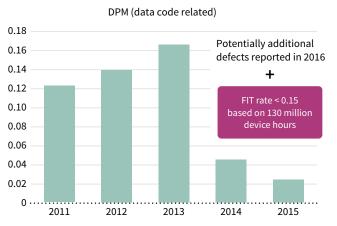


# CoolMOS<sup>™</sup> CE Selection Guide

High voltage MOSFETs for consumer applications 500 V, 600 V, 650 V, 700 V and 800 V





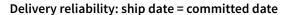

### Content

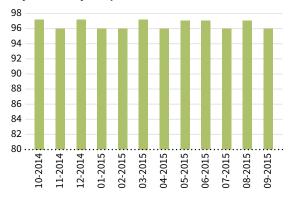
| CoolMOS™ CE – overview                            | 4  |
|---------------------------------------------------|----|
| CoolMOS™ CE – smartphone and tablet chargers      | 6  |
| CoolMOS™ CE – notebook adapters                   | 10 |
| CoolMOS™ CE – TV sets                             | 12 |
| CoolMOS <sup>™</sup> CE for lighting applications | 14 |
| CoolMOS™ CE – demonstrator boards                 | 17 |
| CoolMOS™ CE – target topologies                   | 18 |
| CoolMOS™ CE – product portfolio                   | 24 |
| CoolMOS™ CE portfolio package overview            | 25 |
| CoolMOS™ CE – cross reference                     | 28 |

### CoolMOS™ CE – overview

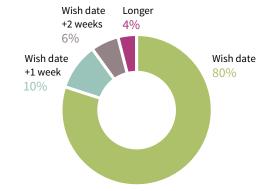
CoolMOS<sup>™</sup> CE is a product family launched by Infineon to address consumer and lighting applications. It offers benefits in efficiency and thermal behavior versus standard MOSFETs and has been optimized for ease-of-use and costcompetitiveness, while at the same time delivering state-of-the-art performance and Infineon quality and supply security. Powered by Infineon multi-source program, CoolMOS<sup>™</sup> CE is determined to support customers' success in various consumer markets by full FAE (field application engineer) support, short lead time and fast quote response.



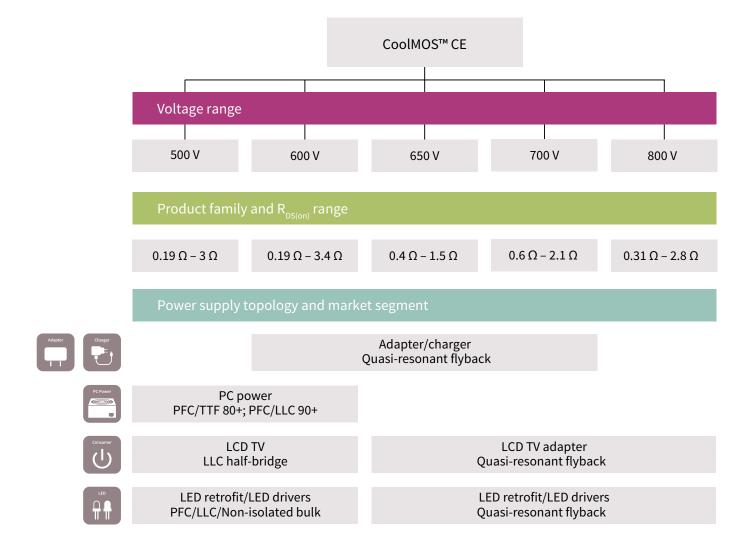

CoolMOS<sup>™</sup> comes with a DPM of less than 0.1 and FIT rate of less than 0.15


## CoolMOS<sup>™</sup> quality - benchmark in short term and long term reliability

CoolMOS<sup>™</sup> technology is legendary in the industry differentiated for its high quality, which has been proven over the past years across billions of devices shipped with continuous improved DPM down to less than 0.10 DPM. Infineon has implemented firm and proven measures from the beginning with design-for-quality program and continuous improvement in production. There is a constant proactive collaboration among technology, design, quality, reliability and manufacturing teams to achieve this result. This effort is above and beyond the fact that all Infineon sites are ISO/TS16949 certified.


### CoolMOS<sup>™</sup> supply chain – delivery reliability, flexibility and supply security

Our customers value CoolMOS<sup>™</sup> not only for its technical merits but also for the outstanding delivery reliability: once a CoolMOS<sup>™</sup> order date is committed, more than 96 percent of orders are shipped at or before the committed date. And CoolMOS<sup>™</sup> orders are committed to more than 80 percent to the date that the customers request. Security of supply and flexibility to demand changes are focus targets and enabled by a well balanced production network. For example more than 90 percent of our products are qualified for production in at least two back end locations and more than 80 percent of the volumes in two wafer fabs. This enables CoolMOS<sup>™</sup> supply chain to react fast to changes in customer and market requirements.










≥ 96% of CoolMOS<sup>™</sup> orders are shipped by the committed date and ≥ 80% of wish dates can be met

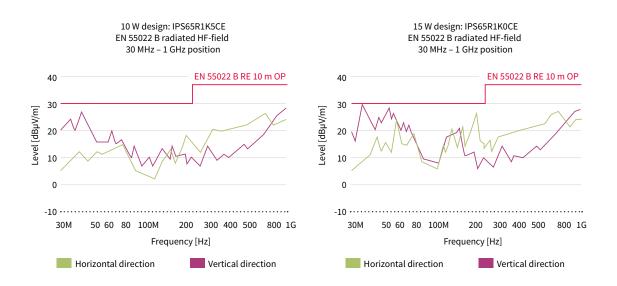


This selection guide takes you to explore the advantages of CoolMOS™ CE in charger, adapter, TV and lighting applications

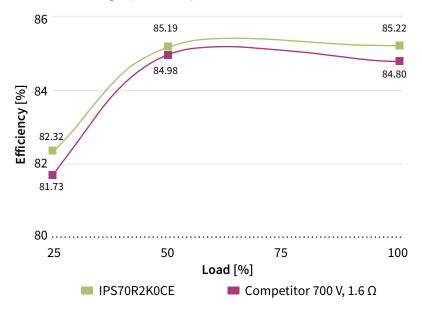
#### Reasons to choose CoolMOS<sup>™</sup> CE

| Non-technical benefits p | rovided by CoolMOS™ CE                                                                                                                                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product portfolio        | We own a broad portfolio covering five voltage classes in both through-hole and surface-mount packages.                                                                                                                                            |
| Capacity                 | We own the world's largest capacity for power devices, with three dedicated frontends and four backends.<br>Thanks to factors such as the continued investment in our production facilities, we ensure a secure supply during a market<br>upswing. |
| Lead time                | We understand consumer and lighting market dynamics and offer a lead time for middle-sized orders of 4-6 weeks.                                                                                                                                    |
| Delivery performance     | Our supply chain performance is constantly greater than or equal to 96 percent (adhering to the customer committed date).                                                                                                                          |
| Quality                  | Our field failure rates are as low as 0.1 PPM.                                                                                                                                                                                                     |
| Design-in support        | We have a large field application engineering team dedicated to providing professional and flexible support for your design.                                                                                                                       |

## CoolMOS<sup>™</sup> CE – smartphone and tablet chargers


Chargers for smartphones and tablets as well as other mobile applications demand for a growing output power at same or smaller form factors, leading to increasing power density, and stringent requirements on thermal management, EMI emissions and overall system cost. For example, many OEMs request a device temperature less than 90°C with an open case and close case temperature less than 50°C.

Infineon recommends its series of 700 V CoolMOS<sup>™</sup> CE superjunction MOSFETs for this application, which are used by leading charger OEMs and design houses in their charger applications. Compared to planar MOSFETs the 700 V CoolMOS<sup>™</sup> CE offers reduced switching and thus higher efficiency while passing EMI standards and ringing requirements. Several reference designs have been developed by Infineon to help customers to simplify charger design and thus providing fast time-to-market (see reference design selection table at end of section).

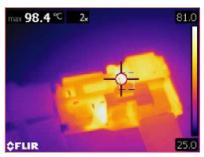

#### Value proposition of 700 V CoolMOS<sup>™</sup> CE:

- > High efficiency, meeting application requirements
- > More than enough safety margin in thermals, for 10 W-25 W chargers
- > Good EMI performance meets the EMI EN55022B standard without extra design-in effort
- > Easy-to-use product due to good controllability via gate resistor
- > Large breakdown voltage of nominal 700 V (and additional guard band typical) for safety on voltage spikes

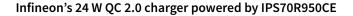
Infineon recommends CoolMOS<sup>™</sup> CE in 700 V for charger applications to secure sufficient margin for voltage spikes. CoolMOS<sup>™</sup> CE products are also available in 650 V and 600 V for use in less sensitive designs.

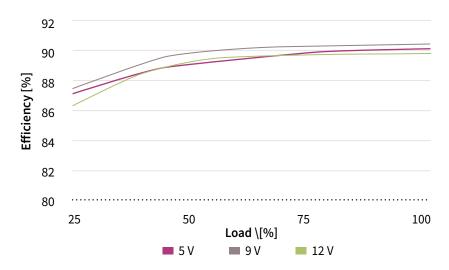


This figure shows the CoolMOS<sup>™</sup> CE EMI performance in 10 W and 15 W charger applications. Maximum EMI limits are indicated in the figure. CoolMOS<sup>™</sup> CE could meet the EMI requirement thus offering design in flexibilities.




#### 15 W QC 2.0 charger powered by IPS70R2K0CE


IPS70R2K0CE




#### Competitor 700 V, 1.6 Ω



Infineon CoolMOS<sup>™</sup> CE offers higher efficiency and better thermals than planar MOSFETs: When replacing a 1.6 Ω planar MOSFET with an Infineon 2.0 Ω CoolMOS<sup>™</sup> CE in a 15 W QC 2.0 charger we measured ≥0.2 percent efficiency improvement. At the same time, the MOSFET temperature was 7°C cooler, showing a clear benefit of using CoolMOS<sup>™</sup> CE for charger applications.





#### Infineon's 24 W quick charger



DEMO\_24W\_QUICKCHARGER

Also for 24 W quick chargers CoolMOS<sup>™</sup> CE offers excellent efficiency, e.g., with the IPS70R950CE. Besides efficiency it passes other spec requirements. The board is orderable through Infineon's sample center.



