

44 W 12 V SMPS demo board with ICE5AR0680AG

DEMO_5AR0680AG_44W1

About this document

Scope and purpose

This document is an engineering report that describes a universal-input 44 W 12 V off-line flyback converter using the latest fifth-generation Infineon Fixed Frequency (FF) CoolSET[™] ICE5AR0680AG, which offers highefficiency, low-standby power with selectable entry and exit standby power options, wide VCC operating range with fast start-up, robust line protection with input Over Voltage Protection (OVP), and various modes of protection for a highly reliable system. This demonstrator board is designed for users who wish to evaluate the performance of ICE5AR0680AG in terms of optimized efficiency, thermal performance and EMI.

Intended audience

This document is intended for power-supply design/application engineers, students, etc. who wish to design low-cost, highly reliable systems of off-line SMPS, such as auxiliary power supplies for white goods, PCs, servers and TVs, or enclosed adapters for Blu-ray players, set-top boxes, games consoles, etc.

Table of contents

Abou	t this document	1
Table	of contents	1
1	Abstract	3
2	Demo board	4
3	Specifications of the demo board	5
4	Circuit description	6
4.1	Line input	6
4.2	Start-up	6
4.3	Integrated CoolMOS™ with frequency-reduction controller	6
4.4	Frequency jittering	7
4.5	RCD clamper circuit	7
4.6	Output stage	7
4.7	FB loop	7
4.8	Active Burst Mode (ABM)	8
5	Protection features	9
6	Circuit diagram	. 10
7	PCB layout	. 11
7.1	Top side	.11
7.2	Bottom side	.11
8	Bill of Materials (BOM)	. 12
9	Transformer construction	. 14
10	350 V _{AC} operating voltage	. 15
10.1	Line over voltage protection at 370 V _{AC} (Non switch Auto Restart)	.15
10.2	Drain and current sense voltage at 350 V _{AC} and maximum load	.15

Abstract

11	Test results	16
11.1	Efficiency, regulation and output ripple	16
11.2	Standby power	17
11.3	Line regulation	17
11.4	Load regulation	18
11.5	Maximum input power	18
11.6	ESD immunity (EN 61000-4-2)	18
11.7	Surge immunity (EN 61000-4-5)	
11.8	Conducted emissions (EN 55022 class B)	
11.9	Thermal measurement	21
12	Waveforms and scope plots	22
12.1	Start-up at low/high AC-line input voltage with maximum load	22
12.2	Soft-start	22
12.3	Drain and CS voltage at maximum load	23
12.4	Frequency jittering	23
12.5	Load transient response (dynamic load from 10% to 100%)	24
12.6	Output ripple voltage at maximum load	24
12.7	Output ripple voltage at ABM 1 W load	25
12.8	Entering ABM	25
12.9	During ABM	26
12.10	Leaving ABM	26
12.11	LOV protection (non-switch auto restart)	
12.12	V _{cc} OVP (odd-skip auto restart)	
12.13	V _{cc} UVP (auto restart)	
12.14	Over-load protection (odd-skip auto restart)	28
12.15	V _{cc} short-to-GND protection	29
13	References	30
Revis	on history	31

Abstract

1 Abstract

This document is an engineering report for a 44 W 12 V demo board designed in an FF flyback converter topology using the fifth-generation FF CoolSET[™] ICE5AR0680AG. The demo board is operated in Continuous Conduction Mode (CCM) and is running at 100 kHz fixed switching frequency to optimize low-line full-load efficiency. The frequency reduction with soft gate driving and frequency jittering offers lower EMI and better efficiency between light load and 50% load. The selectable Active Burst Mode (ABM) power enables ultra-low power consumption. In addition, numerous adjustable protection functions have been implemented in ICE5AR0680AG to protect the system and customize the IC for the chosen application. In case of failure modes such as Line Over Voltage (LOV), VCC OV/UV, open control-loop or over-load, over-temperature, VCC short-to-GND and Current Sense (CS) short-to-GND, the device enters protection mode. By means of the cycle-by-cycle Peak Current Limitation (PCL), the dimensions of the transformer and the current rating of the secondary diode can both be optimized. Thus, a cost-effective solution can easily be achieved. The target applications of ICE5AR0680AG are either auxiliary power supplies for white goods, PCs, servers and TVs, or enclosed adapters for Blu-ray players, set-top boxes, games consoles, etc.

Demo board

2 Demo board

This document contains the list of features, the power-supply specifications, schematics, Bill of Materials (BOM) and the transformer construction documentation. Typical operating characteristics such as performance curve and scope waveforms are shown at the end of the report.

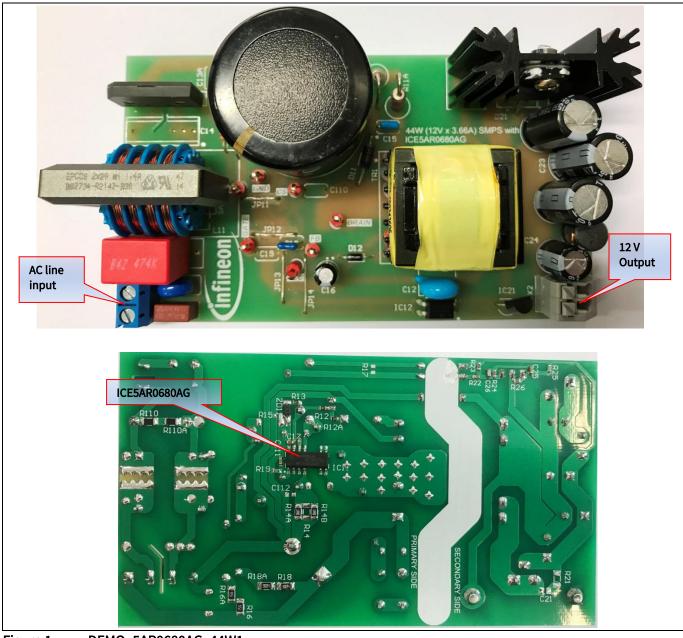


Figure 1 DEMO_5AR0680AG_44W1

3

Specifications of the demo board

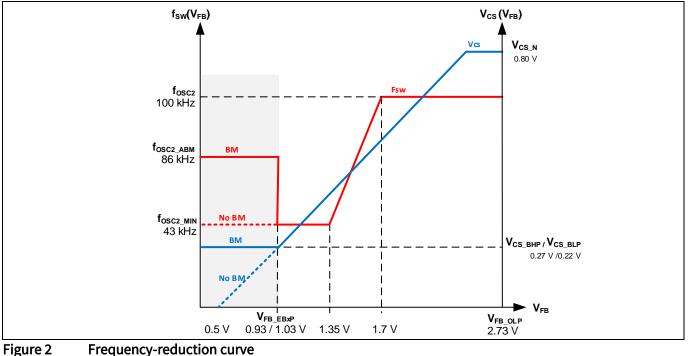
Table 1Specifications of DEMO_5AR0680AG_44W1

