

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 002-19744 Rev. *A Revised October 17, 2017

Features

▪ USB Full Speed device interface driver

▪ Support for interrupt, control, bulk, and isochronous transfer types

▪ Run-time support for descriptor set selection

▪ USB string descriptors

▪ USB HID class support

▪ Bootloader support

▪ Audio class support (See the USBFS Audio section)

▪ MIDI devices support (See the USBFS MIDI section)

▪ Communications device class (CDC) support (See the USBUART (CDC) section)

▪ Mass storage device class (MSC) support (See the USBFS MSC section)

General Description

The USBFS Component provides a USB full-speed, Chapter 9 compliant device framework for
constructing HID-based and generic USB devices. It provides a low-level driver for the control
endpoint that decodes and dispatches requests from the USB host. Additionally, the Component
provides a GUI-based configuration dialog to aid in constructing your descriptors, allowing full
device definition that can be imported and exported. Commonly used descriptor templates are
provided with the Component and can be imported as needed in your design.

Cypress offers a set of USB development tools, called SuiteUSB, available free of charge when
used with Cypress silicon. You can obtain SuiteUSB from the Cypress website:
http://www.cypress.com.

When to Use a USBFS

Use the USBFS Component when you want to provide your application with a USB 2.0 compliant
device interface.

Full Speed USB (USBFS)
3.20

http://www.cypress.com/documentation/software-and-drivers/suiteusb-34-usb-development-tools-visual-studio

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 2 of 117 Document Number: 002-19744 Rev. *A

Quick Start

The USBFS Component has stringent clock requirements. The following conditions must be met
for a valid USB design:

▪ The USB clock must be 48 MHz.

▪ The accuracy of the USB clock must be within +/-0.25%.

To meet these conditions, navigate to the Clocks tab in the Design-Wide Resources (DWR) file
(project.cydwr). You may also drag and drop a USBFS Component from the Component Catalog
and then click on the error in the Notice List window. This will open the System Clock Editor in
the DWR file.

Perform the following changes to use the internal PSoC clocks to drive the USB. Alternatively,
use an external clock that satisfies the above conditions.

PSoC 4200L

IMO at 48 MHz, trim with USB.

1. IMO: Set to 48 MHz.

2. Trim: Set “Trim with” parameter in the IMO box as USB. You may also choose to trim with
WCO.

IMO at 24 MHz, PLL at 48 MHz.

1. IMO: Set to 24 MHz.

2. Trim: Set “Trim with” parameter in the IMO box as USB. You may also choose to trim with
WCO.

3. PLL0 or PLL1: Set either one of these to 48 MHz.

4. HFCLK: Set to either PLL0 or PLL1 depending on the previous step.

PSoC 3 and PSoC 5LP

IMO at 24 MHz, doubler for USB.

1. IMO: Set to 24 MHz.

2. ILO: Set to 100 kHz

3. USB: Enable and select IMOx2 to achieve 48 MHz.

Once the clock configuration meets the requirements, no warnings or errors should appear in the
Notice List window. Click on Build to generate your APIs.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 3 of 117

An Introduction to Universal Serial Bus 2.0

Application Note AN57294 is a foundation for understanding the USB protocol, specifically
focusing on the USB 2.0 specification. It is intended for those who are new to using USB in
embedded designs, as well as for those who need to use and understand more advanced
Cypress application notes.

Definitions

▪ USBFS – USB device supporting the full speed (FS) transfer mode

▪ ACK – USB Handshake packet indicating a positive acknowledgment

▪ CDC – Communication Device Class

▪ Descriptor – Data structure with a defined format used by USB devices to report their
attributes to a USB host.

▪ DMA – Direct Memory Access

▪ Endpoint – A uniquely addressable portion of a USB device that is the source or sink of
information in a communication flow between the host and device.

▪ FAT – File Allocation Table

▪ HID – Human Interface Device

▪ ISR – Interrupt Service Routine

▪ LPM – Link Power Management

▪ MIDI – Musical Instrument Digital Interface

▪ MIDI Channel – A MIDI Channel is a bus over which devices sending or receiving MIDI
data can communicate.

▪ MIDI Port – The point or points on a MIDI device where you connect to other MIDI
devices.

