Infineon Power for Xilinx Versal™ SoCs

Quick Power Map Reference Guide
Tony Ochoa, Infineon, Sr. Marketing Engineer Manager
tony.ochoa@infineon.com

About this document

Scope and purpose
Infineon has several DC-DC controllers and power stages to build proven designs and system solutions for core voltages of next generation SoCs, FPGAs, and multi-core ARM processors.

This reference guide provides Infineon power power maps for Xilinx Versal™ AI SoCs. It is intended to provide quick power solution summary reference.

Important Notes:
- The Infineon power solutions are early estimates for rail-by-rail analysis of typical requirements for Xilinx Versal™. Hence subject to change based upon up to date information.
- For more detailed Xilinx Versal™ power estimates it is highly recommended that the customer consult Xilinx XPE power estimator tool for proper use case vs. power requirements, especially over temperature ratings and board ambients.
- Infineon’s proposed power solutions are scalable on a rail-by-rail basis to allow for voltage and current range implementation. Intended focus on rail consolidation where possible for best power partitioning to minimum power IC components but still maintain variation of range across voltage/current selection.
- In addition, where possible, Infineon implements use of PMBus™ devices to allow for scalable power sequencing implementation with each power macro.
- Details of available Infineon power macros for Xilinx Versal™ available at:
 - www.infineon.com/power-versal
- Xilinx Versal™ is a registered trademark of Xilinx.

Intended audience
- Power supply designers and system designers seeking Xilinx Versal™ DC-DC power designs using Infineon’s DC-DC products
- Customers seeking baseline power designs for ready to go power solutions for Xilinx Versal™
Table of contents

About this document... 1
Table of contents.. 2
1 Table of Infineon power products for Versal™ SoCs ... 3
2 Infineon power for Versal™ AI Core VC1902, VC1802 use case 1 and 3 4
3 Infineon power for Versal™ AI Core VC1702 and Prime VM2902, VM2502 use case 1 and 3... 5
4 Infineon power for Versal™ Prime VM1402, VM1502, VM1802, VM2702 use case 1 and 3 6
5 Infineon power for Versal™ Prime VM1302, AI Core VC1502 use case 1 and 3....................... 7
6 Infineon power for Versal™ Prime VM1102, VM2602 and AI Core VC1352 use case 1 and 3 8
7 Infineon power for Versal™ AI Core VC1802 and VC1902 use case 2 9
8 Infineon power for Versal™ AI Core VC1702 and Versal™ Prime VM2502 VM2902 use case 2 10
9 Infineon power for Versal™ Prime VM1402, VM1502, VM1802, VM2702 use case 2 11
10 Infineon power for Versal™ AI Core VC1502 and Prime VC1302 use case 2 12
11 Infineon power for Versal™ AI Core VC1352 and Prime VM1102, VM2602 use case 2 13
12 Infineon power for Versal™ AI Core VC1902 use case 4 .. 14
13 Infineon power for Versal™ AI Core VC1902 + System Voltages use case 4....................... 15
14 Infineon power for Versal™ Prime VM1802 use case 4 .. 16
15 Infineon power for Versal™ Prime VM1802 + System Voltages use case 4....................... 17
Revision history... 18
Table of Infineon power products for Versal™ SoCs

<table>
<thead>
<tr>
<th>Part number</th>
<th>Highlight features</th>
<th>Application benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR35215</td>
<td>2-phase to 8-phase Multi-phase Controller</td>
<td>High efficiency > 90%. Proven power solution for FPGA/SoC and multi-core processors. Scalable from 40A to 300A+. PMBus/I2C. Ability to store multiple power designs.</td>
</tr>
<tr>
<td>TDA21472</td>
<td>Infineon’s latest generation SFET6 Output current capability of 70A 5x6x0.9mm, 0.45mm Pin Pitch (PQFN) Current Reporting: 2% accuracy</td>
<td>High Efficiency > 90%. Proven power stage for sustainable performance over high dynamic transient content.</td>
</tr>
<tr>
<td>IRPS5401MTRPBF</td>
<td>5 output PMIC: 4 DC-DC + 1 LDO, 5 W to 50 W, integrated power sequencer, fault management, telemetry, use with external power stage, digital compensation</td>
<td>Proven power solution for FPGA/SoC such as Xilinx UltraScale+, NXP processors, Marvell Armada, Cavium, Broadcom solutions. High integration power delivery solution for small board space.</td>
</tr>
<tr>
<td>TDA21240/21242</td>
<td>4 mm x 4 mm 25 A and 40 A OptiMOS™ 5; High efficiency performance</td>
<td>Proven power solution for FPGA/SoC Vcore voltages to vary from 5 W to 50 W+; best solution in the market for efficiency and smallest size.</td>
</tr>
<tr>
<td>IR3883</td>
<td>1A to 3A COT DC-DC Regulators</td>
<td>Proven solution for VCCIO rails. Standard designs for various output voltages in the datasheet.</td>
</tr>
</tbody>
</table>