### CoolMOS<sup>™</sup> CE – package options for charger application



IPAK Short Lead and DPAK Standard packages used in chargers today with excellent reliability and wide usage in the industry



IPAK Short Lead with Isolation Standoff: Innovative package for charger applications providing a defined standoff between package and PBC



I<sup>2</sup>PAK

Larger package with better thermal performance than IPAK short lead for more than 20 W charger application. The package carries higher cost yet saves efforts in heat sinking



#### SOT-223

Highly cost optimized surface-mount package with small footprint. The SOT-223 shows slightly worse thermal performance than DPAK, however this can be compensated with little effort by offering a slightly larger copper area (~15 mm<sup>2</sup>) around the package for heatsinking on the PCB (see page 14, lighting application)



#### ThinPAK 5x6

Very flat package (0.8 mm height) package targeting slim charger solutions. Bottom side cooling is applied by many customers, but heat sinking through the top side is also possible



#### **IPAK Short Lead with Isolation Standoff**

The new IPAK Short Lead with Mold Stopper will provide a defined standoff between package body and PCB for proper cleaning after wave soldering to avoid leakage current on board level. Mold bumps at the bottom of the package body allow to fully insert the MOSFET into the PCB leaving a well-defined isolation distance of 0.3 mm between the PCB and package body. Creepage distance is increased and production yield is improved as area between package and PCB can effectively be cleaned.

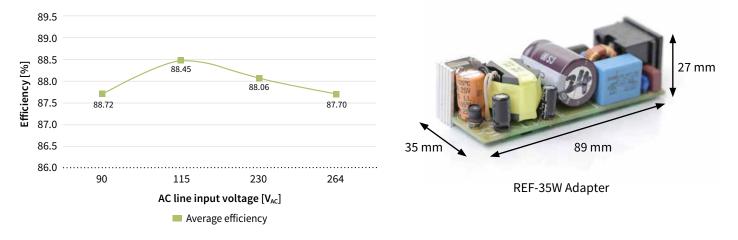


### CoolMOS™ CE solutions for charger application

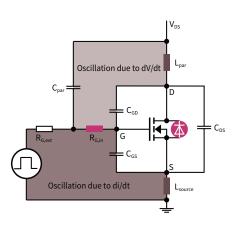
#### CoolMOS<sup>™</sup> CE portfolio for charger – 700 V recommended for most designs

| R <sub>DS(on)</sub><br>[mΩ] | [W]   | ТО-262<br>(I <sup>2</sup> РАК) | TO-251<br>(IPAK Short Lead)     | TO-251<br>(IPAK Short Lead with<br>ISO Standoff) | ТО-252<br>(DPAK) | ThinPAK 5x6      | SOT-223                            |
|-----------------------------|-------|--------------------------------|---------------------------------|--------------------------------------------------|------------------|------------------|------------------------------------|
| 600                         | > 20  |                                | IPS70R600CE                     | IPSA70R600CE                                     | IPD70R600CE      |                  |                                    |
| 950/1000                    | 18-25 | IPI70R950CE                    | IPS70R950CE                     | IPSA70R950CE                                     | IPD70R950CE      |                  | IPN70R1K0CE                        |
| 1400/1500                   | 10-18 |                                | IPS70R1K4CE                     | IPSA70R1K4CE                                     | IPD70R1K4CE      |                  | IPN70R1K5CE                        |
| 2000/2100                   | < 10  |                                | IPS70R2K0CE                     | IPSA70R2K0CE                                     | IPD70R2K0CE      | IPL70R2K1CES     |                                    |
| General<br>proposal         |       | For 18 W-25 W charger          | Standard package<br>for charger | Standard package<br>for charger                  | For slim charger | For slim charger | Low cost/thermal adjustment needed |

## CoolMOS<sup>™</sup> CE – notebook adapters


The CoolMOS<sup>™</sup> CE series has been widely chosen by leading OEMs in notebook adapters. With ease-of-use, cost competitiveness and short lead time as well as corresponding reference designs, customers can easily design CoolMOS<sup>™</sup> CE products in their adapters and have a faster time-to-market.

#### Value proposition of 600 V and 650 V CoolMOS™ CE for adapters


- > High efficiency exceeding values achieved with planar MOSFETs
- > Good thermals, especially for high density, small form factor designs
- > High breakdown voltage corridor typical breakdown voltage by far exceeds specified max. value and is higher than typical MOSFETs from other vendors
- > Easy-to-use product due to good controllability via gate resistor

#### Infineon's 35 W adapter powered by IPD60R650CE:

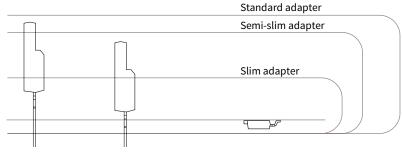
Active-mode efficiency versus AC line input voltage



Infineon's 35 W adapter reference design has been powered by IPD60R650CE, which offers an efficiency of more than 87 percent and a peak power of 45 W for 2 ms. The dynamic load response is only ±2 percent and standby power is below 100 mW. Customers could modify this board according to their requirements, gaining time-to-market. The board is orderable through Infineon's sample center.



#### **Optimization for EMI and efficiency/thermals**


EMI and efficiency/thermals need a careful trade-off in notebook adapters – better efficiency/thermals require faster switching, which leads to worse EMI, e.g., due to the oscillations triggered by a high dV/dt (di/dt). With a small adjustment this challenge can be overcome. We recommend our customers to optimize EMI when designing-in high voltage superjunction MOSFETs by:

- > Adding additional drain-source capacitor C<sub>DS</sub>, e.g., 100 pF
- > Adjusting external  $R_G$ , e.g., 5  $\Omega$ -30  $\Omega$
- Optimizing PCB layout for short path from controller to MOSFET gate and a small loop inductance
- > Adjusting EMI filter (only if other measures are insufficient)

#### EMI optimization for a 45 W adapter

|                                      |                     | Radiation (db) in vertical direction |                     |                 |  |
|--------------------------------------|---------------------|--------------------------------------|---------------------|-----------------|--|
|                                      | 115 V <sub>AC</sub> | Frequency [MHz]                      | 230 V <sub>AC</sub> | Frequency [MHz] |  |
| IPA60R800CE                          | -2.18*              | 187.78                               | -1.67*              | 186.22          |  |
| Competitor A (planar MOS)            | -7.74*              | 120.13                               | -8.72               | 161.13          |  |
| IPA60R800CE C <sub>DS</sub> : 100 pF | -8.17*              | 182.24                               | -8.80*              | 183.28          |  |

\* Quasi-peak



TO-220 FullPAK

TO-220 FullPAK Narrow Lead

CoolMOS<sup>™</sup> CE – Package options for notebook adapter application (35 W-65 W)



**TO-220 FullPAK** Standard package used in adapters today



DPAK

#### TO-220 FullPAK Narrow Lead

Package for semi-slim adapter solution, where height is smaller compared to standard adapters. The legs of the TO-220 FullPAK Narrow Lead package have been modified with standoff height reduced from about 3.3 mm to approximately 1.8 mm such that the leads can be fully inserted into the PCB without any production concerns. As a result, MOSFET height is reduced while creepage distance is preserved



The figure above shows a typical

example of adjusting EMI. It has been

Simply replacing the planar MOSFET with IPA60R800CE leads to a worse EMI performance. However, adding a 100 pF C<sub>DS</sub> significantly improves the EMI while meeting other specifications

such as efficiency, temperature, etc.

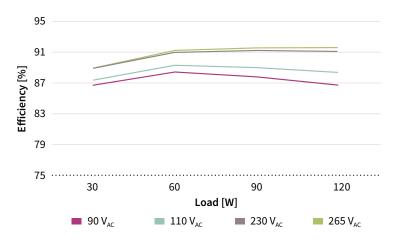
done on a common 45 W adapter from the market, using a planar MOSFET.

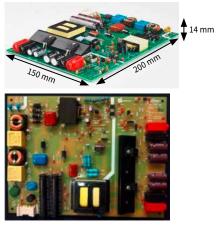
#### DPAK

The DPAK solution has no concerns on the package height for semi-slim and slim adapter solutions, as its height is far below the allowed height, and it is on the other side of the package, meaning space saving and power density increasing, however better thermal management is required

#### CoolMOS<sup>™</sup> CE portfolio for 30 W to 65 W adapter

| Voltage class<br>[V]                  | R <sub>DS(on)</sub><br>[mΩ] | TO-220 FullPAK   | TO-252 DPAK           | TO-220 FullPAK Narrow Lead |
|---------------------------------------|-----------------------------|------------------|-----------------------|----------------------------|
|                                       | 400                         | IPA60R400CE      | IPD60R400CE           |                            |
| <b>COD</b>                            | 460 IPA60R460CE             |                  | IPD60R460CE           |                            |
| 600                                   | 600 650 IPA60R650CE         |                  | IPD60R650CE           | IPAN60R650CE               |
|                                       | 800 IPA60R800CE             |                  | IPD60R800CE           | IPAN60R800CE               |
| 400 IPA65R400CE                       |                             | IPD65R400CE      |                       |                            |
| 650                                   | 650                         | IPA65R650CE      | IPD65R650CE           | IPAN65R650CE               |
| General proposal For standard adapter |                             | For slim adapter | For semi-slim adapter |                            |


### CoolMOS™ CE – TV sets


CoolMOS<sup>™</sup> CE offers a wide range of products for the TV SMPS application and is selected by the world's leading TV manufacturers due to high quality, reliability and ease-of-use. Together with XDP<sup>™</sup> digital power, OptiMOS<sup>™</sup>, EiceDRIVER<sup>™</sup> and other components from Infineon, we offer system solutions as demonstrated by a wide range of reference designs. Our dedication for TV application has been further demonstrated by developing 600 V CoolMOS<sup>™</sup> CE in TO-220 FullPAK Wide Creepage products mainly for TV application.

#### Value proposition of 500 V, 600 V, 650 V and 700 V CoolMOS™ CE for TV applications:

For the AC-DC power supply in TV applications, CoolMOS<sup>™</sup> CE devices come in different voltage classes of 500 V, 600 V, 650 V and 700 V so as to be used in both PFC and LLC stages. The CoolMOS<sup>™</sup> CE devices are offered in different packages such as TO-220 FullPAK, TO-220 FullPAK Wide Creepage, DPAK and SOT-223. This variety enables customer to use these packages in different stages of the power supply to ease the PCB layout design and manufacturing. As an example, the TO-220 FullPAK can be used in the topside PFC stage and the DPAK or SOT-223 can be used in the bottom side LLC stage making the layout simpler, and efficiently meeting the thermal and EMI requirements. When CoolMOS<sup>™</sup> CE devices are driven with optimal gate driving techniques, they exhibit low temperature rise and provide high efficiency performance. These devices are robust and are capable of withstanding higher stress under fault conditions. This high reliability feature makes them suitable for operation in environments which have unstable power conditions. As an example, the stress on the PFC MOSFETs can be high under input line transient or faulty load conditions. The CoolMOS<sup>™</sup> CE devices safely carry high peak currents until the PWM controller responds to the transient condition.

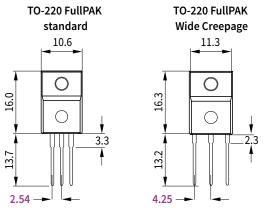
#### Infineon's 120 W TV SMPS design powered by IPD60R400CE and IPD60R1K5CE





DEMO-IDP2302-120W

Infineon offers a reference design for a 120 W TV SMPS which combines the advantages of XDP<sup>™</sup> digital power and CoolMOS<sup>™</sup> CE to offer the state-of-the-art performance, where IDP2302 is used to control system, and IPD60R400CE and IPD60R1K5CE are used in the PFC and LLC stages respectively. It is a slim design and cost optimized for customers.