▪ NAK – USB Handshake packet indicating a negative acknowledgment

▪ SIE – Serial Interface Engine

▪ SOF – Start of Frame

▪ USB – Universal Serial Bus

▪ USBUART – Universal Serial Bus Universal Asynchronous Receive Transmit macro

http://www.cypress.com/documentation/application-notes/an57294-usb-101-introduction-universal-serial-bus-20

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 4 of 117 Document Number: 002-19744 Rev. *A

▪ USBMIDI – Universal Serial Bus Musical Instrument Digital Interface macro

▪ USB-IF – Universal Serial Bus Implementers Forum

USB Descriptor Configuration

The USBFS Component provides a GUI-based framework, allowing you to design a USB Full
Speed device by configuring the descriptors needed for your application. Descriptors are used by
the device to inform the host of its configuration, type, capabilities and power requirements. This
information is typically conveyed using a descriptor table as part of the device firmware. The
USBFS Component provides access to the 5 common USB descriptors, as well as some other
miscellaneous descriptor types. The following subsections give an overview of each of these
descriptors.

If you intend to design a USBFS Audio, USBFS MIDI, USBUART (CDC), or USBFS MSC device,
then refer to the appropriate sections. Once the descriptors and Component parameters are
configured, you may design your application firmware using the provided APIs.

Figure 1. Device Descriptor Tree

Device Descriptor

Configuration Descriptor

Interface Descriptor

Endpoint Descriptor

Interface Descriptor

Endpoint Descriptor

Endpoint Descriptor

Interface Association Descriptor

Configuration Descriptor

Interface Descriptor

Endpoint Descriptor

String Descriptors

Device Descriptor

Device descriptors are used to describe the characteristics of the device such as its product and
vendor IDs, the device class, number of device configurations and protocols. There can be only
one instance of the device descriptor per device, and this is defined for the entire device.

The USBFS Component provides device descriptor fields in the Device Descriptor tab. You
may add multiple devices in your design, which allows you to define a device descriptor for each
device.

http://www.usb.org/about

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 5 of 117

Configuration Descriptor

Configuration descriptors give information about a specific device configuration such as whether
the device is self-powered or bus-powered, the maximum power (current draw), the number of
interfaces and remote wakeup capability. When the device is enumerated, the host reads the
configuration descriptors for that device, and chooses which configuration to enable (only one
may be enabled at a time). For example a device may have a bus-powered configuration
descriptor, and a self-powered configuration descriptor. The host will check for each of these
configurations and enable whichever it is applicable for that particular host.

The USBFS Component provides access to configuration descriptor fields in the Device
Descriptor tab. You may instantiate multiple Configuration Descriptor instances in a device.

Interface Descriptor

Interface descriptors describe a specific interface within a configuration, which is a collection of
Endpoint descriptors (EP1 to EP8) that are grouped to specify a certain function or feature. Each
interface descriptor declares the USB class of the device, which identifies the device functionality
and aids in the loading of a proper driver for that specific functionality. Multiple interfaces may be
enabled at the same time, which enables multiple functionality for that single device
enumeration.

The USBFS Component provides access to interface descriptor fields in the Device Descriptor
tab. You may instantiate multiple interface descriptor instances under a configuration. For
multiple interface functionality, the Interface Association Descriptor should be used in
conjunction with individual interface descriptors.

Interface Association Descriptor

The Interface Association Descriptor (IAD) is used to describe two or more interfaces that are
associated with a single device function. It informs the host that the referenced interfaces are
linked together. For example, a USB to UART bridge design has two interfaces associated with
it: a control interface and a data interface. The IAD tells the host that these two interfaces are
part of the same function, which is a USB-UART, and falls under the communication device class
(CDC). This descriptor is not required in all cases of multiple interface designs. If an interface
should have different functionality from another interface then they should remain separate.

The Interface Association Descriptor can be added under the configuration descriptor in the
Device Descriptor tab in the USBFS Component.

Endpoint Descriptor

Endpoint descriptor specifies the characteristic of the endpoint such as the endpoint number
(EP1 to EP8), direction (In, Out), transfer type and maximum packet size. Endpoint 0 (EP0) is
used as a control endpoint and does not have a separate descriptor. It is always present in every
design. The host will examine the endpoints in the device and determine the bus bandwidth at
device enumeration.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 6 of 117 Document Number: 002-19744 Rev. *A

The USBFS Component provides access to endpoint descriptor fields in the Device Descriptor
tab. You may instantiate multiple endpoint descriptor instances under an interface descriptor.

String Descriptor

String descriptors are optional descriptors that provide user readable information about the
device to the host. These include strings such as the device name, manufacturer, serial number
and names of interfaces/configurations. If a string is not used, it must be set to value 0x00.

The USBFS Component allows string descriptor definition in each of the above mentioned
descriptors, where applicable. These are collected and also shown in the String Descriptor tab.
If a string field is left blank, the Component will take care of setting its value to 0x00.

Miscellaneous Descriptors

Aside from the above 5 common descriptor types, the USBFS Component provides access to
define the following optional descriptor types.

