

Design guide for low-noise transistors in WLAN front ends

RF bipolar transistors

About this document

Scope and purpose

This application note provides application circuit design examples of Infineon's low-noise silicon germanium: carbon (SiGe:C) transistors for wireless local area network (WLAN) low noise amplifiers (LNAs) and a medium-power transistor for WLAN power amplifier. In this document, the transistor-based LNA and power amplifier (PA) schematics, printed circuit board (PCB) layouts and measurement results are shown. This document is relevant to the following low-noise transistors and medium-power transistor:

• <u>BFP740</u>	Low-noise transistor for 2.4 GHz WLAN
• <u>BFP740ESD</u>	Low-noise transistor for 2.4 GHz WLAN
• <u>BFP740F</u>	Low-noise transistor for 2.4 GHz WLAN
<u>BFP740FESD</u>	Low-noise transistor for 2.4 GHz WLAN
• <u>BFP760</u>	Low-noise transistor for 2.4 GHz WLAN
• <u>BFP842ESD</u>	Low-noise transistor for 2.4 GHz WLAN
• <u>BGB707L7ESD</u>	Low-noise transistor for 2.4 GHz WLAN
• <u>BFP840ESD</u>	Low-noise transistor for 5 to 6 GHz WLAN
BFP840FESD	Low-noise transistor for 5 to 6 GHz WLAN
BFR840L3RHESD	Low-noise transistor for 2.4 GHz and 5 to 6 GHz WLAN
• <u>BFQ790</u>	High-linearity medium-power transistor.

Intended audience

This document is intended for engineers who need to design LNAs and PAs for WLAN applications.

Table of contents

Abou	t this document
Table	of contents1
1	Introduction
1.1	WLAN radio front ends
1.2	Infineon RF transistor family3
2	2.4 GHz band WLAN LNA application circuits4
2.1	2.4 GHz band WLAN LNAs with SOT343 packaged low-noise transistors
2.1.1	Performance overview4
2.1.2	Schematic4
2.1.3	Bill of materials (BOM)5
2.1.4	Evaluation boards and PCB layout information6
2.1.5	Measurement results of 2.4 GHz band WLAN LNAs with SOT343 packaged low-noise transistors 8
2.2	2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged low-noise transistors
2.2.1	Performance overview14

Table of contents

2.2.2	Schematic	14
2.2.3	ВОМ	15
2.2.4	Evaluation board and PCB layout information	16
2.2.5	Measurement results of 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged	
	low-noise transistors	17
2.3	2.4 GHz band WLAN LNA with small leaded three-pin low-noise transistor BFR840L3RHESD	22
2.3.1	Performance overview	22
2.3.2	Schematic	22
2.3.3	ВОМ	23
2.3.4	Evaluation board and PCB layout information	23
2.3.5	Measurement results of the 2.4 GHz band WLAN LNA with small leaded three-pin TSLP pack	aged
	low-noise transistor BFR840L3RHESD	25
2.4	2.4 GHz band WLAN LNA with low-noise MMIC BGB707L7ESD	29
2.4.1	Performance overview	29
2.4.2	Schematic	30
2.4.3	BOM	30
2.4.4	Evaluation board and PCB layout information	31
2.4.5	Measurement results of the 2.4 GHz band WLAN LNA with low-noise MMIC BGB707L7ESD	32
3	5 to 6 GHz band WLAN LNA application circuits	37
3.1	Performance overview	37
3.2	Schematic	37
3.3	ВОМ	38
3.4	Evaluation boards and layout information	39
3.5	Measurement results of the 5 to 6 GHz band WLAN LNAs	41
4	2.4 GHz band WLAN BFQ790 power amplifier application circuit	47
4.1	Performance overview	47
4.2	Schematic	47
4.3	BOM	48
4.4	Evaluation board and layout information	49
4.5	Measurement results of the BFQ790 2.4 GHz band WLAN power amplifier	50
5	Authors	55
Revis	ion history	56

1 Introduction

1.1 WLAN radio front ends

The WLAN function is one of the most important connectivity functions between WLAN access points and smartphones, tablets, and laptops. WLAN standards according to IEEE 802.11b/g/n at 2.4 GHz have been widely implemented over the years. Due to the overcrowded WLAN at 2.4 GHz, the applications in the 5 to 6 GHz band according to IEEE 802.11a/ac/n are becoming popular for fast data throughput. Today, wireless high-quality multimedia data transmission requires even higher data throughput. Hence, the next generation standard 802.11ax will increase the data rate to 9.6 Gbps through the high-order modulation scheme (1024QAM) and 8×8 multi-user multiple-input and multiple-output (MU-MIMO).

