for each channel. It is also possible to configure 
all channels to be used within each step. 

A peripheral trigger is required after setting the corresponding DMA channel. 

2.1 Disable/Enable P-DMA/M-DMA  

P-DMA and M-DMA can be enabled/disabled using the respective bits as shown in Table 2. The default setting after 
reset is ‘0’ (Disabled). 

 Table 2. P-DMA/M-DMA Disable/Enable 

DMA Type Register (Bit) Description 

P-DMA DW_CTL.ENABLED (bit31) 0: Disable, 1: Enable 

M-DMA DMAC_CTL.ENABLED (bit31) 0: Disable, 1: Enable 

 

2.2 Configure Channel 

In this step, P-DMA/M-DMA channel settings such as the channel priority and pointer address of the descriptor 
corresponding to the channel are configured. 

In addition, in P-DMA, the preemptable function and CRC calculation mode for CRC transfer are configured, if 
necessary. 

See Section 2.1 for more details 
 

See Section 2.2 for more details 
 

See Section 2.1 for more details 
 

See Section 2.3 for more details 
 

See Section 2.4 for more details 
 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 6 

Table 3 and Table 4 show the registers that are used for configuring a channel in P-DMA and M-DMA, respectively. 
The registers corresponding to the channel number are configured. See the Architecture TRM and Registers Technical 
Reference Manual (Registers TRM) for more details. 

Table 3. Channel Configuration for P-DMA 

Register (Bit) Description 

DW_CH_STRUCT_CH_CURR_PTR  
Sets the channel current descriptor pointer. Software needs to initialize this 
register. 

DW_CH_STRUCT_CH_CTL.PREEMPTABLE 
(bit11) 

Specifies whether the channel is preemptable. 

DW_CH_STRUCT_CH_CTL.PRIO (bit9:8) Sets the channel priority. 

DW_CH_STRUCT_CH_IDX.X_IDX (bit7:0) 
Sets the X indices of the channel into the current descriptor. Software needs 
to initialize this register. 

DW_CH_STRUCT_CH_IDX_Y_IDX (bit15:0) 
Sets the Y indices of the channel into the current descriptor. Software needs 
to initialize this register. 

Required only for CRC transfer: 

DW_CRC_CTL.DATA_REVERSE (bit0) Specifies the bit order (MSb or LSb first) in which a data byte is processed. 

DW_CRC_CTL.REM_REVERSE (bit8) Specifies whether the remainder is bit reversed. 

DW_CRC_DATA_CTL.DATA_XOR (bit7:0) 
Sets the byte mask with which each data byte is XORed. You can choose this 
8-bit value randomly.  

DW_CRC_POL_CTL.POLYNOMIAL Sets the CRC polynomial. 

DW_CRC_LFSR_CTL.LFSR32 Sets the seed value for CRC calculation. 

DW_CRC_REM_CTL.REM_XOR Sets a mask with which the CRC_LFSR_CTL.LFSR32 register is XORed. 

 

Table 4. Channel Configuration for M-DMA 

Register (Bit) Description 

DMAC_CH_CH_CURR_PTR 
Sets the channel current descriptor pointer. Software needs to initialize this 
register. 

DMAC_CH_CH_CTL.PRIO (bit9:8) Sets the channel priority. 

 

2.3 Configure Descriptor 

In this step, the descriptor is configured. The descriptor specifies the DMA channel’s transfer details. A descriptor is 
stored in the memory outside DMA and read by the transfer engine. The transfer engine transfers the data according 
to the descriptor. The descriptor pointer position for each channel is stored in the descriptor pointer register (see  
Section 2.2). 

Figure 4 shows the descriptor structure for P-DMA and M-DMA. The P-DMA descriptor consists of six 32-bit words, 
while the M-DMA descriptor consists of eight 32-bit words. However, descriptors of both DMAs have similar functions. 

 

  

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 7 

Figure 4. P-DMA/M-DMA Descriptor Structure 

Descriptor ControlDescriptor Pointer  +00

Source Address+04

Destination Address+08

X Loop Control+0c

Y Loop Control+10

Descriptor Next Pointer+14

Descriptor 0

Descriptor ControlDescriptor Pointer  +00

Source Address+04

Destination Address+08

X Loop Count+0c

Y Loop Count

+10

+14

Descriptor next pointer

X Loop Control

Y Loop Control+18

+1c

M-DMA Descriptor 

Structure

P-DMA Descriptor 

Structure

 

  

Configure Descriptor Parameters 

▪ Descriptor control: This word describes DMA parameters such as descriptor type, transfer size, trigger-in/out, 
and interrupt setting. 

▪ Source address and destination address: These words specify the base addresses of the source and 
destination locations. 

▪ X loop control and X loop count: These words control the loop in 1D transfer or the inner loop in 2D transfer. 
The X loop control specifies the increment of the source and destination addresses for each X loop iteration. The 
X loop count specifies the number of iterations of the X loop. 

▪ Y loop control and Y loop count: These words control the outer loop in 2D transfer. The Y loop control specifies 
the increment of the source and destination addresses for each Y loop iteration. The Y loop count specifies the 
number of iterations of the Y loop. 

▪ Descriptor next pointer: This word specifies the address of the next descriptor. Descriptors can be chained by 
storing the descriptor of the next pointer in the current descriptor. The last descriptor in the descriptor list has ‘0’ 
(NULL) in this word. 

See the Architecture TRM and Registers TRM for descriptor details. 

The number of descriptor words used varies depending on the descriptor type. A word address is shifted forward if 
there is any unused descriptor word. 

 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 8 

2.3.1  Descriptor  Type  

This section explains the descriptor type, which determines the type of DMA transfer. 

P-DMA has four descriptor types, and M-DMA has five descriptor types. The number of descriptor words used varies 
depending on the descriptor type. Table 5 shows each descriptor type. In Table 5, the Transfer Example column shows 
the outline and pseudocode of each descriptor type. The Using Descriptor column shows the descriptor word used by 
the descriptor types in each DMA. Note that a word address is shifted forward if there is any unused descriptor word. 

Table 5. P-DMA/M-DMA Transfer Example and Using Descriptor for Each Descriptor Type 

Descriptor 
Type 

Transfer Example 
Using Descriptor 

P-DMA M-DMA 

Single 
transfer 

This transfers a single data element: 

 

DST_ADDR = (DATA_SIZE) SRC_ADDR 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop control

Y(Outer) Loop control

Next descriptor pointer+0c

 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop Count

Y(Outer) Loop Count

+0c Next descriptor pointer

X(Inner) Loop control

Y(Outer) Loop control

 

1D transfer 

One-dimensional “for loop” transfer: 

 

for (X_IDX =0; X_IDX <= COUNT; X_IDX++) { 

  DST_ADDR[DST_INCR] = (DATA_SIZE) 

SRC_ADDR[SRC_INCR] 

 } 

*DST_INCR/SRC_INCR depend on X_INCR DST_ADDR 

= (DATA_SIZE) SRC_ADDR 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop control+0c

Y(Outer) Loop control

+10 Next descriptor pointer

 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop Count+0c

Y(Outer) Loop Count

+10 Next descriptor pointer

X(Inner) Loop control

Y(Outer) Loop control

 

2D transfer 

Two-dimensional “for loop” transfer: 

 

for (Y_IDX =0; Y_IDX <= Y_COUNT; Y_IDX++) { 

  for (X_IDX =0; X_IDX <= X_COUNT; X_IDX++) { 

DST_ADDR[DST_INCR] = (DATA_SIZE) 

SRC_ADDR[SRC_INCR] 

  } 

 } 

*DST_INCR/SRC_INCR depend on X/Y_INCR 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop control+0c

Y(Outer) Loop control

+14 Next descriptor pointer

+10

 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop Count+0c

Y(Outer) Loop Count

Next descriptor pointer

X(Inner) Loop control

Y(Outer) Loop control

+10

+14

+18

+1c

 

CRC 
transfer 

Calculate CRC of the specified area. 