▪ Report Descriptors: Used for providing extended descriptor information and attributes.
The report descriptor is needed for a HID class. This is accessed in the HID Descriptor
tab in the USBFS Component.

▪ MS OS Descriptor: Provides Microsoft Windows OS with Windows specific information.
This is optional, and is configured in the String Descriptor tab in the USBFS Component.

▪ BOS Descriptor: Used to support Link Power Management (LPM) in PSoC 4200L
devices. Using this improves idle power consumption by speeding up the time to enter
and exit low power mode. You may use it by adding a BOS descriptor in the Device
Descriptor tab in the USBFS Component.

Refer to the Component Parameters section for more detail on these descriptor types.

Input/Output Connections

This section describes the various input and output terminals for the USBFS Component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.

Dp – In/Out*

This terminal is the Data plus input of the USB Component. This terminal is always hidden. This
input terminal is listed in the Pins tab of the <project>.cydwr file.

Dm – In/Out*

This terminal is the Data minus input of the USB Component. This terminal is always hidden.
This input terminal is listed in the Pins tab of the <project>.cydwr file.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 7 of 117

sof – Output *

The start-of-frame (sof) output allows the device to identify the start of the frame and synchronize
internal endpoint clocks to the host. This output is visible if the Enable SOF output parameter in
the Advanced tab is selected.

vbusdet – Input *

The vbusdet input provides the ability to connect the host VBUS for voltage monitoring.

▪ This input is visible if the VBUS Monitoring and IO pin external to the Component
parameters in the Advanced tab are selected.

▪ This input is hidden on the symbol and VBUS pin is available only in the <project>.cydwr
file if the VBUS Monitoring and IO pin internal to the Component parameters in the
Advanced tab are selected.

Component Parameters

The USBFS Component is driven by information generated by the USBFS Configure dialog. This
dialog, or “customizer,” facilitates the construction of the USB descriptors and integrates the
information generated into the driver firmware used for device enumeration.

The USBFS Component does not function without first running the wizard and selecting the
appropriate attributes to describe your device. The code generator takes your device information
and generates all of the needed USB descriptors.

To begin, drag a USBFS Component onto your design and double-click it to open the Configure
USBFS dialog. The Configure USBFS dialog contains the following tabs and settings:

Device Descriptor Tab

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 8 of 117 Document Number: 002-19744 Rev. *A

This tab is used to configure Device Descriptors. It contains a menu and a Descriptor Root tree
to select and configure different aspects of the Device Descriptors.

Menu items

Add <Level> Button

The Add <Level> button allows you to add a specified item. The added item depends on the
level of hierarchical in the Descriptor Root currently selected. The items include:

▪ Descriptor Root level: the Device Descriptor can be added.

▪ Device Descriptor level: the Configuration Descriptor or Binary Device Object Store (BOS)
Descriptor can be added.

▪ Configuration Descriptor level: the Interface Descriptor can be added. The drop down list
provides following choices:

□ General, Audio

□ MIDI, CDC

□ MSC or Association

Note Audio, MIDI, CDC, MSC interface descriptors must be created on the appropriate
tab before they appear in drop-down menu.

▪ Interface Descriptor level: the Alternate Settings can be added.

▪ Alternate Settings level: the Endpoint Descriptor can be added.

Delete Button

The Delete button allows you to remove the selected item in the Descriptor Root.

Import Button

The Import button allows you to import a descriptor configuration. In the drop-down list, you can
choose either:

▪ Import Current Descriptor – Loads the configuration of the selected descriptor.

▪ Import Root Descriptor – Loads the tree of descriptors. In this case, previously
configured descriptors are not removed.

Note The same Import and Save tool buttons are present on the other descriptors tabs: HID
Descriptor, Audio Descriptor, and CDC Descriptor. They are used to import and save
descriptor configurations that are configured on those tabs.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 9 of 117

The USBFS Component also provides a set of pre-defined descriptor templates for commonly
used configurations. These include the descriptors for HID class devices such as 3-button
mouse, 5-button joystick, Audio class descriptors, generic HID data transfers and MSC class
descriptor. You can import existing descriptors using the option Import Descriptor Root
(Ctrl+O). All the descriptor templates are provided in the following location:

<PSoC Creator Installation Folder>
\psoc\content\cyComponentlibrary\CyComponentLibrary.cylib\USBFS_v3.20\
Custom\template\

Save Button

The Save button allows you to save information about the Component configuration into an XML
configuration file. In the drop-down list, you can choose either:

▪ Save Current Descriptor – Saves the configuration of the selected descriptor.

▪ Save Root Descriptor – Saves the whole device descriptor tree.

