Fast EV-Charging with CoolSiC™

Application Presentation
Fast DC EV Charging empowered by Infineon

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key trends & market situation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CoolSiC™ & bidirectional charging</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Connectivity, Control & Security in DC EV Charging</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Reference Designs</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
Fast DC EV Charging empowered by Infineon

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key trends & market situation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CoolSiC™ & bidirectional charging</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Connectivity, Control & Security in DC EV Charging</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Reference Designs</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
Electro-mobility market - key influence factors

To increase sustainability, electrification of mobility is inevitable – in both, private and public transport segment

OEMs strategies
Fast growing demand for electric vehicles

Regulations
Government regulations on CO₂ emissions

Infrastructure
Fast growing demand for electric charging infrastructure

Technologies
Improvements in technologies and better application knowledge increase attractiveness of e-Mobility

Costs
Continuous decrease in battery costs

Buyer decision
The EV market is witnessing strong growth driven by more stringent legal guidelines, demanding significant infrastructure investment.

Passenger car CO\textsubscript{2} emission development and regional regulations

- US (2026): 108 g/km
- Japan (2030): 73.5 g/km
- EU (2030): 59 g/km
- China (2025): 93.4 g/km

-15\% vs 2021
-37.5\% vs 2021

\textbf{CO\textsubscript{2} emission values (g/km; normalized to NEDC)}

Growing penetration of electro-mobility will drive roll-out of DC charging infrastructure

<table>
<thead>
<tr>
<th>DC charging system</th>
<th>Charging time**</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC wall box and subunit*</td>
<td></td>
</tr>
<tr>
<td>Uni- and bi-directional topologies</td>
<td>120 min</td>
</tr>
<tr>
<td>20 kW</td>
<td></td>
</tr>
<tr>
<td>(2 subunit of 10 kW)</td>
<td></td>
</tr>
<tr>
<td>Commercial high power charger</td>
<td></td>
</tr>
<tr>
<td>Single unit and modular subunit designs</td>
<td></td>
</tr>
<tr>
<td>50 kW</td>
<td>48 min</td>
</tr>
<tr>
<td>(3 subunits of 20 kW each)</td>
<td></td>
</tr>
<tr>
<td>150 kW</td>
<td>16 min</td>
</tr>
<tr>
<td>(5 subunits of 30 kW each)</td>
<td></td>
</tr>
<tr>
<td>Hyper fast charger</td>
<td></td>
</tr>
<tr>
<td>Single unit and modular subunit designs</td>
<td></td>
</tr>
<tr>
<td>350 kW</td>
<td>7 min</td>
</tr>
<tr>
<td>(6 subunits of 60 kW each)</td>
<td></td>
</tr>
</tbody>
</table>

*) Subunit: A power electronic arrangement build from both active and passive components to convert AC input to dedicated DC output. Often referred to as “module”.

**) Charging time for 200 km

30 kW → 150 kW
Europe's most powerful 400 kW DC charger: CoolSiC™ for ultra-fast pit stops

INGEREV® RAPID ST400 from Ingeteam

- Charging time for EV at a level of refueling a conventional car: A stop for 10 minutes allows for an 80% battery charge
- Operates successfully at real life conditions
- Ultra-fast charging points guarantee optimal distribution of the available power between the four vehicles that can be connected simultaneously

Latest Infineon chip and module technology

- CoolSiC™ enables high switching speeds with lower switching losses for shorter charging times and charging stations that are about one-third smaller
 - EasyDUAL™ power modules with CoolSiC™ technology

Market News: [Link](#), 8 Jul 2020
Structure of DC EV charging system

- **AC-grid**
- **EV**
- **Smart Grid**
- **Renewables**
- **Cloud**
- **Battery management**
- **Storage**
- **Data**
- **Secure roaming & billing**
- **DC-power**
- **DC-charger**
Application trends are supported by Infineon's comprehensive DC charging ecosystem portfolio

- High power density
- Efficiency
- High charging power
- Scalability
- Control
- Security
- Safe drive and Sense
- Easy to use

CoolMOS™, IGBTs and CoolSiC™
Discrete components and modules like Easy and Econo family
AURIX™, XMC™, OPTIGA™
EiceDRIVER™, XENSIV™, Reference Designs
Efficiency is the key for modular high power DC charging

- Reduced size and weight of high power charging stations
- Charging piles with > 150 kW are built by 30-50 kW subunits today
- Power per subunit increasing towards 75 kW
- Subunits targeting 19“-rack x 800 mm design