 

Note that for CRC transfer, CRC must be configured with 
memory mapped I/O (MMIO) registers. 

 

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop control+0c

Y(Outer) Loop control

+10 Next descriptor pointer

 

Not supported 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 9 

Descriptor 
Type 

Transfer Example 
Using Descriptor 

P-DMA M-DMA 

Memory 
copy 

One-dimensional “for loop” transfer: 

 

for (X_IDX =0; X_IDX <= X_COUNT; X_IDX+) { 

         DST_ADDR[IDX] = SRC_ADDR[IDX] 

} 

Not supported  

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop Count+0c

Y(Outer) Loop Count

+10 Next descriptor pointer

X(Inner) Loop control

Y(Outer) Loop control

 

Scatter 

Write a set of 32-bit data elements, whose addresses are 
“scattered” around one-dimensional “for loop” transfer. 

 

for (X_IDX =0; X_IDX <= X_COUNT; X_IDX +=2) { 

     address = SRC_ADDR[IDX] 

     data       = SRC_ADDR[IDX+1] 

          *address = data 

} 

Not supported  

Descriptor control+00

Source Address+04

Destination address+08

X(Inner) Loop Count

Y(Outer) Loop Count

+0c Next descriptor pointer

X(Inner) Loop control

Y(Outer) Loop control

 

 

2.3.2  Trigger Functional i ty   

This section explains the trigger function. Trigger input, trigger output (tr_out), and interrupt are controlled by the 
descriptor. 

A trigger input activates DMA channel transfer. The trigger output (tr_out) and interrupt are output when the transfer is 
complete. The trigger operation is specified by TR_IN_TYPE, TR_OUT_TYPE, and INTR_TYPE in the descriptor. 
Trigger input, trigger output (tr_out), and interrupt can be configured independently for each channel. See the Registers 
TRM for descriptor details. 

▪ There are four types of trigger input operations: 

Type 0: Trigger results in the execution of a single transfer. 

Type 1: Trigger results in the execution of a single 1D transfer. 

Type 2: Trigger results in the execution of the current descriptor. 

Type 3: Trigger results in the execution of a descriptor list. 

▪ There are four types of trigger outputs and interrupt timing: 

Type 0: Output trigger or interrupt is generated after a single transfer. 

Type 1: Output trigger or interrupt is generated after a single 1D transfer. 

Type 2: Output trigger or interrupt is generated after the execution of the current descriptor. 

Type 3: Output trigger or interrupt is generated after the execution of a descriptor list. 

  

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 10 

2.3.2.1 Examples for Trigger Functionality 

This section provides examples for different trigger functions. The descriptor list for the following examples is composed 
of chaining two descriptors (Descriptor 0 and Descriptor 1) in a 2D transfer. 

Example 1: 

This example describes the operation of a Type 0 trigger. Figure 5 shows the operation of the trigger input and trigger 
output or interrupt in Type 0 trigger. 

Figure 5. Trigger Operation Example 1 

||

||

||
Trigger Input

||

||

||

Trigger Output /

Interrupt

Single

Data Transfer
||

||

||

Execute

Single Transfer

Single Single SingleSingle

1D

( =Descriptor 0)

1D
Transfer Status

(1) (2) (7) (8) (16)

(1) (2) (7) (16)(8)

||

||

||

||

||

||

||

||

||

Single

(15)

(15)

2D

 

When the trigger input is set in Type 0 trigger, P-DMA/M-DMA performs a single transfer with every trigger input. 
Therefore, 16 trigger inputs are required to complete Descriptor 0. 

When trigger outputs and interrupts are set in Type 0 trigger, the trigger output, interrupt, or both are output each time 
a single transfer is completed. Therefore, trigger output, interrupt, or both are output 16 times with the completion of 
Descriptor 0. 

Example 2: 

This example describes the Type 1 trigger operation. Figure 6 shows the operation of trigger input and trigger output 
or interrupt in Type 1 trigger. 

Figure 6. Trigger Operation Example 2 

Execute

1D Transfer

Transfer Status

||

||

||
Trigger Input

||

||

||

Trigger Output /

Interrupt

Single

Data Transfer
||

||

||

Single

(1)

(2)(1)

||

||

||

||

||

||

||

||

||

SingleSingle

(2)

End of 1D End of 1D

1D

( =Descriptor 0)

1D

2D

 

When trigger input is set in Type 1 trigger, P-DMA/M-DMA performs a 1D transfer with the trigger input. If the next 
trigger occurs again, P-DMA/M-DMA performs a 1D transfer. Therefore, two trigger inputs are required to complete 
Descriptor 0. 

When trigger outputs and interrupts are set in Type 1 trigger, trigger output, interrupt, or both are output each time a 
1D transfer is completed. Therefore, trigger output, interrupt, or both are output twice with the completion of Descriptor 
0. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 11 

Example 3: 

This example describes the operation of Type 2 trigger. Figure 7 shows the operation of the trigger input and trigger 
output or interrupt in Type 2 trigger. 

Figure 7. Trigger Operation Example 3 

||

||

||
Trigger Input

||

||

||

Trigger Output /

Interrupt

Single

Data Transfer
||

||

||

Execute

Descriptor Transfer

Single End of 1D transfer End of Descriptor 1

1D

2D

( =Descriptor 1)

1D

2D

( =Descriptor 0)

Transfer Status

1D

1D

Descriptor chaining

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

SingleEnd of Descriptor 0 Single

(2)(1)

(1) (2)

 

When the trigger input is set in Type 2 trigger, P-DMA/M-DMA executes the current descriptor (here: Descriptor 0) with 
the trigger input. If the next trigger input occurs, P-DMA/M-DMA executes the next descriptor (here: Descriptor 1). 
Therefore, two trigger inputs are required to complete the descriptor list. 

When trigger outputs and interrupts are set in Type 2 trigger, trigger output, interrupt, or both are output each time a 
current descriptor transfer is completed. Therefore, trigger output, interrupt, or both are output twice with the completion 
of the descriptor list. 

Example 4: 

This example describes the operation of Type 3 trigger. Figure 8 shows the operation of the trigger input and trigger 
output or interrupt in Type 3 trigger. 