#### CoolMOS<sup>™</sup> CE portfolio for TV

| Voltage class<br>[V]        | 50             | 00               |                                                                               | 600                       |                                 | 650            |                  | 700                             |
|-----------------------------|----------------|------------------|-------------------------------------------------------------------------------|---------------------------|---------------------------------|----------------|------------------|---------------------------------|
| R <sub>DS(on)</sub><br>[mΩ] | TO-220 FullPAK | TO-252<br>(DPAK) | TO-220 FullPAK                                                                | TO-252<br>(DPAK)          | TO-220 FullPAK<br>Wide Creepage | TO-220 FullPAK | TO-252<br>(DPAK) | TO-220 FullPAK<br>Wide Creepage |
| 190                         | IPA50R190CE    |                  |                                                                               |                           | IPAW60R190CE                    |                |                  |                                 |
| 280                         | IPA50R280CE    | IPD50R280CE      |                                                                               |                           | IPAW60R280CE                    |                |                  |                                 |
| 800                         | IPA50R800CE    | IPD50R800CE      | IPA60R800CE                                                                   | IPD60R800CE               |                                 |                |                  |                                 |
| 400/380                     | IPA50R380CE    | IPD50R380CE      | IPA60R400CE                                                                   | IPD60R400CE               | IPAW60R380CE                    | IPA65R400CE    | IPD65R400CE      |                                 |
| 500/460                     | IPA50R500CE    | IPD50R500CE      | IPA60R460CE                                                                   | IPD60R460CE               |                                 |                |                  |                                 |
| 650/600                     | IPA50R650CE    | IPD50R650CE      | IPA60R650CE                                                                   | IPD60R650CE               | IPAW60R600CE                    | IPA65R650CE    | IPD65R650CE      | IPAW70R600CE                    |
| 950/1000                    | IPA50R950CE    | IPD50R950CE      | IPA60R1K0CE                                                                   | IPD60R1K0CE               |                                 | IPA65R1K0CE    | IPD65R1K0CE      | IPAW70R950CE                    |
| 1500/1400                   |                | IPD50R1K4CE      | IPA60R1K5CE                                                                   | IPD60R1K5CE               |                                 | IPA65R1K5CE    | IPD65R1K5CE      |                                 |
| General                     | PFC: 190 m     | Ω – 600 mΩ       | $PFC:\ 190\ m\Omega - 600\ m\Omega \qquad LLC:\ 400\ m\Omega - 1500\ m\Omega$ |                           | Flyback: 400 r                  | mΩ – 1500 mΩ   | Flyback          |                                 |
| proposal                    | LLC: 400 mG    | Ω – 1500 mΩ      | Flyb                                                                          | Flyback: 400 mΩ – 1500 mΩ |                                 |                |                  |                                 |

www.infineon.com/ce



### New TO-220 FullPAK Wide Creepage package for CoolMOS™



Wider creepage for applications susceptible to pollution

The TO-220 FullPAK Wide Creepage increases the creepage distance to 4.25 mm compared to 2.54 mm for a standard TO-220 package. It fully meets requirements of the EN60664-1 standard that requires at least 3.6 mm for open frame electrical power supplies which are often found in LED TV, PC power or industrial power supplies: in these applications, air vents in the external casing to allow some air flow which will assist in cooling the internal components. This makes the inside susceptible to pollutants such as dust particles. These pollutants reduce the effective creepage between pins. High voltage arcing can destroy the MOSFET used in SMPS when the pollutants reduce the effective creepage distance.

The TO-220 FullPAK Wide Creepage reduces system cost by offering an alternative to frequently used approaches to increase creepage distance: the application of potting, the usage of sleeves, pre-bending of leads and other workarounds come at an extra cost of estimated 2-5 USD cents. This cost and the additional process steps can be removed with the Wide Creepage package.

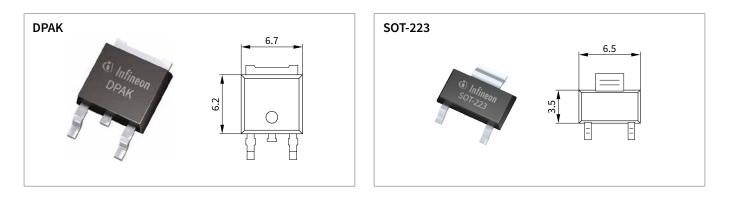
#### Benefits

- > Wide creepage of 4.25 mm to avoid arcing even in polluted environment
- > Cost savings of 2-5 USD cent in creepage protection by removing additional process steps
- > Fully automated PCB assembly eliminating process variation
- > FullPAK benefit of isolation, lower package capacitances, lower EMI

CoolMOS<sup>™</sup> CE offers 500 V, 600 V, 650 V and 700 V products in TO-220 FullPAK, TO-252 (DPAK) and TO-220 FullPAK Wide Creepage for TV SMPS solutions. For the PFC section 500 V/600 V products with an R<sub>DS(on)</sub> between 190 mΩ and 600 mΩ are preferred. We recommend 400 mΩ to 1500 mΩ 500 V/600 V products in the LLC section. For flyback 400 mΩ to 1500 mΩ 600 V/ 650 V parts are recommended for customer design.

## CoolMOS<sup>™</sup> CE for lighting applications

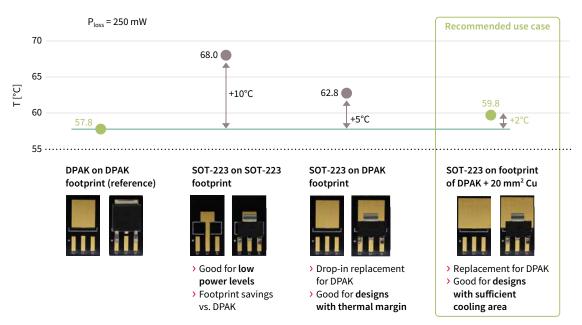
Good efficiency, ease-of-use and EMI performance at an attractive cost position make the CoolMOS<sup>™</sup> CE series the product of choice for LED drivers or LED tubes in buck, flyback, PFC and LLC topology. Its benefits include an improvement in efficiency and thermal behavior compared to standard MOSFETs.


CoolMOS<sup>™</sup> products aimed at lighting bring the benefits of highest quality and delivery reliability as outlined in the overview section for the CoolMOS<sup>™</sup> portfolio. However, the CoolMOS<sup>™</sup> CE series has been defined with a particular focus on the customers' needs, for an attractive price and fastest supply availability.

## CoolMOS™ CE in SOT-223 package

With the rapid conversion from CFL to LED lighting, customer requirements are rapidly changing: On the one hand, power levels are further decreasing, while on the other hand, increasing cost pressure compels power designers to optimize designs to a fraction of a cent. The completion of the CoolMOS<sup>™</sup> CE portfolio with the SOT-223 package is Infineon's answer to this challenge: It facilitates a further reduction in BOM cost – and additional footprint optimization in some designs – with only a minor compromise in terms of thermal behavior.

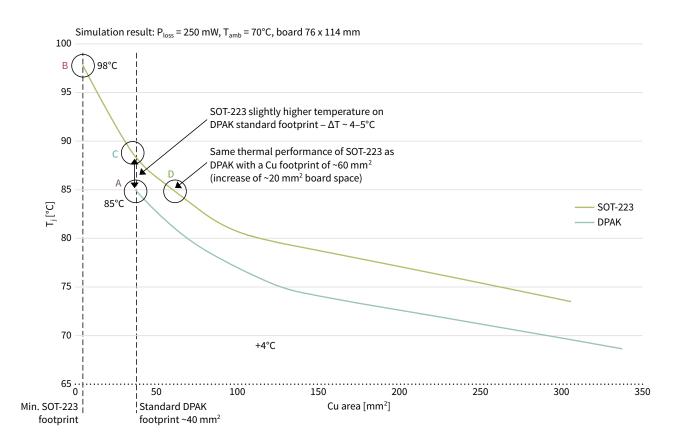
### SOT-223 as drop-in replacement for DPAK at a lower cost


The SOT-223 package with a decapped middle pin is fully compatible with the footprint of a DPAK, therefore allowing one-on-one drop-in replacements and second sourcing.





### Thermal behavior – on a par with DPAK


The thermal behavior of the SOT-223 primarily depends on the layout of the board where the package is used and on the power consumed. We have measured the thermals in a test environment and compared them with a simulation. Compared to a DPAK positioned on a typical DPAK footprint, the SOT-223 displays the following thermal behavior:



- > Same footprint as DPAK when mounted on a standard DPAK footprint, the SOT-223 package shows a temperature elevated by 4–5 K. This behavior makes the SOT-223 suitable for designs with a thermal margin
- > Footprint of DPAK plus ~20 mm<sup>2</sup> additional copper area in many designs, the MOSFET is mounted on a larger Cu area which serves as a heatsink embedded in the PCB. As soon as 20 mm<sup>2</sup> Cu or more is available in addition to the DPAK footprint, the temperature increase is no more than 2–3 K above DPAK and the SOT-223 can be used as a drop-in replacement
- SOT-223 on SOT-223 footprint when mounted on the SOT-223 footprint without an additional surrounding Cu area, the package leads to a 10 °C temperature increase compared to a DPAK. This means that the option of space savings via the SOT-223 is only useful for very low power applications

www.infineon.com/sot-223

### Thermal behavior – on a par with DPAK



The laboratory findings on thermal behavior are confirmed by a thermal simulation with  $T_{ambient} = 70$ °C and  $P_{loss} = 250$  mW. The size of the copper area in the footprint is shown on the x-axis, while the y-axis displays the temperature of the package top side. In the case of an SOT-223 on DPAK footprint, the 4–5 K temperature increase over DPAK is confirmed. But when used in conjunction with an enlarged copper area of ~20 mm<sup>2</sup>, a temperature increase of 2–3 K is measured.