Higher power density needs efficiency optimization

- Modular designs to upgrade system power levels on demand are state of the art
- High power density in 19“-rack design requires liquid cooling
- Higher power density with SiC allows for system size reductions of up to 50 % or 50 % power increase from the same space

Volume reduction 50%
Power increase 50%
Fast DC EV Charging empowered by Infineon

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key trends & market situation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CoolSiC™ & bidirectional charging</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Connectivity, Control & Security in DC EV Charging</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Reference Designs</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
DC EV charging applications – system requirements for the application

› **Battery charging** is a mostly **constant current** application with **typically low demand in dynamics**

› Thermal cycling 10,000 – 30,000 cycles/year
› 15 – 20 years of service

› Ultra-high-power charging > 350 kW
 – Up to 1000 V_{DC} and up to 500 A

› Wide variation of DC output voltage
 – 200 V to 920 V

› **Efficiency** target 98% (currently 95%)
Infineon’s power solution positioning for DC EV charger

<table>
<thead>
<tr>
<th>Discrete solutions</th>
<th>Module solutions</th>
<th>Gate driver solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular solution is recommended</td>
<td>Stacked modular solutions</td>
<td>EiceDRIVER™ Enhanced X3A/D (1ED34/38xx)</td>
</tr>
<tr>
<td>350 kW</td>
<td>6 x 60 kW</td>
<td>100 kW</td>
</tr>
<tr>
<td>120/150 kW</td>
<td>100 kW</td>
<td>100 kW</td>
</tr>
<tr>
<td>50/60 kW</td>
<td>100 kW</td>
<td>100 kW</td>
</tr>
<tr>
<td>Stacked 20 / 30 kW discrete solutions</td>
<td>Stacked 50 kW modular solutions</td>
<td>EiceDRIVER™ Enhanced X3A/D (1ED34/38xx)</td>
</tr>
<tr>
<td>20 kW</td>
<td>50 kW</td>
<td>EconoDUAL™</td>
</tr>
<tr>
<td>30 kW</td>
<td>50 kW</td>
<td>EconoPACK™4</td>
</tr>
<tr>
<td>Discrete solutions is recommended</td>
<td>Easy CoolSiC™ EconoPACK™4</td>
<td>EiceDRIVER™ Compact X3C (1ED31xx)</td>
</tr>
<tr>
<td>30 kW</td>
<td>50 kW</td>
<td>100 kW</td>
</tr>
<tr>
<td>20 kW</td>
<td>20 kW</td>
<td>20 kW</td>
</tr>
<tr>
<td>Discrete solutions is recommended</td>
<td></td>
<td>EiceDRIVER™ Enhanced X3A/D (1ED34/38xx)</td>
</tr>
<tr>
<td>Discrete solutions</td>
<td></td>
<td>EiceDRIVER™ Compact X3C (1ED31xx)</td>
</tr>
<tr>
<td>150 kW</td>
<td>1ED-F2 / 2ED-FI</td>
<td>1ED-MF/AF</td>
</tr>
<tr>
<td>≤ 60 kW discrete solutions</td>
<td></td>
<td>EiceDRIVER™ Compact X3C (1ED31xx)</td>
</tr>
<tr>
<td>10 kW</td>
<td></td>
<td>1ED-MF/AF</td>
</tr>
<tr>
<td>≤ 60 kW discrete solutions</td>
<td></td>
<td>EiceDRIVER™ Enhanced X3A/D (1ED34/38xx)</td>
</tr>
<tr>
<td>150 kW</td>
<td>1ED-F2 / 2ED-FI</td>
<td>1ED-MF/AF</td>
</tr>
<tr>
<td>Discrete solution is recommended</td>
<td></td>
<td>EiceDRIVER™ Compact X3C (1ED31xx)</td>
</tr>
<tr>
<td>10 kW</td>
<td></td>
<td>1ED-MF/AF</td>
</tr>
<tr>
<td>Discrete solution is recommended</td>
<td></td>
<td>EiceDRIVER™ Compact X3C (1ED31xx)</td>
</tr>
<tr>
<td>10 kW</td>
<td></td>
<td>1ED-MF/AF</td>
</tr>
<tr>
<td>Gate driver solutions</td>
<td></td>
<td>EiceDRIVER™ Compact X3C (1ED31xx)</td>
</tr>
<tr>
<td>100 kW</td>
<td></td>
<td>1ED-MF/AF</td>
</tr>
<tr>
<td>Microcontroller: XMC1000, XMC4000, Optiga™ Current sensor: TLI4971</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* DC charger subunit or DC charger
Commonly used topologies for AC/DC conversion