Figure 8. Trigger Operation Example 4 

||

||

||
Trigger Input

||

||

||

Trigger Output /

Interrupt

Single

Data Transfer
||

||

||

Execute

Descriptor Transfer

Single End of 1D transfer End of Descriptor 1

1D

2D

( =Descriptor 1)

1D

2D

( =Descriptor 0)

Transfer Status

1D

1D

Descriptor chaining

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

SingleEnd of Descriptor 0 Single

(1)

(1)

 

When the trigger input is set in Type 3 trigger, P-DMA/M-DMA executes the complete descriptor list with each trigger 
input. Therefore, one trigger input is required to complete the descriptor list. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 12 

When trigger outputs and interrupts are set in Type 3 trigger, the trigger output, interrupt, or both are output when 
descriptor list transfer is completed. Therefore, the trigger output and/or interrupt are output once with the completion 
of the descriptor list. 

2.4 Disable/Enable P-DMA/M-DMA Channel 

P-DMA and M-DMA can be configured/programmed to execute multiple independent data transfers. Each data transfer 
is managed by a channel. 

In DMA channel configuration, the DMA channel must be disabled during the configuration, and enabled after 
configuring the channel. Table 6 shows the registers used for enabling or disabling a DMA channel. 

The number of channels varies for different part numbers. See the device datasheet for the number of available 
channels. 

Table 6. Disable/Enable P-DMA/M-DMA Channel 

DMA Type Register (Bit) Description 

P-DMA DW_CH_STRUCT_CH_CTL.ENABLED (bit31) 0: Disable, 1: Enable 

M-DMA DMAC_CH_CH_CTL.ENABLED (bit31) 0: Disable, 1: Enable 

 

3 P-DMA Use Cases 

3.1 1D Transfer (Memory-to-Peripheral) 

3.1.1  Overv iew 

This is an example of transferring the transmit data from the memory to TX-FIFO by DMA when using the SCB UART 
mode. In this case, the UART uses an 8-bit data frame, and starts the transmission when the data is written to the FIFO. 
The number of bytes to be transmitted is 16 and the TX FIFO setting is 128 elements-deep with 8-bit data elements. 
See the “Serial Communications Block (SCB)” chapter of the Architecture TRM for more details. 

P-DMA starts the transfer with a software trigger from the CPU, and generates an interrupt to the CPU after transferring 
all data into the transmit FIFO. 

Figure 9 shows the data transfer. 

Figure 9. Use Case of a Memory-to-Peripheral (1D Transfer) Using UART in SCB 

d0 d1 d2 d3

d4 d5 d6 d7

d12 d13 d14 d15

. . .

P-DMA

(2)

(3)

RAM base address

(4)

(1)
Ch.7

CPU

(5)

Trigger 

Multiplexer
(1)

(0)

Descriptor

Descriptor

Pointer
SCB (UART)

Destination

d0d1d2d14d15
SCB_TX_FIFO_WR

FIFO (128 elements deep x 8 bit)

・・・

16 byte 

data transfer 8 bit

16 byte 

Transmission

DATA_SIZE: 8-bit DST_SIZE: 8-bitSRC_SIZE: 8-bit

RAM
Source

 

(0) Configure P-DMA according to Section 3.1.2, and configure the SCB and trigger multiplexer. 

(1) CPU notifies a software trigger to P-DMA via the trigger multiplexer. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 13 

(2) P-DMA reads the descriptor from the specified area (Descriptor Pointer) when activating the next pending channel. 

(3) P-DMA reads data (d0) from the source address (RAM base address). 

(4) P-DMA writes the read data (d0) to the destination address (SCB_TX_FIFO_WR). After that, P-DMA increments 
the source address by 0x01, but there is no increment of the destination address. Then, P-DMA reads the data 
(d1) from the source address (RAM base address +0x01) and writes it to the destination address 
(SCB_TX_FIFO_WR) again. P-DMA repeats from (3) to (4) until d15 data is transferred. 

(5) P-DMA notifies the CPU with an interrupt when the transfer of all data is completed. 

Initialize the channel registers and set the descriptor as follows: 

3.1.2  Ini t ia l  Conf igurat ion of  Channel  Registers  

Perform the initial configuration for P-DMA according to Figure 3. 

1. Disable P-DMA 

DW_CTL.ENABLED = 0   /* disable */ 

 

2. Configure Channel 

DW_CH_STRUCT_CH_CURR_PTR = descriptor pointer /* Channel current descriptor pointer */ 

DW_CH_STRUCT_CH_CTL.PREEMPTABLE = 0   /* Channel is not preemptable */ 

DW_CH_STRUCT_CH_CTL.PRIO = 0   /* Channel priority is 0 */ 

DW_CH_STRUCT_CH_IDX.X_IDX = 0   /* Initialize Channel X indices to 0 */ 
DW_CH_STRUCT_CH_IDX.Y_IDX = 0   /* Initialize Channel Y indices to 0 */ 

 

3. Configure Descriptor 

DESCR_CTL.WAIT_FOR_DEACT = 0 /* Do not wait for trigger deactivation */ 

DESCR_CTL.INTR_TYPE = 0   /* Interrupts on every element transfer completion */ 

DESCR_CTL.TR_OUT_TYPE = 0   /* Triggers on every element transfer completion */ 

DESCR_CTL.TR_IN_TYPE = 2  /* Transfer the entire descriptor with each trigger */ 

DESCR_CTL.CH_DISABLE = 1  /* Channel is disabled after the completion of the current 

descriptor */ 

DESCR_CTL.SRC_TRANSFER_SIZE = 0 /* as specified in DATA_SIZE */ 

DESCR_CTL.DST_TRANSFER_SIZE = 1 /* Word (32-bit) */ 

DESCR_CTL.DATA_SIZE = 0  /* byte (8-bit) */ 

DESCR_CTL.DESCR_TYPE = 1  /* 1D transfer */ 

DESCR_SRC = RAM base address /* Address of stored transfer data in RAM */ 

DESCR_DST = SCB_TX_FIFO_WR  /* Address of writing to FIFO */ 

DESCR_X_CTL.SRC_X_INCR = 1  /* address +0x01 */ 

DESCR_X_CTL.DST_X_INCR = 0  /* Not increase */ 

DESCR_X_CTL.X_COUNT = 15  /* Buffer size is 16 data elements */, 

DESCR_NEXT_PTR = 0   /* No descriptor chain */ 

 

4. Enable P-DMA Channel 

DW_CH_STRUCT_CH_CTL.ENABLED = 1 /* Enable */ 

 

5. Enable P-DMA 

DW_CTL.ENABLED = 1   /* Enable */ 

 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 14 

3.2 1D Transfer (Peripheral-to-Memory) 

3.2.1  Overv iew 

This is an example of transferring input states of multiple ports to the memory (RAM) with a periodic trigger. A TCPWM 
is used for generating the periodic trigger. See the “Timer, Counter, and PWM” chapter of the Architecture TRM for 
more details. 

