

REF_5AR4770AG_3W1

About this document

Scope and purpose

This document is a reference design for a 3 W IoT off-line isolated power supply using the latest Infineon fifth-generation Fixed Frequency (FF) CoolSET™ ICE5AR4770AG. The power supply is designed with a universal input compatible with most geographic regions, and isolated output (+5 V/0.6 A).

Highlights of the 3 W IoT off-line isolated power supply:

- Very small form-factor design
- Simplified circuitry with good integration of power and protection features
- Auto-restart protection scheme to minimize interruption and enhance end-user experience

Intended audience

This document is intended for power supply design or application engineers, etc. who wish to design low-cost, highly reliable off-line Switched Mode Power Supply (SMPS) systems for:

- Applications related to the Internet of Things (IoT)
 - 1) Standby power supply
 - 2) Power supply for microcontrollers
 - 3) Power supply for standalone sensors operating on a wired/wireless interface bus
- USB-power supply embedded in a wall plug
- Intelligent wall plug switched by wireless (with relay)
- · Metering applications
- General applications with small form factor in the power range 1 W to 3 W

Table of contents

Table of contents

Abou	t this document	1
Table	e of contents	2
1	System introduction	4
1.1	High efficiency under light-load conditions to meet ENERGY STAR requirements	
1.2	Simplified circuitry with good integration of power and protection features	
1.3	Robust system and protection features	
1.4	Auto-restart protection scheme to minimize interruption and enhance end-user experience	
2	Reference design board	6
3	Power supply specifications	7
4	Circuit diagram	
5	Circuit description	9
5.1	EMI filtering and line rectification	
5.2	Flyback converter power stage	
5.3	Control of flyback converter through fifth-generation FF CoolSET™ ICE5AR4770AG	
5.3.1	Integrated HV power MOSFET	
5.3.2	Current Sensing (CS)	
5.3.3	Feedback and compensation network	
5.4	Unique features of the fifth-generation FF CoolSET™ ICE5AR4770AG to support the requirement	
	IoT power supply	
5.4.1	Fast self-start-up and sustaining of V _{cc}	10
5.4.2	CCM, DCM operation with frequency reduction	10
5.4.3	Frequency jittering with modulated gate drive	11
5.4.4	System robustness and reliability through protection features	
5.5	Clamper circuit	12
5.6	PCB design tips	12
5.7	EMI reduction tips	12
6	PCB layout	14
6.1	Top side	14
6.2	Bottom side	14
6.3	Top and bottom side copper	14
7	BOM	15
8	Transformer specification	16
9	Measurement data and graphs	17
9.1	Load regulation	18
9.2	Line regulation	18
9.3	Efficiency vs AC-line input voltage	19
9.4	Standby power	
9.5	Maximum output current	20
10	Thermal measurement	21
11	Waveforms	22
11.1	Start-up at low/high AC-line input voltage with maximum loadload	22
11.2	Soft-start	
11.3	Switching waveform at maximum load	
11.4	Frequency jittering and modulated gate drive	
11.5	Output ripple voltage at maximum load	
11.6	Output ripple voltage in ABM 50 mW load	24

V1.0

Table of contents

11.7	Load transient response (dynamic load from 10 percent to 100 percent)	25
11.8	Entering ABM	
11.9	During ABM	
11.10		
11.11		
11.12	Brown-in protection by utilizing R _{Brown-in} (R16D in Figure 3)	27
11.13	Output OVP by utilizing V _{CC} OVP (odd-skip auto-restart)	28
11.14		
11.15	Over-load protection (odd-skip auto-restart)	29
11.17	Conducted emissions (EN 55022 class B)	29
11.18		
11.19	Surge immunity (EN 61000-4-5)	32
12	Appendix A: Transformer design and spreadsheet [3]	33
13	Appendix B: WE transformer specification	40
14	References	41
Revis	sion history	42

System introduction

System introduction 1

The Internet of Things (IoT) is connecting up ever smarter devices and machines. The fast-growing market around the IoT covers a wide range of applications. All of them have one thing in common, namely the ability to collect and exchange data with each other. The microcontrollers, sensors, actuators, etc. embedded in each of the devices stay connected to the network at all times. They are supplied by an efficient low-power and lowstandby power supply, to which the Infineon fifth-generation FF CoolSET™ family of integrated off-line power supply ICs is ideally suited.

IoT applications Figure 1

Table 1 lists the system requirements for the IoT, and the corresponding Infineon solution is shown in the righthand column.

System requirements and Infineon solutions Table 1

	System requirement for IoT	Infineon solution - ICE5AR4770AG
1	High efficiency under light-load conditions to meet ENERGY STAR requirements	New FF control and Active Burst Mode (ABM)
2	Simplified circuitry with good integration of power and protection features	Embedded 700 V MOSFET and controller in DSO-12 package
3	Robust system and protection features	Input Over Voltage Protection (OVP) and brown-in features
4	Auto-restart protection scheme to minimize interruption and enhance end-user experience	All protections are in auto-restart

System introduction

1.1 High efficiency under light-load conditions to meet ENERGY STAR requirements

During typical IoT operation, the power requirement fluctuates according to various use cases. Therefore, the efficiency should be optimized across the load range. It is crucial that the IoT power supply operates as efficiently as possible, because it will be in this particular state for most of the period. Under light-load conditions, losses incurred with the power switch are usually dominated by the switching operation. The choice of switching scheme and frequency play a crucial role in ensuring high conversion efficiency.

In this reference design, ICE5AR4770AG was primarily chosen due to its frequency-reduction switching scheme. Compared with a traditional FF flyback, the CoolSET™ reduces its switching frequency from medium to light load, thereby minimizing switching losses. Therefore, an efficiency of more than 76 percent is achievable under 25 percent loading conditions.

1.2 Simplified circuitry with good integration of power and protection features

To relieve the designer of the complexity of PCB layout and circuit design, the CoolSET[™] is a highly integrated device with both a controller and HV MOSFET integrated into a single, space-saving DSO-12 package. These certainly help the designer to reduce component count as well as simplifying PCB layout for ease of manufacturing and cost.

1.3 Robust system and protection features

Comprehensive protection features are integrated into the FF CoolSETTM ICE5AR4770AG, such as input line OVP, V_{CC} OV, V_{CC} Under Voltage (UV), over-load/open-loop, over-temperature and Current Sense (CS) short-to-GND. It also has limited charging current for V_{CC} short-to-GND and brown-in protection by utilizing $R_{Brown-in}$ (R16D in Figure 3).

1.4 Auto-restart protection scheme to minimize interruption and enhance end-user experience

For an IoT power supply, it would be annoying for both the end user and the manufacturer if the system were to halt and latch after protection. To minimize interruption, the CoolSET™ implements auto-restart mode for all abnormal protections.

Reference design board

Reference design board 2

This document provides complete design details including specifications, schematics, Bill of Materials (BOM), PCB layout, transformer design and construction information. This information includes performance results pertaining to line/load regulation, efficiency, transient load, thermal conditions, conducted EMI scans, etc.

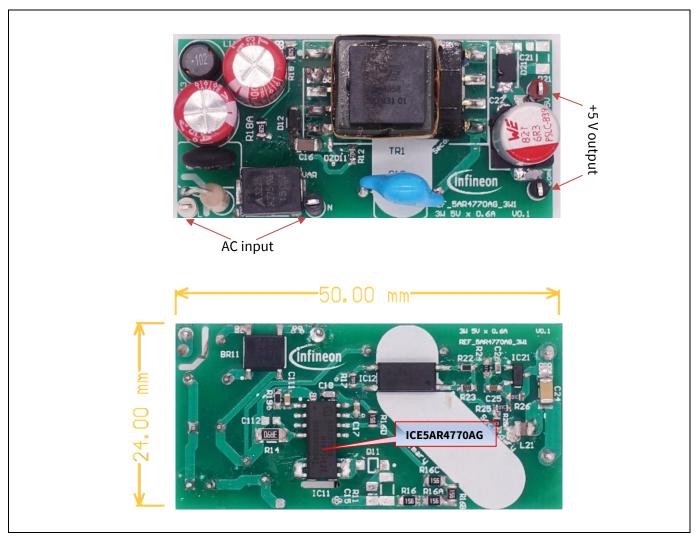
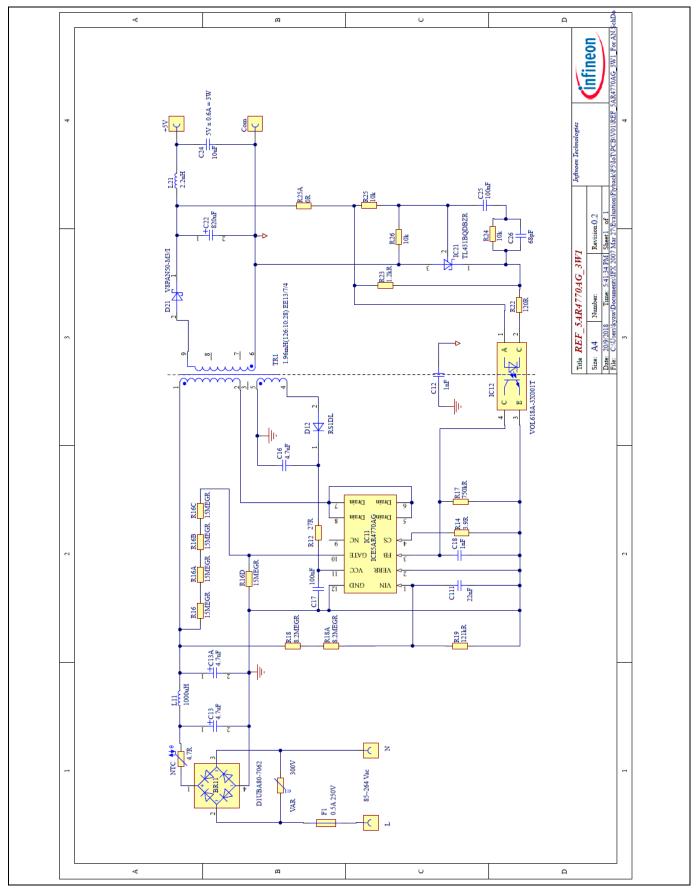


Figure 2 **REF_5AR4770AG_3W1**

Power supply specifications

Power supply specifications 3

The table below represents the minimum acceptance performance of the design. Actual performance is listed in the measurements section.