Input voltage and frequency	85 V AC (60 Hz) ~ 300 V AC (50 Hz)
Output voltage, current and power	12 V x 3.66 A = 44 W
Dynamic load response (12 V load change from 10% to 100%, slew rate at 0.4 A/µs, 100 Hz)	±3% of nominal output voltage
Output ripple voltage (full load, 85 V AC ~ 300 V AC)	$12 V_{ripple_p_p} < 100 \text{ mV}$
Active-mode four-point average efficiency (25%, 50%, 75%, 100% load)	> 87% at 115 V AC and 230 V AC
No-load power consumption	< 100 mW at 230 V AC
Conducted emissions (EN 55022 class B)	Pass with 8 dB margin for 115 V AC and 6 dB margin 230 V AC
ESD immunity (EN 61000-4-2)	Level 4 for contact discharge and level 3 for air discharge (±8 kV for both contact and air discharge)
Surge immunity (EN 61000-4-5)	Installation class 4 (±2 kV for line-to-line and ±4 kV for line-to-earth)
Form factor case size (L x W x H)	(115 x 65 x 40) mm ³

Circuit description

Circuit description 4

4.1 Line input


The AC-line input side comprises the input fuse F1 as Over Current Protection (OCP). The choke L11, X-capacitor C11 and Y-capacitor C12 act as EMI suppressors. Optional spark-gap devices SA1, SA2 and varistor VAR can absorb HV stress during a lightning surge test. A rectified DC voltage (120 ~ 424 V DC) is obtained through the bridge rectifier BR1 together with bulk capacitor C13.

4.2 Start-up

To achieve fast and safe start-up, ICE5AR0680AG is implemented with a start-up resistor and VCC short-to-GND protection. When V_{VCC} reaches the turn-on voltage threshold 16 V, the IC begins with a soft-start. The soft-start implemented in ICE5AR0680AG is a digital time-based function. The preset soft-start time is 12 ms with four steps. If not limited by other functions, the peak voltage on the CS pin will increase step by step from 0.3 V to 0.8 V. After IC turn-on, the VCC voltage is supplied by auxiliary windings of the transformer. VCC short-to-GND protection is implemented during the start-up time.

4.3 Integrated CoolMOS[™] with frequency-reduction controller

ICE5AR0680AG comprises a CoolMOS[™] and the frequency-reduction controller, which enables better efficiency between light load and 50% load. This integrated solution greatly simplifies the circuit layout and reduces the cost of PCB manufacturing. The new CoolSET[™] can be operated in either DCM or CCM with frequency-reduction mode. This demo board is designed to operate in CCM to increase efficiency under low-line full-load conditions. When the system is operating at maximum power, the controller will switch at the FF of 100 kHz. In order to achieve a better efficiency between light load and medium load, frequency reduction is implemented, and the reduction curve is shown in Figure 2. The V_{cs} is clamped by the current limitation threshold or by the PWM opamp, while the switching frequency is reduced. After the maximum frequency reduction, the minimum switching frequency is f_{OSC2 MIN} (43 KHz).

Circuit description

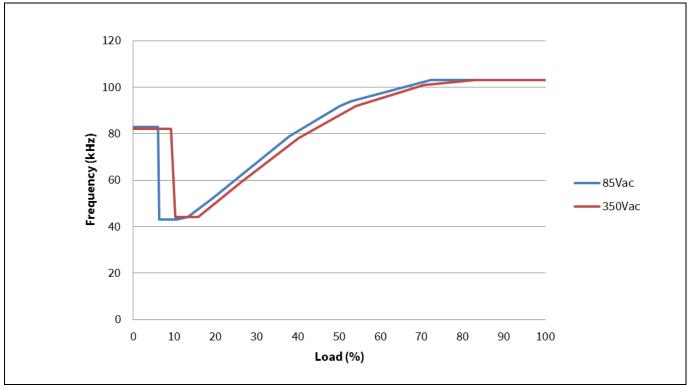


Figure 3 Frequency-reduction curve of DEMO_5AR0680AG_44W1

The measured frequency-reduction curve of DEMO_5AR0680AG_44W1 is shown in Figure 3.

4.4 Frequency jittering

The ICE5AR0680AG has a frequency-jittering feature to reduce the EMI noise. The jitter frequency is internally set at 100 kHz (±4 kHz) and the jitter period is 4 ms.

4.5 RCD clamper circuit

A clamper network (R11, R11A, C15 and D11) dissipates the energy of the leakage inductance and suppresses ringing on the SMPS transformer.

4.6 Output stage

There is a single output on the secondary side, 12 V. The power is coupled out via Schottky diode D21. The capacitors C22, C23 and C23A provide energy buffering, followed by the L-C filters L21-C24 to reduce the output ripple and prevent interference between SMPS switching frequency and line frequency. Storage capacitors C22, C23 and C23A are designed to have an internal resistance (ESR) as small as possible to minimize the output voltage ripple caused by the triangular current.

4.7 FB loop

For feedback (FB), the output is sensed by the voltage dividers R26 and R25 and compared to the IC21 (TL431) internal reference voltage. C25, C26 and R24 comprise the compensation network. The output voltage of IC21 (TL431) is converted to the current signal via optocoupler IC12 and two resistors, R22 and R23, for regulation control.

Circuit description

4.8 Active Burst Mode (ABM)

ABM entry and exit power can be selected from three options, including no ABM. This demo board is set to option 3, and details are shown in the product datasheet. Under light-load conditions, the SMPS enters ABM. At this stage, the controller is always active but the V_{vcc} must be kept above the switch-off threshold. During ABM, the efficiency increases significantly and at the same time it supports low ripple on V_{out} and fast response on load-jump.

In order to enter ABM operation, two conditions must apply:

- 1. The FB voltage must be lower than the threshold of $V_{\text{FB}_\text{EBXP}}$
- 2. A certain blanking time (t_{FB_BEB} = 36 ms) is required

Once both of these conditions are fulfilled, the ABM flip-flop is set and the controller enters ABM operation. This dual-condition determination for entering ABM operation prevents mis-triggering of ABM, so that the controller enters ABM operation only when the output power is really low during the preset blanking time.

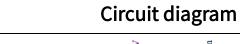
During ABM, switching frequency is reduced to 86 kHz for level 2 and 3 selections, and 43 kHz for level 1 (no ABM) to improve the efficiency during standby power measurement. The maximum CS voltage is reduced from V_{CS_N} to V_{CS_BXP} to reduce the conduction loss and the audible noise. During ABM, the FB voltage is changing like a sawtooth between $V_{FB_Bon_ISO}$ and $V_{FB_Boff_ISO}$.