Key performance metrics for WLAN application are the speed of data transfer and coverage, which are greatly influenced by transmitted power, receiver sensitivity, noise, and interference. High data throughput related to the high-order modulation scheme asks for better received signal quality, while the necessary solution of WLAN router for MU-MIMO with multiple antennas will introduce trace loss in the signal path to transceiver IC, resulting in a deteriorated signal quality. A radio front end including filter, switch, LNA and PA close to the antenna is a popular method to improve the signal quality.

Figure 1 Block diagram example of a WLAN radio front end

1.2 Infineon RF transistor family

Infineon Technologies provides high-performance radio frequency (RF) transistors targeting WLAN LNA applications. Infineon's reliable high-volume RF transistors offer exceptionally low noise figure (NF), high gain and high linearity at low power consumption levels for RF applications. The sixth-, seventh-generation, and the latest high-performance eighth-generation transistors are based on robust ultra low-noise SiGe:C technologies. Their optimized inner transistor cell structure leads to best-in-class power gain and NF at high frequencies, including 2.4 GHz and 5 to 6 GHz WLAN bands. The transistors maximize the design flexibility for customer requirements.

In addition to low-noise transistors, Infineon offers <u>BFQ790</u>, a high-linearity medium-power transistor. Its output power level reaches 27 dBm (0.5 W), which is adequate for 2.4 GHz indoor WLAN signal power amplification. The device is housed in the halogen-free industry-standard SOT89 package. The high thermal conductivity of the silicon substrate and the low thermal resistance of the package add up to a thermal resistance of only 35 K/W, which leads to moderate junction temperatures even at high dissipated power values.

2 2.4 GHz band WLAN LNA application circuits

2.1 2.4 GHz band WLAN LNAs with SOT343 packaged low-noise transistors

2.1.1 Performance overview

The following table shows the performance of the 2.4 GHz band WLAN LNAs with SOT343 packaged low-noise transistors.

Table 1Summary of measurement results for the 2.4 GHz band WLAN LNAs with SOT343 packaged
transistors

Parameter	Symbol			Value	Unit	Notes	
Device		<u>BFP760</u>	<u>BFP740</u>	BFP740ESD	BFP842ESD		
Bias voltage	V _{cc}	3.0	3.0	3.0	3.0	V	
Bias current	I _{cc}	16.6	13.5	13.5	8.6	mA	
Frequency	f	2.45	2.45	2.45	2.45	GHz	
Gain	G	16.0	18.9	18.8	18.5	dB	
NF	NF	0.82	0.81	0.76	0.76	dB	PCB and SMA loss subtracted: 0.1 dB
Input return loss	RL _{in}	10.8	10.1	10.6	14.3	dB	
Output return loss	RL _{out}	12.7	11.5	12.3	16.3	dB	
Reverse isolation	ISO _{rev}	24.0	25.2	25.7	23.2	dB	
Output 1 dB compression point	OP _{1dB}	6.6	5.2	5.0	8.9	dBm	
Output third- order intercept point	OIP ₃	17.5	12.6	12.9	22.3	dBm	Input power: -25 dBm per tone Tone 1: 2450 MHz Tone 2: 2451 MHz
Stability	к	>1	>1	>1	>1		Measured from 15 MHz to 13 GHz

2.1.2 Schematic

The following figure shows the schematic of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors. Emitter degeneration provides negative feedback to achieve the transistor impedance matching and low-noise matching at the same time (see Figure 3 and Figure 4). In the LNA circuit, resistors R1 and R2 stand for transistor voltage and current bias, meanwhile, they form a negative DC feedback mechanism to stabilize the transistor bias points in various conditions. Capacitors C2 and C3 serve as the RF bypass. Transistor input matching is achieved by the inductors L1, L3, and the capacitor C1. The output matching network is formed by C4, C5, L2, L4, R3 and R4. Resistors R3 and R4 also have the function of improving circuit stability.

2.4 GHz band WLAN LNA application circuits

Figure 2 Schematic of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

2.1.3 Bill of materials (BOM)

Table 2BOM of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

Symbol			Value		Unit	Size	Manu- facturer	Notes
Q1	<u>BFP760</u>	<u>BFP740</u>	BFP740ESD	BFP842ESD	_	_	Infineon	SiGe: C low-noise transistor
C1	1.8	8.2	8.2	10	pF	0402	Various	Input matching and DC blocking
C2	39	39	39	10	рF	0402	Various	RF decoupling
C3	n.c.	39	39	330	рF	0402	Various	RF decoupling
C4	n.c.	n.c.	n.c.	6.8	pF	0402	Various	Output matching and stability improvement
C5	1.8	22	22	1.5	pF	0402	Various	Output matching and DC blocking
R1	30	120	120	33	Ω	0402	Various	DC biasing
R2	33	22	22	39	kΩ	0402	Various	DC biasing
R3	82	24	24	22	Ω	0402	Various	Low-frequency stability improvement
R4	2.2	n.c.	n.c.	n.c.	Ω	0402	Various	Output matching and high-frequency stability improvement

L1	n.c.	2.2	2.2	3.3	nH	0402	Murata LQG	RF choke and input matching
L2	n.c.	2.2	2.2	1.8	nH	0402	Murata LQG	RF choke and output matching
L3	2	n.c.	n.c.	n.c.	nH	0402	Murata LQG	Input matching
L4	2.2	n.c.	n.c.	n.c.	nH	0402	Murata LQG	Output matching

Note: 1) Not connected (n.c.).