#### CoolMOS<sup>™</sup> CE SOT-223 product portfolio

| R <sub>DS(ON)</sub> [mΩ] | 500 V       | 600 V       | 650 V       | 700 V       |
|--------------------------|-------------|-------------|-------------|-------------|
| 3400                     |             | IPN60R3K4CE |             |             |
| 3000                     | IPN50R3K0CE |             |             |             |
| 2000/2100                | IPN50R2K0CE | IPN60R2K1CE |             |             |
| 1400/1500                | IPN50R1K4CE | IPN60R1K5CE | IPN65R1K5CE | IPN70R1K5CE |
| 950/1000                 | IPN50R950CE | IPN60R1K0CE |             | IPN70R1K0CE |
| 800                      | IPN50R800CE |             |             |             |
| 650                      | IPN50R650CE |             |             |             |

## CoolMOS™ CE – demonstrator boards

### ICL8201 demoboard with 500 V CoolMOS<sup>™</sup>

End application: 5 W-10 W LED lamp



| Parameter              | Value                                     |
|------------------------|-------------------------------------------|
| Output power           | 7.5 W                                     |
| Input voltage          | 90 V <sub>AC</sub> -265 V <sub>AC</sub>   |
| Frequency              | 50 Hz/60 Hz                               |
| Power factor           | > 0.95 at low line<br>> 0.80 at high line |
| THD                    | < 20% at low line<br>< 30% at high line   |
| Efficiency             | 85%                                       |
| Output voltage         | $33 V_{DC} - 47 V_{DC}$                   |
| Output current         | 180 mA                                    |
| Infineon order code 1) | EVALLEDICL8201F1 / SP001339448            |

#### ICL5101 demoboard with 600 V CoolMOS<sup>™ 2)</sup>

End applications: indoor and outdoor high power LED lighting, high-bay and low-bay lighting, street lighting, parking garages and area lighting, office panel and shop lighting



| Parameter                         | Value                                   |
|-----------------------------------|-----------------------------------------|
| Output power                      | 110 W                                   |
| Input voltage                     | 85 V <sub>AC</sub> -305 V <sub>AC</sub> |
| Output voltage                    | 54 V <sub>DC</sub>                      |
| Output current                    | 2060 mA                                 |
| Efficiency                        | ~ 94%                                   |
| Power factor                      | > 99%                                   |
| THD                               | < 10%                                   |
| TAmbient                          | 80°C–100°C                              |
| Infineon order code <sup>1)</sup> | EVALLEDICL5101E1 / SP001296078          |

#### ICL8201 demoboard with 650 V CoolMOS™

End application: Single end cap T8 form factor LED lamp



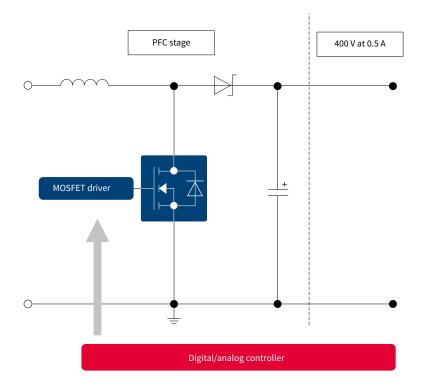
| Value                                    |
|------------------------------------------|
| 18 W                                     |
| 170 V <sub>AC</sub> -277 V <sub>AC</sub> |
| 50 Hz                                    |
| > 0.95                                   |
| < 20%                                    |
| > 90%                                    |
| 55 V <sub>DC</sub> -75 V <sub>DC</sub>   |
| 270 mA                                   |
| EVALLEDICL8201F2 / SP001339450           |
|                                          |

 $^{1)}$  Go to our website for more specific information about the demoboard  $^{2)}$  Also suitable for 500 V due to excellent V\_bulk regulation and error protection  $^{3)}$  Launch in 09/2016, higher efficiency and lower price

#### www.infineon.com/ce

#### ICL8105 demoboard with 800 V CoolMOS<sup>™ 3)</sup>

End application: Electronic control gear for LED luminaires (20 W–80 W)




| Parameter                    | Value                          |
|------------------------------|--------------------------------|
| Output power                 | 40 W                           |
| Nominal input voltage        | 90 V-300 V~                    |
| Input overvoltage            | 310 V~                         |
| Output voltage               | 15 V-45 V                      |
| Output overvoltage threshold | 50 V                           |
| Output current               | 880 mA                         |
| Efficiency                   | < 91%                          |
| Power factor                 | > 0.95                         |
| THD                          | < 16%                          |
| Infineon order code: 1)      | EVALLEDICL8105F2 / SP001296076 |
| 20 W-80 W version:           | EVALLEDICL8105E1 / SP001296074 |

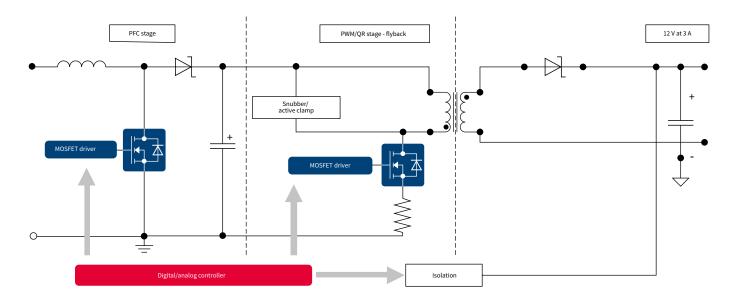
# CoolMOS™ CE – target topologies

#### Single switch topologies – boost/PFC

Typically used in high power adapters, PC power, TV power supplies front-end



| Design equations for MOSFET selection                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{DS} = V_{out}$                                                                                                                                                                                                                                                                        |
| $I_{D} = I_{out} * 1 / (1-D)$                                                                                                                                                                                                                                                             |
| $V_{DS_{ET}} = 1.5 * V_{DS}$ (with derating for all variables on board)                                                                                                                                                                                                                   |
| $\begin{array}{l} R_{DS(on)} \mbox{ max. 25°C for acceptable power dissipation in MOSFET package } \\ = (1.5 * P_{device}) / (I_{pk}{}^2 * D). I_{pk} \mbox{ is derated value of } I_D \mbox{ to cover all worst } \\ \mbox{ case operation conditions. } I_{pk} = 1.5 * I_D \end{array}$ |
| $P_{\text{device}} = (T_j - T_a) / R_{\text{thJA}}$                                                                                                                                                                                                                                       |


| Output power<br>[W] | Input voltage<br>[V]                   | PFC output load current at 400 V<br>output voltage<br>[A] | CoolMOS™ CE<br>device options |  |
|---------------------|----------------------------------------|-----------------------------------------------------------|-------------------------------|--|
| 200                 | 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 0.60                                                      | IPx60R400CE*                  |  |
| 150                 | 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 0.40                                                      | IPx60R460CE                   |  |
| 100                 | 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 0.30                                                      | IPx60R650CE                   |  |
| 75                  | 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 0.20                                                      | IPx60R800CE                   |  |

\* Two in parallel

## CoolMOS<sup>™</sup> CE – target topologies

#### Quasi-resonant flyback topologies

Typically used in chargers, adapters, auxiliary power supplies



| Design equations for MOSFET selection                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{DS} = V_{in} + VR$ , where VR = (0.8 * $V_{out}$ * (NP / NS))                                                                                                                                                                  |
| $I_{\rm D} = V_{\rm in} \star \text{ton} / L_{\rm p}$                                                                                                                                                                              |
| $V_{DS_{FET}} = 1.5 * V_{DS}$ (with derating for all variables on board)                                                                                                                                                           |
| $R_{DS(on)}$ max. 25°C for acceptable power dissipation in MOSFET package = (1.5 * $P_{device})$ / ( $I_{pk}^{-2}$ * D). $I_{pk}$ is derated value of $I_{D}$ to cover all worst case operation conditions. $I_{pk} = 1.5 * I_{D}$ |
| $P_{\text{device}} = (T_j - T_a) / R_{\text{thJA}}$                                                                                                                                                                                |

Selection is based for 85  $V_{AC}$  to 265  $V_{AC}$  input voltage, 100 kHz switching frequency. Reflected voltage (VR) design greatly affects MOSFET  $V_{DS}$  selection criteria. Mode of operation – CCM (continuous conduction mode) or DCM (discontinuous conduction mode) also affects MOSFET  $R_{DS(on)}/I_D$  selection criteria.

| Output<br>power<br>[W] | Output<br>voltage<br>[V] | Turns ratio<br>NP/NS | Primary<br>inductance<br>DCM<br>[uH] | Primary<br>inductance<br>CCM<br>[uH] | CoolMOS™CE<br>device options<br>DCM | CoolMOS™ CE<br>device options<br>CCM |
|------------------------|--------------------------|----------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
| 120                    | 19                       | 6                    | 71                                   | 143                                  | IPx65R650CE                         | IPx65R650CE                          |
| 100                    | 24                       | 5                    | 107                                  | 214                                  | IPx65R650CE                         | IPx65R1k0CE                          |
| 75                     | 19                       | 6                    | 107                                  | 214                                  | IPx65R650CE                         | IPx65R1k0CE                          |
| 50                     | 12                       | 10                   | 107                                  | 214                                  | IPx65R650CE                         | IPx65R1k0CE                          |
| 36                     | 12                       | 10                   | 143                                  | 286                                  | IPx70R600CE                         | IPx70R1K4CE                          |
| 25                     | 9                        | 13                   | 143                                  | 286                                  | IPx70R950CE                         | IPx70R1K4CE                          |
| 15                     | 5                        | 24                   | 143                                  | 286                                  | IPx70R950CE                         | IPx70R1K4CE                          |
| 10                     | 5                        | 24                   | 214                                  | 429                                  | IPx70R1K4CE                         | IPx70R1K4CE                          |
| 5                      | 5                        | 24                   | 429                                  | 857                                  | IPx70R2K0CE                         | IPx70R1K4CE                          |

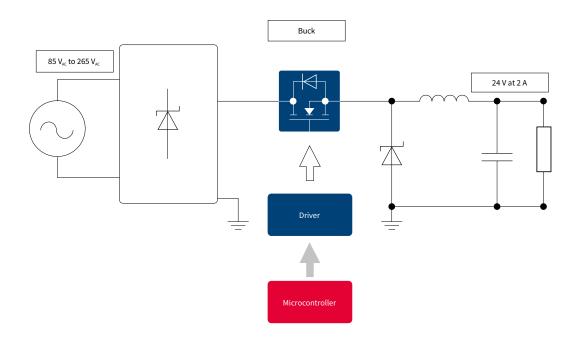
## CoolMOS<sup>™</sup> CE – target topologies

#### Wide input range flyback topologies

Typically used in LED drivers and adapters



| Design equations for MOSFET selection                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{DS} = V_{in} + VR$ , where VR = (0.8 * $V_{out}$ * (NP / NS))                                                                                                                                                                   |
| $I_p = V_{in} * ton / L_p$                                                                                                                                                                                                          |
| $V_{DS_{FET}} = 1.5 * V_{DS}$ (with derating for all variables on board)                                                                                                                                                            |
| $R_{DS(on)}$ max. 25°C for acceptable power dissipation in MOSFET package = (1.5 * $P_{device})$ / ( $I_{pk}^{2}$ * D). $I_{pk}$ is derated value of $I_{D}$ to cover all worst case operation conditions. $I_{pk}$ = 1.5 * $I_{D}$ |
| $P_{device} = (T_j - T_a) / R_{thJA}$                                                                                                                                                                                               |
|                                                                                                                                                                                                                                     |


Selection is based for 85  $V_{AC}$  to 300  $V_{AC}$  input voltage, 100 kHz switching frequency. Reflected voltage (VR) design affects MOSFET  $V_{DS}$  selection criteria. 800 V devices allow greater VR range. Mode of operation – CCM (continuous conduction mode) or DCM (discontinuous conduction mode) also affects MOSFET  $R_{DS(on)}/I_D$  selection criteria.