Descriptor Root

When you select the Descriptor Root level of the tree, the Endpoint Buffer Management section
allows you to select the appropriate parameter.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 10 of 117 Document Number: 002-19744 Rev. *A

Endpoint Buffer Management

The USBFS block has a 512 bytes internal buffer. This buffer is used to temporarily store the
data transferred from and to the host through the endpoints. Each endpoint (which is available in
device descriptors) has a space allocated in the buffer that belongs to it. The following options
are how the endpoint buffer can be allocated and managed.

▪ Manual (default) – The CPU transfers data between system SRAM and the endpoint
buffer manually. The functions USBFS_LoadInEP() or USBFS_ReadOutEP() must be
called to execute data transfer. These functions return when the CPU completes data
transfer and the endpoint is released to the host to be read or written.

Manual endpoint buffer management provides two options for the endpoint buffer
allocation as follows:

□ Static Allocation – The buffer size is fixed for each endpoint and allocated
statically based on the device descriptor. The endpoint buffer size is equal to the
maximum packet size across all endpoints of the same number within the device
configuration. The buffers for the endpoints are allocated immediately after a
SET_CONFIGURATION request is received. This option is preferred when the
endpoint maximum packet size is the same or similar between alternate settings
under the same interface or between configurations.

For example, a device with a single configuration and interface has two alternate
settings where endpoint 1 maximum packet size is 8 (alternate settings 0) and
endpoint 1 maximum packet size is 512 (alternate settings 1). The buffer size
allocated for endpoint 1 is 512 bytes. The endpoint 1 buffer consumes all available
buffer space and it is not possible to add more endpoints to alternate settings 0. To
overcome that, the dynamic buffer allocation must be used in this case.

□ Dynamic Allocation – The buffer size for each endpoint is dynamically allocated
based on the current alternate settings. The buffer allocation occurs when a
SET_CONFIGURATION or SET_INTERFACE request is received. This option is
preferred when the endpoint maximum packet size differs between alternate
settings under the same interface or between configurations.

▪ DMA with Manual Buffer Management – The DMA transfers data between system
SRAM and endpoint buffer manually. The functions USBFS_LoadInEP() or
USBFS_ReadOutEP() must be called to initiate DMA data transfer. These functions return
when the DMA is initialized and data transfer has been started. How the DMA transfer
completion event is handled depends on endpoint direction:

□ IN direction: call the USBFS_LoadInEP() function to initiate DMA data transfer from
system SRAM into the endpoint buffer. After data has been transferred, the
Component is notified by the interrupt and releases the endpoint to be read by the
host in the next IN transaction. The endpoint state is changed from buffer empty to
full when the DMA transfer has been completed.

□ OUT direction: call the USBFS_ReadOutEP() when data is in the endpoint buffer
(endpoint state is buffer full) to initiate DMA data transfer from the endpoint buffer

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 11 of 117

into system SRAM. After data has been transferred, the Component is notified by
the interrupt and changes endpoint state from buffer full to empty. To allow host
writing new data into the OUT endpoint the USBFS_EnableOutEP() has to be
called when endpoint buffer is empty.

Only static buffer allocation is allowed for this endpoint buffer management mode.

▪ DMA with Automatic Buffer Management – The DMA transfers data between system
SRAM and endpoint buffer automatically. The functions USBFS_LoadInEP() or
USBFS_ReadOutEP() must be called once to initialize the DMA and register system
SRAM as an extension of the endpoint buffer. The DMA automatically accesses the
system SRAM while communicating via USB. This approach provides the ability to get the
total endpoint buffer, which exceeds 512 bytes.

The automatic buffer management implies the special endpoint buffer allocation scheme.
The 512 bytes USBFS buffer is divided between endpoints as follows:

□ 32 bytes are allocated for each active endpoint (endpoint which presents in the
device descriptors).

□ Remaining space is left for the common area. The common area is used as FIFO
to accept the data when endpoint buffer is full while communication.

The USBFS block generates DMA requests as soon as communication starts to keep
common area fully loaded for IN direction and keep common area empty for OUT
direction.

For example, device uses all 8 endpoints. The endpoint buffers consume 8 * 32 = 256
bytes, remaining bytes is common area 512 – 256 = 256 bytes. If only six endpoints are
used, the common area size would then be 320 bytes (512 - (6 * 32)).

For more details about operation in any of modes described above, refer to the USBFS Basic
Workflow In Different Modes section.

PSoC does not support DMA transactions directly between USBFS endpoints and other
peripherals. All DMA transactions involving USBFS endpoints (in and out) must terminate or
originate with main system memory.