2.1.4 Evaluation boards and PCB layout information

The evaluation boards for the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors:

- PCB material: FR4
- PCB marking:
 - <u>BFP740</u> M130125
 - <u>BFP740ESD</u> M130125
 - <u>BFP760</u> M130125
 - <u>BFP842ESD</u> M130225

The photo of the evaluation boards for the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors and the detailed description of the PCB stack are shown in the following figures.

Figure 3 Photo of the evaluation board with PCB marking M130125 (left) and emitter degeneration details (right)

Figure 4 Photo of the evaluation board with PCB marking M130225 (left) and emitter degeneration details (right)

Figure 5 PCB stack information for the evaluation boards with PCB marking M130125 and M130225

2.1.5 Measurement results of 2.4 GHz band WLAN LNAs with SOT343 packaged low-noise transistors

Figure 6 Small signal gain of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

Note: The graphs are generated with the AWR electronic design automation (EDA) software Microwave Office®.

2.4 GHz band WLAN LNA application circuits

Figure 9 Output return loss measurement of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

Figure 10 Reverse isolation measurement of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

Figure 11 NF measurement of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

Figure 12 Input 1 dB compression point measurement of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

Figure 14 Output IMD₃ measurement of the 2.4 GHz band WLAN LNA with <u>BFP740</u>

Figure 15 Output IMD₃ measurement of the 2.4 GHz band WLAN LNA with **BFP740ESD**

Figure 16 Output IMD₃ measurement of the 2.4 GHz band WLAN LNA with <u>BFP842ESD</u>

Figure 17 Stability K-factor plots of the 2.4 GHz band WLAN LNAs with SOT343 packaged transistors

2.2 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged lownoise transistors

2.2.1 Performance overview

The following table shows the performance of the 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged low-noise transistors.

Parameter	Symbol	Val	lue	Unit	Notes			
Device		<u>BFP740F</u>	BFP740FESD					
Bias voltage	V _{cc}	3	3	V				
Bias current	I _{cc}	11.6	11	mA				
Frequency	f	2.45	2.45	GHz				
Gain	G	17.1	16.6	dB				
NF	NF	0.71	0.76	dB	PCB and SMA loss subtracted: 0.1 dB			
Input return loss	RL_{in}	10	10	dB				
Output return loss	RL_{out}	11	9.8	dB				
Reverse isolation	ISO _{rev}	28.8	29.2	dB				
Output 1 dB compression point	OP_{1dB}	2.1	1.5	dBm				
Output third-order intercept point	OIP ₃	11.1	10.7	dBm	Input power: -25 dBm per tone Tone 1: 2450 MHz Tone 2: 2451 MHz			
Stability	K	>1	>1		Measured from 10 MHz to 13 GHz			

Table 3Summary of measurement results for the 2.4 GHz band WLAN LNAs with small and flat leadedTSFP packaged low-noise transistors

2.2.2 Schematic

The following figure shows the schematic of the 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged low-noise transistors. Like the previous LNA circuits, emitter degeneration has been adopted to achieve the transistor impedance matching and low-noise matching at the same time. Please refer to the detailed setting in Figure 19. In the LNA circuit, resistors R1 and R2 form the negative DC feedback mechanism to stabilize the transistor bias points in various conditions. Capacitors C2 and C3 serve as the RF bypass. Transistors' input matching is achieved by the capacitor C1 and the inductor L1. The output matching network is formed by C4, C5, L2, R3 and R4. Resistors R3 and R4 also have the function of improving circuit stability.