Other companion products

<table>
<thead>
<tr>
<th>Part number</th>
<th>Highlight features</th>
<th>Application benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR3889 and IR3887</td>
<td>30A COT DC-DC Regulators</td>
<td>Proven solution for Vcore voltages of FPGA/SoC; and low noise Xilinx SERDES support up to 4 to 24 lanes for FPGAs. Excellent thermal handling.</td>
</tr>
<tr>
<td>IR38060/38062/38063/38064</td>
<td>6 A to 35 A integrated FET PMBus regulator; integrated power sequencer, fault management, telemetry</td>
<td>Proven solution for Vcore voltages of FPGA/SoC; and low noise Xilinx SERDES support up to 4 to 24 lanes for FPGAs. Excellent thermal handling.</td>
</tr>
<tr>
<td>IR3897</td>
<td>4 A analog DC-DC regulators</td>
<td>Proven DDR3/DDR4 tracking solution up to 4 A</td>
</tr>
<tr>
<td>IFX1763</td>
<td>Low noise LDO</td>
<td>Proven 2.5 V low noise for Xilinx Zynq UltraScale+ RPSoC</td>
</tr>
<tr>
<td>IFX54441</td>
<td>Low noise LDO</td>
<td>Proven 1.8 V low noise SERDES voltage for Xilinx Zynq UltraScale+ MPSoC</td>
</tr>
<tr>
<td>IR3823</td>
<td>Low noise 3 A analog DC-DC regulator</td>
<td>Proven 1.2 V low noise SERDES voltage for Xilinx Zynq UltraScale+ FPGAs</td>
</tr>
<tr>
<td>IR38164</td>
<td>30 A integrated FET PMBus regulator with Optimos 5/SFET6; integrated power sequencer, fault management, telemetry</td>
<td>Proven solution for Vcore voltages of FPGA/SoC; and low noise Xilinx SERDES support up to 4 to 24 lanes for FPGAs. Excellent thermal handling. VID capability.</td>
</tr>
</tbody>
</table>
Infineon Power for Versal™ AI Core VC1902, VC1802 use case 1 and 3

Figure 1 Infineon power macro – Versal AI Core VC1902 and VC1802 use case 1 and 3
Figure 2 Infineon power macro – Versal AI Core VC1702 and Versal Prime VM2902, VM2502 use case 1 and 3
Infineon Power for Xilinx Versal SoCs

Infineon power for Versal™ Prime VM1402, VM1502, VM1802, VM2702 use case 1 and 3

Figure 3 Infineon power macro - Versal™ Prime VM1402, VM1502, VM1802, VM2702 use case 1 and 3
Figure 4 Infineon power macro – Versal™ Prime VM1302 and AI Core VC1502
Infineon Power for Versal™ Prime VM1102, VM2602 and AI Core VC1352 use case 1 and 3

Figure 5 Infineon power macros – Versal™ Prime VM1102, VM2602 and AI Core VC1352 use case 1 and 3
Infineon Power for Versal™ AI Core VC1802-VC1902 UC2 - SERDES

Figure 6 Infineon power macro - Versal™ AI Core VC1802 and VC1902 use case 2
Infineon Power for Versal™ AI Core VC1702 and Versal™ Prime VM2502 VM2902 use case 2

Figure 7 Infineon power macro - Versal™ AI Core VC1702 and Versal™ Prime VM2502 and VM2902 use case 2
Infineon Power for Versal™ Prime VM1402, VM1502, VM1802, VM2702 use case 2

Figure 8 Infineon power macro - Versal™ Prime VM1402, VM1502, VM1802, VM2702 use case 2
Infineon Power for Versal™ AI Core VC1502 and Prime VC1302 use case 2

Infineon Power for Versal Prime VM1302

Versal AI Core VC1502

UC2 -SERDES

Figure 9
Infineon power macro - Versal™ AI Core VC1502 and Prime VC1302 use case 2
Infineon Power for Versal™ AI Core VC1352 and Prime VM1102, VM2602 use case 2

Figure 10 Infineon power macro - Versal™ AI Core VC1352 and Prime VM1102, VM2602 use case 2
Infineon Power for Versal™ AI Core VC1902 (UC4)

Figure 11 Infineon power macro - Versal™ AI Core VC1902 use case 4
Infineon Power for Versal™ AI Core VC1902 + System Voltages use case 4

Figure 12: Infineon power macro - Versal™ AI Core VC1902 + System Voltages use case 4
Infineon Power for Versal™ Prime VM1802 use case 4

Figure 13 Infineon power macro - Versal™ Prime VM1802 use case 4
Infineon Power for Versal™ Prime VM1802 + System Voltages use case 4

Figure 14 Infineon power macro - Versal™ Prime VM1802 + System Voltages use case 4

Rails 13 and 14 are optional. If 5V and 3.3V system rails needed, then can combine these with rails 13 and 14 with an additional IRPS5401
Revision history

<table>
<thead>
<tr>
<th>Document version</th>
<th>Date of release</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>April 15, 2019</td>
<td>Initial draft by Infineon base on Xilinx latest Versal information, March 2019. Notes: Power solutions subject to change under advisory of Xilinx. Power solutions are based typical use case estimates. Xilinx recommends all customers to consult Versal XPE tool upon release for exact power use case.</td>
</tr>
<tr>
<td>0.2</td>
<td>April 18, 2019</td>
<td>Modifications to Use Case 1 solutions. Remove the IR3806x for SERDES and bring into the IRPS5401 (Figures 1, 2 & 3). This effectively reduces one large component from the BOM. This change will also be reflected in the EV121-D VM1802 Infineon Power Macro.</td>
</tr>
<tr>
<td>0.3</td>
<td>May 8, 2019</td>
<td>Modifications to figure titles to accentuate the Infineon font size vs. Xilinx. Changes to comply with legal recommendations e.g. “Infineon Power for ….”.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.