
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

EZ-Serial WICED Firmware Platform User
Guide for CYW2070x-based Modules

Associated Part Family: Cypress EZ-BT Dual-Mode Bluetooth Modules

Document Number: 002-25029 Rev. *A

Cypress Semiconductor

An Infineon Technologies Company

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

www.infineon.com

http://www.cypress.com/
http://www.infineon.com/

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 2

Contents

1 Introduction ... 6

1.1 How to Use this Guide .. 6
1.2 Block Diagram .. 7
1.3 Functional Overview ... 7
1.4 Cypress EZ-BT WICED Module Support .. 8

2 Getting Started .. 9

2.1 Prerequisites... 9
2.2 Factory Default Behavior .. 9
2.3 Connecting a Host Device .. 10
2.4 Communicating with a Host Device .. 11
2.5 Configuration Settings, Storage, and Protection ... 23
2.6 Finding Related Material ... 25

3 Operational Examples .. 26

3.1 System Setup Examples .. 26
3.2 Cable Replacement Examples with CYSPP ... 32
3.3 Cable Replacement Examples with SPP .. 33
3.4 GAP Peripheral Examples .. 36
3.5 GAP Central Examples ... 40
3.6 GATT Server Examples .. 43
3.7 GATT Client Examples ... 51
3.8 Security and Encryption Examples ... 54
3.9 Performance Testing Examples.. 57
3.10 Device Firmware Update Examples ... 61
3.11 GPIO Operation Examples ... 63
3.12 Init Commands Examples ... 67

4 Application Design Examples ... 69

4.1 Smart MCU Host with 4-Wire UART and Full GPIO Connections .. 69
4.2 Dumb Terminal Host with CYSPP and Simple GPIO State Indication .. 69
4.3 Module-Only Application with Beacon Functionality ... 70

5 Host API Library ... 71

5.1 Host API Library Overview.. 71
5.2 Implementing a Project Using the Host API Library .. 72
5.3 Porting the Host API Library to Different Platforms ... 74
5.4 Using the API Definition JSON File to Create a Custom Library ... 75

6 Troubleshooting ... 76

6.1 UART Communication Issues... 76
6.2 BLE Connection Issues .. 76
6.3 GPIO Signal Issues .. 76

7 API Protocol Reference .. 77

7.1 Protocol Structure and Communication Flow.. 77
7.2 API Commands and Responses ... 81

 Contents

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 3

7.3 API Events .. 172
7.4 Error Codes .. 196
7.5 Macro Definitions .. 201

8 GPIO Reference .. 202

8.1 GPIO Pin Map for Supported Modules ... 202
8.2 GPIO Pin Functionality ... 203

9 Cypress GATT Profile .. 205

9.1 CYSPP Profile .. 205

10 Configuration Example Reference .. 206

10.1 Factory Default Settings ... 206
10.2 Adopted Bluetooth SIG GATT Profile Structure Snippets ... 207

11 EZ-Serial MAC Address ... 209

Worldwide Sales and Design Support ... 211

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 4

About This Document

This document provides a complete guide to the EZ-Serial firmware platform for the CYW2070x-based WICED® BT
modules.

Purpose and Audience

This document introduces the reader to the EZ-Serial firmware platform for Cypress CYW2070x-based WICED BT modules.
EZ-Serial is a firmware platform built on top of the Cypress EZ-BT Module, providing an easy-to-use method for accessing
the most common hardware and communication features for dual-mode Bluetooth applications.

This document is intended for application developers creating and testing designs based on Cypress EZ-BT CYW2070x-
based Bluetooth Modules.

Scope

This document covers the following concepts related to EZ-Serial and provides all information required to interface to the
EZ-Serial FW platform on the target Cypress modules:

 System description and functional overview (Introduction and Getting Started)

 Firmware configuration examples (Operational Examples)

 Complete design examples (Application Design Examples)

 API protocol implementation examples for external MCU (Host API Library)

 Troubleshooting guides (Troubleshooting)

 Reference material (API Protocol Reference through Configuration Example Reference)

 MAC address generation (EX-Serial MAC Address)

 SPP service (Cable Replacement Examples with SPP)

Acronyms and Abbreviations

Acronym/Abbreviation Expanded Form

ADC Analog-to-Digital Converter

API Application Program Interface

BLE Bluetooth Low Energy

BR Basic Rate

BT Blue Tooth

CCCD Client Characteristic Configuration Descriptor

CPU Central Processing Unit

CTS Clear to Send,

CYSPP Cypress Serial Port Profile

EDR Enhanced Data Rate

EVAL Evaluation

GAP Generic Access Protocol

GATT Generic Attribute Profile

GCC GNU Compiler Collection

GND Ground

https://en.wikipedia.org/wiki/Analog-to-digital_converter

 About This Document

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 5

Acronym/Abbreviation Expanded Form

GPIO General Purpose Input/Output.

HCI Host Controller Interface

HID Human Interface Device

JSON JavaScript Object Notation

LL Link Layer

MAC Media Access Control

MCU Microcontroller

MITM Man In The Middle

MSb Most Significant bit

MSB Most Significant Byte

MTU Maximum Transmission Unit

OTA Over-the-Air programming

PUART Peripheral UART

PWM Pulse Width Modulation

RAM Random Access Memory

RSSI Received Signal Strength Indicator

RTS Request to Send

RXD Receive Data

SDK Software Development Kit

SIG Special Interest Group

SMP Security Manager Protocol

SPP Serial Port Profile

TXD Transmit Data

UART Universal Asynchronous Receiver Transmitter

UTF-8 Unicode Transformation Format 8

UUID Universally Unique Identifier

VDD Voltage Drain Drain

WCO Watch Crystal Oscillator

WICED Wireless Internet Connectivity for Embedded Devices

IoT Resources and Technical Support

Cypress provides a wealth of data at www.cypress.com/internet-things-iot to help you to select the right IoT device for your
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range
of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information,
and software updates. Customers can acquire technical documentation and software from the Cypress Support Community
website (http://community.cypress.com/).

https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group
https://techterms.com/definition/unicode
http://www.cypress.com/internet-things-iot
http://community.cypress.com/

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 6

1 Introduction

This guide explains the EZ-Serial firmware platform for Cypress CYW2070x-based WICED BT modules and covers the
following:

 Cypress Serial Port Profile (CYSPP) UART-to-BLE bridge functionality

 GPIO status and control connections

 GAP Central and Peripheral operation

 GATT Server and Client data transfers

 Customizable GATT structures

 Security features such as encryption, pairing, and bonding

 API protocol allowing full control over all of these behaviors from an external host

 MAC address generation

 SPP service

1.1 How to Use this Guide

The high-level concepts covered in this document are organized into the following categories:

 System description and functional overview (Introduction and Getting Started)

 Firmware configuration examples (Operational Examples)

 Complete design examples (Application Design Examples)

 API protocol implementation examples for external MCU (Host API Library)

 Troubleshooting guides (Troubleshooting)

 Reference material (API Protocol Reference through Configuration Example Reference)

 MAC address generation (EX-Serial MAC Address)

 SPP service (Cable Replacement Examples with SPP)

The following approach provides an effective way to gain familiarity with EZ-Serial quickly:

Read through Introduction and Getting Started for a functional overview.

Find at least one example from Operational Examples that is interesting or relevant to your intended design. Follow with the
described configuration on a development kit for a true hands-on experience. These examples provide excellent out-of-the-
box feature demonstration:

 Getting Started in CYSPP Mode with Zero Custom Configuration

 Defining Custom Local GATT Services and Characteristics

 Detecting and Processing Written Data from a Remote Client

 Bonding with or without MITM Protection

Find at least one design example from Application Design Examples that is similar to the type of system you intend to use
an EZ-BT™ WICED module with, especially noting the functional capabilities provided by the configuration and GPIO
connections.

If you are combining EZ-Serial with an external host microcontroller, read through Host API Library to understand how the
external MCU will need to communicate with the module.

Spend a few minutes reading through the guides in Troubleshooting to avoid unnecessary frustration later on in the event
that something does not behave in the way you expect.

Note the reference material available in this document allows fast access to additional information and resources available
from Cypress. When in doubt, always consult the API reference for helpful information and related content concerning any
API command, response, or event.

 Introduction

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 7

Throughout the guide, you will find API methods referenced in the following format:

gap_set_adv_parameters (SAP, ID=4/23)

These links contain three important sections:

▪ Proper descriptive name (for example, gap_set_parameters), unique among all other methods.

▪ Text-mode name (for example, SAP), applicable when using the API protocol in text mode (see Section 2.4.1 Using

the API Protocol in Text Mode).

▪ Group/method ID values (for example, “4/23”), present in the 4-byte header when using the binary API protocol (see
Section 2.4.2 Using the API Protocol in Binary Mode).

Click any linked API method for detailed reference material in API Protocol Reference.

1.2 Block Diagram

The WICED EZ-Serial platform is built on top of EZ-BT WICED modules from Cypress. Depending on the specific
application, this platform may utilize an external host device, such as a microcontroller (MCU), connected to the module via
UART, GPIO pins, or both. EZ-BT WICED modules communicate with a remote device using Bluetooth, the Bluetooth Low
Energy (BLE) protocol, or both.

Note that all GPIO pins are pre-defined with EZ-Serial for supported modules. See section 8.1 (GPIO Pin Map for Supported
Modules) for details.

EZ-BT Module

EZ-Serial Firmware

UART
API Protocol

Parser/Generator

EZ-Serial Platform Manager

Host Remote
Peer

GPIO

BT Stack
BT

Radio

Figure 1-1. EZ-Serial System Block Diagram

1.3 Functional Overview

EZ-Serial provides an easy way to access the most commonly needed hardware and communication features in BT/BLE-
based applications. To accomplish this, the firmware implements an intuitive API protocol over the UART interface and
exposes a number of status and control signals through the module’s GPIO pins.

1.3.1 BT Communication Features
The EZ-Serial platform for WICED BT modules has the following BT/BLE-related features:

▪ Bluetooth 4.2 support on compatible modules

▪ Master and slave connection roles

▪ Central, Peripheral, Broadcaster, and Observer GAP roles

▪ Client and Server GATT roles

▪ Customizable GATT database definition

▪ Encryption, bonding, and protection from man-in-the-middle (MITM) threats

▪ CYSPP (Cypress Serial Port Profile) mode for bidirectional serial data transmission

 Introduction

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 8

▪ UART and over-the-air (OTA) bootloader for firmware updates

▪ Efficient low-power operation

▪ SPP service

1.3.2 Hardware and Communication Features
The EZ-Serial platform also implements a number of features that rely on internal CYW2070x chipset features and local
interfaces:

▪ Flexible text-mode and binary-mode API protocols

▪ GPIO reading, writing, and interrupt detection

▪ On-demand ADC conversion

▪ Configurable PWM output

▪ UART wake-on-RX support

▪ Initialization commands

1.3.3 Firmware Overwrite
EZ-Serial for EZ-BT WICED modules is a ready-to-use platform intended to satisfy a wide variety of application design
requirements with minimal effort. If you have use cases that cannot be handled easily with the EZ-Serial platform, use the
WICED Studio SDK to build your application firmware image. You can flash a custom firmware image onto any module via
the HCI UART interface and completely replace the existing EZ-Serial image at any time. To return to EZ-Serial later, simply
download the latest image from the Cypress website and flash it using the same mechanism.

For details on where to find these images, see Section 2.6.1 (Latest EZ-Serial Firmware Image).

1.4 Cypress EZ-BT WICED Module Support

The current EZ-Serial WICED BT firmware images support the EZ-BT WICED modules listed in the Table 1-1.

Devices

CYBT-343026-01

CYBT-353027-02

Table 1-1. Supported Devices

For details on which pins support which functions, see Section 8.1(GPIO Pin Map for Supported Modules) for pin definition
on WICED modules.

http://www.cypress.com/documentation/datasheets/cyw20706-bluetooth-soc-embedded-wireless-devices

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 9

2 Getting Started

2.1 Prerequisites

For a streamlined experience, it is recommended that you have the following parts available:

 An EZ-BT Module Arduino Evaluation Board, such as CYBT-343026-EVAL

 Computer with serial terminal software such as Tera Term, Realterm, or PuTTY

 Optional: CY5677 CySmart Bluetooth® Low Energy (BLE) 4.2 USB Dongle - BLE

 Optional: Bluetooth 4.0 USB Dongle Adapter with CYW20702 Chipset – BT Classic/EDR

 Optional: BLE/BT-capable mobile device such as an iPad, iPhone, or Android phone/tablet

The EZ-BT Module Arduino Evaluation Board (CYBT-343026-EVAL) includes two USB-to-UART serial bridges onboard.
The optional CySmart BLE dongle used with the matching CySmart software supports various client-side functions such as
connection establishment and GATT exploration without a BLE-capable smartphone or tablet. The optional CYW20702
Bluetooth dongle supports various Bluetooth classic functions such as SPP connection without a BT-capable smartphone
or tablet.

You can control EZ-Serial over a UART interface without additional GPIOs; see Application Design Examples for details.
However, it is recommended that you use the CYBT-343026-EVAL board for the best experience learning and prototyping
due to its more comprehensive design and peripheral support.

2.2 Factory Default Behavior

The following is the default configuration of EZ-Serial firmware:

 UART interface configured for 115200 baud, 8 data bits, no parity, 1 stop bit

 UART flow control disabled (signals from the module are not generated, signals from the host are ignored)

 CYSPP serial data transfer profile enabled in auto-start mode

When the module is powered on or reset, it will generate the system_boot (BOOT, ID=2/1) API event. This is only an

example of one API method used by the platform; see API Protocol Reference for details on the structure and behavior of
the API protocol.

The boot event will appear as shown below. The EZ-Serial firmware version shown in the below example is 1.1.7 build 0.
This information may differ from the final firmware version for your product.

 80 12 02 01 00 07 01 01 16 00 02 05 03 01 D1 00 39 FD C8 17 BF EC E9

In text mode, the same boot event would look like this:

 @E,003B,BOOT,E=01010700,S=05020016,P=0103,H=D1,C=00,A=ECBF17C8FD39

This text-mode string of data indicates:

 @E – An event has occurred.

 003B – There are 59 bytes (0x3B) of content to follow.

 BOOT – The event which occurred is the BOOT event.

 E=01010700 – The EZ-Serial application version is 1.1.7 build 00 (0x00).

 S=05020016 – The BLE stack component version is 5.2.0 build 22 (WICED Studio SDK).

 P=0103 – The protocol version is 1.3.

 H=D1 – The hardware platform is CYBT-343026-01.

 C=00 – Cause (this is always zero as WICED modules do not support this feature).

 A= ECBF17C8FD39 – The Static Random Bluetooth MAC address of this module is EC:BF:17:C8:FD:39.

Note: The version data and MAC address shown here are examples only. Actual values may differ.

http://www.cypress.com/documentation/development-kitsboards/cybt-343026-eval-ez-bt-module-arduino-evaluation-board
http://www.cypress.com/documentation/development-kitsboards/cy5677-cysmart-bluetooth-low-energy-ble-42-usb-dongle
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 10

Once the system boots, EZ-Serial will start BT classic SPP service and at the same time will start the CYSPP connection
process by advertising as peripheral device. When this occurs, the gap_adv_state_changed (ASC, ID=4/2) API event will
follow the boot event:

80 02 04 02 01 03 25

In text mode, the same advertisement state change event would look like:

@E,000E,ASC,S=01,R=03

2.3 Connecting a Host Device

EZ-Serial communicates with an external host device, such as a microcontroller, using serial data (UART), simple GPIO
signals, or both for status and control. Depending on your application, you may need to use one, both, or neither of these
in your final design. Application Design Examples describes each of these use cases.

2.3.1 Connecting the Evaluation Board

When using the recommended evaluation kit for prototyping, simply connect the micro-USB cable between your PC and
the evaluation board. This provides power to the module and a communication interface (UART) via the onboard USB-to-
UART bridge. Once you have connected the cable and allowed any necessary drivers to install, two new virtual COM port
will become available, as shown in Figure 2-1 usually the lower one (#1 COM54) is for HCI UART and higher one (#2
COM86) is for PUART.

Figure 2-1. Virtual Serial Port from Evaluation Board

Note: COM54 and COM86 are shown in Figure 2-1, but your port numbers may differ.

You can then use the serial port of PUART with any compatible serial terminal software on your PC such as Tera Term,
Realterm, or PuTTY.

2.3.2 Connecting the Serial Interface

You can also connect your own host or USB adapter for UART communication. The module’s UART interface uses standard
true-type logic (TTL) signals, with logic LOW at the GND (0 V) level and logic HIGH at the VDD level (typically 3.3 V).

WARNING: Do not connect the module directly to RS-232 signals which have VDD level range between
±3 ~ ±15. To prevent damage to the device, you must add voltage convertors before connecting to RS-232
signals.

EZ-Serial’s UART interface is implemented on the EZ-BT module PUART interface, which has two required signals for data
and two optional signals for flow control, if enabled:

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 11

 Required: RXD – Receive data (input), connect to host TXD (output)

 Required: TXD – Transmit data (output), connect to host RXD (input)

 Optional: RTS – Module-side flow control (output), connect to host CTS (input)

 Optional: CTS – Host-side flow control (input), connect to host RTS (output)

See Section 8.1 (GPIO Pin Map for Supported Modules) for pin-to-function correlations.

Note: If you connect an external UART device or adapter to the CYBLE-343026-EVAL J7 header, ensure that you disconnect

the onboard USB-to-UART bridge device by setting positions 1-4 of SW5 to the OFF position. Otherwise, the built-in

USB-to-UART bridge interface may compete with the external interface as both devices attempt to drive the module’s

P2 UART_RX pin.

The default port settings are 115200 baud, 8 data bits, no parity, and one stop bit. Flow control is supported, but must be
specifically enabled if desired.

You can change these settings using the system_set_uart_parameters (STU, ID=2/25) API command. UART transport
settings are protected, which means these settings cannot be written to flash until they have first been applied to RAM. This
prevents unintentional communication lockouts. See section 2.5.3 (Protected Configuration Settings) for details concerning
protected settings.

If you experience any problems communicating over the serial interface, see Troubleshooting for solutions to common
issues.

2.3.3 Connecting GPIO Pins

For CYBT-343026-01 and CYBT-353027-02 modules, the firmware provides three GPIO pins for status and control, aside
from the two (or four if flow control is used) pins used for UART communication, eight ADC pins, and four PWM output pins.

Table 2-1 summarizes the functions provided by these pins. For additional information, including module-specific pin
assignments, operational side effects, and default logic states, see GPIO Reference. Note that some pins are active-HIGH,
while some are active-LOW.

Pin name Direction Functional Description

LP_MODE Input Low-power mode control.

For CYBT-343026-01, assert (LOW) to allow sleep, de-assert (HIGH) to disable sleep or exit sleep
mode.

For CYBT-353027-02, de-assert (HIGH) to allow sleep, assert (LOW) to disable sleep or exit sleep
mode.

Note: Set LP_MODE pin to pull up or down to avoid float state. LP_MODE pin in float state may
cause firmware to exhibit unexpected behavior.

CYSPP Input/output CYSPP mode control. Assert (LOW) for CYSPP data mode, de-assert (HIGH) for command mode.

Note: Asserting this pin will begin CYSPP operation in the configured role even if the CYSPP
profile is disabled in the platform configuration. See section 2.4.5 (Using CYSPP Mode) for details.

CYSPP is also used in SPP connection: When SPP is established, CYSPP pin is set to LOW by
EZ-Serial firmware. When host sets CYSPP pin to HIGH, SPP connection will be closed.

CONNECTION Output Connection indicator. Asserted (LOW) when a BLE/SPP connection is established, de-asserted
(HIGH) upon disconnection.

Note: When CYSPP data mode is active with the CYSPP pin in the asserted (LOW) state, the
CONNECTION pin is asserted only when a remote device has connected and completed the
CYSPP GATT data characteristic subscription, indicating that the bidirectional data pipe is ready.
The CONNECTION pin is de-asserted when data can no longer flow, either due to disconnection
or because the data characteristic subscription is ended.

Table 2-1. GPIO Function Summary

For more details on GPIO functionality, see GPIO Reference.

2.4 Communicating with a Host Device

Once you have connected a host to the module via the serial interface, you can send and receive data. EZ-Serial supports
two different modes of communication: command mode (API protocol communication and control) and SPP/CYSPP mode

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 12

(transparent wireless cable replacement to remote device with BT classic or BLE). The following sections describe these
modes.

The active communication mode depends on the state of the CYSPP pin, which can be one of the following options:

 CYSPP pin externally de-asserted (HIGH): Command mode

 CYSPP pin externally asserted (LOW): CYSPP mode

 CYSPP pin left floating: Command mode until activating CYSPP data pipe, then CYSPP mode

Ensure that the CYSPP pin is in the intended state during boot to achieve the desired behavior. If you assert this pin, the
API parser and generator become inactive, because all serial data is piped through the BLE connection (once established).
You will experience a lack of communication if you attempt to send API commands to the module while in the CYSPP mode.

SPP service is also initially active. You can establish SPP connection using Bluetooth classic. The CYSPP pin is also used
for the SPP active communication mode. When a SPP connection is established, CYSPP will be asserted to LOW. When
CYSPP pin externally de-asserted to HIGH, the SPP connection is terminated and the system will return to command mode.

2.4.1 Using the API Protocol in Text Mode

EZ-Serial implements a text-mode API protocol which allows full control of the platform using human-readable commands,
responses, and events. This mode is the default setting from the factory to provide the fastest possible path to rapid
prototyping. Commands are typed using short codes, and responses and events come back with predictable timing and
formats.

 Text Mode Protocol Characteristics

The text mode protocol has the following general behavior:

 Commands sent from the host must be terminated with a carriage return (0x0D), line feed (0x0A) byte, or both.

 Commands begin with ‘/’ (forward slash), ‘S’, ‘G’, or ‘.’ to indicate ACTION, SET, GET, or PROFILE commands,
respectively.

 Commands are always immediately followed by a corresponding response, if they are parsed correctly.

 Commands with multiple arguments allow the arguments to be supplied in any order.

 Commands with multiple arguments do not require all arguments to be present in most cases; SET commands with
some arguments omitted will leave non-set values unchanged, and ACTION commands with some arguments omitted
will fall back to the default platform settings relevant for those arguments.

 Commands with syntax errors are followed by the system_error (ERR, ID=2/2) API event with an error code indicating
the nature of the problem, rather than a response packet (see section 7.4).

 All numeric data must be entered in hexadecimal notation, without prefixes (“0x”) or signs (“+” or “-”); negative numbers
should be entered in two’s complement form (for example, -1 = FF, -16 = F0, -128 = 80).

 All multi-byte numeric data is entered and expressed in big-endian byte order (for example, 0x12345678 is “12345678”).

 Text command codes and hexadecimal data are not case sensitive.

 New command entry in text mode must start with a printable ASCII character (0x20 – 0x7E), or the byte will be ignored.

 Responses always begin with “@R,” followed by a 16-bit “length” value describing the number of bytes that come after
the four length characters (including the comma), followed by the response text code.

 Responses always include a “result” value as the first parameter after the text code, indicating success or failure.

 Events always begin with “@E,” followed by a 16-bit “length” value similar to responses described above.

 Responses and events are terminated with carriage return (0x0D) and line feed (0x0A) bytes.

 Lines beginning with a “#” symbol are treated as comments and discarded by the parser.

 Text Mode API Command Categories

There are four main categories of commands in text mode: ACTION, SET, GET, and PROFILE. All these categories use
the same basic syntax, but execute different types of behavior.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 13

Category Features

ACTION ACTION commands trigger operations that cannot persist across resets or power-cycles, with very few exceptions.
These commands establish connection, enter into advertisement mode, discover local GATT, and transfer data.

The following are the exceptions to the “current session only” rule:

• system_store_config (/SCFG, ID=2/4): Writes all modified settings to flash immediately

• system_factory_reset (/RFAC, ID=2/5): Clears all modified settings and reset the module

• system_write_user_data (/WUD, ID=2/11): Writes arbitrary user data to a dedicated section of flash

• gatts_create_attr (/CAC, ID=5/1): Adds custom GATT database attributes

• gatts_delete_attr (/CAD, ID=5/2): Removes custom GATT database attributes

• smp_pair (/P, ID=7/3): Initiates pairing, resulting in new bonding data stored in flash

SET SET commands affect configuration settings that control many types of behavior, but do not typically trigger
immediate changes to the operational state like ACTION commands do.

Every argument in a SET command may be stored in non-volatile (flash) memory so that it persists across power-
cycles. Modified settings are stored in RAM only by default, and you must use the /SCFG command to write the

modified settings to flash. In text mode, you can also invoke a SET command with a ‘$’ after the text code (for

example, “SDN$,N=...”) to cause the change to be written to both RAM and flash immediately.

A small number of SET commands also manage protected settings, which are the settings that can affect core
chipset operation and communication. For these settings, you cannot write changed values directly to flash without
first performing a separate write to RAM only. This prevents accidental changes that are difficult to undo. Section
2.5.3 (Protected Configuration Settings) has more details on this behavior.

GET GET commands provide the ability to read all settings that can be changed with SET commands. There is a
corresponding GET command for every SET command found in the protocol with matching parameters returned in
the response.

Like SET commands, GET commands return data from the RAM-stored configuration structure by default. However,
using the ‘$’ after the text code will cause the flash-stored data to be returned instead.

Keep in mind that GET/SET commands concern user-defined settings, while ACTION commands concern
immediate behavior changes. Always see the API reference material when in doubt about the intended use and
behavior of any API method.

PROFILE PROFILE commands configure the behavior of special built-in behaviors, such as CYSPP data mode. Depending
on the profile, these commands may perform actions or get or set configuration values as described for the previous
three command types.

Table 2-2. Text Mode Command Categories

For more information on these command categories and behaviors, see the configuration hierarchy in section 2.5.1
(Factory, Boot, and Runtime Settings) and the material in API Protocol Reference.

 Text Mode API Example

The easiest way to use text command mode is with a serial terminal application. You can use any serial terminal application,
if it works with standard serial ports and can be configured to open the port with the proper baud rate, flow control, and other
settings. Figure 2-2 shows an example session using factory default firmware and the Real Term terminal application,
starting with the system_boot (BOOT, ID=2/1) API event and demonstrating a few commands, responses, and other events.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 14

Figure 2-2. Text Command Mode Session with Real Term

Table 2-3 describes the various protocol methods shown in Figure 2-2.

Direction Content Detail

←RX @E,003B,BOOT,E=01010700,S=05020016,

P=0103,H=D1,C=00,A=CD50DBBAA619

system_boot (BOOT, ID=2/1) API event received:

 app = 1.1.7 build 00
 stack = 5.2.0 build 22
 protocol = 1.3
 hardware = CYBT-343026-01 module
 boot cause = (Not support in WICED platform)
 MAC address = CD:50:DB:BA:A6:19

←RX @E,000E,ASC,S=01,R=03 gap_adv_state_changed (ASC, ID=4/2) API event received:

 state = 1 (active)
 reason = 3 (CYSPP operation)

TX→ /ping system_ping (/PING, ID=2/1) API command sent to ping the local
module to verify proper communication

←RX @R,001D,/PING,0000,R=00000006,F=19A1 system_ping (/PING, ID=2/1) API response received:

 result = 0 (success)
 runtime = 5 seconds
 fraction = 6561/32768 seconds

TX→ gdn gap_get_device_name (GDN, ID=4/16) API command sent to get
the configured device name

←RX @R,001E,GDN,0000,N=EZ-Serial BA:A6:19 gap_get_device_name (GDN, ID=4/16) API response received:

 result = 0 (success)
 name = “EZ-Serial BA:A6:19”

←RX @E,0035,C,C=04,A= 00A05012C722,
T=00,I=0006,L=0000,O=0064,B=00

gap_connected (C, ID=4/5) API event received:

 conn_handle = 4
 peer = 00:A0:50:12:C7:22
 addr_type = 0 (public)
 interval = 6 (7.5ms)
 slave_latency = 0
 supervision_timeout = 0x64 (100 = 1 second)
 bond = 0 (not bonded)

←RX @E,001A,W,C=01,H=0015,T=00,D=4000 gatts_data_written (W, ID=5/2) API event received:

 conn_handle = 4
 attr_handle = 0x15 (21)
 type = 0 (simple write)
 data = 2 bytes [40 00]

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 15

Direction Content Detail

TX→ badcmd Invalid API command sent to demonstrate text mode error event

←RX @E,000B,ERR,0203 system_error (ERR, ID=2/2) API event received:

 reason = 0x0203 (Unrecognized Command)

Table 2-3. Text Mode Communication Example

See the reference material in API Protocol Reference for details on each of these API methods and text-mode syntax
rules.

2.4.2 Using the API Protocol in Binary Mode

EZ-Serial implements a binary-format API protocol that allows complete control of the platform using compact binary
commands, responses, and events.

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure comprises a
4-byte header followed by an optional payload, terminating with a checksum byte. The payload carries information related
to the command, response, or event. If present, this payload always comes immediately after the header and before the
checksum byte.

Header Payload (optional) Checksum

[0] Type [1] Length [2] Group [3] ID [4...N-1] Parameter(s) [N] Summation

Table 2-4. Binary Packet Structure

The checksum byte is calculated by starting from 0x99 and adding the value of each header and payload byte, rolling over

back to 0 (instead of 256) to stay within the 8-bit boundary. The checksum byte itself is not included in the summation
process. For the example 4-byte binary packet for the system_ping (/PING, ID=2/1) API command:

 C0 00 02 01

Calculate the checksum as follows:

 0x99 + 0xC0 + 0x00 + 0x02 + 0x01 = 0x15C

Retain only the final lower 8 bits (0x5C) for the 1-byte checksum value. The final 5-byte packet (including checksum) is:

 C0 00 02 01 5C

The structure above allows a packet parser implementation to know exactly how much data to expect in advance any time
a new packet begins to arrive, and to calculate the checksum as new bytes arrive.

The “Type” byte in the header contains information not only about the packet type (highest two bits), but also the memory
scope (where applicable), and the highest three bits of the 11-bit “Length” value. For details on the binary packet format
and flow, see the API structural definition in section 7.1 (Protocol Structure and Communication Flow).

 Binary Mode Protocol Characteristics

The binary mode protocol has the following general behavior:

 Commands sent from the host must begin with a properly formatted 4-byte header.

 Commands must contain the number of payload bytes specified in the Length field from the header.

 Commands must end with a valid checksum byte, but no additional termination such as NULL or carriage return.

 Commands are always immediately followed by a response, if they are parsed correctly.

 Commands require all arguments to be supplied in the binary payload according to the protocol structural definition, in
the right order (no arguments are optional).

 Commands with syntax errors are followed by a system_error (ERR, ID=2/2) API event with an error code indicating
the nature of the problem, rather than a response packet.

 Commands must be fully transmitted within one second of the first byte, or the parser will time out and return to an idle
state after triggering the system_error (ERR, ID=2/2) API event with a timeout error code.

 All multi-byte integer data is entered and expressed in little-endian byte order (for example, 0x12345678 is [78 56 34
12]). Note that this applies only to API method arguments and parameters with a fixed width – 1, 2, or 4 – byte integers,
and 6-byte MAC addresses.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 16

 All multi-byte data passed inside a variable-length byte array (uint8a or longuint8a) remains in the original order
provided by the source. This includes UUID data found during GATT discovery. If unsure, consult the API reference
manual to verify the argument data type.

 Response payloads always begin with a 16-bit “result” value as the first parameter, indicating success or failure of the
command triggering the response.

 The binary command header includes a single bit in the first byte, which performs the same duty as the ‘$’ character in
text mode, to cause changed settings to be written to flash immediately instead of just RAM.

 Binary Mode API Example

The easiest way to use binary command mode is with a host MCU or other application that has a complete parser and
generator implementation available, such as the host API library example provided by Cypress and discussed in Host API
Library.

However, it is also possible to test individual commands manually with a serial terminal application capable of entering and
displaying binary data. Figure 2-3 shows an example of testing individual commands manually using Realterm, including
hexadecimal representation of data. There is no local echo when binary mode is used, so Figure 2-3 does not show the
command packets sent to the module. To assist in identifying the packet types and boundaries, responses are colored
cyan, events are yellow , and the final checksum byte of each packet is red .

Figure 2-3. Binary Command Mode Session with Realterm

Note: This is helpful for testing, but not the most efficient way to communicate in binary mode.

Each binary packet (including the checksum byte) is described in Table 2-5. For better comparison between text mode and
binary mode, the API transactions demonstrated here are the same as those used in the text mode example. Note that
multi-byte integer data such as the 6-byte MAC address and the 16-bit advertisement interval are transmitted in little-endian
byte order.

Direction Content Detail

←RX 80 12 02 01 1F 02 01 01

55 03 02 02 03 01 B1 00

D3 21 1A 7A 73 20 7A

system_boot (BOOT, ID=2/1) API event received:

 app = 1.1.2 build 31
 stack = 2.2.3 build 85
 protocol = 1.3
 hardware = CYBLE-013025-00 module
 boot cause = N/A
 MAC address = 20:73:7A:1A:21:D3

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 17

Direction Content Detail

←RX 80 02 04 02 01 03 25

gap_adv_state_changed (ASC, ID=4/2) API event received:

 state = 1 (active)
 reason = 3 (CYSPP operation)

TX→ C0 00 02 01 5C (not visible) system_ping (/PING, ID=2/1) API command sent to ping the local module to verify
proper communication

←RX C0 08 02 01 00 00 0A 00

00 00 A0 6E 7C

system_ping (/PING, ID=2/1) API response received:

 result = 0 (success)
 runtime = 10 seconds
 fraction = 28320/32768

TX→ C0 00 04 10 6D (not visible) gap_get_device_name (GDN, ID=4/16) API command sent to get the configured
Device Name

←RX C0 15 04 10 00 00 12 45

5A 2D 53 65 72 69 61 6C

20 31 41 3A 32 31 3A 44

33 A0

gap_get_device_name (GDN, ID=4/16) API response received:

 result = 0 (success)
 name = “EZ-Serial 1A:21:D3”

←RX 80 0F 04 05 40 80 95 19

29 49 80 00 06 00 00 00

64 00 00 FB

gap_connected (C, ID=4/5) API event received:

 handle = 40
 peer = 80:49:29:19:95:80
 addr_type = 0 (public)
 interval = 6 (7.5 ms)
 slave_latency = 0
 supervision_timeout = 0x64 (100 = 1 second)
 bond = 0 (not bonded)

←RX 80 0A 05 02 40 0E 00 00

04 00 11 22 33 44 26

gatts_data_written (W, ID=5/2) API event received:

 conn_handle = 4
 attr_handle = 0x1F (31)
 type = 0 (simple write)
 data = 4 bytes [11 22 33 44]

TX→ C0 00 EE EE 35 (not visible) Invalid API command (group and ID bytes set to 0xEE) sent to demonstrate binary
mode error event

←RX 80 02 02 02 03 02 24 system_error (ERR, ID=2/2) API event received:

 reason = 0x0203 (Unrecognized Command)

Table 2-5. Binary Mode Communication Example

See the reference material in API Protocol Reference for details concerning each of these API methods and the binary
packet format, including information on all header fields and supported data types.

2.4.3 Key Similarities and Differences Between Text and Binary Command Mode

The text-mode and binary-mode protocol formats provided by EZ-Serial have their own advantages. As a general guideline,
text mode is better for initial development or one-time configuration, while binary mode is a better choice for production-
stage control from an external host device due to the significantly less complex parser/generator implementation on an
external host. The following lists contain key factors to consider when choosing which mode to use:

Similarities:

 Both modes access the same internal API functionality. They are not different protocols, only different formats.

 Both follow the same command, response, and event flow.

 EZ-Serial supports both modes simultaneously. There is no need to switch between firmware images.

 Your choice of protocol format only affects local communication with an external host over the wired serial interface. It
does not have any impact on data sent over a wireless BLE connection, or on the type of host communication used on
a remote device (for example, another Cypress module running EZ-Serial firmware).

Differences:

 Binary multi-byte integer data is transmitted in little-endian byte order for more efficient direct memory structure mapping
on most common platforms, while text mode uses big-endian for easier left-to-right readability.

 Binary commands have a one-second timeout, while text mode commands have no timeout.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 18

 Binary commands are semantically organized by functional group (system, protocol, GAP, GATT Server, and so on)
rather than the four categories used in text mode (ACTION, SET, GET, and PROFILE).

 Binary commands require all arguments in every case, while text mode commands often have optional arguments
which fall back to default/preset values if omitted.

 Binary packets include basic checksum validation, while text mode packets do not.

 Binary is more efficient for MCU-based communication, while text mode is easier for manual entry in a terminal.

 Binary commands are never echoed back to the host, while text mode commands are (by default).

2.4.4 API Protocol Format Auto-Detection

EZ-Serial uses text mode for API protocol communication by default, but you can change this setting with the
protocol_set_parse_mode (SPPM, ID=1/1) API command. If “binary” mode is specified and written to flash, the module will
use binary mode automatically on subsequent resets or power-cycles.

The parser also automatically detects whether the external host is using binary or text mode, and temporarily switches to
the detected mode for the active session. The detection logic behaves in the following way:

 If the parser is in text mode, a byte received at any time with the two most significant bits (MSbs) set (0xC0-0xFF) will
switch the parser to binary mode immediately. The “trigger” byte will not be discarded, but will be processed as the first
byte in the command packet. This mechanism is considered safe because no valid text-mode command begins with a
byte that has the highest two bits set.

 If the parser is in binary mode, a byte received when the parser is idle (not mid-command) that is one of the initial
category characters for any of the four types of commands (‘/’, ‘S’, ‘G’, and ‘.’) will switch the parser to text mode
immediately. The “trigger” byte will not be discarded, but will be processed as the first byte in the text command string.
This mechanism is considered safe because no binary command begins with one of these characters. Note that this
requires the parser to be idle, not in the middle of a packet, because a binary command packet could easily have one
of these characters in its header or payload.

The automatically detected parse mode is not retained across power-cycles, nor is it stored in the same configuration setting
area as a value explicitly set by the protocol_set_parse_mode (SPPM, ID=1/1) API command. For more detail on this type
of temporary configuration, see section 2.5.1 (Factory, Boot, and Runtime Settings).

2.4.5 Using CYSPP Mode

EZ-Serial implements a special CYSPP profile that provides a simple method to send and receive serial data over a BLE
connection. This operational mode is separate from the normal command mode where the API protocol may be used. When
CYSPP data mode is active, any data received from an external host will be transmitted to the remote peer, and any data
received from the remote peer will be sent out through the hardware serial interface to the external host.

 Starting CYSPP Operation

You can start CYSPP mode using any of these three methods:

1. Assert (LOW) the CYSPP pin externally. You may connect this pin to ground in hardware designs that require CYSPP
operation only and never need API communication. You can also use this pin to enter CYSPP mode even if the CYSPP
profile is disabled in the platform configuration.

2. Use the p_cyspp_start (.CYSPPSTART, ID=10/2) API command. You can use this command to enter CYSPP mode even

if the CYSPP profile is disabled in the platform configuration.

3. Have a remote GATT Client connect and subscribe to the CYSPP acknowledged data characteristic (enabling
indications) or unacknowledged data characteristic (enabling notifications). This method will enter CYSPP mode only
if the CYSPP profile is enabled in the platform configuration.

When starting CYSPP mode locally using either the CYSPP pin or the p_cyspp_start (.CYSPPSTART, ID=10/2) API
command, the data pipe will not be immediately available because the remote device must still connect and set up proper
GATT data subscriptions. If 100% data delivery is required in this context, the Host should monitor the CONNECTION pin
to determine when it is safe to begin sending data from the Host for BLE transmission. Once the CONNECTION pin is
asserted while the CYSPP pin is also asserted, the Host may send and receive data over CYSPP.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 19

Note: Externally asserting (LOW) the CYSPP pin will always begin CYSPP operation, even if the profile has been disabled

in the platform configuration via the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. If you do not

require CYSPP operation, you should ensure that this pin remains electrically floating or externally de-asserted

(HIGH).

 Sending and Receiving Data in CYSPP Data Mode

Once you have started CYSPP mode, the EZ-Serial platform will take care of the rest of the connection process and data
pipe construction on the module side. If you are using modules running EZ-Serial firmware on both ends of the connection,
then simply start CYSPP mode with complementary roles (Peripheral on one end, Central on the other), and the modules
will automatically connect and prepare the data pipe using the processes described below. Remember that CYSPP
operation supports only the peripheral role on EZBT-343026-01 modules. To achieve Central-role CYSPP operation, you
will need to create your own program using WICED Studio or use an EZ-BLE module in PSoC Creator™ with pre-
programmed EZ-Serial firmware.

A non-Cypress device such as a BLE-enabled smartphone will frequently be used for one end of the connection; you must
configure the device to follow the same procedure.

For configuration examples in each mode, see section 3.2(Cable Replacement Examples with CYSPP).

Follow these steps for other (Non Cypress EZ-Serial device such as smartphone) devices to communicate with Cypress
EZ-Serial in CYSPP mode:

1. EZ-Serial begins advertising with configured advertisement settings.

2. Upon connection, a remote peer must subscribe to one of the two “Data” characteristics:

a. Acknowledged Data, enable indications (guaranteed reliability)

b. Unacknowledged Data, enable notifications (faster potential throughput)

3. Remote peer may optionally subscribe to the “RX Flow Control” characteristic to allow the Server to communicate
whether it is safe to write new data.

4. EZ-Serial will assert the CONNECTION pin, indicating that CYSPP is ready to send and receive data.

5. The data pipe remains open until the central device disconnects or unsubscribes from the data characteristic, or the
CYSPP pin is de-asserted locally.

 Exiting CYSPP Mode

Once in CYSPP mode, the API parser is logically disconnected from incoming serial data, so you will not be able to send
any commands to the module. However, you can still exit CYSPP mode in two ways:

1. De-assert (HIGH) the CYSPP pin externally.

2. Have the remote GATT Client unsubscribe from the relevant CYSPP data characteristic (applies only when the CYSPP
pin is not externally asserted).

When the CYSPP operation ends, EZ-Serial returns to command mode.

WARNING: It is not possible to use an API command to exit the CYSPP data mode, because the API
parser is not available while in this mode. If your design needs to switch between modes on demand,
include external access to the CYSPP pin so you can control the operational mode.

 Customizing CYSPP Behavior for Specific Needs

While the default behavior is suitable in many cases, there are configuration settings that allow a great deal of control over
this behavior. The following list describes the options that can be changed and how to change the options:

 CYSPP mode uses the system’s configured UART host transport settings for sending and receiving serial data. To
change these settings, use the system_set_uart_parameters (STU, ID=2/25) API command.

 CYSPP mode uses the system’s configured radio transmit power setting for all BLE communication. To change this
setting, use the system_set_tx_power (STXP, ID=2/21) API command.

 CYSPP mode supports special incoming data packetization modes. This helps make radio transmissions and data
delivery more efficient in a variety of use cases. To change these settings, use the p_cyspp_set_packetization
(.CYSPPSK, ID=10/7) API command.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 20

 When operating in Peripheral mode, CYSPP uses the system’s configured advertisement parameters, including the
advertisement and scan response packet content (which may be based on the device name) and the system’s whitelist.
To change these settings, use one or more of the following API commands:

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_set_adv_data (SAD, ID=4/19)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_device_name (SDN, ID=4/15)

 Understanding CYSPP Connection Keys

EZ-Serial also supports CYSPP connection keys, which improve usability in environments where multiple CYSPP-capable
devices are operating in an automated configuration. This feature allows an advertising peripheral device to broadcast an
arbitrary 4-byte value that a scanning device can filter against, searching either for a masked range of devices or a single
specific device.

CYSPP connection keys are not set in the factory default configuration; CYSPP Peripheral advertisements contain a “0”
key. To change this, use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command, and specifically the “local_key”
argument of this command as described in the following section. Note that the “remote_key”, and “remote_mask” arguments
apply only to CYSPP Central operation, which is not supported on this platform. They are left in to maintain protocol
consistency across multiple platforms.

 Using the CYSPP Peripheral Connection Key

The CYSPP Peripheral connection key affects only the content of the advertisement packet while the module is in an
advertising state. The CYSPP Peripheral role does not include any filtering behavior; filtering is left to the scanning device
that is operating in the CYSPP Central role.

When the CYSPP profile is enabled, the platform-managed advertising packet contains a special Manufacturer Data field
to hold the local connection key value. It is not stored elsewhere, such as in a GATT characteristic. This advertisement
packet field has the structure shown in Table 2-6.

Length Type Company ID Connection Key

07 FF b0 b1 b0 b1 b2 b3

Table 2-6. CYSPP Peripheral Connection Key Manufacturer Data Field Structure

The Company ID value is a 16-bit value that the Bluetooth SIG assigns to member companies that have requested them
(see resources on www.bluetooth.com). The factory default value is the Cypress company identifier, 0x0131, but you can
change this with the same command used to change other CYSPP parameters. Note that both the Company ID and the
Connection Key values are broadcast in little-endian byte order.

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit value for the

“local_key” argument to apply a new Peripheral connection key. Changes take effect immediately, even if the module is
already advertising in the CYSPP peripheral role.

WARNING: EZ-Serial incorporates only the CYSPP Peripheral connection key into the advertising packet
if you have not enabled user-defined advertisement content. If you have configured user-defined
advertisement content instead as described in section 3.4.3 (Customizing Advertisement and Scanning
Response Data), then changing this value will have no effect. You must ensure that your user-defined

advertisement packet contains an equivalent field to allow scanning devices to filter properly.

Example 1: Update CYSPP peripheral key to 0x11223344

Direction Text Content Binary Content Effect

TX→ .CYSPPSP,E=2,G=0,C=0131,L=11223344,

R=0,M=0,P=1,S=0,F=2

C0 13 0A 03 02 00 31 01 44 33 22 11 00
00 00 00 00 00 00 00 01 00 02 5A

Apply new CYSPP
configuration

←RX @R,000E,.CYSPPSP,0000 C0 02 0A 03 00 00 68 Response indicates
success

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 21

 CYSPP Configuration and Pin States

Table 2-7 describes the relationship between the state of the CYSPP pin and the CYSPP firmware configuration managed
with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. Note the following two key behaviors concerning
hardware control versus software control:

 Asserting the CYSPP pin externally always triggers automatic CYSPP. This occurs even if you have disabled the profile
in software.

 CYSPP data mode (where the API is suppressed and all serial data is channeled to the remote peer) ultimately depends
on the state of the CYSPP pin. EZ-Serial pulls this pin to the appropriate logic level based on internal CYSPP state
changes when CYSPP is enabled, but you can override the pulled state with an external host or hardware design
feature.

CYSPP Pin
State

CYSPP “enable” Value in Configuration CYSPP Operation

Floating
(assumed
default)

Disabled Inactive. All advertising, scanning, connections, GATT
subscriptions, GATT transfers, and so on, occur via API
commands and events. CYSPP GATT structure is not visible to a
remote Client.

Enabled Idle until start. When started via the p_cyspp_start
(.CYSPPSTART, ID=10/2) API command, the module begins
advertising. API events (boot, stage changes, connections, etc.)
are visible over UART until the CYSPP data connection is
opened between the local device and remote peer. The CYSPP
pin is pulled LOW when this occurs, at which point the API is
suppressed and the serial interface may be used only for CYSPP
data pipe. This mode continues until the remote host disconnects
or unsubscribes.

Autostart
(factory default)

Automatic. Same behavior as in the “Enabled” case, except that
CYSPP operation begins automatically at boot time and restarts
upon disconnection.

Externally driven
HIGH (de-
asserted)

Disabled Inactive. All advertising, connections, GATT subscriptions, GATT
transfers, and so on occur via API commands and events. CYSPP
GATT structure is not visible to a remote Client.

Enabled Idle until start, command mode retained. When started via the
p_cyspp_start (.CYSPPSTART, ID=10/2) API command, module
begins advertising. API events (BOOT, stage changes,
connections, etc.) are visible over UART. API communication
continues throughout the process; CYSPP data from the remote
host is never raw/transparent unless the host asserts the CYSPP
pin.

Autostart Automatic. The same behavior as in the “Enabled” case, except
that CYSPP operation begins automatically at boot time and
restarts upon disconnection. API events continues to be visible
while CYSPP pin is de-asserted (HIGH).

Externally driven
LOW (asserted)

Doesn’t matter Active regardless of firmware configuration. Automatic advertising
begins at boot time. API events (boot, state changes,
connections, etc.) are not be visible over UART, because API
communication is always suppressed when CYSPP pin is
asserted.

Table 2-7. CYSPP Configuration and Pin Relationship

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 22

 CYSPP State Machine

Figure 2-4 shows the way EZ-Serial manages CYSPP operation, depending on user configuration and the logic state of the
CYSPP pin.

Peripheral Process

CYSPP Pin

Asserted (LOW)
CYSPP start

Command Sent

CYSPP Autostart

Enabled

CYSPP Ready in

Peripheral Mode

Advertise

Peer Connected

Client Subscribed to

CYSPP Data

Client Subscribed to

RX Flow (optional)

Disconnect

Remote Peer may

Start Process here if

CYSPP is Enabled

and Module is

Generally

Connectable

Autostart

enabled?

YES
NOCYSPP Idle

Figure 2-4. CYSPP State Machine

2.4.6 Bluetooth Classic SPP

EZ-Serial also supports Bluetooth SPP service profile. See section 3.3 (Cable Replacement Examples with SPP) for
details.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 23

2.5 Configuration Settings, Storage, and Protection

The EZ-Serial platform provides methods to customize its many built-in functions. It is important to understand how these
settings are stored and changed in different contexts to avoid unexpected behavior.

2.5.1 Factory, Boot, and Runtime Settings

EZ-Serial implements three different “layers” of configuration data, each of which serves a unique purpose Table 2-8
describes each type of configuration storage in detail.

Layer Details

Factory
(FLASH)

Description:

Factory-level settings are hard-coded into the firmware image and stored in flash, and cannot be changed independently
by the user. They are used for runtime-level settings until/unless customized boot-level values exist. Using the
system_factory_reset (/RFAC, ID=2/5) API command reverts to these values.

Content:

These values contain only platform configuration settings, but not custom GATT structure definitions or value data.

Data retention during chipset reset: YES

These values are retained upon power cycles and chipset reset conditions.

Boot

(FLASH)

Description:

Boot-level settings are set by the user and stored in flash, and applied to the runtime-level area for active use when the
module boots. (If no customized boot-level settings have been set by the user, the factory-level settings are applied
instead upon first boot.) These values can be modified using API commands, and they are erased when performing a
factory reset.

Content:

These values contain both platform configuration settings and any custom GATT structure definitions. Actual GATT
characteristic values such as those written by a remote Client are not included in this data.

Data retention during chipset reset: YES

These values are retained during power cycles and chipset reset conditions.

Runtime
(RAM)

Description:

Runtime-level settings are used as the active configuration set that controls EZ-Serial’s behavior at all times, with a few
exceptions as noted in the “Automatic” section below. API commands that set or get configuration values access this
layer of configuration data unless explicitly noted otherwise.