2.4 GHz band WLAN LNA application circuits

Figure 18 Schematic of the 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged transistors

2.2.3 BOM

Table 4	BOM of the 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged transistors						
Symbol	Value	Linit	Sizo	Manufacturar	Commont		

Symbol	Value		Unit	Size	Manufacturer	Comment
Q1	<u>BFP740F</u>	BFP740FESD	Ι	_	Infineon	SiGe:C low-noise transistor
C1	22	22	рF	0402	Various	Input matching and DC blocking
C2	39	39	рF	0402	Various	RF decoupling
C3	39	39	рF	0402	Various	RF decoupling
C1	22	2.2	ηĘ	0402	Various	Output matching and stability
C4	5.5	5.5	μr	0402	various	improvement
C5	1.8	1.8	рF	0402	Various	Output matching and DC blocking
R1	30	30	Ω	0402	Various	DC biasing
R2	51	43	kΩ	0402	Various	Base DC biasing
R3	30	30	Ω	0402	Various	Low-frequency stability improvement
D/	100	100	0	0402	Various	Output matching and stability
κ4	100	100	Ω	0402	various	improvement
L1	10	10	nH	0402	Murata LQG	RF choke and input matching
L2	5.1	5.6	nH	0402	Murata LQG	RF choke and output matching

2.2.4 Evaluation board and PCB layout information

The evaluation board for the 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged transistors:

- PCB material: FR4
- PCB marking: M11118

The photo of the evaluation board for the 2.4 GHz band WLAN LNAs with small and flat leaded TSFP packaged transistors and the detailed description of the PCB stack are shown in the following figures.

Figure 19 Photo of the evaluation board with PCB marking M11118 (left) and emitter degeneration details (right)

Figure 20 PCB stack information for the evaluation board with PCB marking M11118

Figure 21 Small signal gain of the 2.4 GHz band WLAN LNAs with TSFP packaged transistors

Note: The graphs are generated with the AWR EDA software Microwave Office®.

Figure 23 Input return loss measurement of the 2.4 GHz band WLAN LNAs with TSFP packaged transistors

Figure 25 Reverse isolation measurement of the 2.4 GHz band WLAN LNAs with TSFP packaged transistors

Figure 26 NF measurement of the 2.4 GHz band WLAN LNAs with TSFP packaged transistors

Figure 27 Input 1 dB compression point measurement of the 2.4 GHz band WLAN LNAs with TSFP packaged transistors

Figure 29 Output IMD₃ measurement of the 2.4 GHz band WLAN LNA with <u>BFP740FESD</u>

Figure 30 Stability K-factor plots of the 2.4 GHz band WLAN LNAs with TSFP packaged transistors

2.3 2.4 GHz band WLAN LNA with small leaded three-pin low-noise transistor BFR840L3RHESD

2.3.1 Performance overview

The following table shows the performance of the 2.4 GHz band WLAN LNA with small leaded three-pin TSLP packaged low-noise transistor <u>BFR840L3RHESD</u>.

Tuble 5 Summary of	Summary of medsurement results for the 2.1 on 2 build we we have been been results for the 2.1 on 2 build we we have been been results for the 2.1 on 2 build we have been been been been been been been be								
Parameter	Symbol	Value	Unit	Notes					
Device		BFR840L3RHESD							
Bias voltage	V _{cc}	3.0	V						
Bias current	I _{cc}	11.4	mA						
Frequency	f	2.45	GHz						
Gain	G	18.5	dB						
NF	NF	1.02	dB	PCB and SMA connector losses subtracted: 0.1 dB					
Input return loss	RL _{in}	12.5	dB						
Output return loss	RL _{out}	23.9	dB						
Reverse isolation	ISO _{rev}	28.4	dB						
Output 1 dB compression point	OP _{1dB}	0.6	dBm						
Output third-order intercept point	OIP ₃	11.4	dBm	Input power: -30 dBm per tone Tone 1: 2450 MHz Tone 2: 2451 MHz					
Stability	K	>1		Stability measured from 100 MHz to 13 GHz					

Table 5 Summary of measurement results for the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

2.3.2 Schematic

The following figure shows the schematic of the 2.4 GHz band WLAN LNA with the small leaded three-pin TSLP packaged transistor <u>BFR840L3RHESD</u>. Emitter degeneration provides negative feedback to achieve the transistor impedance matching and low-noise matching at the same time (see Figure 32). In the LNA circuit, resistors R1 and R2 stand for transistor voltage and current bias; meanwhile, they form a negative DC feedback mechanism to stabilize the transistor bias points in various conditions. Capacitors C2 and C3 serve as the RF bypass. Transistor input matching is achieved by the capacitor C1 and the inductor L1. The output matching network is formed by C4, L2, R4 and R5. Resistors R4 and R5 also have the function of improving circuit stability.