The port input state is stored in the memory with the periodic timing set in TCPWM. As a result, the CPU can know the 
port state at a specified time by reading the memory without the CPU having to access the port register. This is useful 
when storing the port state before transitioning to a low-power mode. 

In this case, P-DMA transfers the GPIO_PRT_IN register data to RAM. The number of registers to be transferred is 23. 
(from Port 0 to Port 22). GPIO_PRT_IN registers exist at intervals of 0x80. P-DMA generates an interrupt after data is 
transferred from all registers. Figure 10 shows the data transfer. 

Figure 10. Operation of 1D Transfer (Peripheral-to-Memory) 

PRT0 Status Data

PRT1 Status Data

P-DMA

RAM base address

DATA_SIZE: 32-bit DST_SIZE: 32-bitSRC_SIZE: 32-bit

Ch.8

GPIO_PRT0_IN

GPIO_PRT1_IN

GPIO_PRT22_IN

Register RAM

Trigger 

Multiplexer

(2)

TCPWM

CPU

Descriptor

(0)

(0) (1)

(2)

(3)

(4)(4)

(5)

0x80

Descriptor pointer

(6)

RAM base address 

+0x04

・

・ PRT22 Status Data

・

・

 
 

(0) Configure P-DMA according to Section 3.2.2. In addition, configure the TCPWM and trigger multiplexer. 

(1) The CPU starts the TCPWM timer. 

(2) TCPWM outputs the trigger to P-DMA via the trigger multiplexer when it reaches the specified count value 
(overflow). 

(3) P-DMA reads the descriptor from the specified area (Descriptor Pointer) when accepting the transfer. 

(4) P-DMA reads the data from the source address (GPIO_PRT0_IN), and writes the read data to the destination 
address (RAM base address). After that, P-DMA increments the source address by 0x80 and the destination 
address by 0x04. Then, P-DMA reads the data from the source address (GPIO_PRT1_IN) and writes it to the 
destination address (RAM base address +0x04) again. 

(5) P-DMA notifies the CPU with an interrupt when all transfers are completed. 

(6) The CPU accepts the interrupt and reads the port states in the RAM. 

When the TCPWM outputs the trigger again, steps (3) to (6) are repeated. 

 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 15 

3.2.2  Ini t ia l  Conf igurat ion for P-DMA 

This section describes the initialization of the DMA channel and descriptor. Perform the initial configuration for P-DMA 
according to Figure 3. 

1. Disable P-DMA 

DW_CTL.ENABLED(bit31) = 0  /* Disable */ 

 

2. Configure Channel 

DW_CH_STRUCT_CH_CURR_PTR = descriptor pointer /* Channel current descriptor pointer */ 

DW_CH_STRUCT_CH_CTL.PREEMPTABLE = 0   /* Channel is not preemptable */ 

DW_CH_STRUCT_CH_CTL.PRIO = 0   /* Channel priority is 0 */ 

DW_CH_STRUCT_CH_IDX.X_IDX = 0   /* Initialize Channel X indices to 0 */ 
DW_CH_STRUCT_CH_IDX.Y_IDX = 0   /* Initialize Channel Y indices to 0 */ 

 

3. Configure Descriptor 

DESCR_CTL.WAIT_FOR_DEACT = 0 /* Do not wait for trigger deactivation */ 

DESCR_CTL.INTR_TYPE = 1   /* Interrupts on the execution of 1D transfer */ 

DESCR_CTL.TR_OUT_TYPE = 0   /* Not use It must be disabled by the trigger multiplexer*/ 

DESCR_CTL.TR_IN_TYPE = 2  /* Transfer the entire descriptor per trigger */ 

DESCR_CTL.CH_DISABLE = 0  /* Not disable after completion of the current descriptor*/ 

DESCR_CTL.SRC_TRANSFER_SIZE = 0 /* as specified in DATA_SIZE */ 

DESCR_CTL.DST_TRANSFER_SIZE = 0 /* as specified in DATA_SIZE */ 

DESCR_CTL.DATA_SIZE = 2  /* Word (32-bit) */ 

DESCR_CTL.DESCR_TYPE = 1  /* 1D transfer */ 

DESCR_SRC = GPIO_PRT_IN  /* address of the GPIO_PRT_IN */ 

DESCR_DST = RAM base address  /* address of the buffer in memory */ 

DESCR_X_CTL.SRC_X_INCR = 32  /* address +80h */ 

DESCR_X_CTL.DST_X_INCR = 1  /* address +04h */ 

DESCR_X_CTL.X_COUNT = 22  /* 23 data elements */, 

DESCR_NEXT_PTR = 0   /* No descriptor chain */ 

 

4. Enable P-DMA Channel 

DW_CH_STRUCT_CH_CTL.ENABLED = 1 /* Enable */ 

 

5. Enable P-DMA 

DW_CTL.ENABLED = 1   /* Enable */ 

3.3 Descriptor Chaining 

3.3.1  Overv iew 

This is an example of descriptor chaining by storing the pointer of the next descriptor (DESCR_NEXT_PTR) in the 
current descriptor. 

This example uses two descriptors: Descriptor 0 and Descriptor 1. Both descriptors are for a 1D transfer that transfers 
multiple port input states to the memory (RAM) with a periodic trigger from the TCPWM. However, Descriptor 0 has 
RAM base address 0 as the destination address, and Descriptor 1 has RAM base address 1 as the destination address. 

P-DMA transfers multiple port input states to the memory (RAM) with a periodic trigger from the TCPWM. P-DMA 
notifies the interrupt to the CPU when the transfer is completed. The pointer to the next descriptor 
(DESCR_NEXT_PTR) in the descriptor (Descriptor 0) of this transfer is set to a pointer to another descriptor (Descriptor 
1). As a result, P-DMA can start the Descriptor 1 transfer when Descriptor 0 transfer completes. Descriptor 0 and 
Descriptor 1 have different destination addresses. 

P-DMA allows data of the same port address to be transferred to different RAM addresses. In other words, it can have 
a double buffer. In this case, Descriptor 0 and Descriptor 1 are chained with each other, and Descriptor 0 and Descriptor 
1 have a circular list. 

Figure 11 shows 1D transfer with descriptor chaining. 

 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 16 

Figure 11. 1D Transfer with Descriptor Chaining 

 

PRT0 Status Data

PRT1 Status Data

P-DMA

RAM base address 0

Ch.8

PRT22 Status Data

RAM

Trigger 

Multiplexer

(2)

TCPWM

CPU

Descriptor 1

(0)

(0) (1)

(2)

(4)

(4)

(5)

Descriptor pointer 0

RAM base address 0 

+0x04

Descriptor 0
(3)

Buffer 0

P-DMA
Ch.8

RAM

Trigger 

Multiplexer

(6)

TCPWM

CPU

(6)

(8)

(8)

(9)

(7)

Descriptor chaining

GPIO_PRT0_IN

GPIO_PRT1_IN

GPIO_PRT22_IN

Register

0x80

・

・

GPIO_PRT0_IN

GPIO_PRT1_IN

GPIO_PRT22_IN

Register

0x80

・

・

・

・

PRT0 Status Data

PRT1 Status Data

PRT22 Status Data

Buffer １
・

・

PRT0 Status Data

PRT1 Status Data

PRT22 Status Data

Descriptor 1
Descriptor pointer 1

Descriptor 0

Buffer 0

・

・

PRT0 Status Data

PRT1 Status Data

RAM base address 1

PRT22 Status Data

RAM base address 1 

+0x04

Buffer １
・

・

 
 

(0) Configure P-DMA according to the usage example. In addition, configure the TCPWM and trigger multiplexer. 