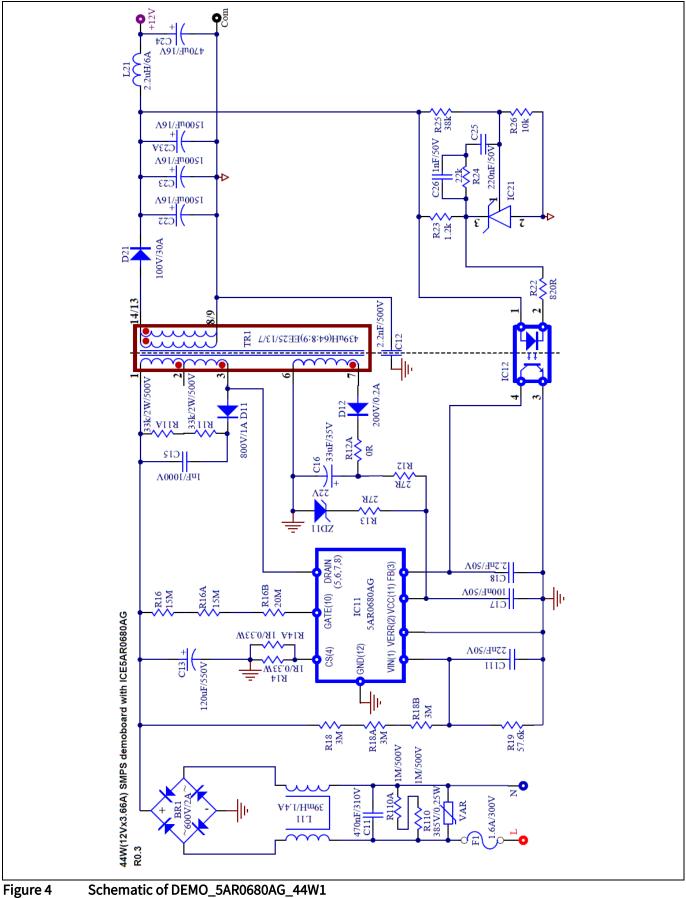
The FB voltage immediately increases if there is a high load-jump. This is observed by one comparator. As the current limit is 27/33% during ABM a certain load is needed so that FB voltage can exceed V_{FB_LB} (2.75 V). After leaving ABM, maximum current can be provided to stabilize V_{out}.

Protection features

5 Protection features

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5AR0680AG provides comprehensive protection to ensure the system is operating safely. This includes LOV, VCC OV/UV, over-load, over-temperature (controller junction), CS short-to-GND and VCC short-to-GND. When those faults are found, the system will go into protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and failure conditions are shown in the table below.


Protection function	Failure condition	Protection mode
FIOLECLIOITIUTICIIOT		Flotection mode
LOV	V _{VIN} > 2.85 V	Non-switch auto restart
VCC OV	V _{vcc} > 25.5 V	Odd-skip auto restart
VCC UV	$V_{VCC} < 10 V$	Auto restart
Over-load	V_{FB} > 2.73 V and lasts for 54 ms	Odd-skip auto restart
Over-temperature (junction temperature of controller chip only)	T _J > 140°C	Non-switch auto restart
CS short-to-GND	V_{cs} < 0.1 V, lasts for 0.4 μs and three consecutive pulses	Odd-skip auto restart
VCC short-to-GND	$V_{VCC} < 1.1 V$, $I_{VCC_Charge1} \approx -0.2 mA$	Cannot start up
(V_{VCC} = 0 V, start-up = 50 M Ω and V_{DRAIN} = 90 V)		


Table 2 Protection functions of ICE5AR0680AG

Circuit diagram

6

PCB layout

7 PCB layout

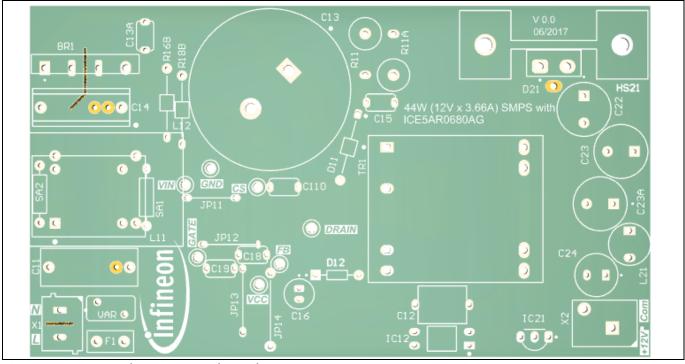


Figure 5

Top side component legend

Bottom side

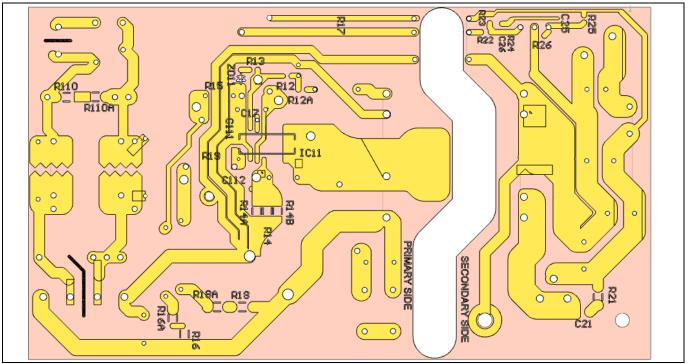


Figure 6 Bottom side copper and component legend

Bill of Materials (BOM)

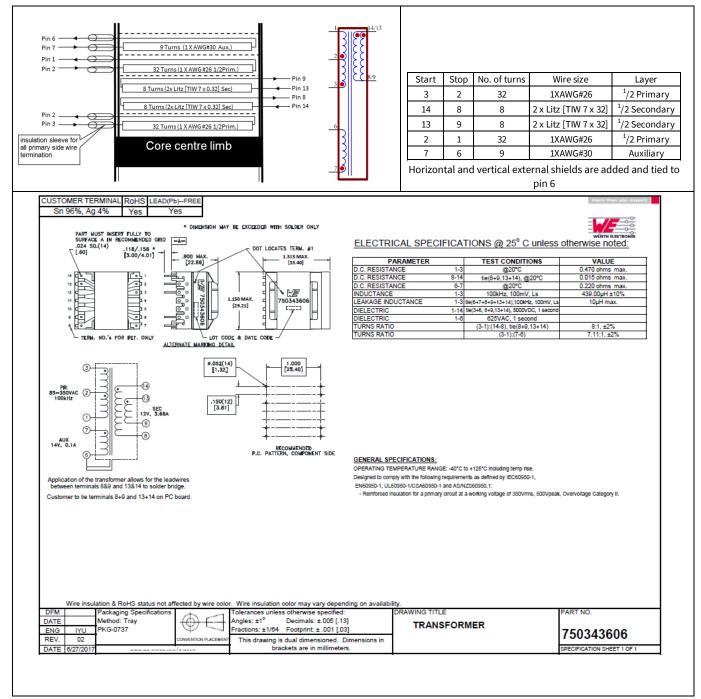
8

Bill of Materials (BOM)