| Output<br>power<br>[W] | Output<br>voltage<br>[V] | Turns ratio<br>NP/NS | Primary<br>inductance<br>DCM<br>[uH] | Primary<br>inductance<br>CCM<br>[uH] | CoolMOS™CE<br>device options<br>DCM | CoolMOS™ CE<br>device options<br>CCM |
|------------------------|--------------------------|----------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
| 150                    | 24                       | 5                    | 71                                   | 143                                  | IPA80R310CE                         | IPA80R460CE                          |
| 100                    | 24                       | 5                    | 107                                  | 214                                  | IPA80R310CE                         | IPA80R650CE                          |
| 50                     | 12                       | 10                   | 107                                  | 214                                  | IPA80R310CE                         | IPA80R650CE                          |
| 36                     | 12                       | 10                   | 143                                  | 286                                  | IPA80R460CE                         | IPA80R1K0CE                          |
| 25                     | 9                        | 13                   | 143                                  | 286                                  | IPA80R460CE                         | IPA80R1K0CE                          |
| 15                     | 5                        | 24                   | 143                                  | 286                                  | IPA80R460CE                         | IPA80R1K0CE                          |
| 10                     | 5                        | 24                   | 214                                  | 429                                  | IPA80R650CE                         | IPA80R1K4CE                          |
| 5                      | 5                        | 24                   | 429                                  | 857                                  | IPA80R1K0CE                         | IPx80R2K8CE                          |

# CoolMOS™ CE – target topologies

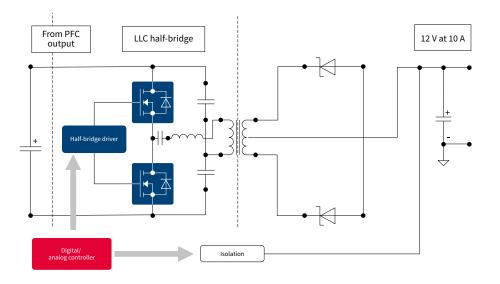
#### Single switch topologies - buck

Typically used in LED drivers, motor controllers, high power adapters, TV power supplies front-end



| Design equations for MOSFET selection                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DS</sub> = V <sub>in</sub>                                                                                                                                                                    |
| $I_{\rm D} = I_{\rm out}$                                                                                                                                                                            |
| $V_{DS_{FET}} = 1.5 * V_{DS}$ (with derating for all variables on board)                                                                                                                             |
| $R_{DS(on)}$ max. 25°C for acceptable power dissipation in MOSFET package = (1.5 * $P_{device}) / (I_{pk}^{2} * D). I_{pk}$ is derated value of $I_{D}$ to cover all worst case operation conditions |

| Input voltage<br>[V]                   | Output load current<br>[A] | Output power<br>[W] | CoolMOS™ CE<br>device options |
|----------------------------------------|----------------------------|---------------------|-------------------------------|
| 110 V <sub>AC</sub>                    | 7                          | 200                 | IPx50R190CE*                  |
| 110 V <sub>AC</sub>                    | 6                          | 180                 | IPx50R280CE*                  |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 5                          | 150                 | IPx60R400CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 4                          | 120                 | IPx60R460CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 4                          | 100                 | IPx60R650CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 3                          | 75                  | IPx60R650CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 3                          | 50                  | IPx60R1k0CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 2                          | 25                  | IPx60R1k5CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 2                          | 10                  | IPx60R2k1CE                   |
| 85 V <sub>AC</sub> 265 V <sub>AC</sub> | 1                          | 5                   | IPx60R3k4CE                   |


\* Two in parallel

## CoolMOS<sup>™</sup> CE – target topologies

#### Two switch topologies - half-bridge LLC

Typically used in PC power and TV power supplies

The ideal MOSFET for the LLC converter would allow for zero dead time (maximum power transfer) and no conduction loss. Hence selecting a lower  $R_{DS(on)}$  MOSFET will help lower condition losses. Since LLC operates fully in ZVS-mode (given appropriate MOSFET  $Q_G$ ,  $Q_{oss}$ , selected  $Q_{max}$  and m-values – and ample pre-programmed deadtime), switching loss caused by  $E_{oss}$  can be considered negligible, and to this extent,  $E_{oss}$  is not a critical MOSFET parameter for LLC.



Design equations for MOSFET selection  $V_{DS} = V_{in}$   $I_D = I_{out} * (NS / NP)$   $V_{DS_FET} = 1.5^* V_{DS}$  (with derating for all variables on board)  $R_{DS(on)} max. 25^{\circ}C \text{ for acceptable power}$ dissipation in MOSFET package = (1.5 \* P<sub>device</sub>) / ( $I_{pk}^2$  \* D).  $I_{pk}$  is derated value of  $I_D$  to cover all worst case operation conditions In LLC topology, the MOSFET body diode could potentially experience hard current commutation in abnormal conditions, if steps are not taken specifically to avoid this either by a good control scheme or additional circuitry in the topology. The CoolMOS<sup>™</sup> CE addresses the potential issue of reverse recovery of body diode by employing a self-snubbing scheme causing the channel to partially turn on at high dV/dt (induced by C<sub>GD</sub>/C<sub>GS</sub> voltage divider) in order to prevent avalanche breakdown, thus providing the extra measure of protection during hard body diode commutation.

| Input voltage<br>V <sub>DC</sub> [V] | Output<br>voltage<br>[V] | Output volt-<br>age V <sub>o</sub> [V] | Rac<br>[Ω] | Lr<br>[uH] | Lp<br>[uH] | Cr<br>[nF] | 600 V<br>CoolMOS™ CE<br>device<br>options | 500 V<br>CoolMOS™ CE<br>device<br>options |
|--------------------------------------|--------------------------|----------------------------------------|------------|------------|------------|------------|-------------------------------------------|-------------------------------------------|
| 400                                  | 250                      | 24                                     | 128        | 109        | 356        | 20         | IPx60R400CE                               | IPx50R380CE                               |
| 400                                  | 200                      | 24                                     | 160        | 136        | 445        | 16         | IPx60R460CE                               | IPx50R500CE                               |
| 400                                  | 150                      | 24                                     | 213        | 181        | 594        | 12         | IPx60R650CE                               | IPD50R650CE                               |
| 400                                  | 100                      | 24                                     | 320        | 272        | 890        | 8          | IPx60R800CE                               | IPD50R800CE                               |
| 400                                  | 75                       | 24                                     | 427        | 363        | 1187       | 6          | IPx60R1k0CE                               | IPD50R950CE                               |



## Infineon support for high voltage MOSFETs Useful links and helpful information

#### Further information, datasheets and documents

- > www.infineon.com/ce
- > www.infineon.com/coolmos
- > www.infineon.com/coolmos-500V
- > www.infineon.com/coolmos-600V

#### Videos

> www.infineon.com/mediacenter

- > www.infineon.com/coolmos-650V-700V
- > www.infineon.com/coolmos-800V
- > www.infineon.com/powermosfet-simulationmodels





| 500 V CoolMOS™ CE ACTIVE & PREFERRED |             |                |                               |             |                  |                  |                             |             |
|--------------------------------------|-------------|----------------|-------------------------------|-------------|------------------|------------------|-----------------------------|-------------|
| $R_{DS(on)}$<br>[m $\Omega$ ]        | TO-220      | TO-220 FullPAK | TO-220 FullPAK<br>Narrow Lead | TO-247      | TO-252<br>(DPAK) | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) | SOT-223     |
| 190                                  | IPP50R190CE | IPA50R190CE    |                               | IPW50R190CE |                  |                  |                             |             |
| 280                                  | IPP50R280CE | IPA50R280CE    |                               | IPW50R280CE | IPD50R280CE      |                  |                             |             |
| 380                                  | IPP50R380CE | IPA50R380CE    |                               |             | IPD50R380CE      |                  |                             |             |
| 500                                  | IPP50R500CE | IPA50R500CE    | IPAN50R500CE                  |             | IPD50R500CE      |                  |                             |             |
| 650                                  |             | IPA50R650CE    |                               |             | IPD50R650CE      |                  |                             | IPN50R650CE |
| 800                                  |             | IPA50R800CE    |                               |             | IPD50R800CE      |                  |                             | IPN50R800CE |
| 950                                  |             | IPA50R950CE    |                               |             | IPD50R950CE      | IPU50R950CE      |                             | IPN50R950CE |
| 1400                                 |             |                |                               |             | IPD50R1K4CE      | IPU50R1K4CE      |                             | IPN50R1K4CE |
| 2000                                 |             |                |                               |             | IPD50R2K0CE      | IPU50R2K0CE      |                             | IPN50R2K0CE |
| 3000                                 |             |                |                               |             | IPD50R3K0CE      | IPU50R3K0CE      |                             | IPN50R3K0CE |

#### 600 V CoolMOS<sup>™</sup> CE ACTIVE & PREFERRED

#### TO-251 R<sub>DS(on)</sub> TO-220 FullPAK TO-220 FullPAK TO-252 TO-251 TO-220 FullPAK SOT-223 [mΩ] Wide Creepage Narrow Lead (DPAK) (IPAK) (IPAK Short Lead) IPAW60R190CE 190 280 IPAW60R280CE 380 IPAW60R380CE IPA60R400CE IPD60R400CE IPS60R400CE 400 IPS60R460CE 460 IPA60R460CE IPD60R460CE 600 IPAW60R600CE 650 IPA60R650CE IPAN60R650CE IPD60R650CE IPS60R650CE 800 IPA60R800CE IPAN60R800CE IPD60R800CE IPS60R800CE IPU60R1K0CE IPS60R1K0CE IPN60R1K0CE 1000 IPA60R1K0CE IPD60R1K0CE IPA60R1K5CE IPD60R1K5CE IPU60R1K5CE IPS60R1K5CE IPN60R1K5CE 1500 2100 IPD60R2K1CE IPU60R2K1CE IPS60R2K1CE IPN60R2K1CE 3400 IPD60R3K4CE IPU60R3K4CE IPS60R3K4CE IPN60R3K4CE

#### 650 V CoolMOS<sup>™</sup> CE ACTIVE & PREFERRED

| $\begin{array}{c} R_{DS(on)} \\ [m\Omega] \end{array}$ | TO-220 | TO-220 FullPAK | TO-220 FullPAK<br>Narrow Lead | TO-252<br>(DPAK) | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) | SOT-223     |
|--------------------------------------------------------|--------|----------------|-------------------------------|------------------|------------------|-----------------------------|-------------|
| 400                                                    |        | IPA65R400CE    |                               | IPD65R400CE      |                  | IPS65R400CE                 |             |
| 650                                                    |        | IPA65R650CE    | IPAN65R650CE                  | IPD65R650CE      |                  | IPS65R650CE                 |             |
| 1000                                                   |        | IPA65R1K0CE    |                               | IPD65R1K0CE      |                  | IPS65R1K0CE                 |             |
| 1500                                                   |        | IPA65R1K5CE    |                               | IPD65R1K5CE      |                  | IPS65R1K5CE                 | IPN65R1K5CE |