(1) The CPU starts the TCPWM timer. 

(2) The TCPWM outputs the trigger to P-DMA via the trigger multiplexer when it reaches the specified count value 
(overflow). 

(3) P-DMA reads the descriptor from the specified area (Descriptor Pointer 0) when activating the next pending transfer. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 17 

(4) P-DMA reads the data from the source address (GPIO_PRT0_IN), and writes the read data to the destination 
address (RAM base address 0). After that, P-DMA increments the source address by 0x80 and the destination 
address by 0x04. Then, P-DMA reads the data from the source address (GPIO_PRT1_IN) and writes it to the 
destination address (RAM base address 0 +0x04) again. 

(5) P-DMA notifies the CPU with an interrupt when all transfers are completed. 

(6) The TCPWM outputs the trigger to P-DMA when it reaches the specified count value (overflow) again. 

(7) P-DMA reads the descriptor from the pointer defined by the next descriptor pointer in its own descriptor (Descriptor 
Pointer 1) when accepting the transfer. 

(8) P-DMA reads the data from the source address (GPIO_PRT0_IN), and writes the read data to the destination 
address (RAM base address 1). After that, P-DMA increments the source address by 0x80 and the destination 
address by 0x04. Then, P-DMA reads the data from the source address (GPIO_PRT1_IN) and writes it to the 
destination address (RAM base address 1 +0x04) again. 

P-DMA notifies the CPU through an interrupt when all transfers are completed. Descriptor 1 chains to Descriptor 0. 
Therefore, when the TCPWM outputs the trigger again, steps from (3) are repeated. 

Note:  The TCPWM count period must always be longer than the time required by DMA to transfer all data. 

3.3.2  Ini t ia l  Conf igurat ion  

This section describes the initialization of the DMA channel and descriptor of this use case. Perform the initial 
configuration for P-DMA according to Figure 3. 

1. Disable P-DMA 

DW_CTL.ENABLED = 0    /* Disable */ 

 

2. Configure Channel 

DW_CH_STRUCT_CH_CURR_PTR = descriptor pointer 0 /* Channel current descriptor pointer */ 

DW_CH_STRUCT_CH_CTL.PREEMPTABLE = 0   /* Channel is not preemptable */ 

DW_CH_STRUCT_CH_CTL.PRIO = 0   /* Channel priority is 0 */ 

DW_CH_STRUCT_CH_IDX.X_IDX = 0   /* Initialize Channel X indices to 0 */ 
DW_CH_STRUCT_CH_IDX.Y_IDX = 0   /* Initialize Channel Y indices to 0 */ 

3. Configure Descriptor 0 

DESCR_CTL.WAIT_FOR_DEACT = 0  /* Do not wait for trigger deactivation */ 

DESCR_CTL.INTR_TYPE = 1    /* Interrupts on the execution of 1D transfer */ 

DESCR_CTL.TR_OUT_TYPE = 0    /* Not use It must be disabled by the trigger  

           multiplexer*/ 

DESCR_CTL.TR_IN_TYPE = 2   /* Transfer the entire descriptor per trigger */ 

DESCR_CTL.CH_DISABLE = 0   /* Not disable */ 

DESCR_CTL.SRC_TRANSFER_SIZE = 0  /* as specified in DATA_SIZE */ 

DESCR_CTL.DST_TRANSFER_SIZE = 0  /* as specified in DATA_SIZE */ 

DESCR_CTL.DATA_SIZE = 2   /* Word (32-bit) */ 

DESCR_CTL.DESCR_TYPE = 1   /* 1D transfer */ 

DESCR_SRC = GPIO_PRT_IN   /* address of the GPIO_PRT_IN */ 

DESCR_DST = RAM base address 0   /* address of the buffer 0 in memory */ 

DESCR_X_CTL.SRC_X_INCR = 32   /* address +80h */ 

DESCR_X_CTL.DST_X_INCR = 1   /* address +04h */ 

DESCR_X_CTL.X_COUNT = 22   /* 23 data elements */ 

DESCR_NEXT_PTR = descriptor pointer 1 /* Descriptor chain to descriptor 1 */ 

 

4. Configure Descriptor 1 

Configuration of Descriptor 1 is the same as that of Descriptor 0, except for the following: 

DESCR_DST = RAM base address 1   /* address of the buffer 1 in memory */ 

DESCR_NEXT_PTR = descriptor pointer 0 /* Descriptor chain to descriptor 0 */ 

 

5. Enable P-DMA Channel 

DW_CH_STRUCT_CH_CTL.ENABLED = 1  /* Enable */ 

 

6. Enable P-DMA 

DW_CTL.ENABLED = 1    /* Enable */ 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 18 

3.4 2D Transfer (Peripheral-to-Memory) 

3.4.1  Overv iew 

This example shows how the result of an ADC group conversion is stored to the memory. See the “SAR ADC” chapter 
of the Architecture TRM for more details. 

The conversion result is grouped for each channel and stored in the memory. In this example, the ADC converts three 
channels CH_0, CH_1, and CH_2 by group conversion at a specified period. P-DMA stores the three group conversion 
results in the memory for each channel with the ADC conversion completion trigger. 

Figure 12 shows how 2D transfer works. 

Figure 12. 2D Transfer (Peripheral-to-Memory) 

 

 

(0) Configure P-DMA according to the usage example. In addition, configure the ADC and trigger multiplexer. 

(1) The CPU starts ADC group conversion. 

(2) The ADC outputs the trigger to P-DMA via the trigger multiplexer when group conversion is completed. 

(3) P-DMA reads the descriptor from the specified area (Descriptor Pointer) when accepting the transfer. 

(4) P-DMA reads the data from the source address (CH_0_RESULT), and writes the read data to the destination 
address (RAM base address). 

(5) P-DMA increments the source address by 0x40 and the destination address by 0x20. Then, P-DMA reads the data 
from the source address (CH_1_RESULT) and writes it to the destination address (RAM base address 0 +0x20). 

(6) P-DMA increments the source address by 0x40 and the destination address by 0x20. Then, P-DMA reads the data 
from the source address (CH_2_RESULT) and writes it to the destination address (RAM base address 0 +0x40). 
When the next trigger occurs, P-DMA increments the RAM base address by 0x04 and repeats from (4). 