No.	Designator	Description	Part number	Manufacturer	Quantity
1	BR1	600 V/2 A	D2SB60A	Shindengen	1
2	C11	470 nF/310 V	890324024005	Wurth Electronics	1
3	C12	2.2 nF/500 V	DE1E3RA222MA4BQ	Murata	1
4	C13	120 uF/550 V	ALC10A121CC550		1
5	C15	1 nF/1000 V	RDER73A102K2K1H03	Murata	1
6	C16	33 uF/35 V	50PX33MEFC5X11	Rubycon	1
7	C17	100 nF/50 V	GRM188R71H104KA93D	Murata	1
8	C18	2.2 nF/50 V	RDE5C1H222J0K1H03B	Murata	1
Э	C26	1 nF/50 V	GRM1885C1H102GA01D	Murata	1
10	C22, C23, C23A	1500 uF/16 V	16ZLH1500MEFC10X20	Rubycon	3
11	C24	470 uF/16 V	16ZLH470MEFC8X11.5	Rubycon	1
12	C25	220 nF/50 V	GRM188R71H224KAC4D	Murata	1
13	C111	22 nF/50 V	GCM188R71H223KA37D	Murata	1
14	D11	800 V/1 A	UF4006		1
L5	D12	200 V/0.2 A	1N485B		1
16	D21	100 V/30 A	VF30100SG		1
17	F1	1.6 A/300 V	36911600000		1
18	FB @ pins 1 and 3 of TR1 and D11 anode	Ferrite bead	B64290P0035X038	Epcos	3
.9	HS21	Heatsink	513002B02500G		1
20	IC11	5AR0680AG 5AR0680AG		Infineon	1
21	IC12	Optocoupler	SFH617A-3		1
22	IC21	Shunt regulator TL431BVLPG			1
23	JP11, JP12, JP13, JP14	Jumper			4
24	L11	39 mH/1.4 A	B82734R2142B030	Epcos	1
25	L21	2.2 uH/6 A	744772022	Wurth Electronics	1
26	R11, R11A	33 k/2 W/500 V	PR02000203302JR500		2
27	R12, R13	27 R	0603 RESISTOR		2
28	R12A	0 R	0603 RESISTOR		1
29	R14A, R14B	1 R/0.33 W	ERJ8BQF1R0V		2
30	R16, R16A	15 M	1206 RESISTOR		2
31	R16B	20 M,0.125 W (axial leaded)	CF18JT20M0		1
32	R18, R18A	3 M	1206 RESISTOR		2
33	R18B	3 M, 0.125 W (axial leaded)	CF18JT3M00		1
34	R19	57.6k	ERA-3AEB57R6V		1
35	R22	820 R	0603 RESISTOR		1
36	R23	1.2 k	0603 RESISTOR		1
37	R24	22 k	0603 RESISTOR		1
88	R25	38 k	0603 RESISTOR		1
39	R26	10 k	0603 RESISTOR		1
10	R110, R110A	1 M/500 V	1206 RESISTOR		2
11	TR1	439 uH (64:8:9) EE25/13/7	750343606(R0.2)	Wurth Electronics	1
42	Test point for VIN, VERR, FB, VCC, CS, DRAIN, GATE and GND	Test point	5010		7

43	VAR	385 V/0.25 W	B72207S0381K101	Epcos	1
44	X1	Connector	691102710002	Wurth Electronics	1
45	X2	Connector	691412120002B	Wurth Electronics	1
46	ZD11	22 V (SOD123)	MMSZ5251B-7-F	Wurth Electronics	1

Transformer construction


Core and materials: EE25/13/7 (EF25), TP4A (TDG)

9

Bobbin: 070-5644 (14-pin, THT, horizontal version)

Primary inductance: Lp = 439 μ H (±10%), measured between pin 1 and pin 3

Manufacturer and part number: Wurth Electronics Midcom (750343606 R02)

350 VAC operating voltage

10 350 V_{AC} operating voltage

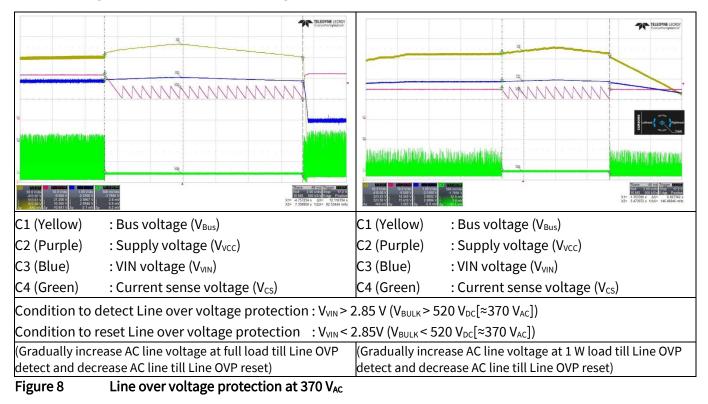
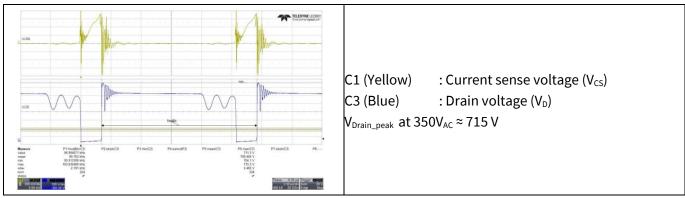

If user wants to operate up to 350 V_{AC} and line OVP at 370 V_{AC} , the following changes are needed in the demo board.

Table 4	Changes for 350 Vac line voltage
---------	----------------------------------


No.	Designator	Description	Part Number	Manufacturer	Quantity
1	C11	330nF/350V _{AC}	C4BR2334K6WC000101		1
2	F1	1.6A/350 V _{AC}	0697W1600-05		1
3	L11	39mH/1.4A/350V _{AC}			1
4	R19	50.5k	PAT0603E50R5BST5		1

10.1 Line over voltage protection at 370 V_{AC} (Non switch Auto Restart)

Below oscillogram shows the line over voltage protection at 370 V_{AC} .