2.4 GHz band WLAN LNA application circuits

2.3.3 BOM

Гable 6	BOM of the 2.4 GHz band WLAN LNA with BFR840L3RHESD
---------	--

Symbol	Value	Unit	Size	Manufacturer	Comment
Q1	BFR840L3RHESD	_	_	Infineon	SiGe bipolar transistor
C1	2.2	рF	0201	Various	Input matching and DC blocking
C2	33	рF	0201	Various	RF decoupling
C3	33	рF	0201	Various	RF decoupling
C4	8.2	рF	0201	Various	Output matching and DC blocking
R1	100	Ω	0201	Various	DC biasing
R2	27	kΩ	0201	Various	Base DC biasing
R3	0	Ω	0201	Various	Jumper
DИ	82	0	0201	Various	Stability improvement and output
Ν4	02	12	0201	various	matching
R5	10	Ω	0201	Various	High-frequency stability improvement
L1	2.7	nH	0201	Murata LQP series	RF choke and input matching
L2	2.4	nH	0201	Murata LQP series	Output matching

2.3.4 Evaluation board and PCB layout information

The evaluation board for the 2.4 GHz band WLAN LNA with small leaded three-pin TSLP packaged transistor <u>BFR840L3RHESD</u>:

- PCB material: FR4
- PCB marking: M120131

The photo of the evaluation board for the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u> and the detailed description of the PCB stack are shown in the following figures.

Figure 32 Photo of the evaluation board with the PCB marking M120131 (left) and emitter degeneration details (right)

Figure 33 PCB stack information for the evaluation board with the PCB marking M120131

2.3.5 Measurement results of the 2.4 GHz band WLAN LNA with small leaded three-pin TSLP packaged low-noise transistor <u>BFR840L3RHESD</u>

Figure 34 Small signal gain of the 2.4 GHz band WLAN LNA with **BFR840L3RHESD**

Figure 35 Small signal gain of the 2.4 GHz band WLAN LNA with **BFR840L3RHESD** (detail view)

The graphs are generated with the AWR EDA software Microwave Office®.

Note:

Figure 36 Input return loss measurement of the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

Figure 37 Output return loss measurement of the 2.4 GHz band WLAN LNA with **BFR840L3RHESD**

Figure 38 Reverse isolation measurement of the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

Figure 39 NF measurement of the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

Figure 40 Input 1 dB compression point measurement of the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

Figure 41 Output IMD₃ measurement of the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

Figure 42 Stability K-factor plots of the 2.4 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

2.4 GHz band WLAN LNA with low-noise MMIC <u>BGB707L7ESD</u>

2.4.1 Performance overview

The following table shows the performance of the 2.4 GHz band WLAN LNA with low-noise MMIC <u>BGB707L7ESD</u>.

Table 7	Summary of measurement results for the 2.4 GHz band WLAN LNA with low-noise MMIC
	BGB707L7ESD

Parameter	Symbol	Value	Unit	Notes
Device		BGB707L7ESD		
Bias voltage	V _{cc}	3.0	V	
Bias current	I _{cc}	6.0	mA	
Frequency	f	2.45	GHz	
Gain	G	15.6	dB	
NF	NF	1.2	dB	PCB and SMA connector losses subtracted: 0.1 dB.
Input return loss	RL _{in}	15.9	dB	
Output return loss	RL_{out}	10.2	dB	
Reverse isolation	ISO _{rev}	25.1	dB	
Output 1 dB compression point	OP_{1dB}	6.3	dBm	
Output third-order intercept point	OIP ₃	10.3	dBm	Input power: -30 dBm per tone, Tone 1: 2450 MHz, Tone 2: 2451 MHz.
Stability	K	>1		Stability measured from 100 MHz to 13 GHz.

2.4.2 Schematic

The following figure shows the schematic of the 2.4 GHz band WLAN LNA with low-noise MMIC <u>BGB707L7ESD</u>. In the circuit, the resistor R1 sets up the biasing current. The resistors R2 and R3 stabilize the circuit whose firmness is measured up to 13 GHz. The resistor R4 and the capacitor C5 serve as the negative feedback to improve the input and output impedance matching. The circuit input matching is achieved by the network of capacitors C1, C2 and the inductor L1. The network of L2 and C4 matches the transistor to the output port. The capacitors C2 and C3 serve as the RF bypass.

Figure 43 Schematic of the 2.4 GHz band WLAN LNA with low-noise MMIC BGB707L7ESD

2.4.3 BOM

Table 8	BOM of the 2.4 GHz band WLAN LNA with low noise MMIC <u>BGB707L7ESD</u>								
Symbol	Value	Unit	Size	Manufacturer	Comment				
Q1	BGB707L7ESD		TSLP-7-1	Infineon	SiGe:C low-noise MMIC				
C1	3.9	рF	0402	Various	Input matching and DC blocking				
C2	39	рF	0402	Various	RF decoupling				
C3	39	рF	0402	Various	RF decoupling				
C4	10	рF	0402	Various	Output matching and DC blocking				
C5	39	рF	0402	Various	DC blocking				
L1	2.9	nH	0402	Murata LQG series	Input matching and RF chock				
L2	40	nH	0402	Murata LQG series	Output matching and RF chock				
R1	2.7	kΩ	0402	Various	Base bias				
R2	0	Ω	0402	Various	Stability improvement				
R3	22	Ω	0402	Various	Stability improvement				
R4	1.5	kΩ	0402	Various	Negative feedback				