Applications requiring DMA transactions directly between USBFS endpoints and other
peripherals must use two DMA transactions. The two transactions move data to main system
memory as an intermediate step between the USBFS endpoint and the other peripheral.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 12 of 117 Document Number: 002-19744 Rev. *A

Device Descriptor

A device descriptor describes general information about a USB device. It includes information
that applies globally to the device and all of the device’s configurations. A USB device can have
only one active device descriptor. There should be at least one device descriptor present under
the Descriptor Root; otherwise, the PSoC Creator will generate an error when the project is built.

Device Attributes

▪ Vendor ID – This is a 16-bit number used to uniquely identify USB devices belonging to a
specific vendor/manufacturer to a USB host. Vendor IDs are assigned by the USB
Implementers Forum (USB-IF). The following link in the USB-IF webpage explains the
method to obtain a vendor ID for your company:

 http://www.usb.org/developers/vendor/

Note Vendor ID 0x4B4 is a Cypress-only VID and may be used for development purposes
only. Products cannot be released using this VID; you must obtain your own VID.

▪ Product ID – This is a 16-bit number assigned by the device vendors/manufacturers to
uniquely identify a USB device to the USB host.

▪ Device Release – The device release is a 16-bit number and is used for versioning the
device. For example, this field can be used to identify the version of the firmware running
in the device and to determine if a firmware upgrade is required or not.

http://www.usb.org/developers/vendor/

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 13 of 117

▪ Device Class – This parameter defines the class of the USB device and is communicated
to the USB host at the time of device enumeration. It allows the host recognize the device
functionality and load the appropriate device driver to enable that functionality. Some
device classes can be defined in the Device Descriptor, whereas others are defined in
the Interface Descriptors. Refer to the official USB Class Codes page for more info.

If this field is set to Defined in Interface Description in the GUI, each interface specifies
its own class information and operates independently. If any other value is selected from
the drop-down menu (or manually entered), the device supports different class
specifications on different interfaces and the interfaces may not operate independently.
This value identifies the class definition used for the aggregate interfaces. Device class
options include number assigned in specification and description. The following options
are available in the drop down menu:

□ 00 (Defined in Interface Descriptor) – Interface specific device classes

□ 02 (CDC) – Communications and CDC Control defined in the Device Descriptor

□ FF (Vendor-Specific) – Vendor specific class defined in the Device Descriptor

Enter hexadecimal number manually if the drop-down menu does not provide required
device class.

▪ Device Subclass – This field is dependent on the value specified in the field Device
Class and must conform to the subclass options as specified in the official USB Class
Codes. If the Device Class field is reset to zero, this field must also be reset to zero. If the
Device Class field is not set to Vendor Specific, all values are reserved for assignment by
the USB-IF. The default value for this parameter is “No subclass”, which is the case for
many device classes.

▪ Device Protocol – This is an 8-bit number and is qualified by the value of the Device
Class and the Device Subclass fields. If a device supports class-specific protocols on a
device basis as opposed to an interface basis, this code identifies the protocols that the
device uses as defined by the specification of the device class. If this field is reset to zero,
the device does not use class-specific protocols on a device basis. However, it may use
class specific protocols on an interface basis. If this field is set to 0xFF, the device uses a
vendor-specific protocol on a device basis.

▪ Manufacturing String – This is an optional field and the string can be specified by the
manufacturer. The manufacturer description string is displayed when the device is
attached. The maximum length of the manufacturing string is 126 characters.

▪ Product String – Defines the product-specific description string to be displayed when the
device is attached.

▪ Serial String – This is an optional read-only field specified by the manufacturer in the
String Descriptor Tab or PSoC using USBFS_SerialNumString(). PSoC generates a serial
number string based on the die ID of the PSoC device. This field is used to distinctly
identify USB devices if multiple devices with same VID and PID are attached to the same

http://www.usb.org/developers/defined_class

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 14 of 117 Document Number: 002-19744 Rev. *A

host. The maximum length of the serial string is 126 characters. Also refer to Serial
Number String parameter in the String Descriptor tab.

▪ Device Number – This is read-only field, which identifies device descriptor in descriptor
tree. The USBFS Component allows you to create more than one USB device descriptor
setting. Click on “Descriptor Root” in the tree view and click on Add Device to add
another device. Each setting is numbered automatically by the GUI uniquely starting from
0. This number is used to identify which descriptor is sent to the host when PSoC device
tries to enumerate. The selection is performed using the function USBFS_Start(), which
accepts the device number and desired mode of operation as its parameters.

BOS Descriptor

USBFS Component supports Link Power Management (LPM) mode for PSoC 4200L devices.
This feature allows improved power management and is especially useful when we need to put
the device in Idle/Suspend state for a short period of time (for example, between communication
to save energy for mobile devices). The BOS Descriptor allows the device to include the LPM
capability. Refer to the LPM specification for more information.