Specifications of REF_5AR4770AG_3W1 Table 2

Description	Symbol	Min.	Тур.	Max.	Units	Comments
Input						
Voltage	V _{IN}	85	_	264	V AC	Two wires (no P.E.)
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load input power	$P_{\text{stby_NL}}$	-	_	35	mW	230 V AC
Output						
Output voltage	V_{OUT}	_	5	_	V	±3%
Output current	I _{OUT}	0.03	0.3	0.6	Α	
Output voltage ripple	V_{RIPPLE}	_	_	250	mV	20 MHz BW
Max. power output	P _{OUT_Max}	_	_	3	W	
Efficiency						
Max. load	η	_	80	_	%	115 V AC/230 V AC
Average efficiency at 25%, 50%, 75% and 100% of P_{OUT_Max}	$\eta_{ ext{avg}}$	79	_	-	%	115 V AC/230 V AC
Environmental						
Conducted EMI			15		dB	Margin, CISPR 22 class B
ESD			±8		kV	EN 61000-4-2
Surge immunity						EN 61000-4-5
Differential Mode (DM)			±2		kV	See footnote 1 at 11.19
Common Mode (CM)			±4		kV	See footnote 1 at 11.19
Ambient temperature	T _{amb}	0	_	50	°C	Free conviction, sea level
Form factor		50 × 24	× 16		mm³	L×W×H

Circuit diagram

4 Circuit diagram

8 of 43

Figure 3 Schematic of REF_5AR4770AG_3W1

Application Note

Circuit description

5 Circuit description

In this section, the design circuit for the SMPS unit will be briefly described by the different functional blocks. For details of the design procedure and component selection for the flyback circuitry please refer to the IC design guide [2] and calculation tool [3].

5.1 EMI filtering and line rectification

The input of the power supply unit is taken from the AC power grid, which is in the range of 85 V AC \sim 264 V AC. The fuse F1 is directly connected to the input line to protect the system in case of excess current entering the system circuit due to any fault. Following is the varistor VAR, which is connected across the input to absorb excessive energy during line surge transient. The resistor NTC not only reduces the in-rush current during startup, but it also helps reduce the voltage increase on the bulk capacitors C13 and C13A during line surge transients. The bridge rectifier BR11 rectifies the AC input into DC voltage, filtered by the bulk capacitors C13 and C13A. Inductor L11 and capacitors C13 and C13A form a π filter to attenuate EMI noise.

5.2 Flyback converter power stage

The flyback converter power stage consists of C13A, transformer TR1, a primary HV MOSFET (integrated into ICE5AR4770AG), secondary rectification diodes D21, and secondary output capacitors and filtering C22, L21 and C24.

When the primary HV MOSFET turns on, some energy is stored in the transformer. When it turns off, the stored energy is released to the output capacitors and the output loading through the output diode D21.

The primary winding has two layers placed back to back for higher winding capacitance. This can reduce EMI by slowing the MOSFET switching. However, this can reduce efficiency. Winding capacitance can be tuned by adding a number of isolation tapes between the layers, depending on the EMI or efficiency need. If efficiency is a priority, interlacing primary and secondary winding is recommended, as it has lower leakage inductance. TR1 has single output windings, the V_{OUT} (5 V). The output rectification of V_{OUT} is provided by the diode D21 through filtering of C22, L21 and C24. All the secondary capacitors must be the low-ESR type, which can effectively reduce the switching ripple. Together with the Y-capacitor C12 across the primary and secondary side, the EMI noise can be further reduced to comply with CISPR 22 specifications.

5.3 Control of flyback converter through fifth-generation FF CoolSET™ ICE5AR4770AG

5.3.1 Integrated HV power MOSFET

The ICE5AR4770AG CoolSET[™] is a 12-pin device in a DSO-12 package. It has been integrated with the new FF PWM controller and all necessary features and protections, and most importantly the 700 V power MOSFET, Infineon Superjunction (SJ) CoolMOS[™]. Hence the schematic is much simplified and the circuit design is made much easier.

5.3.2 Current Sensing (CS)

The ICE5AR4770AG is a current mode controller. The peak current is controlled cycle-by-cycle through the CS resistors R14 in the CS pin (pin 4) and so transformer saturation can be avoided and the system is more robust and reliable.

Circuit description

5.3.3 Feedback and compensation network

Resistor R25 is used to sense the V_{OUT} and feedback (FB) to the reference pin (pin 1) of error amplifier IC21 with reference to the voltage at resistor R26. A type 2 compensation network C25, C26 and R24 is connected between the output pin (pin 3) and the reference pin (pin 2) of the IC21 to stabilize the system. The IC21 further connects to pin 2 of the optocoupler, and IC12 with a series resistor R22 to convert the control signal to the primary side through the connection of pin 4 of the IC12 to the ICE5AR4770AG FB pin (pin 3) and complete the control loop. Both the optocoupler IC12 and the error amplifier IC21 are biased by V_{OUT}; IC12 is a direct connection while IC21 is through an R23 resistor.

The FB pin of ICE5AR4770AG is a multi-function pin which is used to select the entry burst power level (there are three levels available) through the resistor at the FB pin (R17) and also the burst-on/burst-off sense input during ABM.

Unique features of the fifth-generation FF CoolSET™ ICE5AR4770AG to 5.4 support the requirements of IoT power supply

Fast self-start-up and sustaining of Vcc 5.4.1

The IC uses a cascode structure to fast-charge the V_{cc} capacitor. Pull-up resistors R16, R16A, R16B and R16C connected to the gate pin (pin 10) are used to initiate the start-up phase. At first, 0.2 mA is used to charge the V_{cc} capacitor from 0 V to 1.1 V. This is a protection which reduces the power dissipation of the IC during V_{cc} short-to-GND condition. Thereafter, a much higher charging current of 3.2 mA will charge the V_{cc} capacitor until the V_{CC_ON} is reached. Start-up time of less than 80 ms is achievable with a V_{CC} capacitor of 4.7 μ F.

After start-up, the IC V_{cc} supply is sustained by the auxiliary winding of transformer TR1, which needs to support the V_{CC} to be above Under Voltage Lockout (UVLO) voltage (10 V typ.) through the rectifier circuit D12, R12 and C16.

5.4.2 CCM, DCM operation with frequency reduction

ICE5AR4770AG can be operated in either Discontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM) with frequency-reduction features. This reference board is designed to operate in DCM. When the system is operating at maximum power, the controller will switch at the fixed frequency of 100 kHz. In order to achieve a better efficiency between light load and medium load, frequency reduction is implemented, and the reduction curve is shown in Figure 4. The V_{cs} is clamped by the current limitation threshold or by the PWM opamp while the switching frequency is reduced. After the maximum frequency reduction, the minimum switching frequency is f_{osc2 MIN} (43 kHz).

Circuit description

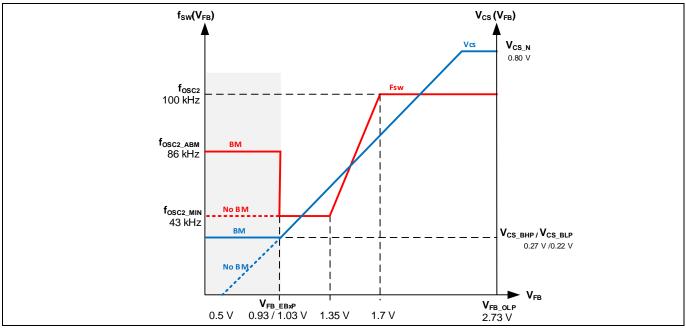


Figure 4 Frequency-reduction curve

5.4.3 Frequency jittering with modulated gate drive

The ICE5AR4770AG has a frequency jittering feature with modulated gate drive to reduce the EMI noise. The jitter frequency is internally set at 100 kHz (±4 kHz), and the jitter period is 4 ms.

5.4.4 System robustness and reliability through protection features

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5AR4770AG provides comprehensive protection to ensure the system is operating safely. This includes V_{IN} LOVP, brown-in, V_{CC} OV and UV, over-load, over-temperature (controller junction), CS short-to-GND and V_{CC} short-to-GND. When those faults are found, the system will enter protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and failure conditions is shown in the table below.

Table 3 Protection functions of ICE5AR4770AG

Protection function	Failure condition	Protection mode
V _{cc} OV	V _{vcc} greater than 25.5 V	Odd-skip auto-restart
V _{cc} UV	V _{vcc} less than 10 V	Auto-restart
V _{IN} LOVP	V _{VIN} greater than 2.85 V	Non-switch auto-restart
Over-load	V _{FB} greater than 2.75 V and lasts for 54 ms	Odd-skip auto-restart
Over-temperature (junction temperature of controller chip only)	T _J greater than 140°C	Non-switch auto-restart
CS short-to-GND	V_{CS} less than 0.1 V, lasts for 0.4 μs and three consecutive pulses	Odd-skip auto-restart
V _{cc} short-to-GND	V _{VCC} less than 1.1 V, I _{VCC_Charge1} ≈ -0.2 mA	Cannot start up
(V_{VCC} = 0 V, start-up = 50 M Ω and V_{DRAIN} = 90 V)		
Brown-in	V _{GATE} less than 20 V	Cannot start up

Circuit description

5.5 Clamper circuit

A clamper RCD network normally added in parallel to the primary inductance of the transformer (pins 1 and 2 of TR1) is removed in this reference board to save on the BOM and increase efficiency. Without a clamper RCD, maximum drain voltage of the CoolMOSTM is still less, and 650 V in worst-case conditions, which gives a 7 percent margin from maximum drain-source breakdown voltage of 700 V.

5.6 PCB design tips

For a good PCB design layout, there are several points to note.

- The power loop needs to be as small as possible (see Figure 5). There are two power loops in the demo design; one from the primary side and one from the secondary side. For the primary side, it starts from the bulk capacitor (C13A) positive to the bulk capacitor negative. The power loop components include C13, the main primary transformer winding (pin 1 and pin 2 of TR1), the drain pin and the CS pin of the CoolSET™ IC11 and CS resistor. For the secondary side, the 5 V output starts from the secondary transformer windings (pin 9 of TR1), output diode D21 and output capacitors C22, L21 and C24.
- Star-ground concept should be used to avoid unexpected HF noise coupling affecting control. The ground of the small-signal components, e.g. C17, C18 and C111, and the emitter of the optocoupler (pin 3 of IC12) etc. should connect directly to the IC ground (pin 12 of IC11). Then it connects to the negative terminal of the C13A capacitor directly.