P-DMA
Ch.8

CH_0_RESULT

CH_1_RESULT

CH_2_RESULT

ADC Register

Trigger 

Multiplexer

(2)

CPU(0)

(0) (1)

(2)

(4)

(4)

(7)

0x40

Descriptor pointer

(3)

CH_0 conversion result 0

CH_0 conversion result 1

CH_0 conversion result 2

RAM

CH_1 conversion result 0

CH_1 conversion result 1

CH_1 conversion result 2

CH_2 conversion result 0

CH_2 conversion result 1

CH_2 conversion result 2

RAM base address

RAM base address

+0x20

RAM base address

+0x40

0x04

Descriptor 0

ADC

(5)

(6)

0x20

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 19 

(7) P-DMA notifies the CPU with an interrupt after transferring CH_ 2 conversion result 2. 

In this case, three triggers are required for completing the descriptor. 

3.4.2  Ini t ia l  Conf igurat ion  

This section describes the initialization of the DMA channel and descriptor of this use case. Perform the initial 
configuration for P-DMA according to Figure 3. 

1. Disable P-DMA 

DW_CTL.ENABLED = 0    /* Disable */ 

 

2. Configure Channel 

DW_CH_STRUCT_CH_CURR_PTR = descriptor pointer /* Channel current descriptor pointer */ 

DW_CH_STRUCT_CH_CTL.PREEMPTABLE = 0   /* Channel is not preemptable */ 

DW_CH_STRUCT_CH_CTL.PRIO = 0   /* Channel priority is 0 */ 

DW_CH_STRUCT_CH_IDX.X_IDX = 0   /* Initialize Channel X indices to 0 */ 
DW_CH_STRUCT_CH_IDX.Y_IDX = 0   /* Initialize Channel Y indices to 0 */ 

 

3. Configure Descriptor 0 

DESCR_CTL.WAIT_FOR_DEACT = 0  /* Do not wait for trigger deactivation */ 

DESCR_CTL.INTR_TYPE = 2    /* Interrupts on the execution of descriptor */ 

DESCR_CTL.TR_OUT_TYPE = 0    /* Not use It must be disabled by the trigger  

           multiplexer*/ 

DESCR_CTL.TR_IN_TYPE = 1   /* Transfer the entire 1D Transfer per trigger */ 

DESCR_CTL.CH_DISABLE = 0   /* Not disable */ 

DESCR_CTL.SRC_TRANSFER_SIZE = 0  /* as specified in DATA_SIZE */ 

DESCR_CTL.DST_TRANSFER_SIZE = 0  /* as specified in DATA_SIZE */ 

DESCR_CTL.DATA_SIZE = 2   /* Word (32-bit) */ 

DESCR_CTL.DESCR_TYPE = 2   /* 2D transfer */ 

DESCR_SRC = CH_0_RESULT   /* address of the CH_0_RESULT */ 

DESCR_DST = RAM base address   /* address of the buffer in memory */ 

DESCR_X_CTL.SRC_X_INCR = 16   /* address +40h */ 

DESCR_X_CTL.DST_X_INCR = 8   /* address +20h */ 

DESCR_X_CTL.X_COUNT = 3   /* 3 data elements */ 

DESCR_Y_CTL.SRC_Y_INCR = 0   /* Not increments */ 

DESCR_Y_CTL.DST_Y_INCR = 1   /* Destination address + 0x04 */ 

DESCR_Y_CTL.Y_COUNT = 2   /* Store results for three times */ 

DESCR_NEXT_PTR = 0    /* No descriptor chain */ 

 

4. Enable P-DMA Channel 

DW_CH_STRUCT_CH_CTL.ENABLED = 1  /* Enable */ 

 

5. Enable P-DMA 

DW_CTL.ENABLED = 1    /* Enable */ 

3.5 CRC Transfer 

3.5.1  Overv iew 

This section describes an example of CRC transfer. CRC transfer is a P-DMA-specific descriptor type. CRC transfer 
calculates the CRC in the area that is specified by the source address and size, and transfers the result to the 
destination address. 

This is an example of program code validation in the flash with CRC transfer. The CPU calculates the CRC of the 
program code area with P-DMA before program execution. CRC calculation is performed by using CRC32. When the 
result of CRC calculation matches the expected value, the CPU starts the execution of the program. In this example, 
note that it is necessary to prepare for the expected value of the program code. 

See the Architecture TRM for details of CRC parameters that can be set by P-DMA. 

Figure 13 shows a use case of a CRC transfer. 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 20 

Figure 13. Use Case of CRC Transfer 

 

 

(0) Configure P-DMA according to the usage example. 

(1) CPU notifies a software trigger to P-DMA via the trigger multiplexer. 

(2) P-DMA reads the descriptor from the specified area (Descriptor Pointer) when accepting the transfer. 

(3) P-DMA reads the data from the source address (code base address). 

(4) P-DMA inputs the read data to the CRC calculator, and reads the data again after incrementing the address. P-
DMA repeats (4) until it reaches the area specified by the transfer size (code size). 

(5) When CRC calculation of the specified area is completed, the result is transferred to the destination address (RAM 
base address). 

(6) P-DMA notifies an interrupt to the CPU. 

(7) When the CPU accepts an interrupt, it compares the result with the expected value. When it matches, CPU starts 
program execution. If it does not match, CPU transfers to safe operation mode. 

3.5.2  Ini t ia l  Conf igurat ion  

This section describes the initialization of the DMA channel and descriptor of this use case. Perform the initial 
configuration for P-DMA according to Figure 3. 

1. Disable P-DMA 

DW_CTL.ENABLED = 0    /* Disable */ 

 

2. Configure Channel 

DW_CH_STRUCT_CH_CURR_PTR = Descriptor pointer /* Channel current descriptor pointer */ 

DW_CH_STRUCT_CH_CTL.PREEMPTABLE = 0   /* Channel is not preemptable */ 

DW_CH_STRUCT_CH_CTL.PRIO = 0   /* Channel priority is 0 */ 

DW_CH_STRUCT_CH_IDX.X_IDX = 0   /* Initialize Channel X indices to 0 */ 
DW_CH_STRUCT_CH_IDX.Y_IDX = 0   /* Initialize Channel Y indices to 0 */ 

 

When using CRC transfer, also set the following registers: 

DW_CRC_CTL.DATA_REVERSE = 1  /* Least significant bit (bit 0) first */ 

DW_CRC_CTL.REM_REVERSE = 1  /* remainder is bit reversed */ 

DW_CRC_DATA_CTL.DATA_XOR = 0  /* each data byte is XORed with 00h */ 

DW_CRC_POL_CTL.POLYNOMINAL = 0x04c11db7 /* CRC32: POLYNOMIAL */ 

DW_CRC_LFSR_CTL.LFSR32 = 0xFFFFFFFF /* seed value */ 

DW_CRC_REM_CTL.REM_XOR = 0xFFFFFFFF /* CRC_LFSR_CTL.LFSR32 register is XORed  

          with FFFFh */ 

 

RAM

Destination

P-DMA

(2)

Ｒｅｓｕｌｔ

CRC

calculation

(3)

(4)

FLASH

Source

Code Area

Code base address

Code size

RAM base addressDATA_SIZE: 32-bit

DST_SIZE: 32-bit(5)

(1)
Ch.0

SRC_SIZE: 32-bit

CPU

(6)

Trigger 

Multiplexer
(1)

