ESD200-B1-CSP0201

Protection device

TVS (transient voltage suppressor)
Bi-directional, 5.5 V, 6.5 pF, 0201, RoHS and halogen free compliant

Feature list

• ESD/transient protection of data lines according to:
 - IEC61000-4-2 (ESD): ±19 kV (air), ±17 kV (contact discharge)
 - IEC61000-4-4 (EFT): ±2 kV/±40 A (5/50 ns)
 - IEC61000-4-5 (Surge): ±3 A (8/20 μs)
• Bi-directional working voltage up to: \(V_{\text{RWM}} = \pm 5.5 \) V
• Line capacitance: \(C_L = 6.5 \) pF (typical) at \(f = 1 \) MHz
• Clamping voltage: \(V_{\text{CL}} = 13 \) V (typical) at \(I_{\text{TLP}} = 16 \) A with \(R_{\text{DYN}} = 0.2 \) Ω (typical)
• Very low reverse current: \(I_R < 1 \) nA (typical)
• Minimized clamping overshoot due to extremely low parasitic inductance
• Small form factor SMD size 0201, low profile (0.58 mm x 0.28 mm x 0.15 mm) \[3\]
• Bi-directional and symmetric I/V characteristic for optimized design and assembly, recommendations for PCB assembly see \[2\]

Potential applications

• ESD protection of highly susceptible IC/ASICs in audio, headset and human digital interfaces

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Device information

![Pin configuration and schematic diagram](image)

Figure 1 Pin configuration and schematic diagram

Table 1 Part information

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Configuration</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD200-B1-CSP0201</td>
<td>WLL-2-1</td>
<td>1 line, bi-directional</td>
<td>A [1]</td>
</tr>
</tbody>
</table>

1 The device has no marking code on the device backside. The marking code is on pad side.

Datasheet Please read the Important Notice and Warnings at the end of this document Revision 1.3 www.infineon.com 2018-02-19
Table of contents

Feature list ... 1
Potential applications .. 1
Product validation ... 1
Device information ... 1
Table of contents ... 2
1 Maximum ratings ... 3
2 Electrical characteristics ... 4
3 Typical characteristic diagrams 6
4 Package information .. 13
4.1 WLL-2-1 package ... 13
5 References ... 14
Revision history .. 14
Disclaimer ... 15
Maximum ratings

1 Maximum ratings

Note: $T_A = 25 \, ^\circ C$, unless otherwise specified.

Table 2 Maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse working voltage</td>
<td>V_{RWM}</td>
<td>±5.5</td>
<td>V</td>
</tr>
<tr>
<td>ESD discharge 1)</td>
<td>V_{ESD} (contact)</td>
<td>±17</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td>V_{ESD} (air)</td>
<td>±19</td>
<td></td>
</tr>
<tr>
<td>Peak pulse power 2)</td>
<td>P_{PK}</td>
<td>45</td>
<td>W</td>
</tr>
<tr>
<td>Peak pulse current 2)</td>
<td>I_{PP}</td>
<td>±3</td>
<td>A</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{OP}</td>
<td>-55 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the component.

1 V_{ESD} according to IEC61000-4-2 ($R = 330 \, \Omega$, $C = 150 \, \text{pF}$ discharge network)

2 Stress pulse: 8/20 μs current waveform according to IEC61000-4-5
Note: $T_A = 25 \, ^\circ C$, unless otherwise specified. Device is electrically symmetrical.