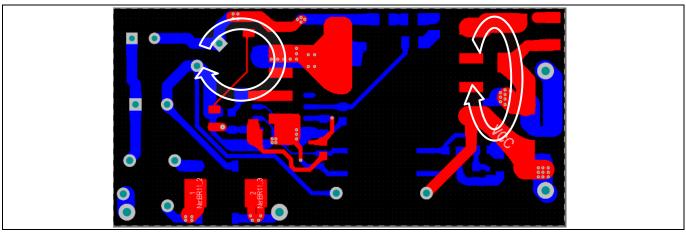


Figure 5 PCB layout tips

- Separating the HV components and LV components, e.g. V_{BUS} and CoolSET[™] drain at the top part of the PCB (see Figure 5) and the other LV components at the lower part of the PCB, can reduce the spark-over chance of the high-energy surge during ESD or a lightning surge test.
- Pour the PCB copper on the drain pin of the CoolSET™ over as wide an area as possible to act as a heatsink.

5.7 EMI reduction tips

EMI compliance is always a challenge for the power supply designer. There are several critical points to consider in order to achieve satisfactory EMI performance:

 A proper transformer design can significantly reduce EMI. Low leakage inductance can incur a low switching spike and HF noise. Interlaced winding technique is the most common practice to reduce leakage inductance.¹ Winding shield, core shield and whole transformer shield are also some of the techniques that can be used to reduce EMI.

¹ Not implemented with this reference design.

Circuit description

- Input CMC and X-capacitor greatly reduces EMI but it is costly and impractical, especially for low-power applications.¹
- Using a short power loop design in the PCB (as described in section 5.6) and terminating to the low-ESR capacitor such as C13A for primary-side loop and C22 for the secondary-side loop can help to reduce the switching ripple which comes out to the input terminals V_{IN}. In addition, adding a low-ESR ceramic capacitor in parallel to the C13A/C22 can help to further reduce the switching ripple.
- The Y-capacitor C12 has a function to return the HF noise to the source (negative of C13A) and reduce the overall HF noise going out to the input terminals. The larger capacitance is more effective. However, larger values would introduce larger leakage current and may fail the safety requirements.
- Adding a drain to the CS pin capacitor for the MOSFET of the CoolSET[™] can reduce the high switching noise. However, it also reduces efficiency.¹
- Adding a ferrite bead to the critical nodes of the circuit can help to reduce the HF noise, such as on the connecting path between the transformer and the drain pin, output diode D21, Y-capacitor C12, etc.¹
- Adding additional output CMC can also help to reduce the HF noise.¹

¹ Not implemented with this reference design.

PCB layout

6 PCB layout

6.1 Top side

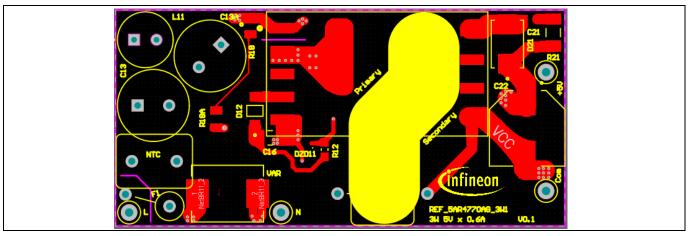


Figure 6 Top-side copper and component legend

6.2 Bottom side

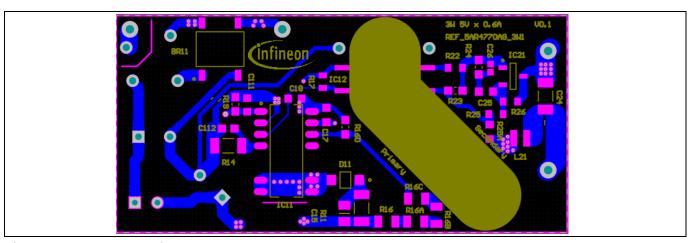


Figure 7 Bottom-side copper and component legend

6.3 Top and bottom side copper

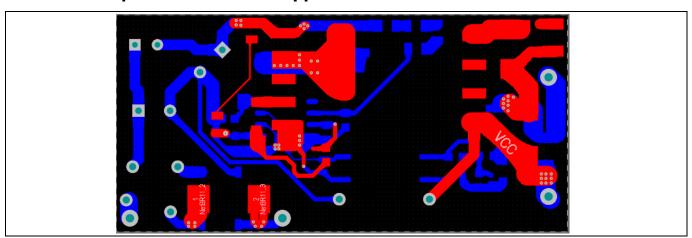


Figure 8 Top and bottom side copper

вом

7 **BOM**

Table 4 **BOM (V 0.2)**

No.	Designator	Description	Part number	Manufacturer	Quantity
1	+5 V	KEY_PN5000	5000		1
2	BR11	D1UBA80-7062	D1UBA80-7062	Shindengen	1
3	C12	1 nF, 500 V	DE1E3RA102MA4BQ01F	Murata	1
4	C13, C13A	4.7 μF, 400 V	860021374008	Wurth Electronic	2
5	C16	4.7 μF, 50 V	GRM31CR71H475KA12	Murata	1
6	C17, C25	100 nF, 50 V	885012206095	Wurth Electronic	2
7	C18	1 nF, 50 V	885012206083	Wurth Electronic	1
8	C22	820 μF, 6.3 V	875075155009	Wurth Electronic	1
9	C24	10 μF, 25 V	885012208069	Wurth Electronic	1
10	C26	68 pF, 50 V	885012006056	Wurth Electronic	1
11	C111	22 nF, 50 V	885012206091	Wurth Electronic	1
12	Com, N	KEY_PN5001	5001		2
13	D12	200 V, 0.8 A	RS1DL		1
14	D21	50 V, 8 A	V8PAN50-M3/I		1
15	F1	0.5 A, 250 V	MCPMP 0.5 A 250 V		1
16	IC11	ICE5AR4770AG	ICE5AR4770AG	Infineon Technologies	1
17	IC12	VOL618A-3X001T	VOL618A-3X001T		1
18	IC21	TL431BQDBZR	TL431BQDBZR		1
19	L	KEY_PN5002	5002		1
20	L11	1000 μΗ	7447462102	Wurth Electronic	1
21	L21	2.2 μΗ	DFE201610E-2R2M=P2	Murata	1
22	NTC	4.7 R	B57153S0479M0	Epcos	1
23	R12	27 R (0603)	AC0603FR-0727RL		1
24	R14	3.9 R (1206)	ERJ8RQF3R9V		1
25	R16, R16A, R16B, R16C, R16D	15 MEGR/150 V (0805)	RC0805JR-0715ML		5
26	R17	750 kR (0603)	CRCW0603750KFK		1
27	R18, R18A	8.2 MEGR/400 V (0805)	WK08V825 JTL		2
28	R19	121 kR (0603)	ERJ3EKF1213V		1
29	R22	120 R (0603)	RC0603FR-07120RL		1
30	R23	1.2 kR (0603)	RC0603FR-071K2L		1
31	R24, R25, R26	10 k (0603)	RC0603FR-0710KL		3
32	R25A	0 R(0603)	RC0603JR-070RL		1
33	TR1	1.96 mH (126:10:28) (EE13 7 4)	750344058 (Rev. 02)	Wurth Electronic	1
34	VAR	300 V	B72650M0301K072	Epcos	1
35	PCB	50 mm × 24 mm (L × W), single layer, 1 Oz., FR-4			1

Transformer specification

Transformer specification 8

(Refer to Appendix A for transformer design and Appendix B for WE transformer specification.)

- Core and materials: EE13/7/4, TP4A (TDG)
- Bobbin: 070-6258 (9-terminal, SMD, horizontal version)
- Primary inductance: L_p = 1.96 mH (±10 percent), measured between pin 1 and pin 2
- Manufacturer and part number: Wurth Electronics Midcom (750344058) Rev. 02

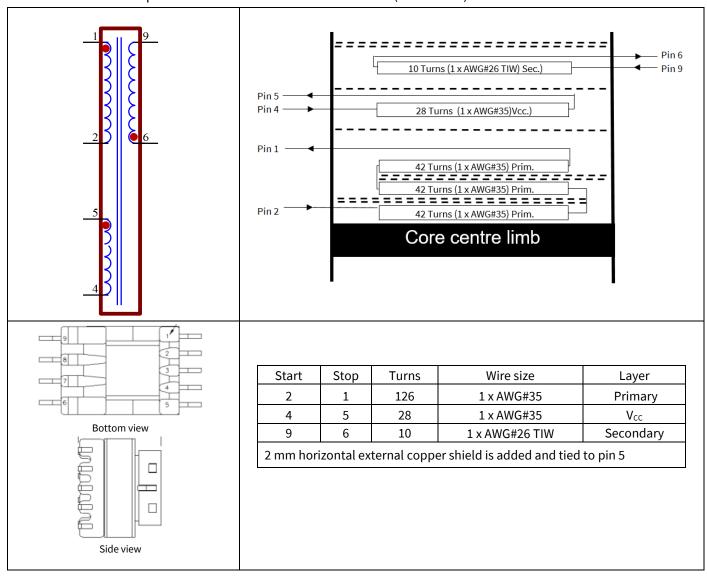


Figure 9 **Transformer structure**

Measurement data and graphs

9 Measurement data and graphs

Table 5 Measurement data

Table 5	measurement data									
Input (V AC/Hz)	Description	P _{IN} (W)	V _{OUT} (V _{DC})	I _{оит} (А)	Р _{о∪т} (W)	η (%)	η _{avg} (%)	P _{in_OLP} (W)	I _{out_OLP} (A)	
	No load	0.019	5.01	0.000						
	Min. load	0.22	5.00	0.030	0.15	68.18				
85/60	1/10 load	0.39	5.00	0.059	0.30	75.64				
	1/4 load	0.93	4.99	0.150	0.75	80.48		4.89	0.79	
	Typ. load	1.83	4.98	0.300	1.49	81.64	01.24			
	3/4 load	2.74	4.96	0.451	2.24	81.64	81.24			
	Max. load	3.65	4.94	0.600	2.96	81.21				
	No load	0.020	5.01	0.000						
	Min. load	0.21	5.00	0.030	0.15	71.43			0.81	
	1/10 load	0.40	5.00	0.061	0.31	76.25				
115/60	1/4 load	0.93	4.97	0.150	0.75	80.16		4.93		
	Typ. load	1.82	4.98	0.300	1.49	82.09	81.59			
	3/4 load	2.72	4.96	0.451	2.24	82.24	81.59			
	Max. load	3.62	4.94	0.600	2.96	81.88				
	No load	0.029	5.01	0.000						
	Min. load	0.23	5.00	0.030	0.15	65.22		5.30	0.87	
	1/10 load	0.43	5.00	0.061	0.31	70.93				
230/50	1/4 load	0.96	4.99	0.150	0.75	77.97				
	Typ. load	1.86	4.98	0.300	1.49	80.32	70.00			
	3/4 load	2.78	4.96	0.451	2.24	80.47	79.88			
	Max. load	3.67	4.94	0.600	2.96	80.76				
	No load	0.032	5.01	0.000						
	Min. load	0.24	5.00	0.030	0.15	62.50				
	1/10 load	0.45	5.00	0.061	0.31	67.78				
264/50	1/4 load	0.98	4.99	0.150	0.75	76.38		5.50	0.90	
	Typ. load	1.89	4.98	0.300	1.49	79.05	70.00			
	3/4 load	2.80	4.96	0.451	2.24	79.89	78.86			
	Max. load	3.70	4.94	0.600	2.96	80.11				

