ESD5V5U5ULC

Ultra-low capacitance ESD / transient / surge protection array

TVS (transient voltage suppressor)
5.5 V, 0.45 pF, RoHS compliant

Feature list

- ESD/transient protection of high speed data lines exceeding:
 - IEC61000-4-2 (ESD): ±25 kV (air/contact)
 - IEC61000-4-4 (EFT): ±2.5 kV/±50 A (5/50 ns)
 - IEC61000-4-5 (Surge): ±6 A (8/20 μs)
- Maximum working voltage: $V_{RWM} = 5.5$ V
- Extremely low capacitance: $C_L = 0.45$ pF I/O to GND (typical)
- Very low dynamic resistance: $R_{DYN} = 0.2$ Ω (typical) I/O to GND
- Very low reverse clamping voltage: $V_{CL} = 9$ V (typical) at $I_{PP} = 16$ A
- Protection of V_{BUS} with one line freely selectable

Potential applications

- Protection of all I/O and V_{BUS} lines in dual USB2.0 ports
- 10/100/1000 Ethernet
- DVI, HDMI, FireWire

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Device information

Table 1 Part information

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Configuration</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD5V5U5ULC</td>
<td>PG-SC74-6-2</td>
<td>5 lines, uni-directional</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 1 Pin configuration and schematic diagram

Datasheet Please read the Important Notice and Warnings at the end of this document Revision 1.5
www.infineon.com 2018-06-12
Table of contents

- Feature list ... 1
- Potential applications ... 1
- Product validation .. 1
- Device information ... 1
- Table of contents .. 2
 1 Maximum ratings .. 3
 2 Electrical characteristics .. 4
 3 Typical characteristic diagrams 6
 4 Application information .. 10
 5 Package information .. 11
 5.1 PG-SC74-6-2 package .. 11
 6 References ... 12
 Revision history .. 12
 Disclaimer ... 13
ESD5V5U5ULC
Ultra-low capacitance ESD / transient / surge protection array

Maximum ratings

1 Maximum ratings

Note: $T_A = 25$ °C, unless otherwise specified.

Table 2 Maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD contact discharge 1</td>
<td>V_{ESD}</td>
<td>±25</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>Peak pulse current 2</td>
<td>I_{pp}</td>
<td>±6</td>
<td>A</td>
<td>$t_p = 8/20$ µs</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{OP}</td>
<td>-40 to 125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-65 to 150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the component.

1 V_{ESD} according to IEC61000-4-2

2 I_{pp} according to IEC61000-4-5
2 Electrical characteristics

Note: $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified.

!Diode_Characteristic_Curve_with_snapback_Uni-directional.svg

Figure 2 Definitions of electrical characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse working voltage</td>
<td>V_{RWM}</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>–</td>
<td><1</td>
<td>100</td>
</tr>
</tbody>
</table>

Datasheet 4 Revision 1.5
2018-06-12

ESDV5V5U5ULC
Ultra-low capacitance ESD / transient / surge protection array
ESD5V5U5ULC

Ultra-low capacitance ESD / transient / surge protection array

Electrical characteristics

Table 4 RF characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line capacitance</td>
<td>C_L</td>
<td></td>
<td>pF</td>
<td>$V_R = 0 , V, , f = 1 , MHz, , I/O , \rightarrow , GND$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.23</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Line capacitance</td>
<td>C_L</td>
<td></td>
<td>pF</td>
<td>$V_R = 0 , V, , f = 825 , MHz, , I/O , \rightarrow , I/O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.13</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Capacitance variation between I/O and GND</td>
<td>$\Delta C_{i/o-GND}$</td>
<td>–</td>
<td>0.02</td>
<td>$V_R = 0 , V, , f = 1 , MHz, , I/O , \rightarrow , GND$</td>
</tr>
<tr>
<td>Capacitance variation between I/O</td>
<td>$\Delta C_{i/o-i/o}$</td>
<td>–</td>
<td>0.01</td>
<td>$V_R = 0 , V, , f = 1 , MHz, , I/O , \rightarrow , I/O$</td>
</tr>
</tbody>
</table>