Figure 2 Definitions of electrical characteristics
Table 3 DC characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown voltage</td>
<td>V_{BR}</td>
<td>6 – 10</td>
<td>V</td>
<td>$I_T = 1$ mA</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>– 0.1</td>
<td>nA</td>
<td>$V_R = 5.5$ V</td>
</tr>
</tbody>
</table>

Table 4 AC characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line capacitance</td>
<td>C_L</td>
<td>– 6.5</td>
<td>pF</td>
<td>$V_R = 0$, $f = 1$ MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 6.5</td>
<td></td>
<td>$V_R = 0$, $f = 1$ GHz</td>
</tr>
</tbody>
</table>

Table 5 ESD and Surge characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping voltage 1)</td>
<td>V_{CL}</td>
<td>– 12</td>
<td>V</td>
<td>$V_{ESD} = 8$ kV, contact discharge</td>
</tr>
<tr>
<td>Clamping voltage 2)</td>
<td></td>
<td>– 10</td>
<td></td>
<td>$I_{TLP} = 1$ A, $t_p = 100$ ns</td>
</tr>
<tr>
<td>Clamping voltage 3)</td>
<td></td>
<td>– 13</td>
<td></td>
<td>$I_{TLP} = 16$ A, $t_p = 100$ ns</td>
</tr>
<tr>
<td>Dynamic resistance 2)</td>
<td>R_{DYN}</td>
<td>– 0.2</td>
<td>Ω</td>
<td>$t_p = 100$ ns</td>
</tr>
</tbody>
</table>

1 V_{ESD} according to IEC61000-4-2 ($R = 330$ Ω, $C = 150$ pF discharge network)
2 Please refer to application note AN210 [1], TLP parameters: $Z_0 = 50$ Ω, $t_p = 100$ ns, $t_r = 0.6$ ns
3 Stress pulse: 8/20 μs current waveform according to IEC61000-4-5
Typical characteristic diagrams

3 Typical characteristic diagrams

Note: \(T_A = 25 \, ^\circ \text{C}, \) unless otherwise specified.

Figure 3
Reverse leakage current: \(I_R = f(V_R) \)

Figure 4
Reverse current \(I_R = f(T_A), V_R = 5.5 \, \text{V} \)
Figure 5 Reverse voltage $V_{BR} = f(T_A)$, $I_{BR} = 1$ mA

Figure 6 Line capacitance: $C_L = f(V_R)$, $f = 1$ MHz, 1 GHz
Typical characteristic diagrams

Figure 7 Clamping voltage (ESD): $V_{CL} = f(t)$, 8 kV positive pulse according to IEC61000-4-2

Figure 8 Clamping voltage (ESD): $V_{CL} = f(t)$, 8 kV negative pulse according to IEC61000-4-2
Figure 9 Clamping voltage (ESD): $V_{CL} = f(t)$, 15 kV positive pulse according to IEC61000-4-2

Figure 10 Clamping voltage (ESD): $V_{CL} = f(t)$, 15 kV negative pulse according to IEC61000-4-2
ESD200-B1-CSP0201
Protection device

Typical characteristic diagrams

Figure 11 Clamping voltage (TLP): $I_{TLP} = f(V_{TLP})$ [1]
Figure 12 Clamping voltage (Surge): $I_{PP} = f(V_{CL})$ according to IEC61000-4-5 [1]
Figure 13 Insertion loss versus frequency in a 50 Ω system
4 Package information

4.1 WLL-2-1 package

Note: Dimensions in mm

Figure 14 WLL-2-1 package outline

Figure 15 WLL-2-1 footprint

Figure 16 WLL-2-1 packing

Figure 17 WLL-2-1 marking example (marking code see Device information)
5 References

[1] Infineon AG - Application note AN210: Effective ESD protection design at system level using VF-TLP characterization methodology

[2] Infineon AG - Recommendations for Printed Circuit Board Assembly of Infineon WLL Packages
 http://www.infineon.com/Packageinformation_WLL

Revision history

Revision history: Rev. 1.2. 2016-05-13

<table>
<thead>
<tr>
<th>Page or Item</th>
<th>Subjects (major changes since previous revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 1.3, 2018-02-19</td>
<td>Data sheet layout changed</td>
</tr>
<tr>
<td>All</td>
<td>References updated, editorial changes</td>
</tr>
</tbody>
</table>

Datasheet 14 Revision 1.3
2018-02-19
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.