(0)

Descriptor

Descriptor

Pointer

(7)

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 21 

3. Configure Descriptor 

DESCR_CTL.WAIT_FOR_DEACT = 0  /* Do not wait for trigger deactivation */ 

DESCR_CTL.INTR_TYPE = 0    /* Interrupts on every element transfer  

          completion */ 

DESCR_CTL.TR_OUT_TYPE = 0    /* Not use It must be disabled by the trigger  

          multiplexer*/ 

DESCR_CTL.TR_IN_TYPE = 2   /* Descriptor is 1D transferred per trigger */ 

DESCR_CTL.CH_DISABLE = 1   /* Channel is disabled after the completion of  

          the current descriptor */ 

DESCR_CTL.SRC_TRANSFER_SIZE = 0  /* as specified in DATA_SIZE */ 

DESCR_CTL.DST_TRANSFER_SIZE = 0  /* as specified in DATA_SIZE */ 

DESCR_CTL.DATA_SIZE = 2   /* Word (32-bit) */ 

DESCR_CTL.DESCR_TYPE = 3   /* CRC_TRANSFER */ 

DESCR_SRC = Code base address  /* Program base address in FLASH */ 

DESCR_DST = RAM base address  /* Address of Stored result of calculation */ 

DESCR_X_CTL.SRC_X_INCR = 1   /* address +1 */ 

DESCR_X_CTL.DST_X_INCR = 0   /* Not used for CRC transfer */ 

DESCR_X_CTL.X_COUNT = (Code size/4)-1 /* Depends on CODE_SIZE  */ 

DESCR_NEXT_PTR = 0    /* No descriptor chain */ 

 

4. Enable P-DMA Channel 

DW_CH_STRUCT_CH_CTL.ENABLED = 1  /* Enable */ 

 

5. Enable P-DMA 

DW_CTL.ENABLED = 1    /* Enable */ 

4 M-DMA Use Case 

4.1 Memory-to-Memory (Memory Copy) 

This section describes an example of memory copy. Memory copy is an M-DMA-specific descriptor type. This is a 
special 1D transfer. Memory copy transfer data from the area specified by the source address and size to the destination 
address. 

This is an example of data transfer from flash to RAM. This descriptor type is useful for copying the program code for 
RAM execution and copying the vector table. In the memory copy example, consecutive flash memory areas are 
transferred to RAM. 

Figure 14 shows a use case of memory-to-memory transfer using memory copy. 

Figure 14. Use Case of Memory-to-Memory Using Memory Copy 

 

 

RAM

Destination

M-DMA

(2)

Copy 

Code Area(3)

FLASH

Source

Source

Code Area

Code base address

Code size

RAM base address

(4)

(1)
Ch.0

CPU

(5)

Trigger 

Multiplexer
(1)

(0)

Descriptor

Descriptor

Pointer

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 22 

(0) Set M-DMA according to the usage example setting. 

(1) CPU notifies a software trigger to M-DMA via the trigger multiplexer. 

(2) M-DMA reads the descriptor from the specified area (Descriptor Pointer) when accepting the transfer. 

(3) M-DMA reads the data from the source address (code base address). 

(4) M-DMA writes the read data to the destination address (RAM base address). After that, increment the source 
address and destination address. M-DMA repeats (3) (4) until it reaches the area specified by the transfer size 
(code size). 

(5) When memory copy of the specified area is completed, M-DMA notifies an interrupt to CPU. 

4.1.1  Ini t ia l  Conf igurat ion  

This section describes the initialization of the DMA channel and descriptor of this use case. Perform the initial 
configuration for M-DMA according to Figure 3. 

1. Disable M-DMA 

DMAC_CTL.ENABLED = 0  /* Disable */ 

 

2. Configure Channel 

DMAC_CH_CH_CURR_PTR = Descriptor pointer  /* Channel current descriptor pointer */ 

DMAC_CH_CH_CTL.PRIO = 0    /* Channel priority is 0 */ 

 

3. Configure Descriptor 

DESCR_CTL.WAIT_FOR_DEACT = 0          /* Do not wait for trigger deactivation */ 

DESCR_CTL.INTR_TYPE = 1               /* Interrupts on the execution of 1D transfer */ 

DESCR_CTL.TR_OUT_TYPE = 1             /* Not use It must be disabled by the trigger 

multiplexer*/ 

DESCR_CTL.TR_IN_TYPE = 1              /* Descriptor is 1D transferred per trigger */ 

DESCR_CTL.CH_DISABLE = 1              /* Channel is disabled after the completion   of the  

                                 current descriptor */ 

DESCR_CTL.SRC_TRANSFER_SIZE = 0       /* not used */ 

DESCR_CTL.DST_TRANSFER_SIZE = 0       /* not used */ 

DESCR_CTL.DATA_SIZE = 0               /* not used */ 

DESCR_CTL.DESCR_TYPE = 3              /* memory copy */ 

DESCR_SRC = Code base address         /* Copy source address */ 

DESCR_DST = RAM base address          /* Copy destination address */ 

DESCR_X_CTL.X_COUNT = Code size -1    /* Depends on COPY_SIZE */ 

DESCR_NEXT_PTR = 0                    /* No descriptor chain */ 

 

4. Enable M-DMA Channel 

DMAC_CH_CH_CTL.ENABLED = 1            /* Enable */ 

 

5. Enable M-DMA 

DMAC_CTL.ENABLED = 1                  /* Enable */ 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 23 

5 Glossary 

Table 7. Glossary 

Terms Description 

DMA controller Direct memory access controller 

P-DMA Peripheral DMA 

M-DMA Memory DMA 

Single transfer 
This transfers a single data element (8-bit, 16-bit, or 32-bit). See the “Descriptors” section in the Direct Memory 
Access chapter of the Architecture TRM for details. 

1D transfer 
This performs a one-dimensional "for loop" (described in C). See the “Descriptors” section in the Direct Memory 
Access chapter of the Architecture TRM for details. 

2D transfer 
This performs a two-dimensional "for loop" (described in C). See the “Descriptors” section in the Direct Memory 
Access chapter of the Architecture TRM for details. 

CRC transfer 
This performs a one-dimensional “for loop” similar to the 1D transfer. However, the source data is not transferred to 
a destination. A CRC is calculated over the source data. Only P-DMA is supported. See the “Descriptors” section in 
the Direct Memory Access chapter of the Architecture TRM for details. 

Memory copy 
This is a special case of 1D transfer. Only M-DMA is supported. See the “Descriptors” section in the Direct Memory 
Access chapter of the Architecture TRM for details. 

Scatter 
This descriptor type is intended to write a set of 32-bit data elements, whose addresses are “scattered” around the 
address space. Only M-DMA is supported. See the “Descriptors” section in the Direct Memory Access chapter of 
the Architecture TRM for details. 

Descriptor 
A descriptor specifies the details of data transfer of DMA channels. See the “Descriptors” section in the Direct 
Memory Access chapter of the Architecture TRM for details. 