Table 5 ESD and surge characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse clamping voltage 1</td>
<td>V_{CL}</td>
<td>–</td>
<td>V</td>
<td>$I_{pp} = 1 , A, , t_p = 8/20 , \mu s, , I/O , \rightarrow , GND$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Reverse clamping voltage 1</td>
<td>V_{CL}</td>
<td>–</td>
<td>V</td>
<td>$I_{pp} = 3 , A, , t_p = 8/20 , \mu s, , I/O , \rightarrow , GND$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.9</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Forward clamping voltage 2</td>
<td>V_{FC}</td>
<td>–</td>
<td>V</td>
<td>$I_{pp} = 1 , A, , t_p = 8/20 , \mu s, , GND , \rightarrow , I/O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Forward clamping voltage 2</td>
<td>V_{FC}</td>
<td>–</td>
<td>V</td>
<td>$I_{pp} = 3 , A, , t_p = 8/20 , \mu s, , GND , \rightarrow , I/O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dynamic resistance 2</td>
<td>R_{DYN}</td>
<td>–</td>
<td>Ω</td>
<td>$I/O , \rightarrow , GND$</td>
</tr>
<tr>
<td>Dynamic resistance 2</td>
<td>R_{DYN}</td>
<td>–</td>
<td>Ω</td>
<td>$GND , \rightarrow , I/O$</td>
</tr>
</tbody>
</table>

1 I_{pp} according to IEC61000-4-5
2 Please refer to application note AN210, TLP parameters: $Z_0 = 50 \, \Omega$, $t_p = 100 \, \mu s$, $t_r = 300 \, ps$, averaging window: $t_1 = 30 \, ns$ to $t_2 = 60 \, ns$, extraction of dynamic resistance using least squares fit of TLP characteristic between $I_{pp1} = 10 \, A$ and $I_{pp2} = 40 \, A$.

Datasheet 5 Revision 1.5 2018-06-12
3 Typical characteristic diagrams

Note: \(T_A = 25 \, ^\circ C, \) unless otherwise specified.

Figure 3 Line capacitance \(C_L = f(V_R) \) at \(f = 825 \, MHz \)

Figure 4 Line capacitance \(C_L = f(f) \), \(V_R = 0 \, V \)
ESDV5U5ULC
Ultra-low capacitance ESD / transient / surge protection array

Typical characteristic diagrams

Figure 5 Insertion loss $I_L = f(f), \ V_R = 0 \ \text{V}$

Figure 6 Forward characteristic, $I_F = f(V_F), \ \text{current forced}$
Figure 7 Reverse current $I_R = f(T_A)$, $V_R = 5.5$ V (typical)

Figure 8 Reverse characteristic, $I_R = (V_R)$, voltage forced
ESD5V5U5ULC
Ultra-low capacitance ESD / transient / surge protection array

Typical characteristic diagrams

Figure 9 TLP characteristic I/O to GND

![Figure 9 TLP characteristic I/O to GND](image)

Figure 10 TLP characteristic GND to I/O

![Figure 10 TLP characteristic GND to I/O](image)

1) TLP parameter: \(Z_0 = 50 \, \Omega \), \(t_p = 100 \, \text{ns} \), \(t_r = 300 \, \text{ps} \), averaging window: \(t_1 = 30 \, \text{ns} \) to \(t_2 = 60 \, \text{ns} \), extraction of dynamic resistance using least squares fit of TLP characteristic between \(I_{PP1} = 10 \, \text{A} \) and \(I_{PP2} = 40 \, \text{A} \). The equivalent stress level \(V_{IEC} \) according IEC61000-4-2 \((R = 330 \, \Omega , C = 150 \, \text{pF}) \) is calculated at the broad peak of the IEC waveform at \(t = 30 \, \text{ns} \) with \(2 \, \text{A/kV} \).
4 Application information

Figure 11 Ethernet

Figure 12 USB2.0
5 Package information

Note: Dimensions in mm.

5.1 PG-SC74-6-2 package

Figure 13 PG-SC74-6-2 package overview

Figure 14 PG-SC74-6-2 footprint

Figure 15 PG-SC74-6-2 packing

Figure 16 PG-SC74-6-2 marking example (see Device information)
References

[1] Infineon AG - Application Note AN210: Effective ESD protection design at system level using VF-TLP characterization methodology

Revision history

Revision history: Rev. 1.4. 2016-04-21

Page or Item	Subjects (major changes since previous revision)
Revision 1.5, 2018-06-12 | Data sheet layout changed, references updated, ordering information scheme deleted
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.