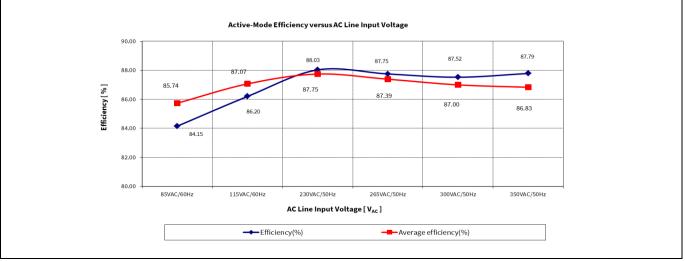
10.2 Drain and current sense voltage at 350 V_{AC} and maximum load

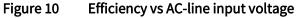
Drain and current sense voltage at 350 V_{AC} and maximum load

Test results

11 Test results

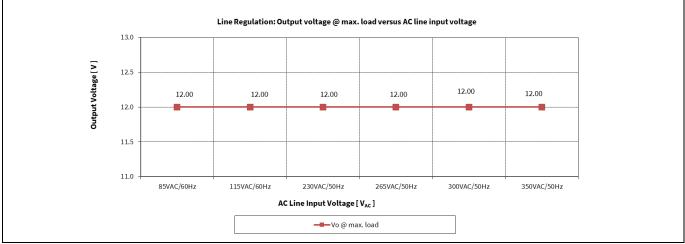
11.1 Efficiency, regulation and output ripple


Table 5 Efficiency, regulation and e	output ripple
--------------------------------------	---------------


Input (V AC/Hz)	P _{in} (W)	V ₁₂ (V DC)	I ₁₂ (A)	V _{12RPP} (mV)	P _{out} (W)	Efficiency η (%)	Average η (%)	OLP P _{in} (W)	OLP I _{out12V} (A)
	0.03959	12.04	0.000	58					
	12.64	12.03	0.913	14	10.98	86.89			
85 V AC/60 Hz	25.51	12.02	1.833	17	22.03	86.37	05.74	60.80	4.20
	38.51	12.01	2.743	24	32.94	85.55	85.74		
	52.19	12.00	3.660	33	43.92	84.15			
	0.04570	12.04	0.000	58					
	12.56	12.03	0.913	14	10.98	87.45			
115 V AC/60 Hz	25.18	12.02	1.833	16	22.03	87.50	87.07	65.20	4.60
	37.81	12.01	2.743	20	32.94	87.13	81.01		
	50.95	12.00	3.660	22	43.92	86.20			
	0.08455	12.04	0.000	61					
	12.63	12.03	0.913	14	10.98	86.96			5.10
230 V AC/50 Hz	25.05	12.02	1.833	16	22.03	87.95	87.75	71.50	
	37.42	12.01	2.743	20	32.94	88.04			
	49.89	12.00	3.660	22	43.92	88.03			
	0.10087	12.04	0.000	63				72.00	
	12.69	12.03	0.913	13	10.98	86.55			
265 V AC/50 Hz	25.18	12.02	1.833	16	22.03	87.50	87.39		5.26
	37.54	12.01	2.743	20	32.94	87.76	61.59		
	50.05	12.00	3.660	22	43.92	87.75			
	0.12159	12.04	0.000	63					
	12.80	12.03	0.913	14	10.98	85.81			
300 V AC/50 Hz	25.34	12.02	1.833	15	22.03	86.95	87.00	72.70	5.31
	37.56	12.01	2.743	19	32.94	87.71	87.00		
	50.18	12.00	3.660	22	43.92	87.52			
	0.15446	12.04	0.000	63					
	12.87	12.03	0.913	13	10.98	85.34			
350 V AC/50 Hz ¹	25.39	12.02	1.833	14	22.03	86.78	86.83	73.20	5.34
Ī	37.68	12.01	2.743	18	32.94	87.43	60.03		
Γ	50.03	12.00	3.660	20	43.92	87.79			

¹ Follow section 10 and measured with YOKOGAWA POWER METER (WT310HC), CHROMA AC SOURCE MODEL 61504 AND CHROMA AC TRANSFORM UNIT A615003

Test results




11.2 Standby power

Figure 11 Standby power at no-load vs AC-line input voltage (measured by Yokogawa WT210 power meter – integration mode)

11.3 Line regulation

Test results

11.4 Load regulation

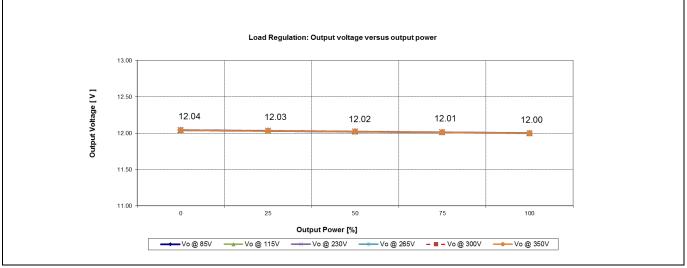


Figure 13 Load regulation V_{out} vs output power

11.5 Maximum input power

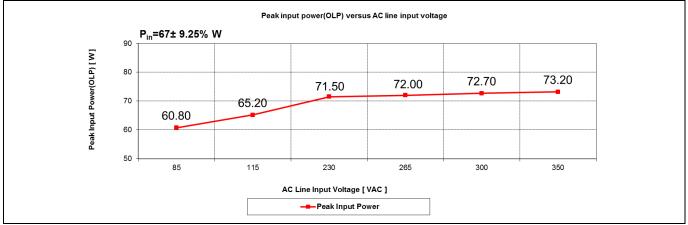


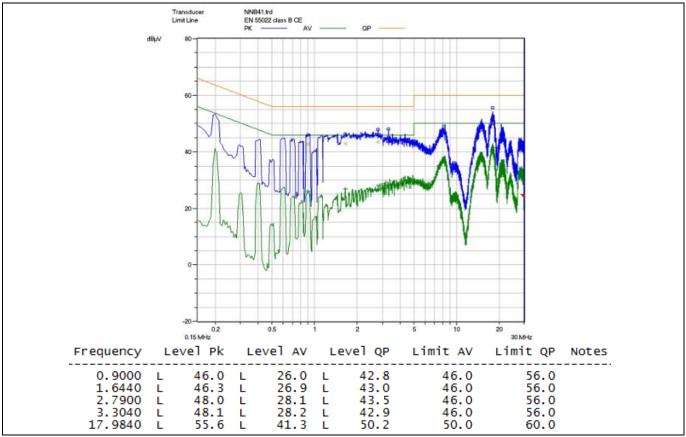
Figure 14 Maximum input power (before over-load protection) vs AC-line input voltage

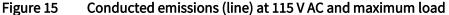
11.6 ESD immunity (EN 61000-4-2)

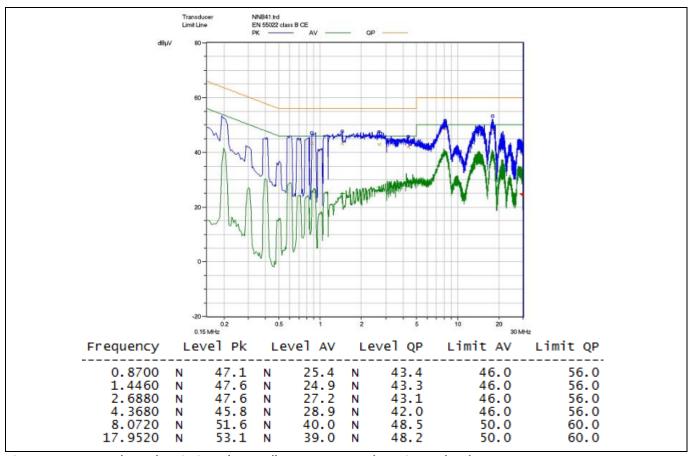
Pass EN 61000-4-2 level 4 for contact discharge and level 3 for air discharge (±8 kV for both contact and air discharge).