Content:

These values contain platform configuration settings, custom GATT structure definitions, and GATT characteristic values
written from a remote Client.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions. Any runtime settings or GATT database
structure definitions should be written to flash with the relevant API command(s) before performing a reset.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 24

Layer Details

Automatic
(RAM)

Description:

Automatic settings are set by the firmware based on detected external behavior, and EZ-Serial uses these values to
augment the settings in the runtime configuration block. Currently, only one setting falls into this category:

• API parse mode (binary or text mode depending on initial packet byte)

Content:

These values contain a very limited subset of auto-detected configuration settings, and do not include most
configuration data or any GATT structure or value data.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions.

Data retention during DFU: NO

These values are not retained during the OTA process, which involves a chipset reset prior to image transfer.

Table 2-8. Configuration Setting Storage Layers

2.5.2 Saving Runtime Settings in Flash

Storing settings in flash memory is critical to allow predictable, long-term customized behavior without needing to reconfigure
each time. EZ-Serial provides two ways to accomplish this:

1. Use the system_store_config (/SCFG, ID=2/4) API command to write all current runtime-level settings to the boot-level
configuration. This applies a snapshot of the current configuration to flash in one step. This method should be used if
you are unsure which settings have changed between boot-level and runtime-level values, or if you want to test out a
new set of options before making them permanent.

2. Set the “flash” memory scope bit in the binary command packet header when writing new configuration values with
relevant commands. This method should be used if you know exactly which settings need to be changed, because it
does not require the final use of the system_store_config (/SCFG, ID=2/4) API command afterward.

Note that while the flash memory scope bit may be used with any command; doing so is relevant only for commands that
either read or write configuration values directly. For other commands, these flags will be silently ignored. See the API
reference material in API Protocol Reference for details.

To ensure the longest flash memory life, writes to flash should be as infrequent as possible in production-ready designs.
Settings that must be changed frequently should be modified in RAM and only written to flash when required. Note that the
internal chipsets used in the EZ-BT modules that run EZ-Serial have a minimum flash endurance rating of 100,000 cycles.

2.5.3 Protected Configuration Settings

A small number of configuration values have the potential to put the module into a state where it is no longer possible to
communicate over the serial interface as intended. To help avoid this potential problem, a few settings are classified as
protected. This means that the values of the settings must be changed at the runtime level only (RAM) before they may be
applied to the boot-level (flash) area. Currently, only one command affects protected settings: system_set_uart_parameters
(STU, ID=2/25).

The changes that are most likely to cause an unintended communication lockout are serial transport reconfigurations, such
as selecting a baud rate that is not supported by the host. To store new values in flash for protected configuration settings,
you must either send the same command twice with the flash memory scope bit/character used only the second time, or
else use the system_store_config (/SCFG, ID=2/4) API command to write all runtime-level settings to the boot level after
first setting the new value in RAM only. This forces the flash write to occur using the new configuration, which can only
occur if communication is still possible.

 Getting Started

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 25

2.6 Finding Related Material

This guide refers to firmware images and example source code files that must be accessed separately from this document.

2.6.1 Latest EZ-Serial Firmware Image

You can find the latest available EZ-Serial firmware image files on Cypress’ website: www.cypress.com/ez-serial

These images are suitable for HCI UART-based re-flashing through WICED SDK chip loading tools. See section 3.10 (
Device Firmware Update Examples) for details about how to flash these firmware images onto target modules.

2.6.2 Latest Host API Protocol Library

You can find the latest host API protocol library source code examples on Cypress’ website: www.cypress.com/ez-serial

The host library provided is for reference and is based on the EZ-Serial Creator platform.

2.6.3 Comprehensive API Reference

While this guide contains many specific functional examples, these are not intended to provide a full reference to all possible
functionality provided by the API. See API Protocol Reference of this document for detailed material concerning the API
structure and protocol.

http://www.cypress.com/ez-serial
http://www.cypress.com/ez-serial

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 26

3 Operational Examples

EZ-Serial provides a great platform on which you can build a wide variety of BLE applications. This section describes many
common operations that you can experiment with or combine to create the behavior needed for your application.

3.1 System Setup Examples

These examples demonstrate basic platform behavior and configuration of the system.

Note: The first example (see Identifying the Running Firmware and BLE Stack Version) provides low-level detail and

explanation of some API protocol formatting features, while all other examples assume a basic understanding of the

mechanics of the protocol and will only show example snippets in text format. For details on the API methods used in

each case and the binary equivalents of each command, response, and event, see API Protocol Reference.

3.1.1 Identifying the Running Firmware and BLE Stack Version

The EZ-Serial firmware, BLE stack, and protocol version details can be obtained from the API event generated at boot time,
or on demand using an API command.

 Getting Version Details from Boot Event

Capture and process the system_boot (BOOT, ID=2/1) API event that occurs when the module is powered ON or reset.
This event includes the application version, stack version, protocol version, boot cause, and unique Bluetooth MAC address.

If the protocol parser/generator is in text mode (factory default), the system_boot (BOOT, ID=2/1) API event looks like this:

 @E,003B,BOOT,E=01000215,S=030200FA,P=0102,H=05,C=01,A=00A050421A63

If the protocol parser is in binary mode, this event will be similar to that shown below, expressed in hexadecimal notation:

Header Payload Checksum

80 12 02 01 19 00 01 01 35 00 03 03 03 01 05 01 63 1A 42 50 A0 00 3D

To simplify manual interpretation in this guide, individual parameters within the payload are separately underlined.

Note: In text mode, multi-byte integer data is expressed in big-endian notation, while in binary mode, multi-byte integer data

is transmitted in little-endian order.

The payload data in the event text/binary examples shown above is described in Table 3-1.

Text Code Text Data Binary Data Details Interpretation

E “01010019” 19 00 01 01 EZ-Serial application version Version 1.1.0 build 25 (0x19)

S “03030035” 35 00 03 03 BLE stack version Version 3.3.0 build 53 (0xFA)

P “0103” 03 01 API protocol version Version 1.3

H “05” 05 Hardware ID CYBLE-2120XX-X0 module

C “01” 01 Cause for boot event Power-cycle/XRES

A “00A050421A63” 63 1A 42 50 A0 00 MAC address 00:A0:50:42:1A:63

Table 3-1. Payload Detail for Boot Event

 Getting Version Details on Demand

Use the system_query_firmware_version (/QFV, ID=2/6) API command to request version details at any time. The response
to this command contains the same initial information in the system_boot (BOOT, ID=2/1) API event, but it does not include
the boot cause or the module’s Bluetooth MAC address.

The text-mode response to this API command is as shown below:

 @R,002C,/QFV,0000,E=0101021C,S=02020355,P=0103,H=B1

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 27

The binary-mode response packet is as shown below:

Header Payload Checksum

C0 0D 02 06 06 00 00 1C 02 01 01 55 03 02 02 03 01 B1 9F

To simplify manual interpretation in this guide, individual parameters within the payload are separately underlined.

3.1.2 Changing the Serial Communication Parameters

Use the system_set_uart_parameters (STU, ID=2/25) API command to reconfigure the serial interface used for host
communication. This command affects protected settings, and therefore the protected setting must be applied in RAM first
before it can be written to flash.

All data entered via text mode must be expressed in hexadecimal notation. Table 3-2 lists common baud rates and their
hexadecimal equivalents:

Baud Rate Hex Equivalent

9,600 2580

14,400 3840

19,200 4B00

28,800 7080

38,400 9600

57,600 E100

115,200 (default) 1C200

230,400 38400

460,800 70800

921,600 E1000

Table 3-2. Common UART Baud Rates and Hex Equivalents

Note: EZ-Serial supports non-standard baud rates not listed in Table 3-2, and should remain below 3% clock error due to

the use of an internal fractional clock divider. While this is within the tolerance level required by many UART

interfaces, you should measure the actual bit timing with an oscilloscope or logic analyzer to verify that the baud rate

is operating within required tolerance for your host device.

Example 1. Set UART to 38400 baud, even parity, flow control enabled, and store in flash

Direction Text Content Binary Content Effect

TX→ STU,B=9600,A=0,C=0,F=1,D=8,P=0,S=1 C0 0A 02 19 00 96 00 00 00 00 01 08
00 01 1E

Set new UART parameters
(RAM only) – “38400” decimal
is “9600” hex

←RX @R,0009,STU,0000 C0 02 02 19 00 00 76 Response indicates success

Change host UART parameters to match new settings here before sending additional data

TX→ STU$,B=9600,A=0,C=0,F=1,D=8,P=0,S=1 D0 0A 02 19 00 96 00 00 00 00 01 08
00 01 2E

Write UART settings to flash

←RX @R,000A,STU$,0000 D0 02 02 19 00 00 86 Response indicates success

Example 2. Set UART to 115200 baud, no parity, flow control disabled, and store in RAM only

Direction Text Content Binary Content Effect

TX→ "STU,B=1C200,A=0,C=0,F=0,D=8,P=0,S=1 C0 0A 02 19 00 C2 01 00 00 00 00 08
00 01 4A

Apply new UART
parameters

←RX @R,0009,STU,0000 [C0 02 02 19 00 00 76 Response indicates success

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 28

3.1.3 Changing Device Name and Appearance

Use the gap_set_device_name (SDN, ID=4/15) API command to set a new friendly device name at any time, and the
gap_set_device_appearance (SDA, ID=4/17) API command to set a new appearance value.

EZ-Serial supports different device names for BLE and BT Classic communication. By default, the BT Classic Device Name
starts with “BT” as a suffix.

EZ-Serial uses the device name and appearance to populate the GAP service’s name and appearance characteristic values
in the GATT database. If EZ-Serial is allowed to automatically manage the advertisement and scan response data content
(default behavior), then it also includes up to 29 bytes of the device name in the scan response packet. (The limit of 29
bytes is due to a BLE specification limit on the maximum scan response payload, which is 31 bytes; the other two bytes are
needed for the field length and field type values that are part of the device name field.)

Note: EZ-Serial limits the device name length to 64 bytes to minimize internal SRAM requirements.

Using EZ-Serial’s special macro codes, described in section 7.5 (Macro Definitions) you can enter a single text string which
is expanded internally to include module-specific values—in this case, the Bluetooth MAC address. This is shown in
Example 3.

The device appearance value is a 16-bit field made up of a 10-bit and 6-bit subfield. Allowed values are defined by the
Bluetooth SIG and can be found at developer.bluetooth.org.

Changes made to the device name and appearance values take effect immediately. They are written to the local GATT
characteristics for these two values (always present), and the device name is updated in the scan response packet if user-
defined advertisement content has not been enabled with the gap_set_adv_parameters (SAP, ID=4/23) API command.

Example 3. Set device name with partial MAC address incorporation

Direction Text Content Binary Content Effect

TX→ SDN$,N=EZ-Serial
%M4:%M5:%M6

D0 16 04 0F 15 45 5A 2D 53 65 72 69 61 6C
20 25 4D 34 3A 25 4D 35 3A 25 4D 36 5C

Set new device name in flash using 4th, 5th,
and 6th MAC bytes (module-specific)

←RX @R,000A,SDN$,0000 D0 02 04 0F 00 00 7E Response indicates success

This configured name results in an actual name of “EZ-Serial 1A:21:D3” assuming that the module in use has a MAC
address of 20:73:7A:1A:21:D3).

Example 4. Set device appearance to “Generic Computer” (0x0080)

Direction Text Content Binary Content Effect

TX→ SDA$,A=0080 D0 02 04 11 80 00 00 Set new appearance value in flash

←RX @R,000A,SDA$,0000 D0 02 04 11 00 00 80 Response indicates success

3.1.4 Changing Output Power

Use the system_set_tx_power (STXP, ID=2/21) API command to set a new radio transmit power level. The argument to
this command is not the dBm value directly, but rather a set of predefined values representing a fixed range from -16 dBm
to +8 dBm. Table 3-3 lists each allowed value.

Argument Value Power Level Comments

1 -16 dBm

2 -12 dBm

3 -8 dBm

4 -4 dBm

5 0 dBm

6 4 dBm

7 8 dBm Default Value

Table 3-3. Supported TX Power Output Options

Changes to the configured output power will take effect immediately.

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 29

Example 5. Set output power to -4 dBm

Direction Text Content Binary Content Effect

TX→ STXP,P=3 C0 01 02 15 03 74 Set new TX power (RAM only)

←RX @R,000A,STXP,0000 C0 02 02 15 00 00 72 Response indicates success

3.1.5 Managing Sleep States

EZ-Serial manages transitions between active and sleep states according to the LP_Mode pin logic level and the system
sleep level configurations. It chooses the mode requiring the lowest safe power consumption according to the current
operational state and configuration, including transitioning into sleep mode between BT Classic and BLE radio events.
Table 3-4 provides a high-level summary of the four power states used by the platform.

Power Mode Current Range (typical),
Vdd = 3.3 V

Description

Active 5 mA to 7 mA CPU and all peripherals are active. All functionality is possible with no delay.

Sleep 0.23 mA to 3.x mA In PDS Mode, UART may have missed communication. However, it can still
receive data from BLE or BT link.

Deep Sleep 1.2 µA In HID-Off Mode, no active resources are available until the FW restarts.

Table 3-4. EZ-Serial Power States

EZ-Serial uses the maximum allowed sleep level based on combined data from the system-wide sleep setting, CYSPP data
mode sleep setting (if CYSPP data mode is active), PWM output state, and LP_MODE pin state. Figure 3-1 describes the
sleep level determination logic.

Note: The LP_MODE pin logic for the CYBT-343026-01 and CYBT-353027-02 are different. The LP_MODE pin logic

described in the section 3.1.5 is about CYBT-34306-01. The logic level should be inverted if CYBT-353027-02 is used.

LP_MODE

Deasserted

(High)?

YES

Sleep Disabled

Firmware Configuration

Max = DEEP SLEEP

If System < Max,

then Max = System

If CYSPP < Max and

CYSPP Data Pipe Open,

then Max = CYSPP

NO

If Max = NORMAL SLEEP

and

High-res PWM Active,

then Max = NO SLEEP

Use Final Max Sleep Level

Begin Sleep Process

Configure with

system_set_sleep_parameters

Configure with

system_set_sleep_parameters

Configure with

p_cyspp_set_parameters

Configure with

p_cyspp_set_parameters

Control with

gpio_set_pwm_mode

Control with

gpio_set_pwm_mode

Figure 3-1. EZ-Serial Sleep State Behavior (CYBT-343026-01)

In outline form, the sleep state logic follows this process:

1. If the LP_MODE pin on CYBT-343026-01 is de-asserted to high, the module will remain in Active mode, otherwise
select the lowest value (0 = no sleep, 1 = normal sleep, 2 = deep sleep) from the following methods to configure the
system-wide sleep setting:

a. The system sleep level configured with system_set_sleep_parameters (SSLP, ID=2/19) API command.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 30

b. The CYSPP-specific sleep level configured with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API
command, if the CYSPP data pipe is open (connected and in CYSPP data mode).

c. No sleep if high-resolution PWM output is enabled with the gpio_set_pwm_mode (SPWM, ID=9/11) API command.

Note: EZ-Serial does not allow changes to the sleep level hierarchical order. For example, if CYSPP sleep level is “1” (sleep)

but system-wide sleep is level “0” (no sleep), then the system-wide setting will override the CYSPP setting because

it is a lower value. EZ-Serial will always select the lowest applicable value for the current operational state.

 Configuring the System-Wide Sleep Level

Configure the system-wide sleep level using the system_set_sleep_parameters (SSLP, ID=2/19) API command. When
sleep is not prevented by de-asserting the LP_MODE pin, this value is the first “default” sleep level limit applied when
calculating which sleep mode to use.

Active PWM output limits the effective sleep level in any state to no sleep (value = 0). If the CYSPP data pipe is open
(connected and in CYSPP data mode), then the CYSPP-specific sleep level may further limit the effective maximum sleep
level. Figure 3-1 shows how EZ-Serial determines the sleep level to use.

EZ-Serial platform for WICED BT modules allows normal sleep (value = 1) as the factory default system-wide sleep level
and sets LP_MODE to high by default to provide a simpler out-of-the-box UART communication experience. However, you
can change this to allow Deep Sleep to improve average current consumption.

Example 6. Change system-wide sleep level to Deep Sleep

Direction Text Content Binary Content Effect

TX→ SSLP,L=2 C0 01 02 13 02 71 Set new system sleep level to “Deep Sleep”

←RX @R,000A,SSLP,0000 C0 02 02 13 00 00 70 Response indicates success

In normal sleep mode the module cannot receive commands; the host needs proper use of the LP_MODE pin as described in section
3.1.5.3 (Preventing Sleep with the LP_MODE Pin) before transmitting the command.

 Configuring the CYSPP Data Mode Sleep Level

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command to set the CYSPP data mode sleep level. When
sleep is enabled by the LP_MODE pin, the CYSPP data mode sleep level value is the second limit to determine which sleep
mode to use. The system-wide sleep level takes precedence over the CYSPP sleep level. Furthermore, PWM output limits
the sleep level in any state to no sleep (value = 0), regardless of other settings. Figure 3-1 shows how EZ-Serial determines
the sleep level to use.

Example 7. Limit CYSPP-specific sleep level to normal sleep

Direction Text Content Binary Content Effect

TX→ .CYSPPSP,E=2,G=0,C=0131,L=0,
R=0,M=0,P=1,S=1,F=2

C0 13 0A 03 02 00 31 01 00 00 00 00 00 00 00
00 00 00 00 00 01 01 02 B1

Set new CYSPP sleep level
to “normal sleep”

←RX @R,000E,.CYSPPSP,0000 C0 02 0A 03 00 00 68 Response indicates success

 Preventing Sleep with the LP_MODE Pin

De-assert the LP_MODE control pin (HIGH for CYBT-343026-01) to prevent the module from sleeping under any
circumstances. Properly asserting and de-asserting this pin surrounding host-to-module UART transmissions provides
efficient power consumption while still allowing normal sleep at all other times.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 31

 Managing Host and Module Sleep Simultaneously

In applications that include both an external host MCU and a Bluetooth module, typically both components need to sleep to
save as much power as possible. The DATA_READY pin is asserted (LOW) whenever there is UART data in the output
buffer and not yet fully clocked out of the module. Using this pin as the wakeup signal for the MCU is the recommended
way to allow the module to alert the host whenever some interaction needs to occur.

In certain situations, an external MCU takes may take so long to wake that it loses the first few bits or bytes of the incoming
UART data from the module. If the host needs extra time to wake and RTS/CTS flow control is unavailable on the host
MCU, you can still enable UART flow control in EZ-Serial with the system_set_uart_parameters (STU, ID=2/25) API
command and then control the module's CTS pin from a host GPIO. When CTS is held in the de-asserted (HIGH) state, the
module waits to send any outgoing UART data. The host can complete its wakeup process and then assert (LOW) the
module's CTS pin to allow serial data transmission when ready.

True flow control support on the host MCU is not necessary in this case, and you can leave the module’s RTS pin
disconnected. However, you must still enable flow control within EZ-Serial to accomplish this. Flow control with EZ-Serial is
not enabled by default.

To summarize the complete cycle:

1. Host sets the module CTS pin HIGH to prevent UART transmission.

2. Host enables the DATA_READY pin falling-edge interrupt.

3. Host puts the CPU to sleep.

4. Module asserts (LOW) its DATA_READY pin when relevant activity occurs.

5. Host CPU wakes up.

6. Host sets the module CTS pin LOW to allow UART transmission.

7. Module transmits data to the host for processing.

3.1.6 Performing a Factory Reset

You can perform a factory reset using system_factory_reset (/RFAC, ID=2/5) API command.

EZ-Serial generates the system_factory_reset_complete (RFAC, ID=2/3) API event immediately after erasing all settings,
and before performing the final module reset to boot to the factory default state. The platform generates this event using
the previously configured parser and transport mode. While this event is typically not processed by an external host during
a hardware-triggered factory reset, it helps to verify the intended flow when controlling the module via software.

After the reset completes, the system_boot (BOOT, ID=2/1) API event occurs.

To trigger a factory reset over the serial interface, use the system_factory_reset (/RFAC, ID=2/5) API command.

Example 8. Perform a factory reset

Direction Text Content Binary Content Effect

TX→ /RFAC C0 00 02 05 60 Trigger factory reset

←RX @R,000B,/RFAC,0000 C0 02 02 05 00 00 62 Response indicates
success

←RX @E,0005,RFAC 80 00 02 03 1E Event indicates factory
reset completed

Short delay while chipset reset and boot process occurs, ~150 ms

←RX @E,003B,BOOT,E=01010700,S=05020016,P=
0103,H=D1,C=00,A=ECBF17C8FD39

80 12 02 01 00 07 01 01 16 00 02 05 03
01 D1 00 39 FD C8 17 BF EC E9

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 32

3.2 Cable Replacement Examples with CYSPP

EZ-Serial’s CYSPP implementation provides a simple way to use a BLE connection to manage a bidirectional stream of
serial data. Both ends of the connection must support CYSPP, including the ability to either provide or make use of the
CYSPP GATT structure for data flow. The EZ-Serial firmware can only operate as a GAP Peripheral and CYSPP Server
device (typical when communicating with a smartphone)).

Note: EZ-Serial platform for WICED BLE modules do not support GAP Central behavior, For GAP Central and CYSPP Client

device behavior, customers can use EZ-Serial with BLE modules on PSoC Creator or use WICED SMART to develop

a program.

See section 2.4.5 (Using CYSPP Mode) for a description of how CYSPP mode behaves generally and how it affects API
communication.

3.2.1 Getting Started in CYSPP Mode with Zero Custom Configuration

The factory default configuration enables the CYSPP profile in “auto-start” mode. With this configuration, the module begins
advertising as soon as it has power.

 Starting CYSPP Out of the Box in Peripheral Mode

EZ-Serial’s factory default configuration automatically starts CYSPP operation in the Peripheral role after booting. To
establish a CYSPP data pipe, simply scan and connect from a remote device, then subscribe to RX flow control (optional)
and the desired acknowledged or unacknowledged data characteristic as described in section 2.4.5.2 (Sending and
Receiving Data in CYSPP Data Mode).

A second EZ-Serial module running in CYSPP Central/Client mode (for example, a BLE module based on PSoC Creator)
will perform all required client-side steps automatically. EZ-Serial shows all GATT events relating to CYSPP setup until the
CYSPP data pipe is fully opened.

Example 9. Complete boot and CYSPP connection process in peripheral mode

Direction Text Content Binary Content Effect

←RX @E,003B,BOOT,E=0101021C,S=02020
355,P=0103,H=B1,C=00,A=20737A1A
21D3

80 12 02 01 1C 02 01 01 55 03 02 02
03 01 B1 00 D3 21 1A 7A 73 20 7A

Boot event

←RX @E,000E,ASC,S=01,R=03 80 02 04 02 01 03 25 CYSPP-triggered advertisement
started

←RX @E,0035,C,C=40,A=
00A050422A0F,T=00,
I=0006,L=0000,O=0064,B=00

80 0F 04 05 40 0F 2A 42 50 A0 00 00
06 00 00 00 64 00 00 46

Connection established with remote
device

←RX @E,001A,W,C=40,H=0015,T=00,D=02
00

80 08 05 02 40 15 00 00 02 00 02 00
81

Remote client writes [02 00] to Client
Characteristic Configuration Descriptor
(CCCD) for RX flow control to enable
indications from that characteristic.

←RX @E,000C,.CYSPP,S=04 80 01 0A 01 04 29 CYSPP status update (0x04):

• 0x04: Subscribed to RX flow control

←RX @E,001A,W,C=40,H=0012,T=00,D=01
00

80 08 05 02 40 12 00 00 02 00 01 00
7D

Remote client writes [01 00] to CCCD
for unacknowledged data to enable
notifications from that characteristic.

←RX @E,000C,.CYSPP,S=05 80 01 0A 01 05 2A CYSPP status update (0x05):

• 0x04: Subscribed to RX flow control

• 0x01: Subscribed to
unacknowledged data

Host may now send data to the module for delivery to the remote peer, received data comes from peer.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 33

3.3 Cable Replacement Examples with SPP

EZ-Serial supports BT Classic SPP service as a simple method to send and receive serial data over a BT connection. This
operational mode is separated from the normal command mode where the API protocol may be used. When SPP data
mode is active, any data received from an external host will be transmitted to the remote peer, and any data received from
the remote peer will be sent out through the hardware serial interface to the external host.

3.3.1 Connecting SPP Service with an Android Smartphone

1. Connect to CYBT-343026-01 module using serial terminal software such as RealTerm from your computer.

2. Enable Bluetooth on your mobile phone.

3. Pair with a device named “EZ-Serial XX:XX:XX_BT”.

4. Download an Android application with Bluetooth SPP support, such as SENA BTerm Bluetooth Terminal, from Google
Play Store, and install it.

5. Connect with “EZ-Serial XX:XX:XX_BT”. You will see “@E,0024,BTCON,C=02,A=582AF78DF70E,T=01,B=00” in
RealTerm.

Now you can transfer data between a terminal application on a smartphone and RealTerm. The data transmitted in this
example is “123456789” as shown in Figure 3-2.

When the Android application is closed, you will see “@E,0012,BTDIS,C=02,R=0000” in RealTerm indicating that the
connection has been closed.

Figure 3-2. Connecting SPP Service of a Module on Android Smartphone with RealTerm

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 34

3.3.2 Connecting to SPP Service Using a Computer (Window 7)

1. Click the Bluetooth icon on your Windows Taskbar, or access the Bluetooth menu from Control Panel > All Control
Panel Items > Devices and Printers. Select Add a device.

2. Select device named “EZ-Serial XX:XX:XX_BT” and connect. Windows will install drivers for this device. You will find
two ports associated with this device in Device Manager.

3. Open a terminal application and connect to the COM port (typically the lower numbered COM port is the port to select).

Now you can transfer data between the terminal application in Windows and the terminal of the CYBT-343026-01
module.

3.3.3 Connecting SPP Service of a WICED Module to Another BT Device

Suppose another BT device is an Android smartphone, perform these steps:

1. Launch a SPP application, such as SENA BTerm Bluetooth Terminal, on the Android smart phone.

2. Click “open detection" on Android SPP application.

3. Start inquiry:

/BTI, D=3, F = 1

Where,

D: Duration ranging from 3 to 30 seconds

F: 0 – Inquiry all (name and address)

 1 – Inquiry name

Figure 3-3. Starting Inquiry in RealTerm

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 35

4. Connect to a device which supports the SPP service:

/BTC, A=582AF78DF70E,T =1

Figure 3-4. Connecting to SPP Service of Android Smartphone from a Module with RealTerm

You will see “@E,0024,BTCON,C=03,A=582AF78DF70E,T=01,B=00” indicating that SPP is now connected.

3.3.4 Disconnecting SPP

SPP can be controlled through the hardware GPIO on the CYBT-343026-01 module. The BT_GPIO_3/P27/P33 pin, which
is also used for CYSPP, can be used to control the SPP connection state:

 By default, BT_GPIO_3 is set in HIGH state.

 Once SPP connection is active, BT_GPIO_3 will be set to LOW state.

 If BT_GPIO_3 is set to HIGH by an external MCU while a SPP connection is active, the SPP connection will be
terminated.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 36

3.4 GAP Peripheral Examples

GAP Peripheral operation is one of the most common use cases for BLE designs because it is usually the simplest way to
communicate with a smartphone operating as a Central device.

The Bluetooth specification defines different types of roles for the devices on each end of a BLE link:

 Link layer

 Master – Device that initiates a connection (always GAP Central)

 Slave – Device that accepts a connection (always GAP Peripheral)

 GAP layer

 Central – Device that initiated a connection (always LL master)

 Peripheral – Device that accepted a connection (always LL slave)

 Broadcaster – Device that is advertising in a non-connectable state

 Observer – Device that is scanning without initiating a connection

 GATT layer

 Client – device which accesses data from a remote GATT Server

 Server – device which provides Attribute data to be accessed remotely

Link layer roles are defined when a connection is initiated based on which side initiates the connection.

The GAP layer provides four different roles, two of which involve connections (Central and Peripheral) and two of which are
connectionless (Broadcaster and Observer). The link layer and GAP layer roles are closely related, particularly when a
connection is involved.

The GATT layer role is independent of other behavior. A single device may even perform GATT duties in both the client and
server roles. A common example of this is an iOS device providing the Apple Notification Center Service as a GATT Server,
even though it is connected to a Peripheral device and acting as a GATT Client to that device.

EZ-Serial for the WICED CYW2070x-based modules only supports slave link layer role, Peripheral or Broadcaster GAP
roles, and GATT Server functionality.

3.4.1 Advertising as Peripheral Device

Advertising is the BLE activity which allows scanning devices to observe and connect to Peripherals. It is required for a
connection to be initiated, but it may also be done in a non-connectable way (called “broadcasting”). EZ-Serial supports
non-connectable broadcasting even while connected.

EZ-Serial gives you full control over when and how to advertise by using the gap_start_adv (/A, ID=4/8) API command and
the gap_set_adv_parameters (SAP, ID=4/23) API command.

When the advertising state changes, the gap_adv_state_changed (ASC, ID=4/2) API event occurs. This event includes the
new state as well as a code showing the reason why the state changed.

Note: If you do not have any automatic advertisement timeout set, then advertisements continue until you explicitly stop

them or a remote device initiates a connection.

Example 10. Start advertising with custom parameters

Direction Text Content Binary Content Effect

TX→ /A,M=2,T=0,I=A0,C=6,F=0,O=1E C0 08 04 08 02 00 A0 00 06 00
1E 00 33

Begin advertising with custom arguments

←RX @R,0008,/A,0000 C0 02 04 08 00 00 67 Response indicates success

←RX @E,000E,ASC,S=01,R=00 [80 02 04 02 01 00 22 Event indicates advertising state changed
to “active”

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 37

3.4.2 Stopping Advertising as a Peripheral Device

To explicitly stop advertising, use the gap_stop_adv (/AX, ID=4/9) API command, or open a connection to the module from
a remote BLE Central device.

Example 11. Stop Advertising

Direction Text Content Binary Content Effect

TX→ /AX C0 00 04 09 66 Stop advertising

←RX @R,0009,/AX,0000 C0 02 04 09 00 00 6 Response indicates success

←RX @E,000E,ASC,S=00,R=00 80 02 04 02 00 00 21 Event indicates advertising state changed
to “inactive” due to user request

3.4.3 Customizing Advertisement and Scanning Response Data

You can customize the content of the main advertisement payload and scan response payload with the gap_set_adv_data
(SAD, ID=4/19) and gap_set_sr_data (SSRD, ID=4/21) API commands, respectively.

Note: If you intend to use user-defined advertisement content, you must explicitly enable this in the advertisement

parameters. Normally, the EZ-Serial platform manages the content in the advertisement and scans response packets

automatically based on the platform configuration, including the device name and the profiles that are enabled. If you

set custom content but do not configure EZ-Serial to use that content, advertisement and scan response payloads

remain automatically managed.

Key features and requirements for customizing data:

 Each advertisement and scan response packet payloads may have a maximum of 31 bytes. This is a BLE specification
limit.

 Advertisement data in both packets should follow the correct [Length, Type, Value...] format required by the Bluetooth
specification. Malformed data within advertisements can prevent proper scanning by remote devices. The Length value
does not include itself, but does include the Type byte and all bytes in the remaining Value data.

 Each packet may contain as many fields as will fit in 31 bytes. Place multiple fields one right after the other with no
special separator. Since each field begins with a “length” value, a scanning device is always able to properly identify
the end of each field.

 Advertisement packets include the Bluetooth connection address (public or random) outside of the payload data. This
does not count towards the 31-byte limit.

 The main advertisement packet is always transmitted while advertising. It typically includes things like connectable
flags, important supported service UUIDs, and a custom manufacturer data field. Place any data that is critical for the
remote device to see inside the main advertisement packet.

 The scan response packet is transmitted only when a remote device is performing an active scan. During an active
scan, the scanning device send a scan request to any discovered advertising device immediately after receiving the
main advertisement packet. The scan response packet typically includes the friendly name of the advertising device,
and occasionally also includes transmit power, more manufacturer data, or other useful but less critical data that a
remote scanning device may not need to see.

Detailed information on approved field types and their intended contents can be found the Bluetooth specification.

Table 3-5 lists the most commonly used fields;

Type Description Value

0x01 Flags field – 1 byte of data 1 byte (bitfield)

0x02 Partial list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x03 Complete list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x04 Partial list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x05 Complete list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x06 Partial list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x07 Complete list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 38

Type Description Value

0x08 Shortened local name 0-29 bytes (Text string)

0x09 Complete local name 0-29 bytes (Text string)

0x0A TX power level 1 byte (dBm as signed integer)

0xFF Manufacturer data 3-29 bytes (company ID + data)

Table 3-5. Common Advertisement Field Types

EZ-Serial does not validate advertisement or scan response payload content, and the underlying BLE stack has only limited
validation on the Flags field. You must ensure that any customized data within either of these packets is correctly formatted.
While the module will transmit whatever payload data is configured, scanning devices may not correctly identify your device
if the data is malformed or missing (especially the Flags field).

The stack requires that the Flags field, if present, must have the final two bits set so that they match the Discovery Mode
setting used when starting advertisements. For BLE-only devices that do not support “classic” BR/EDR Bluetooth behavior,
this means that the flags byte will almost always be one of these three values:

 0x04: Non-discoverable/broadcast-only (common for beacon-only devices)

 0x05: Limited discoverable

 0x06: General discoverable (most common for connectable devices)

See gap_start_adv (/A, ID=4/8) API command for additional reference on discoverable modes.

Table 3-6 provides examples for reference.

Byte content Field Description

02 01 06 Length: 2 bytes

Type: Flags (0x01)

Value: LE General Discoverable Mode, BT Classic Not Supported

05 02 09 18 0D 18 Length: 5 bytes

Type: Complete list of 16-bit UUIDs for supported GATT services (0x02)

Value: 0x1809 (Health Thermometer), 0x180D (Heart Rate)

07 08 57 69 64 67 65 74 Length: 7 bytes

Type: Shortened local name (0x08)

Value: “Widget”

09 FF 31 01 AA BB CC DD EE FF Length: 9 bytes

Type: Manufacturer data (0xFF)

Value: Company ID = 0x0131 (Cypress Semiconductor)

 Data = [AA BB CC DD EE FF]

Table 3-6. Examples of Well Formed Advertisement Fields

These four example fields require 25 bytes when combined, including each of the four Length values. The bytes can be
placed in a single advertisement packet if desired:

 02 01 06 05 02 09 18 0D 18 07 08 57 69 64 67 65 74 09 FF 31 01 AA BB CC DD EE FF

Here, the shortened name is included in the same packet as the more critical information. This is uncommon, but not
prohibited. The name typically goes in the scan response packet because it cannot fit into the advertisement packet, but
any field may be in any location if the scanning device knows what to expect.

Example 12. Set custom advertisement and scan response data

Direction Text Content Binary Content Effect

TX→ SAP,M=2,T=0,I=30,C=7,L=0,O=0,F=2 C0 09 04 17 02 00 30 00 07 00 00
00 02 B8

Enable user-defined
advertisement and scan response
content

←RX @R,0009,SAP,0000 C0 02 04 17 00 00 7 Response indicates success

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 39

Direction Text Content Binary Content Effect

TX→ SAD,D=020106060209180D18 C0 0A 04 13 09 02 01 06 06 02 09
18 0D 18 DA C0 02 04 13 00 00 72

Set new advertisement content
(RAM only), Flags and 16-bit
UUID fields

←RX @R,0009,SAD,0000 C0 02 04 13 00 00 72 Response indicates success

TX→ SSRD,D=0708576964676574 C0 09 04 15 08 07 08 57 69 64 67
65 74 F6

Set new scan response content
(RAM only), Complete local name
field

←RX @R,000A,SSRD,0000 C0 02 04 15 00 00 74 Response indicates success

Example 13. Set advertisement and scan response data to value similar to factory defaults

Direction Text Content Binary Content Effect

TX→ SAP,M=2,T=0,I=30,C=7,L=0,O=0,F=1 C0 09 04 17 02 00 30 00 07 00 00
00 01 B7

Enable user-defined
advertisement and scan response
content

←RX @R,0009,SAP,0000 C0 02 04 17 00 00 76 Response indicates success

TX→ SAD,D=020106110700a10c2000089a9e

e21115a133333365

C0 16 04 13 15 02 01 06 11 07 00
A1 0C 20 00 08 9A 9E E2 11 15 A1
33 33 33 65 70

Set new advertisement content
(RAM only)

←RX @R,0009,SAD,0000 C0 02 04 13 00 00 72 Response indicates success

TX→ SSRD,D=1309455a2d53657269616c204

5333a38333a3546

C0 15 04 15 14 13 09 45 5A 2D 53
65 72 69 61 6C 20 45 33 3A 38 33
3A 35 46 D5

Set new scan response content
(RAM only)

←RX @R,000A,SSRD,0000 C0 02 04 15 00 00 74 Response indicates success

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 40

3.5 GAP Central Examples

Running as a GAP Central allows you to scan for and connect to remote Peripheral devices. You can also operate as a
GAP Observer by scanning without any subsequent connection attempts. For further discussion of various link-layer, GAP,
and GATT roles, see the material at the beginning of Section 3.4 (GAP Peripheral Examples).

3.5.1 How to Scan Peripherals
Use the gap_start_scan (/S, ID=4/10) API command to begin scanning for devices. Scanning is not required before initiating
a connection, but doing so helps to identify potential connection targets or ensure that known or compatible Peripherals are
nearby and connectable

NOTE: If you do not have any automatic scan timeout set, scanning will continue until you explicitly stop it.
Scanning will not automatically resume when a connection is terminated unless CYSPP is enabled in the
central role. Otherwise, you must implement this behavior in your application logic as needed.

NOTE: You must stop scanning before you can initiate an outgoing connection to a remote peer.
Requesting a connection with gap_connect (/C, ID=4/1) while scanning will result in an error.

In text mode, all arguments to the gap_start_scan (/S, ID=4/10) API command are optional. Any supplied arguments will be
used only for the immediate scan started as a result of the command, while any omitted arguments will fall back to the
values configured by the gap_set_scan_parameters (SSP, ID=4/25) API command. You can see these values at any time
by using the gap_get_scan_parameters (GSP, ID=4/26) API command.

After you start scanning, EZ-Serial will begin generating gap_scan_result (S, ID=4/4) API events each time a new
advertisement packet is seen from a remote device. The same advertising device will generate multiple scan results until
duplicate filtering is enabled in the scan parameters.

Passive vs. Active Scanning:

• During a passive scan, EZ-Serial will not send scan requests to devices to ask for the “follow-up” scan response
packet. In this mode, each device generates only one event for each detected advertisement packet. Passive
scans use less power on average because the transmitter remains inactive and the receiver is not intentionally re-
activated for a second time for the same device.

• During an active scan, EZ-Serial sends a scan request to obtain additional information from the remote Peripheral.
In this mode, the BT stack may generate two events for each device detected during a scan. However, the remote
device may not send the scan response packet, or the local device may not receive it due to adverse RF conditions,
so a second scan result event is not guaranteed. Active scans use more power than passive scans, and result in
brief transmission bursts in between receive operations.

WARNING: Due to the precise timing required by the BLE protocol and the way active scans behave, a
large number of actively scanning devices in the same vicinity can result in none of the scanning devices
successfully obtaining a scan response from an advertising device. If two or more scanning devices transmit
a scan request on the same channel within the same ~150 µs window immediately after the main
advertisement packet, the advertising device will not be able to parse the request and will not send a

response to either device. This unlikely but possible issue does not occur while performing a passive scan.

Example 1: Start passive scanning with preconfigured default parameters

Direction Content Effect

TX→ /S Begin scanning with preconfigured defaults

←RX @R,0008,/S,0000 Response indicates success

←RX @E,000E,SSC,S=01,R=00 Event indicates scanning state has changed to “active”
due to user request

←RX @E,0052,S,R=00,A=00A050E3835E,T=00,S=D1,B=00,

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F

Event indicates scan result from 00:A0:50:E3:83:5E,
normal adv packet, RSSI -47 dBm (0xB1), Flags field
and 128-bit UUID

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 41

Example 2: Start 5-second active scan with duplicate filtering enabled

Direction Content Effect

TX→ /S,M=2,A=1,D=1,O=5 Begin “observation” scanning, active mode, 5-second
timeout, duplicate filter enabled

←RX @R,0008,/S,0000 Response indicates success

←RX @E,000E,SSC,S=01,R=00 Event indicates scanning state has changed to “active”
due to user request

←RX @E,0052,S,R=00,A=00A050E3835E,T=00,S=D1,B=00

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F

Event indicates scan result from 00:A0:50:E3:83:5E, ad
packet, RSSI -47 dBm (0xB1), Flags field and 128-bit
UUID

←RX @E,004E,S,R=04,A=00A050E3835E,T=00,S=D1,B=00

D=1209426C7565666C6F772037383A46353A4236

Event indicates scan result from 00:A0:50:E3:83:5E, scan
response packet, RSSI -47 dBm, Local name field

←RX @E,000E,SSC,S=00,R=02 Event indicates scanning state has changed to “stopped”
due to configured timeout (5 seconds)

3.5.2 How to Stop Scanning for Peripheral Devices
To explicitly stop scanning, use the gap_stop_scan (/SX, ID=4/11) API command, or initiate a connection request to a
remote device using the gap_connect (/C, ID=4/1) API command.

WARNING: It is possible for additional gap_scan_result (S, ID=4/4) API events to occur between a
successful response to the gap_stop_scan command and the gap_scan_state_changed event (SSC in
text mode), due to the brief amount of time that it takes the stack to process the request and change states.
Ensure that your application logic will not fail in this case.

Example 1: Stop scanning

Direction Content Effect

TX→ /SX Stop scanning

←RX @R,0009,/SX,0000 Response indicates success

←RX @E,000E,SSC,S=00,R=00 Event indicates scanning state has changed to “inactive” due to user request

3.5.3 How to Connect to a Peripheral Device
Use the gap_connect (/C, ID=4/1) API command to initiate a connection to a remote device based on its Bluetooth
connection address. The Bluetooth connection address (also commonly referred to as a MAC address) is made up of the
6-byte device address and a 1-byte value indicating the address type. To initiate a connection, the module must be in a
disconnected state (not advertising, scanning, connecting, or connected).

NOTE: At this time, the Cypress Bluetooth stack supports one active connection at a time. To transfer data
to and from multiple devices quickly, you must establish and tear down connections in rapid succession.
With a fast advertisement interval on peripheral devices and a fast connection interval while connected, it
is possible to perform many connect-transfer-disconnect cycles per second.

Addresses may be either public or random. Public addresses do not change, while random addresses change on some
period determined by the device employing privacy measures (typically at least every few minutes). The use of random
addresses, also called private addresses, reduces the possibility of passive profiling by a remote device. For example, iOS
devices always use random addressing for BLE operations. EZ-Serial supports both types, and uses public address by
default.

When a BLE device initiates a connection request, it does not immediately transmit anything. Rather, it must first scan until
it receives a connectable advertisement packet from the target device. This is why a Peripheral device must be in an
advertising state to accept a connection. The full connection process includes the following steps:

1. Target Peripheral device is advertising in a connectable state.

2. Central device begins scanning for advertisements packets from target Peripheral device.

3. Central device detects advertisement and initiates a connection request to a target Peripheral device.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 42

4. Targer Peripheral device receives connection request and responds with connection response.

5. Connection is sucessfully established at this point.

The API command used to initiate a connection includes arguments for scan parameters, as scanning is the first operation
that the stack must perform on the GAP Central device during a connection process.

Example 1: Connect to a remote device using default connection parameters

Direction Content Effect

TX→ /C,A=00A050E3835E Initiate connection

←RX @R,000D,/C,0000,H=00 Response indicates success

←RX @E,0030,C,H=04,A=00A050E3835E,T=00,I=0010,L=0000,O=0064 Event indicates connection opened

3.5.4 How to Cancel a Pending Connection to a Peripheral Device
Use the gap_cancel_connection (/CX, ID=4/2) API command to cancel a pending outgoing connection request. This
applies only when the connection is not yet open and you have not received the gap_connected (C, ID=4/5) API event. If
you need to close an open connection, use the gap_disconnect (/DIS, ID=4/5) API command.

Example 1: Cancel a pending connection to a remote device

Direction Content Effect

TX→ /CX,A=00A050E3835E Cancel pending connection

←RX @R,0009,/CX,0000 Response indicates success

←RX @E,0010,DIS,H=00,R=091F Event indicates connection canceled

3.5.5 How to Disconnect from a Peripheral Device
Use the gap_disconnect (/DIS, ID=4/5) API command to close an active connection to a remote device. This applies only
when the connection is already fully established; this should not be used to cancel a pending outgoing connection. In that
case, use the None.

gap_cancel_connection (/CX, ID=4/2) API command.

Example 1: Disconnect from a remote device

Direction Content Effect

TX→ /DIS Disconnect from peer

←RX @R,000A,/DIS,0000 Response indicates success

←RX @E,0010,DIS,H=04,R=0916 Event indicates connection closed, reason=0x0916 (intentional local closure)

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 43

3.6 GATT Server Examples

BLE data transfer operations between two connected devices most often occur through the GATT layer, with a server on
one side and a client on the other side. The GATT Server makes use of a pre-defined attribute structure, which the client
may remotely discover and use as needed. The GATT Server defines what data is available and how it may be accessed,
and has limited ability to push data to the client if the client has subscribed to receive these types of updates.

3.6.1 Defining Custom Local GATT Services and Characteristics

EZ-Serial implements a dynamic GATT structure that can be modified at runtime and stored in flash. Note that the structure
itself and values stored within data characteristics (other than default values defined when creating new entries) are stored
in RAM only, and is stored to flash until explicitly calling command gatts_store_db (/SGDB, ID=5/4) or system_store_config
(/SCFG, ID=2/4).

EZ-Serial implements a dynamic GATT structure that can be modified at runtime. The structure and its values are stored in
RAM only when be created or modified. The structure and its values will not be stored to flash until you call the command
explicitly, gatts_store_db (/SGDB, ID=5/4) or system_store_config (/SCFG, ID=2/4).

The EZ-Serial platform contains a few pre-defined GATT elements in the factory default configuration. EZ-Serial requires
these GATT elements for correct operation, and the elements cannot be removed or modified. However, additional structural
elements are entirely customizable.

A GATT structure is fundamentally made up of individual attributes, each of which has a unique numeric handle, a UUID
that is 16 bits, 32 bits, or 128 bits wide, and a value container. Attribute handles start at 1 and may go up to 0xFFFF (65535).
No two attributes may have the same handle. WICED EZ-Serial firmware internally use three structures to store individual
attribute:

 gatts_db[]: An array of GATT entry structures containing the fixed-length portion of each entry (type, permissions,
length, and the 16-bit length prefix value from the data array).

 gatts_db_const_data[]: An array of UINT8 bytes containing the variable-length portion of each entry (the payload from
the data array).

 gatts_external_data[]: An array of UINT8 bytes containing the writable values of each entry.

EZ-Serial provides the gatts_create_attr (/CAC, ID=5/1) API command to create a new custom attribute, which in the WICED
EZ-Serial firmware takes the following arguments:

 uint8 type

 uint8 permissions

 uint16 length

 longuint8a data

The first six bytes of this packed structure (through the 16-bit length prefix on data) is a match for the GATT entry structure.
Any payload data in the data structure goes in the constant data pool instead.

To use the custom Local GATT Services and Characteristics correctly, you must have some prior knowledge of correct
GATT structures, especially in the case of a characteristic declaration which includes additional metadata beyond just the
value attribute’s UUID. The following demonstrates how you would use this command to add one service, one
characteristics, one characteristics value, and one CCCD:

// syntax: /CAC,type, permissions, length, data[]

/CAC,T=00,P=02,L=12,D=0028D0002D121E4B0FA4994ECEB531F40579 1.

/CAC,T=00,P=02,L=15,D=0328301F00BD1DA299E625588CD94201630D12BF9F 2.

/CAC,T=01,P=89,L=40,D=1122334455667788 3.

/CAC,T=00,P=0A,L=04,D=02290000 4.

1. Create a service descriptor, which contains the 0x2800 structural UUID, 0xD0 properties byte, the 16-bit attribute handle
corresponding to the value attribute, and 128-bits UUID. Note that the attribute handle is automatically generated and
EZ-Serial requires the value attribute to be present immediately after the declaration.

2. Create a characteristic descriptor, which contains the 0x2803 structural UUID, 0x030 properties byte, the 16-bit attribute
handle corresponding to the value attribute, and 128-bit UUID.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 44

3. Create a characteristic value descriptor, which contains the initial value 0x1122334455667788 and reserve 0x40 length
room to contain value.

4. Create a CCCD, which contains 0x9202 structural UUID and a value 0x0000.

WARNING: Modifications to the custom GATT structure require flash write operations, which can potentially
disrupt BLE connectivity. Therefore, you should only make changes to the GATT database while there is

no active BLE connection to avoid the possibility of a connection loss.

 Understanding Custom GATT Limitations

The dynamic GATT implementation in EZ-Serial contains some built-in entries to provide required EZ-Serial functionality,
leaving the remaining space available for custom entries. Each entry is assembled by three structures:

1. GATT attribute entry: Containing the fixed-length portion of each entry (type, permissions, length, and the 16-bit length
prefix value from the data array)

2. GATT data array: Containing the variable-length portion of each entry

3. GATT external read/write data: Containing the writable values of each entry

Table 3-7 lists each relevant value on both platforms:

Category Built-in
 CYBT-343026-01

Total Available

SRAM reserved for GATT attribute entries 21*6 = 126 bytes 128*6=768 bytes 107*6=642 bytes

SRAM reserved for GATT data arrays 38+87 = 125 bytes 768 bytes 643 bytes

SRAM reserved for GATT external data arrays 107 bytes 512 bytes 405

Flash memory room reserved for storing GATT data base 358 bytes 2048 bytes 1690 bytes

Table 3-7. Dynamic GATT Structural Limitations

Attempting to create a new custom attribute which exceeds any of the bounds listed in Table 3-7 will generate an error result
indicating the nature of the limitation. See section 7.4 (Error Codes) for details.

 Building Custom Services and Characteristics

The GATT database is made up of one or more primary services. Each primary service has a service declaration (UUID
0x2800) and includes one or more characteristics. Each characteristic has a characteristic declaration (UUID 0x2803) and
a value attribute (any UUID not in the above list), and often has additional characteristic-related descriptors in the 0x2900
range.

UUIDs indicate the purpose of each attribute, but may be (and often are) repeated through the complete database. For
example, a database containing three services will contain three separate attributes which all have the UUID 0x2800, which
is the official “Primary Service Declaration” UUID defined by the Bluetooth SIG. Table 3-8 lists notable pre-defined structural
definition UUIDs from the Bluetooth SIG.