#### 700 V CoolMOS<sup>™</sup> CE ACTIVE & PREFERRED TO-251 TO-220 FullPAK TO-262 TO-252 TO-251 R<sub>DS(on</sub> TO-220 (IPAK Short Lead SOT-223 ThinPAK 5x6 [mΩ] Wide Creepage (I<sup>2</sup>PAK) (DPAK) (IPAK Short Lead) with ISO Standoff) IPAW70R600CE IPD70R600CE IPS70R600CE IPSA70R600CE 600 IPAW70R950CE IPI70R950CE IPD70R950CE IPSA70R950CE IPS70R950CE 950 IPN70R1K0CE 1000 IPD70R1K4CE IPSA70R1K4CE IPS70R1K4CE 1400 IPN70R1K5CE 1500 IPD70R2K0CE IPSA70R2K0CE IPS70R2K0CE 2000 IPL70R2K1CES 2100

| 800 \ | / Coc | olMOS™ | ™ CE | ACTIVE |
|-------|-------|--------|------|--------|
|       |       |        |      |        |

| $R_{DS(on)}$<br>[m $\Omega$ ] | TO-220 | TO-220 FullPAK | TO-247 | TO-252<br>(DPAK) | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) |
|-------------------------------|--------|----------------|--------|------------------|------------------|-----------------------------|
| 310                           |        | IPA80R310CE    |        |                  |                  |                             |
| 460                           |        | IPA80R460CE    |        |                  |                  |                             |
| 650                           |        | IPA80R650CE    |        |                  |                  |                             |
| 1000                          |        | IPA80R1K0CE    |        | IPD80R1K0CE      | IPU80R1K0CE      |                             |
| 1400                          |        | IPA80R1K4CE    |        | IPD80R1K4CE      | IPU80R1K4CE      |                             |
| 2800                          |        |                |        | IPD80R2K8CE      | IPU80R2K8CE      |                             |

LCD TV Adapter Lighting PC Power Consumer LED





### CoolMOS™ CE portfolio package overview

| Package                              | Vol-        |      |       |        |         | R <sub>DS(on</sub> | <sub>)</sub> [mΩ] |         |         |           |           |
|--------------------------------------|-------------|------|-------|--------|---------|--------------------|-------------------|---------|---------|-----------|-----------|
|                                      | tage<br>[V] | 0-59 | 60-89 | 90-149 | 150-199 | 200-299            | 300-400           | 401-600 | 601-899 | 900-1500  | >1500     |
|                                      | 500         |      |       |        |         |                    |                   |         | 650/800 | 950/1400  | 2000/3000 |
| SOT-223                              | 600         |      |       |        |         |                    |                   |         |         | 1000/1500 | 2100/3400 |
|                                      | 650         |      |       |        |         |                    |                   |         |         | 1500      |           |
|                                      | 700         |      |       |        |         |                    |                   |         |         | 1000/1500 |           |
| TO-247                               | 500         |      |       |        | 190     | 280                |                   |         |         |           |           |
| IPAK                                 | 600         |      |       |        |         |                    |                   |         |         | 1000/1500 | 2100      |
|                                      | 800         |      |       |        |         |                    |                   |         |         | 1000/1400 | 2800      |
|                                      | 600         |      |       |        |         |                    | 400               | 460     | 650/800 | 1000/1500 | 2100/3400 |
| IPAK Short Lead                      | 650         |      |       |        |         |                    | 400               |         | 650     | 1000/1500 |           |
|                                      | 700         |      |       |        |         |                    |                   | 600     |         | 950/1400  | 2000      |
| IPAK Short Lead with<br>ISO Standoff | 700         |      |       |        |         |                    |                   | 600     |         | 950/1400  | 2000      |
|                                      | 500         |      |       |        |         | 280                | 380               | 500     | 650/800 | 950/1400  | 2000/3000 |
|                                      | 600         |      |       |        |         |                    | 400               | 460     | 650/800 | 1000/1500 | 2100/3400 |
| DPAK                                 | 650         |      |       |        |         |                    | 400               |         | 650     | 1000/1500 |           |
|                                      | 700         |      |       |        |         |                    |                   | 600     |         | 950/1400  | 2000      |
|                                      | 800         |      |       |        |         |                    |                   |         |         | 1000/1400 | 2800      |
| I <sup>2</sup> PAK                   | 700         |      |       |        |         |                    |                   |         |         | 950       |           |
|                                      | 500         |      |       |        | 190     | 280                | 380               | 500     | 650/800 | 950       |           |
| TO-220 FullPAK                       | 600         |      |       |        |         |                    | 400               | 460     | 650/800 | 1000/1500 |           |
| 10-220 FUIIPAK                       | 650         |      |       |        |         |                    | 400               |         | 650     | 1000/1500 |           |
|                                      | 800         |      |       |        |         |                    | 310               | 460     | 650     | 1000/1400 |           |
| TO-220 Standard                      | 500         |      |       |        | 190     | 280                | 380               | 500     |         |           |           |
|                                      | 500         |      |       |        |         |                    |                   | 500     |         |           |           |
| TO-220 FullPAK Narrow Lead           | 600         |      |       |        |         |                    |                   |         | 650/800 |           |           |
|                                      | 650         |      |       |        |         |                    |                   |         | 650     |           |           |
| TO-220 FullPAK Wide Creepage         | 600         |      |       |        | 190     | 280                | 380               | 600     |         |           |           |
|                                      | 700         |      |       |        |         |                    |                   | 600     |         | 950       |           |
| ThinPAK 5x6                          | 700         |      |       |        |         |                    |                   |         |         |           | 2100      |

ACTIVE & PREFERRED

ACTIVE

www.infineon.com/ce

#### 500 V CoolMOS™ CE

|             |                    | Superjunction MOSFET             |                        |                         |          |
|-------------|--------------------|----------------------------------|------------------------|-------------------------|----------|
| CoolMOS™ CE | STMicroelectronics | Alpha and Omega<br>Semiconductor | Vishay                 | Fuji Electric           | Toshiba  |
| IPA50R950CE |                    |                                  |                        |                         |          |
| IPA50R800CE | STF8NM50N          | AOTF8T50P                        | SiHFI840G<br>SiHF8N50D | FMV08N50E               |          |
| IPA50R650CE | STF10NM50N         |                                  |                        |                         |          |
| IPA50R500CE | STF11NM50N         | AOTF12N50                        | SiHFIB7N50A            | FMV12N50E<br>FMV12N50ES |          |
| IPA50R380CE |                    | AOTF14N50                        | SiHF16N50C             | FMV16N50E<br>FMV16N50ES |          |
| IPA50R280CE | STF19NM50N         |                                  | SiHF18N50D             | FMV20N50E<br>FMV21N50ES |          |
| IPA50R190CE | STF23NM50N         |                                  |                        |                         |          |
| IPP50R500CE | STP11NM50N         |                                  | SiHP12N50C             | FMP12N50E<br>FMP12N50ES | TK12A50D |
| IPP50R380CE | STP12NM50          |                                  | SiHP12N50E             | FMP16N50E<br>FMP16N50ES | TK13A50D |
| IPP50R280CE | STP19NM50N         |                                  | SiHP15N50E             | FMP20N50E<br>FMP20N50ES | TK18A50D |
| IPP50R190CE | STP23NM50N         |                                  | SiHP20N50E             |                         |          |
| IPD50R3K0CE |                    | AOD3N50                          | SiHFR420               |                         | TK3P50D  |
| IPD50R2K0CE |                    |                                  |                        |                         |          |
| IPD50R1K4CE |                    | AOD6N50                          | SiHD5N50D              |                         | TK5P50D  |
| IPD50R950CE |                    |                                  |                        |                         | TK7P50D  |
| IPD50R800CE | STD8NM50N          | AOD9N50                          |                        |                         |          |
| IPD50R650CE | STD10NM50N         |                                  |                        |                         |          |
| IPD50R500CE | STD11NM50N         |                                  |                        |                         |          |
| IPD50R380CE | STD14NM50N         |                                  | SiHD12N50E             |                         |          |
| IPD50R280CE |                    |                                  |                        |                         |          |
| IPU50R3K0CE |                    | AOU3N50                          | SiHFU420               |                         |          |
| IPU50R2K0CE |                    |                                  |                        |                         |          |
| IPU50R1K4CE |                    |                                  | SiHU5N50D              |                         |          |
| IPU50R950CE |                    |                                  |                        |                         |          |
| IPW50R280CE | STW19NM50N         | AOK22N50                         | SiHG460B               |                         |          |
| IPW50R190CE | STW23NM50N         |                                  | SiHFP31N50L            |                         |          |

#### 600 V CoolMOS™ CE

|             |                            |                    |                    |          | Superjunction MOS                | FET        |                                    |                                  |
|-------------|----------------------------|--------------------|--------------------|----------|----------------------------------|------------|------------------------------------|----------------------------------|
| CoolMOS™ CE | Fairchild<br>Semiconductor | STMicroelectronics | STMicroelectronics | Toshiba  | Alpha and Omega<br>Semiconductor | Vishay     | MagnaChip<br>Semiconductor<br>chip | NCE Micro- and<br>Nanotechnology |
| IPA60R1K5CE |                            |                    | STF5N60M2          |          |                                  |            |                                    | NCE60R1K2F                       |
| IPA60R1K0CE |                            | STF7NM60N          | STF7N60M2          | TK5A60W  | AOTF4S60                         |            |                                    | NCE60R900F                       |
| IPA60R800CE |                            | STF9NM60N          | STF9N60M2          | TK6A60W  |                                  |            | MMF60R750PTH                       |                                  |
| IPA60R650CE | FCPF600N60Z                | STF10NM60N         | STF10N60M2         | TK7A60W  | AOTF7S60                         | SiHF7N60E  | MMF60R580PTH                       | NCE60R540F                       |
| IPA60R460CE |                            |                    | STF12N60M2         | TK8A60W  | AOTF11S60                        |            |                                    |                                  |
| IPA60R400CE | FCPF380N60                 | STF13NM60N         | STF13N60M2         | TK10A60W |                                  | SiHF12N60E | MMF60R360PTH                       | NCE60R360F                       |
| IPD60R3K4CE |                            |                    |                    |          |                                  |            |                                    |                                  |
| IPD60R2K1CE |                            |                    |                    |          |                                  |            |                                    | NCE60R2K2K                       |
| IPD60R1K5CE |                            |                    | STD5N60M2          |          |                                  |            |                                    | NCE60R1K2K                       |
| IPD60R1K0CE | FCD900N60Z                 | STD7NM60N          | STD7N60M2          | TK5P60W  | AOD4S60                          |            |                                    | NCE60R900K                       |
| IPD60R800CE |                            | STD9NM60N          | STD9N60M2          | TK6P60W  |                                  |            |                                    |                                  |
| IPD60R650CE | FCD600N60Z                 | STD10NM60N         | STD10N60M2         | TK7P60W  | AOD7S60                          | SiHD7N60E  | MMD60R580PRH                       | NCE60R540K                       |
| IPD60R460CE |                            |                    | STD12N60M2         | TK8P60W  |                                  |            |                                    |                                  |
| IPD60R400CE |                            | STD13NM60N         | STD13N60M2         | TK10P60W | AOD11S60                         |            | MMD60R360PRH                       | NCE60R360K                       |
| IPU60R3K4CE |                            |                    |                    |          |                                  |            |                                    |                                  |
| IPU60R2K1CE |                            |                    |                    |          |                                  |            |                                    | NCE60R2K2I                       |
| IPU60R1K5CE |                            |                    | STU5N60M2          |          |                                  |            |                                    | NCE60R1K2I                       |
| IPU60R1K0CE |                            | STU7NM60N          | STU7N60M2          |          | AOU4S60                          |            |                                    | NCE60R900I                       |
| IPS60R3K4CE |                            |                    |                    |          |                                  |            |                                    |                                  |
| IPS60R2K1CE |                            |                    |                    |          |                                  |            |                                    |                                  |
| IPS60R1K5CE |                            |                    |                    |          |                                  |            |                                    |                                  |
| IPS60R1K0CE | FCU900N60Z                 |                    |                    | TK5Q60W  | AOI4S60                          |            | MMIS60R900PTH                      |                                  |
| IPS60R800CE |                            |                    |                    | TK6Q60W  |                                  |            |                                    |                                  |
| IPS60R650CE |                            |                    |                    | TK7Q60W  |                                  | SiHU7N60E  |                                    |                                  |
| IPS60R460CE |                            |                    |                    | TK8Q60W  |                                  |            |                                    |                                  |
| IPS60R400CE |                            |                    |                    | TK10Q60W | AOI11S60                         |            |                                    |                                  |