No-load condition (no load) : 5 V at 0 A

Minimum load condition (min. load)
1/10 load condition (1/10 load)
1/4 load condition (1/4 load)
5 V at 60 mA
5 V at 0.15 A
Typical load condition (typ. load)
3/4 load condition (3/4 load)
5 V at 0.45 A

Maximum load condition (max. load) : 5 V at 0.6 A

Measurement data and graphs

Load regulation 9.1

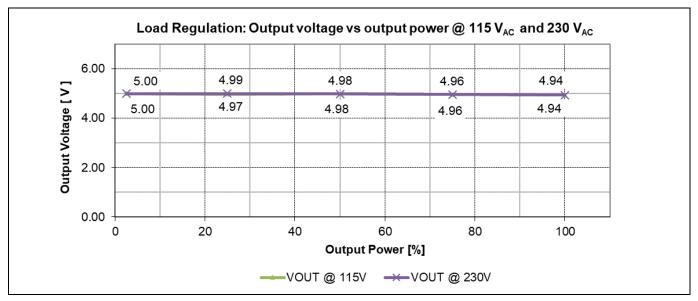


Figure 10 Load regulation V_{OUT} vs output power

Line regulation 9.2

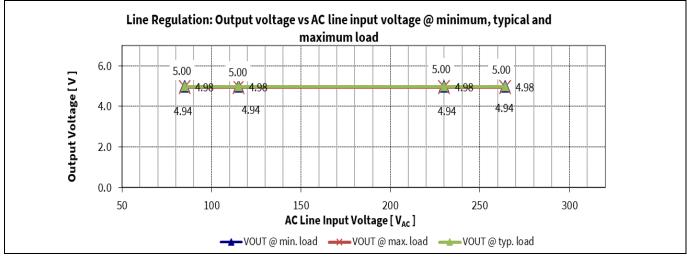


Figure 11 Line regulation: Vout vs AC-line input voltage

Measurement data and graphs

Efficiency vs AC-line input voltage 9.3

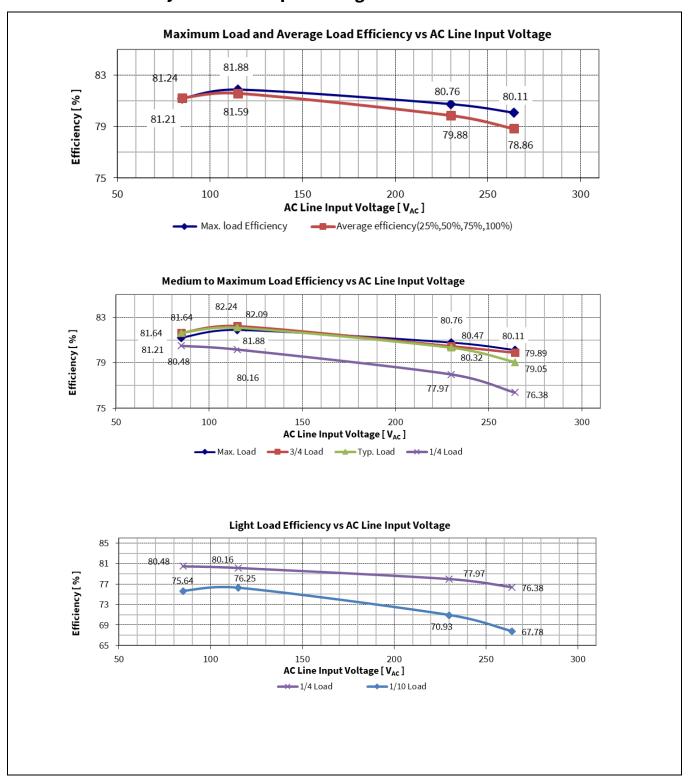


Figure 12 **Efficiency vs AC-line input voltage**

Measurement data and graphs

9.4 Standby power

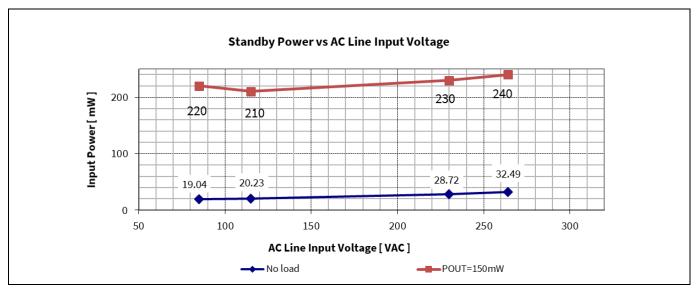


Figure 13 Standby power at no load (P_{stby_NL}) and 150 mW load vs AC-line input voltage (measured by Yokogawa WT210 power meter – integration mode)

9.5 Maximum output current

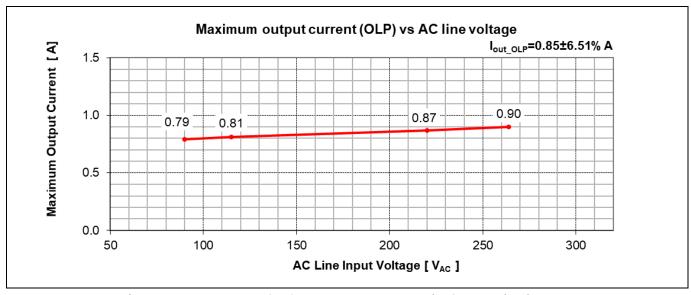
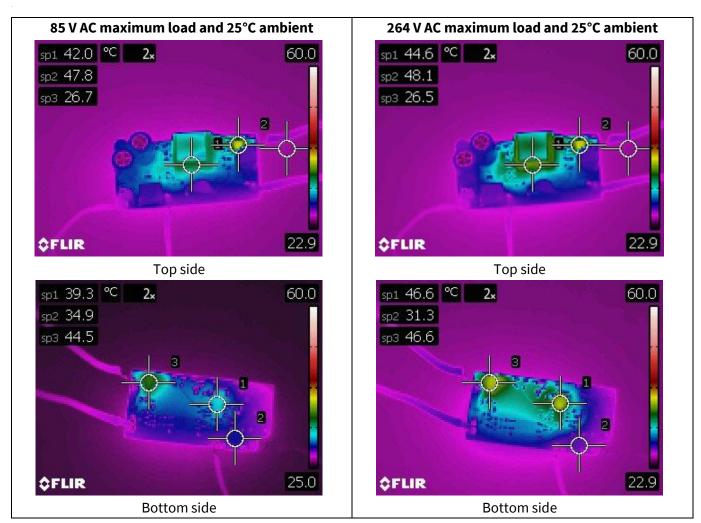


Figure 14 Maximum output current (before over-load protection) vs AC-line input voltage


Thermal measurement

10 Thermal measurement

The thermal testing of the demo board was done in the open air without forced ventilation at an ambient temperature of 25°C. An infrared thermography camera (FLIR-T62101) was used to capture the thermal reading of particular components. The measurements were taken at the maximum load running for one hour. The tested input voltage was 85 V AC and 264 V AC.

Component temperature at full load (5 V, 0.6 A) under T_{amb} = 25°C Table 6

Circuit code	Major component	85 V AC (°C)	264 V AC (°C)
IC11	ICE5AR4770AG	39.3	46.6
TR1	Transformer	42.0	44.6
BR1	Bridge diode	34.9	31.3
D21	+5 V output diode	47.8	48.1
	Ambient	25.0	25.0

Infrared thermal image of REF_5AR4770AG_3W1 Figure 15

Waveforms

Waveforms 11

All waveforms and scope plots were recorded with a Teledyne LeCroy 606Zi oscilloscope.

Start-up at low/high AC-line input voltage with maximum load 11.1

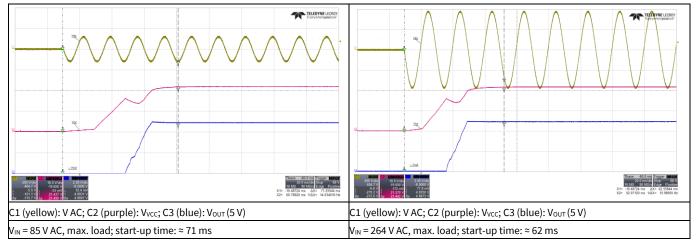


Figure 16 Start-up

11.2 **Soft-start**

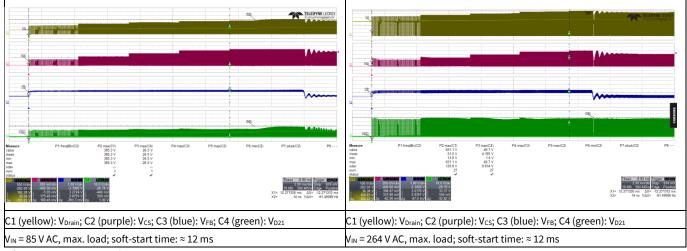
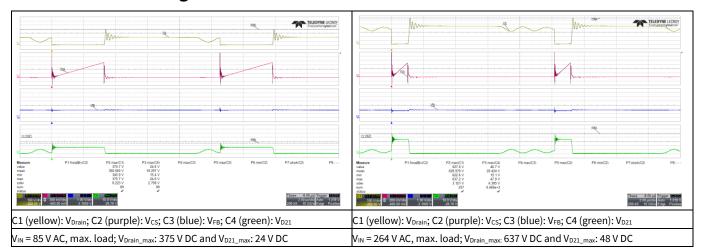
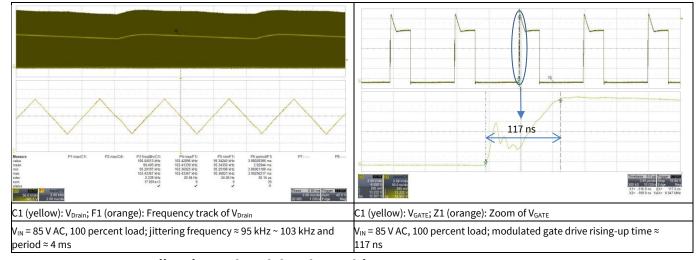