11.7 Surge immunity (EN 61000-4-5)

Pass EN 61000-4-5 installation class 4 (±2 kV for line-to-line and ±4 kV for line-to-earth).


11.8 Conducted emissions (EN 55022 class B)


The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN 55022 (CISPR 22) class B. The demo board was set up at maximum load (44 W) with input voltage of 115 V AC and 230 V AC.


Pass conducted emissions EN 55022 (CISPR 22) class B with 8 dB margin for low-line (115 V AC) and 6 dB margin for high-line (230 V AC).



Test results

Test results

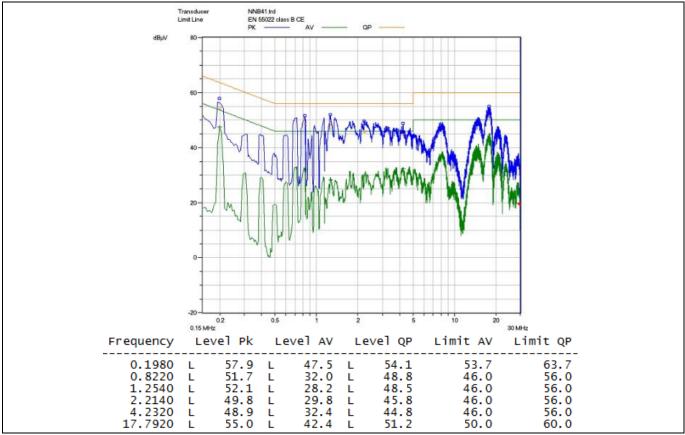


Figure 17 Conducted emissions (line) at 230 V AC and maximum load

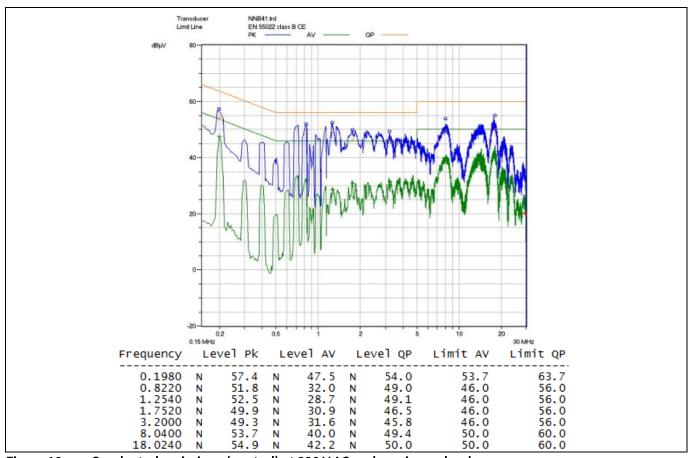
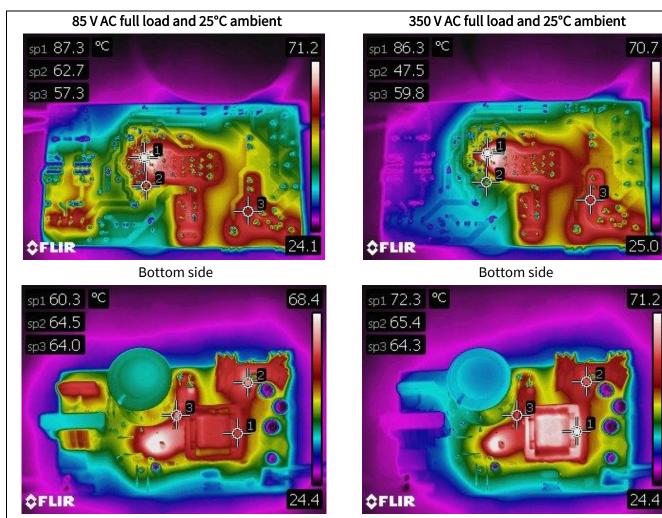


Figure 18 Conducted emissions (neutral) at 230 V AC and maximum load



Test results

11.9 Thermal measurement

The thermal test of the open-frame demo board was done using an infrared thermography camera (FLIR-T62101) at an ambient temperature of 25°C. The measurements were taken after one hour running at full load.

Table 6	Hottest temperature of demo	o board		
No.	Major component	85 V AC (°C)	350 V AC (°C) ¹	
1	IC11 (ICE5AR0680AG)	87.3	86.3	
2	R14 (CS resistor)	62.7	47.5	
3	TR1 (transformer)	60.3	72.3	
4	BR1 (bridge diode)	60.4	35.2	
5	D11(clamper diode)	64.0	64.3	
6	L11 (choke)	54.2	30.8	
7	D21 (secondary diode)	64.5	65.4	
8	Ambient	25.0	25.0	

Top side

Top side

Figure 19 Infrared thermal image of DEMO_5AR0680AG_44W1

¹ Follow section 10

Waveforms and scope plots

12 Waveforms and scope plots

All waveforms and scope plots were recorded with a TELEDYNELECROY 606Zi oscilloscope.