UUID Description

0x2800 Primary Service Declaration

0x2801 Secondary Service Declaration

0x2802 Include Declaration

0x2803 Characteristic Declaration

0x2900 Characteristic Extended Properties

0x2901 Characteristic User Description

0x2902 Client Characteristic Configuration

0x2903 Server Characteristic Configuration

0x2904 Characteristic Format

0x2905 Characteristic Aggregate Format

Table 3-8. Bluetooth SIG Structural UUIDs

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 45

For more details on these and other official identifiers, see the Bluetooth SIG website.

When defining GATT elements at runtime, you must enter each attribute in the correct order based on the desired structure.
Any entries that do not conform to the correct order requirement will be rejected with a validation error. The only case where
a validation warning is allowed is when you define a new service or characteristic declaration and have not yet entered the
subsequent attributes which must follow. You can use the gatts_validate_db (/VGDB, ID=5/3) API command at any time to
perform an integrity check on the current GATT structure to see whether additional attributes are expected.

The required order for each complete characteristic definition (declaration, value, and optional descriptors) is dictated by
the internal BLE stack as follows:

Order UUID Description Required

#1 0x2803 Characteristic Declaration Yes

#2 <custom> Characteristic Value Yes

#3 0x2900 Characteristic Extended Properties No

#4 0x2901 Characteristic User Description No

#5 0x2902 Client Characteristic Configuration No

#6 0x2903 Server Characteristic Configuration No

#7 0x2904 Characteristic Format No

#8 0x2905 Characteristic Aggregate Format No

Table 3-9. Required Characteristic Attribute Order

Any optional attributes may be omitted if all provided attributes are supplied in the order mentioned in Table 3-9.

For details on how to use custom GATT creation API commands to add support for Bluetooth SIG official services such as
Device Information, Health Thermometer, and others, see section 10.2 (Adopted Bluetooth SIG GATT Profile Structure
Snippets) and the API reference material for gatts_create_attr (/CAC, ID=5/1).

 Choosing Correct GATT Permissions

It is critical to use correct permissions when defining any custom GATT structural elements. See section 10.2 (Adopted
Bluetooth SIG GATT Profile Structure Snippets) for example definitions, and you may notice certain patterns. Here are the
recommended guidelines for the most common entries:

 Service declarations (UUID = 0x2800)

PERM =0x02

 PERM_READABLE

Characteristic properties are not needed because they do not apply.

 Characteristic declarations (UUID = 0x2803)

PERM =0x02

 PERM_READABLE

Characteristic properties = <actual properties>

 Characteristic value attributes (type = 0x0000)

PERM =0x89

 PERM_VARIABLE_LENGTH

 PERM_WRITE_REQ

 PERM_SERVICE_UUID_128 (if this service has a 128-bit UUID)

Characteristic properties value is not required because it has been defined in previous characteristic declarations.

 Characteristic user description attributes (UUID = 0x2901)

PERM =0x02

 PERM_READABLE

https://www.bluetooth.com/specifications/assigned-numbers/generic-attribute-profile

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 46

Characteristic properties = 0x02 (read)

 Client characteristic configuration attributes (UUID = 0x2902)

PERM =0x0A

 PERM_READABLE

 PERM_WRITE_REQ

Characteristic properties = 0x0A (read + write)

In general, structural elements such as service and characteristic declarations should be read-only, but should have no
particular security restrictions on them. This ensures that a connected client is able to discover the database structure
correctly, even if additional security is required to execute read and/or write operations on the characteristic value attributes.
Some Android devices are known to have problems during discovery if the declaration descriptors themselves have extra
security requirements.

3.6.2 Listing Local GATT Services, Characteristics, and Descriptors

Listing the local GATT structure can be helpful in certain cases, even though it is typically the remote GATT structure that
requires discovery. This is especially true because you can dynamically change the local GATT structure at runtime. EZ-
Serial provides three commands for local discovery.

 Discovering Local GATT Services

Use the gatts_discover_services (/DLS, ID=5/6) API command to obtain a list of services in the local GATT database.

Example 14. Local GATT service discovery with factory default structure (no custom attributes)

Direction Text Content Binary Content Effect

TX→ /DLS,B=0,E=0 C0 04 05 06 00 00 00 00 68 Request to discover all
local services

←RX @R,0011,/DLS,0000,C=0003 C0 04 05 06 00 00 03 00 6B Response indicates
success, 3 records to
follow

←RX @E,0024,DL,H=0001,R=0007,T=2800,P=00,U=0018 80 0A 05 01 01 00 07 00 00
28 00 02 00 18 73

Service 0x1800, start=1,
end=7

←RX @E,0024,DL,H=0008,R=000B,T=2800,P=00,U=0118 80 0A 05 01 01 00 07 00 00
28 00 02 00 18 73

Service 0x1801, start=8,
end=11 (0x0B)

←RX @E,0040,DL,H=000C,R=0015,T=2800,P=00,
U=00A10C2000089A9EE21115A133333365

80 18 05 01 0C 00 15 00 00
28 00 10 00 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33 33
65 44

Service 0x6533…A100,
start=12 (0x0C), end=21
(0x15)

 Discovering Local GATT Characteristics

Use the gatts_discover_characteristics (/DLC, ID=5/7) API command to obtain a list of characteristics in the local GATT
database.

Example 15. Local GATT characteristic discovery with factory default structure (no custom attributes)

Direction Text Content Binary Content Effect

TX→ /DLC,B=0,E=0,S=0 C0 06 05 07 00 00 00 00 00
00 6B

Request to discover all local
characteristics

←RX @R,0011,/DLC,0000,C=0007 C0 04 05 07 00 00 07 00 70 Response indicates
success, 7 records to follow

←RX @E,0024,DL,H=0002,R=0003,T=2803,P=02,U=002A 80 0A 05 01 02 00 03 00 03
28 02 02 00 2A 87

Char 0x2A00, decl
handle=2, value handle=3,
perm=0x02

←RX @E,0024,DL,H=0004,R=0005,T=2803,P=02,U=012A 80 0A 05 01 02 00 03 00 03
28 02 02 00 2A 87

Char 0x2A01, decl
handle=4, value handle=5,
perm=0x02

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 47

Direction Text Content Binary Content Effect

←RX @E,0024,DL,H=0006,R=0007,T=2803,P=02,U=042A 80 0A 05 01 04 00 05 00 03
28 02 02 01 2A 8C

Char 0x2A04, decl
handle=6, value handle=7,
perm=0x02

←RX @E,0024,DL,H=0009,R=000A,T=2803,P=22,U=052A 80 0A 05 01 09 00 0A 00 03
28 22 02 05 2A BA

Char 0x2A05, decl
handle=9, value handle=10,
perm=0x22

←RX @E,0040,DL,H=000D,R=000E,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365

80 18 05 01 0D 00 0E 00 03
28 28 10 01 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33
33 65 6A

Char 0x6533…A101, decl
handle=13, value
handle=14, perm=0x28

←RX @E,0040,DL,H=0010,R=0011,T=2803,P=14,

U=02A10C2000089A9EE21115A133333365

80 18 05 01 10 00 11 00 03
28 14 10 02 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33
33 65 5D

Char 0x6533…A102, decl
handle=16, value
handle=17, perm=0x14

←RX @E,0040,DL,H=0013,R=0014,T=2803,P=20,

U=03A10C2000089A9EE21115A133333365

80 18 05 01 13 00 14 00 03
28 20 10 03 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33
33 65 70

Char 0x6533…A103, decl
handle=19, value
handle=20, perm=0x20

 Discovering Local GATT Descriptors

Use the gatts_discover_descriptors (/DLD, ID=5/8) API command to obtain a list of descriptors in the local GATT database.

Example 16. Local GATT descriptor discovery with factory default structure (no custom attributes)

Direction Text Content Binary Content Effect

TX→ /DLD,B=0,E=0,S=0,C=0 C0 08 05 08 00 00 00 00 00
00 00 00 6E

Request to discover all
local descriptors

←RX @R,0011,/DLD,0000,C=0015 C0 04 05 08 00 00 15 00 7F Response indicates
success, 21 records to
follow

←RX @E,0024,DL,H=0001,R=0007,T=2800,P=00,U=0028 80 0A 05 01 01 00 07 00 00
28 00 02 00 28 83

UUID 0x2800 (Primary
Service), start=1, end=7

←RX @E,0024,DL,H=0002,R=0003,T=2803,P=02,U=0328 80 0A 05 01 02 00 03 00 03
28 02 02 03 28 88

UUID 0x2803
(Characteristic), decl=2,
value handle=3

←RX @E,0024,DL,H=0003,R=0000,T=0000,P=02,U=002A 80 0A 05 01 03 00 00 00 00
00 02 02 00 2A 5A

UUID 0x2A00 (Device
Name), handle=3,
perm=0x02

Additional records omitted for brevity

←RX @E,0024,DL,H=000C,R=0015,T=2800,P=00,U=0028 80 0A 05 01 0C 00 15 00 00
28 00 02 00 28 9C

UUID 0x2800 (Primary
Service), start=12, end=21

←RX @E,0024,DL,H=000D,R=000E,T=2803,P=28,U=0328 80 0A 05 01 0D 00 0E 00 03
28 28 02 03 28 C4

UUID 0x2803
(Characteristic), decl=13,
value handle=14,
perm=0x28

←RX @E,0040,DL,H=000E,R=0000,T=0000,P=28,

U=01A10C2000089A9EE21115A133333365

80 18 05 01 0E 00 00 00 00
00 28 10 01 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33 33
65 32

UUID 0x6533…A101
(Acknowledged Data
Characteristic:),
handle=14, perm=0x28

←RX @E,0024,DL,H=000F,R=0000,T=2902,P=0A,U=0229

80 0A 05 01 0F 00 00 00 02
29 0A 02 02 29 9A

UUID 0x2902 (CCCD),
handle=15, perm=0x0A

←RX @E,0024,DL,H=0010,R=0011,T=2803,P=14,U=0328 80 0A 05 01 10 00 11 00 03
28 14 02 03 28 B6

UUID 0x2803
(Characteristic), decl=16,
value handle=17,
perm=0x28

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 48

Direction Text Content Binary Content Effect

←RX @E,0040,DL,H=0011,R=0000,T=0000,P=14,

U=02A10C2000089A9EE21115A133333365

80 18 05 01 11 00 00 00 00
00 14 10 02 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33 33
65 22

UUID 0x6533…A102
(Unacknowledged Data
Characteristic), handle=17,
perm=0x28

←RX @E,0024,DL,H=0012,R=0000,T=2902,P=0A,U=0229 80 0A 05 01 12 00 00 00 02
29 0A 02 02 29 9D

UUID 0x2902 (CCCD),
handle=18, perm=0x0A

←RX @E,0024,DL,H=0013,R=0014,T=2803,P=20,U=0328 80 0A 05 01 13 00 14 00 03
28 20 02 03 28 C8

UUID 0x2803
(Characteristic), decl=19,
value handle=20,
perm=0x28

←RX @E,0040,DL,H=0014,R=0000,T=0000,P=20,

U=03A10C2000089A9EE21115A133333365

80 18 05 01 14 00 00 00 00
00 20 10 03 A1 0C 20 00 08
9A 9E E2 11 15 A1 33 33 33
65 32

UUID 0x6533…A103 (RX
Flow Characteristic),
handle=20, perm=0x20

 @E,0024,DL,H=0015,R=0000,T=2902,P=0A,U=0229 80 0A 05 01 15 00 00 00 02
29 0A 02 02 29 A0

UUID 0x2902 (CCCD),
handle=21, perm=0x0A

3.6.3 Reading and Writing Local GATT Attribute Values

Read and write local GATT values using the gatts_read_handle (/RLH, ID=5/9) and gatts_write_handle (/WLH, ID=5/10)
API commands, respectively.

It is always possible to locally read any attribute, and locally write any attribute that supports the write operation. Some
attributes, such as service and characteristic declarations, contain only constant data (stored in flash) that is not meant to
be modified with a typical GATT write command. If you intend to change the structure of the GATT database itself, use the
gatts_create_attr (/CAC, ID=5/1) and gatts_delete_attr (/CAD, ID=5/2) API commands.

 Reading Local GATT Data

You can read the value of a local attribute using the gatts_read_handle (/RLH, ID=5/9) API command. EZ-Serial will return
the current value in the response.

Example 17. Read local Device Name characteristic

Direction Text Content Binary Content Effect

TX→ /RLH,H=3 C0 02 05 09 03 00 6C Read attribute with handle = 3

←RX @R,0031,/RLH,0000,

D=455A2D53657269616C2031

413A32313A4433

[C0 16 05 09 00 00 12 00 45 5A 2D 53
65 72 69 61 6C 20 31 41 3A 32 31 3A
44 33 9B

Response indicates success, hex
data is “EZ-Serial 1A:21:D3”

 Writing Local GATT Data

You can write the value of a local attribute using the gatts_write_handle (/WLH, ID=5/10) API command. This command
replaces any existing data in the attribute and is limited by the maximum length of the attribute in the GATT structure.

Writing data does not automatically push a notification or indication packet to a remote client, even if the client has
subscribed to either of these types of pushed updates. See section 3.6.4 (Notifying and Indicating Data to a Remote Client)
for details on how to push data.

Example 18. Write “ABCD” at beginning of local Device Name characteristic

Direction Text Content Binary Content Effect

TX→ /WLH,H=3,D=41424344 C0 08 05 0A 03 00 04 00 41 42 43 44
81

Write “ABCD” (hex) into attribute with
handle = 3

←RX @R,000A,/WLH,0000 [C0 02 05 0A 00 00 6A Response indicates success

TX→ /RLH,H=3 C0 02 05 09 03 00 6C Read attribute with handle = 3 to verify

←RX @R,0031,/RLH,0000,D=41424344 C0 08 05 09 00 00 04 00 41 42 43 44
7D

Response indicates success, data
shows expected value

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 49

3.6.4 Notifying and Indicating Data to a Remote Client

Notifying and indicating allow a server to push updates to a client without the client specifically requesting the latest values.
These transfer mechanisms provide an efficient way to send real-time updates without constant polling from the client side,
saving power for use cases such as remote sensors or any interrupt-driven activities.

Notifications and indications both transmit data from the server to the client, but notifications are unacknowledged, while
indications are acknowledged. You can transmit multiple notifications during a single connection interval, but you can only
transmit one indication every two connection intervals (one interval for the transmission and one for the acknowledgement).

Although the server decides when to push data to the client using these methods, the client retains ultimate control over
whether the server may transmit at all, via the use of “subscription” bits for each type of transfer. All GATT characteristics
which support either the “notify” or “indicate” operation must have a CCCD within the set of attributes making up the complete
characteristic structure. For example, the “Service Changed” characteristic (UUID 0x2A05) within the “Generic Attribute”
service (UUID 0x1801) is made up of three separate attributes as listed in Table 3-10.

Handle UUID Description

0x0009 0x2803 Characteristic declaration

0x000A 0x2A05 Service change value attribute

0x000B 0x2902 Client Characteristic Configuration Descriptor (CCCD)

Table 3-10. Service Changed GATT Characteristic Structure

This characteristic supports the “indicate” operation. For a client to subscribe to indications, it must set Bit 1 (0x02) of the
value in the CCCD. This descriptor holds a 16-bit value, so the correct operation on the client side is to write [02 00] to

the 0x000B handle.

For characteristics that support the “notify” operation, the correct subscription flag is Bit 0 (0x01).

Notification and indication subscriptions do not persist across multiple connections.

 Notifying Data to a Remote Client

Use the gatts_notify_handle (/NH, ID=5/11) API command to notify data to a remote Client. You must use a handle
corresponding to a value attribute for a characteristic for which the remote client has already subscribed to notifications by
writing 0x0001 to the relevant CCCD. First, you need create a CCCD value as shown here.

Note: Notifying data to a client requires an active connection.

Example 19. Notify a four-byte value to a Client manually using the customized characteristic with CCCD

Direction Text Content Binary Content Effect

TX→
/CAC,T=00,P=2,L=0012,D=002800B10

C2000089A9EE21115A133333365

C0 18 05 01 00 02 12 00 12 00 00 28 00

B1 0C 20 00 08 9A 9E E2 11 15 A1 33 33

33 65 89

Create a new CCCD value as

follows:

First, create new service,

UUID=.

←RX
@R,0018,/CAC,0000,H=0016,V=0001 C0 06 05 01 00 00 16 00 01 00 7C Response indicates success.

TX→
/CAC,T=00,P=2,L=0015,D=032828180

001B10C2000089A9EE21115A13333336

5

[C0 1B 05 01 00 02 15 00 15 00 03 28 28

18 00 01 B1 0C 20 00 08 9A 9E E2 11 15

A1 33 33 33 65 D6

Then, create a characteristic.

←RX
@R,0018,/CAC,0000,H=0017,V=0001 C0 06 05 01 00 00 17 00 01 00 7D Response indicates success.

TX→
/CAC,T=01,P=B9,L=0014,D=

C0 06 05 01 01 89 14 00 00 00 03 Create a value for the above

characteristic.

←RX
@R,0018,/CAC,0000,H=0018,V=0000 C0 06 05 01 00 00 18 00 00 00 7D Response indicates success.

TX→
/CAC,T=00,P=0A,L=04,D=0229 C0 08 05 01 00 0A 04 00 02 00 02 29 A2 Create CCCD.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 50

Direction Text Content Binary Content Effect

←RX
@R,0018,/CAC,0000,H=0019,V=0000 C0 06 05 01 00 00 19 00 00 00 7E

←RX
@E,0035,C=40,A=00A05012C722,T=00

,I=0007,L=0000,O=000A,B=0

80 0F 04 05 40 22 C7 12 50 A0 00 00 07

00 00 00 0A 00 00 6D

Connected from peer device

←RX
@E,001A,W,C=40,H=0019,T=00,D=010

0

80 08 05 02 40 19 00 00 02 00 01 00 84 Subscribe service by peer

device.

TX→ /NH,C=40,H=18,D=41424344 C0 08 05 0B 40 18 00 04 41 42 43 44 D7 Notify “ABCD” (hex) via
attribute with handle = 17
(0x11).

←RX @R,0009,/NH,0000 C0 02 05 0B 00 00 6B Response indicates success.

 Indicating Data to a Remote Client

Use the gatts_indicate_handle (/IH, ID=5/12) API command to indicate data to a remote client. You must use a handle
corresponding to a value attribute for a characteristic for which the remote client has already subscribed to indications by
writing 0x0002 to the relevant CCCD.

Note: Indicating data to a client requires an active connection.

Example 20. Indicate a start/end handle range to a Client through the Service Changed Characteristic

Direction Text Content Binary Content Effect

←RX @E,001A,W,C=40,H=000B,T=00,D=0200 80 08 05 02 40 0B 00 00 02
00 02 00 77

Remote Client writes 0x002 to handle
0x0B to subscribe the Service
Changed Characteristic.

TX→ /IH,C=40,H=A,D=1D002500 C0 08 05 0C 40 0A 00 04 1D
00 25 00 02

Write 1D002500 via attribute with
handle = 10 (0x0A)

←RX @R,0009,/IH,0000 C0 02 05 0C 00 00 6C Response indicates success.

←RX @E,000F,IC,C=40,H=000A 80 03 05 03 40 0A 00 6E Event indicates Client has confirmed
receipt of data.

3.6.5 Detecting and Processing Written Data from a Remote Client

Write operations from a remote GATT Client generates the gatts_data_written (W, ID=5/2) API event, containing the handle
and value data as well as the remote connection handle from the device that initiated the request. This event occurs only if
the write succeeds and was not blocked due to incorrect permissions, insufficient encryption or authentication levels, or
invalid length or offset.

Note: EZ-Serial does not currently implement an API event for read requests.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 51

3.7 GATT Client Examples

EZ-Serial provides GATT Client operational support through a variety of API methods. All methods described in the sections
below require an active connection to a remote peer device, and will generate an error result if attempted without an active
connection.

3.7.1 How to Discover a Remote Server’s GATT Structure

EZ-Serial’s remote GATT discovery methods function in the same way as local discovery methods, with an addition of a
connection handle in the discovery result output. For an overview of behavioral differences between local and remote GATT
discovery, see Listing Local GATT Services, Characteristics, and Descriptors.

NOTE: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, make sure that you also enable the encryption bit. If not, the command will be
rejected with an error result.

NOTE: Remote discovery procedures often complete with a final result code of 0x060A rather than

0x0000. This does not indicate a problem, but only means that the final internal request to find more data

in the specified start/end range yielded no further results. This is a logical indicator to the Client that it
should terminate the discovery process. You can avoid this result code by specifying start and end range
values in the discovery request command, which do not result in a final search in an empty range on the
server. However, these start and end values are typically not available before performing the discovery
in the first place.

 Discovering Remote GATT Services

Use the gattc_discover_services (/DRS, ID=6/1) API command to obtain a list of services in the remote GATT database on
a connected peer device.

Example 1: Remote GATT service discovery on an EZ-Serial peer device with factory default configuration

Direction Content Effect

TX→ /DRS Request to discover all remote services

←RX @R,000A,/DRS,0000 Response indicates success

←RX @E,0029,DR,C=04,H=0001,R=0007,T=2800,P=00,

U=0018

Service 0x1800, start=1, end=7

←RX @E,0029,DR,C=04,H=0008,R=000B,T=2800,P=00,

U=0118

Service 0x1801, start=8, end=11 (0x0B)

←RX @E,0045,DR,C=04,H=000C,R=0015,T=2800,P=00,

U=00A10C2000089A9EE21115A133333365

Service 0x6533…A100, start=12 (0x0C), end=21 (0x15)

←RX @E,0045,DR,C=04,H=0016,R=001C,T=2800,P=00,

U=00A20C2000089A9EE21115A133333365

Service 0x6533…A200, start=22 (0x16), end=28 (0x1C)

←RX @E,0010,RPC,C=04,R=060A Remote procedure complete

 Discovering Remote GATT Characteristics

Use the gattc_discover_characteristics (/DRC, ID=6/2) API command to obtain a list of characteristics in the remote GATT
database on a connected peer device.

Example 1: Remote GATT characteristic discovery on an EZ-Serial peer device with factory default configuration

Direction Content Effect

TX→ /DRC Request to discover all remote characteristics

←RX @R,000A,/DRC,0000 Response indicates success

←RX @E,0029,DR,C=04,H=0002,R=0003,T=2803,P=02,

U=002A
Char 0x2A00, decl handle=2, value handle=3, perm=0x02

←RX @E,0029,DR,C=04,H=0004,R=0005,T=2803,P=02,

U=012A
Char 0x2A01, decl handle=4, value handle=5, perm=0x02

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 52

Direction Content Effect

←RX @E,0029,DR,C=04,H=0006,R=0007,T=2803,P=02,

U=042A
Char 0x2A04, decl handle=6, value handle=7, perm=0x02

←RX @E,0029,DR,C=04,H=0009,R=000A,T=2803,P=22,

U=052A
Char 0x2A05, decl handle=9, value handle=10, perm=0x22

←RX @E,0045,DR,C=04,H=000D,R=000E,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365
Char 0x6533…A101, decl handle=13, value handle=14,
perm=0x28

←RX @E,0045,DR,C=04,H=0010,R=0011,T=2803,P=14,

U=02A10C2000089A9EE21115A133333365
Char 0x6533…A102, decl handle=16, value handle=17,
perm=0x14

←RX @E,0045,DR,C=04,H=0013,R=0014,T=2803,P=20,

U=03A10C2000089A9EE21115A133333365
Char 0x6533…A103, decl handle=19, value handle=20,
perm=0x20

←RX @E,0045,DR,C=04,H=0017,R=0018,T=2803,P=28,

U=01A20C2000089A9EE21115A133333365
Char 0x6533…A201, decl handle=23, value handle=24,
perm=0x28

←RX @E,0045,DR,C=04,H=001A,R=001B,T=2803,P=28,

U=02A20C2000089A9EE21115A133333365
Char 0x6533…A202, decl handle=26, value handle=27,
perm=0x28

←RX @E,0010,RPC,C=04,R=060A Remote procedure complete, 0x060A = no attributes found in
last search request

 Discovering Remote GATT Descriptors

Use the gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors in the remote GATT
database on a connected peer device.

Example 1: Remote GATT descriptor discovery on an EZ-Serial peer device with factory default configuration

Direction Content Effect

TX→ /DRD Request to discover all remote descriptors

←RX @R,000A,/DRD,0000 Response indicates success

←RX @E,0024,DR,H=0001,R=0000,T=2800,P=00,

U=0028

UUID 0x2800 (Primary Service), start=1

←RX @E,0024,DR,H=0002,R=0000,T=2803,P=00,

U=0328

UUID 0x2803 (Characteristic), decl=2

←RX @E,0024,DR,H=0003,R=0000,T=0000,P=00,

U=002A

UUID 0x2A00 (Device Name), handle=3

Additional records omitted for brevity

←RX @E,0029,DR,C=04,H=0016,R=0000,T=2800,P=00,

U=0028
UUID 0x2800 (Primary Service), start=22

←RX @E,0029,DR,C=04,H=0017,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=23

←RX @E,0045,DR,C=04,H=0018,R=0000,T=0000,P=00,

U=01A20C2000089A9EE21115A133333365
UUID 0x6533…A201 (CYCommand Challenge), handle=24

←RX @E,0029,DR,C=04,H=0019,R=0000,T=2902,P=00,

U=0229
UUID 0x2902 (CCCD), handle=25

←RX @E,0029,DR,C=04,H=001A,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=26

←RX @E,0045,DR,C=04,H=001B,R=0000,T=0000,P=00,

U=02A20C2000089A9EE21115A133333365
UUID 0x6533…A202 (CYCommand Data), handle=27

←RX @E,0029,DR,C=04,H=001C,R=0000,T=2902,P=00,

U=0229
UUID 0x2902 (CCCD), handle=28

←RX @E,0010,RPC,C=04,R=060A Long remote procedure complete, 0x060A = no attributes
found in last search request

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 53

3.7.2 How to Read and Write Remote GATT Attribute Values

Reading and writing local GATT values can be done with the gattc_read_handle (/RRH, ID=6/4) and gattc_write_handle
(/WRH, ID=6/5) API commands, respectively.

3.7.3 How to Detect Notified or Indicated Values from a Remote GATT Server

A remote GATT Server may push data updates to a GATT Client at unpredictable times if the client has subscribed to
notifications or indications on a supported remote GATT Server characteristic. When this occurs, EZ-Serial generates the
gattc_data_received (D, ID=6/3) API event with the connection handle, attribute handle, and value data.

To receive notifications or indications from a remote GATT server, you must first subscribe to the relevant type of data
updates by writing a special value to the attribute called Client Characteristic Configuration Descriptor (CCCD). This attribute
always has a UUID of 0x2902, and is a separate attribute relative to the characteristic declaration (UUID 0x2803) or
characteristic value (custom UUID).

Usually, the CCCD attribute has a handle value that is +1 or +2 from the characteristic value attribute. You can use the
gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors and identify which attributes you
need to use. For example, a remote server structure might contain something like the following:

• Handle 0x0017, UUID 0x2803: Characteristic Declaration Descriptor

• Handle 0x0018, UUID 0x2A46: Characteristic Value Descriptor (“New Alert” characteristic)

• Handle 0x0019, UUID 0x2902: Client Characteristic Configuration Descriptor

With this structure, you can subscribe to notifications for this characteristic by writing the 16-bit value 0x0001 to the attribute
with handle 0x0019. Remember that you must write this value as a little-endian integer [01 00]. To unsubscribe from

receiving notifications, simply write the value 0x0000 to the same CCCD attribute.

Subscribing to indications requires the same procedure, but you must use the value 0x0002 instead of 0x0001.

The CCCD attribute with UUID 0x2902 will only be present for a characteristic which supports either notifications or
indications. Whether you should enable notifications or indications depends on which of those two GATT methods is
implemented on the GATT Server side. For official, adopted characteristics, you can find this information on the Bluetooth
SIG developer website. For proprietary/custom characteristics, see the documentation or reference material available from
the product developer.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 54

3.8 Security and Encryption Examples

EZ-Serial supports built-in Bluetooth security technologies for safeguarding sensitive data transmitted wirelessly, including
privacy and encryption.

3.8.1 Bonding with or without MITM Protection

Bonding between two devices requires generating and exchanging encryption keys, and then permanently storing
encryption data along with the information required to identify the bonded device and reuse the same keys again in the
future. The mechanism of pairing depends on which side (master or slave) initiates the pairing request, and the I/O
capabilities of each side.

Note: While the Bluetooth specification allows pairing (generation and exchange of encryption keys) without bonding

(permanent storage of encryption data), most common smartphones, tablets, and computer operating systems require

performing both at the same time if you need encryption. The encryption-only arrangement (no bonding) is supported

only between modules that support pairing without bonding.

EZ-Serial supports pairing with or without MITM protection enabled. The factory default settings apply the so-called “just
works” method, with no passkey entry and no MITM protection. EZ-Serial also supports the configuration of a fixed passkey
to be used during the pairing process instead of no passkey.

 Pairing in “Just Works” Mode Without MITM Protection (BLE)

The simplest way to bond requires no special passkey entry or display. If your device has no input or output capabilities,
you must use this mode for pairing since MITM protection requires numeric display or entry (or both) to function correctly.

Example 21 assumes that you have already connected to a remote peer device. An active connection is required for any
type of pairing operation to succeed. However, configuration of security settings may be done either before or after
connecting.

Example 21. Configure simple pairing without MITM protection, then initiate pairing

Direction Text Content Binary Content Effect

TX→ SSBP,M=40,B=1,K=10,P=0,I=3,F=1 C0 06 07 0B 40 01 10 00 03 01
C6

Set “No Input / No Output” I/O
(Factory default).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates success.

TX→ /P,C=01,B=0,K=10,M=40,P=0 C0 05 07 03 01 40 00 10 00 B9 Initiate pairing request to remote
peer.

←RX @R,0008,/P,0000 C0 02 07 03 00 00 65 Response indicates success.

←RX @E,001B,P,C=01,M=00,B=00,K=00,P=00 80 05 07 02 01 00 00 00 00 28 Event indicates pairing process
request.

←RX @E,000F,PR,C=01,R=0000 80 03 07 03 01 16 00 3D Event indicates pairing process
completed successfully.

←RX @E,000E,ENC,C=01,S=00 80 02 07 04 01 00 27 Event indicates encryption status
changed successfully.

 Pairing with a Fixed Passkey(BLE)

EZ-Serial supports the configuration of a fixed passkey to be used during the pairing process instead of either no passkey
or a random one. You can choose a fixed 6-digit value between 000000 and 999999 by using the smp_set_fixed_passkey
(SFPK, ID=7/13) API command and configuring the local I/O capabilities to the “Display Only” value with the
smp_set_security_parameters (SSBP, ID=7/11) API command.

Note: The fixed passkey takes effect only if you enable fixed passkey use by setting Bit 1 (0x02) of the security flags

parameter and set the “Display Only” I/O capabilities value (0x00) using the smp_set_security_parameters (SSBP,

ID=7/11) API command. If both conditions are not met, the stack reverts to the default behavior of using a random

passkey.

Example 22 assumes that the module is already connected to a remote peer device. An active connection is required for
any type of pairing operation to succeed. However, configuration of security settings may be done either before or after
connection.

In CYSmart, you need to set its IO ability to keyboard only.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 55

Example 22. Configure “123456” fixed passkey value and required I/O capabilities, then pair from remote peer

Direction Text Content Binary Content Effect

TX→ SSBP,M=4D,B=1,K=10,P=0,I=0,F=3

C0 06 07 0B 4D 01 10 00 02 03
D4

Set “Display Only” I/O, enable
fixed passkey use flag bit (0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates success.

TX→ SFPK,P=1E240 C0 04 07 0D 40 E2 01 00 94 Set fixed passkey value (1E240
hex = 123456 dec).

←RX @R,000A,SFPK,0000 C0 02 07 0D 00 00 6F Response indicates success.

←RX @E,001B,P,C=01,M=00,B=00,K=00,P=00 80 05 07 02 01 00 00 00 00 28 Event indicates pairing process
request.

←RX @E,000F,PR,C=01,R=0000 80 03 07 03 01 00 00 27 Event indicates encryption status
changed (peer entered key).

←RX @E,000E,ENC,C=01,S=00 80 02 07 04 01 00 27 Event indicates encryption status
changed successfully.

 Pairing with a Random Passkey (BLE)

Example 23 shows how to generate a random passkey and that peer device compares the passkey and accept pairing.

In CYSmart, you need to set its IO ability to display Yes or No.

Example 23. Configure random passkey value and required I/O capabilities, then pair from remote peer

Direction Text Content Binary Content Effect

TX→ SSBP,M=4D,B=1,K=10,P=0,I=4,F=3

C0 06 07 0B 4D 01 10 00 04 03
D6

Set “Keyboard + Display” I/O,
enable fixed passkey use flag bit
(0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates success.

←RX @E,001B,P,C=01,M=00,B=00,K=00,P=00 80 05 07 02 01 00 00 00 00 28 Event indicates pairing process
request.

←RX @E,0014,PKD,C=01,P=0000EA26 80 05 07 05 01 26 EA 00 00 3B Event shows the random passkey

 Peer device compare passkey
and click yes

←RX @E,000F,PR,C=01,R=0000 80 03 07 03 01 00 00 27 Event indicates encryption status
changed (peer entered key).

←RX @E,000E,ENC,C=01,S=00 80 02 07 04 01 00 27 Event indicates encryption status
changed successfully.

 Pairing with a random Passkey (BT Classic)

Example 24 illustrates how to enter a Passkey to accept pairing with Bluetooth Classic.

Example 24. Enter random key to accept the pair from remote peer

Direction Text Content Binary Content Effect

TX→ SSBP,M=4D,B=1,K=10,P=0,I=2,F=3

C0 06 07 0B 4D 01 10 00 02 03
D4

Set “Display Only” I/O, enable
fixed passkey use flag bit (0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates success.

←RX @E,001B,P,C=00,M=00,B=00,K=00,P=00 80 05 07 02 00 00 00 00 00 27 Event indicates pairing process
request.

←RX @E,0015,BTPIN,A=E4A471C2FDFC 80 06 07 07 FC FD C2 71 A4 E4
E1

Pin entry request from peer
device

TX→ /BTPIN,P=C8CEC,C=0 C0 05 07 11 00 EC 8C 0C 00 FA Send BT PIN code to peer device
as it displays

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 56

Direction Text Content Binary Content Effect

←RX @R,000C,/BTPIN,0000 C0 02 07 11 00 00 73 Response indicates success.

←RX @E,000F,PR,C=00,R=0000 80 03 07 03 00 00 00 26 Event indicates encryption status
changed (peer entered key).

←RX @E,000E,ENC,C=00,S=00 80 02 07 04 00 00 26 Event indicates encryption status
changed successfully.

Example 25 shows how to compare the passkey and uses a yes/no indication for pairing via an end product display. The
peer device compares the key and accepts pairing.

Example 25.Display random passkey value for Peer Device and select Yes/No to accept pairing

Direction Text Content Binary Content Effect

TX→ SSBP,M=5D,B=1,K=10,P=0,I=0,F=3

C0 06 07 0B 4D 01 10 00 02 03
D4

Set “Display Only” I/O, enable
fixed passkey use flag bit (0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates success.

←RX @E,001B,P,C=00,M=00,B=00,K=00,P=00 80 05 07 02 00 00 00 00 00 27 Event indicates pairing process
request.

←RX @E,0014,PKD,C=01,P=0000EA26 80 05 07 05 01 26 EA 00 00 3B Event shows the random passkey

 Peer device compare passkey
and click yes

←RX @E,000F,PR,C=00,R=0000 80 03 07 03 00 00 00 26 Event indicates encryption status
changed (peer entered key).

←RX @E,000E,ENC,C=00,S=00 80 02 07 04 00 00 26 Event indicates encryption status
changed successfully.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 57

3.9 Performance Testing Examples

This section covers techniques to achieve optimal performance in specific contexts.

3.9.1 Maximizing Throughput to a Remote Peer

Throughput concerns how much data you can move across a link within a specific period, usually expressed in bytes per
second or bits per second (8 bits per byte). In the case of BLE, the following guidelines help improve the average throughput:

 Minimize the connection interval. The BLE specification allows 7.5 ms minimum connection interval. Data transfers
are specifically timed during BLE connections, and more frequent transfers mean higher potential throughput.

▪ When operating in the GAP Peripheral role, the remote Central determines the initial interval, and you must request
an update with the gap_update_conn_parameters (/UCP, ID=4/3) API command after connecting. The remote peer
(master/central device) may either accept or reject this request. Note that if the remote peer rejects the request, it does
not notify the requesting device; the only evidence of the rejection is the lack of a subsequent gap_connection_updated
(CU, ID=4/8) API event.

 Maximize the payload size for GATT transfers. It takes much longer to send 20 one-byte packets than one 20-byte
packet, due to the low transmission duty cycle required by the BLE protocol. If your application has five 16-bit sensor
measurement values that are used to the remote peer on the same interval, use a single characteristic to send all 10
bytes at once rather than using five separate characteristics.

 Use unacknowledged transfers. You can push more unacknowledged data through in a single connection interval
than you can with acknowledged transfers. A typical acknowledged data transfer requires two full connection intervals
to complete (one for the transfer and one for the acknowledgement), but multiple unacknowledged transfers can be
used in sequence within the same interval—up to one packet every 1.25 ms, if supported by the remote client. Typically,
standalone full-stack modules cannot buffer and process data quite this fast, but it is often possible to achieve
something near this level of throughput. Note that making this change may require additional application logic to provide
a packet delivery/retry request mechanism.

 For Server-to-Client transfers, use the “notify” operation instead of “indicate.”

These actions help increase the observed throughput, but simultaneously increase power consumption. Keep this trade-off
in mind to choose the right balance between power consumption and throughput.

Example 26. Request a connection parameter update to 7.5-ms interval, no latency, 1-second timeout

Direction Text Content Binary Content Effect

TX→ /UCP,C=40,I=6,L=0,O=64 C0 07 04 03 40 06 00 00 00 64
00 11

Request connection update to
7.5 ms (6 * 1.25 ms), no slave
latency, 1-second supervision
timeout.

←RX @R,000A,/UCP,0000 C0 02 04 03 00 00 62 Response indicates success;
request sent to remote peer.

←RX @E,001D,CU,H=40,I=0006,L=0000,O=0064 80 07 04 08 40 06 00 00 00 64
00 D6

Event indicates new connection
parameters accepted.

 Maximizing Throughput to an iOS Device

Apple devices began supporting BLE technology with the iPhone 4S and iOS 5. iOS devices have additional limitations on
top of those mandated in the Bluetooth specification.

The following additional guidelines apply for maximizing iOS throughput:

 When operating in the GAP Central role, the latest iOS devices limit the minimum connection interval of 30 ms (or 11.25
ms when connecting to HID devices). If the peripheral requests a shorter connection interval than this, the iOS device
rejects the request.

 iOS devices limit unacknowledged GATT data transfers (write-no-response or notify) to a maximum of four per
connection interval, according to widespread observations.

 iOS 5 added support for GAP Peripheral role operation, which includes support for 7.5-ms intervals as required by the
Bluetooth specification. However, switching GAP roles may not be suitable depending on other application
requirements, and requires a notably different mobile app development approach with its own side effects. In addition,

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 58

EZ-Serial for EZ-BT WICED modules requires Peripheral-mode operation on the module, so the remote client must
use the Central role.

See the Core Bluetooth Programming Guide on the Apple Developer website for official guidelines.

Example 27. Request a connection parameter update to 30-ms interval, no latency, 1-second timeout

Direction Text Content Binary Content Effect

TX→ /UCP,C=40,I=18,L=0,O=64 [C0 07 04 03 40 18 00 00 00 64
00 23

Request connection update to
30 ms (24 * 1.25 ms), no slave
latency, 1-second supervision
timeout.

←RX @R,000A,/UCP,0000 C0 02 04 03 00 00 62 Response indicates success;
request sent to remote peer.

←RX @E,001D,CU,H=04,I=0010,L=0000,O=0064 80 07 04 08 40 18 00 00 00 64
00 E8

Event indicates new connection
parameters accepted.

 Maximizing Throughput to an Android Device

Android devices officially began supporting BLE technology with the Android 4.3 release, though Android 4.4 and onward
greatly improved stability and supported functionality.

The following additional guidelines apply for maximizing Android throughput:

 Android 4.4.2 and earlier releases only support a single connection interval of 48.75 ms.

 Android 4.4.3 and later releases support intervals down to 7.5 ms when requested by the remote device, even though
the default interval is still 48.75 ms when first establishing the connection.

 Newer Android handsets allow up to six unacknowledged GATT transfers in a single connection interval.

 Minimizing Power Consumption

You can reduce power consumption by making the BLE radio active as infrequently as your application allows. Specific
actions described in this section help decrease average consumption, but also decreases the potential throughput. Keep
this trade-off in mind to choose the right balance between power consumption and throughput.

If you have not already done so, ensure that the best possible CPU sleep mode for your application is configured as
described in section 3.1.5 (Managing Sleep States). This will ensure that the CPU is not taking more power than necessary.
If the CPU is fully or partially awake more often than necessary, relative improvements possible using the methods described
below may not make a notable difference.

 Minimizing Power Consumption while Broadcasting

To reduce power consumption in an advertising state:

 Maximize the advertisement interval while broadcasting. The BLE specification allows advertising at any interval
between 20 ms and 10240 ms. Increasing the interval means fewer transmissions within a given period. For example,
a device advertising at 500 ms will use roughly 20% of the power required by that same device advertising at 100 ms.
Use the gap_set_adv_parameters (SAP, ID=4/23) API command to change the default advertisement interval, or the
gap_start_adv (/A, ID=4/8) API command to use a non-default interval at the moment you enter an advertising state.

Side effects:

 Scanning devices are less likely to detect each advertisement packet, due to the reduced probability of the
scanning device actively receiving on the same channel at the same time as the advertisement transmission
occurs.

 Connections may take longer to establish, because this process begins with the same scanning process and
requires detection of a connectable advertisement packet from the target device.

Do not use all three advertisement channels. The BLE spectrum dedicates three channels to advertisement packets,
spread across the 2.4-GHz Bluetooth RF spectrum to help ensure reception in busy RF environments. Most BLE
devices advertise on all three channels, but you can selectively advertise on only one or two of these channels using
the gap_set_adv_parameters (SAP, ID=4/23) or gap_start_adv (/A, ID=4/8) API commands. Advertising on only one
channel requires roughly 33% of the power needed when using all three.Side effects:

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 59

 Scanning devices are less likely to detect advertisement packets for the same reason as above—there are fewer
advertisement packets being transmitted, which reduces the probability of actively receiving on the correct channel
at the correct time.

 The advertising device cannot combat RF interference as effectively. If you enable only one advertisement channel,
but that portion of the RF spectrum is extremely congested, then a scanning device may not be able to detect
advertisement packets at all even if the timing lines up correctly.

 If connections are not required, use a non-connectable/non-scannable mode. When a Peripheral device is
connectable (accepting new connections) or scannable (accepting scan request packets while advertising), the BLE
radio switches to a receiving state for approximately 150 µs after every advertisement packet to listen for a connection
request or scan request packet. When using all three advertising channels, this means three complete TX-RX cycles
occur repeatedly at the configured advertisement interval. If a Peripheral device needs to broadcast only, you can
configure a broadcast-only advertising mode with the gap_set_adv_parameters (SAP, ID=4/23) or gap_start_adv (/A,
ID=4/8) API commands. This prevents the radio from switching into a receiving state after each transmission, saving
both time and power.

Side effects:

 Any data configured in the scan response packet payload is never transmitted. Most often, this is the friendly device
name.

 Minimize the advertisement and/or scan response data payload length. Regardless of the configured
advertisement interval, the advertisement payload also has a significant effect on the amount of time spent on
transmissions. The advertisement payload may be between 0 and 31 bytes, and the BLE RF protocol uses a symbol
rate of 1 Mbit/sec, which translates to 8 µs per byte. The fixed encapsulation and overhead data in every advertisement
or scan response packet takes roughly 140 µs to transmit, but the payload can add up to 248 µs to this duration. In
other words, a 31-byte payload (~390 µsec) requires twice as much transmission time as a 7-byte payload (~195 µs).

In most cases, the application design requires very specific content in the advertisement payload. However, you should
optimize this as much as possible if low power consumption is critical for the application. You can configure custom
advertisement data content with the gap_set_adv_data (SAD, ID=4/19) and gap_set_adv_parameters (SAP, ID=4/23)
API commands, as described in section 3.4.3 (Customizing Advertisement and Scanning Response Data).

 Minimizing Power Consumption while Connected

To reduce power consumption in a connected state:

 Maximize the connection interval. The BLE specification allows a connection interval from 7.5 ms to 4000 ms.

 When operating in the GAP Peripheral role, the remote Central determines the initial interval; you must request
an update after connecting if you need to change it. The remote peer may either accept or reject this request.

 Use non-zero slave latency. While this affects only power consumption on the slave or peripheral device during a
connection, the slave latency setting can drastically improve power efficiency in many applications. This setting controls
how many connection intervals the slave may skip if it has no data to send to the connected master device. Once the
allowed number of intervals have occurred, the slave must respond regardless of whether it has any new data to send.
The slave may respond at any interval.

With the default “0” slave latency setting, the slave must acknowledge the master’s connection maintenance packets
at every interval. In applications requiring infrequent data transfers, this wastes a great deal of power. Increasing the
slave latency value to “3” allows the slave to respond every four intervals instead of every interval, for an average power
reduction of 75% while connected. Applications such as environmental sensors and human input devices can benefit
greatly from non-zero slave latency.

The slave latency value may not be higher than the maximum number that allows the calculated value for
[conn_interval * slave_latency] to remain below the supervision_timeout value, because otherwise the

connection would time out regularly.

Side effects:

 If the slave has no data to send, the master must wait until the slave latency period passes before it can send or
request data to or from the slave. The slave will not be aware of any requests from the master until it enables its
radio again. This can result in noticeable delays especially when using long connection intervals. For example, a
500-ms connection interval and slave latency setting of “3” could create a master-to-slave response delay of up to
two full seconds. To mitigate this, select a balanced combination of connection interval and slave latency values
that provides acceptable master-side delay and slave-side power consumption.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 60

 Non-zero slave latency interval increases the possibility of a connection timeout in non-optimal RF environments.
The master triggers a supervision timeout condition if it does not receive an acknowledgement from the slave
before the timeout period elapses. The master resends any connection maintenance packet that is not
acknowledged, but if the slave has already switched back to a low-power state between required response
intervals, the master’s attempted retries may be ignored for too long. To mitigate this, select a longer supervision
timeout, shorter connection interval, and/or lower slave latency value to achieve required connection stability in
the target environment.

 Use unacknowledged transfers. Acknowledged transfers involve more data sent over the air to handle the
acknowledgement. This results in higher average consumption. If you do not need application-level data transfer
confirmations, use unacknowledged methods instead.

 For Server-to-Client transfers, use the “notify” operation instead of “indicate.”

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 61

3.10 Device Firmware Update Examples

See section 2.6.1 (Latest EZ-Serial Firmware Image) for information on where to find the latest EZ-Serial firmware images.

3.10.1 Updating Firmware Locally Using UART

If you have access to the HCI UART interface, you can use standard the WICED Studio software and an UART interface to
flash a new firmware image onto the module. Details about how to do this are available on the Cypress website.

Updating firmware via this method always returns to factory default settings and removes any bonding data and custom
GATT structure.

3.10.2 Updating Firmware Locally Using BLE Connection

You also can use BLE connection to update a new firmware image onto the module. Suppose you have a computer with
Windows 10 and which supports BLE, then follow these steps to update a firmware image.

1. Connect to Cypress WICED Module as follows:

a. Select the Start button, then select Settings > Devices > Bluetooth & other devices.

b. Turn on Bluetooth, then select Add Bluetooth or other device > Bluetooth. Choose the device and follow
additional instructions if they appear, then select Done.

2. Run WsOtaUpgrade.exe ezserial_343026-CYBT_343026_EVAL-rom-ram-Wiced-release.ota.bin.

WsOtaUpgrade.exe is typically located in your WICED Studio installation path:
…\WICED-Studio-5.2\common\peer_apps\ota_firmware_upgrade\Windows\WsOtaUpgrade\Release\x64.

Figure 3-5. WsOtaUpgrade.exe in cmd Terminal

3. Click Start to update the image on the module.

https://community.cypress.com/docs/DOC-14413

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 62

Figure 3-6. WICED BLE Firmware Upgrade

After the upgrade has completed, the module will reboot automatically and execute the new image.

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 63

3.11 GPIO Operation Examples

EZ-Serial supports reading and configuring GPIO states including during system start up, before entering, or after exiting a
low-power state. It also supports reading and configuring GPIO interrupts.

Current WICED chips usually have 40+ 8 GPIOs. Amount of system RAM required by EZ-Serial firmware will increase with
the number of supported GPIO’s. Current EZ-Serial firmware supports only a limited number of GPIOs (by default, 20 GPIOs
in the current implementation) in order to optimially use the system RAM.

The following examples are based on CYBT_343026_EVAL unless specified otherwise.

3.11.1 Get Current GPIO Status

EZ-Serial supports reading the current status and configuration of GPIO for example input, output. It also supports reading
current status and configuration of GPIO interrupt:

Direction Content Effect

• Get current GPIO status

TX→ GIOL,P=2,D=0 Get the input status and configuration of Pin 2

←RX @R,0020,GIOL,0000,L=00000001,H=00004000 Input status is HIGH and configuration is 0x4000 (out_enable) for
Pin 2

TX→ GIOL,P=2,D=1 Get the output status and configuration Pin 2

←RX @R,0020,GIOL,0000,L=00000001,H=00004000 Output status is HIGH and configuration is 0x4000 for Pin 2

TX→ GIOL,P=2,D=2 Get the interrupt status and configuration of Pin 2

←RX @R,0020,GIOL,0000,L=00000001,H=00004000 Interrupt status is set and configuration is 0x4000 for Pin 2.

Note: The interrupt status works only when interrupt is
configured; L=1 here does not have any effect.

3.11.2 GPIO Configuration when Entering or Exiting Low-Power State

To support the low-power scenario, the system may need to change GPIO state to LOW or HIGH when it enters or exits a
low-power state (sleep level =1).

Direction Content Effect

• Set GPIO behavior when system enters/exits low power

TX→ SIOD,P=2,C=4200,L=0,O=0 To set Pin 2 to low with GPIO configuration set to Pull down
immediately

←RX @R,000A,SIOD,0000 Response indicates success. LED of CYBT_343026_EVAL
should be ON.

TX→ SIOD,P=2,C=4400,L=1,O=1 To set Pin 2 to high with configuration set to Pull up when
system enters low power state

←RX @R,000A,SIOD,0000 Response indicates success

TX→ SIOD,P=2,C=4200,L=0,O=2 To set Pin 2 to low with configuration set to Pull down when
system exits low power state

←RX @R,000A,SIOD,0000 Response indicates success

With above configuration, LED will turn ON when device enters Low-Power state and turn OFF when device exits Low-Power state

(setting LP_MOD pin (I2C_SDA of CYBT_343026_EVAL) to high or low).