Descriptor chain 
A DMA channel executes the next descriptor specified in the current descriptor when it completes executing the 
descriptor. See the “Descriptors” section in the Direct Memory Access chapter of the Architecture TRM for details. 

Descriptor list Same as descriptor chain. 

Descriptor pointer 
The start address of the memory where the descriptor is stored. See the “Descriptors” section in the Direct Memory 
Access chapter of the Architecture TRM for details. 

Descriptor type 
The transfer operation type performed by DMA. See the “Descriptors” section in the Direct Memory Access chapter 
of the Architecture TRM for details. 

Descriptor word 
The composition element of the descriptor. There are descriptor control, source/destination address, X/Y loop 
control, and descriptor next pointer. See the “P-DMA Descriptor Structure” and “M-DMA Descriptor Structure” 
section in the Direct Memory Access chapter of the Architecture TRM for details. 

Preemptable 
P-DMA specific functions. See the “Channels” section in the Direct Memory Access chapter of the Architecture 
TRM for details. 

MMIO Memory Mapped I/O 

ADC Analog-to-digital converter. See the “SAR ADC” chapter of the Architecture TRM for details. 

SCB 
Serial Communications Block. See the “Serial Communications Block (SCB)” chapter of the Architecture TRM for 
details. 

TCPWM 
Timer, Counter, and Pulse Width Modulator. See the “Timer, Counter, and PWM” chapter of the Architecture TRM 
for details. 

Trigger multiplexer 
A trigger multiplexer routes triggers from a source peripheral to a destination. See the “Trigger Multiplexer” chapter 
of the Architecture TRM for details. 

 

http://www.cypress.com/
https://eow.alc.co.jp/search?q=composition&ref=awlj
https://eow.alc.co.jp/search?q=element&ref=awlj


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 24 

6 Related Documents 

The following are the Traveo II family series datasheets and Technical Reference Manuals. Contact Technical Support 
to obtain these documents. 

▪ Device datasheet 

 CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo™ II Family 

 CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo™ II Family 

 CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ II Family 

 CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ II Family 

 CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ II Family 

▪ Body Controller Entry Family 

 Traveo™ II Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM) 

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B7 

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B9 

▪ Body Controller High Family 

 Traveo™ II Automotive Body Controller High Family Architecture Technical Reference Manual (TRM) 

 Traveo™ II Automotive Body Controller High Registers Technical Reference Manual (TRM) for CYT4BF 

 Traveo™ II Automotive Body Controller High Registers Technical Reference Manual (TRM) for CYT3BB/4BB 

▪ Cluster 2D Family 

 Traveo™ II Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM) 

 Traveo™ II Automotive Cluster 2D Registers Technical Reference Manual (TRM) 

  

http://www.cypress.com/
http://www.cypress.com/support


How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 25 

Document History 

Document Title: AN220191 – How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

Document Number: 002-20191 

Revision ECN Submission 
Date 

Description of Change 

** 6096844 09/06/2018 New application note. 

*A 6403271 12/06/2018 Changed target part number from CYT2B5/B7 to CYT2B. 

*B 6521580 03/26/2019 Added target parts number (CYT4B series). 

Correction of errors in CRC register name. 

*C 6688929 10/02/2019 Added target parts number (CYT4D series) 

Added the setting flow of DW_CH_STRUCT_CH_IDX into Channel Configuration for P-DMA 

*D 6827913 03/19/2020 Changed target parts number (CYT2/ CYT4 series). 

Added target parts number (CYT3 series). 

http://www.cypress.com/


 

How to Use Direct Memory Access (DMA) Controller in Traveo II Family 

www.cypress.com Document Number. 002-20191 Rev. *D 26 

Worldwide Sales and Design Support 

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the 
office closest to you, visit us at Cypress Locations. 

Products 

Arm® Cortex® Microcontrollers cypress.com/arm 

Automotive cypress.com/automotive 

Clocks & Buffers cypress.com/clocks 

Interface cypress.com/interface 

Internet of Things cypress.com/iot 

Memory  cypress.com/memory 

Microcontrollers cypress.com/mcu 

PSoC cypress.com/psoc 

Power Management ICs cypress.com/pmic 

Touch Sensing cypress.com/touch 

USB Controllers cypress.com/usb 

Wireless Connectivity cypress.com/wireless 

PSoC® Solutions 

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU 

Cypress Developer Community 

Community | Code Examples | Projects | Videos | Blogs | 
Training | Components 

Technical Support 

cypress.com/support 

 

 

 

 

 

 
 

All other trademarks or registered trademarks referenced herein are the property of their respective owners. 

 

 Cypress Semiconductor 
 198 Champion Court  
 San Jose, CA 95134-1709 

© Cypress Semiconductor Corporation, 2018-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”).  This 
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and 
treaties of the United States and other countries worldwide.  Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in 
this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights.  If the Software is not accompanied by a license 
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to 
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary 
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under 
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely 
for use with Cypress hardware products.  Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. 

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS 
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  No computing device can be absolutely secure.  Therefore, despite security measures 
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of 
a Cypress product.  CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING 
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER 
SECURITY INTRUSION (collectively, “Security Breach”).  Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release 
Cypress from any claim, damage, or other liability arising from any Security Breach.  In addition, the products described in these materials may contain design 
defects or errors known as errata which may cause the product to deviate from published specifications.  To the extent permitted by applicable law, Cypress reserves 
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit 
described in this document.  Any information provided in this document, including any sample design information or programming code, is provided only for reference 
purposes.  It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this 
information and any resulting product.  “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.  
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices.  “Critical Component” means any component of a 
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or 
effectiveness.  Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use 
of a Cypress product as a Critical Component in a High-Risk Device.  You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, 
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal 
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device.  Cypress products are not intended 
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly 
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a 
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement. 

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or 
registered trademarks of Cypress in the United States and other countries.  For a more complete list of Cypress trademarks, visit cypress.com.  Other names and 
brands may be claimed as property of their respective owners. 

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 Features
	1.2 Block Diagram

	2 Operation Overview
	2.1 Disable/Enable P-DMA/M-DMA
	2.2 Configure Channel
	2.3 Configure Descriptor
	2.3.1 Descriptor Type
	2.3.2 Trigger Functionality
	2.3.2.1 Examples for Trigger Functionality


	2.4 Disable/Enable P-DMA/M-DMA Channel

	3 P-DMA Use Cases
	3.1 1D Transfer (Memory-to-Peripheral)
	3.1.1 Overview
	3.1.2 Initial Configuration of Channel Registers

	3.2 1D Transfer (Peripheral-to-Memory)
	3.2.1 Overview
	3.2.2 Initial Configuration for P-DMA

	3.3 Descriptor Chaining
	3.3.1 Overview
	3.3.2 Initial Configuration

	3.4 2D Transfer (Peripheral-to-Memory)
	3.4.1 Overview
	3.4.2 Initial Configuration

	3.5 CRC Transfer
	3.5.1 Overview
	3.5.2 Initial Configuration


	4 M-DMA Use Case
	4.1 Memory-to-Memory (Memory Copy)
	4.1.1 Initial Configuration


	5 Glossary
	6 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support