Figure 17 **Soft-start**


Waveforms

Switching waveform at maximum load 11.3

Drain and CS voltage at maximum load Figure 18

Frequency jittering and modulated gate drive 11.4

Frequency jittering and modulated gate drive Figure 19

Waveforms

Output ripple voltage at maximum load 11.5

Probe terminal end with decoupling capacitor of 0.1 μF (ceramic) and 1 μF (electrolytic), 20 MHz BW

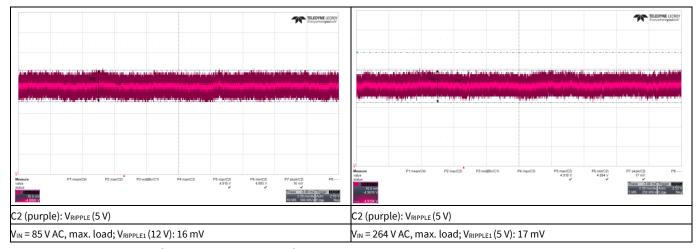


Figure 20 Output ripple voltage at maximum load

Output ripple voltage in ABM 50 mW load 11.6

- Probe terminal end with decoupling capacitor of 0.1 μF (ceramic) and 1 μF (electrolytic), 20 MHz BW
- Load: 50 mW (5 V, 10 mA)

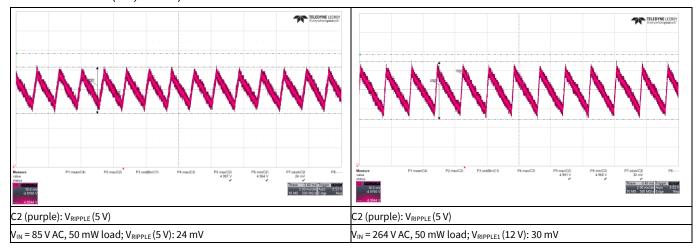


Figure 21 Output ripple voltage in ABM 50 mW load

Waveforms

Load transient response (dynamic load from 10 percent to 100 percent) 11.7

- Probe terminal end with decoupling capacitor of 0.1 μF (ceramic) and 1 μF (electrolytic), 20 MHz BW
- 5 V load change from 10 percent to 100 percent, 100 Hz, 0.4 A/μs slew rate

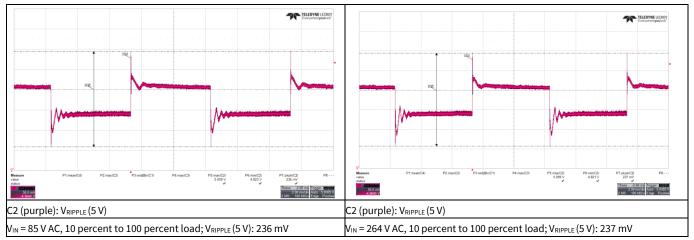


Figure 22 Load transient response

Entering ABM 11.8

Load change from 3 W (5 V, 0.6 A) to 0.1 W (5 V, 0.02 A)

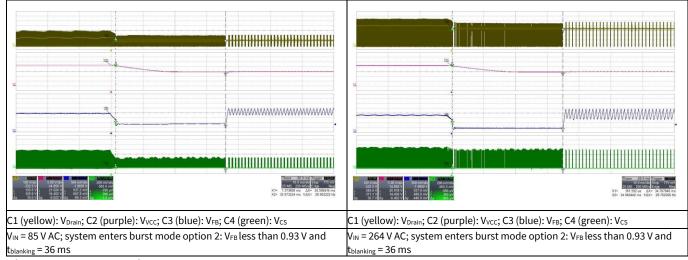


Figure 23 **Entering ABM**

Waveforms

11.9 **During ABM**

Load: 0.11 W (5 V, 0.022 A)

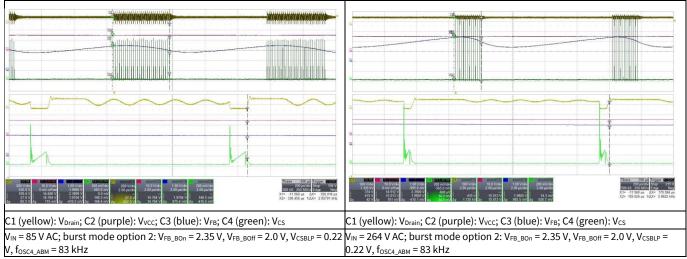


Figure 24 **During ABM**

Leaving ABM 11.10

Load change from 0.1 W (5 V, 0.02 A) to full load

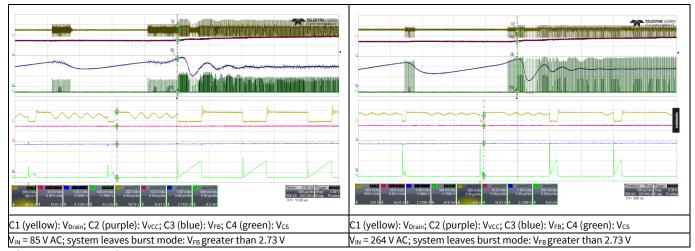


Figure 25 **Leaving ABM**

Waveforms

11.11 Line OVP (non-switch auto-restart)

• Increase AC-line voltage gradually at maximum load until line OVP is detected and then decrease the AC-line until line OVP reset is detected

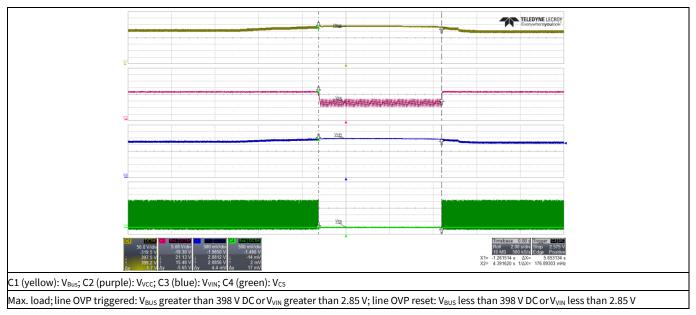


Figure 26 Line OVP

11.12 Brown-in protection by utilizing R_{Brown-in} (R16D in Figure 3)

• Increase AC-line voltage gradually at full load until the system starts up

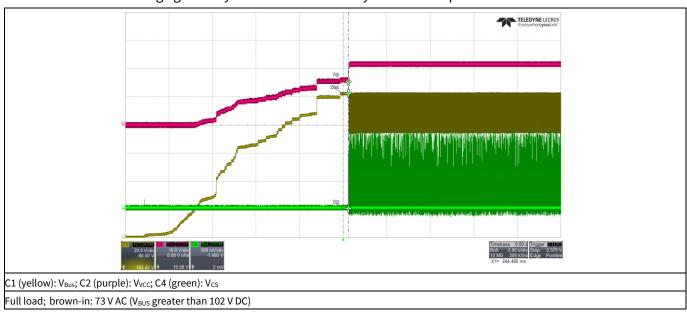


Figure 27 Brown-in protection

Waveforms

11.13 Output OVP by utilizing Vcc OVP (odd-skip auto-restart)

Short R26 resistor during system operation at no load

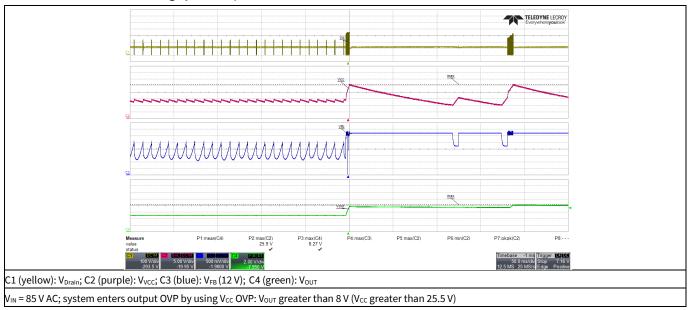


Figure 28 V_{cc} OVP

11.14 V_{cc} UVP (auto-restart)

• Short R17 while the system is operating at full load

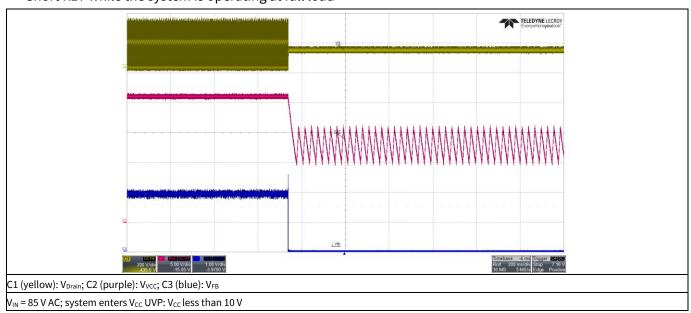


Figure 29 V_{cc} UVP

Waveforms

Over-load protection (odd-skip auto-restart) 11.15

V_{OUT} (5 V) short-to-GND at 264 V AC

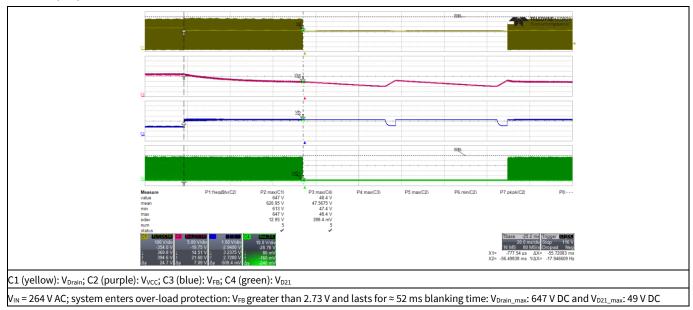


Figure 30 Over-load protection and max. voltage stress for MOSFET and output diode (D21)

11.16 V_{cc} short-to-GND protection

Short V_{cc} pin-to-GND with current meter before system start-up

Figure 31 **Vcc short-to-GND protection**

11.17 Conducted emissions (EN 55022 class B)

Equipment: Schaffner SMR4503 (receiver); standard: EN 55022 (CISPR 22) class B; test conditions: V₁N = 115 V AC and 230 V AC; load: 3 W (5 V, 8.3 Ω).

Pass conducted emissions EN 55022 (CISPR 22) class B with greater than 16 dB margin for quasi-peak measurement.