Rectifiers exist in different forms and types

- **EMI filter**
- **AC/DC**
- **DC link**
- **DC/AC**
- **Galvanic isolation**
- **AC/DC**
- **DC filter**

< 50 kW design
- Vienna rectifier

> 50 kW design
- Active front end

> 100 kW design
- Diode rectifier
DC/DC power conversion topologies

DC-DC converter also exist in different types

Multiphase buck converter (non-isolated)
Resonant converter (isolated)
Phase-shifted converter (isolated)
LLC converter (uni-directional)
CLLC converter (bi-directional)
Phase-shifted ZVS converter (uni-directional)
Dual active bridge converter (bi-directional)
Power density is driven not only by technology: trade-offs in the inverter design

1. Topology
2. Cooling
3. Switching frequency
4. Voltage Class

1. TRENCHSTOP™
2. CoolMOS™
3. CoolSiC™
4. CoolGaN™

1. Functionality
2. Topology
3. Packaging
4. Switching frequency

Technology

Others

fulcrum

fulcrum

fulcrum

PFC Stage
DCDC Stage

$
SiC MOSFETs – what differentiates them from IGBTs?

Benchmark in switching losses
Integrated freewheeling diode
Knee voltage free on-state

Turn-Off losses E_{off} @ 800V, $R_s=2.2\Omega$, $V_{\text{GCS}}=5/15\,\text{V}$

10x lower E_{off}

Turn-On losses E_{on} @ 800V, $R_s=2.2\Omega$, $V_{\text{GCS}}=5/15\,\text{V}$

2x lower E_{on}

Output characteristic

Threshold-free on-state

On-State Current I_{on} in A

On-State Voltage $V_{\text{ds}}/V_{\text{ct}}$ in V

CoolSiC™ MOSFET

Highspeed 3 Si IGBT
Considering the thermal behavior of the $R_{DS(on)}$, CoolSiC™ shows the best performance as the $R_{DS(on)}$ increase over the T_J is much smaller.

- Multiplication factor kappa (k) of the typical $R_{DS(on)}$ for hot operation:

 - Operation temperature $T_J = 100 \, ^\circ$C

 - CoolMOS™: $k = 1.67$
 - CoolSiC™: $k = 1.14$
 - CoolGaN™: $k = 1.53$
A practical example of a CoolSiC™-based EV Charger design

“Softer” transconductance

Larger increase in $R_{DS(on)}$ with temperature so a strong positive feedback

Slight increase in switching losses due to temperature

Correlation that higher $R_{DS(on)}$ parts have lower switching losses
CoolSiC™ MOSFET Enables simpler hard-switching solution

650 V Si SJ MOSFET in DC/DC stage:
- Simple hard-switching topology
- Less control effort
- Reduced part count by 50%
- Especially attractive for bidirectional charging

1200 V SiC MOSFET DC/DC:
- Simple hard-switching topology
- Less control effort
- Reduced part count by 50%
- Especially attractive for bidirectional charging

Si to SiC
CoolSiC™ MOSFET suitable for ZVS operation

Device capacitances at 1 MHz, $V_{GS} = 0$

- $C_{iss} \gg C_{oss} \gg C_{rss}$
- Small C_{rss} (~10 smaller than C_{oss})

Well suited to suppress parasitic re-turn-on (PTO)

Low C_{oss} allows a fast V_{DS} transition at turn-on
Charging station: 1200 V CoolSiC™ diode for high efficiency and high output power – 50% lower losses

Three-phase Vienna PFC

2x full-bridge LLC DC/DC converter

AC input

Battery

Comparison at 48 kHz

SiC vs. Si diode:
› 0.8% higher efficiency
› Increased output power
Figure of Merit: Correlation of device parameters

- **RDS(on)* Qoss**: Facilitates dead time / resonant current settings and enables higher frequency
 - ZVS type DC-DC converter

- **RDS(on)* Qrr**: Enables applications with repetitive hard commutation on the body diode
 - PFC type AC-DC converter

- **RDS(on)* Qg**: Reducing driving losses especially in light load conditions
 - Light load efficiency
Proposed BOM for high efficiency 30 kW design

Stage Switching Freq. Devices Product Part number Pcs

AC/DC

- **40 kHz**
 - 600 V CoolMOS™ P7
 - IPW60R024P7
 - 12
 - 1200 V CoolSiC™ Schottky diode
 - IDWD40G120C52
 - 12
 - Driver IC
 - EiceDRIVER™ 1ED
 - 1EDI40112AH
 - 6