12.1 Start-up at low/high AC-line input voltage with maximum load

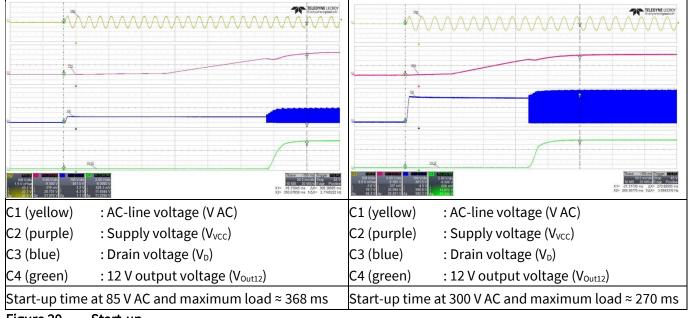


Figure 20 Start-up

12.2 Soft-start

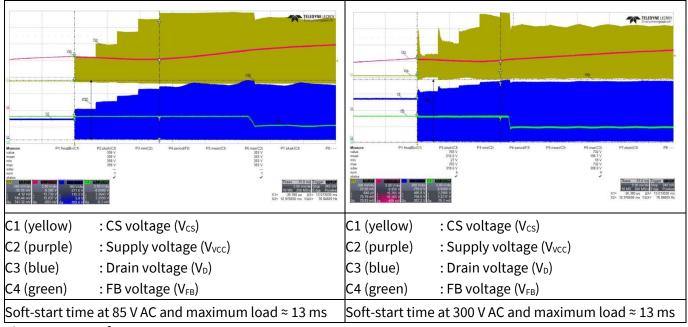
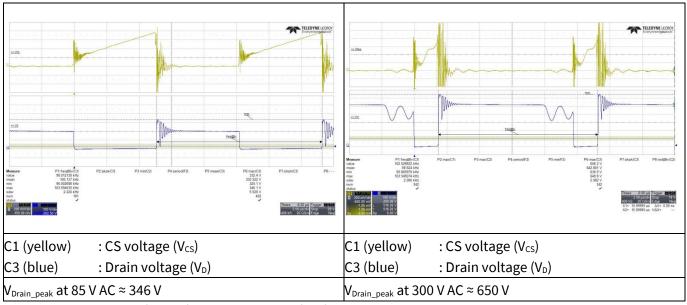
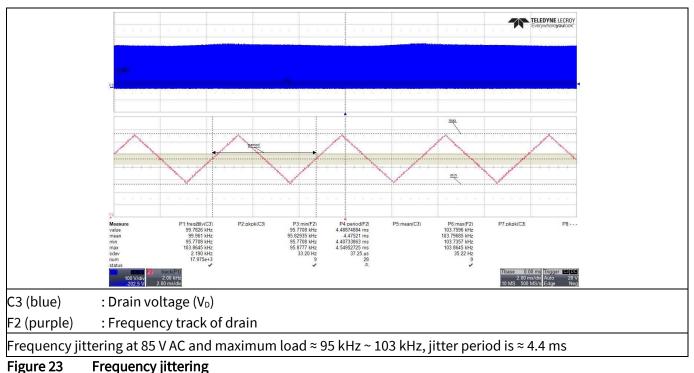
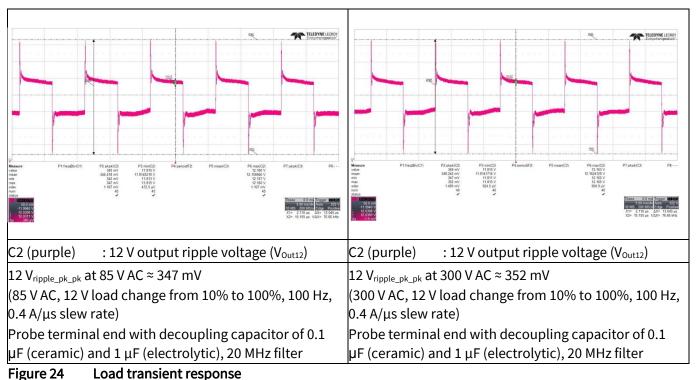



Figure 21 Soft-start


Waveforms and scope plots

12.3 Drain and CS voltage at maximum load

Figure 22 Drain and CS voltage at maximum load


12.4 Frequency jittering

Waveforms and scope plots

12.5 Load transient response (dynamic load from 10% to 100%)

12.6 Output ripple voltage at maximum load

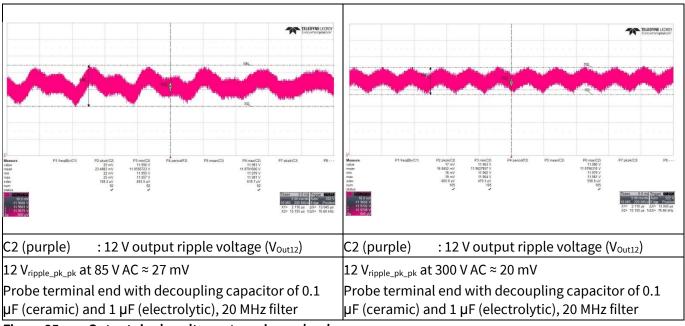
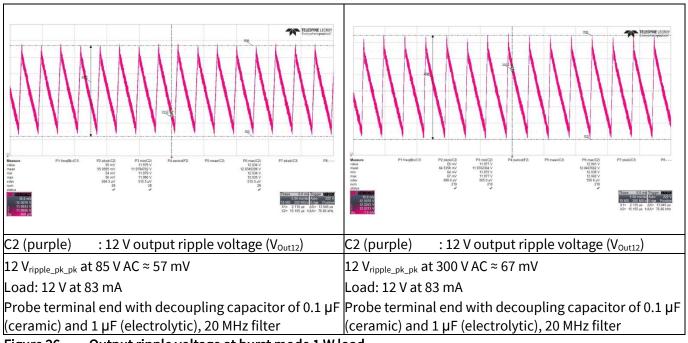
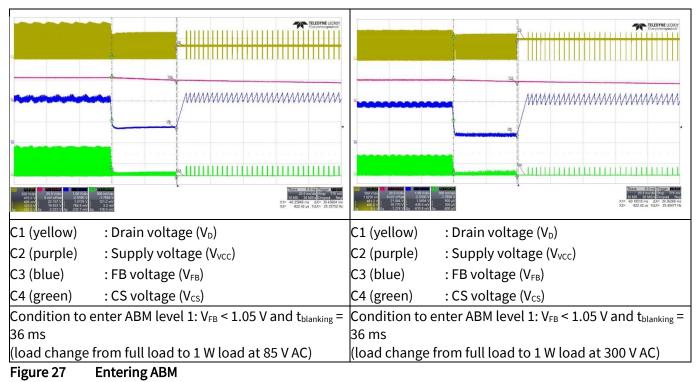
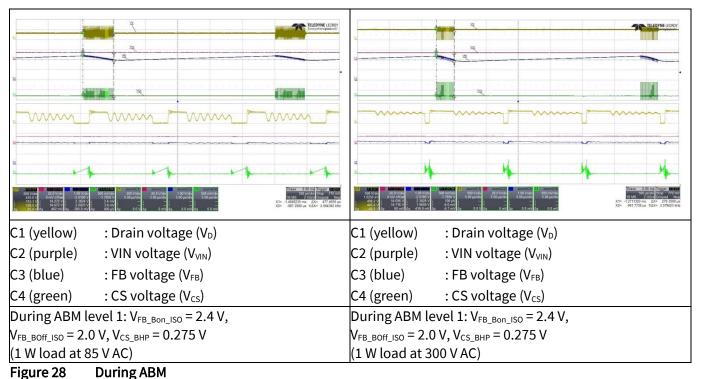