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 64

3.11.3 GPIO Interrupt Configuration

EZ-Serial supports configuration of GPIO interrupt based on user requirement.

Direction Content Effect

• Set GPIO interrupt

TX→ SIOD,P=0,C=40D, O=3 To configure Pin 0 to generate interrupt event for both edges

←RX @R,000A,SIOD,0000 Response indicates success

←RX @E,0020,INT,P=00,L=01,R=00000344,F=C53D Press SW3 of CYBT_343026_EVAL, it generates interrupt event
with timestamp since boot

←RX @E,0020,INT,P=00,L=00,R=00000345,F=C5BB

3.11.4 Remove GPIO Operation

Current EZ-Serial FW supports only 20 GPIO operation due to system RAM limitation. EZ-Serial firmware maintains a
operation list, in this case it supports up to 20 entries in the list. You may need to delete further GPIO operation from the list
in order to increase available RAM. Below commands help to understand the process of removing support for a GPIO
operation from the list.

Direction Content Effect

• Get current GPIO operation list info

TX→ GIOL,P=FF,D=0 To get current pin map of GPIO operation list

←RX @R,0020,GIOL,0000,L=00000005,H=00000000 It indicates that Pin 0 and Pin 2 (bit 0 and bit 2) have entries in
the operation list.

TX→ GIOL,P=FF,D=1 To get the current slot map of the operation list.

←RX @R,0020,GIOL,0000,L=0000000F,H=00000000 It indicates that 4 slots have been occupied.

• Remove GPIO operation from operation list

TX→ SIOD,P=0,C=40D, O=4 Release Pin 0 from operation list. C(configuraton) is ignored in
this command.

←RX @R,000A,SIOD,0000 Response indicates success.

Note: This operation will only remove the operation from the list;
it does not change the hardware configuration.

TX→ GIOL,P=0,D=2 To get interrupt status and configure value of Pin 0

←RX @R,0020,GIOL,0000,L=00000000,H=0000040D It indicates that Pin 0 operation is still interrupt triggered.

Press SW3 of CYBT_343026_EVAL, it still generates interrupt
event

TX→ GIOL,P=FF,D=0 To get current pin map of operation list

←RX @R,0020,GIOL,0000,L=00000004,H=00000000 It indicates Pin 2 (bit 2) has configuration entry in the list. Pin 0 is
removed from the operation list.

TX→ GIOL,P=FF,D=0 To get current slot map of operation list

←RX @R,0020,GIOL,0000,L=00000007,H=00000000 It indicates 3 slots have been occupied. Slot 3 is released.

Note: Since one pin may have more than one operation (you may set pin 2 to 3 operations as the above example). FW
maintains one operation per one slot in the operation list. Slot map and pin map are different: slot is unique in the
configutation list while pin number is not. In the above example, you set PIN 2 to 3 operations, the bit map of Pin is
0x00000004(only one pin, and pin value is 2), but the bit map of slot is 0x00000007(it contain 3 slots).

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 65

3.11.5 GPIO Pin Configuration

GPIO pin configuration is a 32-bit value which corresponds to the internal WICED SDK API definition. The following are the
details of configuration from WICED SDK API:

 // Trigger Type

 // GPIO configuration bit 0, Interrupt type defines

 GPIO_EDGE_TRIGGER_MASK = 0x0001,

 GPIO_EDGE_TRIGGER = 0x0001,

 GPIO_LEVEL_TRIGGER = 0x0000,

 // Negative Edge Triggering

 // GPIO configuration bit 1, Interrupt polarity defines

 GPIO_TRIGGER_POLARITY_MASK = 0x0002,

 GPIO_TRIGGER_NEG = 0x0002,

 // Dual Edge Triggering

 // GPIO configuration bit 2, single/dual edge defines

 GPIO_DUAL_EDGE_TRIGGER_MASK = 0x0004,

 GPIO_EDGE_TRIGGER_BOTH = 0x0004,

 GPIO_EDGE_TRIGGER_SINGLE = 0x0000,

 // Interrupt Enable

 // GPIO configuration bit 3, interrupt enable/disable defines

 GPIO_INTERRUPT_ENABLE_MASK = 0x0008,

 GPIO_INTERRUPT_ENABLE = 0x0008,

 GPIO_INTERRUPT_DISABLE = 0x0000,

 // Interrupt Config

 // GPIO configuration bit 0:3, Summary of Interrupt enabling type

 GPIO_EN_INT_MASK = GPIO_EDGE_TRIGGER_MASK | GPIO_TRIGGER_POLARITY_MASK |
GPIO_DUAL_EDGE_TRIGGER_MASK | GPIO_INTERRUPT_ENABLE_MASK,

 GPIO_EN_INT_LEVEL_HIGH = GPIO_INTERRUPT_ENABLE | GPIO_LEVEL_TRIGGER,

 GPIO_EN_INT_LEVEL_LOW = GPIO_INTERRUPT_ENABLE | GPIO_LEVEL_TRIGGER | GPIO_TRIGGER_NEG,

 GPIO_EN_INT_RISING_EDGE = GPIO_INTERRUPT_ENABLE | GPIO_EDGE_TRIGGER,

 GPIO_EN_INT_FALLING_EDGE = GPIO_INTERRUPT_ENABLE | GPIO_EDGE_TRIGGER | GPIO_TRIGGER_NEG,

 GPIO_EN_INT_BOTH_EDGE = GPIO_INTERRUPT_ENABLE | GPIO_EDGE_TRIGGER | GPIO_EDGE_TRIGGER_BOTH,

 // GPIO Output Buffer Control and Output Value Multiplexing Control

 // GPIO configuration bit 4:5, and 14 output enable control and

 // muxing control

 GPIO_INPUT_ENABLE = 0x0000,

 GPIO_OUTPUT_DISABLE = 0x0000,

 GPIO_OUTPUT_ENABLE = 0x4000,

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 66

 GPIO_KS_OUTPUT_ENABLE = 0x0010, // Keyscan Output enable

 GPIO_OUTPUT_FN_SEL_MASK = 0x0030,

 GPIO_OUTPUT_FN_SEL_SHIFT = 4,

 // Global Input Disable

 // GPIO configuration bit 6, "Global_input_disable" Disable bit

 // This bit when set to "1" , P0 input_disable signal will control

 // ALL GPIOs. Default value (after power up or a reset event) is "0".

 GPIO_GLOBAL_INPUT_ENABLE = 0x0000,

 GPIO_GLOBAL_INPUT_DISABLE = 0x0040,

 // Pull-up/Pull-down

 // GPIO configuration bit 9 and bit 10, pull-up and pull-down enable

 // Default value is [0,0]--means no pull resistor.

 GPIO_PULL_UP_DOWN_NONE = 0x0000, //[0,0]

 GPIO_PULL_UP = 0x0400, //[1,0]

 GPIO_PULL_DOWN = 0x0200, //[0,1]

 GPIO_INPUT_DISABLE = 0x0600, //[1,1] // input disables the GPIO

 // Drive Strength

 // GPIO configuration bit 11

 GPIO_DRIVE_SEL_MASK = 0x0800,

 GPIO_DRIVE_SEL_LOWEST = 0x0000, // 2mA @ 1.8V

 GPIO_DRIVE_SEL_MIDDLE_0 = 0x0000, // 4mA @ 3.3v

 GPIO_DRIVE_SEL_MIDDLE_1 = 0x0800, // 4mA @ 1.8v

 GPIO_DRIVE_SEL_HIGHEST = 0x0800, // 8mA @ 3.3v

 // Input Hysteresis

 // GPIO configuration bit 13, hysteresis control

 GPIO_HYSTERESIS_MASK = 0x2000,

 GPIO_HYSTERESIS_ON = 0x2000,

 GPIO_HYSTERESIS_OFF = 0x0000,

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 67

3.12 Init Command Examples

The init commands feature allows you to store EZ-Serial commands in the pre-allocated section. During FW startup, FW
loads these init commands from pre-allocated section and executes them in a sequence. It is useful for the use cases which
do not have host MCU. Currently, the stored command is only for text format command. It is the extend feature for the
command “/WUD” and ”/RUD”. Refer system_write_user_data (/WUD, ID=2/11) and system_read_user_data (/RUD,
ID=2/12).

FW reserves some flash slots (3 slots in current FW implementation) as a list to save Init commands. Each slot is 255 bytes.
User can not add additional Init commands after reaching maximum capacity (Maximum capacity for existing FW is 765
bytes (3*255=765 Bytes)).

EZ-Serial FW provides command to Add, Delete and Display Init commands.

3.12.1 Add Init Command

Current EZ-Serial FW provides two methods to add commands into Init command list: use history command information or
simply use prefix ‘&’.

Direction Content Effect

• Add command to Init command list with two methods

TX→ /PING Sent to ping the local module to
verify proper communication

←RX @R,001D,/PING,0000,R=00000115,F=3DBF Response indicates success

TX→ /WUD,O=1,D=00,M=3 Use history command info and
store it to flash.

O = 1 means the previous
command. ‘D’ is ignored.

←RX @R,000A,/WUD,0000 Response indicates success

TX→ &GBA Store “GBA” to Init command list

using ‘&’ before the command

←RX @R,0018,GBA,0000,A=E755F205D0D8 Response indicates success

3.12.2 Display Current Init Commands

Direction Content Effect

• Display current commands in the Init command list

TX→ /RUD,O=00,M=5,L=1 Display all Init commands in the
Init command list.

‘O’ and ‘L’ is ignored in this
command.

←RX Init cmd list(Enabled):

 00:[/ping]

 01:[GBA]

 end of list

@R,000D,/RUD,0000,D=

Response indicates success and
shows “/PING” and “GBA”is stored.

‘D’ is ignored here.

3.12.3 Check Init Command Is Executed at System Start up

Direction Content Effect

• Command in the Init command list will be executed after system start up

TX→ /RBT Reset the module (or you can
press reset button to reset module)

 Operational Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 68

Direction Content Effect

←RX @R,000A,/RBT,0000

@E,003B,BOOT,E=01021313,S=05020016,P=0103,H=D1,C=00,A=E755F205D0D8

@E,000E,ASC,S=01,R=03

Start executing init cmd:

 --->/ping

@R,001D,/PING,0000,R=00000000,F=023E

 --->GBA

@R,0018,GBA,0000,A=E755F205D0D8

Finish executing init cmd!

Commands are executed
sequentially after system start up.
Observe that GBA is command is
executed in the startup sequence.

3.12.4 Delete Init Command

Direction Content Effect

• Delete command one by one or remove all commands

TX→ /WUD,O=1,D=00,M=4 Delete Init command 1 from the list

‘D’ is ignored

←RX @R,000A,/WUD,0000 Response indicates success

TX→ /RUD,O=00,M=5,L=1 display all Init commands in the Init
command list

←RX Init cmd list(Disabled):

 00:[/PING]

 end of list

@R,000D,/RUD,0000,D=

Command 1 (GBA) is removed

TX→ /WUD,O=1,D=00,M=5 Remove all commands from the Init
command list

‘D’ is ignored

←RX @R,000A,/WUD,0000 Response indicates success

TX→ /RUD,O=00,M=5,L=1 Display current Init commands in
the Init command list

←RX @R,000D,/RUD,0000,D= No commands in the list now

3.12.5 Enable/Disable Init Command

Init command execution is enabled by default in EZ-Serial firmware. EZ-Serial FW provides commands to disable/enable
Init command execution based on users requirement.

Direction Content Effect

• Disable/Enable Init command operation

TX→ /WUD,O=FFFF,M=5,D=1 Disable Init command.

D= 1 is disable. D=0 is enable

←RX @R,000A,/WUD,0000 Response indicates success

TX→ /RUD,O=00,M=5,L=1 Display all Init commands in the Init
command list.

‘O’ and ‘L’ is ignored.

←RX Init cmd list(Disabled):

 00:[/PING]

 01:[GBA]

 end of list

@R,000D,/RUD,0000,D=

Response indicates success and
Init command list is Disabled.

If you restart system, these
commands will not be executed.

TX→ /WUD,O=FFFF,M=5,D=0 Enable Init command.

D= 1 is disable. D=0 is enable

←RX @R,000A,/WUD,0000 Response indicates success

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 69

4 Application Design Examples

Examples in this section describe the hardware design and platform configuration necessary for some common types of
applications. You can use any of these exactly as described for your design, or modify as needed.

4.1 Smart MCU Host with 4-Wire UART and Full GPIO Connections

This application design example allows maximum functionality with an external host microcontroller, including efficient sleep
state control and optional CYSPP/SPP communication.

4.1.1 Hardware Design
Include the following design elements in your hardware:

 Module UART_TX pin to host UART RX pin

 Module UART_RX pin to host UART TX pin

 Module UART_CTS pin to host UART RTS pin

 Module UART_RTS pin to host UART CTS pin

 Module CYSPP, and LP_MODE pins to digital output host GPIOs

 Module CONNECTION pins to high-impedance digital input host GPIO

4.1.2 Module Configuration
Most configuration settings will depend on your communication requirements. However, you may wish to make one or more
of the following changes:

 Change Device Name with gap_set_device_name (SDN, ID=4/15)

 Change CYSPP connection key and/or security requirements with p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

 Enable system-wide Deep Sleep with system_set_sleep_parameters (SSLP, ID=2/19)

 Enable flow control and optionally change UART parameters with system_set_uart_parameters (STU, ID=2/25)

4.1.3 Host Configuration
The external host must match EZ-Serial’s configured UART communication. The factory default settings are 115200,8/N/1
with no flow control. However, you should enable and use flow control if the host supports it.

Use the host API library examples described in Host API Library to facilitate easy API communication between the host and
the module, making sure to properly assert and de-assert the module’s LP_MODE pin as described in section 2.3.3
(Connecting GPIO Pins).

Monitor the CONNECTION signal for a simple indicator of BLE/BT connectivity without needing to parse all possible API
events from the module. This can be especially helpful when using CYSPP/SPP mode.

4.2 Dumb Terminal Host with CYSPP and Simple GPIO State Indication

This application design example takes advantage of the factory-default EZ-Serial configuration and support for automatic
CYSPP connectivity. It is best suited for applications where the external host cannot or does not need to impose any control
over the EZ-Serial platform via API commands or events.

4.2.1 Hardware Design
Include the following design elements in your hardware:

 Module CYSPP pin to GND (force CYSPP data mode always, no API communication)

 Module UART_TX pin to host UART RX pin

 Module UART_RX pin to host UART TX pin

 Optional for flow control:

 Application Design Examples

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 70

 Module UART_CTS pin to host UART RTS pin

 Module UART_RTS pin to host UART CTS pin

 Optional for connectivity status:

 Module CONNECTION pin to LED (active LOW)

4.2.2 Module Configuration
The factory default configuration provides most of the behavior required. However, you may wish to make one or more of
the following changes:

 Change device name with gap_set_device_name (SDN, ID=4/15).

 Change CYSPP connection key and/or security requirements with p_cyspp_set_parameters (.CYSPPSP, ID=10/3).

 Change system sleep settings with system_set_sleep_parameters (SSLP, ID=2/19).

 Change UART baud or other parameters with system_set_uart_parameters (STU, ID=2/25).

4.2.3 Host Configuration
The external host must match EZ-Serial’s configured UART communication. The factory-default settings are 115200,8/N/1
with no flow control. However, you should enable and use flow control if the host supports it.

If the host supports a simple “enable” control line for whether it is safe to send data, use the module’s CONNECTION pin.
This signal is asserted (LOW) only when the CYSPP data pipe is fully established.

4.3 Module-Only Application with Beacon Functionality

This application design example requires no special external hardware and only minimal initial configuration to define the
type of beaconing desired.

4.3.1 Hardware Design
For correct operation, the module only requires power to the supply pins. You may also wish to include test pad or header
access to the UART interface and status pins such as LP_STATUS or CONNECTION during prototyping, because this can
greatly simplify debugging if necessary.

4.3.2 Module Configuration
Make the following changes from the factory default configuration:

 Disable CYSPP mode with p_cyspp_set_parameters (.CYSPPSP, ID=10/3).

 Enable system-wide sleep mode with system_set_sleep_parameters (SSLP, ID=2/19).

 Configure non-connectable (broadcast-only) with gap_set_adv_parameters (SAP, ID=4/23).

 Configure custom advertisement data with the appropriate beacon content using gap_set_adv_data (SAD, ID=4/19).

4.3.3 Host Configuration
The simple automatic beacon design does not require any host hardware, and therefore needs no host configuration.

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 71

5 Host API Library

The host library implements a protocol parser/generator that communicates with the EZ-Serial firmware using the API
protocol. The library is usually written in standard C and wraps all API methods into easy-to-use command functions or
response/event callbacks. However, such a host API library is not provided with this EZ-Serial WICED firmware platform. If
it is required for system integration, you must create your own host API library based on the online host API library provided
for EZ-Serial on BLE modules based on PSoC Creator. Attention should be paid because this EZ-Serial WICED firmware
platform has set of features different from EZ-Serial on modules based on PSoC Creator. See previous chapters for details.

This section uses the online host API library for EZ-Serial on BLE modules based on PSoC Creator as examples to describe
how to use the library as designed, how to port it to other platforms, or how to create your own library if the provided code
is not suited for direct use or porting for any reason.

5.1 Host API Library Overview

5.1.1 High Level Architecture
The host library communicates with the EZ-Serial firmware platform, providing the host side of the command, response, or
event communication mechanism that the module implements. The host must perform the following over the UART
interface:

 Read and parse incoming data (may be either response or event packets).

 Validate packets using checksum.

 Trigger application-defined callbacks when incoming packets arrive.

 Generate and send outgoing data (command packets).

The protocol parser and generator on the module side strictly follow these rules:

 Events may be generated by the module at any time.

 Every command received from the host immediately generates a response.

 An event generated (for example, by a GPIO interrupt) while a command is being processed does not interrupt the
command-response packet flow, but is sent out after the response packet is sent.

The parser and generator on the host side must operate under these assumptions.

5.1.2 Host Library Design
Host communication with an EZ-Serial-based module requires that only the incoming module-to-host byte stream is
processed correctly, and that the outgoing host-to-module byte stream is properly formatted. To simplify this and provide a
convenient layer of abstraction, the host API library provides a simple “parse” function for incoming bytes, and “wrapper”
command functions that convert named parameter lists into binary packets ready for transmission.

Other than expecting standard C compiler functionality and little-endian byte order, the library is intentionally platform-
agnostic. The source of incoming data does not matter; the internal methods process the data only after it arrives. The
destination of outgoing data also does not matter; the internal methods perform only packetization and buffering of data so
that it is ready to transmit. This improves portability because UART peripherals are accessed differently on different
platforms, and a single library cannot provide support across all (or even very many) platforms if the UART peripheral
implementation is built into the library itself.

http://www.cypress.com/file/384511/download
http://www.cypress.com/file/384511/download

 Host API Library

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 72

5.2 Implementing a Project Using the Host API Library

5.2.1 Basic Application Architecture
Any host application that uses the EZ-Serial API library must follow the same basic behavior:

 Set up UART peripheral for incoming and outgoing data.

 Assign hardware-specific input/output callback methods.

 Monitor UART for incoming data, and send to parser.

 Handle event/response packets sent to callback handler.

 Call command wrapper functions as needed for application.

This process is shown Figure 5-1.

Boot

Initialize

Custom application behavior

UART RX?

Host API Library

YES

Setup UART peripheral

Assign UART TX function

Assign event handler function

Non-blocking app code

Send API commands as needed

Sleep
(optional)

NO

ParseByte()

Event handler call

ezs_cmd_...()

UART TX call

Figure 5-1. EZ-Serial Host API Library Application Flow

The host API library contains the core parsing and generating functions necessary to translate incoming data into callbacks
and command function calls into binary packets.

 Host API Library

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 73

5.2.2 Exposed API Functions
The generic host API implementation written in C provides the following methods:

Function Description

EZSerial_Init Initializes parser and callback functions used for event handling, serial output, and
serial input

EZSerial_Parse Processes incoming bytes and triggers the event callback function when response
or event packet is successfully processed

EZSerial_FillPacketMetaFromBinary Fills binary packet metadata in ezs_packet_t structure based on the 4-byte binary

packet header content (used internally within EZSerial_Parse)

EZSerial_SendPacket Sends binary packet and checksum byte using the host-specific output callback
function

EZSerial_WaitForPacket Reads the data using the host-specific input callback function in a blocking or non-
blocking way depending on the timeout argument (calls EZSerial_Parse as part of

its functionality)

The application is responsible for providing implementation functions for three methods, assigned to the function pointers
below:

Function Description

EZSerial_AppHandler Called whenever a valid incoming packet is observed.

This is strictly required in all cases. It is a core element of abstracting incoming
packets into callback functions.

EZSerial_HardwareOutput Called whenever the API generator needs to send data to the module over UART.

This is required if you intend to use the EZSerial_SendPacket method, or the

ezs_cmd_... macros which also use that method. If you are manually sending well-

formed binary command packet data directly from your own application, this may be
assigned as NULL.

EZSerial_HardwareInput Called whenever the API parser needs to read data from the module over UART.

This is required if you intend to use the EZSerial_WaitForPacket method, or the

EZS_WAIT_... or EZS_CHECK_... macros which also use that method. If you are

manually calling the EZSerial_Parse method after reading bytes in over UART, this

may be assigned as NULL.

5.2.3 Command Macros
To simplify binary packet creation, the library implements packet builder macros that match the protocol definitions for each
command method. For example:

• ezs_cmd_system_ping()

• ezs_cmd_system_reboot()

• ezs_cmd_gap_start_adv(mode, type, interval, channels, filter, timeout)

Commands which fall into the SET/GET categories and may access flash memory for retrieving or storing setting data have
two separate command functions for each:

 RAM: ezs_cmd_gatts_set_parameters(flags)

 Flash: ezs_fcmd_gatts_set_parameters(flags)

To substantially reduce flash usage, the above commands are defined as macros that make use of a single function that
accepts variable arguments:

ezs_output_result_t ezs_cmd_va(uint16 index, uint8 memory, ...)

This single method uses the supplied command table index (defined in the library header file as an enumerated list) and
the packed binary protocol structure definition to determine the number of arguments needed for any given command and
their data types.

 Host API Library

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 74

This macro-based approach means that it is not possible to perform type checking at compile time, but it also means that
the entire command generator implementation uses a tiny quantity of flash memory (well under 1KB as measured on one
8-bit MCU).

5.2.4 Convenience Macros
If the hardware-specific input and output functions are correctly defined, the library also provides macros to further abstract
common behavior into simpler code.

Function Description

EZS_SEND_AND_WAIT(CMD, TIMEOUT) Sends a command and then calls EZS_WAIT_FOR_RESPONSE

EZS_WAIT_FOR_PACKET(TIMEOUT) Calls EZSerial_WaitForPacket with type set to any

EZS_WAIT_FOR_RESPONSE(TIMEOUT) Calls EZSerial_WaitForPacket with type set to response

EZS_WAIT_FOR_EVENT(TIMEOUT) Calls EZSerial_WaitForPacket with type set to event

EZS_CHECK_FOR_PACKET() Wrapper for EZS_WAIT_FOR_PACKET(0), a non-blocking attempt to read data

The assignable “return value” (evaluated expression result) for all these macros is a pointer to an ezs_packet_t object. If

the process fails at any point for any reason—timeout, command transmission failure, incoming packet in progress, and so
on—then the pointer value will be 0 (NULL).

5.3 Porting the Host API Library to Different Platforms

The API protocol uses a packet byte stream, so the API host library expects matching byte ordering and packet structure
mapping to avoid any extra processing overhead. The module (and low-level Bluetooth spec) uses little-endian byte
ordering, so the host must as well for all multi-byte integer data.

The example application code provided with the library to demonstrate EZ-Serial API usage includes a block of code that
can verify proper support and configuration of byte ordering and structure packing. While it is not possible to provide a
single, comprehensive cross-platform implementation of a structure packing macro due to variations between compilers, it
is possible to definitively test whether the existing code will work properly. This can quickly identify and avoid potential
problems that are otherwise very difficult to troubleshoot.

No special C extensions are used; tested compilers are GCC or GCC-compliant and follow the default C89 ruleset because
no additional extensions are enabled.

 Host API Library

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 75

5.4 Using the API Definition JSON File to Create a Custom Library

The JSON schema used for the API definition has the following structure:

 info (single dictionary)

 date – Definition revision date

 version – API protocol definition version

 groups (list of dictionaries) […

 id – Numeric ID assigned to group

 name – Alpha name assigned to group (for example, “gap”)

 commands (list of dictionaries) […

▪ id – Numeric ID assigned to command
▪ name – Alpha name assigned to command (for example, “start_adv”)
▪ flashopt – Boolean flag indicating flash storage for settings
▪ parameters (list of dictionaries) […

• type – Data type (for example, “uint16”)

• name – Alpha name assigned to parameter (for example, “mode”)

• textname – text-mode equivalent (for example, “M”)

• required – Boolean flag indicating optional or required parameter

• format – Intended data presentation format (for example, “string” or “hex”)

• default – Fixed default value if optional parameter
▪ returns (list of dictionaries) […see parameters…]
▪ references (single dictionary)

• commands (dictionary)

• events (dictionary)

 events (list of dictionaries) […see commands…]

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 76

6 Troubleshooting

EZ-Serial is designed to be as robust and intuitive as possible, but it is always possible for something to go wrong. The
instructions below can help narrow down the cause of failure in identify solutions in some cases.

6.1 UART Communication Issues

If you are unable to send or receive data as expected over the UART interface, perform the following steps:

1. Ensure that VDD and GND pins are properly connected (VDDR also requires power).

2. Ensure that VDD has a stable supply within the supported range (typically 3.3 V).

3. Ensure that UART data pins are properly connected:

a. Module UART_RX to host TX

b. Module UART_TX to host RX

4. If flow control is enabled or expected, ensure that the UART flow control pins are properly connected:

a. Module UART_RTS to host CTS

b. Module UART_CTS to host RTS

5. Ensure that the CYSPP pin is floating or HIGH to avoid entry into CYSPP mode. When CYSPP is active, API
communication is disabled, and this can appear as a non-communicative state until a connection is established.

6. Drive or strongly pull the LP_MODE pin HIGH to disable normal sleep mode. This is not necessary in most cases, but
it can help eliminate potential uncertainty during testing.

7. Reset the module and monitor the UART_TX pin during the boot process. If the module boots normally (CYSPP pin
de-asserted), the system_boot (BOOT, ID=2/1) API event should occur at the configured baud rate. With factory default
settings, these values are 115200 baud and text mode. If possible, verify activity using an oscilloscope or a logic
analyzer.

8. If attempting to communicate using the API protocol, ensure that your command packet structures are correct per the
definitions in Section 7.1 (Protocol Structure and Communication Flow).

9. If you are sending commands in binary mode and the commands in use have any variable-length arguments (data type
of uint8a or longuint8a), ensure that the argument has the correct <length> [data0, data1, ..., dataN] format.

Omitting the length byte will cause the API parser to interpret the packet incorrectly.

6.2 BLE Connection Issues

If you are unable to connect from a remote device, perform the following steps:

1. Ensure that the module is advertising in a connectable state. Start advertising specifically in the “connectable,
undirected” mode using the gap_start_adv (/A, ID=4/8) API command, and watch for the expected
gap_adv_state_changed (ASC, ID=4/2) API event indicating that the state actually changed to “active.”

2. Ensure you have set properly formed custom advertising data with gap_set_adv_data (SAD, ID=4/19) if you have
disabled automatic advertising packet management with gap_set_adv_parameters (SAP, ID=4/23). Advertisement
packets without a standard “Flags” field (usually [02 01 06]) do not appear in a generic scan. See section 3.4.3

(Customizing Advertisement and Scanning Response Data).

6.3 GPIO Signal Issues

If you do not observe the expected behavior for GPIO input and/or output signals, perform the following steps:

1. Ensure that the pins that you have connected are correct based on your chosen module. See section 8.1(GPIO Pin
Map for Supported Modules) for per-device pin map details.

2. If a special-function output pin is not sufficiently driving a connected external device’s input logic, ensure that the
external device is not also attempting to drive or strongly pull the pin in the opposite direction at the same time.

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 77

7 API Protocol Reference

This section describes the API protocol that EZ-Serial uses. This protocol allows an external host to control the module, in
addition to any GPIO signals involved in the design. The protocol follows a strict set of rules to make deterministic host-side
behavior possible.

7.1 Protocol Structure and Communication Flow

7.1.1 API Protocol Formats

EZ-Serial implements a unified set of functionalities that can be accessed using binary API communication. Cypress text-
based protocol APIs are also provided for ease of reading, as well as to generate binary API commands via the provided
Python script.

 Text Format Overview

The text protocol definition is comprised entirely of printable ASCII characters for ease of use in terminal software. Response
and Event packets sent from the module shall end with “\r\n” characters (0x0D, 0x0A). Commands sent to the module may
end with either or both. Unlike the binary mode described below, the text protocol does not contain any checksum data or
have a command entry timeout.

 Binary Format Overview

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure comprises a
4-byte header, followed by an optional payload of up to 2047 bytes (length specifier field is 11 bits wide).

Currently defined binary packet does not contain more than 520 payload bytes at this time, and very few packets contain
more than 48. The API reference material below lists every fixed or minimum/maximum length value for all commands,
responses, and events within the protocol.

The payload carries information related to the command, response, or event. If present, this payload always comes
immediately after the header. All data in the payload is contained within one or more of the datatypes specified in section
7.1.2 (API Protocol Data Types).

To simplify the implementation of parsers and generators both inside the firmware and on external host microcontrollers,
any packet may have a maximum of one variable-length data member (byte array or string), and if present, it must be the
last element in the payload.

7.1.2 API Protocol Data Types

The data types implemented for individual parameters/arguments in the API protocol are described below, including
representative text and binary examples.

In both text and binary modes, all negative numbers are represented in two’s complement form. In this form, the MSb is the
sign bit, which indicates a negative number if set. The remaining bits count upward from the bottom of the selected (positive
or negative) range. For example, the value 0x80 is the bottom of the “int8” range, -128.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 78

Type Bytes Description Example

uint8 1 Unsigned 8-bit integer.
Range is 0 to 255.

Text Mode:

• “10” = 0x10, decimal 16

• “9A” = 0x9A, decimal 154

Binary Mode:

• [10] = 0x10, decimal 16

• [9A] = 0x9A, decimal 154

int8 1 Signed 8-bit integer.
Range is -128 to 127.

Text Mode:

• “10” = 0x10, decimal 16

• “9A” = 0x9A, decimal -102

Binary Mode:

• [10] = 0x10, decimal 16

• [9A] = 0x9A, decimal -102

uint16 2 Unsigned 16-bit integer.
Range is 0 to 65,535.

Text Mode:

• “1234” = 0x1234, decimal 4,660

• “9ABC” = 0x9ABC, decimal 39,612

Binary Mode: (little-endian)

• [34 12] = 0x1234, decimal 4,660

• [BC 9A] = 0x9ABC, decimal 39,612

int16 2 Signed 16-bit integer.
Range is -32,768 to 32,767.

Text Mode:

• “1234” = 0x1234, decimal 4,660

• “9ABC” = 0x9ABC, decimal -25,924

Binary Mode: (little-endian)

• [34 12] = 0x10, decimal 4,660

• [BC 9A] = 0x9ABC, decimal -25,924

uint32 4 Unsigned 32-bit integer.
Range is 0 to 4,294,967,295.

Text Mode:

• “12345678” = 0x12345678
 decimal 305,419,896

• “9ABCDEF0” = 0x9ABCDEF0,
 decimal 2,596,069,104

Binary Mode: (little-endian)

• [78 56 34 12] = 0x12345678
 decimal 305,419,896

• [F0 DE BC 9A] = 0x9ABCDEF0
 decimal 2,596,069,104

int32 4 Signed 32-bit integer.
Range is -2,147,438,648 to 2,147,483,647.

Text Mode:

• “12345678” = 0x12345678
 decimal 305,419,896

• “9ABCDEF0” = 0x9ABCDEF0,
 decimal -1,698,898,192

Binary Mode: (little-endian)

• [78 56 34 12] = 0x12345678
 decimal 305,419,896

• [F0 DE BC 9A] = 0x9ABCDEF0
 decimal -1,698,898,192

macaddr 6 48-bit MAC address. Text Mode:

• “112233AABBCC” = 11:22:33:AA:BB:CC

Binary Mode: (little-endian)

• [CC BB AA 33 22 11] = 11:22:33:AA:BB:CC

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 79

Type Bytes Description Example

uint8a 1+ Array of uint8 bytes, with prefixed one-byte

length value. Supported length is 0-255 bytes.

Text Mode: (length omitted, detected automatically)

• “41424344”
 = Length 4, Data [41 42 43 44]

• “1122334455”
 = Length 5, Data [11 22 33 44 55]

Binary Mode:

• [04 41 42 43 44] = Ln. 4, [41 42 43 44]

• [05 11 22 33 44 55] = Ln. 5, [11 22 33 44 55]

longuint8a 2+ Array of uint8 bytes, with prefixed two-byte

length value. Supported length is 0-65535
bytes.

Text Mode: (length omitted, detected automatically)

• “41424344”
 = Length 4, Data [41 42 43 44]

• “1122334455”
 = Length 5, Data [11 22 33 44 55]

Binary Mode:

• [04 00 41 42 43 44]
 = Length 4, Data [41 42 43 44]

• [05 00 11 22 33 44 55]
 = Length 5, Data [11 22 33 44 55]

Note the 16-bit length prefix in binary mode is transmitted
in little-endian byte order, so the value 0x0005 is sent as
[05 00].

string 1+ String of uint8 bytes, with prefixed one-byte

length value. Length is 0-255 bytes.

These two datatypes are represented in binary the same
way as uint8a and longuint8a data, but in text mode

they are entered and displayed exactly as-is, with the
assumption that they contain printable ASCII characters.
An example of a string value entered and displayed in
this way is the Device Name value.

longstring 2+ String of uint8 bytes, with prefixed two-byte

length value. Length is 0-65535 bytes.

Table 7-1. API Protocol Data Types

7.1.3 Binary Format Details

 Byte Ordering and Structure Packing

The protocol implements a collection of common data types representing signed and unsigned integers, arrays of binary
bytes, arrays of printable characters, and certain technology-specific data (6-byte MAC address).

In text mode, all data except string/longstring values are represented as ASCII hexadecimal characters, without a leading
“0x” or other prefix. For example, the decimal value 154 is shown or entered as “9A”. Leading zeros may be omitted. Also,

in text mode, all multi-byte integer and MAC address data shall be entered in big-endian byte order. For example, the value
0x1234 is entered or displayed as “1234”. The MAC address 11:22:33:AA:BB:CC is entered or displayed as

“112233AABBCC”.

In binary mode, all multi-byte integers and MAC address data must be transmitted serially in little-endian byte order. For
example, the value 0x1234 is two bytes and transmitted as [34 12], and the MAC address 11:22:33:AA:BB:CC is six

bytes and transmitted as [CC BB AA 33 22 11].

The Bluetooth Low Energy specification mandates little-endian byte order internally, so data from the stack is naturally
presented to the application layer in this byte order. Further, many common embedded processors use little-endian data
storage. As a result, host MCU firmware can read in a serial byte stream into a contiguous SRAM buffer, and define a
structure like the following:

typedef struct {

 uint16 app;

 uint32 stack;

 uint16 protocol;

 uint8 hardware;

 uint8 cause;

 macaddr address;

} ezs_evt_system_boot_t;

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 80

The host MCU application can directly map this structure onto the packet buffer in memory with no additional byte-swap
operations. Accessing any one of the structure members gives correct access to the data in the packet. This arrangement
allows for minimal flash usage and CPU execution time.

 Binary Packet Header

The binary packet 4-byte header structure is described Table 7-2.

Byte Field(s) Description

0 [7:6] - Type
[5:4] - Memory
[2:0] - Length MSB

Type:
The “Type” field is a 2-bit value (MSb aligned) indicating whether the packet is a command,
response, or event. Options are as follows:

• 00: RESERVED

• 01: RESERVED

• 10: Event (module-to-host)

• 11: Response (module-to-host), and
 Command (host-to-module)

Protocol methods follow this convention when the “Type” value is aligned properly:

• Commands sent to the module begin with 0xC0

• Responses sent to the host begin with 0xC0

• Events sent to the host begin with 0x80

Memory:
The “Memory” field is a 2-bit value (MSb aligned) indicating whether a sent command
accesses the runtime value stored in RAM or the boot value stored in flash. This field is
ignored for commands which do not read or write configuration data stored in either flash or
RAM. Options are as follows:

• 00: Runtime (RAM)

• 01: Boot (Flash)

• 10: RESERVED

• 11: RESERVED

The values stored in RAM and flash may be the same, if you have not modified the runtime
value separately from the boot value since the last power-on or reset.

Length MSB:
The length MSB field contains the upper three bits of the payload length value (11 bits total).
See below for length detail.

The “Type”, “Memory”, and “Length MSB” bitfields are positioned within Byte 0 as follows:

 0b TTMM 0LLL

The remaining bit in the middle is currently reserved and should always be set to zero.

1 Length LSB This value indicates the number of bytes in the payload. It may be 0 to indicate no payload,
or any value up to the 11-bit maximum of 2047 (combining the LSB and MSB fields
together).

Typically, packets fit easily within a 64-byte buffer. However, a few packets such as local
GATT reads and writes may potentially be much longer than this. Protocol methods which
may require or generate atypically long packets are documented specifically.

2 Group ID All protocol methods are organized into logically separate groups, such as GAP, GATT
Server, CYSPP, and so on. This byte represents the group ID, between 0 and 255.

A single group ID applies to all commands, responses, and events within that group.

3 Method ID Within each group and packet type, every protocol method has a unique ID between 0 and
255. Command/response pairs always have matching IDs. Command/response pairs and
events are separate collections and may have overlapping method IDs, each in a set
starting from 0.

Table 7-2. Binary Packet Header Structure

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 81

7.2 API Commands and Responses

All commands and responses implemented in the API protocol are described in detail below. API events are documented
separately in section 7.3). A master list of all possible error codes resulting from commands can be found in section 7.4
(Error Codes).

Important things to note about the reference material in the following sections:

 The 16-bit “result” code is common to every response, and always occupies the same position in the packet
(immediately after the binary header or text name). For simplicity, this “result” field is omitted from each list of response
parameters in the tables below.

 The “Text” column in each “C ommand Arguments” table contains the text code for each argument. Required arguments
have a red asterisk (*) next to their text codes. Optional arguments in text mode will not have a red asterisk.

 All command arguments are required in binary mode, because binary parsing depends on predictable argument
position and byte width for proper data identification and unpacking.

 The “Command-Specific Result Codes” list appearing for some commands do not include some errors that may result
from command entry or protocol format mistakes. These common errors include:

 0x0203 – EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND

 0x0206 – EZS_ERR_PROTOCOL_SYNTAX_ERROR

 0x0207 – EZS_ERR_PROTOCOL_COMMAND_TIMEOUT

 0x0209 – EZS_ERR_PROTOCOL_INVALID_CHECKSUM

 0x020A – EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH

 0x020B – EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT

 0x020C – EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE

 0x020D – EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT

 0x020E – EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA

 0x020F – EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE

 0x0210 – EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE

See section 7.4 (Error Codes) for details on these and other error codes.

Commands and responses are broken down into the following groups:

• Protocol Group (ID=1)

• System Group (ID=2)

• GAP Group (ID=4)

• GATT Server Group (ID=5)

• SMP Group (ID=7)

• GPIO Group (ID=9)

• CYSPP Group (ID=10)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 82

7.2.1 Protocol Group (ID=1)

Protocol methods allow you to change the way the API protocol operates while communicating with an external host over
the serial interface.

Commands within this group are listed below:

• protocol_set_parse_mode (SPPM, ID=1/1)

• protocol_get_parse_mode (GPPM, ID=1/2)

• protocol_set_echo_mode (SPEM, ID=1/3)

• protocol_get_echo_mode (GPEM, ID=1/4)

Events within this group are documented in section 7.3.1 (System Group (ID=2)).

 protocol_set_parse_mode (SPPM, ID=1/1)

Configure new protocol parse mode.

In binary mode, all API packets to and from the module must use a binary format with a fixed header and payload structure,
as described in the reference material. In text mode, all commands, responses, and events use a human-readable format
that is suitable for typing in a terminal. See section 7.1 (Protocol Structure and Communication Flow) for details.

Note: When the protocol mode is changed with this command, the effect is immediate. The response packet returned will

come in the newly configured format, not the previous format.

Binary Header

 Type Length Group ID Notes

CMD C0 01 01 01 None.

RSP C0 02 01 01 None.

Text Info

Text Name Response Length Category Notes

SPPM 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8 mode M

New parse mode:

• 0 = Text mode (factory default)

• 1 = Binary mode

Response Parameters

None.

Related Commands

• protocol_get_parse_mode (GPPM, ID=1/2)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 83

 protocol_get_parse_mode (GPPM, ID=1/2)

Obtain current protocol parse mode.

Binary Header

 Type Length Group ID Notes

CMD C0 00 01 02 None.

RSP C0 03 01 02 None.

Text Info

Text Name Response Length Category Notes

GPPM 0x000F GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 mode M

Current parse mode:

• 0 = Text mode (factory default)

• 1 = Binary mode

Related Commands

• protocol_get_parse_mode (GPPM, ID=1/2)

 protocol_set_echo_mode (SPEM, ID=1/3)

Configure new protocol echo mode.

The protocol echo mode applies when using text mode API protocol over UART to communicate with the module. Enabling
echo will result in each input byte being sent back to the host after it is parsed. Local echo may be desirable during a terminal
session, but it is typically simpler disable it for MCU communication so that the MCU only needs to parse response and
event data.

Note: Local echo does not apply in CYSPP data mode or CYCommand data mode, regardless of the protocol format in use.

It only affects communication over the UART interface when using the API protocol in text mode.

Binary Header

 Type Length Group ID Notes

CMD C0 01 01 03 None.

RSP C0 02 01 03 None.

Text Info

Text Name Response Length Category Notes

SPEM 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8 mode M

New echo mode:

• 0 = Disabled

• 1 = Enabled (factory default)

Response Parameters:

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 84

Related Commands:

• protocol_get_echo_mode (GPEM, ID=1/4)

 protocol_get_echo_mode (GPEM, ID=1/4)

Obtain current protocol echo mode.

Binary Header

 Type Length Group ID Notes

CMD C0 00 01 04 None.

RSP C0 03 01 04 None.

Text Info

Text Name Response Length Category Notes

GPEM 0x000F GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 mode M

Current echo mode:

• 0 = Disabled

• 1 = Enabled (factory default)

Related Commands:

• protocol_set_echo_mode (SPEM, ID=1/3)

7.2.2 System Group (ID=2)

System methods relate to the core device and describe functionality such as boot status, setting or obtaining device address
information, and resetting to an initial state.

Commands within this group are listed below:

• system_ping (/PING, ID=2/1)

• system_reboot (/RBT, ID=2/2)

• system_dump (/DUMP, ID=2/3)

• system_store_config (/SCFG, ID=2/4)

• system_factory_reset (/RFAC, ID=2/5)

• system_query_firmware_version (/QFV, ID=2/6)

• system_query_random_number (/QRND, ID=2/8)

• system_write_user_data (/WUD, ID=2/11)

• system_read_user_data (/RUD, ID=2/12)

• system_set_bluetooth_address (SBA, ID=2/13)

• system_get_bluetooth_address (GBA, ID=2/14)

• system_set_sleep_parameters (SSLP, ID=2/19)

• system_get_sleep_parameters (GSLP, ID=2/20)

• system_set_tx_power (STXP, ID=2/21)

• system_get_tx_power (GTXP, ID=2/22)

• system_set_transport (ST, ID=2/23)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 85

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

• system_get_uart_parameters (GTU, ID=2/26)

Events within this group are documented in section 7.3.1 (System Group (ID=2)).

 system_ping (/PING, ID=2/1)

Test API communication.

Pinging the module verifies that the host and the module can communicate properly in API mode. The module should
immediately generate a well-formed response to this command if communication is working correctly. Host-side initialization
routines often begin with this step.

Runtime values returned in the response to this command are calculated based on the built-in 32768-Hz watch clock
oscillator (WCO) that is used to manage low-power operation of the BLE stack. No external hardware is required for this
functionality.

Note: Pinging the module does not serve any purpose other than to verify proper communication, or to obtain runtime since

reset. You do not need to ping at regular intervals to keep a connection alive or prevent the module from entering low-

power states. The platform automatically maintains BLE connections unless commanded otherwise. See section 3.1.5

(Managing Sleep States) for details of sleep behavior.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 01 None.

RSP C0 08 02 01 None.

Text Info

Text Name Response Length Category Notes

/PING 0x000B ACTION None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint32 runtime R Number of seconds since boot

uint16 fraction F Fraction of a second (units are ms)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 86

 system_reboot (/RBT, ID=2/2)

Reboot module.

A module reboot takes effect immediately. Any configuration settings not stored in flash revert to their boot-level values,
and any active connections are terminated without clean closure (remote peer will detect a supervision timeout). See section
2.5.2 (Saving Runtime Settings in Flash) for details about how to store settings in flash to make them persist across reboots
and power cycles.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 02 None.

RSP C0 02 02 02 None.

Text Info

Text Name Response Length Category Notes

/RBT 0x000A ACTION None.

Command Arguments

None.

Response Parameters

None.

Related Commands

• system_store_config (/SCFG, ID=2/4) – Used to store all configuration items in flash before rebooting, if desired

Related Events

• system_boot (BOOT, ID=2/1) – Occurs once the reboot process completes

 system_dump (/DUMP, ID=2/3)

Dump current device configuration or state information.

Performing a system dump generates a sequence of system_dump_blob (DBLOB, ID=2/5) API events, each containing up
to 16 bytes, until all data transmission is complete. You can provide this information for troubleshooting if requested by
Cypress support staff.

Binary Header

 Type Length Group ID Notes

CMD C0 01 02 03 None.

RSP C0 04 02 03 None.

Text Info

Text Name Response Length Category Notes

/DUMP 0x0012 ACTION None.

Command Arguments

Data Type Name Text Description

uint8 type T

Type of information to dump:

• 0 = Runtime configuration data (default)

• 1 = Boot-level configuration data

• 2 = Factory-level configuration data

• 3 = System state data

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 87

Response Parameters

Data Type Name Text Description

uint16 Length L

Number of bytes to be dumped:

• Configuration data is 674 bytes (0x02A2)

• State data is 1,955 bytes (0x07A3)

Related Commands

• system_store_config (/SCFG, ID=2/4)

Related Events

• system_dump_blob (DBLOB, ID=2/5)

 system_store_config (/SCFG, ID=2/4)

Store all configuration settings into flash.

This command applies all runtime settings into the boot-level configuration area stored in non-volatile flash. See section 2.5
(Configuration Settings, Storage, and Protection) for details about different configuration areas.

WARNING: This command briefly halts CPU execution, and may cause connectivity loss for any open
connections if this occurs during a precise moment when low-level BLE interrupts require processing. If

possible, use this command only while not connected to avoid this potential issue.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 04 None.

RSP C0 02 02 04 None.

Text Info

Text Name Response Length Category Notes

/SCFG 0x000B ACTION None.

Command Arguments

None.

Response Parameters

None.

Related Commands

• system_factory_reset (/RFAC, ID=2/5)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 88

 system_factory_reset (/RFAC, ID=2/5)

Reset all settings to factory defaults and reboot.

This command reverts all configuration settings back to the values stored in the factory default area. After applying these
default values, the system reboots immediately.

WARNING: If you have configured custom serial communication settings using the system_set_transport
(ST, ID=2/23) API command, using this command will undo these changes and may prevent a working
communication until you reconfigure your host device to the factory default transport settings. See Section
2.2 (Factory Default Behavior) for details about these settings.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 05 None.

RSP C0 02 02 05 None.

Text Info

Text Name Response Length Category Notes

/RFAC 0x000B ACTION None.

Command Arguments

None.

Response Parameters

None.

Related Events

• system_factory_reset_complete (RFAC, ID=2/3) – Occurs after the settings are reset

• system_boot (BOOT, ID=2/1) – Occurs after the system reboots

 system_query_firmware_version (/QFV, ID=2/6)

Query EZ-Serial firmware version info.

This command provides the same version details that the system_boot (BOOT, ID=2/1) event contains.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 06 None.

RSP C0 0D 02 06 None.

Text Info

Text Name Response Length Category Notes

/QFV 0x002C ACTION None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint32 App E Application version number (e.g.: 0x0101021F = 1.1.2 build 31)

uint32 stack S BLE stack version number (e.g.: 0x02020355 = 2.2.3 build 85)

uint16 protocol P API protocol version number (e.g.: 0x0103 = 1.3)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 89

Data Type Name Text Description

uint8 hardware H

Hardware identifier:

• 0x01 = CYBLE-01201X-X0

• 0x02 = CYBLE-014008-00

• 0x03 = CYBLE-022001-00

• 0x04 = CYBLE-2X20XX-X1

• 0x05 = CYBLE-2120XX-X0

• 0x06 = CYBLE-212020-01

• 0x07 = CYBLE-214009-00

• 0x08 = CYBLE-214015-01

• 0x09 = CYBLE-222005-00

• 0x0A = CYBLE-222014-01

• 0x0B = CYBLE-224110-00

• 0x0C = CYBLE-224116-01

• 0xB1 = CYBLE-013025-00

• 0xD1 = CYBT-343026-01

• 0xD2 = CYBT-353027-02

Related Events

• system_boot (BOOT, ID=2/1)

 system_query_random_number (/QRND, ID=2/8)

Query random number generator for 8-byte pseudo-random sequence.

This command provides simple access to the random number generator in the EZ-BT module’s chipset. The query always
provides exactly eight bytes of random data.

Note: This pseudo-random generation mechanism is FIPS PUB 140-2 compliant.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 08 None.

RSP C0 0B 02 08 None.

Text Info

Text Name Response Length Category Notes

/QRND 0x001E ACTION None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8a data D
Random 8-byte sequence (1 length byte equal to 0x08, followed by 8 data bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 90

 system_write_user_data (/WUD, ID=2/11)

Write arbitrary data to the user flash storage area.

EZ-serial provides 256 bytes of non-volatile flash storage for application data. This command allows writing 1-32 bytes to
any position within this 256-byte area.

NOTE: You must specify a data offset and length which do not exceed 256 when combined. For example,
if you are writing 32 bytes of data, the specified “offset” argument must be 224 (0xE0) or less.

Binary Header

 Type Length Group ID Notes

CMD C0 04-23 02 0B Variable-length command payload, minimum of 4 (0x4), maximum of 35 (0x23).

RSP C0 02 02 0B None.

Text Info

Text Name Response Length Category Notes

/WUD 0x000A ACTION None.