Waveforms

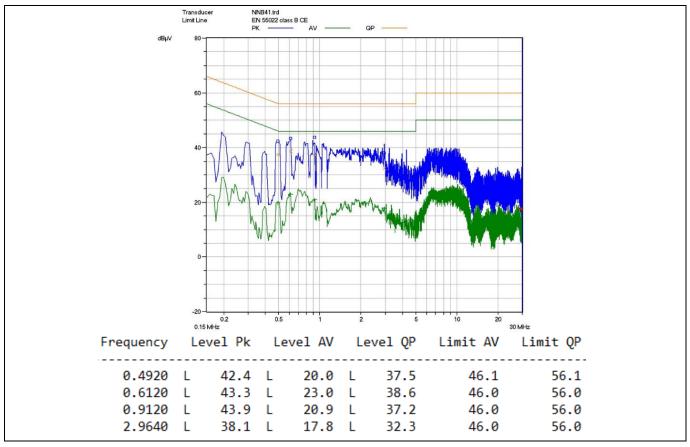


Figure 32 Conducted emissions at 115 V AC-line and 3 W load – greater than 17 dB margin

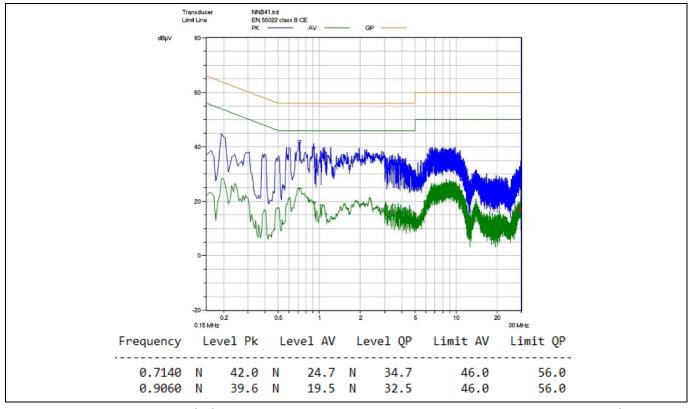


Figure 33 Conducted emissions at 115 V AC-neutral and 3 W load – greater than 21 dB margin

Waveforms

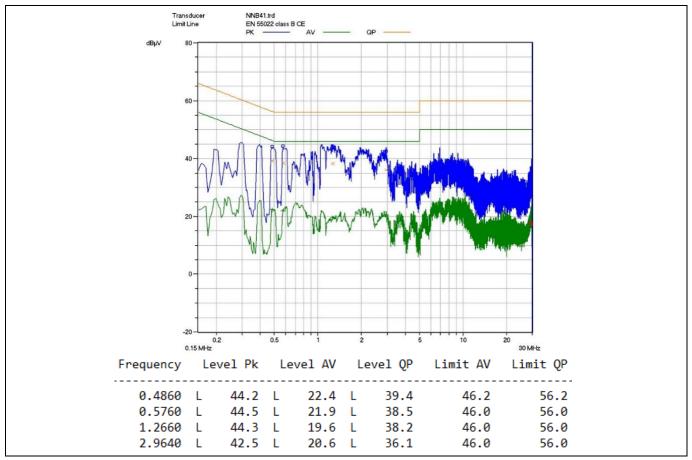


Figure 34 Conducted emissions at 230 V AC-line and 3 W load – greater than 16 dB margin

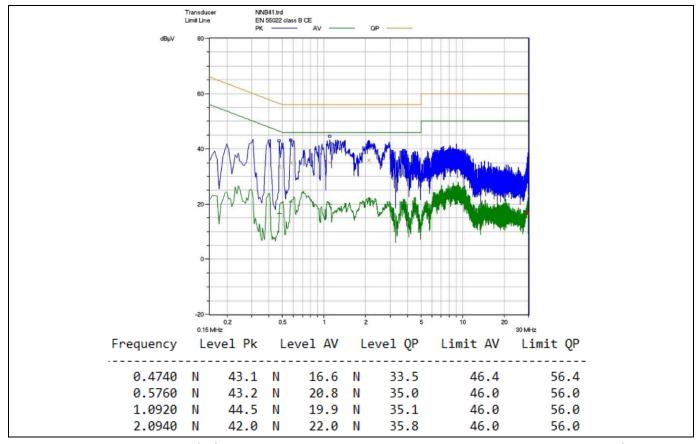


Figure 35 Conducted emissions at 230 V AC-neutral and 3 W load – greater than 20 dB margin

Waveforms

11.18 ESD immunity (EN 61000-4-2)

This system was subjected to a ±8 kV ESD test according to EN 61000-4-2 for both contact and air discharge. A test failure was defined as non-recoverable.

• Air discharge: pass ±8 kV; contact discharge: pass ± 8 kV.

Table 7 System ESD test result

D	ESD		Number		
Description	test	Level	+V _{out}	-V _{out}	Test result
	Contact	+8 kV	10	10	Pass
115 V AC, 3 W	Contact	-8 kV	10	10	Pass
$(5 \text{ V}, 8.3 \Omega)$	Air	+8 kV	10	10	Pass
	Air	-8 kV	10	10	Pass
	Contact	+8 kV	10	10	Pass
230 V AC, 3 W	Contact	-8 kV	10	10	Pass
$(5 \text{ V}, 8.3 \Omega)$	Air	+8 kV	10	10	Pass
	AII	-8 kV	10	10	Pass

11.19 Surge immunity (EN 61000-4-5)

This system was subjected to a surge immunity test (±2 kV DM and ±4 kV CM) according to EN 61000-4-5. A test failure was defined as a non-recoverable.

• DM: pass ±2 kV¹; CM: pass ±4 kV¹.

Table 8 System surge immunity test result

Description	Toot		Level		umbe	Took vocult		
Description	Test	L			90°	180°	270°	Test result
	DM	+2 kV	$L \rightarrow N$	3	3	3	3	Pass ¹
	DIVI	-2 kV	$L \rightarrow N$	3	3	3	3	Pass ¹
115 V AC, 3 W		+4 kV	L → G	3	3	3	3	Pass ¹
$(5 \text{ V}, 8.3 \Omega)$	CM	+4 kV	$N \rightarrow G$	3	3	3	3	Pass ¹
	CIVI	-4 kV	$L \rightarrow G$	3	3	3	3	Pass ¹
		-4 kV	$N \rightarrow G$	3	3	3	3	Pass ¹
	DM	+2 kV	$L \rightarrow N$	3	3	3	3	Pass ¹
		-2 kV	$L \rightarrow N$	3	3	3	3	Pass ¹
230 V AC, 3 W		+4 kV	L → G	3	3	3	3	Pass ¹
$(5 \text{ V}, 8.3 \Omega)$	CM	+4 kV	$N \rightarrow G$	3	3	3	3	Pass ¹
	CM	-4 kV	L→G	3	3	3	3	Pass ¹
		-4 kV	$N \rightarrow G$	3	3	3	3	Pass ¹

 $^{^{\}rm 1}$ 1. Change F1 to 36911600000 (300 V, 1.6 A time-lag fuse).

^{2.} Change VAR to B72207S2301K101 (300 V, 0.25 W varistor).

^{3.} Disable line OVP by clamping V_{IN} pin voltage less than 2.75 V (add 2.4 V Zener diode at V_{IN} pin to GND pin).

Appendix A: Transformer design and spreadsheet [3]

Appendix A: Transformer design and spreadsheet [3] **12**

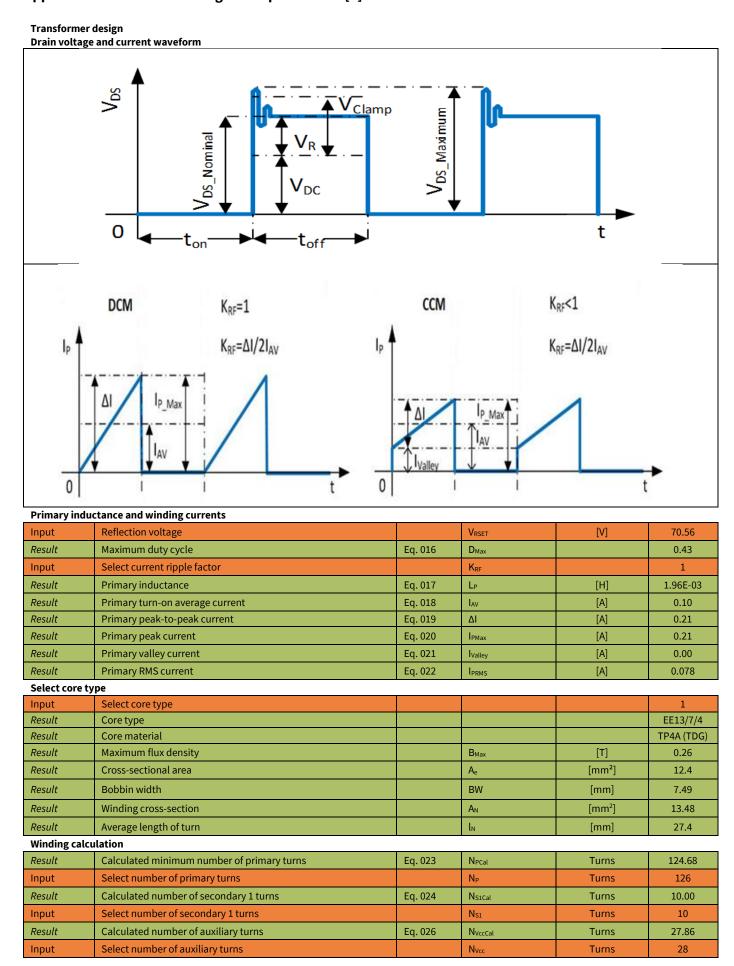
Design procedure for FF flyback converter using CoolSET™ 5xRxxxxAG/BZS (version 1.0)

Project	ICE5AR4770AG
Application	85 ~ 264 V AC and 3 W (5 V, 0.6 A) single-output, isolated flyback
CoolSET™	ICE5AR4770AG
Date	18 June 2018
Revision	0.2

Enter design variables in orange-colored cells

Read design results in green-colored cells

Equation numbers are according to the Design Guide.


Select component values based on standard values available.

Voltage/current rating does not include design margin, voltage spikes and transient currents.