2.4 GHz band WLAN LNA application circuits

2.4.4 Evaluation board and PCB layout information

The evaluation board for the 2.4 GHz band WLAN LNA with low-noise MMIC <u>BGB707L7ESD</u>:

- PCB material: Rogers RO4003C
- PCB marking: M141017

The photo of the evaluation board for the 2.4 GHz band WLAN LNA with low-noise MMIC <u>BGB707L7ESD</u> and the detailed description of the PCB stack are shown in the following figures.

Figure 44 PCB layout with PCB marking M141017 (left) and photo (right)

Figure 45 PCB stack information for the evaluation board M141017

2.4.5 Measurement results of the 2.4 GHz band WLAN LNA with low-noise MMIC BGB707L7ESD

Figure 46 Small signal gain of the 2.4 GHz band WLAN LNA with BGB707L7ESD

Figure 47 Small signal gain of the 2.4 GHz band WLAN LNA with BGB707L7ESD (detail view)

The graphs are generated with the AWR EDA software Microwave Office®.

Note:

Figure 48 Input return loss measurement of the 2.4 GHz band WLAN LNA with BGB707L7ESD

Figure 50 Reverse isolation measurement of the 2.4 GHz band WLAN LNA with <u>BGB707L7ESD</u>

Figure 51 NF measurement of the 2.4 GHz band WLAN LNA with BGB707L7ESD

Figure 52 Input 1 dB compression point measurement of the 2.4 GHz band WLAN LNA with BGB707L7ESD

Figure 53 Output IMD₃ measurement of the 2.4 GHz band WLAN LNA with <u>BGB707L7ESD</u>

Figure 54 Stability K-factor plots of the 2.4 GHz band WLAN LNA with <u>BGB707L7ESD</u>

3 5 to 6 GHz band WLAN LNA application circuits

3.1 Performance overview

The following table shows the performance of the 5 to 6 GHz band WLAN LNAs.

Parameter	Symbol		Value					Unit	Notes
Device		BFP84	0ESD	BFP84	0FESD	BFR840L3	<u> 3RHESD</u>		
Bias voltage	V _{cc}	3.	0	3.	0	3.0		V	
Bias current	I _{cc}	10	.3	14.3		9.2		mA	
Frequency	f	5.1	5.9	5.1	5.9	5.1	5.9	GHz	
Gain	G	16.3	15.3	19.2	18.0	15.0	14.1	dB	
NF	NF	1.07	1.04	1.01	1.02	0.99	0.98	dB	PCB and SMA loss substracted: 0.15 dB
Input return loss	RL_{in}	12.2	18.8	10.2	10.5	10.3	12.5	dB	
Output return loss	RL _{out}	17.8	15.6	11.7	12.1	11.6	13.5	dB	
Reverse isolation	ISO _{rev}	26.4	25	26.3	25.7	21.6	20.2	dB	
Output 1 dB compression point	OP _{1dB}	4.	9	7.4		4.9		dBm	Measured at 5.5 GHz
Output third-order intercept point	OIP ₃	16	.4	18.6		16.4		dBm	Input power: -30 dBm per tone Tone 1: 5500 MHz Tone 2: 5501 MHz
Stability	к	>	1	>	1	>]			Measured from 10 MHz to 10 GHz

Table 9Summary of measurement results for the 5 to 6 GHz band WLAN LNAs

3.2 Schematic

The following figure shows the schematic of the 5 to 6 GHz band WLAN LNAs with Infineon eighth-generation RF low-noise SiGe transistors <u>BFP840ESD</u>, <u>BFP840FESD</u>, and <u>BFR840L3RHESD</u>. The transistors are manufactured in different packages. The parasitic inductances of different transistor packages are slightly different to each other. Hence the emitter degeneration length fabricated on the PCB for the LNA circuits has been selected differently (see section 3.4). In the LNA circuit, resistors R1 and R2 stand for transistor voltage and current bias; meanwhile, they form a negative DC feedback mechanism to stabilize the transistor bias points in various conditions. Capacitors C2 and C3 serve as the RF bypass. Transistor input matching is achieved by C1, L1 and C2. The output matching network is formed by C4, C5, C6, L2, R3 and R4. Resistors R3 and R4 also have the function of improving circuit stability.