Command Arguments

Data Type Name Text Description

uint16 offset O* Offset (0-65535) (Note: See details for difference case)

Uint8 Mode M

Operation Mode(0~6):

• 0 =Write user data (default)

O: Offset from 0-0xFF

D: Data to write

• 1 = Write register. Start from: 0x320000+offset (Note: Just for debug usage).

O: Offset from 0-0xFFFF

D: Data to write. Data length is only 4 bytes

• 2 = Write RAM. Start from: 0x00220000+offset (Note: Just for debug usage).

O: Offset from 0-0xFFFF

D: Data to write

• 3 = Add Init command to list

O: Offset in history command list.

D: N/A

• 4 = Delete Init command to list.

O: Init command number,

D: N/A

• 5 = Reset Init command list.

O: If 0xFFFF, specially disable Init command list,

 otherwise delete all Init command list content

D: N/A

• 6 = Write register2. Start from: 0x330000+offset (Note: Just for debug usage).

O: Offset from 0-0xFFFF

• D: Data to write

uint8a data D*

Data to write (1-32 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload

Detail depends on Mode

Response Parameters

None.

Related Commands

• system_read_user_data (/RUD, ID=2/12)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 91

 system_read_user_data (/RUD, ID=2/12)

Read arbitrary data from the user flash storage area.

EZ-serial provides 256 bytes of non-volatile flash storage for application data. This command allows reading 1-32 bytes
from any position within this 256-byte area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if you are reading

32 bytes of data, the specified “offset” argument must be 224 (0xE0) or less.

Binary Header

 Type Length Group ID Notes

CMD C0 03 02 0C None.

RSP C0 03 02 0C Variable-length response payload, minimum of 3 (0x3), maximum of 35 (0x23).

Text Info

Text Name Response Length Category Notes

/RUD 0x000D-0x004D ACTION Variable-length response payload, minimum of 13 (0xD), maximum of 77 (0x4D).

Command Arguments

Data Type Name Text Description

uint16 offset O* Offset (0-65535)

Uint8 Mode M

Operation Mode(0~6):

• 0 = Read user data (default)

O: Offset from 0-0xFF

D: Data read

• 1 = Read register. Start from: 0x320000+offset (Note: Just for debug usage).

O: Offset from 0-0xFFFF

D: Data to Read

• 2 = Read RAM. Start from: 0x00220000+offset (Note: Just for debug usage).

O: Offset from 0-0xFFFF

D: Data to Read

• 3 = Read Init command

O: Init command number,

D: Command content to Read

• 4 = Read Init command list info.

O: N/A

D: Init command list info

 Byte 0: disable

 Byte 1: Init command total number

 Byte 2&3: Next Init command write location

• 5 = Print current init command list.

O: N/A

D: N/A

• 6 = Read register 2. Start from: 0x330000+offset (Note: Just for debug usage)

O: Offset from 0-0xFFFF

• D: Data to Read

uint8 length L*
Number of bytes to read (1-32)
Only valid for M=0,2

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 92

Response Parameters

Data Type Name Text Description

uint8a data D

Data read (1-32 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload

Detail depend on M

Related Commands

•

• system_write_user_data (/WUD, ID=2/11)

 system_set_bluetooth_address (SBA, ID=2/13)

Configure a new public Bluetooth address.

This address is visible to remote scanning or connected devices, if the module is not operating with privacy enabled. EZ-
Serial uses a fixed public address by default, which is generated dynamically based on unique properties of the chipset
inside each module (including wafer/die data). Normally, you do not need to change the Bluetooth address using this
command.

Note: When privacy is enabled, remote peer devices see a random address instead of the fixed address. Central or

Peripheral privacy is not the same as encryption. See related commands and example usage for detail.

Binary Header

 Type Length Group ID Notes

CMD C0 06 02 0D None.

RSP C0 02 02 0D None.

Text Info

Text Name Response Length Category Notes

SBA 0x0009 SET None.

Command Arguments

Data Type Name Text Description

Macaddr address A New public Bluetooth address. Set all six 0x00 bytes to revert to factory-provided address.

Response Parameters

None.

Related Commands

• system_get_bluetooth_address (GBA, ID=2/14)

• smp_set_privacy_mode (SPRV, ID=7/9)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 93

 system_get_bluetooth_address (GBA, ID=2/14)

Obtain the current public Bluetooth address.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 0E None.

RSP C0 08 02 0E None.

Text Info

Text Name Response Length Category Notes

GBA 0x0018 GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

macaddr address A Current public Bluetooth address

Related Commands

• system_get_bluetooth_address (GBA, ID=2/14)

• smp_set_privacy_mode (SPRV, ID=7/9)

 system_set_sleep_parameters (SSLP, ID=2/19)

Configure new system-wide sleep settings.

To maintain the required activity (including BLE communication, PWM output, and UART output), EZ-Serial will not
automatically enter Deep Sleep mode even if it is configured as normal sleep mode.

Binary Header

 Type Length Group ID Notes

CMD C0 01 02 13 None.

RSP C0 02 02 13 None.

Text Info

Text Name Response Length Category Notes

SSLP 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8 Level L

New maximum system-wide sleep level:

• 0 = Sleep disabled (factory default)

• 1 = Normal sleep when possible

• 2 = Deep sleep when possible

Response Parameters

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 94

Related Commands

• system_get_sleep_parameters (GSLP, ID=2/20)

• gpio_set_pwm_mode (SPWM, ID=9/11) – Configure PWM output

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3) – Configure new CYSPP parameters, including CYSPP data mode sleep level

Example Usage

Section 3.1.5.1 (Configuring the System-Wide Sleep Level)

 system_get_sleep_parameters (GSLP, ID=2/20)

Obtain the current system-wide sleep settings.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 14 None.

RSP C0 03 02 14 None.

Text Info

Text Name Response Length Category Notes

GSLP 0x000F GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 level L

Current maximum system-wide sleep level:

• 0 = Sleep disabled (factory default)

• 1 = Normal sleep when possible

• 2 = Deep sleep when possible

Related Commands

• system_set_sleep_parameters (SSLP, ID=2/19)

 system_set_tx_power (STXP, ID=2/21)

Configure new transmit power for all outgoing radio communications.

This power setting affects all transmissions, including advertising, scan requests and connection requests, and all packets
sent during an active connection. Changes take effect as soon as the next transmitted packet begins.

Binary Header

 Type Length Group ID Notes

CMD C0 01 02 15 None.

RSP C0 02 02 15 None.

Text Info

Text Name Response Length Category Notes

STXP 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8 Power P
Available power value can be set, the value must be in the range of 1 and 8. The default set value is
7. See section 3.1.4 for details on the TX output power map.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 95

Response Parameters

None.

Related Commands

• system_get_tx_power (GTXP, ID=2/22)

 system_get_tx_power (GTXP, ID=2/22)

Obtain current transmit power for all outgoing radio communications.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 16 None.

RSP C0 03 02 16 None.

Text Info

Text Name Response Length Category Notes

GTXP 0x000F GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 Power P
Current active power level value, it should be in the range of 1 and 8. See 3.1.4 for details on the TX
output power map.

Related Commands

• system_get_tx_power (GTXP, ID=2/22)

 system_set_transport (ST, ID=2/23)

Configure new host communication interface.

This command configures the interface used for wired external host communication. If a change is successful, EZ-Serial
will send the response packet in the original configuration, and then switch to the new transport interface.

Note: The current EZ-Serial release supports only the UART transport interface. No other options are available.

Binary Header

 Type Length Group ID Notes

CMD C0 01 02 17 None.

RSP C0 02 02 17 None.

Text Info

Text Name Response Length Category Notes

ST 0x0008 SET None.

Command Arguments

Data Type Name Text Description

uint8 interface I
New host transport interface:

• 1 = UART (factory default)

uint8 BT flag T To control BT behavior when BLE is connected.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 96

Data Type Name Text Description

The default value is 0x80: Non-discoverable and Not connectable for BT when
BLE link is connected

 Bit 7: control if this flag is valid
 0: Not valid

 1: Valid

Bit 4: Set connectablilty
 0, Not connectable

 1, BT Classic connectable

Bit 1~0: Set discoverability
 0, Non-discoverable

 1, Limited BT Classic discoverable

 2, General BT Classic discoverable

uint8 BLE flag L

To control BLE behavior when BT SPP is connected.

The default value is 0x80: No ADV broadcast when BT SPP link is connected

 Bit 7: control if this flag is valid
 0: Not valid

 1: Valid

Bit 3~0: advType after BT SPP is connected
 0, Stop advertisement

 1, Directed advertisement (high duty cycle)

 2, Directed advertisement (low duty cycle)

 3, Undirected advertisement (high duty cycle)

 4, Undirected advertisement (low duty cycle)

 5, Non-connectable advertisement (high duty cycle)

 6, Non-connectable advertisement (low duty cycle)

 7, Discoverable advertisement (high duty cycle)

 8, Discoverable advertisement (low duty cycle)

uint8 Event_filter E

Command/event filter:

 0: Not set

 1: Set, command and event will not appear in puart

Note: Factory default = 0 (Not set)

uint8 active_time_due_puart A

Active kept time after received data from PUART in low power state. Unit is
second.

Note: Factory default = 5 (5 second)

Response Parameters

None.

Related Commands

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 97

 system_get_transport (GT, ID=2/24)

Obtain the current host transport setting.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 18 None.

RSP C0 03 02 18 None.

Text Info

Text Name Response Length Category Notes

GT 0x000D GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 interface I
Current host transport interface:

• 1 = UART (factory default)

uint8 BT flag T

To control BT behavior when BLE is connected.
In default, value is 0x80: No discoverity, no connect for BT when BLE link is
connected

Bit 7: control if this flag is valid

 0: Not valid

 1: Valid

Bit 4: Set connectablilty
 0, Not connectable

 1, BT Classic connectable

Bit 1~0: Set discoverability
 0, Non-discoverable

 1, Limited BT Classic discoverable

 2, General BT Classic discoverable

uint8 BLE flag L

To control BLE behavior when BT SPP is connected.

In default, value is 0x80: No ADV broadcast when BT SPP link is connected

 Bit 7: control if this flag is valid

 0: Not valid

 1: Valid

 Bit 3~0: advType after BT SPP is connected

 0, Stop advertising

 1, Directed advertisement (high duty cycle)

 2, Directed advertisement (low duty cycle)

 3, Undirected advertisement (high duty cycle)

 4, Undirected advertisement (low duty cycle)

 5, Non-connectable advertisement (high duty cycle)

 6, Non-connectable advertisement (low duty cycle)

 7, Discoverable advertisement (high duty cycle)

 8, Discoverable advertisement (low duty cycle)

uint8 Event_filter E

Command/event filter:

 0: Not set

 1: Set, command and event will not appear in puart

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 98

Data Type Name Text Description

uint8 active_time_due_puart A
Active kept time after received data from PUART in low power state. Unit is
second.

Related Commands

• system_set_transport (ST, ID=2/23)

• system_get_uart_parameters (GTU, ID=2/26)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 99

 system_set_uart_parameters (STU, ID=2/25)

Configure new UART settings for host communication.

This command configures the UART peripheral behavior used for wired external host communication when the host
transport interface is set to “UART” with the system_set_transport (ST, ID=2/23) API command. If a change is successful,
EZ-Serial will send the response packet using the original configuration, and then apply the new UART settings.

Note: This command affects protected settings, which means you cannot immediately apply changes to flash. To store new

settings in non-volatile memory, you must send the command once without the flash storage bit/flag, and then re-send

the same command again with the flash storage bit/flag set. This prevents accidental permanent communication

lockout resulting from flash-stored settings that the connected host cannot use. For detail, see section 2.5.3 (Protected

Configuration Settings).

Binary Header

 Type Length Group ID Notes

CMD C0 0A 02 19 None.

RSP C0 02 02 19 None.

Text Info

Text Name Response Length Category Notes

STU 0x0009 SET None.

Command Arguments

Data Type Name Text Description

uint32 baud B

UART baud rate:

• Minimum = 300 baud (0x12C)

• Factory default = 115,200 baud (0x1C200)

• Maximum = 3,000,000 baud (0x2DC6C0)

uint8 autobaud A
Auto-detect UART baud rate at boot:

• 0 = Disabled (factory default, must always be disabled in current version)

uint8 autocorrect C
Auto-correct UART clock to compensate for wide temperature variation:

• 0 = Disabled (factory default, must always be disabled in current version)

uint8 flow F

UART RTS/CTS flow control:

• 0 = Disabled (factory default)

• 1 = Enabled

uint8 databits D
UART data bits:

• 8 = 8 data bits (factory default)

uint8 parity P

UART parity:

• 0 = Disabled (factory default)

• 1 = Odd parity

• 2 = Even parity

uint8 stopbits S

UART stop bits:

• 1 = 1 stop bit (factory default)

• 2 = 2 stop bits

Response Parameters

None.

Related Commands

• system_set_transport (ST, ID=2/23)

• system_get_uart_parameters (GTU, ID=2/26)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 100

Example Usage

Section 3.1.2 (Changing the Serial Communication Parameters)

 system_get_uart_parameters (GTU, ID=2/26)

Obtain the current UART settings for host communication.

Binary Header

 Type Length Group ID Notes

CMD C0 00 02 1A None.

RSP C0 0C 02 1A None.

Text Info

Text Name Response Length Category Notes

GTU 0x0032 GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint32 baud B

UART baud rate:

• Minimum = 300 baud (0x12C)

• Factory default = 115,200 baud (0x1C200)

• Maximum = 3,000,000 baud (0x2DC6C0)

uint8 autobaud A
Auto-detect UART baud rate at boot:

• 0 = Disabled (factory default, must always be disabled in current version)

uint8 autocorrect C
Auto-correct UART clock to compensate for wide temperature variation:

• 0 = Disabled (factory default, must always be disabled in current version)

uint8 flow F

UART RTS/CTS flow control:

• 0 = Disabled (factory default)

• 1 = Enabled

uint8 databits D
UART data bits:

• 8 = 8 data bits (factory default)

uint8 parity P

UART parity:

• 0 = Disabled (factory default)

• 1 = Odd parity

• 2 = Even parity

uint8 stopbits S

UART stop bits:

• 1 = 1 stop bit (factory default)

• 2 = 2 stop bits

Related Commands

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 101

7.2.3 GAP Group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth stack, which includes management of scanning
and advertising, connection establishment, and connection maintenance.

Commands within the GAP group are listed below:

• gap_connect (/C, ID=4/1)

• gap_cancel_connection (/CX, ID=4/2)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_disconnect (/DIS, ID=4/5)

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_delete_whitelist_entry (/WLD, ID=4/7)

• gap_start_adv (/A, ID=4/8)

• gap_stop_adv (/AX, ID=4/9)

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

• gap_query_peer_address (/QPA, ID=4/12)

• gap_query_rssi (/QSS, ID=4/13)

• gap_query_whitelist (/QWL, ID=4/14)

• gap_set_device_name (SDN, ID=4/15)

• gap_get_device_name (GDN, ID=4/16)

• gap_set_device_appearance (SDA, ID=4/17)

• gap_get_device_appearance (GDA, ID=4/18)

• gap_set_adv_data (SAD, ID=4/19)

• gap_get_adv_data (GAD, ID=4/20)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_get_sr_data (GSRD, ID=4/22)

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_get_adv_parameters (GAP, ID=4/24)

• gap_set_scan_parameters (SSP, ID=4/25)

• gap_get_scan_parameters (GSP, ID=4/26)

• gap_set_conn_parameters (SCP, ID=4/27)

• gap_get_conn_parameters (GCP, ID=4/28)

Events within this group are documented in Section 7.3.2, GAP Group (ID=4).

 gap_connect (/C, ID=4/1)

Initiate a connection to a remote Peripheral device.

For this command to succeed, EZ-Serial must not have other ongoing BLE activity. In other words:

• The module must not be advertising. Use gap_stop_adv (/AX, ID=4/9) to stop, if necessary.

• The module must not be scanning. Use gap_stop_scan (/SX, ID=4/11) to stop, if necessary.

• The module must not be in a connection with other remote Peripheral device. Use gap_disconnect (/DIS, ID=4/5)
to disconnect, if necessary.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 102

After starting the connection process, the module will begin scanning for a connectable advertisement packet from the target
device. This will continue until it succeeds, or until the connection attempt is canceled with the gap_cancel_connection (/CX,
ID=4/2) API command, or the connection scan timeout period expires (if it has been set).

When sending this command in text mode, all omitted arguments except address and type will default to the values set

using the gap_set_conn_parameters (SCP, ID=4/27) API command.

NOTE: If scan_timeout is set to zero, the connection attempt will persist forever until it succeeds or it is

cancelled intentionally. The supervision_timeout parameter governs link loss detection after a

connection is established, and does not affect the connection attempt itself.

Binary Header:

 Type Length Group ID Notes

CMD C0 13 04 01 None.

RSP C0 03 04 01 None.

Text Info:

Text Name Response Length Category Notes

/C 0x000D ACTION None.

Command Arguments:

Data Type Name Text Description

macaddr address A Target connection address:

uint8 type T

Address type:

• 0 = Public

• 1 = Random/private

uint16 interval I Not implemented

uint16 slave_latency L Not implemented

uint16 supervision_timeout O Not implemented

uint16 scan_interval V Not implemented

uint16 scan_window W Not implemented

uint16 scan_timeout M
Connection scan timeout (unit is second):

• 0 to disable

Response Parameters:

Data Type Name Text Description

uint8 conn_handle C Handle assigned to new pending connection

Related Commands:

• gap_connect (/C, ID=4/1)

• gap_disconnect (/DIS, ID=4/5)

Related Events:

• gap_connected (C, ID=4/5) – Occurs when an outgoing connection attempt succeeds

•
Example Usage:

None.

 gap_cancel_connection (/CX, ID=4/2)

Cancel a pending connection attempt.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 103

Use this command to manually end a pending connection attempt to a remote peer device which you previously initiated
with the gap_connect (/C, ID=4/1) API command. This command takes no parameters because it is not possible to have
more than one pending outgoing connection attempt at a time.

NOTE: This command applies only when ending a connection attempt that has not succeeded yet. To close
an established connection, use the gap_disconnect (/DIS, ID=4/5) API command instead.

Binary Header:

 Type Length Group ID Notes

CMD C0 00 04 02 None.

RSP C0 02 04 02 None.

Text Info:

Text Name Response Length Category Notes

/CX 0x0009 ACTION None.

Command Arguments:

None.

Response Parameters:

None.

Related Commands:

• gap_connect (/C, ID=4/1)

• gap_disconnect (/DIS, ID=4/5)

Related Events:

• gap_connected (C, ID=4/5)

Example Usage:

None.

 gap_update_conn_parameters (/UCP, ID=4/3)

Request a connection parameter update for an active connection.

Use this command to change the connection interval, slave latency, and supervision timeout for an active connection. If the
parameter update is successful, EZ-Serial will generate the gap_connection_updated (CU, ID=4/8) API event after applying
new parameters. This will only occur if one or more of the parameters changes from its previous value.

The behavior following this command depends on the link-layer role (master or slave) of the device which initiated the
request. The master device has final authority over connection parameters. The EZ-BT WICED version of EZ-Serial
supports operation only in the slave role.

If used while in the slave role (connection from peer initiated remotely):

 New connection parameters must be confirmed by the master

 Local device will generate the gap_connection_updated (CU, ID=4/8) event if master accepts parameters

Binary Header

 Type Length Group ID Notes

CMD C0 07 04 03 None.

RSP C0 02 04 03 None.

Text Info

Text Name Response Length Category Notes

/UCP 0x000A ACTION None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 104

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Handle of connection to update
(Ignored in current release)

uint16 interval I*
Connection interval (1.25 ms units):
• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms)
• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L*

Slave latency (connection interval count):
• Minimum = 0, no intervals skipped
• Maximum depends on interval and supervision timeout, such that:
[interval * slave_latency] < supervision_timeout

uint16 supervision_timeout O*
Supervision timeout (10 ms units):
• Minimum = 0x000A (10 * 10 ms = 100 ms)
• Maximum = 0x0C80 (3200 * 10 ms = 32 seconds)

Response Parameters

None.

Related Commands

None.

Related Events

• gap_connection_updated (CU, ID=4/8)

 gap_disconnect (/DIS, ID=4/5)

Close an open connection to a remote device.

Use this command to cleanly close an established connection with a remote peer device. The connection must first have
been fully opened, indicated by the gap_connected (C, ID=4/5) API event.

Binary Header

 Type Length Group ID Notes

CMD C0 01 04 05 None.

RSP C0 02 04 05 None.

Text Info

Text Name Response Length Category Notes

/DIS 0x000A ACTION None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Handle of connection to disconnect
(Ignored in current release)

Response Parameters

None.

Related Commands

None.

Related Events

• gap_disconnected (DIS, ID=4/6)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 105

 gap_add_whitelist_entry (/WLA, ID=4/6)

Add a new Bluetooth address to the whitelist.

The whitelist is an optional filter for determining which remote peers are allowed to connect, or which the local module may
try to connect. When whitelist filtering is active, devices that are not on the whitelist are not allowed to connect with the
module. You can control whitelist filter usage during advertising, scanning, or outgoing connect attempts.

The whitelist is an optional filter: it will determine which remote peers are allowed to connect the local module. On the other
hand, the local module may try to connect the device in the whitelist. When whitelist filtering is active, devices that are not
on the whitelist are not allowed to connect with the module. You can control whitelist filter usage during advertising,
scanning, or outgoing connect attempts.

Note: You can only use this command while disconnected. Changes to the whitelist are not allowed during a connection.

Each whitelist entry is made up of two parts: the peer's Bluetooth address and the type of address (public or private). You
must specify the correct address type for each peer based on the type of address being used. This information is available
in scan results and connection details.

Note: The BLE stack in EZ-Serial automatically mirrors the bonded device list into the whitelist. This behavior accommodates

the most common use case for the whitelist, and you may not need any manual additions or removals from the

whitelist.

Binary Header

 Type Length Group ID Notes

CMD C0 07 04 06 None.

RSP C0 03 04 06 None.

Text Info

Text Name Response Length Category Notes

/WLA 0x000F ACTION None.

Command Arguments

Data Type Name Text Description

macaddr address A* Bluetooth address

uint8 type T

Address type:

• 0 = Public (default)

• 1 = Random/private

Response Parameters

Data Type Name Text Description

uint8 count C Updated whitelist entry count

Command-Specific Result Codes

None.

Related Commands

• gap_delete_whitelist_entry (/WLD, ID=4/7)

• gap_query_peer_address (/QPA, ID=4/12)

• gap_set_adv_parameters (SAP, ID=4/23) – Configure whitelist filter for advertising

Related Events

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 106

 gap_delete_whitelist_entry (/WLD, ID=4/7)

Remove a Bluetooth address from the whitelist.

Use this command to remove a specific device that exists on the whitelist. For details on whitelist behavior, see the
documentation for the gap_add_whitelist_entry (/WLA, ID=4/6) API command.

Binary Header

 Type Length Group ID Notes

CMD C0 07 04 07 None.

RSP C0 03 04 07 None.

Text Info

Text Name Response Length Category Notes

/WLD 0x000F ACTION None.

Command Arguments

Data Type Name Text Description

macaddr address A Bluetooth address

uint8 type T

Address type:

• 0 = Public (default)

• 1 = Random/private

Response Parameters

Data Type Name Text Description

uint8 count C Updated whitelist entry count

Related Commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

 gap_start_adv (/A, ID=4/8)

Start advertising.

This command begins advertising using the specified parameters or using the pre-configured default advertising parameters
if in text mode and some arguments are omitted. EZ-Serial must not already be advertising for this command to succeed.
However, it is possible to advertise and scan simultaneously.

EZ-Serial will generate the gap_adv_state_changed (ASC, ID=4/2) API event when the advertising state changes.

Note: You can start advertising while connected only if you specify “0” (broadcast-only) for the mode argument. The BLE

stack does not support being connected and connectable at the same time.

Note: When using the “scannable, undirected” type or “non-connectable, undirected” setting for the type argument, the

advertisement interval must be 100 ms (0xA0) or greater, per the Bluetooth specification. Shorter intervals than this

will result in an error response.

Binary Header

 Type Length Group ID Notes

CMD C0 08 04 08 None.

RSP C0 02 04 08 None.

Text Info

Text Name Response Length Category Notes

/A 0x0008 ACTION None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 107

Command Arguments

Data Type Name Text Description

Uint08 Mode M Discovery mode: not implemented, always zero.

uint8 type T

Advertisement type:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

• 8 = discoverable advertisement (low duty cycle)

uint8 channels C

Advertisement channel selection bitmask (at least one bit must be set):

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

uint16 high interval H

high_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 high duration D high duty duration in seconds (0 for infinite)

uint16 low interval L

low_duty_interval: (625 μs):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 low duration O low duty duration in seconds (0 for infinite)

uint8 flag F

Advertisement interval Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set)

uint8 directAddr A Directed advertisement address

uint8 directAddrType Y

Directed Address type (if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Response Parameters

None.

Related Commands

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_data (SAD, ID=4/19)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

Related Events

• gap_adv_state_changed (ASC, ID=4/2)

Example Usage

Section 3.4.1 (Advertising as Peripheral Device)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 108

 gap_stop_adv (/AX, ID=4/9)

Stop advertising.

This command immediately stops advertising if it is currently active. Note that advertising may have started because of the
gap_start_adv (/A, ID=4/8) API command, or due to specific configuration settings (GAP parameters, CYSPP profile) that
automatically begin advertising.

EZ-Serial will generate the gap_adv_state_changed (ASC, ID=4/2) API event when the advertising state changes.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 09 None.

RSP C0 02 04 09 None.

Text Info

Text Name Response Length Category Notes

/AX 0x0009 ACTION None.

Command Arguments

None.

Response Parameters

None.

Related Commands

• gap_start_adv (/A, ID=4/8)

Related Events

• gap_adv_state_changed (ASC, ID=4/2)

 gap_start_scan (/S, ID=4/10)

Start scanning. This command will use the configured default scan parameters, unless specified otherwise using arguments.
Binary Header:

 Type Length Group ID Notes

CMD C0 0A 04 0A None.

RSP C0 02 04 0A None.

Text Info:

Text Name Response Length Notes

/S 0x0008 None.

Command Arguments:

Data Type Name Text Description

uint8 mode M Discovery mode: not implemented.

uint16 interval I

Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W

Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)Cannot be greater than interval

uint8 active A Active scanning:

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 109

Data Type Name Text Description

• 0 = Passive scanning

• 1 = Active scanning

uint8 filter F
Whitelist filter policy:

• Not implemented and always 0

uint8 nodupe D
Duplicate filter policy:

• 0 = Disable duplicate result filtering

• 1 = Enable duplicate result filtering

uint16 timeout O
Scan timeout (seconds):

• Maximum = 255

• 0 to disable

Response Parameters

None.

Related Commands:

• gap_stop_scan (/SX, ID=4/11)

Related Events:
None.

 gap_stop_scan (/SX, ID=4/11)

Stop scanning.
Binary Header:

 Type Length Group ID Notes

CMD C0 00 04 0B None.

RSP C0 02 04 0B None.

Text Info:

Text Name Response Length Notes

/SX 0x0009 None.

Command Arguments:
None.

Response Parameters:
None.

Related Commands:

• gap.start_scan

Related Events:
None.

 gap_query_peer_address (/QPA, ID=4/12)

Query remote peer Bluetooth address.

This command returns the Bluetooth address of the currently connected remote peer device. An active connection is
required to use this command successfully.

Binary Header

 Type Length Group ID Notes

CMD C0 01 04 0C None.

RSP C0 09 04 0C None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 110

Text Info

Text Name Response Length Notes

/QPA 0x001E None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Handle of connection for which to query remote peer address
(Ignored in current release)

Response Parameters

Data Type Name Text Description

macaddr address A Peer Bluetooth address

uint8 address_type T Address type

Related Commands

• gap_query_rssi (/QSS, ID=4/13)

 gap_query_rssi (/QSS, ID=4/13)

This command returns the remote signal strength indication (RSSI) value detected in the packet received most recently
from the currently connected remote peer device. An active connection is required to use this command successfully.

Note: RSSI values in real-world environments often fall in the -50 dBm to -70 dBm range. An RSSI value at this level does

not necessarily indicate a poor connection.

The RSSI value returned in the response is expressed as a signed 8-bit integer. In text mode, it will appear in two’s
complement form. Positive numbers in this form fall in the range [0, 127] and are as they appear. Negative numbers fall in
the range [128, 255] and should have 256 subtracted from the value to obtain the real value.

Examples:

 0x03 = +3 dBm

 0xFF = -1 dBm (0xFF = 255 - 256 = -1)

 0xF0 = -16 dBm (0xF0 = 240 - 256 = -16)

 0xC5 = -59 dBm (0xC5 = 197 - 256 = -59)

Binary Header

 Type Length Group ID Notes

CMD C0 01 04 0D None.

RSP C0 03 04 0D None.

Text Info

Text Name Response Length Notes

/QSS 0x000F None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Handle of connection for which to query signal strength
(Ignored in current release)

Response Parameters

Data Type Name Text Description

int8 rssi R RSSI value in dBm (between -85 and +5), or 0 if used while not connected

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 111

Related Commands

• gap_query_peer_address (/QPA, ID=4/12)

 gap_query_whitelist (/QWL, ID=4/14)

Request a list of whitelisted devices.

This command provides access to the current whitelist. The response from this command includes the number of devices
on the whitelist, and the response is followed by the gap_whitelist_entry (WL, ID=4/1) API events which provide details for
each entry.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 0E None.

RSP C0 03 04 0E None.

Text Info

Text Name Response Length Category Notes

/QWL 0x000F ACTION None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 Count C Whitelist entry count

Related Commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_delete_whitelist_entry (/WLD, ID=4/7)

Related Events

• gap_whitelist_entry (WL, ID=4/1)

 gap_set_device_name (SDN, ID=4/15)

Configure a new device name.

This is typically a UTF-8 string value that is stored in the Device Name characteristic (UUID 0x2A00) in the local GATT
structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP service is mandatory for all Bluetooth
Smart devices, and the Device Name characteristic is a mandatory part of the GAP service.

Using this command affects the value in the local GATT Server Device Name characteristic, and the local name field in the
automatically managed scan response packed used for advertising.

Binary Header

 Type Length Group ID Notes

CMD C0 01-41 04 0F Variable-length command payload, minimum of 1 (0x01), maximum of 65 (0x41)

RSP C0 02 04 0F None.

Text Info

Text Name Response Length Category Notes

SDN 0x0009 SET None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 112

Command Arguments

Data Type Name Text Description

uint8 Type T

Device Type:

• 0 = BLE Device Name

• 1 = BT classic Device Name

string name N New device name (0-64 bytes, raw ASCII data when in text mode)

Response Parameters

None.

Related Commands

• gap_get_device_name (GDN, ID=4/16)

Example Usage

Section 3.1.3 (Changing Device Name and Appearance)

 gap_get_device_name (GDN, ID=4/16)

Obtain the current device name.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 10 None.

RSP C0 03-43 04 10 Variable-length response payload, minimum of 3 (0x03), maximum of 67 (0x43)

Text Info

Text Name Response Length Category Notes

GDN 0x000C-0x004C GET Variable-length response payload, minimum of 12 (0x0C), maximum of 76 (0x4C)

Command Arguments

Data Type Name Text Description

uint8 Type T

Device Type:

• 0 = BLE Device Name

• 1 = BT classic Device Name

Response Parameters

Data Type Name Text Description

string name N Current device name (0-64 bytes, raw ASCII data when in text mode)

Related Commands

• gap_set_device_name (SDN, ID=4/15)

 gap_set_device_appearance (SDA, ID=4/17)

Configure a new device name.

Define the device appearance value. This is a 16-bit value which is stored in the Appearance characteristic (UUID 0x2A01)
in the local GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP service is mandatory
for every Bluetooth Smart device, and the Appearance characteristic is a mandatory part of the GAP service.

Using this command affects the value in the local GATT Server Device Appearance characteristic.

Binary Header

 Type Length Group ID Notes

CMD C0 02 04 11 None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 113

 Type Length Group ID Notes

RSP C0 02 04 11 None.

Text Info

Text Name Response Length Category Notes

SDA 0x0009 SET None.

Command Arguments

Data Type Name Text Description

uint16 appearance A New device appearance value (factory default is 0x0000)

Response Parameters

None.

Related Commands

• gap_get_device_appearance (GDA, ID=4/18)

 gap_get_device_appearance (GDA, ID=4/18)

Obtain the current device appearance value.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 12 None.

RSP C0 04 04 12 None.

Text Info

Text Name Response Length Category Notes

GDA 0x0010 GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint16 appearance A Current device appearance value

Related Commands

• gap_set_device_appearance (SDA, ID=4/17)

 gap_set_adv_data (SAD, ID=4/19)

Configure new custom advertisement packet data.

Define a new byte sequence for the primary advertisement packet data payload. This content is visible to all scanning
devices performing a passive or active scan when the EZ-BT module is in an advertising state.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined data with the

gap_set_adv_parameters (SAP, ID=4/23) API command. If you only set custom data but do not enable user-defined

content, the data here remains unused.

Binary Header

 Type Length Group ID Notes

CMD C0 01-20 04 13 Variable-length command payload, minimum of 1 (0x01), maximum of 32 (0x20)

RSP C0 02 04 13 None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 114

Text Info

Text Name Response Length Category Notes

SAD 0x0009 SET None.

Command Arguments

Data Type Name Text Description

uint8a data D
New advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload

Response Parameters

None.

Related Commands

• gap_start_adv (/A, ID=4/8)

• gap_get_adv_data (GAD, ID=4/20)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

Example Usage

Section 3.4.3 (Customizing Advertisement and Scanning Response Data)

 gap_get_adv_data (GAD, ID=4/20)

Obtain the current custom advertisement packet data.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 14 None.

RSP C0 03-22 04 14 Variable-length response payload, minimum of 3 (0x03), maximum of 34 (0x22)

Text Info

Text Name Response Length Category Notes

GAD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0x0D), maximum of 75 (0x4B)

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8a data D

Current advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload.

Related Commands

• gap_set_adv_data (SAD, ID=4/19)

 gap_set_sr_data (SSRD, ID=4/21)

Configure new custom scan response packet payload.

This command defines a new byte sequence for the scan response packet. This content is visible to all scanning devices
performing an active scan when the EZ-BT module is in a scannable advertising state.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 115

Note: EZ-Serial automatically manages scan response content unless you enable the use of user-defined data with the
gap_set_adv_parameters (SAP, ID=4/23) API command. If you only set custom data but do not enable user-defined content,
the data in gap_set_sr_data will remain unused.

Binary Header:

 Type Length Group ID Notes

CMD C0 01-20 04 15 Variable-length command payload, minimum of 1 (0x01), maximum of 32 (0x20)

RSP C0 02 04 15 None.

Text Info

Text Name Response Length Category Notes

SSRD 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8a data D

New scan response payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload.

Response Parameters

None.

Related Commands

• gap_start_adv (/A, ID=4/8)

• gap_set_adv_data (SAD, ID=4/19)

• gap_get_sr_data (GSRD, ID=4/22)

• gap_set_adv_parameters (SAP, ID=4/23)

Example Usage

Section 3.4.3 (Customizing Advertisement and Scanning Response Data)

 gap_get_sr_data (GSRD, ID=4/22)

Obtain the current custom scan response packet data.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 16 None.

RSP C0 03-22 04 16 Variable-length response payload, minimum of 3 (0x03), maximum of 34 (0x22)

Text Info

Text Name Response Length Category Notes

GSRD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0xD), maximum of 75 (0x4B)

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8a data D
Current scan response payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 116

Related Commands

• gap_set_sr_data (SSRD, ID=4/21)

 gap_set_adv_parameters (SAP, ID=4/23)

Configure new default advertisement parameters.

These parameters are used when sending the gap_start_adv (/A, ID=4/8) API command in text mode without specifying
non-default arguments.

Note: Setting Bit 0 (0x01) of the flags value using this command enables automatic advertisement on boot, as described.

However, advertisements may automatically start even if this bit is cleared if the enable setting of CYSPP is set to the

“enable + autostart” setting. Factory default settings include this value for the CYSPP feature.

Binary Header

 Type Length Group ID Notes

CMD C0 13 04 17 None.

RSP C0 02 04 17 None.

Text Info

Text Name Response Length Category Notes

SAP 0x0009 SET None.

Command Arguments

Data Type Name Text Description

uint8 mode M Discovery mode: Not implemented, always zero.

uint8 type T

Advertisement type:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

• 8 = discoverable advertisement (low duty cycle)

uint8 channels C

Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07 (all bits set)

uint16 high interval H

high_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 high duration D high duty duration in seconds (0 for infinite)

uint16 low interval L

low_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 low duration O low duty duration in seconds (0 for infinite)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 117

Data Type Name Text Description

uint8 flags F

Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set)

macaddr directAddr A Directed advertisement address

uint8 directAddrType Y

Directed address type (if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Response Parameters:

None.

Related Commands:

• gap_start_adv (/A, ID=4/8)

• gap_get_adv_parameters (GAP, ID=4/24)

 gap_get_adv_parameters (GAP, ID=4/24)

Obtain the current advertisement parameters.

Binary Header

 Type Length Group ID Notes

CMD C0 00 04 18 None.

RSP C0 15 04 18 None.

Text Info

Text Name Response Length Category Notes

GAP 0x004D GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 Mode M Discovery mode: Not implemented, always zero.

uint8 Type T

Advertisement type:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

• 8 = discoverable advertisement (low duty cycle)

uint8 channels C

Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07 (all bits set)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 118

Data Type Name Text Description

uint16 high interval H

high_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 high duration D high duty duration in seconds (0 for infinite)

uint16 low interval L

low_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 low duration O low duty duration in seconds (0 for infinite)

uint8 flags F

Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set)

macaddr directAddr A Directed advertisement address

uint8 directAddrType Y

Directed address type (if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Related Commands:

• gap_set_adv_parameters (SAP, ID=4/23)

 gap_set_scan_parameters (SSP, ID=4/25)

Configure new default scan parameters.

These parameters will be used when sending the gap_start_scan (/S, ID=4/10) API command in text mode without
specifying non-default arguments.

Binary Header:

 Type Length Group ID Notes

CMD C0 0A 04 19 None.

RSP C0 02 04 19 None.

Text Info:

Text Name Response Length Category Notes

SSP 0x0009 SET None.

Command Arguments:

Data Type Name Text Description

uint8 mode M Discovery mode: not implemented.

uint16 interval I

Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W

Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms) Cannot be greater than interval.

uint8 active A
Active scanning:

• 0 = Passive scanning

• 1 = Active scanning

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 119

Data Type Name Text Description

uint8 filter F

Whitelist filter policy:

• 0 = Accept all advertising packets

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this device

• 3 = Accept only from whitelisted devices sending directed advertisements to this device

uint8 nodupe D
Duplicate filter policy:

• 0 = Disable duplicate result filtering

• 1 = Enable duplicate result filtering

uint16 timeout O
Scan timeout (seconds):

• Maximum = 255

• 0 to disable

Response Parameters:

None.

Related Commands:

• gap_start_scan (/S, ID=4/10)

• gap_get_scan_parameters (GSP, ID=4/26)

 gap_get_scan_parameters (GSP, ID=4/26)

Obtain the current scan parameters.

Binary Header:

 Type Length Group ID Notes

CMD C0 00 04 1A None.

RSP C0 0C 04 1A None.

Text Info:

Text Name Response Length Category Notes

GSP 0x0032 GET None.

Command Arguments:

None.

Response Parameters:

Data Type Name Text Description

uint8 mode M Discovery mode: not implemented.

uint16 interval I

Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W

Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

uint8 active A
Active scanning:

• 0 = Passive scanning (factory default)

• 1 = Active scanning

uint8 filter F
Whitelist filter policy:

• 0 = Accept all advertising packets (factory default)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 120

Data Type Name Text Description

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this device

• 3 = Accept only from whitelisted devices sending directed advertisements to this device

uint8 nodupe D
Duplicate filter policy:

• 0 = Disable duplicate result filtering (factory default)

• 1 = Enable duplicate result filtering

uint16 timeout O
Scan timeout (seconds):

• 0 to disable (factory default)

Related Commands:

• gap_set_scan_parameters (SSP, ID=4/25)

 gap_set_conn_parameters (SCP, ID=4/27)

Configure new default connection parameters.

These parameters will be used when sending the gap_connect (/C, ID=4/1) API command in text mode without specifying
non-default arguments.

Binary Header:

 Type Length Group ID Notes

CMD C0 0C 04 1B None.

RSP C0 02 04 1B None.

Text Info:

Text Name Response Length Category Notes

SCP 0x0009 SET None.

Command Arguments:

Data Type Name Text Description

uint16 interval I
Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms, factory default)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L

Slave latency (connection interval count):

• Minimum = 0, no intervals skipped (factory default)

• Maximum depends on interval and supervision timeout, such that:
[interval * slave_latency] < supervision_timeout

uint16 supervision_timeout O

Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

• Factory default = 0x064 (100 * 10 ms = 1 second)

uint16 scan_interval V

Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 scan_window W

Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than scan_interval

uint16 scan_timeout M
Connection scan timeout (seconds):

• 0 to disable (factory default)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 121

Response Parameters:

None.

Related Commands:

• gap_connect (/C, ID=4/1)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_get_conn_parameters (GCP, ID=4/28)

 gap_get_conn_parameters (GCP, ID=4/28)

Get the current default connection parameters.

Binary Header:

 Type Length Group ID Notes

CMD C0 00 04 1C None.

RSP C0 0E 04 1C None.

Text Info:

Text Name Response Length Category Notes

GCP 0x0033 GET None.

Command Arguments:

None.

Response Parameters:

Data Type Name Text Description

uint16 interval I

Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms, factory default)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L

Slave latency (connection interval count):

• Minimum = 0, no intervals skipped (factory default)

• Maximum depends on interval and supervision timeout, such that:
[interval * slave_latency] < supervision_timeout

uint16 supervision_timeout O

Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

• Factory default = 0x064 (100 * 10 ms = 1 second)

uint16 scan_interval V

Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 scan_window W

Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than scan_interval

uint16 scan_timeout M
Connection scan timeout (seconds):

• 0 to disable (factory default)

Related Commands:

• gap_set_conn_parameters (SCP, ID=4/27)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 122

7.2.4 GATT Server Group (ID=5)

GATT Server methods relate to the Server role of the Generic Attribute Protocol layer of the Bluetooth stack. These methods
are used for working with the local GATT structure.

Commands within this group are listed below:

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_store_db (/SGDB, ID=5/4)

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

• gatts_read_handle (/RLH, ID=5/9)

• gatts_write_handle (/WLH, ID=5/10)

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gatts_set_parameters (SGSP, ID=5/14)

• gatts_get_parameters (GGSP, ID=5/15)

Events within this group are documented in section 7.3.3 (GATT Server Group (ID=5)).

 gatts_create_attr (/CAC, ID=5/1)

Add a new custom attribute to the local GATT structure.

The new attribute is given the next available handle. All handles are assigned sequentially. Attributes must be added in
order, and are always appended to the next available position in the GATT structure.

New attributes must be entered such that the database always has a valid structure, other than possibly being incomplete
while adding other required attributes. EZ-Serial rejects new attribute creation attempts that would result in an invalid
structure and provide a validity report code from the list in section 7.4.2 (EZ-Serial GATT Database Validation Error Codes).

See sections 3.6.1 (Defining Custom Local GATT Services and Characteristics) and 10.2 (Adopted Bluetooth SIG GATT
Profile Structure Snippets) for detailed instructions and example usage, including important guidelines for permission
settings.

Note: Always configure structural declarations (types 0x2800 and 0x2803) to have unrestricted read permissions (0x01) and

no write permissions (0x00) to ensure that clients can properly discover the basic GATT database structure. Special

security requirements should only be applied to characteristic value attributes or, in limited cases, related configuration

descriptors.

Use the gatts_dump_db (/DGDB, ID=5/5) API command to list the current local GATT database entries in a format similar
to what this command requires.

Note: EZ-Serial includes a fixed set of attributes as part of the core functionality, which cannot be deleted or modified. These

attributes occupy the handle range from 1 (0x0001) to 21 (0x0015). Therefore, the first custom attribute created in a

factory default state receives the handle value 22 (0x0016).

Note: Additions to and removals from the GATT structure are always stored in flash. As long as the “result” value in the

response indicates success, the change are effective immediately and persist through power cycles and resets. The

internal CPU is occupied for approximately 15 ms during each flash write operation; during this time, no other activity

is processed (UART or BLE communication). Any UART data sent during this brief window is lost. Therefore, you

should modify the GATT structure only while disconnected, and you should allow a gap of at least 20 ms between the

end of one API command and the beginning of a new one. If you have enabled hardware flow control using the

system_set_uart_parameters (STU, ID=2/25) API command, EZ-Serial blocks incoming data flow during flash writes

to prevent serial data corruption or loss.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 123

Binary Header

 Type Length Group ID Notes

CMD C0 06 05 01 Variable-length command payload, value specified is minimum

RSP C0 06 05 01 None.

Text Info

Text Name Response Length Category Notes

/CAC 0x0018 ACTION None.

Command Arguments

Data Type Name Text Description

uint8 type T*

type:

• 0 = structure

• 1 = characteristic value

Structural entries require constant data containing the definition. Structural
entries optionally allow additional RAM data beyond the constant length for
descriptor value information, such a two-byte CCCD values.

Characteristic value entries do not require any constant data, but may have it
if a default boot-time value is desired.

uint8 perm P*

Permission bits:

• Bit 0 (0x01) = Variable length

• Bit 1 (0x02) = Readable

• Bit 2 (0x04) = Write command (unacknowledged)

• Bit 3 (0x08) = Write request (acknowledged)

• Bit 4 (0x10) = Authenticated readable

• Bit 5 (0x20) = Reliable write (includes prepared write)

• Bit 6 (0x40) = Authenticated writeable

uint16 length L*
Indicates how many bytes of RAM are allocated for the definition (structure)
or content (characteristic value)

longuint8a data D*

Data (UUID or default attribute value where applicable)
Data may include UUID, characteristic properties byte and/or value.
Note: longuint8a data type requires two prefixed “length” bytes before

binary parameter payload.

Characteristic properties:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (requires 0x2900)

Characteristic declaration stores the UUID of the Characteristic value attribute.
So its ‘D’ will be:

0x2803 (UUID)+ Characteristic properties (1 byte) + handle of value attribute
(2 byte) + UUID of value attribute.

Response Parameters

Data Type Name Text Description

uint16 handle H New attribute handle (0x0001-0xFFFF)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 124

Data Type Name Text Description

uint16 valid V GATT database validity status

Related Commands

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

Related Events

• gatts_db_entry_blob (DGATT, ID=5/4)

Example Usage

• Section 3.6.1 (Defining Custom Local GATT Services and Characteristics)

• Section 10.2 (Adopted Bluetooth SIG GATT Profile Structure Snippets)

 gatts_delete_attr (/CAD, ID=5/2)

Remove one or more attributes from the GATT structure.

If you use this command without a handle in text mode or you supply handle value 0 in either text or binary mode, the
highest attribute number (most recently added) is removed. If you supply a non-zero handle, the attribute with that
handle and all higher handles are removed.

After removing an attribute with this command, the local GATT database may no longer be strictly valid. See section 7.4.2
(EZ-Serial GATT Database Validation Error Codes) for possible validity states. Use the gatts_dump_db (/DGDB, ID=5/5)
API command to list the current local GATT database entries.

Note: EZ-Serial includes a fixed set of attributes as part of the core functionality, which cannot be deleted or modified. These

attributes occupy the handle range from 1 (0x0001) to 28 (0x001C). Therefore, you cannot delete any attribute with a

handle value less than 29 (0x001D).

Note: Additions to and removals from the GATT structure are always stored in flash. If the “result” value in the response

indicates success, the change is effective immediately and persists through power cycles and resets. The internal

CPU is occupied for approximately 15 ms during each flash write operation; during this time, no other activity is

processed (UART or BLE communication). Any UART data sent during this brief window is lost. Therefore, you should

modify the GATT structure only while disconnected, and you should allow a gap of at least 20 ms between the end of

one API command and the beginning of a new one. If you have enabled hardware flow control using the

system_set_uart_parameters (STU, ID=2/25) API command, EZ-Serial blocks incoming data flow during flash writes

to prevent serial data corruption or loss.

Binary Header

 Type Length Group ID Notes

CMD C0 02 05 02 None.

RSP C0 08 05 02 None.

Text Info

Text Name Response Length Category Notes

/CAD 0x001F ACTION None.

Command Arguments

Data Type Name Text Description

uint16 handle H Attribute handle to remove (includes all higher attributes)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 125

Response Parameters

Data Type Name Text Description

uint16 Count C Number of attributes deleted from GATT structure

uint16 next_handle H Next available attribute handle after removal

uint16 valid V GATT database validity status

Related Commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

 gatts_validate_db (/VGDB, ID=5/3)

Check to ensure that the custom GATT structure has no malformed or missing elements.

Use this command to check for errors in the custom GATT structure configured in EZ-Serial. The dynamic GATT
implementation automatically tests for validity issues when making changes to the structure with the gatts_create_attr
(/CAC, ID=5/1) and gatts_delete_attr (/CAD, ID=5/2) API commands, but this command provides the same test result upon
request without making or attempting any modifications. See section 7.4.2 (EZ-Serial GATT Database Validation Error
Codes) for possible validity states.

EZ-Serial allows only one non-valid state, indicated by GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES
code (0x0001). This non-valid state is unavoidable during custom attribute creation, because attributes must be added one
at a time, and every new service or characteristic requires multiple attributes. All other non-valid states prevent the addition
of a custom attribute in the first place. Therefore, running this command should result only in a valid state (0x0000) or the
warning state noted here (0x0001).

Binary Header

 Type Length Group ID Notes

CMD C0 00 05 03 None.

RSP C0 04 05 03 None.

Text Info

Text Name Response Length Category Notes

/VGDB 0x0012 ACTION None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint16 Valid V GATT database validity status

Related Commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_dump_db (/DGDB, ID=5/5)

 gatts_store_db (/SGDB, ID=5/4)

Store the current custom GATT structure in flash.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 126

Note: This command has been deprecated and has no effect when used. As of the latest firmware build, GATT database

changes are always written instantly to flash when using either gatts_create_attr (/CAC, ID=5/1) or gatts_delete_attr

(/CAD, ID=5/2).

Binary Header

 Type Length Group ID Notes

CMD C0 00 05 04 None.

RSP C0 02 05 04 None.

Text Info

Text Name Response Length Category Notes

/SGDB 0x000B ACTION None.

Command Arguments

None.

Response Parameters

None.

Related Commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

 gatts_dump_db (/DGDB, ID=5/5)

List current local GATT database attributes.

This command produces a series of gatts_db_entry_blob (DGATT, ID=5/4) API events, one for each attribute in the current
local GATT database. The output is similar to that of the gatts_discover_descriptors (/DLD, ID=5/8) API command, but in a
format that more closely matches the input parameters of the gatts_create_attr (/CAC, ID=5/1) API command.