Note If a BOS descriptor is added, the device may trigger a message on the host that says the
USBFS device could transfer faster if connected to the Superspeed USB 3.0 port. For example,
Windows OS triggers this message based on the bcdUSB field value of the Standard Device
Descriptor when it is greater than 2.0. The USB Component sets the bcdUSB value to 2.01
according to the LPM specification, when the BOS descriptor is supported. The communication
will be limited to USB 2.0 speed regardless of this message.

BOS Descriptor Attributes

▪ Descriptor Type – Specifies that this is a BOS descriptor.

http://www.usb.org/developers/docs/usb20_docs/
http://www.usb.org/developers/docs/usb20_docs/

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 15 of 117

▪ USB2.0 Extension Descriptor Support – This is a read-only field which specifies that the
USB 2.0 Extension descriptor is supported.

USB2.0 Extension Descriptor

USB2.0 Extension Descriptor Attributes

▪ Descriptor Type – This is a read-only field that specifies the type as a “Device
Capability”.

▪ Device Capability –This is a read-only field that specifies the capability type as a “USB
2.0 Extension”.

▪ Enable LPM – This option enables the LPM support for the device which will be reported
to the host during device enumeration. Enabled by default.

□ Baseline BESL – This check box enables the baseline Best Effort Service Latency
(BESL) value. When it is checked, you can specify the expected latency value in
the given field. This value is the expected latency from the beginning of a resume
signaling to the start of transactions to the device. This value will be sent to the
host during enumeration. Default value is 0.

□ Deep BESL – This check box enables the deep BESL value. When it is checked,
you can specify the expected latency value that can be greater than the baseline
BESL in the given field. This value will be sent to the host during enumeration.
Default value is 6. Recommended value is 8 or 9.

It is recommended that the baseline BESL value should be less than deep BESL. The
expected use case is that the baseline BESL value communicates a nominal power

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 16 of 117 Document Number: 002-19744 Rev. *A

savings in a design, whereas the deep BESL value communicates a significant power
savings in a design. The PSoC 4200L device provides a choice of low power modes to
select the desired power saving strategy. Refer to the PSoC Creator System Reference
Guide for more information about power management. Note that the USBFS Component
provides only APIs to support Deep Sleep power mode for PSoC 4200L.

Configuration Descriptor

The configuration descriptor describes information about a specific device configuration. The
descriptor describes the different interfaces provided by the configuration and each interface
may operate independently.

Configuration Attributes

▪ Configuration string – This field is used to specify the string that is used to identify the
configuration.

▪ Max Power (mA) – This number specifies the maximum possible current draw (power
consumption) of the USB device from the bus when the device is fully operational. This is
a Configuration Descriptor specific configuration. A low-powered device draws at most
100mA and a high-powered device draws at most 500 mA. The USB Component supports
both and hence the maximum value of this parameter is 500. The default value is 50 mA

Note The Device Power parameter reports whether the configuration is Bus-powered or
Self-powered. Device status reports whether the device is currently self-powered. If a
device is disconnected from its external power source, it updates device status to indicate
that it is no longer self-powered. A device cannot increase its power draw from the bus,
when it loses its external power source, beyond the amount reported by its configuration.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 17 of 117

▪ Device Power – Specifies whether it’s a Bus-powered or Self-powered device. The
USBFS Component does not support both settings simultaneously. The default value is
Bus-powered.

▪ Remote Wakeup – This option is used to specify if the USB device can wake-up the host
from a low power state. If this option is Enabled, the host wakes up on a signal from the
USB device. Before that the host must give device permission to execute remote wake-
up. This parameter is Disabled by default.

Interface Association Descriptor

Interface Association Descriptor (IAD) is used to group multiple interfaces, in a multi-function
device, to the one logical device function.

If a logical device function is performed using more than one interface in a USB device, the host
should be notified of this fact so that the host uses only a single driver to address this function.
Otherwise the host will recognize each interface as a separate logical function and may fail to
communicate with the USB device.

Note The IAD must be positioned just above the interfaces that need to be grouped together and
only contiguously numbered interfaces can be associated using the IAD.

Devices that use the IAD must use the device class, subclass, and protocol codes as defined in
the following table. This set of class codes is defined as the Multi-Interface Function Device
Class Codes.