5 to 6 GHz band WLAN LNA application circuits

Figure 55 The 5 to 6 GHz band WLAN LNA schematic

3.3 BOM

Table 10 BOM of the 5 to 6 GHz band WLAN LNAs

Symbol		Value		Manu-	Notos
Symbol	(0	component packag	ge/size)	facturer	Notes
01	BFP840ESD	BFP840FESD	BFR840L3RHESD	Infineon	SiGe:C bipolar low-noise
QI	(SOT343)	(TSFP-4-1)	(TSLP-3-9)	mmeon	transistor
C1	3.3 pF	22 pF	22 pF	Various	Input matching and DC blocking
	(0402)	(0402)	(0201)	various	input matching and DC blocking
(2	39 pF	n c ¹⁾	nc	Various	RF decoupling
C2	(0402)	11.0.	11.0.	Various	
C 2	39 pF	33 pF	39 pF	Various	RF decoupling
C 5	(0402)	(0402)	(0201)	various	
CA	n.c.	1.0 pF	1.0 pF	Various	Output matching and stability
C4		(0402)	(0201)	various	improvement
CE	10 pF	1.0 pF	18 pF	Various	Output matching and DC blocking
05	(0402)	(0402)	(0201)	various	
CG	0.1 pF	nc	nc	Various	High-frequency stability
0	(0402)	11.C.	п.с.	Various	improvement
D1	82 Ω	51 Ω	120 Ω	Various	DC bias and DC nogative feedback
KT	(0402)	(0402)	(0201)	various	DC blas and DC negative feedback

R2	30 kΩ	27 kΩ	Ω 33 kΩ		DC biasing for transistor base
	(0402)	(0402)	(0201)	various	
20	82 Ω	51 Ω	27 Ω	Various	Low-frequency stability
K3	(0402)	(0402)	(0201)	various	improvement
D4	10 Ω	nc	nc	Various	Output matching and high-
κ4	(0402)	n.c.	п.с.	various	frequency stability improvement
	5.1 nH	2.6	2.0	Murata	DE shake and input matching
LI	(LQG/0402)	n.c.	п.с.	Murala	RF choke and input matching
L2	2.2 nH	1.8 nH	3.7 nH	Murata	DE shake and output matching
	(LQG/0402)	(LQP15M/0402)	(LQP03T/0201)	Murala	KF CHOKE and Output matching

Note: 1) Not connected (n.c.).

3.4 Evaluation boards and layout information

The evaluation boards for the 5 to 6 GHz band WLAN LNAs:

- PCB material: FR4
- PCB marking:
 - <u>BFP840ESD</u> M130121
 - <u>BFP840FESD</u> M12051302
 - <u>BFR840L3RHESD</u> M120131

The photos of the 5 to 6 GHz band WLAN LNAs' evaluation boards and the detailed description of the PCB stack are shown in the following figures.

Figure 56 Photo of the evaluation board with marking M130121 (left) and emitter degeneration details (right)

Figure 57 Photo of the evaluation board with marking M12051302 (left) and emitter degeneration details (right)

Figure 58 Photo of the evaluation board with marking M120131 (left) and emitter degeneration details (right)

Figure 59 PCB stack information for the evaluation boards with marking M130121, M12051302, and M120131

3.5 Measurement results of the 5 to 6 GHz band WLAN LNAs

Figure 60 Small signal gain of the 5 to 6 GHz band WLAN LNAs

Figure 61 Small signal gain of the 5 to 6 GHz band WLAN LNAs (detail view)

The graphs are generated with the AWR EDA software Microwave Office®.

Note:

Figure 63 Output return loss measurement of the 5 to 6 GHz band WLAN LNAs

Figure 65 NF measurement of the 5 to 6 GHz band WLAN LNAs

Figure 66 Input 1 dB compression point measurement of the 5 to 6 GHz band WLAN LNAs

Figure 67 Output IMD₃ measurement of the 5 to 6 GHz band WLAN LNA with <u>BFP840ESD</u>

Figure 68 Output IMD₃ measurement of the 5 to 6 GHz band WLAN LNA with <u>BFP840FESD</u>

Figure 69 Output IMD₃ measurement of the 5 to 6 GHz band WLAN LNA with <u>BFR840L3RHESD</u>

Figure 70 Stability K-factor plots of the 5 to 6 GHz band WLAN LNAs

4 2.4 GHz band WLAN <u>BFQ790</u> power amplifier application circuit

4.1 Performance overview

The following table shows the performance of the <u>BFQ790</u> medium-power amplifier at 2.412 GHz.