Figure 25 Output ripple voltage at maximum load

Waveforms and scope plots

12.7 Output ripple voltage at ABM 1 W load


Figure 26 Output ripple voltage at burst mode 1 W load

12.8 Entering ABM

12.9 During ABM

12.10 Leaving ABM

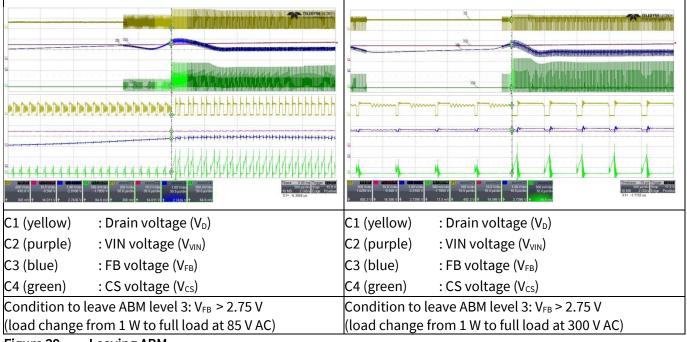


Figure 29 Leaving ABM

12.11 LOV protection (non-switch auto restart)

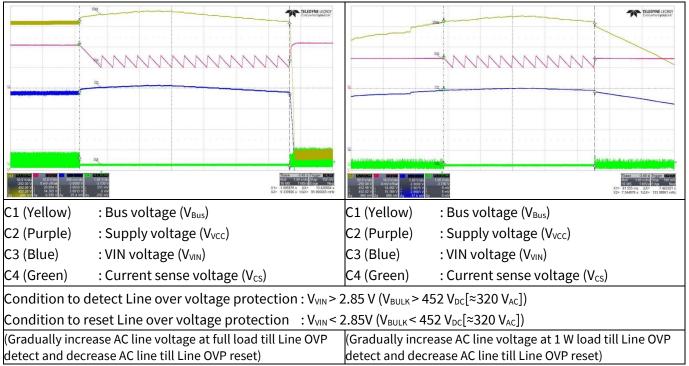


Figure 30 Line over voltage protection at 320 V_{AC}

12.12 V_{cc} OVP (odd-skip auto restart)

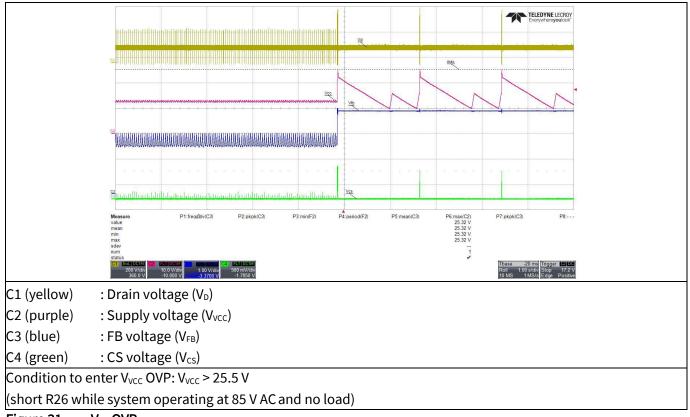
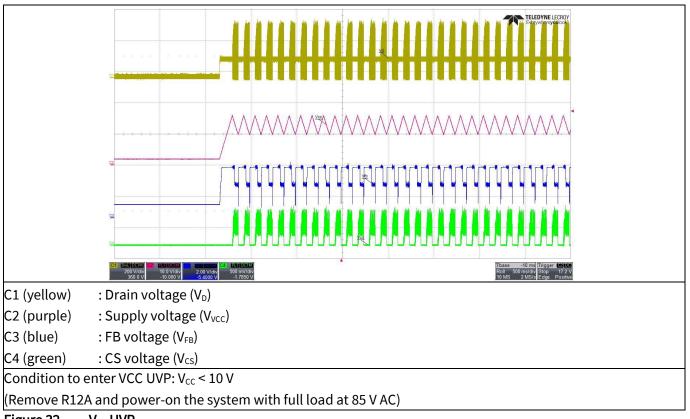
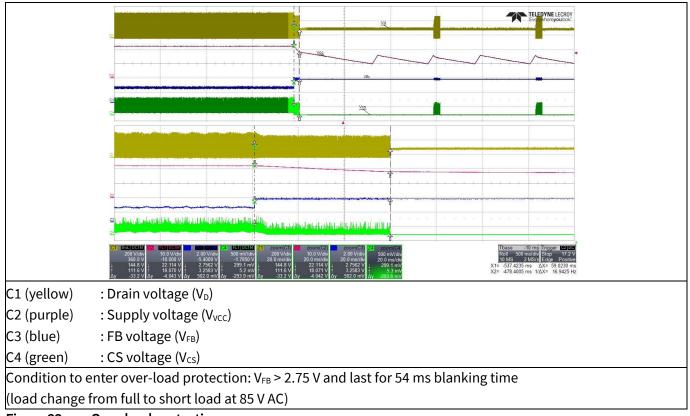



Figure 31 V_{cc} OVP



12.13 V_{cc} UVP (auto restart)

Figure 32 V_{cc} UVP

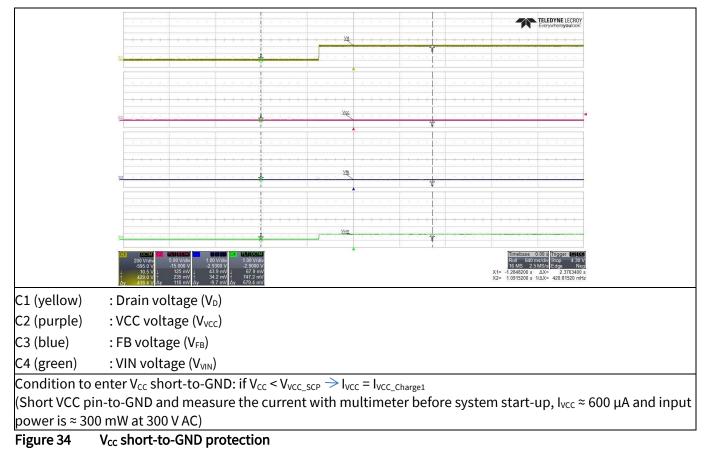

12.14 Over-load protection (odd-skip auto restart)

Figure 33 Over-load protection

12.15 V_{cc} short-to-GND protection

References

13 References

- [1] ICE5xRxxxAG datasheet, Infineon Technologies AG
- [2] 5th Generation Fixed-Frequency Design Guide
- [3] Calculation Tool Fixed Frequency CoolSET[™] Generation 5

Revision history

Document version	Date of release	Description of changes
V1.0 2017-09-18 First release		First release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-02-18 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference AN_201705_PL83_011

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.