In "Out	out regulation", only fill in either isolated or non-isolated, whicheve	er is applicable.			
	Description	Eq. #	Parameter	Unit	Value
	out, CoolSET™ specs				
Line input	Luci con		1,,,,,	5.0	
Input	Minimum AC input voltage		V AC _{Min}	[V]	85
Input	Maximum AC input voltage		V AC _{Max}	[V]	264
Input	Line frequency		f _{AC}	[Hz]	60
Input	Bus capacitor DC ripple voltage		V DC _{Ripple}	[V]	27
Output 1 s					
Input	Output voltage 1		V _{Out1}	[V]	5
Input	Output current 1		I _{Out1}	[A]	0.6
Input	Forward voltage of output diode 1		V _{FOut1}	[V]	0.6
Input	Output ripple voltage 1		V _{OutRipple1}	[V]	0.1
Result	Output power 1	Eq. 001	P _{Out1}	[W]	3
Auxiliary					
Input	V _{CC} voltage		V _{Vcc}	[V]	15
Input	Forward voltage of V _{CC} diode (D2)		V _{F Vcc}	[V]	0.6
Power			ı		
Input	Efficiency		η		0.8
Result	Nominal output power	Eq. 003	PoutNom	[W]	3.00
Input	Maximum output power for over-load protection		Роит_мах	[W]	3.3
Result	Maximum input power for over-load protection	Eq. 006	P _{InMax}	[W]	4.13
Input	Minimum output power		P _{OUT_Min}	[W]	0.3
Controller					
	CoolSET [™] -				ICE5AR4770AG
Input	Switching frequency		f _S	[Hz]	100000
Input	Targeted max. drain source voltage		V _{DSMax}	[V]	600
Input	Max. ambient temperature		T _{amax}	[°C]	50
Diode brid Diode brid	ge and input capacitor ge				
Input	Power factor		cosφ		0.6
Result	Maximum AC input current	Eq. 007	I _{ACRMS}	[A]	0.081
Result	Peak voltage at V AC _{Max}	Eq. 008	V DC _{MaxPk}	[V]	373.35
Input capa	citor				
Result	Peak voltage at V AC _{Min}	Eq. 009	V DC _{MinPk}	[V]	120.21
Result	Selected minimum DC input voltage	Eq. 010	V DC _{MinSet}	[V]	93.21
Result	Discharging time at each half-line cycle	Eq. 011	T _D	[ms]	6.52
Result	Required energy at discharging time of input capacitor	Eq. 012	Win	[Ws]	0.03
Result	Calculated input capacitor	Eq. 013	C _{INCal}	[μF]	9.34
Input	Select input capacitor (C1)		Cin	[μF]	9.4
Result	Calculated minimum DC input voltage	Eq. 015	V DC _{Min}	[V]	93.42

Appendix A: Transformer design and spreadsheet [3]

Eq. 027

 V_{VccCal}

15.08

[V]

Appendix A: Transformer design and spreadsheet [3]

Calculated Vcc voltage

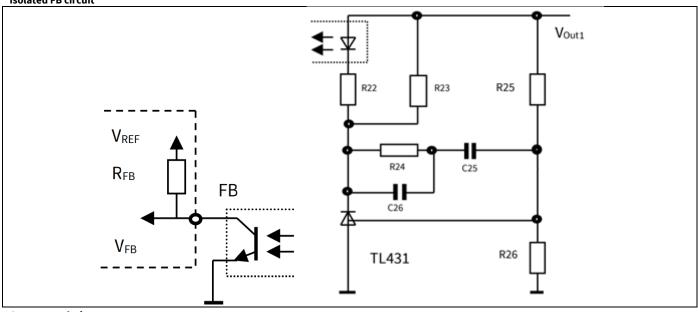
Post calculation

Post calcula	ation				
Result	Primary to secondary 1 turns ratio	Eq. 028	N _{PS1}		12.60
Result	Post calculated reflected voltage	Eq. 030	V _{RPost}	[V]	70.56
Result	Post calculated maximum duty cycle	Eq. 031	D _{MaxPost}		0.43
Result	Duty cycle prime	Eq. 032	D _{Max} '		0.57
Result	Actual flux density	Eq. 033	B _{MaxAct}	[T]	0.257
Result	Maximum DC input voltage for CCM operation	Eq. 034	V DC _{maxCCM}	[V]	93.42
Transforme	r winding design		•	•	•
Input	Margin according to safety standard		M	[mm]	0
Input	Copper space factor		fcu		0.4
Result	Effective bobbin window	Eq. 035	BW _E	[mm]	7.5
Result	Effective winding cross-section	Eq. 036	A _{Ne}	[mm²]	13.5
Input	Primary winding area factor		AF _{NP}		0.50
Input	Secondary 1 winding area factor		AF _{NS1}		0.45
Input	Auxiliary winding area factor		AF _{NVcc}		0.05
Primary wi	nding				
Result	Calculated wire copper cross-sectional area	Eq. 037	Apcal	[mm²]	0.0214
Result	Calculated maximum wire size	Eq. 038	AWG _{PCal}		34
Input	Select wire size		AWG _P		35
Input	Select number of parallel wire		nw _P		1
Result	Wire copper diameter	Eq. 039	d _P	[mm]	0.14
Result	Wire copper cross-sectional area	Eq. 040	A _P	[mm²]	0.0163
Result	Wire current density	Eq. 041	S _P	[A/mm²]	4.77
Input	Insulation thickness		INS _P	[mm]	0.01
Result	Turns per layer	Eq. 042	NL _P	Turns/layer	45
Result	Number of layers	Eq. 043	Ln _P	Layers	3
Secondary	1 winding	•		•	•
Result	Calculated wire copper cross-sectional area	Eq. 044	A _{NS1Cal}	[mm²]	0.2426
Result	Calculated maximum wire size	Eq. 045	AWG _{S1Cal}		23
Input	Select wire size		AWG _{S1}		25
Input	Select number of parallel wire		nw _{S1}		1
Result	Wire copper diameter	Eq. 046	d _{S1}	[mm]	0.4572
Result	Wire copper cross-sectional area	Eq. 047	A _{S1}	[mm²]	0.1642
Result	Peak current	Eq. 048	I _{S1Max}	[A]	2.5859
Result	RMS current	Eq. 049	I _{S1RMS}	[A]	1.1269
Result	Wire current density	Eq. 050	S _{S1}	[A/mm ²]	6.86
Input	Insulation thickness		INS _{S1}	[mm]	0.01
Result	Turns per layer	Eq. 051	NL _{S1}	Turns/layer	10
Result	Number of layers	Eq. 052	Ln _{S1}	Layers	1
RCD clampe	er and CS resistor				
RCD clampe					
Input	Leakage inductance percentage		L _{LK%}	[%]	0.36
Result	Leakage inductance	Eq. 062	L _{LK}	[H]	7.05E-06
Result	Clamping voltage	Eq. 063	V _{Clamp}	[V]	156.09
Result	Calculated clamping capacitor	Eq. 064	C _{ClampCal}	[nF]	0.01
Input	Select clamping capacitor value (C2)		C _{clamp}	[nF]	1
Result	Calculated clamping resistor	Eq. 065	R _{clampCal}	[kΩ]	3123.9
Input	Select clamping resistor value (R4)		R _{clamp}	[kΩ]	3000
CS resistor					
Input	CS threshold value from datasheet		V _{CS_N}	[V]	0.8
Result	Calculated CS resistor (R8A, R8B)	Eq. 066	R _{sense}	[Ω]	3.90

Ouput rectifier

Secondary 1 output rectifier

Appendix A: Transformer design and spreadsheet [3]


• •					
Result	Diode reverse voltage	Eq. 067	V _{RDiode1}	[V]	34.63
Result	Diode RMS current		I _{S 1RMS}	[A]	1.13
Input	Max. voltage undershoot at output capacitor		ΔV _{Out1}	[V]	0.15
Input	Number of clock periods		n _{cp1}		20
Result	Output capacitor ripple current	Eq. 068	I _{Ripple1}	[A]	0.95
Result	Calculated minimum output capacitor	Eq. 069	C _{Out1Cal}	[μF]	800
Input	Select output capacitor value (C152)		C _{Out1}	[μF]	820
Input	ESR (Z _{max}) value from datasheet at 100 kHz		R _{ESR1}	[Ω]	0.008
Input	Number of parallel capacitors		nCcout1		1
Result	Zero frequency of output capacitor	Eq. 070	f _{ZCOut1}	[kHz]	24.26
Result	First-stage ripple voltage	Eq. 071	V _{Ripple1}	[V]	0.020687
Input	Select LC filter inductor value (L151)	Eq. 011	L _{out1}	[μH]	2.2
Result	Calculated LC filter capacitor	Eq. 072	C _{LCCal1}	[μF]	19.6
Input	Select LC filter capacitor value (C153)	Lq. 012	C _{LC1}	[μF]	20
Result		Eq. 073	f _{LC1}		23.99
Result	LC filter frequency			[kHz] [mV]	1.13
V _{CC} diode and	Second-stage ripple voltage	Eq. 074	V _{2ndRipple1}	[IIIV]	1.13
Result	Auxiliary diode reverse voltage (D2)	Eq. 083	VRDiodeVCC	[V]	98.05
Input	Soft-start time from datasheet	Lq. 003	t _{ss}	[ms]	12
	lycc,charges from datasheet			[mA]	
Input	V _{CC} on-threshold		IVCC_Charge3		3 16
Input	V _{CC} off-threshold		V _{VCC_ON}	[V] [V]	
Input		F= 004	V _{VCC_OFF}		10
Result	Calculated V _{CC} capacitor	Eq. 084	Cvcccal	[μF]	6.00
Input	Select V _{CC} capacitor (C3)		Cvcc	[μF]	4.7
Input	V _{CC} short threshold from datasheet		V _{VCC_SCP}	[V]	1.1
Input	l _{VCC_Charge1} from datasheet		lvcc_charge1	[mA]	0.2
Result	Start-up time	Eq. 085	t _{StartUp}	[ms]	49.193
Calculation o Input diode b					
Input	Diode bridge forward voltage		V_{FBR}	[V]	1
Result	Diode bridge power loss	Eg. 086	P _{DIN}	[W]	0.16
Transformer		Eq. 000	1 DIN	[**1	0.10
Result	Primary winding copper resistance	Eq. 087	R _{PCu}	[mΩ]	3642.43
Result	Secondary 1 winding copper resistance	Eq. 088	R _{S1Cu}	[mΩ]	28.71
Result	Primary winding copper loss	Eq. 090	P _{PCu}	[mW]	22.01
Result	Secondary 1 winding copper loss	Eq. 091	P _{S1Cu}	[mW]	36.46
Result	Total transformer copper loss	Eq. 093	P _{Cu}	[W]	0.0585
Output rectif		_q. 000	· cu	[]	0.0000
Result	Secondary 1 diode loss	Eq. 094	P _{Diode1}	[W]	0.68
RCD clamper	•				
Result	RCD clamper loss	Eq. 096	P _{Clamper}	[W]	0.02
CS resistor	·				
Result	CS resistor loss	Eq. 097	P _{cs}	[W]	0.02
MOSFET					
Input	R _{DSON} from datasheet		R _{DSON} at T _J =	[Ω]	8.73
			125°C		
Input	Co(er) from datasheet		C _{o(er)}	[pF]	3.4
Input	External drain-to-source capacitance		C _{DS}	[pF]	0
Result	Switch-on loss at minimum AC input voltage	Eq. 098	Psonminac	[W]	0.0046
Result	Conduction loss at minimum AC input voltage	Eq. 099	PcondMinAC	[W]	0.0527
Result	Total MOSFET loss at minimum AC input voltage	Eq. 100	РмоѕмілАС	[W]	0.0573
Result	Switch-on loss at maximum AC input voltage	Eq. 101	PsonmaxAC	[W]	0.0335
Result	Conduction loss at maximum AC input voltage	Eq. 102	P _{condMaxAC}	[W]	0.0132
Result	Total MOSFET loss at maximum AC input voltage	Eq. 103	P _{MOSMaxAC}	[W]	0.0467
Result	Total MOSFET loss (from minimum or maximum AC)		P _{MOS}	[W]	0.0573

