
AURIX™ TC3xx Microcontroller Training

V1.0.2

DMA_Linked_List_Mode_1

for KIT_AURIX_TC397_TFT
DMA Linked List Mode usage

Please read the Important Notice and Warnings at the end of this document



Scope of work

DMA Linked Lists are used to execute a series of DMA transactions 

without CPU intervention. 

In this training, four DMA transactions are configured in DMA Linked List 

mode.

Triggering one DMA transaction leads to the execution of all DMA 

transactions consecutively.

An interrupt is triggered at the completion of the last DMA transaction.

If DMA has correctly transferred the data, the LED driven by port pin 13.3 

toggles and a new cycle starts again. Otherwise, the LED driven by port pin 

13.2 turns ON and no more DMA transfers are done.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› The Direct Memory Access (DMA) moves data from source locations to 

destination locations without the intervention of the CPU or any other on-

chip devices

› Among other features, the DMA has the capability to execute a series of 

DMA transactions by the same DMA channel; this is ensured by the 

Linked List operations

› A DMA transaction in Linked List mode can be configured to auto-start

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

A typical DMA Linked List use case is illustrated in the figure below

› Several DMA transactions are configured and stored in RAM

› Configure DMA channel with the first Transaction Control Set (TCS1)

› Set a HW or SW DMA Channel request

› All configured DMA transactions will be executed consecutively

› Trigger an interrupt after the completion of the last DMA transaction 

TCS1

Source @1

Destination @ 1

Data length x

Linked list mode

Next TCS: TCS2

No Auto-Start

TCS2

Source @ 2

Destination @ 2

Data length y

Linked list mode

Next TCS: TCS3

Auto-Start

TCS3

Source @ 3

Destination @ 3

Data length z

Linked list mode

Next TCS: TCS4

Auto-Start

TCS4

Source @ 4

Destination @ 4

Data length w

Linked list mode

Next TCS: TCS1

Auto-Start

DMA Request Transfer complete 

interrupt

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware setup

This code example has been 

developed for the board 

KIT_A2G_TC397_5V_TFT.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Initialization phase

The initialization phase is ensured by the initDmaLinkedList() function as following:

1. DMA module initialization

› Create the DMA module configuration: 

IfxDma_Dma_Config dmaConfig;

IfxDma_Dma_initModuleConfig(&dmaConfig, &MODULE_DMA);

› Initialize the DMA software module:

IfxDma_Dma g_dma;

IfxDma_Dma_initModule(&g_dma, &dmaConfig); 

The functions described above are provided by the iLLD header IfxDma_Dma.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Initialization phase

2. DMA Channel Configuration

› Create the DMA channel default configuration:

IfxDma_Dma_ChannelConfig cfg;

IfxDma_Dma_initChannelConfig(&cfg, &g_dma);

› DMA Linked List configuration:

– Channel selection: 

cfg.channelId = IfxDma_ChannelId_0;

– Number of DMA transfers in the DMA transaction (16 DMA transfers per DMA 

transaction)

cfg.transferCount = NUM_TRANSFERED_WORDS;

– Channel move data width (one DMA move = 32 bit )

cfg.moveSize = IfxDma_ChannelMoveSize_32bit;

– Channel trigger mode (one DMA transaction or one DMA transfer per trigger request )

cfg.requestMode = 

IfxDma_ChannelRequestMode_completeTransactionPerRequest;

The functions described above are provided by the iLLD header IfxDma_Dma.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

› DMA Linked List configuration (Cont.):

– Channel operation mode (DMA Linked List mode)

cfg.shadowControl = IfxDma_ChannelShadow_linkedList;

– Source and Destination buffers addresses of each DMA transaction

cfg.sourceAddress = g_source[i];

cfg.destinationAddress = g_destination[i];

– Address of the next Transaction Control Set (TCS) in the DMA Linked List

cfg.shadowAddress = (uint32)&g_linkedList[(i + 1) % NUM_LINKED_LIST_ITEMS];

– Enable channel interrupt for the last DMA transaction

cfg.channelInterruptEnabled = TRUE;

– Store the configuration into RAM memory in a transaction control set format

IfxDma_Dma_initLinkedListEntry((void *)&g_linkedList[i], &cfg);

– Configure DMA channel registers with the first DMA transaction parameters (if i == 0)

IfxDma_Dma_initChannel(&g_chn, &cfg);

– Enable Auto-Start feature for the subsequent DMA transactions (if i != 0)

g_linkedList[i].CHCSR.B.SCH = 1;

The functions described above are provided by the iLLD header IfxDma_Dma.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

3. DMA Channel Interrupt configuration

› Get the DMA Channel Interrupt configuration register:

g_dmaCh0Src = IfxDma_Dma_getSrcPointer(&g_chn);

› Set Interrupt Service Provider (CPU0) and Priority (50):

IfxSrc_init(g_dmaCh0Src, IfxSrc_Tos_cpu0, ISR_PRIORITY_DMA_CH0);

› Enable Interrupt:

IfxSrc_enable(g_dmaCh0Src);

The function IfxDma_Dma_getSrcPointer() is provided by the iLLD header IfxDma_Dma.h.

IfxSrc_init() and IfxSrc_enable() functions are provided by the iLLD header IfxSrc.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

4. LEDs Configuration:

› LEDs definition to be user friendly (Pre-processor defines):

#define PASS_LED &MODULE_P13,3

#define FAIL_LED &MODULE_P13,2

› Configure port pins connected to LEDs in push-pull output mode:

IfxPort_setPinMode(PASS_LED, IfxPort_Mode_outputPushPullGeneral);

IfxPort_setPinMode(FAIL_LED, IfxPort_Mode_outputPushPullGeneral);

› Switch off LEDs (initial state):

IfxPort_setPinHigh(PASS_LED);

IfxPort_setPinHigh(FAIL_LED);

The functions described above are provided by the iLLD header IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Transfer phase

The data transfer phase is launched by calling the startDmaLinkedListTransfer() function and 

it includes the following:

1. Fill the DMA source buffers with data to be sent

2. Trigger a software DMA request:

IfxDma_Dma_startChannelTransaction(&g_chn);

The function IfxDma_Dma_startChannelTransaction() is provided by the iLLD header 

IfxDma_Dma.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Interrupt Service Routine

The Interrupt Service Routine (ISR) is a user function executed when the interrupt is triggered. 

In this example, the DMA channel interrupt is triggered after the completion of the last DMA 

transaction of the linked list.

The implemented ISR dmaCh0ISR ensures the following:

› Compare destination buffers to source buffers

– In case of a data mismatch :

– Switch On FAIL_LED: IfxPort_setPinLow(FAIL_LED)

– Switch Off PASS_LED: IfxPort_setPinHigh(PASS_LED)

– In case of a data match:

– Toggle PASS_LED: IfxPort_togglePin(PASS_LED)

– Clear Destination buffers

– Trigger a new transfer request:

startDmaLinkedListTransfer()

Note: One second delay is added between every DMA transfer operation.

The delay is ensured by wait() function and based on STM Timer.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, observe the LEDs’ behavior:

Execution error:

› LED D109 (1) is On

› LED D110 (2) is Off 

No Execution error:

› LED D109 (1) is Off

› LED D110 (2) is toggling every 

one second approximately

1

2

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.2 Fixed variable names aligning them with the code

V1.0.1 Update of version to be in line with the code example’s version

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2021. All rights reserved.



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-03
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
DMA_Linked_List_Mode_1
_KIT_TC397_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