You can choose to dump only those attributes in the user-definable range (0x001D and above), or include fixed attributes
as well (0x0001 and above) for complete reference.

Binary Header

 Type Length Group ID Notes

CMD C0 01 05 05 None.

RSP C0 04 05 05 None.

Text Info

Text Name Response Length Notes

/DGDB 0x0012 None.

Command Arguments

Data Type Name Text Description

uint8 include_fixed F

Include fixed attributes:

• 0 = Start from handle 0x0015, do not include fixed attributes (default)

• 1 = Start from handle 0x0001, include fixed attributes

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 127

Response Parameters

Data Type Name Text Description

uint16 Count C Number of entries to be returned

Related Commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related Events

• gatts_db_entry_blob (DGATT, ID=5/4)

 gatts_discover_services (/DLS, ID=5/6)

Request a list of all services in the local GATT structure.

This allows convenient discovery of services within the local GATT database. This command does not require an active
connection because it concerns only local resources. Normally, you should not need to use this command except during
development because the application should already know all relevant details about its own local GATT structure. To find
all services in the local database, use “0” for both arguments, or explicitly set 0x0001 and 0xFFFF for the beginning and
end handles.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command will be generated when any local GATT
services discovered.

For local GATT database information that more closely matches the input format required for the gatts_create_attr (/CAC,
ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API command instead.

Binary Header

 Type Length Group ID Notes

CMD C0 04 05 06 None.

RSP C0 04 05 06 None.

Text Info

Text Name Response Length Category Notes

/DLS 0x0011 ACTION None.

Command Arguments

Data Type Name Text Description

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

Response Parameters

Data Type Name Text Description

uint16 Count C Number of entries to be returned

Related Commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 128

Related Events

• gatts_discover_result (DL, ID=5/1)

Example Usage

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable the authentication bit, ensure that you
also enable the encryption bit, or the command will be rejected with an error result.

Section 3.5.2 (Listing Local GATT Services, Characteristics, and Descriptors)

 gatts_discover_characteristics (/DLC, ID=5/7)

Request a list of all characteristics in the local GATT structure.

This allows convenient discovery of characteristics within the local GATT database. This command does not require an
active connection because it concerns only local resources. Normally, you should not need to use this command except
during development because the application should already know all relevant details about its own local GATT structure.
To find all characteristics in the local database, use “0” for both arguments, or explicitly set 0x0001 and 0xFFFF for the
beginning and end handles.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command will be generated when any local GATT
characteristics discovered.

For local GATT database information that more closely matches the input format required for the gatts_create_attr (/CAC,
ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API command instead.

Binary Header

 Type Length Group ID Notes

CMD C0 06 05 07 None.

RSP C0 04 05 07 None.

Text Info

Text Name Response Length Category Notes

/DLC 0x0011 ACTION None.

Command Arguments

Data Type Name Text Description

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S Service UUID filter (0 for all) – Currently not implemented in firmware, set to 0

Response Parameters

Data Type Name Text Description

uint16 Count C Number of entries to be returned

Related Commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related Events

• gatts_discover_result (DL, ID=5/1)

Example Usage

Section 3.5.2 (Listing Local GATT Services, Characteristics, and Descriptors)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 129

 gatts_discover_descriptors (/DLD, ID=5/8)

Request a list of all descriptors in the local GATT structure.

This allows convenient discovery of descriptors within the local GATT database. This command does not require an active
connection because it concerns only local resources. Normally, you should not need to use this command except during
development because the application should already know all relevant details about its own local GATT structure. To find
all descriptors in the local database, use “0” for both arguments, or explicitly set 0x0001 and 0xFFFF for the beginning and
end handles, respectively.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command wil be generated when any local GATT
descriptors discovered.

For local GATT database information that more closely matches the input format required for the gatts_create_attr (/CAC,
ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API command instead.

Binary Header

 Type Length Group ID Notes

CMD C0 08 05 08 None.

RSP C0 04 05 08 None.

Text Info

Text Name Response Length Category Notes

/DLD 0x0011 ACTION None.

Command Arguments

Data Type Name Text Description

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all)
(Ignored in current release, set to 0)

uint16 characteristic C
Characteristic UUID filter (0 for all)
(Ignored in current release, set to 0)

Response Parameters

Data Type Name Text Description

uint16 count C Number of entries to be returned

Related Commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

Related Events

• gatts_discover_result (DL, ID=5/1)

Example Usage

Section 3.5.2 (Listing Local GATT Services, Characteristics, and Descriptors)

 gatts_read_handle (/RLH, ID=5/9)

Read the value of an attribute in the local GATT Server.

This command does not require an active connection because it concerns only local resources.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 130

Binary Header

 Type Length Group ID Notes

CMD C0 02 05 09 None.

RSP C0 04+ 05 09 Variable-length response payload, value specified is minimum.

Text Info

Text Name Response Length Category Notes

/RLH 0x000D+ ACTION Variable-length response payload, value specified is minimum.

Command Arguments

Data Type Name Text Description

uint16 attr_handle H* Handle of attribute to read value from

Response Parameters

Data Type Name Text Description

longuint8a data D
Data read from attribute
Note: longuint8a data type requires two prefixed “length” bytes before binary parameter payload

Related Commands

• gatts_write_handle (/WLH, ID=5/10)

 gatts_write_handle (/WLH, ID=5/10)

Write a new value to an attribute in the local GATT Server.

This command does not require an active connection because it concerns only local resources.

Note: Writing data to a local characteristic value attribute does not automatically trigger a notification or indication of that

data to a connected Client, even if the Client has subscribed to notifications or indications for the characteristic. This

command affects only the value stored locally in RAM if the Client performs a GATT read operation later. To push

data to a Client that subscribed to notifications or indications, use the gatts_notify_handle (/NH, ID=5/11) or

gatts_indicate_handle (/IH, ID=5/12) API command.

Binary Header

 Type Length Group ID Notes

CMD C0 04 05 0A Variable-length command payload, value specified is minimum.

RSP C0 02 05 0A None.

Text Info

Text Name Response Length Category Notes

/WLH 0x000A ACTION None.

Command Arguments

Data Type Name Text Description

uint16 attr_handle H* Handle of attribute to write new value to

longuint8a data D*

New data to write to attribute

Note: longuint8a data type requires two prefixed “length” bytes before binary parameter

payload.

Response Parameters

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 131

Related Commands

• gatts_read_handle (/RLH, ID=5/9)

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

 gatts_notify_handle (/NH, ID=5/11)

Notify a new attribute value to a remote GATT Client.

Note: This command does not change any locally stored values for the notified attribute. To modify the data stored locally

in RAM for the attribute in question, use the gatts_write_handle (/WLH, ID=5/10) API command.

Binary Header

 Type Length Group ID Notes

CMD C0 06 05 0B Variable-length command payload, value specified is minimum.

RSP C0 02 05 0B None.

Text Info

Text Name Response Length Category Notes

/NH 0x0009 ACTION None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for notification
(Ignored in current release)

uint16 attr_handle H* Handle of attribute to notify

uint8a data D*

Data to push to remote Client via notification
Note: uint8a data type requires one prefixed “length” byte before binary parameter

payload

Response Parameters

None.

Related Commands

• gatts_write_handle (/WLH, ID=5/10)

• gatts_indicate_handle (/IH, ID=5/12)

 gatts_indicate_handle (/IH, ID=5/12)

Indicate a new attribute value to a remote GATT Client.

If successful, pushing an indicated value to a remote client results in the gatts_indication_confirmed (IC, ID=5/3) API event
occurring after the client acknowledges the transfer.

This method requires client acknowledgement, so you cannot attempt another GATT operation until this confirmation event
arrives. A single acknowledged transfer requires two connection intervals: one for the actual data transfer and one for the
acknowledgement. Using this type of transfer has effects on potential throughput; see section 3.9.1 (Maximizing Throughput
to a Remote Peer) for details on alternative design choices.

Note: This command does not change any locally stored values for the indicated attribute. To modify the data stored locally

in RAM for the attribute in question, use the gatts_write_handle (/WLH, ID=5/10) API command.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 132

Binary Header

 Type Length Group ID Notes

CMD C0 06 05 0C Variable-length command payload, value specified is minimum.

RSP C0 02 05 0C None.

Text Info

Text Name Response Length Category Notes

/IH 0x0009 ACTION None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for indication
(Ignored in current release)

uint16 attr_handle H* Handle of attribute to indicate

uint8a data D*

Data to indicate

Note: uint8a data type requires one prefixed “length” byte before binary parameter

payload

Response Parameters

None.

Related Commands

• gatts_read_handle (/RLH, ID=5/9)

• gatts_write_handle (/WLH, ID=5/10)

• gatts_notify_handle (/NH, ID=5/11)

Related Events

• gatts_indication_confirmed (IC, ID=5/3) - Occurs on the Server after the remote Client confirms receipt of indicated data

 gatts_set_parameters (SGSP, ID=5/14)

Configure new GATT Server parameters.

Binary Header

 Type Length Group ID Notes

CMD C0 01 05 0E None.

RSP C0 02 05 0E None.

Text Info

Text Name Response Length Category Notes

SGSP 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8 flags F

GATT Server behavior flags bitmask:

• Bit 0 (0x01) = Enable automatic response to acknowledged writes

Note: Factory default is 0x01 (all bits set)

Response Parameters

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 133

Related Commands

• gatts_get_parameters (GGSP, ID=5/15)

 gatts_get_parameters (GGSP, ID=5/15)

Obtain current GATT Server parameters.

Binary Header

 Type Length Group ID Notes

CMD C0 00 05 0F None.

RSP C0 03 05 0F None.

Text Info

Text Name Response Length Category Notes

GGSP 0x000F GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 flags F

GATT Server behavior flags bitmask:

• Bit 0 (0x01) = Enable automatic response to acknowledged writes

Note: Factory default is 0x01 (all bits set)

Related Commands

• gatts_set_parameters (SGSP, ID=5/14)

7.2.5 GATT Client Group (ID=6)
GATT Client methods relate to the client role of the GATT layer of the Bluetooth stack. These methods are used for working
with the GATT structures on remote devices, and can only be used while a device is connected.

Commands within this group are listed below:

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

• gattc_read_handle (/RRH, ID=6/4)

• gattc_write_handle (/WRH, ID=6/5)

• gattc_confirm_indication (/CI, ID=6/6)

• gattc_set_parameters (SGCP, ID=6/7)

• gattc_get_parameters (GGCP, ID=6/8)

Events within this group are documented in Section 7.3.4(GATT Client Group (ID=6)

 gattc_discover_services (/DRS, ID=6/1)

Request a list of GATT services from a connected remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To discover the local GATT
structure instead, use the gatts_discover_services (/DLS, ID=5/6) API command.

NOTE: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT Server discovery operations can do this. Therefore, you must wait

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 134

for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the discovery
procedure is finished.

Binary Header:

 Type Length Group ID Notes

CMD C0 05 06 01 None.

RSP C0 02 06 01 None.

Text Info:

Text Name Response Length Category Notes

/DRS 0x000A ACTION None.

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for discovery
(Ignored in current release)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

Response Parameters:

None.

Related Commands:

• gatts_discover_services (/DLS, ID=5/6)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related Events:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example Usage:

• Section 3.7.1 (How to Discover a Remote Server’s GATT Structure)

 gattc_discover_characteristics (/DRC, ID=6/2)

Request a list of GATT characteristics from a connected remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To discover the local GATT
structure instead, use the gatts_discover_characteristics (/DLC, ID=5/7) API command.

NOTE: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT Server discovery operations can do this. Therefore, you must wait
for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the discovery
procedure is finished.

Binary Header:

 Type Length Group ID Notes

CMD C0 07 06 02 None.

RSP C0 02 06 02 None.

Text Info:

Text Name Response Length Notes

/DRC 0x000A None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 135

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for discovery
(Ignored in current release)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all)
(Ignored in current release, set to 0)

Response Parameters:

None.

Related Commands:

• gatts_discover_characteristics (/DLC, ID=5/7)

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related Events:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example Usage:

• Section 3.7.1 (How to Discover a Remote Server’s GATT Structure)

 gattc_discover_descriptors (/DRD, ID=6/3)

Request a list of GATT attribute descriptors from a connected remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To discover the local
GATT structure instead, use the gatts_discover_descriptors (/DLD, ID=5/8) API command.

NOTE: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT Server discovery operations can do this. Therefore, you must wait
for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the discovery
procedure is finished.

Binary Header:

 Type Length Group ID Notes

CMD C0 09 06 03 None.

RSP C0 02 06 03 None.

Text Info:

Text Name Response Length Category Notes

/DRD 0x000A ACTION None.

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for discovery
(Ignored in current release)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all)
(Ignored in current release, set to 0)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 136

Data Type Name Text Description

uint16 characteristic T
Characteristic UUID filter (0 for all)
(Ignored in current release, set to 0)

Response Parameters:

None.

Related Commands:

• gatts_discover_descriptors (/DLD, ID=5/8)

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

Related Events:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example Usage:

• Section 3.7.1 (How to Discover a Remote Server’s GATT Structure)

 gattc_read_handle (/RRH, ID=6/4)

Read the value of an attribute on a remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To read a value from the
local GATT structure instead, use the gatts_read_handle (/RLH, ID=5/9) API command.

Binary Header:

 Type Length Group ID Notes

CMD C0 03 06 04 None.

RSP C0 02 06 04 None.

Text Info:

Text Name Response Length Category Notes

/RRH 0x000A ACTION None.

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for the read operation
(Ignored in current release)

uint16 attr_handle H* Handle of remote attribute to read

Response Parameters:

None.

Related Commands:

• gattc_write_handle (/WRH, ID=6/5)

Related Events:

• gattc_remote_procedure_complete (RPC, ID=6/2) – Occurs if the Client Read operation fails (parameters include error code)

• gattc_data_received (D, ID=6/3) – Occurs if the Client Read operation succeeds

 gattc_write_handle (/WRH, ID=6/5)

Write a new value to an attribute on a remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To write a value to the local
GATT structure instead, use the gatts_write_handle (/WLH, ID=5/10) API command.

Binary Header:

 Type Length Group ID Notes

CMD C0 06 06 05 Variable-length command payload, value specified is minimum.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 137

 Type Length Group ID Notes

RSP C0 02 06 05 None.

Text Info:

Text Name Response Length Category Notes

/WRH 0x000A ACTION None.

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for write operation
(Ignored in current release)

uint16 attr_handle H* Handle of the remote attribute to write

uint8 type T

Type of write to perform:

• 0 = Simple write – acknowledged (default)

• 1 = Write without response – unacknowledged

longuint8a data D*

New data to write

NOTE: The longuint8a data type requires two prefixed “length” bytes before binary the

parameter payload. In the current implementation, the length is 255 in MAX due to
resource limitation.

Response Parameters:

None.

Related Commands:

• gattc_read_handle (/RRH, ID=6/4)

Related Events:

• gatts_data_written (W, ID=5/2) – Occurs on the remote server after using this command on the local client

• gattc_remote_procedure_complete (RPC, ID=6/2) – Occurs once the write is acknowledged, if using acknowledged write type

 gattc_confirm_indication (/CI, ID=6/6)

Confirm an indication from a remote GATT Server.

This command confirms the receipt of indicated data from a remote server. Indicated data is pushed from a server to a client
after the client has subscribed to indications for a desired characteristic and that characteristic’s value has changed.
Indicated data will arrive via the gattc_data_received (D, ID=6/3) API event; you must use this command to manually confirm
the indication if the source parameter of that event shows indication with manual confirmation needed. See the event

documentation for details.

EZ-Serial will automatically confirm indications unless Bit 0 of the GATT Client behavior flags is cleared using the flags

field in the gattc_set_parameters (SGCP, ID=6/7) API command.

NOTE: If the indicated data arrives and requires manual confirmation, you must use this command to
confirm it before performing any other GATT operations.

Binary Header:

 Type Length Group ID Notes

CMD C0 01 06 06 None.

RSP C0 02 06 06 None.

Text Info:

Text Name Response Length Category Notes

/CI 0x0009 ACTION None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 138

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for confirmation
(Ignored in current release due)

Response Parameters:

None.

Related Commands:

• gatts_indicate_handle (/IH, ID=5/12) – Used on a remote GATT Server to indicate data to a client

• gattc_set_parameters (SGCP, ID=6/7) – Configure local GATT Client parameters, including auto-confirm behavior

Related Events:

• gatts_indication_confirmed (IC, ID=5/3) – Occurs on a remote GATT Server after confirming indication on the client

• gattc_data_received (D, ID=6/3) – Occurs on the local GATT Client when a remote server indicates data

 gattc_set_parameters (SGCP, ID=6/7)

Configure new GATT Client parameters.

Binary Header:

 Type Length Group ID Notes

CMD C0 01 06 07 None.

RSP C0 02 06 07 None.

Text Info:

Text Name Response Length Category Notes

SGCP 0x000A SET None.

Command Arguments:

Data Type Name Text Description

uint8 flags F

GATT Client behavior flags bitmask:

• Bit 0 (0x01) = Enable automatic confirmation of remote GATT Server indications

• NOTE: Factory default is 0x01 (all bits set)

Response Parameters:

None.

Related Commands:

• gattc_confirm_indication (/CI, ID=6/6) – Necessary to use for indicated data if flags Bit 0 is clear

• gattc_get_parameters (GGCP, ID=6/8)

 gattc_get_parameters (GGCP, ID=6/8)

Get current GATT Client parameters.

Binary Header:

 Type Length Group ID Notes

CMD C0 00 06 08 None.

RSP C0 03 06 08 None.

Text Info:

Text Name Response Length Category Notes

GGCP 0x000F GET None.

Command Arguments:

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 139

Response Parameters:

Data Type Name Text Description

uint8 Flags F

GATT Client behavior flags bitmask:

• Bit 0 (0x01) = Enable automatic confirmation of remote GATT Server indications

• NOTE: Factory default is 0x01 (all bits set)

Related Commands:

• gattc_set_parameters (SGCP, ID=6/7)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 140

7.2.6 SMP Group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth stack. These methods are used for working
with privacy, encryption, pairing, and bonding between two devices.

Commands within this group are listed below:

• smp_query_bonds (/QB, ID=7/1)

• smp_delete_bond (/BD, ID=7/2)

• smp_pair (/P, ID=7/3)

• smp_set_privacy_mode (SPRV, ID=7/9)

• smp_get_privacy_mode (GPRV, ID=7/10)

• smp_set_security_parameters (SSBP, ID=7/11)

• smp_get_security_parameters (GSBP, ID=7/12)

• smp_set_fixed_passkey (SFPK, ID=7/13)

• smp_get_fixed_passkey (GFPK, ID=7/14)

Events within this group are documented in section SMP Group (ID=7).

 smp_query_bonds (/QB, ID=7/1)

Request a list of bonded devices.

This command accesses the current bonded device list. Bonded devices are those which have previously paired (exchanged
encryption data) and bonded (stored the exchanged encryption data).

The response from this command includes the number of bonded devices, and the response are followed by the
smp_bond_entry (B, ID=7/1) API events that provide details for each device.

Note: EZ-Serial currently supports a maximum of four bonded devices at the same time. To bond with additional devices

after all four bond slots are full, you must delete one of the existing bonds with the smp_delete_bond (/BD, ID=7/2)

API command.

Binary Header

 Type Length Group ID Notes

CMD C0 00 07 01 None.

RSP C0 03 07 01 None.

Text Info

Text Name Response Length Category Notes

/QB 0x000E ACTION None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 Count C Bond entry count

Related Commands

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

Related Events

• smp_bond_entry (B, ID=7/1) – Occurs once for each bonded device after requesting bond list

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 141

 smp_delete_bond (/BD, ID=7/2)

Remove a bonded device.

This command removes the stored encryption key data for a device that has previously paired (exchanged encryption data)
and bonded (stored the exchanged encryption data).

Binary Header

 Type Length Group ID Notes

CMD C0 07 07 02 None.

RSP C0 03 07 02 None.

Text Info

Text Name Response Length Category Notes

/BD 0x000E ACTION None.

Command Arguments

Data Type Name Text Description

Macaddr address A* Bluetooth address

uint8 type T

Address type:

• 0 = Public (default)

• 1 = Random/private

Response Parameters

Data Type Name Text Description

uint8 count C Updated bond entry count

Related Commands

• smp_query_bonds (/QB, ID=7/1)

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

 smp_pair (/P, ID=7/3)

Initiate pairing process with a connected device.

Note: EZ-Serial currently supports a maximum of four bonded devices at the same time. To bond with additional devices

after all four bond slots are full, you must delete one of the existing bonds with the smp_delete_bond (/BD, ID=7/2)

API command.

Binary Header

 Type Length Group ID Notes

CMD C0 05 07 03 None.

RSP C0 02 07 03 None.

Text Info

Text Name Response Length Category Notes

/P 0x0008 ACTION None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C
Connection handle to use for pairing
(Ignored in current release)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 142

Data Type Name Text Description

uint8 mode M Security level setting reported to peer: always 0

uint8 bonding B

Bond during pairing process:

• 0 = Do not bond (exchange keys and encrypt only)

• 1 = Bond (permanently store exchanged encryption data)

uint8 keysize K
Encryption key size (7-16), value ignored if pairing initiated by slave device
Note: Factory default is 16 bytes (0x10)

uint8 pairprop P Pairing properties: always 0

Response Parameters

None.

Related Commands

• smp_set_security_parameters (SSBP, ID=7/11) – Use to configure default security settings

Related Events

• smp_pairing_requested (P, ID=7/2) – Occurs when remote device initiates pairing

• smp_pairing_result (PR, ID=7/3) – Occurs when pairing process completes (success or failure)

• smp_encryption_status (ENC, ID=7/4) – Occurs when encryption status changes during a pairing process

 smp_set_privacy_mode (SPRV, ID=7/9)

Configure new privacy settings.

Use this command to enable or disable Peripheral or Central privacy. Enabling privacy in each mode causes the Bluetooth
connection address used in related states to be random (private) instead of fixed (public). This can make passive profiling
by a remote observer more difficult.

Peripheral privacy affects the Bluetooth connection address broadcast during advertisements, which the remote Central
device may log or use for a scan request or connection request. Central privacy affects the Bluetooth connection address
used for scan requests or connection requests when scanning for or communicating with a remote device.

Binary Header

 Type Length Group ID Notes

CMD C0 03 07 09 None.

RSP C0 02 07 09 None.

Text Info

Text Name Response Length Category Notes

SPRV 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint8 mode M

Privacy mode bitmask:

• Bit 0 (0x01) = Enable Peripheral privacy

• Bit 1 (0x02) = Enable Central privacy

• Bit 2 (0x04) = Enable Random address
NOTE: Factory default is 0x04 (Enable Random address)

uint16 interval I Randomization interval (seconds): Not Available

Response Parameters

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 143

Related Commands

• smp_get_privacy_mode (GPRV, ID=7/10)

 smp_get_privacy_mode (GPRV, ID=7/10)

Obtain current privacy settings.

Binary Header

 Type Length Group ID Notes

CMD C0 00 07 0A None.

RSP C0 05 07 0A None.

Text Info

Text Name Response Length Category Notes

GPRV 0x0016 GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 Mode M

Privacy mode bitmask:

• Bit 0 (0x01) = Enable Peripheral privacy

• Bit 1 (0x02) = Enable Central privacy

• Bit 2 (0x04) = Enable Random address
NOTE: Factory default is 0x04 (Enable Random address)

uint16 interval I Randomization interval (seconds): Not Available

Related Commands

• smp_set_privacy_mode (SPRV, ID=7/9)

 smp_set_security_parameters (SSBP, ID=7/11)

Configure new security and bonding parameters.

These parameters are used when the smp_pair (/P, ID=7/3) API command is used without specifying non-default
arguments. These values are reported to the remote device as part of the pairing process and affect the type of key
generation and exchange that takes place during pairing and bonding.

Note: Changing the I/O capabilities affects the command/event flow necessary to complete a pairing and bonding process.

See the related commands and events for details concerning each one’s use. Also, MITM protection requires I/O

capabilities other than “No Input + No Output” to function correctly.

Binary Header

 Type Length Group ID Notes

CMD C0 06 07 0B None.

RSP C0 02 07 0B None.

Text Info

Text Name Response Length Category Notes

SSBP 0x000A SET None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 144

Command Arguments

Data Type Name Text Description

uint8 mode M

High four bits are for BT classic:

• 0 = MITM Protection Not Required - Single Profile/non-bonding. Numeric comparison with
automatic accept allowed.

• 1 = MITM Protection Required - Single Profile/non-bonding. Use IO Capabilities to determine
authentication procedure.

• 2 = MITM Protection Not Required - All Profiles/dedicated bonding. Numeric comparison with
automatic accept allowed.

• 3 = MITM Protection Required - All Profiles/dedicated bonding. Use IO Capabilities to
determine authentication procedure.

• 4 = MITM Protection Not Required - Single Profiles/general bonding. Numeric comparison
with automatic accept allowed.

• 5 = MITM Protection Required - Single Profiles/general bonding. Use IO Capabilities to
determine authentication procedures.

Low four bits are for BLE:

• 0x00 = Not required - No Bond

• 0x01 = Required - General Bond

• 0x04 = MITM required - Auth Y/N

• 0x08 = LE Secure Connection, no MITM, no Bonding

• 0x08|0x01 = LE Secure Connection, no MITM, Bonding

• 0x08|0x04 = LE Secure Connection, MITM, no Bonding

• 0x08|0x04|0x01= LE Secure Connection, MITM, Bonding

uint8 bonding B Bond during pairing process: not implemented, always zero

uint8 keysize K
Encryption key size (7-16), value ignored if pairing initiated by slave device
Note: Factory default is 16 bytes (0x10)

uint8 pairprop P Pairing properties: Don't care and always 0

uint8 io I

I/O capabilities:

• 0 = Display Only – ability to convey a 6-digit number to user

• 1 = Display + Yes/No – display and the ability to have user indicate “yes” or “no”

• 2 = Keyboard Only – ability for the user to enter ‘0’ through ‘9’ and “yes” or “no”

• 3 = No Input + No Output – no ability to display or input anything (factory default)

• 4 = Keyboard + Display – ability to provide full numeric input and display

uint8 flags F

Security behavior flags bitmask:

• Bit 0 (0x01) = Enable auto-accept for incoming pairing requests (Always be 1)

• Bit 1 (0x02) = Enable use of fixed passkey during pairing

• Bit 2 (0x04) = Enable use of legacy PIN code during paring for BT classic device.

Note: Factory default is 0x01

Response Parameters

None.

Related Commands

• smp_pair (/P, ID=7/3)

• smp_get_security_parameters (GSBP, ID=7/12)

• smp_set_fixed_passkey (SFPK, ID=7/13)

• smp_set_pin_code (SBTPIN, ID=7/15)

• smp_get_pin_code (GBTPIN, ID=7/16)

Related Events

• smp_pairing_requested (P, ID=7/2)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 145

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

 smp_get_security_parameters (GSBP, ID=7/12)

Obtain current security and bonding parameters.

Binary Header

 Type Length Group ID Notes

CMD C0 00 07 0C None.

RSP C0 08 07 0C None.

Text Info

Text Name Response Length Category Notes

GSBP 0x0028 GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 Mode M Security level setting reported to peer: Don’t care and always 11

uint8 bonding B

Bond during pairing process:

• 0 = Do not bond (exchange keys and encrypt only)

• 1 = Bond (permanently store exchanged encryption data)

uint8 keysize K
Encryption key size (7-16), value ignored if pairing initiated by slave device
Note: Factory default is 16 bytes (0x10)

uint8 pairprop P • Pairing properties: Don't care and always 0

uint8 Io I

I/O capabilities:

• 0 = Display Only – ability to convey a 6-digit number to user

• 1 = Display + Yes/No – display and the ability to have user indicate “yes” or “no”

• 2 = Keyboard Only – ability for the user to enter ‘0’ through ‘9’ and “yes” or “no”

• 3 = No Input + No Output – no ability to display or input anything (factory default)

• 4 = Keyboard + Display – ability to provide full numeric input and display

uint8 Flags F

Security behavior flags bitmask:

• Bit 0 (0x01) = Enable auto-accept for incoming pairing requests

• Bit 1 (0x02) = Enable use of fixed passkey during pairing

• Bit 2 (0x04) = Enable use of legacy PIN code during paring for BT classic device.

Note: Factory default is 0x01

Related Commands

• smp_set_security_parameters (SSBP, ID=7/11)

• smp_set_pin_code (SBTPIN, ID=7/15)

• smp_get_pin_code (GBTPIN, ID=7/16)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 146

 smp_set_fixed_passkey (SFPK, ID=7/13)

Configure new fixed passkey value.

While the Bluetooth specification describes that the passkey should be randomized during pairing, you can configure a fixed
(non-random) 6-digit passkey between 000000 and 999999 using this command and configuring the local I/O capabilities
to the “Display Only” value.

Note: The fixed passkey defined here takes effect only if you enable fixed passkey use by setting Bit 1 (0x02) of the security

flags parameter and set the “Display Only” I/O capabilities value (0x00) using the smp_set_security_parameters

(SSBP, ID=7/11) API command. If both conditions are not met, then the stack will revert to the default behavior of

using a random passkey.

Binary Header

 Type Length Group ID Notes

CMD C0 04 07 0D None.

RSP C0 02 07 0D None.

Text Info

Text Name Response Length Category Notes

SFPK 0x000A SET None.

Command Arguments

Data Type Name Text Description

uint32 passkey P

Fixed passkey value

• Minimum = 0 (‘000000’ decimal entry during pairing)

• Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0

Response Parameters

None.

Related Commands

• smp_pair (/P, ID=7/3)

• smp_get_fixed_passkey (GFPK, ID=7/14)

• smp_set_security_parameters (SSBP, ID=7/11)

Related Events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

Example Usage

Section 3.8.1.2 (Pairing with a Fixed Passkey)

 smp_get_fixed_passkey (GFPK, ID=7/14)

Obtain current fixed passkey value.

Binary Header

 Type Length Group ID Notes

CMD C0 00 07 0E None.

RSP C0 08 07 0E None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 147

Text Info

Text Name Response Length Category Notes

GFPK 0x0015 GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint32 passkey P

Fixed passkey value:

• Minimum = 0 (‘000000’ decimal entry during pairing)

• Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0

Related Commands

• smp_set_fixed_passkey (SFPK, ID=7/13)

 smp_set_pin_code (SBTPIN, ID=7/15)

Configure new PIN code value for BT classic device.

Binary Header

 Type Length Group ID Notes

CMD C0 01 07 0F Variable-length command payload, value specified is minimum

RSP C0 02 07 0F None.

Text Info

Text Name Response Length Category Notes

SBTPIN 0x000C SET None.

Command Arguments

Data Type Name Text Description

uint8a
PIN
code

P

PIN code data (1-16 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload.

Note: Factory default is “0000”(0x30,0x30,0x30,0x30), length 0x04.

Response Parameters

None.

Related Commands

• smp_get_pin_code (GBTPIN, ID=7/16)

• smp_set_security_parameters (SSBP, ID=7/11)

 smp_get_pin_code (GBTPIN, ID=7/16)

Obtain current PIN code value.

Binary Header

 Type Length Group ID Notes

CMD C0 00 07 10 None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 148

 Type Length Group ID Notes

RSP C0 03 07 10 None.

Text Info

Text Name Response Length Category Notes

GBTPIN 0x0010F GET Variable-length command payload, value specified is minimum

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8a16 PIN code P
PIN code data (1-16 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload

Related Commands

• smp_set_pin_code (SBTPIN, ID=7/15)

 smp_send_pinreq_response (/BTPIN, ID=7/17)

Sends the PIN code value back to a remote device waiting for it.

Binary Header:

 Type Length Group ID Notes

CMD C0 05 07 11 None.

RSP C0 02 07 11 None.

Text Info:

Text Name Response Length Notes

/BTPIN 0x000C None.

Command Arguments:

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint32 pin_code P* PIN code value

Response Parameters:

None.

Related Commands:

• smp_pair (/P, ID=7/3)

Related Events:
• smp_pin_entry_requested (BTPIN, ID=7/7)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 149

7.2.7 GPIO Group (ID=9)

GPIO methods relate to the physical pins on the module.

Commands within this group are listed below:

• gpio_query_adc (/QADC, ID=9/2)

• gpio_set_drive (SIOD, ID=9/5)

• gpio_get_drive (GIOD, ID=9/6)

• gpio_set_logic (SIOL, ID=9/7)

• gpio_get_logic (GIOL, ID=9/8)

• gpio_set_pwm_mode (SPWM, ID=9/11)

• gpio_get_pwm_mode (GPWM, ID=9/12)

Events within this group are documented in section 7.3.6 (GPIO Group (ID=9)).

 gpio_query_adc (/QADC, ID=9/2)

Read the immediate analog voltage level on the selected channel.

EZ-Serial provides a single dedicated ADC input pin (ADC0) for reading analog voltages. The ADC supports an input voltage
range of 0 V minimum to VDD (usually 3.3 V) maximum. Use this command to perform a single ADC conversion. Once the
conversion completes, the module transmits the result back in response parameters.

See section 8.1 (GPIO Pin Map for Supported Modules) for a pin map table showing ADC pin assignment.

Binary Header

 Type Length Group ID Notes

CMD C0 01 09 02 None.

RSP C0 02 09 02 None.

Text Info

Text Name Response Length Category Notes

/QADC 0x000B ACTION None.

Command Arguments

Data Type Name Text Description

uint8 channel N* ADC channel (0 ~7)

uint8 reference R
Voltage reference for conversion
(Ignored in current release, set to 0 and VDD will be used)

Response Parameters

Data Type Name Text Description

uint16 Value A Raw ADC conversion value, 0 – 2047 (0x0 – 0x7FF)

uint32 Uvolts U Scaled ADC result in microvolts, 0 – VDD (0x0 – 0x325AA0 if VDD is 3.3V)

 gpio_set_drive (SIOD, ID=9/5)

Configure a new drive mode for the selected pin.

Binary Header:

 Type Length Group ID Notes

CMD C0 05 09 05 None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 150

 Type Length Group ID Notes

RSP C0 02 09 05 None.

Text Info:

Text Name Response Length Category Notes

SIOD 0x000A SET None.

Command Arguments:

Data Type Name Text Description

uint8 pin P* Pin number (0-47)

Uint16 pin_config C* Pin configuration

uint8 pin_out_value L
Pin out value:

• 0 - pin will be set to 0 (default)

• non-zero - pin will be set to 1

uint8 pin_operation O

Pin operation:

• 0: immediate or start_up(default)

• 1: enter low power

• 2: exit low power

• 3: register interrupt

• 4: release this pin from operation list

Response Parameters:

None.

Related Commands:

• gpio_get_drive (GIOD, ID=9/6)

 gpio_get_drive (GIOD, ID=9/6)

Get current new drive mode for the selected pin.

Binary Header:

 Type Length Group ID Notes

CMD C0 02 09 06 None.

RSP C0 06 09 06 None.

Text Info:

Text Name Response Length Category Notes

GIOD 0x0006 GET None.

Command Arguments:

Data Type Name Text Description

uint8 pin P* Pin number (0-47)

uint8 pin_operation O

Pin operation:

• 0: immediate or start_up(default)

• 1: enter low power

• 2: exit low power

• 3: register interrupt

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 151

Response Parameters:

Data Type Name Text Description

uint16 Pin_config C Pin configuration

uint8 Pin_out_value L
Pin out value:

• 0 - pin output be set to 0

• non-zero - pin output be set to 1

uint8 Pin_operation O

Pin operation:

• 0: immediate or start_up

• 1: enter low power

• 2: exit low power

• 3: register interrupt

• 4: release this pin from operation list

Related Commands:

• gpio_set_drive (SIOD, ID=9/5)

 gpio_set_logic (SIOL, ID=9/7)

Configure a new output logic for the selected pin.

Binary Header:

 Type Length Group ID Notes

CMD C0 02 09 07 None.

RSP C0 02 09 07 None.

Text Info:

Text Name Response Length Category Notes

SIOL 0x000A SET None.

Command Arguments:

Data Type Name Text Description

uint8 pin P* Pin number (0-47)

uint8 pin_out_value L
Pin out value:

• 0 - pin output be set to 0

• non-zero - pin output be set to 1

Response Parameters:

None.

Related Commands:

• gpio_get_logic (GIOL, ID=9/8)

 gpio_get_logic (GIOL, ID=9/8)

Obtain the current output logic for the selected pin.

Binary Header:

 Type Length Group ID Notes

CMD C0 02 09 08 None.

RSP C0 0A 09 08 None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 152

Text Info:

Text Name Response Length Notes

GIOL 0x0020 None.

Command Arguments:

Data Type Name Text Description

uint8 pin P* Pin number (0-47 or 0xFF)

uint8 direction D

Direction for get pint logic if pin is 0 -47:

• 0 - get the pin input status (default)

• 1 - get the pin output status

• 2 -get the interrupt status

Selection for get bit map of pins operation list if pin=0xFF:

• 0 - pin map (default)

• 1 - slot map

Response Parameters:

Data Type Name Text Description

uint32
Pin logic or
pin_map_low

L
Pin logic when pin is 0~47

Low 32 bit map when pin is 0xFF

uint32

Pin
configure

or
pin_map_high

H
Pin configuration when pin is 0~47

High 32-bit map when pin is 0xFF

Related Commands:

• gpio_set_logic (SIOL, ID=9/7)

 gpio_set_pwm_mode (SPWM, ID=9/11)

Configure new PWM output behavior for selected channel.

EZ-Serial provides four dedicated PWM output pins (PWM0/1/2/3). Enabling PWM on the channel means you cannot use
that pin for another generic I/O. To return a PWM channel pin to standard functionality, use the gpio_set_pwm_mode
(SPWM, ID=9/11) API command to disable PWM output on that pin. See section 8.1 (GPIO Pin Map for Supported Modules)
for a pin map table showing pin availability and default assignment.

Note: Enabling PWM output automatically prevents the CPU from entering normal sleep under any circumstances. This

happens because the high-frequency clock required to generate the PWM signal cannot operate while the CPU is in

sleep. To allow normal sleep mode again, you must disable all PWM output. See section 3.1.5(Managing Sleep

States) for further detail.

Note: CYBT-353027-02 module does not support PWM functionality.

Binary Header

 Type Length Group ID Notes

CMD C0 08 09 0B None.

RSP C0 02 09 0B None.

Text Info

Text Name Response Length Category Notes

SPWM 0x000A SET None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 153

Command Arguments

Data Type Name Text Description

uint8 channel N* Channel number (0~3)

uint8 enable E Enable PWM output (0 to disable, 1 to enable)

uint8 divider D

Clock divider value (24 MHz input):

• Minimum = 0 (factory default)

• Maximum = 255

Note: Divider denominator is divider+1, so “0” is “divide by 1”

uint8 prescaler S

PWM prescaler value:

• 0 = 1x (no prescaling)

• 1 = 2x

• 2 = 4x

• 3 = 8x

• 4 = 16x

• 5 = 32x

• 6 = 64x

• 7 = 128x

Note: Factory default is 0 (1x, no prescaling)

uint16 period P Period (0-1023)

uint16 compare C Compare (0-1023, must not be greater than period)

Response Parameters

None.

Related Commands

• gpio_get_pwm_mode (GPWM, ID=9/12)

 gpio_get_pwm_mode (GPWM, ID=9/12)

Obtain current PWM output behavior for selected channel.

See section 8.1 (GPIO Pin Map for Supported Modules) for a pin map table showing pin availability and default assignment.

Note: The CYBT-353027-02 module does not support PWM function.

Binary Header

 Type Length Group ID Notes

CMD C0 01 09 0C None.

RSP C0 09 09 0C None.

Text Info

Text Name Response Length Category Notes

GPWM 0x0027 GET None.

Command Arguments

Data Type Name Text Description

uint8 channel N* Channel number (0 ~ 3)

Response Parameters

Data Type Name Text Description

uint8 enable E Enable PWM output (0 to disable, 1 to enable)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 154

Data Type Name Text Description

uint8 divider D

Clock divider value (24 MHz input):

• Minimum = 0 (factory default)

• Maximum = 255

Note: Divider denominator is divider+1, so “0” is “divide by 1”

uint8 prescaler S

PWM prescaler value:

• 0 = 1x (no prescaling)

• 1 = 2x

• 2 = 4x

• 3 = 8x

• 4 = 16x

• 5 = 32x

• 6 = 64x

• 7 = 128x

Note: Factory default is 0 (1x, no prescaling)

uint16 period P Period (0-1023)

uint16 compare C Compare (0-1023, must not be greater than period)

Related Commands

• gpio_set_pwm_mode (SPWM, ID=9/11)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 155

7.2.8 CYSPP Group (ID=10)

CYSPP methods relate to the Cypress Serial Port Profile.

Commands within this group are listed below:

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

• p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

• p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Events within this group are documented in section 7.3.7CYSPP Group (ID=10).

You can find further details and examples concerning CYSPP operation here:

 Section 2.4.5 (Using CYSPP Mode)

 Section 3.1.5.2 (Configuring the CYSPP Data Mode Sleep Level)

 Section 3.2 (Performing a Factory Reset)

 p_cyspp_start (.CYSPPSTART, ID=10/2)

Activate CYSPP operation.

Use this command to start CYSPP via the API protocol, rather than asserting the CYSPP pin or configuring automatic start
with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command.

See section 2.4.5.8 (CYSPP State Machine) for details about how CYSPP moves between different operational states.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0A 02 None.

RSP C0 02 0A 02 None.

Text Info

Text Name Response Length Category Notes

.CYSPPSTART 0x0011 ACTION None.

Command Arguments

None.

Response Parameters

None.

Related Commands

p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Related Events

p_cyspp_status (.CYSPP, ID=10/1)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 156

 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Configure new CYSPP behavior settings.

Use this command to control how CYSPP behaves. You can find example usage and practical explanations of how these
settings affect behavior in section 2.4.5 (Using CYSPP Mode) and section 3.2 (Cable Replacement Examples with CYSPP).

Note: Disabling CYSPP with this API method causes EZ-Serial to hide the relevant GATT database attributes from Client

discovery. All other visible attributes remain the same and keep their original handles, but those inside the CYSPP

attribute range are hidden and are unusable by connected Clients. This remains in effect until you enable the profile

again or assert the CYSPP pin.

Binary Header

 Type Length Group ID Notes

CMD C0 13 0A 03 None.

RSP C0 02 0A 03 None.

Text Info

Text Name Response Length Category Notes

.CYSPPSP 0x000E SET None.

Command Arguments

Data Type Name Text Description

uint8 enable E

Enable CYSPP profile:

• 0 = Disable

• 1 = Enable

• 2 = Enable + auto-start (factory default)

uint8 role G
GAP role to use:

• 0 = Peripheral/Server (factory default)

uint16 company C
Company ID value for automatic advertisement payload Manufacturer Data:
Note: Factory default is 0x0131 (Cypress Semiconductor)

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R
Remote connection key to search for while scanning (central role) – not applicable on
EZ-BT WICED platform

uint32 remote_mask M
Bitmask for bits in remote key which must match for a central-role connection – not
applicable on EZ-BT WICED platform

uint8 sleep_level P

Maximum sleep level while connected with open CYSPP data pipe:

• 0 = Sleep disabled

• 1 = Sleep when possible (factory default)

Note: System-wide sleep overrides this if it is set to a lower level

uint8 server_security S

CYSPP Server security requirement to allow writing CYSPP data from a Client:

• 0 = No security required

• 1 = Encryption required

• 2 = Bonding required

• 3 = Encryption and bonding required

uint8 client_flags F

Client GATT usage flags while operating CYSPP in the central role

• Bit 0 (0x01) = Use acknowledged data transfers

• Bit 1 (0x02) = Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only)

Response Parameters

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 157

Related Commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Related Events

• gap_adv_state_changed (ASC, ID=4/2) – May occur if CYSPP is set to start automatically in peripheral role

• p_cyspp_status (.CYSPP, ID=10/1)

Example Usage

• Section 2.4.5 (Using CYSPP Mode)

• Section 3.1.5.2 (Configuring the CYSPP Data Mode Sleep Level)

• Section 3.2 (Cable Replacement Examples with CYSPP)

 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Obtain current CYSPP behavior settings.

Binary Header

 Type Length Group ID Notes

CMD C0 01 0A 04 None.

RSP C0 15 0A 04 None.

Text Info

Text Name Response Length Category Notes

.CYSPPGP 0x004F GET None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 enable E

Enable CYSPP profile:

• 0 = Disable

• 1 = Enable

• 2 = Enable + auto-start (factory default)

uint8 role G

GAP role to use:

• 0 = Peripheral/Server (factory default)

• 1 = Central/Client

uint16 company C
Company ID value for automatic advertisement packet payload Manufacturer Data:
Note: Factory default is 0x0131 (Cypress Semiconductor)

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R Remote connection key to search for while scanning (central role)

uint32 remote_mask M Bitmask for bits in remote key which must match for a central-role connection

uint8 sleep_level P

Maximum sleep level while connected with open CYSPP data pipe:

• 0 = Sleep disabled

• 1 = Normal sleep when possible

Note: System-wide sleep overrides this if it is set to a lower level

uint8 server_security S
CYSPP Server security requirement for writing CYSPP data from a Client:

• 0 = No security required

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 158

Data Type Name Text Description

• 1 = Encryption required

• 2 = Bonding required

• 3 = Encryption and bonding required

uint8 client_flags F

Client GATT usage flags while operating CYSPP in the Central role

• Bit 0 (0x01) = Use acknowledged data transfers

• Bit 1 (0x02) = Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only)

Related Commands

p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

Control how incoming serial data from an external host is packetized for CYSPP transmission.

Use this command to control whether or how incoming serial data is assembled into specific packets for transmission to the
remote peer over a CYSPP connection. Packetization does not affect the content or ordering of serial data in any way, but
only affects certain buffering and transmission timing.

Note: CYSPP packetization does not affect any outgoing UART serial data (module-to-host), nor does it affect incoming

serial data while in command mode (that is, the CYSPP data pipe is not open). It impacts only the incoming serial data

while CYSPP data mode is active.

At 115200 baud, a single byte takes about 80 microseconds to transfer. EZ-Serial checks for new bytes at least every 20
microseconds and processes the available bytes. Due to this, a continuous serial byte stream from an external host may be
delivered to a remote CYSPP peer with multiple GATT transfers even if all data could fit in a single packet (for instance, two
bytes sent as two single-byte transfers). Although the data is always delivered completely and in the correct order, this
results in potentially unnecessary complexity on the receiving end, which must buffer and combine incoming data if it does
not handle it as a continuous data stream.

To address this behavior, EZ-Serial provides this API command to control incoming data packetization. There are five
different modes:

 Mode 0: Immediate

This mode reads and transmits data quickly, always sending as much data as is available when the BLE stack allows
a new transmission. In this mode, the first byte or two bytes of a new transmission are usually sent in a single packet
even if more data is arriving at the same time.

The [wait] and [length] settings are irrelevant in this mode.

 Mode 1: Anticipate (factory default with 5 ms wait and 20-byte length)

This mode waits up to [wait] milliseconds in anticipation for at least [length] bytes to arrive from the external host. If the
target byte count is reached before the wait time expires, all available bytes are transmitted immediately. If the
configured wait time expires before reaching the target byte count, all available bytes are transmitted at that time.
Anticipate mode is suitable for most general operations and does not negatively impact the throughput if the incoming
serial data arrives fast enough to keep the UART receive buffer full.

The [wait] setting must be between 1 and 255. The [length] setting must be between 1 and 128, which is the internal
UART RX software buffer size.

 Mode 2: Fixed

This mode waits indefinitely until at least [length] bytes have been read, then transmits exactly that many bytes. Fixed
mode is best used in cases where the host sends chunks of data which are always of the same size. Setting a [length]
value that is greater than the GATT MTU payload size results in multiple transmissions once all data has been buffered.
For example, a fixed packet length of 32 bytes with the default GATT MTU size of 23 bytes (usable payload size of 20
bytes) results in one 20-byte packet followed by one 12-byte packet. The MTU depends on the value negotiated by the
Client after connection.

The [length] setting must be between 1 and 128, which is the internal UART RX software buffer size. The [wait] setting
is irrelevant in this mode.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 159

 Mode 3: Variable

This mode requires an additional length value from the host before each packet to indicate how many bytes to expect.
EZ-Serial consumes this byte (it is not transmitted to the remote peer), and then waits until the exact number of bytes
have been read before transmitting them. Variable mode is suitable for applications that require packets of differing
lengths and can accommodate an extra transmitted byte from the host indicating each packet’s length.

For example, the host can send [04 61 62 63 64] to transmit the 4-byte ASCII string “abcd” to the remote peer in a
single packet. Or, the host can send [05 61 62 63 64 65 03 66 67 68] to transmit “abcdefgh” in two packets (“abcde”
followed by “def”).

The prefixed packet length byte must not be greater than 128. Values greater than this will be capped at 128. The [wait]
and [length] settings are irrelevant in this mode.

 Mode 4: End-of-packet

This mode buffers the data until the configured end-of-packet (EOP) byte is encountered in the data stream, or until
either the MTU payload size or UART RX buffer has filled. EOP mode allows variable-length packets without knowing
in advance the length of the packet

The EOP byte defaults to 0x0D (the carriage return byte, often expressed as ‘\r’ in code). However, you can change

it to any value between 0x00 and 0xFF. When the EOP byte occurs in the data stream, all buffered data up to that point
including the EOP byte itself will be transmitted to the remote side.

In this mode, EZ-Serial will also transmit buffered data under two other conditions:

1. If the GATT MTU payload size is less than the UART RX buffer size (128 bytes) and enough data is buffered to fill
a single GATT packet, one packet’s worth of data is transmitted. The default GATT MTU is 23 bytes with a usable
payload size of 20 bytes.

2. If the GATT MTU payload size is greater than the UART RX buffer size (128 bytes) and the RX buffer is full, 128
bytes of data are transmitted. This can only occur in cases where the connected client has negotiated a GATT
MTU greater than 131 bytes (actual transmit payload is MTU - 3 bytes).

For the “Anticipate” mode (1), you must consider the UART baud rate when choosing the [wait] and [length] values. A 5-ms
wait time is suitable for a 20-byte target length at 115200 baud, but this is not enough time to read in 20 bytes at 9600 baud
(for example). If you change the baud rate, be sure to choose a [wait] value that allows the target packet length to be filled
under normal operating conditions. Table 7-3 lists “safe” wait values for 20-byte packets at common baud rates for reference.

Baud Rate Single Bit Duration 20 Bytes at 8/N/1 (200 Bits) Safe Wait Value

Example

9600 104 us ~21 ms 32 ms (0x20)

38400 26.1 us ~5.2 ms 10 ms (0x0A)

57600 17.4 us ~3.5 ms 5 ms (0x05)

115200 8.68 us ~1.7 ms 5 ms (0x05)

230400 4.34 us 868 us 2 ms (0x02)

460800 2.17 us 434 us 1 ms (0x01)

921600 1.09 us 217 us 1 ms (0x01)

Table 7-3. Common UART Timing for 20-Byte Packets

The single-bit duration for any baud rate can be calculated in microseconds using this equation:

Bit time = 1,000,000 us / [baud]

Standard UART settings of 8 data bits, no parity, and 1 stop bit yield a total of 10 bits per byte. For a 20-byte packet, this
requires allowance for 200 bits.