Appendix A: Transformer design and spreadsheet [3]

Controller					
Input	Controller current consumption		Ivcc_Normal	[mA]	0.9
Result	Controller loss	Eq. 104	P _{Ctrl}	[W]	0.0136
Efficiency	after losses		•	•	•
Result	Total power loss	Eq. 105	P _{Losses}	[W]	1.01
Result	Post calculated efficiency	Eq. 106	η _{Post}	[%]	76.52
CoolSET™/	MOSFET temperature				
Input	Enter thermal resistance junction-ambient (include copper pour)		R _{thJA_As}	[°K/W]	104.0
Result	Temperature rise	Eq. 107	ΔΤ	[°K]	6.0
Result	Junction temperature at T _{amax}	Eq. 108	T _{jmax}	[°C]	56.0
Line OVP					
Input	Select AC input LOVP		V _{OVP_AC}	[V AC]	275
Input	High side DC input voltage divider resistor (R3A, R3B, R3C)		R _{I1}	[ΜΩ]	16
Input	Controller LOVP threshold		V _{VIN_LOVP}	[V]	2.85
Result	Low side DC input voltage divider resistor	Eq 109	R _{I2Cal}	[kΩ]	121.07
Input	Select low-side DC input voltage divider resistor (R7)		R ₁₂	[kΩ]	121
Result	Post calculated LOVP	Eq 110	VovP_ACPost	[V _{AC}]	275.16

Isolated FB circuit

Output re	gulation				
Input	TL431 reference voltage		V _{REF_TL}	[V]	2.5
Input	Current for voltage divider resistor R26		I _{R26}	[mA]	0.25
Result	Calculated voltage divider resistor	Eq. 111	R26 _{Cal}	[kΩ]	10
Input	Select voltage divider resistor value		R26	[kΩ]	10
Result	Calculated voltage divider resistor	Eq. 112	R25 _{Cal}	[kΩ]	10.00
Input	Select voltage divider resistor value		R25	[kΩ]	10.0
Optocoup	ler and TL431 bias			_	
Input	Current Transfer Ratio (CTR)		Gc	[%]	100
Input	Optocoupler diode forward voltage		V _{FOpto}	[V]	1.25
Input	Maximum current for optocoupler diode		I _{Fmax}	[mA]	10
Input	Minimum current for TL431		I _{KAmin}	[mA]	1
Result	Calculated minimum optocoupler bias resistance	Eq. 114	R22 _{Cal}	[kΩ]	0.1250
Input	Select optocoupler bias resistor		R22	[kΩ]	0.12
Input	FB pull-up reference voltage V _{REF} from datasheet		V _{REF}	[V]	3.3
Input	V _{FB_OLP} from datasheet		V _{FB_OLP}	[V]	2.75
Input	R _{FB} from datasheet		R _{FB}	[kΩ]	15
Result	Calculated maximum TL431 bias resistance	Eq. 115	R23 _{Cal}	[kΩ]	1.25
Input	Selected TL431 bias resistor		R23	[kΩ]	1.2

Appendix A: Transformer design and spreadsheet [3]

Regulation loop

Result	FB transfer characteristic	Eq. 116	K _{FB}		125.00
Result	Gain of FB transfer characteristic	Eq. 117	G _{FB}	[db]	41.94
Result	Voltage divider transfer characteristic	Eq. 118	K _{VD}		0.500000
Result	Gain of voltage divider transfer characteristic	Eq. 119	G _{VD}	[db]	-6.02
Result	Resistance at maximum load pole	Eq. 120	R _{LH}	[Ω]	7.58
Result	Resistance at minimum load pole	Eq. 121	R _{LL}	[Ω]	83.33
Result	Poles of power stage at maximum load pole	Eq. 122	foн	[Hz]	51.24
Result	Poles of power stage at minimum load pole	Eq. 123	foL	[Hz]	4.66
Result	Zero frequency of the compensation network	Eq. 124	fом	[Hz]	15.45
Input	Zero dB crossover frequency		fg	[kHz]	3
Input	PWM-OP gain from datasheet		Av		2.03
Result	Transient impedance	Eq. 117	Z _{PWM}	[V/A]	9.9
Result	Power stage at crossover frequency	Eq. 118	F _{PWR} (fg)		0.042
Result	Gain of power stage at crossover frequency	Eq. 119	G _{PWR} (fg)	[db]	-27.52
Result	Gain of the regulation loop at fg	Eq. 120	Gs(ω)	[db]	8.396
Result	Separated components of the regulator	Eq. 121	Gr(ω)	[db]	-8.396
Result	Calculated resistance value of compensation network	Eq. 122	R24 _{Cal}	[kΩ]	1.90
Input	Select resistor value of compensation network		R24	[kΩ]	10
Result	Calculated capacitance value of compensation network	Eq. 123	C26 _{Cal}	[nF]	5.305
Input	Select capacitor value of compensation network		C26	[nF]	0.068
Result	Calculated capacitance value of compensation network	Eq. 124	C25 _{Cal}	[nF]	1030.10
Input	Select capacitor value of compensation network		C25	[nF]	100

Output regulation (non-isolated)

Final design

Electrical

Minimum AC voltage	[V]	85
Maximum AC voltage	[V]	264
Maximum input current	[A]	0.05
Minimum DC voltage	[V]	93
Maximum DC voltage	[V]	373
Maximum output power	[W]	3.3
Output voltage 1	[V]	5.0
Output ripple voltage 1	[mV]	1.1
Transformer peak current	[A]	0.21
Maximum duty cycle		0.43
Reflected voltage	[V]	71
Copper losses	[W]	0.06
MOSFET losses	[W]	0.06
Sum losses	[W]	1.01
Efficiency	[%]	76.52

Transformer

=1		
Core type		EE13/7/4
Core material		TP4A(TDG)
Effective core area	[mm²]	12.4
Maximum flux density	[mT]	257
Inductance	[μH]	1959
Margin	[mm]	0
Primary turns	Turns	126
Primary copper wire size	AWG	35
Number of primary copper wires in parallel		1
Primary layers	Layer	3
Secondary 1 turns (N _{S1})	Turns	10
Secondary 1 copper wire size	AWG	25
Number of secondary 1 copper wires in parallel		1
Secondary 1 layers	Layer	1
Auxiliary turns	Turns	28
Leakage inductance	[μH]	7.1

Appendix A: Transformer design and spreadsheet [3]

Components

Input capacitor (C1)		[μF]	9.4
Secondary 1 output capacitor (C152)		[μF]	820.0
Secondary 1 output capacitor in parallel			1.0
Secondary 1 LC filter inductor (L151)		[μH]	2.2
Secondary 1 LC filter capacitor (C153)		[μF]	10.0
V _{CC} capacitor (C3)		[μF]	4.7
Sense resistor (R8A, R8B)		[Ω]	3.90
Clamping resistor (R4)		[kΩ]	3000.0
Clamping capacitor (C2)		[nF]	1
High-side DC input voltage divider resistor (R3A, R3B, R3C)		[MΩ]	16
Low-side DC input voltage divider resistor (R7)		[kΩ]	121

Regulation components (isolated using TL431 and optocoupler)

Voltage divider	R26	[kΩ]	10.0
Voltage divider (V _{OUT1} sense)	R25	[kΩ]	10.0
Optocoupler bias resistor	R22	[kΩ]	0.12
TL431 bias resistor	R23	[kΩ]	1.2
Compensation network resistor	R24	[kΩ]	10.0
Compensation network capacitor	C26	[nF]	0.07
Compensation network capacitor	C25	[nF]	100.0

Appendix B: WE transformer specification

13 Appendix B: WE transformer specification

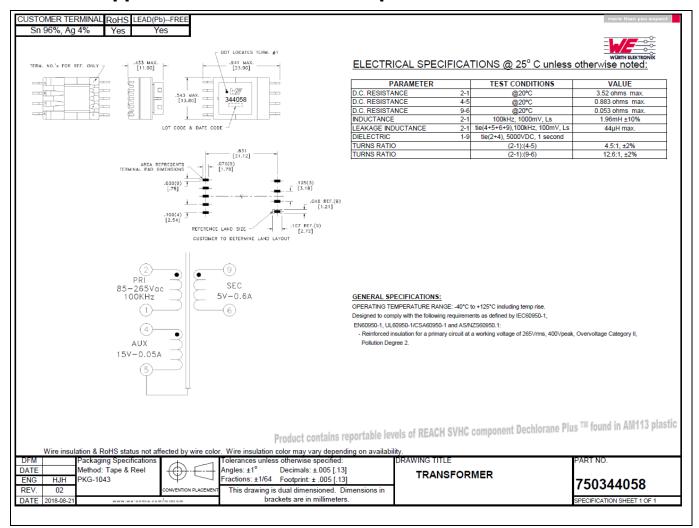


Figure 36 WE transformer specification

References

14 References

- [1] ICE5AR4770AG datasheet, Infineon Technologies AG
- [2] 5th-Generation Fixed-Frequency Design Guide
- CalculationTool ICE5xSAG ICE5xRxxxxAG [3]
- [4] AN-REF-3W-IOT-COOLSET[™]

References

Revision history

Document version	Date of release	Description of changes
V1.0	28 August 2018	First release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-08-28
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN_1807_PL83_1808_054829

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.