DC/DC

- **up to 300 kHz**
 - 1200 V CoolSiC™ MOSFET
 - IMW120R045M1
 - 16
 - 1200 V CoolSiC™ diode
 - IDW40G120C5B
 - 8
 - Driver IC
 - EiceDRIVER™ 1ED
 - 1EDI20112AH
 - 8

µC

- XMC™ 4000 4x PWM timers
- XMC4400-F100K512 BA
- 2

Key features & benefits

- Highest efficiency with CoolSiC™ technology
- BOM parts reduction
- Higher reliability
- Low design complexity
- Fast time to market

Application assumptions

- 30 kW, 75 A @400 V
- Air cooled
- Vienna rectifier
- 2 paralleled FB LLC
- DC link voltage 840 V

*) Simplified schematic diagram. Symbols for the schematic diagram are only for illustration purposes and do not refer to the proposed bill of material.
[2) coming soon]
Proposed BOM for high efficiency 60 kW design

Key features and benefits
- Highest efficiency with CoolSiC™ technology
- BOM reduction
- Higher reliability
- Low design complexity
- Fast time to market
- Galvanic isolation
- No special infrastructure

Application assumptions
- 60 kW, 120 A @500 V
- Liquid cooled
- DC link voltage 840 V
- Switching frequency 120 kHz for DC/DC converter

Stage | Switching Freq. | Devices | Product | Part number | Pcs |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC/DC</td>
<td>40 kHz</td>
<td>1200 V CoolSiC™ Easy 2B</td>
<td>F3L15MR12W2M1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Driver IC</td>
<td>EiceDRIVER™ 1ED</td>
<td>1EDI4012AH</td>
<td>6</td>
</tr>
<tr>
<td>DC/DC</td>
<td>120 to 140 kHz</td>
<td>1200 V CoolSiC™ MOSFET</td>
<td>FF11MR12W1M1_B11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200 V CoolSiC™ diode</td>
<td>DDB2U60N12W1RF_B11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Driver IC</td>
<td>EiceDRIVER™ 1ED</td>
<td>1EDI2012AH</td>
<td>6</td>
</tr>
<tr>
<td>µC</td>
<td></td>
<td>XMC™ 4000 4x PWM timers</td>
<td>XMC4400-F100K512 BA</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

(*) Simplified schematic diagram. Symbols for the schematic diagram are only for illustration purposes and do not refer to the proposed bill of material.
Fast DC EV Charging empowered by Infineon

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key trends & market situation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CoolSiC™ & bidirectional charging</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Connectivity, Control & Security in DC EV Charging</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Reference Designs</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
Why connectivity and security is relevant in EV charging

ISO/IEC 15118
IEC 61851-1

CCSoM

MQTT and OCPP

Edge

Cloud services

3rd party apps

Manufacturer's operator's portal

ISO/IEC 15118
IEC 61851-1
Infineon overview on security, control and connectivity – Our Core Capabilities for DC EV Charging

Power

<table>
<thead>
<tr>
<th>COMPUTE</th>
<th>HMI & Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm® Cortex® Processors</td>
<td></td>
</tr>
<tr>
<td>PSoC®4</td>
<td></td>
</tr>
<tr>
<td>PSoC®6</td>
<td></td>
</tr>
<tr>
<td>Mixed Signal MCU Architectures</td>
<td></td>
</tr>
<tr>
<td>XMC™1000</td>
<td></td>
</tr>
<tr>
<td>Application Co-processors</td>
<td></td>
</tr>
<tr>
<td>XMC™4000</td>
<td></td>
</tr>
</tbody>
</table>

ENHANCE		embedded SIM
Graphics		PSoC®6
		Next gen MCU
NFC		My-d™ NFC (SCS)

SECURE		Device authentication
Hardware security controllers		OPTIGA™
		Trust, TPM
		Connect
		Authenticate

CONNECT		OPTIGA™
Power Conversion		OPTIGA™
XMC™1000		OPTIGA™
XMC™4000		OPTIGA™

CONTROL		
Capacitive / Inductive Sense		
PSoC®4		
PSoC®6		
Motor Control		
XMC™1000		
XMC™4000		
Wireless Charging		
XMC™1000		
spark		
Security with OPTIGA™ Trust & TPM
For Networks, Servers, Gateways and Connected Devices

- **CLOUD**: Central Compute
- **EDGE-COMPUTE**: Processing Data closer to where the data is generated
- **END-NODE**: Device used to harvest Data

The key for a secured delivery of Cloud-to-Edge connected applications is securing the device data flow that is transmitted in a client server architecture.