Device Attributes Value Description

Device Class 0xEF Miscellaneous Device Class

Device Subclass 0x02 Common Class

Device Protocol 0x01 Interface Association Descriptor

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 18 of 117 Document Number: 002-19744 Rev. *A

To Add Interface Association Descriptor

1. Select Configuration Descriptor item in the Descriptor Root tree.

2. Click Add Interface tool button, select Association.

Interface Association Attributes

▪ Interface String – This is an optional field. This field specifies the string that should be
used to identify the Interface Association Descriptor when the device is connected to the
host.

▪ First Interface – Interface number of the first interface associated with this function. The
interface number can be found in the alternate settings of the corresponding interface
beside the label Interface Number.

▪ Interface Count – Number of contiguous interfaces associated with this function.

▪ Function Class – Class code. Usually the same value as Class value in the first
associated interface.

▪ Function Subclass – This field has the same value as subclass code in the first
associated interface.

▪ Protocol – This field has the same value as protocol code in the first associated interface.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 19 of 117

Interface Descriptor

The interface descriptor describes a specific interface within a configuration. A configuration
provides one or more interfaces, each with zero or more endpoint descriptors describing a
unique set of endpoints within the configuration. An interface may include alternate settings that
allow the endpoints and/or their characteristics to be varied after the device has been configured.
The default setting for an interface is always Alternate setting 0. Each device descriptor must
contain at least one interface descriptor.

Alternate Setting 0 is automatically provided to configure your device. If your device uses
isochronous endpoints, note that the USB 2.0 specification requires that no device default
interface settings can include any isochronous endpoints with nonzero data payload sizes. This
is specified using Max Packet Size in the Endpoint Descriptor.

For isochronous devices, use an alternate interface setting other than the default Alternate
Setting 0 to specify nonzero data payload sizes for isochronous endpoints by adding an
Alternate Setting in your tree view. Additionally, if your isochronous endpoints have a large data
payload, you should use additional alternate configurations or interface settings to specify a
range of data payload sizes. This increases the chance that the device can be used successfully
in combination with other USB devices.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 20 of 117 Document Number: 002-19744 Rev. *A

Alternate Settings

Interface Attributes

▪ Interface String – This is an optional field. The string specified in this field is displayed as
the interface string in the host to identify the corresponding interface.

▪ Interface Number – This is a read-only value used to identify the index of the interface in
the array of concurrent interfaces supported by this configuration. This value is computed
by the GUI for you since the interface numbers in a configuration always starts with zero
and is numbered consecutively for the successive interfaces in a configuration.

▪ Alternate Settings – This is a read-only value used to identify this alternate setting for the
interface identified in the Interface Number field. This value is computed by the GUI for
you since the alternate setting numbers within an interface always starts with zero and is
numbered consecutively for the successive alternate settings in an interface.

▪ Class – This field is used to identify the capabilities of the device and to load a device
driver based on that functionality. The Device Class parameter in the Device Descriptor
should be set to “Defined in Interface”. The information is contained in three bytes with
the names Base Class, Subclass, and Protocol. A list of class codes is available in the
USB-IF webpage: http://www.usb.org/developers/defined_class.

□ 00 Undefined – No class specified (Default)

□ 03 (HID) – Human Interface Device base class

□ FF (Vendor-Specific) – Vendor specific class

Enter hexadecimal number manually if the drop-down menu does not provide required
Class. The Interface Class code may also be manually entered in the field.

http://www.usb.org/developers/defined_class

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 21 of 117

▪ Subclass – Dependent on the selected class. Default is No subclass.

▪ Protocol – Dependent on the selected class and subclass. Default is 0x0.

Note String descriptors are optional. If a device does not support string descriptors, all
references to string descriptors within the device, configuration, and interface descriptors must
be set to zero.

HID Class Descriptor

The HID Class Descriptor is added when the Interface Descriptor’s Class parameter is set to
“HID”.

To Add HID Class Descriptor

1. Select an Alternate Setting item in the Descriptor Root tree.

2. Under Interface Attributes on the right, select (03) HID for the Class field.

HID Class Attributes

▪ Descriptor Type – Constant name identifying the type of class descriptor.

□ Report – Define items that describe a position or button state.

□ Physical – Provide information about the specific part or parts of the human body
that are activating a control or controls. For example, a Physical descriptor might
indicate that the right hand thumb is used to activate button 5. An application can
use this information to assign functionality to the controls of a device.

▪ Country Code – Numeric expression identifying the country code of the localized
hardware. This is optional and, is provided to inform the host about the language specific

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 22 of 117 Document Number: 002-19744 Rev. *A

functions associated with the device, such as the alternate language supported by a USB
HID keyboard.

▪ HID Report – This drop-down lists the available report descriptors. The report descriptors
are taken from the HID Descriptor tab.