Parameter	Symbol	Value	Unit	Notes
Bias voltage	V _{cc}	5.0	V	
Quiescent bias current	I _{cq}	210	mA	
Gain	G	14	dB	
Input return loss	RL _{in}	> 10	dB	
Output return loss	RL _{out}	> 10	dB	
Reverse Isolation	ISO _{rev}	26.9	dB	
Output 1-dB compression point	OP _{1dB}	26.7	dBm	
Output third-order intercept point	OIP ₃	39	dBm	Output power: 15 dBm per tone Tone 1: 2411.5 MHz Tone 2: 2412.5 MHz
Second harmonic	H ₂	< -66	dBm	
Third harmonic	H ₃	< -66	dBm	
Output power at error vector magnitude (EVM): -30 dB	P _{out,avg}	18	dBm	Signal: 802.11 n, VHT20, MCS7, 64QAM
Band edge power at 2390 MHz		< -45	dBm	
Stability factor	μ1, μ2	>1		From 10 MHz up to 6 GHz

Table 11Summary of measurement results for the 2.4 GHz band WLAN PA with BFQ790

4.2 Schematic

The following figure shows the schematic of the 2.4 GHz band WLAN PA with RF medium-power transistor <u>BFQ790</u>. In the circuit, resistors R1, R2, and R3 stand for transistor base bias for a collector current of around 210 mA; meanwhile, R3 stabilizes the circuit at low frequency. Capacitors C3 and C4 together with inductor L2 form a low-pass structured output-matching circuit to maximize the output power and linearity and suppress the harmonic products. L1 is the RF choke, and the value is also chosen in consideration of the current allowance. Capacitors C1 and C2 build up the input-matching network to boost the gain of the <u>BFQ790</u> power amplifier. Capacitors C6, C7 and C8 are for the RF bypass.

2.4 GHz band WLAN BFQ790 power amplifier application circuit

4.3 BOM

Table 12BOM of the BFQ790 2.4 GHz band WLAN power amplifier

Symbol	Value	Unit	Package	Manufacturer	Notes
Q1	<u>BFQ790</u>		SOT89	Infineon	SiGe medium-power transistor
C1	1.5	pF	0402	Various	Input matching and DC blocking
C2	2	рF	0402	Various	Input matching
C3	2.4	pF	0402	Various	Output matching
C4	0.4	pF	0402	Various	Output matching
C5	8.2	рF	0402	Various	DC blocking
C6	8.2	рF	0402	Various	RF bypass
C7	330	pF	0402	Various	RF bypass
C8	8.2	pF	0402	Various	RF bypass
R1	470	Ω	0402	Various	DC bias
R2	330	Ω	0402	Various	DC bias
R3	470	Ω	0402	Various	DC bias and stability improvement
L1	10	nH	0402	Murata LQW	RF choke and output matching
L2	8.2	nH	0402	Murata LQW	Output matching

4.4 Evaluation board and layout information

The evaluation board for the <u>BFQ790</u> 2.4 GHz WLAN power amplifier:

- PCB marking: M141008 v1.2_2
- PCB material: FR4

The photo of the <u>BFQ790</u> 2.4 GHz WLAN power amplifier evaluation board and the detailed description of the PCB stack are shown in the following figures.

Figure 72 Photo of the <u>BFQ790</u> 2.4 GHz power amplifier evaluation board for WLAN application

Figure 73 PCB stack information for the evaluation board M141008 v1.2_2

4.5 Measurement results of the <u>BFQ790</u>2.4 GHz band WLAN power amplifier

Figure 74 Small signal gain of the **BFQ790** 2.4 GHz WLAN power amplifier

The graphs are generated with the AWR EDA software Microwave Office®.

Note:

RF bipolar transistors

Design guide for low-noise transistors in WLAN front ends

Figure 77 Output return loss measurement of the **BFQ790** 2.4 GHz WLAN power amplifier

RF bipolar transistors

Design guide for low-noise transistors in WLAN front ends

Figure 79 Stability µ-factor plots of the **BFQ790** 2.4 GHz WLAN power amplifier

Figure 80 Input 1 dB compression point measurement of the <u>BFQ790</u> 2.4 GHz WLAN power amplifier

2.4 GHz band WLAN BFQ790 power amplifier application circuit

Figure 82 Output signal spectrum mask measurement of the <u>BFQ790</u> 2.4 GHz WLAN power amplifier with 802.11n MCS7 64QAM signal at center frequency 2.412 GHz

Figure 83 Output signal adjacent channel power measurement of the <u>BFQ790</u> 2.4 GHz WLAN power amplifier with 802.11n MCS7 64QAM signal at center frequency 2.412 GHz

Authors

infineon

5 Authors

Mamun Md Abdullah Al, application engineer of business unit RF and sensors.

Atif Mehmood, application engineer of business unit RF and sensors.

Dr. Jie Fang, staff application engineer of business unit RF and sensors.

Revision history

Document version	Date of release	Description of changes

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-05-23 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference AN_1805_PL32_1806_111452

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.