|                    |            | Planar MOSFET     |           |                         |                         |
|--------------------|------------|-------------------|-----------|-------------------------|-------------------------|
| STMicroelectronics | Vishay     | Huajing Rectifier | Silan     | MagnaChip Semiconductor | Fairchild Semiconductor |
|                    |            | CS8N50F A9R       | SVF840F   | MDF7N50BTH              | FDPF8N50NZ              |
|                    | IRFI840G   | CS10N50F A9R      | SVF9N50F  | MDF10N50TH              | FQPF9N50C               |
|                    |            |                   |           | MDF12N50BTH             | FDPF12N50T              |
| STF13NK50Z         | IRFIB7N50A | CS13N50F A9R      | SVF13N50F | MDF13N50BTH             | FDPF12N50NZ             |
| STP14NK50ZFP       |            | CS15N50F A9R      | SVF18N50F | MDF16N50GTH             | FDPF16N50               |
| STF20NK50Z         |            |                   | SVF20N50F | MDF18N50BTH             | FDPF18N50               |
| STP11NK50Z         |            | CS13N50 A8R       | SVF13N50T | MDP13N50BTH             | FDP12N50NZ              |
| STP14NK50Z         |            | CS15N50 A8R       |           | MDP16N50GTH             |                         |
| STP20NK50Z         |            |                   | SVF18N50T | MDP18N50BTH             | FDP18N50                |
| STD3NK50Z          | IRFR420    |                   |           | MDD3N50GRH              |                         |
| STD5NK50Z          |            |                   | SVF830D   | MDD5N50RH               | FDD5N50                 |
| STD6NK50Z          |            |                   | SVF840D   |                         | FDD6N50                 |
|                    |            |                   |           |                         | FDD8N50NZ               |
|                    |            |                   |           |                         |                         |
|                    | IRFU420    | CS3R50 A3         |           |                         | FQU4N50TU_WS            |
|                    |            |                   |           |                         | FQU3N50C                |
|                    |            | CS830 A3RD        | SVF830M   | MDIS5N50TH              |                         |
| STW20NK50Z         | IRFP460B   |                   |           |                         |                         |
|                    | IRFP31N50L |                   |           |                         |                         |

|                           |           |          |                    | Planar            | MOSFET    |                            |                            |
|---------------------------|-----------|----------|--------------------|-------------------|-----------|----------------------------|----------------------------|
| Silikron<br>Semiconductor | Lonten    | Toshiba  | STMicroelectronics | Huajing Rectifier | Silan     | MagnaChip<br>Semiconductor | Fairchild<br>Semiconductor |
|                           |           | TK5A60D  |                    | CS6N60F A9TY      | SVF6N60F  | MDF6N60BTH                 |                            |
| SSF7N60F                  | LSDO4N60  | TK9A60D  |                    | CS8N60F A9H       | SVF10N60F | MDF8N60BTH                 |                            |
| SSF10N60F                 |           | TK10A60D | STP10NK60ZFP       | CS10N60F A9HD     | SVF11N60F | MDFS10N60DTH               | FDPF10N60NZ                |
| SSF7NS60F                 | LSD07N60  | TK11A60D | STP13NK60ZFP       | CS12N60F A9HD     |           | MDF11N60TH                 | FDPF12N60NZ                |
|                           |           | TK13A60D |                    | CS20N60F A9H      | SVF18N60F |                            |                            |
| SSF11NS60F                | LSD11N60F | TK15A60D |                    |                   |           | MDF15N60GTH                | FDPF17N60NT                |
|                           | LSG02N60  |          |                    |                   |           |                            |                            |
| SSF5N60D                  |           |          | STD4NK60Z          | CS6N60 A4TY       | SVF5N60D  | MDD4N60BRH                 | FDD5N60NZ                  |
|                           | LSG03N60  |          | STD5NK60Z          | CS6N60 A4D        | SVF6N60D  | MDD6N60GRH                 | FDD7N60NZ                  |
|                           | LSG04N60  |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
| SSF7NS60D                 | LSG07N60  |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
| SSF11NS60D                | LSG11N60  |          |                    |                   |           |                            |                            |
|                           |           |          |                    | CS3N60 A3         |           |                            |                            |
| SSF5N60G                  |           |          | STD4NK60Z-1        | CS6N60 A3TY       | SVF5N60MJ |                            |                            |
| SSF6N60G                  |           |          |                    | CS6N60 A3D        | SVF6N60MJ |                            | FDU7N60NZTU                |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           | MDI4N60BTH                 |                            |
|                           |           |          |                    |                   |           | MDI6N60BTH                 |                            |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |
|                           |           |          |                    |                   |           |                            |                            |



#### 650 V CoolMOS™ CE

|             |                    |                    |          | Superjunction MOSFET             |            |                                  |
|-------------|--------------------|--------------------|----------|----------------------------------|------------|----------------------------------|
| CoolMOS™ CE | STMicroelectronics | STMicroelectronics | Toshiba  | Alpha and Omega<br>Semiconductor | Vishay     | NCE Micro- and<br>Nanotechnology |
| IPA65R1K5CE |                    | STF6N65M2          | TK5A65W  |                                  |            |                                  |
| IPA65R1K0CE |                    | STF9N65M2          | TK6A65W  |                                  |            | NCE65R900F                       |
| IPA65R650CE |                    | STF11N65M2         | TK8A65W  |                                  | SiHF6N65E  | NCE70R540F                       |
| IPA65R400CE | STF15NM65N         | STF16N65M2         | TK11A65W | AOTF11S65                        | SiHF12N65E | NCE65R360F                       |
| IPD65R1K5CE |                    | STD6N65M2          | TK5P65W  |                                  |            |                                  |
| IPD65R1K0CE |                    | STD9N65M2          | TK6P65W  |                                  |            | NCE65R900K                       |
| IPD65R650CE |                    | STD11N65M2         | TK8P65W  | AOD7S65                          | SiHD6N65E  | NCE70R540K                       |
| IPD65R400CE | STD11NM65N         | STD16N65M2         | TK11P65W |                                  |            | NCE65R360K                       |
| IPS65R1K5CE |                    | STU6N65M2          | TK5Q65W  |                                  |            |                                  |
| IPS65R1K0CE |                    | STU9N65M2          | TK6Q65W  |                                  |            | NCE65R900L                       |
| IPS65R650CE |                    | STU11N65M2         | TK8Q65W  | AOI7S65                          | SiHU6N65E  | NCE65R540I                       |
| IPS65R400CE |                    | STU16N65M2         | TK11Q65W |                                  |            |                                  |

#### 700 V CoolMOS™ CE

|             |                                                       |                            | Superjuncti                       | on MOSFET                 |          |            |                                          | Planar MOSFET     |
|-------------|-------------------------------------------------------|----------------------------|-----------------------------------|---------------------------|----------|------------|------------------------------------------|-------------------|
| CoolMOS™ CE | CoolMOS™ CE<br>(IPAK Short Lead<br>with ISO Standoff) | MagnaChip<br>Semiconductor | NCE Micro- and<br>Nano-technology | Silikron<br>Semiconductor | Lonten   | SemiHow    | Taiwan<br>Semiconductor<br>Manufacturing | Huajing Rectifier |
| IPD70R2K0CE |                                                       |                            | NCE70R2K2K                        |                           |          |            |                                          | CS6N70 A4D-G      |
| IPD70R1K4CE |                                                       | MMD70R1K4PRH               | NCE70R1K2K                        | SSF5NS70D                 |          | HCD6N70S   | TSM70N1R4CP                              |                   |
| IPD70R950CE |                                                       | MMD70R900PRH               | NCE70R900K                        |                           | LSG04N70 |            | TSM70N900CP                              |                   |
| IPD70R600CE |                                                       | MMD70R600PRH               | NCE70R540K                        |                           | LSG07N70 | HCD70R600S | TSM70N600CP                              |                   |
| IPS70R2K0CE | IPSA70R2K0CE                                          |                            | NCE70R2K2I                        | SSF6N70G                  |          |            |                                          | CS6N70            |
| IPS70R1K4CE | IPSA70R1K4CE                                          | MMIS70R1K4PTH              | NCE70R1K2I                        | SSF5NS70G                 |          | HCU6N70S   | TSM70N1R4CH                              |                   |
| IPS70R950CE | IPSA70R950CE                                          | MMIS70R900PTH              | NCE70R900I                        | SSF7NS70UG                | LSH04N70 |            | TSM70N900CH                              |                   |
| IPS70R600CE | IPSA70R600CE                                          |                            | NCE70R540I                        |                           | LSH07N70 | HCU70R600S | TSM70N600CH                              |                   |
| IPI70R950CE |                                                       |                            |                                   |                           | LSF04N70 |            |                                          |                   |

