Protection Device
TVS (Transient Voltage Suppressor)

ESD114-U1-02 Series
Uni-directional, 5.3 V, 0.4 pF, 0402, 0201, RoHS and Halogen Free compliant

ESD114-U1-02ELS
ESD114-U1-02EL

Data Sheet
Revision 1.0, 2014-10-30
Final
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com)

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
1 Product Overview

1.1 Features

- ESD / Transient protection of high speed data lines exceeding
 - IEC61000-4-2 (ESD): ±20 kV (contact)
 - IEC61000-4-4 (EFT): ±2 kV / ±40 A (5/50 ns)
 - IEC61000-4-5 (surge): ±3 A (8/20 μs)
- Maximum working voltage: $V_{RWM} = ±5.3$ V
- Ultra low capacitance: $C_L = 0.4$ pF (typical)
- Very low clamping voltage $V_{CL} = +20 / -15$ V (typical) at $I_{TLP} = 16$ A
- Low dynamic resistance $R_{DYN} = 0.5$ Ω (typical)
- Very small form factor down to 0.62 x 0.32 x 0.31 mm3
- Pb-free (RoHS compliant) and halogen free package

RoHS

1.2 Application Examples

- USB 2.0, Mobile HDMI Link, MDDI, MIPI, etc.
- HDMI, DisplayPort, DVI, Ethernet, Firewire, S-ATA

1.3 Product Description

![Pin Configuration and Schematic Diagram](Single_Die_diode_PinConf_and_SchematicDiag.vst.vsd)

Figure 1 Pin Configuration and Schematic Diagram

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th></th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>ESD114-U1-02ELS</td>
<td>TSSLP-2-3</td>
<td>1 line, uni-directional</td>
<td>K</td>
</tr>
<tr>
<td>ESD114-U1-02EL</td>
<td>TSLP-2-19</td>
<td>1 line, uni-directional</td>
<td>K</td>
</tr>
</tbody>
</table>
2 Maximum Ratings

Table 2 Maximum Ratings at $T_A = 25$ °C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD contact discharge</td>
<td>V_{ESD}</td>
<td>±20</td>
<td>kV</td>
</tr>
<tr>
<td>Peak pulse current ($t_p = 8/20$ μs)</td>
<td>I_{PP}</td>
<td>±3</td>
<td>A</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{OP}</td>
<td>-55 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

1) V_{ESD} according to IEC61000-4-2
2) Non-repetitive current pulse 8/20μs exponential decay waveform according to IEC61000-4-5

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

3 Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified
Table 3 DC Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse working voltage</td>
<td>V_{RWM}</td>
<td>–</td>
<td>5.3 V</td>
<td>Pin 1 to Pin 2</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>V_{BR}</td>
<td>6</td>
<td>–</td>
<td>$I_{\text{BR}} = 1 , \text{mA}$, from Pin 1 to Pin 2</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>–</td>
<td>10 nA</td>
<td>$V_R = 5.3 , \text{V}$, from Pin 1 to Pin 2</td>
</tr>
</tbody>
</table>

Table 4 RF Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line capacitance</td>
<td>C_L</td>
<td>–</td>
<td>0.6 pF</td>
<td>$V_R = 0 , \text{V}$, $f = 1 , \text{MHz}$</td>
</tr>
<tr>
<td>Serie inductance</td>
<td>L_S</td>
<td>–</td>
<td>0.4 nH</td>
<td>ESD114-U1-02ELS</td>
</tr>
</tbody>
</table>

1) Total capacitance line to ground

Table 5 ESD Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping voltage</td>
<td>V_{CL}</td>
<td>–</td>
<td>10 V</td>
<td>$I_{\text{TLP}} = 1 , \text{A}$, from Pin 1 to Pin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>20</td>
<td>$I_{\text{TLP}} = 16 , \text{A}$, from Pin 1 to Pin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>28</td>
<td>$I_{\text{TLP}} = 30 , \text{A}$, from Pin 1 to Pin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>3</td>
<td>$I_{\text{TLP}} = 1 , \text{A}$, from Pin 2 to Pin 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>15</td>
<td>$I_{\text{TLP}} = 16 , \text{A}$, from Pin 2 to Pin 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>21</td>
<td>$I_{\text{TLP}} = 30 , \text{A}$, from Pin 2 to Pin 1</td>
</tr>
<tr>
<td>Dynamic resistance</td>
<td>R_{DYN}</td>
<td>–</td>
<td>0.56</td>
<td>Pin 1 to Pin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>0.43</td>
<td>Pin 2 to Pin 1</td>
</tr>
</tbody>
</table>

1) Please refer to Application Note AN210[1]. TLP parameter: $Z_0 = 50 \, \Omega$, $t_p = 100\text{ns}$, $t_r = 300\text{ps}$, averaging window: $t_1 = 30 \, \text{ns}$ to $t_2 = 60 \, \text{ns}$, extraction of dynamic resistance using least squares fit of TLP characteristics between $I_{\text{PP1}} = 10 \, \text{A}$ and $I_{\text{PP2}} = 40 \, \text{A}$.
4 Typical Characteristics Diagrams

Typical characteristics diagrams at $T_a = 25^\circ C$, unless otherwise specified

Figure 3 Reverse leakage current: $I_R = f(V_R)$

Figure 4 Line capacitance: $C_L = f(V_R)$
Figure 5 IEC61000-4-2 : $V_{CL} = f(t)$, 8 kV positive pulse from pin 1 to pin 2

Figure 6 IEC61000-4-2 : $V_{CL} = f(t)$, 8 kV negative pulse from pin 1 to pin 2
Figure 7 IEC61000-4-2 : $V_{CL} = f(t)$, 15 kV positive pulse from pin 1 to pin 2

Figure 8 IEC61000-4-2 : $V_{CL} = f(t)$, 15 kV negative pulse from pin 1 to pin 2
Figure 9 Clamping voltage (TLP): $I_{TLP} = f(V_{TLP})$ [1], pin 1 to pin 2
5 Package Information

5.1 TSSLP-2-3 (mm)[3]

1) Dimension applies to plated terminals

Figure 10 TSSLP-2-3: Package overview

Figure 11 TSSLP-2-3 Footprint

Figure 12 TSSLP-2-3: Packing

Figure 13 TSSLP-2-3: Marking (example)
5.2 TSLP-2-19 (mm)[3]

1) Dimension applies to plated terminals

Figure 14 TSLP-2-19: Package Overview

Figure 15 TSLP-2-19: Footprint

Figure 16 TSLP-2-19: Packing

Figure 17 TSLP-2-19: Marking (example)
References

[1] Infineon AG - Application Note AN210: Effective ESD Protection Design at System Level Using VF-TLP

[2] Infineon AG - Application Note AN140: ESD Protection for Digital High-Speed Interfaces (HDMI, FireWire, ...) using ESD5V3U1U)

[3] Infineon AG - Recommendations for PCB Assembly of Infineon TSLP and TSSLP Package
Revision History: Rev.09, 2014-06-20

Page or Item	Subjects (major changes since previous revision)
Revision 1.0, 2014-10-30
All | Status change to Final

Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, COMNEON™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CORECONTROL™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, EUPEC™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, I^RF™, IsoPACK™, MIPaq™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PROFET™, PRO-SIL™, PRIMARION™, PrimePACK™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SMARTi™, SmartLEWIS™, TEMPFET™, thinQ!™, TriCore™, TRENCHSTOP™, X-GOLD™, XMM™, X-PMU™, XPOSYS™.

Other Trademarks

Last Trademarks Update 2010-06-09