Secured Connectivity

Security controllers like OPTIGA™ TPM and OPTIGA™ Trust will enable a secured channel that is agnostic to the type of connectivity deployed.
Securing an EV Charging Ecosystem using Security Controllers

Primary Requirements
- Secure Communication with Mutual Authentication
- Integrity and non-repudiation for Billing
- Confidentiality for Personal Information
PSoC 64 – Packaging Option adds fully integrated Secure FW

The best IoT MCU solution for managing data confidentiality, integrity and authenticity

Secure FW is factory installed prior to shipping

- Isolated Processing Environments
- Root-of-Trust
- Hardware-accelerated Crypto
- PSA Certified

Non-Secure Processing Environment (NSPE)
- User Application
- Amazon FreeRTOS with PSA APIs
- WHD and PDL

Secure Processing Environment (SPE)
- Secure Services
 - Storage
 - Attestation
 - Crypto
 - Trusted Firmware-M

Root-of-Trust and Services
- RoT Services
 - Crypto
 - RoT Key Storage
 - Attestation
 - Provisioning
 - CY Secure Bootloader

Cortex-M4

Cortex-M0+
Cellular connectivity enabled – OPTIGA Connect IoT eSIM for Machine2Machine use cases

- Smallest size
- No physical SIM distribution
- Secure and remote updates
- High interoperability
- Robustness

Connectivity anywhere in the world with eSIM
OPTIGA™ Connect IoT OC2321
Remote SIM Provisioning (RSP): M2M vs Consumer models

M2M Model (PUSH)
- eSIM comes with a pre-installed Profile for out of the box connectivity
- Service provider triggers MNO change
- New profile is pushed to the device

Consumer Model (PULL)
- eSIM is usually installed without pre-installed Profile. Wifi/BT connectivity is needed.
- End customer selects new operator using the device interface
- New profile is pulled by the device
Fast DC EV Charging empowered by Infineon

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key trends & market situation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CoolSiC™ & bidirectional charging</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Connectivity, Control & Security in DC EV Charging</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Reference Designs</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
Infineon reference designs for different DC EV charging systems

- **Home**
 - 11 kW bi-directional DC-DC converter: REF-DAB11KIZSICSYS

- **Public**
 - 22 kW DC wallbox: in development

- **Highway**
 - up to 50 kW DC charger subunit for high power charging systems:
 - Release planned for H2 - 2021
11 kW SiC bi-directional DC-DC converter (REF-DAB11KIZSICSYS)

Overview

› This reference design provides a blueprint for the fast realization of bi-directional DCDC converters with 11 kW and up to 800 V
› It is the ideal building block for any EV and ESS charger project due to its high power conversion efficiency and soft switching characteristics

Target application

› DC EV charging wall boxes
› Energy storage systems

Key features and benefits

› Attractive rating: 11kW @ up to 800 V
› High peak efficiency: 97.2%
› High power density: 4.1 kW/l
› Supports V2G & V2H: bi-directional power flow
› Easy-to-use: WiFi onboard plus software and GUI
Concept offers great flexibility to adapt topology and components as well as thermal / mechanical design to different use cases.
Fast DC EV Charging empowered by Infineon

<table>
<thead>
<tr>
<th></th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key trends & market situation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CoolSiC™ & bidirectional charging</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Connectivity, Control & Security in DC EV Charging</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Reference Designs</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
What makes CoolSiC™ the perfect solution for EV charging designs

Major Trends

- **CoolSiC™:**
 - Up to 99% overall efficiency
 - Much lower energy costs

- **Modules & discretes using CoolSiC™:**
 - From highly integrated topologies like Vienna, NPC1, ANPC, NPC2 or simple 2-level topologies

- **CoolSiC™:**
 - Full utilization of the MOSFET

- **Power density**
 - Reduced cooling effort
 - Size reductions by using higher switching frequencies

- **Higher efficiency charger**
 - Up to 99% overall efficiency

- **Bi-directional operation**
 - Much lower energy costs

- **Flexibility**
 - Scalability to upgrade system power levels on demand up to several hundred kVA (discretes) and kW (modules)

- **Scalability**
 - From highly integrated topologies like Vienna, NPC1, ANPC, NPC2 or simple 2-level topologies
Related SiC content

SiC Design Resources

› Get our SiC design resources for your application!

Download

SiC Podcast

› Listen to our podcast for a better understanding of SiC and GaN technology benefits and costs.

Listen Now
Part of your life. Part of tomorrow.