Note: If the packet length used in Anticipate, Fixed, Variable, or End-of-Packet modes exceeds the GATT MTU usable

payload size (20 bytes on many platforms), the packets are broken apart to fit within this lower-level constraint. For

example, using Fixed mode with [length] set to 32 bytes results in two transmitted packets each time the target length

is reached: first a 20-byte packet and then a 12-byte packet.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 160

Binary Header

 Type Length Group ID Notes

CMD C0 04 0A 07 None.

RSP C0 02 0A 07 None.

Text Info

Text Name Response Length Category Notes

.CYSPPSK 0x000E SET None.

Command Arguments

Data Type Name Text Description

uint8 mode M

Packetization mode:

• 0 = Immediate: transmit incoming data as soon as possible

• 1 = Anticipate: wait a short time to attempt a minimum buffer threshold

• 2 = Fixed: buffer and send packets of exactly one size

• 3 = Variable: specify the size of every packet with a prefixed length byte

• 4 = End-of-packet: transmit data when specific byte occurs in stream

Note: Factory default is 1 (Anticipate)

uint8 wait W

Anticipation delay (milliseconds), used only in “Anticipate” mode:

• Minimum = 0x01 (1 millisecond)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0x5 (5 milliseconds)

uint8 length L

Fixed/anticipated packet length (bytes), used only in “Anticipate” or “Fixed” mode:

• Minimum = 0x01 (1 byte)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU)

uint8 eop E
End-of-packet byte:
Note: Factory default is 0x0D (‘\r’ carriage return)

Response Parameters

None.

Related Commands

p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Obtain current CYSPP packetization settings.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0A 08 None.

RSP C0 05 0A 08 None.

Text Info

Text Name Response Length Category Notes

.CYSPPGK 0x001D GET None.

Command Arguments

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 161

Response Parameters

Data Type Name Text Description

uint8 mode M

Packetization mode:

• 0 = Immediate: Transmit incoming data as soon as possible

• 1 = Anticipate: Wait a short time to attempt a minimum buffer threshold

• 2 = Fixed: Buffer and send packets of exactly one size

• 3 = Variable: Specify the size of every packet with a prefixed length byte

• 4 = End-of-packet: Transmit data when specific byte occurs in stream

Note: Factory default is 1 (Anticipate)

uint8 wait W

Anticipation delay (milliseconds), used only in “Anticipate” mode:

• Minimum = 0x01 (1 millisecond)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0x5 (5 milliseconds)

uint8 length L

Fixed/anticipated packet length (bytes), used only in “Anticipate” and “Fixed” modes:

• Minimum = 0x01 (1 byte)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU)

uint8 eop E
End-of-packet byte:
Note: Factory default is 0x0D (‘\r’ carriage return)

Related Commands

p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

7.2.9 BT group (ID=14)

BT methods relate to the BT Classic operation.

Commands within this group are listed below:

• bt_start_inquiry (/BTI, ID=14/1)

• bt_cancel_inquiry (/BTIX, ID=14/2)

• bt_query_name (/BTQN, ID=14/3)

• bt_connect (/BTC, ID=14/4)

• bt_cancel_connection (/BTCX, ID=14/5)

• bt_disconnect (/BTDIS, ID=14/6)

• bt_query_connections (/BTQC, ID=14/7)

• bt_query_peer_address (/BTQPA, ID=14/8)

• bt_query_rssi (/BTQSS, ID=14/9)

• bt_set_device_class (SBTDC, ID=14/12)

• bt_get_device_class (GBTDC, ID=14/13)

Events within this group are documented in the following sub sections.

You can find further details and examples concerning SPP operation in section 2.4.6 (Bluetooth Classic SPP).

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 162

 bt_start_inquiry (/BTI, ID=14/1)

Begins the discovery process to identify nearby BT Classic devices.

Binary Header:

 Type Length Group ID Notes

CMD C0 02 0E 01 None.

RSP C0 02 0E 01 None.

Text Info

Text Name Response Length Notes

/BTI 0x000A None.

Command Arguments

Data Type Name Text Description

uint8 duration D* Inquiry duration in seconds: 3 - 30 seconds

uint8 flags F*

Flags

• 0 - Inquiry all (name and address)

• 1 – Inquiry name

• 2 – Inquiry address

Response Parameters

None.

Command-Specific Result Codes

None.

Related Commands

• bt_cancel_inquiry (/BTIX, ID=14/2)

Related Events

• bt_inquiry_result (BTIR, ID=14/1)

• bt_name_result (BTINR, ID=14/2)

• bt_inquiry_complete (BTIC, ID=14/3)

 bt_cancel_inquiry (/BTIX, ID=14/2)

Cancels any ongoing BT Classic inquiry process before it would normally end.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0E 02 None.

RSP C0 02 0E 02 None.

Text Info

Text Name Response Length Notes

/BTIX 0x000B None.

Command Arguments

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 163

None.

Response Parameters

None.

Command-Specific Result Codes

None.

Related Commands

• bt_start_inquiry (/BTI, ID=14/1).

Related Events

• bt_inquiry_complete (BTIC, ID=14/3)

 bt_query_name (/BTQN, ID=14/3)

Attempt to obtain a friendly name for a remote device.

Binary Header

 Type Length Group ID Notes

CMD C0 06 0E 03 None.

RSP C0 02 0E 03 None.

Text Info

Text Name Response Length Notes

/BTQN 0x000B None.

Command Arguments

Data Type Name Text Description

macaddr address A* Bluetooth address

Response Parameters

None.

Command-Specific Result Codes

None.

Related Commands:

None.

Related Events:

• bt_name_result (BTINR, ID=14/2)

 bt_connect (/BTC, ID=14/4)

Opens a connection to a remote BT Classic target device.

Binary Header:

 Type Length Group ID Notes

CMD C0 07 0E 04 None.

RSP C0 03 0E 04 None.

Text Info

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 164

Text Name Response Length Notes

/BTC 0x000F None.

Command Arguments

Data Type Name Text Description

macaddr address A* Bluetooth address

uint8 type T* Type:

• 1: SPP

Response Parameters

Data Type Name Text Description

uint8 conn_handle C Handle assigned to new pending connection

Command-Specific Result Codes

None.

Related Commands

• bt_connected (BTCON, ID=14/4)

• bt_connection_failed (BTCF, ID=14/6).

• bt_cancel_connection (/BTCX, ID=14/5)

• bt_disconnect (/BTDIS, ID=14/6)

Related Events

• bt_connected (BTCON, ID=14/4)

• bt_connection_failed (BTCF, ID=14/6).

 bt_cancel_connection (/BTCX, ID=14/5)

Cancels a pending connection attempt to a remote BT Classic peer device, previously initiated with the 'connect'
command.
Note: This command should be used only to terminate a pending connection attempt, not to close an open connection. To

close an existing connection that has already been established, use the 'disconnect' command instead.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0E 05 None.

RSP C0 02 0E 05 None.

Text Info

Text Name Response Length Notes

/BTCX 0x000B None.

Command Arguments

None.

Response Parameters

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 165

Command-Specific Result Codes

None.

Related Commands

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related Events

• bt_connected (BTCON, ID=14/4)

 bt_disconnect (/BTDIS, ID=14/6)

Closes an open BT Classic connection to a remote device, previously initiated with the 'connect' command. If optional
connection handle argument is omitted, all open connections will be closed.
Note: This command should be used only to close an open connection, not to terminate a pending connection attempt. To

cancel a pending connection attempt that has not yet succeeded, use the 'cancel connection' command instead.

Binary Header

 Type Length Group ID Notes

CMD C0 01 0E 06 None.

RSP C0 02 0E 06 None.

Text Info

Text Name Response Length Notes

/BTDIS 0x000C None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C* Handle of connection to disconnect

Response Parameters:

None.

Command-Specific Result Codes:

None.

Related Commands

• bt_connect (/BTC, ID=14/4)

Related Events

• bt_disconnected (BTDIS, ID=14/7)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 166

 bt_query_connections (/BTQC, ID=14/7)

Used to query the current list of active connections.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0E 07 None.

RSP C0 03 0E 07 None.

Text Info

Text Name Response Length Notes

/BTQC 0x0010 None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 count C Count of all active connections

Command-Specific Result Codes

None.

Related Commands

None.

Related Events:

• bt_connection_status (BTCS, ID=14/5)

 bt_query_peer_address (/BTQPA, ID=14/8)

Used to query the Bluetooth address of a currently connected BT Classic remote peer. This command will generate an
error response if it is used without an active connection.

Binary Header

 Type Length Group ID Notes

CMD C0 01 0E 08 None.

RSP C0 09 0E 08 None.

Text Info

Text Name Response Length Notes

/BTQPA 0x0020 None.

Command Arguments

Data Type Name Text Description

uint8 conn_handle C Handle of connection for which to query remote peer address

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 167

Response Parameters

Data Type Name Text Description

macaddr address A Peer Bluetooth address

uint8 address_type T Address type

Command-Specific Result Codes

None.

Related Commands

• bt_connect (/BTC, ID=14/4)

Related Events

• bt_connected (BTCON, ID=14/4)

 bt_query_rssi (/BTQSS, ID=14/9)

Used to query the remote signal strength indication (RSSI) value detected in the packet received most recently from the
currently connected remote BT Classic peer. This command will generate an error response if it is used without an active
connection. The RSSI value returned in the response is expressed as a signed 8-bit integer. In text mode, it will appear in
two’s complement form. Positive numbers in this form fall in the range [0, 127] and are as they appear. Negative numbers
fall in the range [128, 255] and should have 256 subtracted from them to obtain the real value.

Examples:

 0x03 = +3 dBm

 0xFF = -1 dBm (0xFF = 255 - 256 = -1)

 0xF0 = -16 dBm (0xF0 = 240 - 256 = -16)

 0xC5 = -59 dBm (0xC5 = 197 - 256 = -59)

Binary Header

 Type Length Group ID Notes

CMD C0 01 0E 09 None.

RSP C0 03 0E 09 None.

Text Info

Text Name Response Length Notes

/BTQSS 0x0011 None.

Command Arguments

Data Type Name Text Description

macaddr address A The mac address for which to query signal strength

Response Parameters

Data Type Name Text Description

int8 Rssi R RSSI value

Command-Specific Result Codes

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 168

Related Commands:

None.

Related Events:

None.

 bt_set_parameters (SBTP, ID=14/10)

Sets BT Classic device behavior.

Binary Header

 Type Length Group ID Notes

CMD C0 03 0E 0A None.

RSP C0 02 0E 0A None.

Text Info

Text Name Response Length Notes

SBTP 0x000A None.

Command Arguments

Data Type Name Text Description

uint8 link_super_time_out T

BT Classic link super time out, unit is 0.625 ms

Note: Factory default is 0x7D00 (20 second)

uint8 discoverable D

BT Classic discoverable mode:

• 0 Not discoverable

• 1 Limited BT Classic discoverable

• 2 General BT Classic discoverable

uint8 connectable C BT Classic connectable mode

uint8 flags F BT Classic behavior flags (always set to 0 in the current release)

uint8 scn S

Service Channel Number for SPP server

Note: Factory default is 2

uint8 active_bt_discoverability V

Active time for BT classic discoverable, unit is second.

Note: Factory default is 0, means always active

uint8 active_bt_connectability N

Active time for BT classic connectable, unit is second.

Note: Factory default is 0, means always active

Response Parameters

None.

Command-Specific Result Codes

None.

Related Commands

None.

Related Events

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 169

 bt_get_parameters (GBTP, ID=14/11)

Used to get the current BT Classic configuration.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0E 0B None.

RSP C0 05 0E 0B None.

Text Info

Text Name Response Length Notes

GBTP 0x0019 None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint8 link_super_time_out T
BT Classic link super time out, unit is 0.625 ms

Note: Factory default is 0x7D00 (20 second)

uint8 discoverable D

BT Classic discoverable mode:

• 0 Not discoverable

• 1 Limited BT Classic discoverable

• 2 General BT Classic discoverable

uint8 connectable C
BT Classic connectable mode:

• 0 Not connectable

• 1 BT Classic connectable

uint8 flags F BT Classic behavior flags (always set to 0 in the current release)

uint8 scn S

Service Channel Number for SPP server

Note: Factory default is 2

uint8 active_bt_discoverability V

Active time for BT classic discoverable, unit is second.

Note: Factory default is 0, means always active

uint8 active_bt_connectability N

Active time for BT classic connectable, unit is second.

Note: Factory default is 0, means always active

Command-Specific Result Codes

None.

Related Commands

None.

Related Events

None.

 bt_set_device_class (SBTDC, ID=14/12)

Defines the device class value. This is a 24-bit integer value with flag bits defined by the Bluetooth SIG, reported to
remote peers during an inquiry process.

Binary Header

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 170

 Type Length Group ID Notes

CMD C0 04 0E 0C None.

RSP C0 02 0E 0C None.

Text Info

Text Name Response Length Notes

SBTDC 0x000B None.

Command Arguments

Data Type Name Text Description

uint32 cod C New device appearance value

Response Parameters

None.

Command-Specific Result Codes

None.

Related Commands

bt_get_device_class (GBTDC, ID=14/13)

Related Events

None.

 bt_get_device_class (GBTDC, ID=14/13)

Used to get the current device class value.

Binary Header

 Type Length Group ID Notes

CMD C0 00 0E 0D None.

RSP C0 06 0E 0D None.

Text Info

Text Name Response Length Notes

GBTDC 0x0016 None.

Command Arguments

None.

Response Parameters

Data Type Name Text Description

uint32 cod C Current device class value

Command-Specific Result Codes

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 171

Related Commands

bt_set_device_class (SBTDC, ID=14/12)

Related Events

None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 172

7.3 API Events

All events implemented in the API protocol are described in detail below. API commands and responses are documented
separately in section 7.2 (API Commands and Responses).

A master list of all possible error codes appearing in certain events can be found in section 7.4 (Error Codes).

Commands and responses are broken down into the following groups:

• System Group (ID=2)

• GAP Group (ID=4)

• GATT Server Group (ID=5)

• GATT Client Group (ID=6)

• SMP Group (ID=7)

• GPIO Group (ID=9)

• Bluetooth Classic Group (ID=14)

7.3.1 System Group (ID=2)

System methods relate to the core device, describing things like boot and device address info, and resetting to an initial
state.

Events within this group are listed below:

• system_boot (BOOT, ID=2/1)

• system_error (ERR, ID=2/2)

• system_factory_reset_complete (RFAC, ID=2/3)

• system_dump_blob (DBLOB, ID=2/5)

Commands within this group are documented in section 7.2.2 (System Group (ID=2)).

 system_boot (BOOT, ID=2/1)

EZ-Serial module has booted and is ready to process commands.

Binary Header

Type Length Group ID Notes

80 12 02 01 None.

Text Info

Text Name Event Length Notes

BOOT 0x003B None.

Event Parameters

Data Type Name Text Description

uint32 app E Application version number

uint32 stack S BLE stack version number

uint16 protocol P API protocol version number

uint8 hardware H

Hardware identifier:

• 0x01 = CYBLE-01201X-X0

• 0x02 = CYBLE-014008-00

• 0x03 = CYBLE-022001-00

• 0x04 = CYBLE-2X20XX-X1

• 0x05 = CYBLE-2120XX-X0

• 0x06 = CYBLE-212020-01

• 0x07 = CYBLE-214009-00

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 173

Data Type Name Text Description

• 0x08 = CYBLE-214015-01

• 0x09 = CYBLE-222005-00

• 0x0A = CYBLE-222014-01

• 0x0B = CYBLE-224110-00

• 0x0C = CYBLE-224116-01

• 0xB1 = CYBLE-013025-00

• 0xD1 = CYBT-343026-01

• 0xD2 = CYBT-353027-02

uint8 cause C Cause of boot event: always 0

macaddr address A Public Bluetooth address

Related Commands

• system_reboot (/RBT, ID=2/2)

• system_factory_reset (/RFAC, ID=2/5)

 system_error (ERR, ID=2/2)

System error has occurred.

This may be triggered by a malformed command, an operation that failed or could start due to an invalid operational state,
or a low-level hardware failure. See section 7.4 (Error Codes) for a list of all possible errors.

Binary Header

Type Length Group ID Notes

80 02 02 02 None.

Text Info

Text Name Event Length Notes

ERR 0x000B None.

Event Parameters

Data Type Name Text Description

uint16 error E Error code describing what went wrong

 system_factory_reset_complete (RFAC, ID=2/3)

Factory reset is complete.

This event will occur after sending the system_factory_reset (/RFAC, ID=2/5) API command, or asserting (LOW) the
FACTORY_TR and CYSPP pins at boot time. EZ-Serial transmits this event using the originally configured host interface
settings (if different from the default). After generating this event, the module reboots immediately and the default settings
take effect.

Note: If you triggered a factory reset using the GPIO method at boot time, the final reboot back into an operational state

occurs only after you de-assert one or both the pins. This safeguard prevents an endless loop of factory resets if both

pins remain asserted.

Binary Header

Type Length Group ID Notes

80 00 02 03 None.

Text Info

Text Name Event Length Notes

RFAC 0x0005 None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 174

Event Parameters

None.

Related Commands

system_factory_reset (/RFAC, ID=2/5)

 system_dump_blob (DBLOB, ID=2/5)

Single data blob of requested configuration type or system state.

Binary Header

Type Length Group ID Notes

80 04-14 02 05 Variable-length event payload, minimum of 4 (0x04), maximum of 20 (0x14).

Text Info

Text Name Event Length Notes

DBLOB 0x0015-0x0035 Variable-length event payload, minimum of 21 (0x15), maximum of 53 (0x35)

Event Parameters

Data Type Name Text Description

uint8 type T

Type of information being dumped:

• 0 = Runtime configuration data

• 1 = Boot-level configuration data

• 2 = Factory-level configuration data

• 3 = System state data

uint16 offset O Blob start offset

uint8a data D
Dumped blob of data

Note: uint8a data type requires one prefixed “length” byte before binary parameter payload

Related Commands

• system_dump (/DUMP, ID=2/3)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 175

7.3.2 GAP Group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth stack, which includes management of scanning,
advertising, connection establishment, and connection maintenance.

Events within this group are listed below:

• gap_whitelist_entry (WL, ID=4/1)

• gap_adv_state_changed (ASC, ID=4/2)

• gap_scan_result (S, ID=4/4)

• gap_connected (C, ID=4/5)

• gap_disconnected (DIS, ID=4/6)

• gap_connection_updated (CU, ID=4/8)

Commands within this group are documented in section 7.3.2 (GAP Group (ID=4)).

 gap_whitelist_entry (WL, ID=4/1)

Details about a single entry in the whitelist table.

Binary Header

Type Length Group ID Notes

80 07 04 01 None.

Text Info

Text Name Event Length Notes

WL 0x0017 None.

Event Parameters

Data Type Name Text Description

macaddr address A Bluetooth address

uint8 type T
Address type:

• 0 = Public

• 1 = Random/private

Related Commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_query_whitelist (/QWL, ID=4/14)

 gap_adv_state_changed (ASC, ID=4/2)

Indicates that the module has started or stopped advertising, due to a scheduled timeout, automated process, or intentional
action.

Binary Header

Type Length Group ID Notes

80 02 04 02 None.

Text Info

Text Name Event Length Notes

ASC 0x000E None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 176

Event Parameters

Data Type Name Text Description

uint8 state S

Advertising state:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

uint8 reason R

Reason for state change:

• 0 = User command

• 1 = GAP automatic advertisement enabled

• 2 = Configured timeout expired

• 3 = CYSPP operation state change

• 6 = Disconnection

Related Commands

• gap_start_adv (/A, ID=4/8)

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_parameters (SAP, ID=4/23)

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

 gap_scan_result (S, ID=4/4)

Details of an advertisement or scan response packet.

This event occurs while scanning for remote devices. If you have enabled active scanning, most peripherals will provide
two separate packets delivered via this API: one advertisement packet and one scan response packet. Passive scanning
will result in only the first of those two. Scan response packets typically contain less critical data, such as the friendly name
of the device, or its transmit power.

Binary Header:

Type Length Group ID Notes

80 0B-2A 04 04 Variable-length event payload, minimum of 11 (0x0B), maximum of 42 (0x2A)

Text Info:

Text Name Event Length Notes

S 0x0028-0x0047 Variable-length event payload, minimum of 40 (0x28), maximum of 71 (0x47)

Event Parameters:

Data Type Name Text Description

uint8 result_type R

Scan result type:

• 0 = Connectable undirected advertisement packet

• 1 = Connectable directed advertisement packet

• 2 = Scannable undirected advertisement packet

• 3 = Non-connectable undirected advertisement packet

• 4 = Scan response packet

macaddr address A Bluetooth address

uint8 address_type T Address type:

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 177

Data Type Name Text Description

• 0 = Public

• 1 = Random/private

int8 rssi S RSSI

uint8 bond B Bond entry (0 for no bond)

uint8a data D

Advertisement payload data (0-31 bytes)

NOTE: uint8a data type requires one prefixed “length” byte before binary parameter

payload

Related Commands:

• gap_connect (/C, ID=4/1)

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

• gap_set_scan_parameters (SSP, ID=4/25)

Example Usage:

• Section 3.5.1 (How to Scan)

 gap_connected (C, ID=4/5)

Connection established with a remote device.

Binary Header

Type Length Group ID Notes

80 0F 04 05 None.

Text Info

Text Name Event Length Notes

C 0x0035 None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth address

uint8 type T
Address type:

• 0 = Public

• 1 = Random/private

uint16 interval I Connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

uint8 bond B Bond entry (0 for no bond)

Related Commands

• gap_disconnect (/DIS, ID=4/5)

Related Events

• gap_disconnected (DIS, ID=4/6)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 178

 gap_disconnected (DIS, ID=4/6)

Connection to a remote device has closed.

For a list of possible disconnection reasons, see the 0x900 range of codes in section 7.4.1 (EZ-Serial System Error Codes).
These are the most common reasons:

 0x0908 – Page timeout (unexpected loss of connectivity, no response within supervision timeout)

 0x0913 – Remote user terminated connection (cleanly closed remotey)

 0x0916 – Connection terminated by local host (cleanly closed locally)

 0x093E – Connection failed to be established (connection initiated locally, but peer did not respond to request)

Binary Header

Type Length Group ID Notes

80 03 04 06 None.

Text Info

Text Name Event Length Notes

DIS 0x0010 None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R Reason for disconnection

Related Commands

• gap_disconnect (/DIS, ID=4/5)

 gap_connection_updated (CU, ID=4/8)

Active connection has negotiated and applied new parameters.

This event occurs on the slave side after a master requests new parameters or accepts the new parameters requested by
the slave. It also occurs on the master side after a slave requests new parameters and the master accepts the request.

Note: A rejected connection update request sent from a slave does not result in any events indicating the rejection. The

slave must assume the original parameters are in effect until after it receives this API event.

Binary Header

Type Length Group ID Notes

80 07 04 08 None.

Text Info

Text Name Event Length Notes

CU 0x001D None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 interval I Connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 179

Related Commands

• gap_update_conn_parameters (/UCP, ID=4/3)

7.3.3 GATT Server Group (ID=5)

GATT Server methods relate to the server role of the Generic Attribute Protocol layer of the Bluetooth stack. These methods
are used for working with the local GATT structure.

Events within this group are listed below:

• gatts_discover_result (DL, ID=5/1)

• gatts_data_written (W, ID=5/2)

• gatts_indication_confirmed (IC, ID=5/3)

• gatts_db_entry_blob (DGATT, ID=5/4)

Commands within this group are documented in section 7.2.4.

 gatts_discover_result (DL, ID=5/1)

Details about a single entry in the local GATT database.

This event occurs while discovering local services, characteristics, or descriptors.

Binary Header

Type Length Group ID Notes

80 08+ 05 01 Variable-length event payload, value specified is minimum.

Text Info

Text Name Event Length Notes

DL 0x0020+ Variable-length event payload, value specified is minimum.

Event Parameters

Data Type Name Text Description

uint16 attr_handle H Attribute handle

uint16 attr_handle_rel R

Related attribute handle:

• If discovering services, the end handle for the service group

• If discovering characteristics, the value handle that holds the application data

• If discovering descriptors, always 0 (not applicable)

uint16 type T

Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties Descriptor

• 0x2901 = Characteristic User Description Descriptor

• 0x2902 = Client Characteristic Configuration Descriptor

• 0x2903 = Server Characteristic Configuration Descriptor

• 0x2904 = Characteristic Format Descriptor

• 0x2905 = Characteristic Aggregate Format Descriptor

• 0x0000 = Characteristic value attribute or user-defined structure (see UUID)

uint8 properties P

Characteristic properties bitmask, only non-zero during characteristic discovery:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 180

Data Type Name Text Description

uint8a uuid U

UUID

Note: uint8a data type requires one prefixed “length” byte before binary parameter

payload.

Related Commands

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

 gatts_data_written (W, ID=5/2)

Remote GATT Client has written data to a local attribute.

A connected remote client can write data to a local attribute using either acknowledged unacknowledged write operations
Acknowledged writes require two full connection intervals to complete: one for the data transfer from client to server, and
one for the acknowledgement back from server to client. Unacknowledged writes may occur multiple times within the same
connection interval, and therefore provide greater throughput potential.

EZ-Serial automatically responds to acknowledged writes except in two cases:

 You have disabled automatic responses using the gatts_set_parameters (SGSP, ID=5/14) API command.

 The attribute written to has the “User data management” bit set in its properties value, set during creation with the
gatts_create_attr (/CAC, ID=5/1) API command.

Binary Header

Type Length Group ID Notes

80 06 05 02 Variable-length event payload, value specified is minimum.

Text Info:

Text Name Event Length Notes

W 0x0016+ Variable-length event payload, value specified is minimum.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Handle of connection from which write came

uint16 attr_handle H Attribute handle

uint8 type T

Write type:

• 0x00 = Simple write – acknowledged

• 0x01 = Write without response – unacknowledged

• 0x80 = Simple write requiring manual response via API command

longuint8a data D

Written data

Note: longuint8a data type requires two prefixed “length” bytes before binary parameter

payload.

Related Commands

None.

 gatts_indication_confirmed (IC, ID=5/3)

Remote GATT Client has confirmed receipt of indicated data.

This event occurs after a client receives and confirms data pushed using the gatts_indicate_handle (/IH, ID=5/12) API
command.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 181

Binary Header

Type Length Group ID Notes

80 03 05 03 None.

Text Info

Text Name Event Length Notes

IC 0x000F None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Handle of connection from which confirmation came

uint16 attr_handle H Attribute handle use for indication

Related Commands

• gatts_indicate_handle (/IH, ID=5/12)

Related Events

None.

 gatts_db_entry_blob (DGATT, ID=5/4)

Single entry from the GATT structure definition.

This event presents local dynamic GATT attribute definition in a format which simplifies reentry using the gatts_create_attr
(/CAC, ID=5/1) API command. For details about the data provided in this event, see section 3.6.1 (Defining Custom Local
GATT Services and Characteristics).

Note: This event includes the attribute handle and the absolute group end value, neither of which is part of the data entered

when creating a new custom attribute. Be sure to remove the handle and absolute group end if you are directly copying

the content from these output lines into new commands manually.

Binary Header

Type Length Group ID Notes

80 10-20 05 04 Variable-length event payload, minimum of 16 (0x10), maximum of 32 (0x20)

Text Info

Text Name Event Length Notes

DGATT 0x0037-0x0057 Variable-length event payload, minimum of 55 (0x37), maximum of 87 (0x57)

Event Parameters

Data Type Name Text Description

uint16 handle H Attribute handle (0x0001 – 0xFFFF)

uint16 type T*
• 0 = structure

• 1 = characteristic value

uint8 perm R*

Permission bits:

• Bit 0 (0x01) = Variable length

• Bit 1 (0x02) = Readable

• Bit 2 (0x04) = Write command (unacknowledged)

• Bit 3 (0x08) = Write request (acknowledged)

• Bit 4 (0x10) = Perm auth readable

• Bit 5 (0x20) = Reliable write (includes prepared write)

• Bit 6 (0x40) = Authenticated writable

• Bit 7 (0x80) = UUID is 128 bits

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 182

Data Type Name Text Description

uint16 length L
Indicates how many bytes of RAM are allocated for the definition (structure)
or content (characteristic value)

longuint8a data U

Data (UUID or default attribute value where applicable)

Note: longuint8a data type requires two prefixed “length” bytes before

binary parameter payload.

Related Commands

• gatts_dump_db (/DGDB, ID=5/5)

7.3.4 GATT Client Group (ID=6)

GATT Client methods relate to the client role of the GATT layer of the Bluetooth stack. These methods are used for working
with the GATT structures on remote devices, and can only be used while a device is connected.

Events within this group are listed below:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

• gattc_data_received (D, ID=6/3)

• gattc_write_response (WRR, ID=6/4)

Commands within this group are documented in Section 7.2.5GATT Client Group (ID=6).

 gattc_discover_result (DR, ID=6/1)

Details of a single entry in the remote GATT database.

This event occurs while you are discovering remote services, characteristics, or descriptors.

Binary Header:

Type Length Group ID Notes

80 09-19 06 01 Variable-length event payload, minimum of 9 (0x09), maximum of 25 (0x19)

Text Info:

Text Name Event Length Notes

DR 0x0025-0x0044 Variable-length event payload, minimum of 37 (0x25), maximum of 69 (0x45)

Event Parameters:

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 attr_handle H Attribute handle

uint16 attr_handle_rel R

Related attribute handle:

• If discovering services, the end handle for the service group

• If discovering characteristics, the value handle that holds the application data

• If discovering descriptors, always 0 (not applicable)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 183

Data Type Name Text Description

uint16 type T

Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties descriptor

• 0x2901 = Characteristic User Description descriptor

• 0x2902 = Client Characteristic Configuration descriptor

• 0x2903 = Server Characteristic Configuration descriptor

• 0x2904 = Characteristic Format descriptor

• 0x2905 = Characteristic Aggregate Format descriptor

• 0x0000 = Characteristic value attribute or user-defined structure (see UUID)

uint8 properties P

Characteristic properties bitmask, only non-zero during characteristic discovery:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)

uint8a uuid U

UUID (16-bit, 32-bit, or 128-bit)

NOTE: uint8a data type requires one prefixed “length” byte before binary parameter

payload

Related Commands:

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related Events:

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example Usage:

• Section 3.7.1 (How to Discover a Remote Server’s GATT Structure)

 gattc_remote_procedure_complete (RPC, ID=6/2)

Remote GATT Client operation has completed.

This event occurs after requesting a GATT Cclient operation that may require an unknown length of time or quantity of
returned results before it is finished, such as a remote GATT descriptor discovery. Because you cannot perform multiple
GATT Client operations simultaneously, your application logic must wait for this event and continue with additional client
operations only after the event occurs.

See the Related Commands list below for specific commands which trigger this event.

Binary Header:

Type Length Group ID Notes

80 03 06 02 None.

Text Info:

Text Name Event Length Notes

RPC 0x000D None.

Event Parameters:

Data Type Name Text Description

uint8 conn_handle C Connection handle

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 184

Data Type Name Text Description

uint16 result R

GATT result code for procedure:

• 0 = Success

• 0x01-0x7F = Error from Bluetooth specification

• 0x80-0xFF = Error from application (user-defined)

Related Commands:

• gattc_discover_services (/DRS, ID=6/1) – Always triggers this event upon completion

• gattc_discover_characteristics (/DRC, ID=6/2) – Always triggers this event upon completion

• gattc_discover_descriptors (/DRD, ID=6/3) – Always triggers this event upon completion

• gattc_read_handle (/RRH, ID=6/4) – Triggers this event if read fails, otherwise triggers gattc_data_received (D, ID=6/3)

Related Events:

• gattc_discover_result (DR, ID=6/1) – Occurs during a remote GATT discovery prior to this event
Example Usage:

• Section 3.7.1 (How to Discover a Remote Server’s GATT Structure)

 gattc_data_received (D, ID=6/3)

The remote GATT Server has returned or pushed a value from one of its attributes.

This event occurs after sending a read request with the gattc_read_handle (/RRH, ID=6/4) API command, or when a remote
GATT Server pushes a data update using a notification or indication after the client subscribes to either of these transfer
types on supported characteristics. The source parameter describes which operation triggered the event.

If the data received came from a remote GATT Server indication and you have disabled automatic confirmations by clearing
the auto-confirm bit of the flags argument in the gattc_set_parameters (SGCP, ID=6/7) API command, you must manually

confirm the indication before performing any other operations. If the source parameter of this event has the high bit (0x80)

set, use the gattc_confirm_indication (/CI, ID=6/6) API command.

Binary Header:

Type Length Group ID Notes

80 05-19 06 03 Variable-length event payload, minimum of 5 (0x05), maximum of 25 (0x19)

Text Info:

Text Name Event Length Notes

D 0x0016-0x003E Variable-length event payload, minimum of 22 (0x16), maximum of 62 (0x3E)

Event Parameters:

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 handle H Attribute handle

uint8 source S

Transfer source:

• 0x00 = GATT Client read request

• 0x01 = GATT Server notification

• 0x02 = GATT Server indication

• 0x82 = GATT Server indication requiring manual confirmation

longuint8a data D

Received value (0-20 bytes)

NOTE: longuint8a data type requires two prefixed “length” bytes before binary parameter

payload

Related Commands:

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gattc_read_handle (/RRH, ID=6/4)

• gattc_confirm_indication (/CI, ID=6/6)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 185

 gattc_write_response (WRR, ID=6/4)

The remote GATT Server acknowledged the GATT Client write operation.

This event occurs after attempting an acknowledged write operation with the gattc_write_handle (/WRH, ID=6/5) API
command. If the write is accepted by the remote server, the result value will be 0. Any non-zero result value indicates

an error.

Binary Header:

Type Length Group ID Notes

80 05 06 04 None.

Text Info:

Text Name Event Length Notes

WRR 0x0014 None.

Event Parameters:

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 attr_handle H Attribute handle

uint16 result R

GATT result code:

• 0 = Success

• 0x601-0x067F = Error from Bluetooth specification

• 0x680-0x06FF = Error from remote server application (user-defined)

Related Commands:

• gattc_write_handle (/WRH, ID=6/5)

7.3.5 SMP Group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth stack. These methods are used for working
with encryption, pairing, and bonding between two peers.

Events within this group are listed below:

• smp_bond_entry (B, ID=7/1)

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

• smp_passkey_display_requested (PKD, ID=7/5)

Commands within this group are documented in section 7.2.6SMP Group (ID=7).

 smp_bond_entry (B, ID=7/1)

Details about a single entry in the bonding table.

This event occurs once after a new bond is created as a result of the pairing process, or multiple times (based on bond list
count) after requesting the bond list with the smp_query_bonds (/QB, ID=7/1) API command.

Binary Header

Type Length Group ID Notes

80 07 07 01 None.

Text Info

Text Name Event Length Notes

B 0x001B None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 186

Event Parameters

Data Type Name Text Description

uint8 handle B Bonded device handle (1-4)

macaddr address A Bluetooth address

uint8 type T
Address type:

• 0 = Public

• 1 = Random/private

Related Commands

• smp_query_bonds (/QB, ID=7/1)

• smp_pair (/P, ID=7/3)

 smp_pairing_requested (P, ID=7/2)

Remote device has requested pairing.

Binary Header

Type Length Group ID Notes

80 05 07 02 None.

Text Info

Text Name Event Length Notes

P 0x0016 None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint8 mode M

Security level setting reported to peer:

• 0x10 = Mode 1, Level 1 – No security

• 0x11 = Mode 1, Level 2 – Unauthenticated pairing with encryption (no MITM)

• 0x12 = Mode 1, Level 3 – Authenticated pairing with encryption (with MITM)

• 0x21 = Mode 2, Level 2 – Unauthenticated pairing with data signing (no MITM)

• 0x22 = Mode 2, Level 3 – Authenticated pairing with data signing (with MITM)

uint8 bonding B
Bond during pairing process:

• 0 = Do not bond (exchange keys and encrypt only)

• 1 = Bond (permanently store exchanged encryption data)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device

uint8 pairprop P
Pairing properties:

• Bit 0 (0x01): MITM enabled for Secure Connections (SC)

Related Commands

• smp_pair (/P, ID=7/3)

• smp_set_security_parameters (SSBP, ID=7/11)

Related Events

• smp_pairing_result (PR, ID=7/3)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 187

 smp_pairing_result (PR, ID=7/3)

Pairing process has ended.

This event indicates that the pairing process is finished, successfully or otherwise. If the result parameter is 0, then pairing

has completed successfully, and the smp_bond_entry (B, ID=7/1) API event follows if bonding is enabled. Any non-zero
result value indicates failure.

Binary Header

Type Length Group ID Notes

80 03 07 03 None.

Text Info

Text Name Event Length Notes

PR 0x000C None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 result R Result

Related Commands

smp_pair (/P, ID=7/3)

Related Events

• smp_encryption_status (ENC, ID=7/4)

• smp_bond_entry (B, ID=7/1)

 smp_encryption_status (ENC, ID=7/4)

Encryption status has changed.

This event confirms that a link has transitioned between plaintext and encrypted status during the pairing process.

Binary Header

Type Length Group ID Notes

80 02 07 04 None.

Text Info

Text Name Event Length Notes

ENC 0x000E None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint8 status S
Encryption status:

• 0 = success

• other = error code

Related Commands

smp_pair (/P, ID=7/3)

Related Events

smp_pairing_result (PR, ID=7/3)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 188

 smp_passkey_display_requested (PKD, ID=7/5)

Remote peer requires passkey display for entry or comparison during pairing.

This event provides the local device with the passkey generated as part of the pairing process, so that the local device may
display or otherwise make it available to the user for entry or comparison on the remote device. This type of passkey
generation and display will be used if the local I/O capabilities are set to “Display Only” or “Display + Yes/No” using the
smp_set_security_parameters (SSBP, ID=7/11) API command.

Binary Header

Type Length Group ID Notes

80 05 07 05 None.

Text Info

Text Name Event Length Notes

PKD 0x0014 None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint32 passkey P Passkey to display (should be displayed to user in decimal format)

Related Commands

None.

Related Events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

 smp_pin_entry_requested (BTPIN, ID=7/7)

A remote device has generated and displayed a passkey which must be entered locally and sent back for comparison.

Binary Header:

Type Length Group ID Notes

80 06 07 07 None.

Text Info:

Text Name Event Length Notes

BTPIN 0x0015 None.

Event Parameters:

Data Type Name Text Description

macaddr address A macaddr address

Related Commands:

• smp_send_pinreq_response (/BTPIN, ID=7/17)

Related Events:
None.

7.3.6 GPIO Group (ID=9)

GPIO methods relate to the physical pins on the module.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 189

Events within this group are listed below:

• gpio_interrupt (INT, ID=9/1)

 Commands within this group are documented in section 7.2.7 (GPIO Group (ID=9)).

 gpio_interrupt (INT, ID=9/1)

A configured GPIO interrupt has occurred.

This event is generated for GPIO edge changes that have enabled interrupts via the gpio_set_drive (SIOD, ID=9/5) API
command.

Binary Header:

Type Length Group ID Notes

80 09 09 01 None.

Text Info:

Text Name Event Length Notes

INT 0x00A None.

Event Parameters:

Data Type Name Text Description

uint8 pin P Pin number

uint8 logic L pin logic state (set bit indicates HIGH)

uint32 runtime R Number of seconds since boot

uint16 fraction F Fraction of a second (units are 1/32768)

Related Commands:

• gpio_set_drive (SIOD, ID=9/5)

7.3.7 CYSPP Group (ID=10)

CYSPP methods are related to the Cypress Serial Port Profile.

Events within this group are listed below:

• p_cyspp_status (.CYSPP, ID=10/1)

Commands within this group are documented in section 7.2.8 (CYSPP Group (ID=10)).

 p_cyspp_status (.CYSPP, ID=10/1)

CYSPP operational status has changed.

Note: If this event occurs within EZ-Serial and data mode is active (either Bit 0 or Bit 1 set and the CYSPP GPIO pin is not

externally de-asserted), the wired serial interface is logically disconnected from the API protocol parser and routed to

CYSPP data pipe instead. For this reason, this event is never transmitted out the serial interface with Bit 5 set (0x20),

because outgoing API events are suppressed while operating in CYSPP data mode.

Binary Header

Type Length Group ID Notes

80 01 0A 01 None.

Text Info

Text Name Event Length Notes

.CYSPP 0x000C None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 190

Event Parameters

Data Type Name Text Description

uint8 status S

CYSPP status bitmask:

• Bit 0 (0x01) = Unacknowledged data subscribed

• Bit 1 (0x02) = Acknowledged data subscribed

• Bit 2 (0x04) = RX flow subscribed

• Bit 3 (0x08) = RX flow blocked by remote Server

• Bit 4 (0x10) = CYSPP peer support verified

• Bit 5 (0x20) = Data mode active (used internally)

Related Commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Example Usage

Section 3.2 (Cable Replacement Examples with CYSPP).

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 191

7.3.8 Bluetooth Classic Group (ID=14)

BT methods relate to the Bluetooth Classic of the Bluetooth stack. These methods are used for working with Inquiry,
connection, and disconnection.

Events within this group are listed below:

• bt_inquiry_result (BTIR, ID=14/1)

• bt_name_result (BTINR, ID=14/2)

• bt_inquiry_complete (BTIC, ID=14/3)

• bt_connected (BTCON, ID=14/4)

• bt_connection_status (BTCS, ID=14/5)

• bt_connection_failed (BTCF, ID=14/6)

• bt_disconnected (BTDIS, ID=14/7)

Commands within this group are documented in section 7.2.9 (BT group (ID=14)).

 bt_inquiry_result (BTIR, ID=14/1)

An ongoing inquiry process has returned a result.

Binary Header

Type Length Group ID Notes

80 0B 0E 01 None.

Text Info

Text Name Event Length Notes

BTIR 0x0024 None.

Event Parameters

Data Type Name Text Description

macaddr address A Bluetooth address

uint8 bond B Bond entry

uint32 cod C Class of device

Related Commands

• bt_start_inquiry (/BTI, ID=14/1)]

• bt_cancel_inquiry (/BTIX, ID=14/2)

Related Events

• bt_name_result (BTINR, ID=14/2)

• bt_inquiry_complete (BTIC, ID=14/3)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 192

 bt_name_result (BTINR, ID=14/2)

An ongoing inquiry process has returned a name result.

Binary Header

Type Length Group ID Notes

80 08 0E 02 Variable-length event payload, value specified is minimum.

Text Info

Text Name Event Length Notes

BTINR 0x001D+ Variable-length response payload, value specified is minimum.

Event Parameters

Data Type Name Text Description

macaddr address A Bluetooth address

uint8 bond B Bond entry

uint8a name N Device name

Related Commands

• bt_start_inquiry (/BTI, ID=14/1)]

• bt_cancel_inquiry (/BTIX, ID=14/2)

• bt_query_name (/BTQN, ID=14/3)

Related Events:
• bt_inquiry_result (BTIR, ID=14/1)

• bt_inquiry_complete (BTIC, ID=14/3)

 bt_inquiry_complete (BTIC, ID=14/3)

An ongoing inquiry process is complete (finished or canceled).

Binary Header

Type Length Group ID Notes

80 00 0E 03 None.

Text Info

Text Name Event Length Notes

BTIC 0x0005 None.

Event Parameters

None.

Related Commands

• bt_start_inquiry (/BTI, ID=14/1)]

• bt_cancel_inquiry (/BTIX, ID=14/2)

• bt_query_name (/BTQN, ID=14/3)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 193

Related Events

• bt_inquiry_result (BTIR, ID=14/1)

• bt_name_result (BTINR, ID=14/2)

 bt_connected (BTCON, ID=14/4)

A connection has been established to a remote device, and may now be used for data transfers.

Binary Header

Type Length Group ID Notes

80 09 0E 04 None.

Text Info

Text Name Event Length Notes

BTCON 0x0024 None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth address

uint8 type T Connection type

• 1: SPP, connection

uint8 bond B Bond entry (0 for no bond)

Related Commands

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related Events

• bt_connection_failed (BTCF, ID=14/6)

• bt_disconnected (BTDIS, ID=14/7)

 bt_connection_status (BTCS, ID=14/5)

A connection has been established to a remote device, and may now be used for data transfers.

Binary Header

Type Length Group ID Notes

80 0B 0E 05 None.

Text Info

Text Name Event Length Notes

BTCS 0x002D None.

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 194

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth address

uint8 type T Connection type

uint8 bond B Bond entry

uint8 role R Connection role

uint8 sniff S Sniff mode

Related Commands:

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related Events:

• bt_connected (BTCON, ID=14/4)

• bt_connection_failed (BTCF, ID=14/6)

• bt_disconnected (BTDIS, ID=14/7)

 bt_connection_failed (BTCF, ID=14/6)

A pending outgoing connection attempt has failed.

Binary Header

Type Length Group ID Notes

80 03 0E 06 None.

Text Info

Text Name Event Length Notes

BTCF 0x0011 None.

Event Parameters

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R
Reason for connection failure:

• 1: Unknown reason (Usually it is due to wrong address)

• 2: No SPP service

Related Commands

bt_connect (/BTC, ID=14/4)

Related Events:

• bt_connected (BTCON, ID=14/4)

• bt_disconnected (BTDIS, ID=14/7)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 195

 bt_disconnected (BTDIS, ID=14/7)

A previously open connection to a remote device has been closed.

Binary Header

Type Length Group ID Notes

80 03 0E 07 None.

Text Info:

Text Name Event Length Notes

BTDIS 0x0012 None.

Event Parameters:

Data Type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R Reason for disconnection (Always 0 current)

Related Commands:

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related Events:

• bt_connected (BTCON, ID=14/4)

• bt_connection_failed (BTCF, ID=14/6)

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 196

7.4 Error Codes

7.4.1 EZ-Serial System Error Codes

The complete list of all result/error codes generated by EZ-Serial is listed in Table 7-4. See the command and event
reference in section 7.2 (API Commands and Responses) and section 7.3 (API Events) for specific details about each result
within the context of the responses and events where they are triggered.