#### CoolMOS<sup>™</sup> CE in SOT-223 package

|                        |                     |                            |                        |                        |         |                                       | Superjunct | ion MOSFET                 |               |                                       |                             |
|------------------------|---------------------|----------------------------|------------------------|------------------------|---------|---------------------------------------|------------|----------------------------|---------------|---------------------------------------|-----------------------------|
| CoolMOS™ CE<br>SOT-223 | CoolMOS™ CE<br>DPAK | Fairchild<br>Semiconductor | STMicro<br>electronics | STMicro<br>electronics | Toshiba | Alpha and<br>Omega Semi-<br>conductor | Vishay     | MagnaChip<br>Semiconductor | Fuji Electric | NCE Micro-<br>and Nano-<br>technology | Silikron Semi-<br>conductor |
| IPN70R1K5CE            | IPD70R2K0CE         |                            |                        |                        |         |                                       |            |                            |               | NCE70R2K2K                            |                             |
| IPN70R1K5CE            | IPD70R1K4CE         |                            |                        |                        |         |                                       |            | MMD70R1K4PRH               |               | NCE70R1K2K                            | SSF5NS70D                   |
| IPN65R1K5CE            | IPD65R1K5CE         |                            |                        | STD6N65M2              | TK5P65W |                                       |            |                            |               |                                       | SSF5NS65UD                  |
| IPN60R3K4CE            | IPD60R3K4CE         |                            |                        |                        |         |                                       |            |                            |               |                                       |                             |
| IPN60R2K1CE            | IPD60R2K1CE         |                            |                        |                        |         |                                       |            |                            |               | NCE60R2K2K                            | SSF5N60D                    |
| IPN60R1K5CE            | IPD60R1K5CE         |                            |                        | STD5N60M2              |         |                                       |            |                            |               | NCE60R1K2K                            |                             |
| IPN60R1K0CE            | IPD60R1K0CE         | FCD900N60Z                 | STD7NM60N              | STD7N60M2              | TK5P60W | AOD4S60                               |            |                            |               | NCE60R900K                            |                             |
| IPN50R3K0CE            | IPD50R3K0CE         |                            |                        |                        |         | AOD3N50                               | SiHFR420   |                            |               |                                       |                             |
| IPN50R2K0CE            | IPD50R2K0CE         |                            |                        |                        |         |                                       |            |                            |               |                                       |                             |
| IPN50R1K4CE            | IPD50R1K4CE         |                            |                        |                        |         | AOD6N50                               | SiHD5N50D  |                            |               |                                       |                             |
| IPN50R950CE            | IPD50R950CE         |                            |                        |                        |         |                                       |            |                            |               |                                       |                             |
| IPN50R800CE            | IPD50R800CE         |                            | STD8NM50N              |                        |         | AOD9N50                               |            |                            |               |                                       |                             |
| IPN50R650CE            | IPD50R650CE         |                            | STD10NM50N             |                        |         |                                       |            |                            |               |                                       |                             |



|                        |           |          |                                  | Planar MOSFET     |           |                            |
|------------------------|-----------|----------|----------------------------------|-------------------|-----------|----------------------------|
| Silikron Semiconductor | Lonten    | Toshiba  | Alpha and Omega<br>Semiconductor | Huajing Rectifier | Silan     | MagnaChip<br>Semiconductor |
| SSF7N65F               |           | TK5A65D  | AOTF7N65                         | CS7N65FB9D        | SVF7N65F  | MDF7N65BTH                 |
| SSF5NS65UF             | LSD04N65  | TK7A65D  | AOTF10N65                        | CS10N65F A9R      | SVF10N65F | MDF10N65BTH                |
|                        | LSD07N65  | TK11A65D | AOTF12N65                        | CS12N65F A9H      | SVF18N65F | MDF11N65BTH                |
| SSSF11NS65UF           | LSD11N65F | TK13A65D | AOTF18N65                        |                   |           |                            |
| SSF5NS65UD             | LSG03N65  |          | AOD7N65                          | CS7N65 A4R        |           |                            |
|                        | LSG04N65  |          |                                  |                   |           |                            |
|                        | LSG07N65  |          |                                  |                   |           |                            |
|                        | LSG11N65F |          |                                  |                   |           |                            |
| SSF5NS65G              | LSH03N65  |          | AOI7N65                          | CS7N65 A3R        |           | MDI6N65BTH                 |
|                        | LSH04N65  |          |                                  |                   |           |                            |
| SSF7NS65G              | LSH07N65  |          |                                  |                   |           |                            |
|                        | LSH11N65F |          |                                  |                   |           |                            |

#### 800 V CoolMOS™ CE

|             |                              |                    | Superjuncti        | on MOSFET |                                    |                                  |                                            | Planar MOSFET |                    |
|-------------|------------------------------|--------------------|--------------------|-----------|------------------------------------|----------------------------------|--------------------------------------------|---------------|--------------------|
| CoolMOS™ CE | Fairchild Semi-<br>conductor | STMicroelectronics | STMicroelectronics | Toshiba   | MagnaChip<br>Semiconductor<br>chip | NCE Micro- and<br>Nanotechnology | Taiwan Semi-<br>conductor<br>Manufacturing | Toshiba       | STMicroelectronics |
| IPA80R1K4CE | FCPF1300N80Z                 |                    | STF6N80K5          |           |                                    |                                  |                                            | TK10A80E      | STP7NK80ZFP        |
|             |                              |                    |                    |           |                                    |                                  |                                            |               | STP8NK80ZFP        |
| IPA80R1K0CE | FCPF850N80Z                  | STF7NM80           | STF8N80K5          |           | MMF80R900PTH                       | NCE80R900F                       |                                            | TK10A80E      | STP10NK80ZFP       |
| IPA80R650CE | FCPF650N80Z                  |                    | STF10N80K5         | TK10A80W  | MMF80R650PTH                       |                                  |                                            |               |                    |
| IPA80R460CE | FCPF400N80Z                  | STF11NM80          | STF13N80K5         | TK12A80W  | MMF80R450PTH                       |                                  |                                            |               |                    |
| IPA80R310CE | FCPF290N80                   | STF18NM80          | STF23N80K5         | TK17A80W  |                                    |                                  |                                            |               |                    |
| IPD80R2K8CE | FCD2250N80Z                  |                    | STD4N80K5          |           |                                    |                                  |                                            |               |                    |
| IPD80R1K4CE | FCD1300N80Z                  |                    | STD6N80K5          |           |                                    |                                  |                                            |               |                    |
| IPD80R1K0CE | FCD850N80Z                   | STD7NM80           | STD8N80K5          | TK6P80W   | MMD80R900PRH                       | NCE80R900K                       | TSM80N950CP                                |               |                    |
| IPU80R2K8CE | FCU2250N80Z                  |                    | STU4N80K5          |           |                                    |                                  |                                            |               |                    |
| IPU80R1K4CE |                              |                    |                    |           |                                    |                                  |                                            |               |                    |
| IPU80R1K0CE | FCU850N80Z                   |                    | STU8N80K5          | TK6Q80W   |                                    | NCE80R900I                       | TSM80N950CH                                |               |                    |

|          |          |          |                                            |         |                        |         | Planar                                | MOSFET            |          |                            |                              |
|----------|----------|----------|--------------------------------------------|---------|------------------------|---------|---------------------------------------|-------------------|----------|----------------------------|------------------------------|
| Lonten   | SEMIHOW  | Silan    | Taiwan Semi-<br>conductor<br>Manufacturing | Toshiba | STMicro<br>electronics | Vishay  | Alpha and<br>Omega Semi-<br>conductor | Huajing Rectifier | Silan    | MagnaChip<br>Semiconductor | Fairchild Semi-<br>conductor |
|          |          |          |                                            |         |                        |         |                                       | CS6N70 A4D-G      |          |                            |                              |
|          | HCD6N70S |          | TSM70N1R4CP                                |         |                        |         |                                       |                   |          |                            |                              |
| LSG03N65 |          |          |                                            |         |                        |         | AOD7N65                               | CS7N65 A4R        |          |                            |                              |
| LSG02N60 |          |          |                                            |         |                        |         |                                       |                   |          |                            |                              |
|          |          |          |                                            |         | STD4NK60Z              |         |                                       | CS6N60 A4TY       | SVF5N60D | MDD4N60BRH                 | FDD5N60NZ                    |
| LSG03N60 |          |          |                                            |         | STD5NK60Z              |         |                                       | CS6N60 A4D        | SVF6N60D | MDD6N60GRH                 | FDD7N60NZ                    |
| LSG04N60 |          | SVS4N60D |                                            |         |                        |         |                                       |                   |          |                            |                              |
|          |          |          |                                            | TK3P50D | STD3NK50Z              | IRFR420 |                                       |                   |          | MDD3N50GRH                 |                              |
|          |          |          |                                            |         |                        |         |                                       |                   |          |                            |                              |
|          |          |          |                                            | TK5P50D | STD5NK50Z              |         |                                       |                   | SVF830D  | MDD5N50RH                  | FDD5N50                      |
|          |          |          |                                            | TK7P50D | STD6NK50Z              |         |                                       |                   | SVF840D  |                            | FDD6N50                      |
|          |          |          |                                            |         |                        |         |                                       |                   |          |                            | FDD8N50NZ                    |
|          |          |          |                                            |         |                        |         |                                       |                   |          |                            |                              |

## Notes

| <br> |
|------|
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

### Notes

| <br> |
|------|
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |

### Where to buy

Infineon distribution partners and sales offices: www.infineon.com/WhereToBuy

### Service hotline

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

- > Germany ...... 0800 951 951 951 (German/English)
- > China, mainland ...... 4001 200 951 (Mandarin/English)
- > India ...... 000 800 4402 951 (English)
- > USA ...... 1-866 951 9519 (English/German)
- > Other countries ....... 00\* 800 951 951 951 (English/German)

\* Please note: Some countries may require you to dial a code other than "00" to access this international number, please visit www.infineon.com/service for your country!



Mobile product catalog

Mobile app for iOS and Android.

#### www.infineon.com

Published by Infineon Technologies AG 9500 Villach, Austria

© 2016 Infineon Technologies AG. All rights reserved.

Order number: B152-I0298-V1-7600-EU-EC-P Date: 11/2016

#### Please note!

THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND ANY INFORMATION GIVEN HEREIN SHALL IN NO EVENT BE REGARDED AS A WARRANTY, GUARANTEE OR DESCRIPTION OF ANY FUNCTIONALITY, CONDITIONS AND/OR QUALITY OF OUR PRODUCTS OR ANY SUITABILITY FOR A PARTICULAR PURPOSE. WITH REGARD TO THE TECHNICAL SPECIFICATIONS OF OUR PRODUCTS, WE KINDLY ASK YOU TO REFER TO THE RELEVANT PRODUCT DATA SHEETS PROVIDED BY US. OUR CUSTOMERS AND THEIR TECHNICAL DEPARTMENTS ARE REQUIRED TO EVALUATE THE SUITABILITY OF OUR PRODUCTS FOR THE INTENDED APPLICATION.

WE RESERVE THE RIGHT TO CHANGE THIS DOCUMENT AND/OR THE INFORMATION GIVEN HEREIN AT ANY TIME.

#### Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

#### Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.