Code (Hex) Name Description

0000 EZS_ERR_SUCCESS Operation successful, no error

0100 EZS_ERR_CORE Core system error category

0101 EZS_ERR_CORE_NULL_POINTER Null pointer encountered (internal error)

0102 EZS_ERR_CORE_MALLOC_FAILED Memory allocation failed (internal error)

0103 EZS_ERR_CORE_BUFFER_OVERFLOW Buffer overflow (internal error)

0104 EZS_ERR_CORE_FEATURE_NOT_IMPLEMENTED Unsupported feature (internal error)

0105 EZS_ERR_CORE_TASK_SCHEDULE_OVERFLOW Task scheduling attempted but schedule is full

0106 EZS_ERR_CORE_TASK_QUEUE_OVERFLOW Task queue attempted but queue is full

0107 EZS_ERR_CORE_INVALID_STATE Invalid state for requested operation

0108 EZS_ERR_CORE_OPERATION_NOT_PERMITTED Operation not permitted

0109 EZS_ERR_CORE_INSUFFICIENT_RESOURCES Insufficient resources for requested action

010A EZS_ERR_CORE_FLASH_WRITE_NOT_PERMITTED Unable to perform flash write at this time

010B EZS_ERR_CORE_FLASH_WRITE_FAILED Flash write operation failed during write

010C EZS_ERR_CORE_HARDWARE_FAILURE Internal chipset hardware failure

010D EZS_ERR_CORE_BLE_INITIALIZATION_FAILED Could not initialize BLE stack

010E EZS_ERR_CORE_REPEATED_ATTEMPTS Repeated attempts to initialize BLE stack

010F EZS_ERR_CORE_TX_POWER_READ Could not read radio TX power

0110 EZS_ERR_CORE_DB_VERIFICATION_FAILED Verification prevented custom attribute addition

0200 EZS_ERR_PROTOCOL Protocol error category

0201 EZS_ERR_PROTOCOL_UNRECOGNIZED_PACKET_TYPE Unsupported packet type for text parsing

(internal error)

0202 EZS_ERR_PROTOCOL_UNRECOGNIZED_ARGUMENT_TYPE Unsupported argument type for text parsing

(internal error)

0203 EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND Command group/method not valid or
unrecognized

0204 EZS_ERR_PROTOCOL_UNRECOGNIZED_RESPONSE Response group/method invalid or unrecognized

(internal error)

0205 EZS_ERR_PROTOCOL_UNRECOGNIZED_EVENT Event group/method invalid or unrecognized

(internal error)

0206 EZS_ERR_PROTOCOL_SYNTAX_ERROR Syntax error while parsing text command

0207 EZS_ERR_PROTOCOL_COMMAND_TIMEOUT Binary command packet transmission not
completed in required time

0208 EZS_ERR_PROTOCOL_RESPONSE_PENDING Command already sent but response still pending

0209 EZS_ERR_PROTOCOL_INVALID_CHECKSUM Binary command packet has invalid checksum

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 197

Code (Hex) Name Description

020A EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH Command length is greater than maximum

020B EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT Incorrect number of parameters provided

020C EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE Command parameter outside of acceptable range

020D EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT Text-mode command missing required arguments

020E EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA Invalid hexadecimal data provided (not 0-9, A-F)

020F EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE Invalid escape sequence

0210 EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE Invalid macro sequence

0211 EZS_ERR_PROTOCOL_FLASH_SETTINGS_PROTECTED Attempted direct flash write of protected setting

0300 EZS_ERR_GPIO GPIO error category

0301 EZS_ERR_GPIO_PORT_NOT_SUPPORTED Selected port in GPIO command not supported

0400 EZS_ERR_LL Link layer error category

0401 EZS_ERR_LL_CONTROLLER_BUSY Link layer controller busy

0402 EZS_ERR_LL_NO_DEVICE_ENTITY Device entity not available

0403 EZS_ERR_LL_NOT_IN_BOND_LIST Device not found in bond list

0404 EZS_ERR_LL_DEVICE_ALREADY_EXISTS Device already exists

0500 EZS_ERR_GAP GAP error category

0501 EZS_ERR_GAP_INVALID_CONNECTION_HANDLE Invalid connection handle specified

0502 EZS_ERR_GAP_CONNECTION_REQUIRED Connection required, but none is available

0503 EZS_ERR_GAP_ROLE Incorrect GAP role for this operation

0504 EZS_ERR_GAP_ADV_QUEUE_OVERFLOW Advertisement queue attempted but queue is full

0600 EZS_ERR_GATT GATT error category

0601 EZS_ERR_GATT_INVALID_ATTRIBUTE_HANDLE Invalid attribute handle for GATT operation

0602 EZS_ERR_GATT_READ_NOT_PERMITTED Read not permitted on this attribute

0603 EZS_ERR_GATT_WRITE_NOT_PERMITTED Write not permitted on this attribute

0604 EZS_ERR_GATT_INVALID_PDU Invalid PDU for requested operation

0605 EZS_ERR_GATT_INSUFFICIENT_AUTHENTICATION Insufficient authentication for requested operation

0606 EZS_ERR_GATT_REQUEST_NOT_SUPPORTED Request not supported

0607 EZS_ERR_GATT_INVALID_OFFSET Invalid offset specified for requested operation

0608 EZS_ERR_GATT_INSUFFICIENT_AUTHORIZATION Insufficient authorization for requested operation

0609 EZS_ERR_GATT_PREPARE_WRITE_QUEUE_FULL Prepare write queue full, cannot prepare new
write

060A EZS_ERR_GATT_ATTRIBUTE_NOT_FOUND Attribute not found in database

060B EZS_ERR_GATT_ATTRIBUTE_NOT_LONG Attribute not long when long operation requested

060C EZS_ERR_GATT_INSUFFICIENT_ENC_KEY_SIZE Insufficient encryption key size

060D EZS_ERR_GATT_INVALID_ATTRIBUTE_LENGTH Invalid attribute length

060E EZS_ERR_GATT_UNLIKELY_ERROR Unlikely error occurred, unknown cause

060F EZS_ERR_GATT_INSUFFICIENT_ENCRYPTION Insufficient encryption for requested operation

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 198

Code (Hex) Name Description

0610 EZS_ERR_GATT_UNSUPPORTED_GROUP_TYPE Unsupported group type specified in Read By
Group Type operation

0611 EZS_ERR_GATT_INSUFFICIENT_RESOURCES Insufficient resources to perform operation

0680 EZS_ERR_GATT_CLIENT_NOT_SUBSCRIBED Client has not subscribed to updates on
characteristic (local error code when sending
notifications or indications)

0800 EZS_ERR_SMP SMP error category

0801 EZS_ERR_SMP_OOB_NOT_AVAILABLE Out-of-band pairing data not available

0802 EZS_ERR_SMP_SECURITY_OPERATION_FAILED Security operation failed

0803 EZS_ERR_SMP_MIC_AUTH_FAILED Message integrity check authentication failed

0900 EZS_ERR_SPEC Bluetooth Core Specification error category

0901 EZS_ERR_SPEC_UNKNOWN_HCI_COMMAND Unknown HCI command

0902 EZS_ERR_SPEC_UNKNOWN_CONNECTION_IDENTIFIER Unknown connection identifier

0903 EZS_ERR_SPEC_HARDWARE_FAILURE Hardware failure

0904 EZS_ERR_SPEC_PAGE_TIMEOUT Page timeout

0905 EZS_ERR_SPEC_AUTHENTICATION_FAILURE Authentication Failure

0906 EZS_ERR_SPEC_PIN_OR_KEY_MISSING PIN or Key Missing

0907 EZS_ERR_SPEC_MEMORY_CAPACITY_EXCEEDED Memory capacity exceeded

0908 EZS_ERR_SPEC_CONNECTION_TIMEOUT Connection Timeout

0909 EZS_ERR_SPEC_CONNECTION_LIMIT_EXCEEDED Connection limit exceeded

090A EZS_ERR_SPEC_SYNCHRONOUS_CONN_LIMIT
_DEVICE_EXCEEDED

Synchronous connection limit to a device
exceeded

090B EZS_ERR_SPEC_ACL_CONNECTION_ALREADY_EXISTS ACL connection already exists

090C EZS_ERR_SPEC_COMMAND_DISALLOWED Command disallowed

090D EZS_ERR_SPEC_CONNECTION_REJECTED
_LIMITED_RESOURCES

Connection rejected due to limited resources

090E EZS_ERR_SPEC_CONNECTION_REJECTED
_SECURITY_REASONS

Connection rejected due to security reasons

090F EZS_ERR_SPEC_CONNECTION_REJECTED
_UNACCEPTABLE_BDADDR

Connection rejected due to unacceptable
BD_ADDR

0910 EZS_ERR_SPEC_CONNECTION_ACCEPT
_TIMEOUT_EXCEEDED

Connection Accept Timeout exceeded

0911 EZS_ERR_SPEC_UNSUPPORTED_FEATURE
_OR_PARAMETER_VALUE

Unsupported feature or parameter value

0912 EZS_ERR_SPEC_INVALID_HCI_COMMAND_PARAMETERS Invalid HCI command parameters

0913 EZS_ERR_SPEC_REMOTE_USER_TERMINATED
_CONNECTION

Remote User Terminated Connection

0914 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED
_LOW_RESOURCES

Remote device terminated connection due to low
resources

0915 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED
_POWER_OFF

Remote device terminated connection due to
power off

0916 EZS_ERR_SPEC_CONNECTION_TERMINATED
_BY_LOCAL_HOST

Connection Terminated by Local Host

0917 EZS_ERR_SPEC_REPEATED_ATTEMPTS Repeated attempts

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 199

Code (Hex) Name Description

0918 EZS_ERR_SPEC_PAIRING_NOT_ALLOWED Pairing Not Allowed

0919 EZS_ERR_SPEC_UNKNOWN_LMP_PDU Unknown LMP PDU

091A EZS_ERR_SPEC_UNSUPPORTED_REMOTE
_LMP_FEATURE

Unsupported remote feature / unsupported LMP
feature

091B EZS_ERR_SPEC_SCO_OFFSET_REJECTED SCO offset rejected

091C EZS_ERR_SPEC_SCO_INTERVAL_REJECTED SCO interval rejected

091D EZS_ERR_SPEC_SCO_AIR_MODE_REJECTED SCO air mode rejected

091E EZS_ERR_SPEC_INVALID_LMP_LL_PARAMETERS Invalid LMP parameters / invalid LL parameters

091F EZS_ERR_SPEC_UNSPECIFIED_ERROR Unspecified error

0920 EZS_ERR_SPEC_UNSUPPORTED_LMP_LL
PARAMTER_VALUE

Unsupported LMP parameter value / Unsupported
LL parameter value

0921 EZS_ERR_SPEC_ROLE_CHANGE_NOT_ALLOWED Role change not allowed

0922 EZS_ERR_SPEC_LMP_LL_RESPONSE_TIMEOUT LMP Response Timeout / LL Response Timeout

0923 EZS_ERR_SPEC_LMP_ERROR_TRANSACTION_COLLISION LMP error transaction collision

0924 EZS_ERR_SPEC_LMP_PDU_NOT_ALLOWED LMP PDU not allowed

0925 EZS_ERR_SPEC_ENCRYPTION_MODE_NOT_ACCEPTABLE Encryption mode not acceptable

0926 EZS_ERR_SPEC_LINK_KEY_CANNOT_BE_CHANGED Link key cannot be changed

0927 EZS_ERR_SPEC_REQUESTED_QOS_NOT_SUPPORTED Requested QoS not supported

0928 EZS_ERR_SPEC_INSTANT_PASSED Instant passed

0929 EZS_ERR_SPEC_PAIRING_WITH_UNIT_KEY
_NOT_SUPPORTED

Pairing with unit key not supported

092A EZS_ERR_SPEC_DIFFERENT_TRANSACTION_COLLISION Different transaction collision

092B /* 0x2B reserved */ Reserved

092C EZS_ERR_SPEC_QOS_UNACCEPTABLE_PARAMETER =
0x092C

QoS unacceptable parameter

092D EZS_ERR_SPEC_QOS_REJECTED QoS rejected

092E EZS_ERR_SPEC_CHANNEL_CLASSIFICATION
NOT_SUPPORTED

Channel classification not supported

092F EZS_ERR_SPEC_INSUFFICIENT_SECURITY Insufficient security

0930 EZS_ERR_SPEC_PARAMETER_OUT_OF
MANDATORY_RANGE

Parameter out of mandatory range

0931 /* 0x31 reserved */ Reserved

0932 EZS_ERR_SPEC_ROLE_SWITCH_PENDING = 0x0932 Role switch pending

0933 /* 0x33 reserved */ Reserved

0934 EZS_ERR_SPEC_RESERVED_SLOT_VIOLATION = 0x0934 Reserved slot violation

0935 EZS_ERR_SPEC_ROLE_SWITCH_FAILED Role switch failed

0936 EZS_ERR_SPEC_EXTENDED_INQUIRY_RSP_TOO_LARGE Extended inquiry response too large

0937 EZS_ERR_SPEC_SSP_NOT_SUPPORTED_BY_HOST Secure simple pairing not supported by host

0938 EZS_ERR_SPEC_HOST_BUSY_PAIRING Host busy - pairing

0939 EZS_ERR_SPEC_CONNECTION_REJECTED
_NO_SUITABLE_CHANNEL

Connection rejected due to no suitable channel
found

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 200

Code (Hex) Name Description

093A EZS_ERR_SPEC_CONTROLLER_BUSY Controller busy

093B EZS_ERR_SPEC_UNACCEPTABLE
_CONNECTION_PARAMETERS

Unacceptable connection parameters

093C EZS_ERR_SPEC_DIRECTED_ADVERTISING_TIMEOUT Directed advertising timeout

093D EZS_ERR_SPEC_CONNECTION_TERMINATED
_MIC_FAILURE

Connection terminated due to MIC failure

093E EZS_ERR_SPEC_CONNECTION_FAILED
_TO_BE_ESTABLISHED

Connection Failed to be Established

093F EZS_ERR_SPEC_MAC_CONNECTION_FAILED MAC connection failed

0940 EZS_ERR_SPEC_COARSE_CLOCK_ADJ_REJECTED Coarse clock adjustment rejected but will try to
adjust using clock dragging

EEEE EZS_ERR_UNKNOWN Unknown problem

(internal error)

Table 7-4. EZ-Serial System Error Codes

7.4.2 EZ-Serial GATT Database Validation Error Codes

The complete list of result/error codes generated by EZ-Serial during dynamic GATT database validation is listed in Table
7-5. See section 3.6.1 (Defining Custom Local GATT Services and Characteristics) and the documentation for the related
GATT Server Group (ID=5) API command methods for detail.

Code (Hex) Name Description

0000 GATTS_DB_VALID_OK Validation passed with no warnings or errors

0001 GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES Structure is valid, but more attributes are required

0002 GATTS_DB_VALID_ERROR_ATTRIBUTE_LIMIT_EXCEEDED Attribute count limit exceeded

0003 GATTS_DB_VALID_ERROR_ATTRIBUTE_DATA_EXCEEDED Runtime attribute value data byte limit exceeded

0004 GATTS_DB_VALID_ERROR_CONSTANT_DATA_EXCEEDED Constant default data byte limit exceeded

0005 GATTS_DB_VALID_ERROR_CCCD_LIMIT_EXCEEDED CCCD attribute limit exceeded

0006 GATTS_DB_VALID_ERROR_SVC_DECL_REQUIRED Service declaration required

0007 GATTS_DB_VALID_ERROR_UNEXPECTED_SVC_DECL Unexpected service declaration

0008 GATTS_DB_VALID_ERROR_CHAR_DECL_REQUIRED Characteristic declaration required

0009 GATTS_DB_VALID_ERROR_UNEXPECTED_CHAR_DECL Unexpected characteristic declaration

000A GATTS_DB_VALID_ERROR_CHAR_VALUE_REQUIRED Characteristic value attribute required

000B GATTS_DB_VALID_ERROR_UNEXPECTED_DESCRIPTOR Specified descriptor not allowed at this position

000C GATTS_DB_VALID_ERROR_INVALID_ATT_PROPERTIES Attribute properties not compatible with type

000D GATTS_DB_VALID_ERROR_INVALID_ATT_LENGTH Invalid attribute length

000E GATTS_DB_VALID_ERROR_INVALID_ATT_DATA Attribute data not compatible with type

Table 7-5. EZ-Serial GATT Validation Error Codes

 API Protocol Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 201

7.5 Macro Definitions

Macros in EZ-Serial are simple codes that result in text substitution within the parser. Macros may be used in either text
mode or binary mode. Macros always begin with the ‘%’ character and are followed by one or more alphanumeric characters
(A-Z, 0-9). Macros are not case-sensitive.

Code Description Example Input Example Output Notes

%M1 Byte #1 of local public MAC address MyDevice %M1 MyDevice 00 Examples assume that
the local device has a
public MAC address of
00:A0:50:E3:83:5F.

%M2 Byte #2 of local public MAC address MyDevice %M2 MyDevice A0

%M3 Byte #3 of local public MAC address MyDevice %M3 MyDevice 50

%M4 Byte #4 of local public MAC address MyDevice %M4 MyDevice E3

%M5 Byte #5 of local public MAC address MyDevice %M5 MyDevice 83

%M6 Byte #6 of local public MAC address MyDevice %M6 MyDevice 5F

Table 7-6. Macro Code Table

Macros may be used in series with or without special separators, if the entire macro code (including the ‘%’ byte) remains
intact. For example, to use the last three bytes of the MAC address in the same string, separated by the ‘:’ byte, use the
following:

 MyDevice %M4:%M5:%M6

This string is particularly useful for setting a module-specific device name using the gap_set_device_name (SDN, ID=4/15)
API command without needing to query or track the MAC address separately by hand.

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 202

8 GPIO Reference

This section describes the various GPIO connections provided by the EZ-Serial firmware on supported modules. It also
provides details on the default boot state and the expected behavior in different operational modes.

8.1 GPIO Pin Map for Supported Modules

The assignment of special functions for supported modules is described in Table 8-1.

Each pin is shown with its assigned module pin and the effective header pin when using the CYBT-343026-EVAL board.

Note: The pins available on the EZ-BT WICED module are similar to those on the EZ-BLE modules based on PSoC Creator

(for example, CYBLE-212019-00), but they are not identical due to hardware differences.

Pin Name

Pin Assignment

CYBT-343026-01 CYBT-353027-02

 GPIO Module Eval Kit GPIO Module Eval Kit

DIGITAL

FUNCTIONS

PUART_RX P4 P4/P24 BT_PUART_RXD P33 GPIO_5 PUART_RXD

PUART_TX P31 GPIO_4 BT_PUART_TXD P0 GPIO_3 PUART_TXD

PUART_RTS P30 GPIO_7 BT_GPIO_07 P1 GPIO_4 GPIO_4

PUART_CTS P3 I2C_SCL I2C_SCL N/A N/A N/A

CONNECTION P2 P2/P37/P28 P2/P28/P37 P11 P11 P11

CYSPP P27 GPIO_3 BT_GPIO_3 P3 I2C_SDA I2C_SDA

LP_MODE P12 I2C_SDA I2C_SDA GPIO_0 GPIO_0 GPIO_0

PWM

PWM0 P26 GPIO_6 BT_GPIO_6 N/A N/A N/A

PWM1 P27 GPIO_3 BT_GPIO_3 N/A N/A N/A

PWM2 P28 P2/P37/P28 P2/P28/P37 N/A N/A N/A

PWM3 P29 I2C_SCL I2C_SCL N/A N/A N/A

ADC

ADC0 P0 P0/P34 P0/P34 P9 GPIO_6 P9

ADC1 P28 P2/P37/P28 P2/P28/P37 P11 P11 P11

ADC2 P38 GPIO_0 BT_GPIO_0 P8 GPIO_5 PUART_RXD

ADC3 P32 GPIO_1 BT_GPIO_1 P0 GPIO_3 PUART_TXD

ADC4 P31 GPIO_4 BT_GPIO_4 P1 GPIO_4 GPIO_4

ADC5 P30 GPIO_7 BT_GPIO_7 N/A N/A N/A

ADC6 P33 GPIO_3 BT_GPIO_3 N/A N/A N/A

ADC7 P11 GPIO_6 BT_GPIO_6 N/A N/A N/A

Table 8-1. GPIO Pin Map on Supported EZ-BT WICED Modules

 GPIO Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 203

8.2 GPIO Pin Functionality

WICED EZ-Serial provides GPIO pins, optional PWM output pins for generating flexible PWM signals, and optional analog
input pins for ADC read operation.

8.2.1 Digital Special-Function Pins
Table 8-2 details the functionality of each digital function GPIO pin

Pin Name Direction Details

HCI_UART_RX Input UART Communication RX signal for incoming HCI commands or firmware from external host
device

HCI_UART_TX Output UART Communication TX signal for outgoing HCI commands or firmware to external host device

HCI_UART_RTS Output UART Communication RTS signal signifying local receive permission (flow control) for incoming
HCI commands or firmware from external host device

HCI_UART_CTS Input UART Communication CTS signal detecting remote receive permission (flow control) for outgoing
HCI commands or firmware to external host device

PUART_RX Input UART Communication RX signal for incoming data from external host device

PUART_TX Output UART Communication TX signal for outgoing data to external host device

PUART_RTS Output UART Communication RTS signal signifying local receive permission (flow control)

PUART_CTS Input UART Communication CTS signal detecting remote receive permission (flow control)

CONNECTION Output Description:

BLE connection or CYSPP data pipe readiness status. When the CYSPP pin is asserted, the
external host can use this pin to detect whether the data sent to module will be transmitted to the
remote peer device directly.

Status indicator logic (active-low):

• When CYSPP pin is de-asserted (API command mode active)

o LOW – Remote BLE peer device is connected.

o HIGH – No remote BLE peer device is connected

• When CYSPP pin is asserted (CYSPP mode active)

o LOW – CYSPP data stream fully available (connected and ready)

o HIGH – CYSPP data stream not available (disconnected or not ready)

Default boot state:

• HIGH (no connection)

CYSPP Input/Output Description:

CYSPP mode control. The external host can use this pin to begin automatic CYSPP operation
without the need for any API commands. This pin is also internally pulled HIGH or LOW based on
software-triggered entry or exit to and from CYSPP data mode.

SPP mode control: The external host can use this pin to indicate that SPP is connected or as a
control signal to exit SPP connection.

Control signal logic (active-low):

• LOW – Module enters CYSPP data mode.

• HIGH – Module exits CYSPP data mode and returns to API command mode.

 Module exits SPP connection and returns to API command mode.

Status indicator logic (internally pulled, may be overridden by external signals):

• LOW – API commands or remote BLE Client GATT Client transactions have entered CYSPP
data mode.

SPP is connected and enter to SPP data mode.

• HIGH – API commands or remote BLE peer GATT Client transactions have exited CYSPP
data mode.

Default boot state:

• Internally pulled HIGH (command mode active, CYSPP data mode inactive.SPP is not
connected)

 GPIO Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 204

Pin Name Direction Details

LP_MODE Input Description:

Low-power status control. The external host can use this pin to affect the sleep behavior of the
module, specifically by either preventing or allowing entry into sleep modes.

For CYBT-343026-01 module:

Control signal logic (active LOW):

• LOW – CPU is allowed to sleep.

• HIGH – CPU is kept in active mode.

Default boot state:

• Internally pulled HIGH (sleep not allowed)

For CYBT-353027-02 module:

Control signal logic (active HIGH):

• HIGH – CPU is allowed to sleep.

• LOW – CPU is kept in active mode.

Default boot state:

• Internally pulled LOW (sleep not allowed)

Note: LP_MODE should be not left floating. Otherwise, firmware will exhibit unexpected behavior.

Table 8-2. GPIO Pin Functionality Details

8.2.2 PWM Output Pins
The WICED EZ-Serial provides up to four PWM output pins (PWM0/1/2/3) on the EZ-BT WICED module platform. You can
enable PWM output on these channels using the gpio_set_pwm_mode (SPWM, ID=9/11) API command. PWM channels
are controlled via an independent 24-MHz clock, and can use divider, prescaler, period, and compare settings for complete
flexibility.

NOTE: Enabling PWM output automatically prevents the CPU from entering normal sleep under any
circumstances. This happens because the high-frequency clock required to generate the PWM signal
cannot operate while the CPU is in sleep. To allow sleep mode again, you must disable all PWM output.
See section 3.1.5 (Managing Sleep States).

NOTE: The CYBT-353027-02 module does not support PWM function.

8.2.3 Analog Input Pins (ADC)
The WICED EZ-Serial provides up to eight ADC input pins (ADC0~7) for reading analog voltages. The ADC supports an
input voltage range of 0 V minimum to VDD (usually 3.3 V) maximum. To perform a single ADC conversion, use the
gpio_query_adc (/QADC, ID=9/2) API command. Once the conversion completes, the module transmits the result in the
response to this command.

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 205

9 Cypress GATT Profile

The EZ-Serial platform makes use of a few custom GATT profiles defined by Cypress Semiconductor. The service UUIDs,
characteristic UUIDs, special permissions, and overall structure are outlined here for quick reference. For detailed
reference materials, visit the Cypress website.

9.1 CYSPP Profile

The Cypress Serial Port Profile (CYSPP) provides bidirectional serial data transfer between two remote devices, each of
which passes data in through a single local hardware serial interface. It supports both acknowledged transfers and
unacknowledged transfers, and provides a mechanism for virtual flow control in both the RX and TX direction.

The profile contains a single service (“CYSPP”), which contains three characteristics for data transfer and flow control
(“Acknowledged Data”, “Unacknowledged Data”, and “RX Flow”). The structural outline of this profile is as follows:

 CYSPP Service: UUID 65333333-A115-11E2-9E9A-0800200CA100

 Acknowledged Data Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA101
(Write, Indicate)

The Acknowledged Data Characteristic is used to send and receive data in an acknowledged fashion. The EZ-
Serial firmware can fully track every transfer in both directions. This characteristic has a variable length, supporting
transfers in each direction of up to 20 bytes per packet.

▪ Configuration Descriptor: UUID 0x2902

 Unacknowledged Data Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA102
(Write without response, Notify)

The Unacknowledged Data Characteristic is used to send and receive data in an unacknowledged fashion. The
EZ-Serial firmware cannot track transfers using this mode once they have been accepted by the BLE stack. This
provides less control, but the lack of acknowledgements also allows for greater maximum throughput. This
characteristic has a variable length, supporting transfers in each direction of up to 20 bytes per packet.

▪ Configuration Descriptor: UUID 0x2902

 RX Flow Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA103
(Indicate)

The RX Flow Characteristic is used to indicate to the client that the server can no longer safely receive new data.
If the client subscribes to indications from this characteristic, the server will assume that the client obeys flow
control signals. This characteristic is one byte in length. An indicated value of “0” means that it is safe for the client
to send data, while a value of “1” means that the client must refrain from sending data.

▪ Configuration Descriptor: UUID 0x2902

http://www.cypress.com/documentation/software-and-drivers/cypresss-custom-ble-profiles-and-services

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 206

10 Configuration Example Reference

The configuration examples provided in this section are each designed to work independently, assuming in each case that
the platform is initially configured using factory default settings. Applying all commands in one example and then immediately
following this with the commands from another example may result in changes to the first set of behavior that are no longer
in line with the expected results.

You can return a module to factory defaults as a baseline configuration at any time by using the system_factory_reset
(/RFAC, ID=2/5) API command. This reset command is not explicitly included in any of the configuration snippets within this
section.

10.1 Factory Default Settings

While you can return to the factory default settings on the module by performing a factory reset, it is also helpful to know
those settings for comparison or to explicitly change one or more individual settings to the default value without reverting all
customizations at once. Table 10-1 provides a comprehensive list of commands that will return the EZ-Serial module to
default behavior.

Table 10-1. List of Commands

Remember that the commands in Table 10-1 affect only RAM. To make these command values permanent, apply all settings
to flash using the system_store_config (/SCFG, ID=2/4) API command.

Text Content Binary Content

SPPM,M=01 C0 01 01 01 01 5D

SSLP,L=01 C0 01 02 13 01 70

STXP,P=07 C0 01 02 15 07 78

STU,B=0001C200,A=00,C=00,F=00,D=08,P=00,S=01 C0 0A 02 19 00 C2 01 00 00 00 00 08 00 01 4A

SDN,N=EZ-Serial %M4:%M5:%M6 C0 16 04 0F 15 45 5A 2D 53 65 72 69 61 6C 20 25 4D 34 3A 25
4D 35 3A 25 4D 36 4C

SDA,A=0000 C0 02 04 11 00 00 70

SAD,D= C0 01 04 13 00 71

SSRD,D= C0 01 04 15 00 73

SAP,
M=02,T=03,C=07,H=0030,D=001E,L=0800,O=003C,

F=00,A=000000000000,Y=00

C0 13 04 17 02 03 07 30 00 1E 00 00 08 3C 00 00 00 00 00 00
00 00 00 25

SGSP,F=01 C0 01 05 0E 01 6E

SPRV,M=00,I=012C C0 03 07 09 00 2C 01 99

SSBP,M=41,B=01,K=10,P=00,I=03,F=01 C0 06 07 0B 11 01 10 00 03 01 97

.CYSPPSP,E=02,G=00,C=0131,L=00000000,R=00000000,

M=00000000,P=01,S=00,F=02

C0 13 0A 03 02 00 31 01 00 00 00 00 00 00 00 00 00 00 00 00
01 00 02 B0

.CYSPPSK,M=01,W=05,L=14,E=0D C0 04 0A 07 01 05 14 0D 95

 Configuration Example Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 207

10.2 Adopted Bluetooth SIG GATT Profile Structure Snippets

The snippets below demonstrate how to add various GATT service and characteristic structural elements to support official
profiles defined by the Bluetooth SIG, and some other common services.

Note: These database structures concern only the GATT Server side of the profiles in question. GATT Client operations

depend on the client device.

Note: The information provided in this section only covers the basic GATT structure, but does not include any specific values

which may be necessary or helpful for specific functionality. Many characteristics also have flexible length values

which depend on application design. See the official Bluetooth SIG documentation or other related resources linked

under each service for further detail.

10.2.1 Generic Access Service (0x1800)

Official documentation for this service can be found on the Bluetooth SIG Developer website.

Note: This service is included in the EZ-Serial application. It is always present in the fixed, non-removable part of the GATT

structure. Do not add another instance of this service to the EZ-Serial application.

/CAC,T=0,P=02,L=04,D=00280018

/CAC,T=0,P=02,L=07,D=0328020300002A

/CAC,T=1,P=0B,L=40,D=

/CAC,T=0,P=02,L=07,D=0328020500012A

/CAC,T=1,P=02,L=02,D=

/CAC,T=0,P=02,L=07,D=0328020700042A

/CAC,T=1,P=02,L=08,D=

/CAC,T=0,P=02,L=07,D=0328020900A62A

/CAC,T=1,P=02,L=01,D=

Note: EZ-Serial assumes that the attribute handle is starting from 1. Data item of characteristic attribute include the attribute

handle (0x0003, 0x0005, 0x0007 and 0x0009 respectively in this example) which corresponding to the characteristic

value attribute.

10.2.2 Generic Attribute Service (0x1801)

Official documentation for this service can be found on the Bluetooth SIG Developer website.

Note: This service is included in the EZ-Serial application. It is always present in the fixed, non-removable part of the GATT

structure. Do not add another instance of this service to the EZ-Serial application.

/CAC,T=0,P=02,L=04,D=00280018

/CAC,T=0,P=02,L=07,D=0328200300052A

/CAC,T=1,P=02,L=04,D=

/CAC,T=0,P=0A,L=04,D=0229

Note: EZ-Serial assumes that the attribute is handled starting from 1. Attribute handle (0x0003) corresponding to the value

attribute

10.2.3 Immediate Alert Service (0x1802)

Official documentation for this service can be found on the Bluetooth SIG Developer website.

/CAC,T=0,P=02,L=04,D=00280218

/CAC,T=0,P=02,L=07,D=0328041800062A

/CAC,T=1,P=0A,L=01,D=

10.2.4 Link Loss Service (0x1803)
Official documentation for this service can be found on the Bluetooth SIG Developer website.

/CAC,T=0,P=02,L=04,D=00280318

/CAC,T=0,P=02,L=07,D=03280A1800062A

/CAC,T=1,P=0A,L=01,D=

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_attribute.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.link_loss.xml

 Configuration Example Reference

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 208

10.2.5 TX Power Service (0x1804)
Official documentation for this service can be found on the Bluetooth SIG Developer website.

/CAC,T=0,P=02,L=04,D=00280418

/CAC,T=0,P=02,L=07,D=0328021800072A

/CAC,T=1,P=02,L=01,D=

/CAC,T=0,P=0A,L=04,D=0229

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.tx_power.xml

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 209

11 EZ-Serial MAC Address

The EZ-Serial firmware platform for EZ-BT WICED Modules includes a static random MAC address when they are shipped
from Cypress. The static random MAC address is configured during Cypress manufacturing programming process, and this
address does not change for the life of the programmed image.

During the Cypress programming process, the EZ-Serial firmware generates a static random address and stores it in flash.
The address format follows the Bluetooth Core Specification 5.0 Volume 6, part B, Section 1.3.2.1 Static Device Address.
This address is persistent during module power cycle or reset operations.

Note: EZ-Serial firmware internally controls the address type by using smp_set_privacy_mode (SPRV, ID=7/9). If this mode

bit 2 is set to 0, it advertises as a public address type. If this mode bit 2 set to 1, it advertises as a static random

address type. The default for the EZ-Serial address is 1 (static random address).

In all cases, you should be familiar with the rules set forth by the Bluetooth SIG for MAC address generation, format and
usage as documented in the Bluetooth Core Specification 5.0, Volume 6, section 1.3.

If you want to use your own public address (using an assigned IEEE OUI), use the system_set_bluetooth_address (SBA,
ID=2/13) command to configure the address to your OUI plus three additional random bytes, and then use the
smp_set_privacy_mode (SPRV, ID=7/9) command to change the address type to public.

If you modify the type and format of the address and then want to revert to the EZ-Serial initial static random address, use
the system_set_bluetooth_address (SBA, ID=2/13) command with the parameter address equal to 0. Using this command
reverts the advertising address to the factory-provided static random address.

In all cases, you should be familiar with the rules set forth by the Bluetooth SIG for MAC address generation, format and
usage as documented in the Bluetooth Core Specification 5.0, Volume 6, section 1.3.

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 210

Document Revision History

Document Title: EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules

Document Number: 002-25029

Revision ECN Issue Date Description of Change

** 6374049 11/12/2018 New user guide for EZ-Serial WICED Firmware Platform for CYW2070x-based Modules.

*A 6882297 05/18/2020 Updated the user guide for EZ-Serial WICED Firmware Platform for CYW2070x-based

Modules for FW version 1.2 new features, format; fixed document errors.

 Worldwide Sales and Design Support

EZ-Serial WICED Firmware Platform User Guide for CYW2070x-based Modules, Document Number: 002-25029 Rev. *A 211

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs
| Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
An Infineon Technologies Company

 198 Champion Court
San Jose, CA 95134-1709

www.cypress.com
www.infineon.com

© Cypress Semiconductor Corporation, 2018-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and
treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in
this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.

Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support
http://www.cypress.com/

	About This Document
	Purpose and Audience
	Scope
	Acronyms and Abbreviations
	IoT Resources and Technical Support

	1 Introduction
	1.1 How to Use this Guide
	1.2 Block Diagram
	1.3 Functional Overview
	1.3.1 BT Communication Features
	1.3.2 Hardware and Communication Features
	1.3.3 Firmware Overwrite

	1.4 Cypress EZ-BT WICED Module Support

	2 Getting Started
	2.1 Prerequisites
	2.2 Factory Default Behavior
	2.3 Connecting a Host Device
	2.3.1 Connecting the Evaluation Board
	2.3.2 Connecting the Serial Interface
	2.3.3 Connecting GPIO Pins

	2.4 Communicating with a Host Device
	2.4.1 Using the API Protocol in Text Mode
	2.4.1.1 Text Mode Protocol Characteristics
	2.4.1.2 Text Mode API Command Categories
	2.4.1.3 Text Mode API Example

	2.4.2 Using the API Protocol in Binary Mode
	2.4.2.1 Binary Mode Protocol Characteristics
	2.4.2.2 Binary Mode API Example

	2.4.3 Key Similarities and Differences Between Text and Binary Command Mode
	2.4.4 API Protocol Format Auto-Detection
	2.4.5 Using CYSPP Mode
	2.4.5.1 Starting CYSPP Operation
	2.4.5.2 Sending and Receiving Data in CYSPP Data Mode
	2.4.5.3 Exiting CYSPP Mode
	2.4.5.4 Customizing CYSPP Behavior for Specific Needs
	2.4.5.5 Understanding CYSPP Connection Keys
	2.4.5.6 Using the CYSPP Peripheral Connection Key
	2.4.5.7 CYSPP Configuration and Pin States
	2.4.5.8 CYSPP State Machine

	2.4.6 Bluetooth Classic SPP

	2.5 Configuration Settings, Storage, and Protection
	2.5.1 Factory, Boot, and Runtime Settings
	2.5.2 Saving Runtime Settings in Flash
	2.5.3 Protected Configuration Settings

	2.6 Finding Related Material
	2.6.1 Latest EZ-Serial Firmware Image
	2.6.2 Latest Host API Protocol Library
	2.6.3 Comprehensive API Reference

	3 Operational Examples
	3.1 System Setup Examples
	3.1.1 Identifying the Running Firmware and BLE Stack Version
	3.1.1.1 Getting Version Details from Boot Event
	3.1.1.2 Getting Version Details on Demand

	3.1.2 Changing the Serial Communication Parameters
	3.1.3 Changing Device Name and Appearance
	3.1.4 Changing Output Power
	3.1.5 Managing Sleep States
	3.1.5.1 Configuring the System-Wide Sleep Level
	3.1.5.2 Configuring the CYSPP Data Mode Sleep Level
	3.1.5.3 Preventing Sleep with the LP_MODE Pin
	3.1.5.4 Managing Host and Module Sleep Simultaneously

	3.1.6 Performing a Factory Reset

	3.2 Cable Replacement Examples with CYSPP
	3.2.1 Getting Started in CYSPP Mode with Zero Custom Configuration
	3.2.1.1 Starting CYSPP Out of the Box in Peripheral Mode

	3.3 Cable Replacement Examples with SPP
	3.3.1 Connecting SPP Service with an Android Smartphone
	3.3.2 Connecting to SPP Service Using a Computer (Window 7)
	3.3.3 Connecting SPP Service of a WICED Module to Another BT Device
	3.3.4 Disconnecting SPP

	3.4 GAP Peripheral Examples
	3.4.1 Advertising as Peripheral Device
	3.4.2 Stopping Advertising as a Peripheral Device
	3.4.3 Customizing Advertisement and Scanning Response Data

	3.5 GAP Central Examples
	3.5.1 How to Scan Peripherals
	3.5.2 How to Stop Scanning for Peripheral Devices
	3.5.3 How to Connect to a Peripheral Device
	3.5.4 How to Cancel a Pending Connection to a Peripheral Device
	3.5.5 How to Disconnect from a Peripheral Device

	3.6 GATT Server Examples
	3.6.1 Defining Custom Local GATT Services and Characteristics
	3.6.1.1 Understanding Custom GATT Limitations
	3.6.1.2 Building Custom Services and Characteristics
	3.6.1.3 Choosing Correct GATT Permissions

	3.6.2 Listing Local GATT Services, Characteristics, and Descriptors
	3.6.2.1 Discovering Local GATT Services
	3.6.2.2 Discovering Local GATT Characteristics
	3.6.2.3 Discovering Local GATT Descriptors

	3.6.3 Reading and Writing Local GATT Attribute Values
	3.6.3.1 Reading Local GATT Data
	3.6.3.2 Writing Local GATT Data

	3.6.4 Notifying and Indicating Data to a Remote Client
	3.6.4.1 Notifying Data to a Remote Client
	3.6.4.2 Indicating Data to a Remote Client

	3.6.5 Detecting and Processing Written Data from a Remote Client

	3.7 GATT Client Examples
	3.7.1 How to Discover a Remote Server’s GATT Structure
	3.7.1.1 Discovering Remote GATT Services
	3.7.1.2 Discovering Remote GATT Characteristics
	3.7.1.3 Discovering Remote GATT Descriptors

	3.7.2 How to Read and Write Remote GATT Attribute Values
	3.7.3 How to Detect Notified or Indicated Values from a Remote GATT Server

	3.8 Security and Encryption Examples
	3.8.1 Bonding with or without MITM Protection
	3.8.1.1 Pairing in “Just Works” Mode Without MITM Protection (BLE)
	3.8.1.2 Pairing with a Fixed Passkey(BLE)
	3.8.1.3 Pairing with a Random Passkey (BLE)
	3.8.1.4 Pairing with a random Passkey (BT Classic)

	3.9 Performance Testing Examples
	3.9.1 Maximizing Throughput to a Remote Peer
	3.9.1.1 Maximizing Throughput to an iOS Device
	3.9.1.2 Maximizing Throughput to an Android Device
	3.9.1.3 Minimizing Power Consumption
	3.9.1.4 Minimizing Power Consumption while Broadcasting
	3.9.1.5 Minimizing Power Consumption while Connected

	3.10 Device Firmware Update Examples
	3.10.1 Updating Firmware Locally Using UART
	3.10.2 Updating Firmware Locally Using BLE Connection

	3.11 GPIO Operation Examples
	3.11.1 Get Current GPIO Status
	3.11.2 GPIO Configuration when Entering or Exiting Low-Power State
	3.11.3 GPIO Interrupt Configuration
	3.11.4 Remove GPIO Operation
	3.11.5 GPIO Pin Configuration

	3.12 Init Command Examples
	3.12.1 Add Init Command
	3.12.2 Display Current Init Commands
	3.12.3 Check Init Command Is Executed at System Start up
	3.12.4 Delete Init Command
	3.12.5 Enable/Disable Init Command

	4 Application Design Examples
	4.1 Smart MCU Host with 4-Wire UART and Full GPIO Connections
	4.1.1 Hardware Design
	4.1.2 Module Configuration
	4.1.3 Host Configuration

	4.2 Dumb Terminal Host with CYSPP and Simple GPIO State Indication
	4.2.1 Hardware Design
	4.2.2 Module Configuration
	4.2.3 Host Configuration

	4.3 Module-Only Application with Beacon Functionality
	4.3.1 Hardware Design
	4.3.2 Module Configuration
	4.3.3 Host Configuration

	5 Host API Library
	5.1 Host API Library Overview
	5.1.1 High Level Architecture
	5.1.2 Host Library Design

	5.2 Implementing a Project Using the Host API Library
	5.2.1 Basic Application Architecture
	5.2.2 Exposed API Functions
	5.2.3 Command Macros
	5.2.4 Convenience Macros

	5.3 Porting the Host API Library to Different Platforms
	5.4 Using the API Definition JSON File to Create a Custom Library

	6 Troubleshooting
	6.1 UART Communication Issues
	6.2 BLE Connection Issues
	6.3 GPIO Signal Issues

	7 API Protocol Reference
	7.1 Protocol Structure and Communication Flow
	7.1.1 API Protocol Formats
	7.1.1.1 Text Format Overview
	7.1.1.2 Binary Format Overview

	7.1.2 API Protocol Data Types
	Table 7-1. API Protocol Data Types
	7.1.3 Binary Format Details
	7.1.3.1 Byte Ordering and Structure Packing
	7.1.3.2 Binary Packet Header

	7.2 API Commands and Responses
	7.2.1 Protocol Group (ID=1)
	7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)
	7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)
	7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3)
	7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

	7.2.2 System Group (ID=2)
	7.2.2.1 system_ping (/PING, ID=2/1)
	7.2.2.2 system_reboot (/RBT, ID=2/2)
	7.2.2.3 system_dump (/DUMP, ID=2/3)
	7.2.2.4 system_store_config (/SCFG, ID=2/4)
	7.2.2.5 system_factory_reset (/RFAC, ID=2/5)
	7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)
	7.2.2.7 system_query_random_number (/QRND, ID=2/8)
	7.2.2.8 system_write_user_data (/WUD, ID=2/11)
	7.2.2.9 system_read_user_data (/RUD, ID=2/12)
	7.2.2.10 system_set_bluetooth_address (SBA, ID=2/13)
	7.2.2.11 system_get_bluetooth_address (GBA, ID=2/14)
	7.2.2.12 system_set_sleep_parameters (SSLP, ID=2/19)
	7.2.2.13 system_get_sleep_parameters (GSLP, ID=2/20)
	7.2.2.14 system_set_tx_power (STXP, ID=2/21)
	7.2.2.15 system_get_tx_power (GTXP, ID=2/22)
	7.2.2.16 system_set_transport (ST, ID=2/23)
	7.2.2.17 system_get_transport (GT, ID=2/24)
	7.2.2.18 system_set_uart_parameters (STU, ID=2/25)
	7.2.2.19 system_get_uart_parameters (GTU, ID=2/26)

	7.2.3 GAP Group (ID=4)
	7.2.3.1 gap_connect (/C, ID=4/1)
	7.2.3.2 gap_cancel_connection (/CX, ID=4/2)
	7.2.3.3 gap_update_conn_parameters (/UCP, ID=4/3)
	7.2.3.4 gap_disconnect (/DIS, ID=4/5)
	7.2.3.5 gap_add_whitelist_entry (/WLA, ID=4/6)
	7.2.3.6 gap_delete_whitelist_entry (/WLD, ID=4/7)
	7.2.3.7 gap_start_adv (/A, ID=4/8)
	7.2.3.8 gap_stop_adv (/AX, ID=4/9)
	7.2.3.9 gap_start_scan (/S, ID=4/10)
	7.2.3.10 gap_stop_scan (/SX, ID=4/11)
	7.2.3.11 gap_query_peer_address (/QPA, ID=4/12)
	7.2.3.12 gap_query_rssi (/QSS, ID=4/13)
	7.2.3.13 gap_query_whitelist (/QWL, ID=4/14)
	7.2.3.14 gap_set_device_name (SDN, ID=4/15)
	7.2.3.15 gap_get_device_name (GDN, ID=4/16)
	7.2.3.16 gap_set_device_appearance (SDA, ID=4/17)
	7.2.3.17 gap_get_device_appearance (GDA, ID=4/18)
	7.2.3.18 gap_set_adv_data (SAD, ID=4/19)
	7.2.3.19 gap_get_adv_data (GAD, ID=4/20)
	7.2.3.20 gap_set_sr_data (SSRD, ID=4/21)
	7.2.3.21 gap_get_sr_data (GSRD, ID=4/22)
	7.2.3.22 gap_set_adv_parameters (SAP, ID=4/23)
	7.2.3.23 gap_get_adv_parameters (GAP, ID=4/24)
	7.2.3.24 gap_set_scan_parameters (SSP, ID=4/25)
	7.2.3.25 gap_get_scan_parameters (GSP, ID=4/26)
	7.2.3.26 gap_set_conn_parameters (SCP, ID=4/27)
	7.2.3.27 gap_get_conn_parameters (GCP, ID=4/28)

	7.2.4 GATT Server Group (ID=5)
	7.2.4.1 gatts_create_attr (/CAC, ID=5/1)
	7.2.4.2 gatts_delete_attr (/CAD, ID=5/2)
	7.2.4.3 gatts_validate_db (/VGDB, ID=5/3)
	7.2.4.4 gatts_store_db (/SGDB, ID=5/4)
	7.2.4.5 gatts_dump_db (/DGDB, ID=5/5)
	7.2.4.6 gatts_discover_services (/DLS, ID=5/6)
	7.2.4.7 gatts_discover_characteristics (/DLC, ID=5/7)
	7.2.4.8 gatts_discover_descriptors (/DLD, ID=5/8)
	7.2.4.9 gatts_read_handle (/RLH, ID=5/9)
	7.2.4.10 gatts_write_handle (/WLH, ID=5/10)
	7.2.4.11 gatts_notify_handle (/NH, ID=5/11)
	7.2.4.12 gatts_indicate_handle (/IH, ID=5/12)
	7.2.4.13 gatts_set_parameters (SGSP, ID=5/14)
	7.2.4.14 gatts_get_parameters (GGSP, ID=5/15)

	7.2.5 GATT Client Group (ID=6)
	7.2.5.1 gattc_discover_services (/DRS, ID=6/1)
	7.2.5.2 gattc_discover_characteristics (/DRC, ID=6/2)
	7.2.5.3 gattc_discover_descriptors (/DRD, ID=6/3)
	7.2.5.4 gattc_read_handle (/RRH, ID=6/4)
	7.2.5.5 gattc_write_handle (/WRH, ID=6/5)
	7.2.5.6 gattc_confirm_indication (/CI, ID=6/6)
	7.2.5.7 gattc_set_parameters (SGCP, ID=6/7)
	7.2.5.8 gattc_get_parameters (GGCP, ID=6/8)

	7.2.6 SMP Group (ID=7)
	7.2.6.1 smp_query_bonds (/QB, ID=7/1)
	7.2.6.2 smp_delete_bond (/BD, ID=7/2)
	7.2.6.3 smp_pair (/P, ID=7/3)
	7.2.6.4 smp_set_privacy_mode (SPRV, ID=7/9)
	7.2.6.5 smp_get_privacy_mode (GPRV, ID=7/10)
	7.2.6.6 smp_set_security_parameters (SSBP, ID=7/11)
	7.2.6.7 smp_get_security_parameters (GSBP, ID=7/12)
	7.2.6.8 smp_set_fixed_passkey (SFPK, ID=7/13)
	7.2.6.9 smp_get_fixed_passkey (GFPK, ID=7/14)
	7.2.6.10 smp_set_pin_code (SBTPIN, ID=7/15)
	7.2.6.11 smp_get_pin_code (GBTPIN, ID=7/16)
	7.2.6.12 smp_send_pinreq_response (/BTPIN, ID=7/17)

	7.2.7 GPIO Group (ID=9)
	7.2.7.1 gpio_query_adc (/QADC, ID=9/2)
	7.2.7.2 gpio_set_drive (SIOD, ID=9/5)
	7.2.7.3 gpio_get_drive (GIOD, ID=9/6)
	7.2.7.4 gpio_set_logic (SIOL, ID=9/7)
	7.2.7.5 gpio_get_logic (GIOL, ID=9/8)
	7.2.7.6 gpio_set_pwm_mode (SPWM, ID=9/11)
	7.2.7.7 gpio_get_pwm_mode (GPWM, ID=9/12)

	7.2.8 CYSPP Group (ID=10)
	7.2.8.1 p_cyspp_start (.CYSPPSTART, ID=10/2)
	7.2.8.2 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
	7.2.8.3 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)
	7.2.8.4 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)
	7.2.8.5 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

	7.2.9 BT group (ID=14)
	7.2.9.1 bt_start_inquiry (/BTI, ID=14/1)
	7.2.9.2 bt_cancel_inquiry (/BTIX, ID=14/2)
	7.2.9.3 bt_query_name (/BTQN, ID=14/3)
	7.2.9.4 bt_connect (/BTC, ID=14/4)
	7.2.9.5 bt_cancel_connection (/BTCX, ID=14/5)
	7.2.9.6 bt_disconnect (/BTDIS, ID=14/6)
	7.2.9.7 bt_query_connections (/BTQC, ID=14/7)
	7.2.9.8 bt_query_peer_address (/BTQPA, ID=14/8)
	7.2.9.9 bt_query_rssi (/BTQSS, ID=14/9)
	7.2.9.10 bt_set_parameters (SBTP, ID=14/10)
	7.2.9.11 bt_get_parameters (GBTP, ID=14/11)
	7.2.9.12 bt_set_device_class (SBTDC, ID=14/12)
	7.2.9.13 bt_get_device_class (GBTDC, ID=14/13)

	7.3 API Events
	7.3.1 System Group (ID=2)
	7.3.1.1 system_boot (BOOT, ID=2/1)
	7.3.1.2 system_error (ERR, ID=2/2)
	7.3.1.3 system_factory_reset_complete (RFAC, ID=2/3)
	7.3.1.4 system_dump_blob (DBLOB, ID=2/5)

	7.3.2 GAP Group (ID=4)
	7.3.2.1 gap_whitelist_entry (WL, ID=4/1)
	7.3.2.2 gap_adv_state_changed (ASC, ID=4/2)
	7.3.2.3 gap_scan_result (S, ID=4/4)
	7.3.2.4 gap_connected (C, ID=4/5)
	7.3.2.5 gap_disconnected (DIS, ID=4/6)
	7.3.2.6 gap_connection_updated (CU, ID=4/8)

	7.3.3 GATT Server Group (ID=5)
	7.3.3.1 gatts_discover_result (DL, ID=5/1)
	7.3.3.2 gatts_data_written (W, ID=5/2)
	7.3.3.3 gatts_indication_confirmed (IC, ID=5/3)
	7.3.3.4 gatts_db_entry_blob (DGATT, ID=5/4)

	7.3.4 GATT Client Group (ID=6)
	7.3.4.1 gattc_discover_result (DR, ID=6/1)
	7.3.4.2 gattc_remote_procedure_complete (RPC, ID=6/2)
	7.3.4.3 gattc_data_received (D, ID=6/3)
	7.3.4.4 gattc_write_response (WRR, ID=6/4)

	7.3.5 SMP Group (ID=7)
	7.3.5.1 smp_bond_entry (B, ID=7/1)
	7.3.5.2 smp_pairing_requested (P, ID=7/2)
	7.3.5.3 smp_pairing_result (PR, ID=7/3)
	7.3.5.4 smp_encryption_status (ENC, ID=7/4)
	7.3.5.5 smp_passkey_display_requested (PKD, ID=7/5)
	7.3.5.6 smp_pin_entry_requested (BTPIN, ID=7/7)

	7.3.6 GPIO Group (ID=9)
	7.3.6.1 gpio_interrupt (INT, ID=9/1)

	7.3.7 CYSPP Group (ID=10)
	7.3.7.1 p_cyspp_status (.CYSPP, ID=10/1)

	7.3.8 Bluetooth Classic Group (ID=14)
	7.3.8.1 bt_inquiry_result (BTIR, ID=14/1)
	7.3.8.2 bt_name_result (BTINR, ID=14/2)
	7.3.8.3 bt_inquiry_complete (BTIC, ID=14/3)
	7.3.8.4 bt_connected (BTCON, ID=14/4)
	7.3.8.5 bt_connection_status (BTCS, ID=14/5)
	7.3.8.6 bt_connection_failed (BTCF, ID=14/6)
	7.3.8.7 bt_disconnected (BTDIS, ID=14/7)

	7.4 Error Codes
	7.4.1 EZ-Serial System Error Codes
	Table 7-4. EZ-Serial System Error Codes
	7.4.2 EZ-Serial GATT Database Validation Error Codes

	7.5 Macro Definitions

	8 GPIO Reference
	8.1 GPIO Pin Map for Supported Modules
	8.2 GPIO Pin Functionality
	8.2.1 Digital Special-Function Pins
	Table 8-2. GPIO Pin Functionality Details
	8.2.2 PWM Output Pins
	8.2.3 Analog Input Pins (ADC)

	9 Cypress GATT Profile
	9.1 CYSPP Profile

	10 Configuration Example Reference
	10.1 Factory Default Settings
	10.2 Adopted Bluetooth SIG GATT Profile Structure Snippets
	10.2.1 Generic Access Service (0x1800)
	10.2.2 Generic Attribute Service (0x1801)
	10.2.3 Immediate Alert Service (0x1802)
	10.2.4 Link Loss Service (0x1803)
	10.2.5 TX Power Service (0x1804)

	11 EZ-Serial MAC Address
	Document Revision History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