Endpoint Descriptor

Endpoint Attributes

▪ Endpoint Number –Select one of the available eight endpoints (EP1 to EP8). The
USBFS GUI automatically removes the endpoints that are already used from the drop
down menu, since the selected endpoint should not be selected in any other endpoint
descriptor under the same Alternate Setting or by a different interface within a
configuration.

▪ Direction – Input or Output. USB transfers are host centric; therefore, IN refers to
transfers to the host; OUT refers to transfers from the host.

▪ Transfer Type – Control (CONT), Interrupt (INT), Bulk (BULK), or Isochronous Data
(ISOC) transfers

▪ Synch Type – This field is displayed only if the Transfer Type is set to ISOC. This
information is required in order to determine how to connect isochronous endpoints. The
available options are No synchronization, Asynchronous, Synchronous, and
Adaptive. A detailed explanation on synchronization is available in section 5.6 of the USB
Specification Revision 2.0.

http://www.usb.org/developers/docs/usb20_docs
http://www.usb.org/developers/docs/usb20_docs

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 23 of 117

▪ Usage type – This field is displayed only if the Transfer Type is set to ISOC. It is used to
indicate the purpose of this endpoint.

□ Data endpoint – Normal data transfers.

□ Feedback Endpoint – Explicit feedback information for one or more data
endpoints.

□ Implicit Feedback Data Endpoint – Data endpoint that also serves as an implicit
feedback endpoint for one or more data endpoints.

▪ Interval (ms) – Polling interval specific to this endpoint. For isochronous endpoints the
polling interval choice is restricted to: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
4096, 8192, 16384, 32768 (ms). For control and interrupt endpoints the polling interval
can be any value between 1 and 255. This field is not applicable for BULK endpoints.

▪ Max Packet Size – (In bytes) For a full-speed device the Max Packet Size is 64 bytes for
bulk or interrupt endpoints and 512 (1023 for DMA with Automatic Buffer Management
mode) bytes for isochronous endpoints. For full-speed device bulk endpoints only 8-, 16-,
32-, and 64-byte values are allowed.

The maximum packet size for the isochronous endpoints is limited by the USB block
memory size, which is equal to 512 bytes, in the Manual Memory Management mode
whereas in the DMA with Automatic Buffer Management DMA mode there is no has no
such limitation because the USB block memory is treated as a temporary buffer.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 24 of 117 Document Number: 002-19744 Rev. *A

String Descriptor Tab

This tab allows you to create and edit all the strings used in the Device Descriptor. The strings
created in the Device Descriptor tab are automatically populated in the String Descriptor tab.
You can also add new strings in the string descriptor tab and re-use these strings in different
descriptors using the drop-down menu option in the corresponding descriptor configurations.

Note String descriptors are optional. If a device does not support string descriptors, all
references to string descriptors within the device, configuration, and interface descriptors must
be left blank or set to 0.

String Descriptors

▪ LANGID – This indicates which language (English, German, Chinese, etc.) to use to
retrieve words in String Descriptors.

▪ String – The text used for string descriptor.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 25 of 117

Include Serial Number String

This parameter adds the serial number string that is used in the device descriptor. Include
Serial Number String checkbox must be checked in order to expose this option.

▪ String – This field is used to enter the string that should be used for the string descriptor.
It can only be entered if the Type is set to User Entered Text.

▪ Type – One of three options to specify the String, as follows:

□ User Entered Text – You can specify the string to be used for the String
Descriptor at design time. This is entered in the String field. If more than one
device connected to the same host uses the same Vendor ID, Product ID, and
Serial Number String, the USB host may not recognize all the devices. The USBFS
custom dialog will display a warning to indicate this, but will not cause any build or
compile errors.

□ User Call Back – The USBFS_SerialNumString() function sets the pointer to use
the user-generated serial number string descriptor. The application firmware may
supply the source of the USB device descriptor’s serial number string during run
time.

□ Silicon Generated Serial Number – This number is generated from the die ID of
the silicon. The die ID is applied to non-volatile memory in the device at
manufacturing time and it is not guaranteed to be unique.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 26 of 117 Document Number: 002-19744 Rev. *A

Include MS OS String Descriptor

This option adds the MS OS String Descriptor that provides a way for USB devices to supply
additional configuration information to the Microsoft operating systems, beginning with Windows
XP and above. Microsoft operating systems allow USB devices to be used by a Windows
application without having to install device drivers even if the USB device does not belong to HID
or Mass Storage Class. This requires the device descriptor to have a string descriptor with string
“MSFT100” at a specific location in the device descriptor.

▪ String – Constant string “MSFT100”.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 27 of 117

HID Descriptor Tab

The HID Descriptor tab allows you to quickly build HID descriptors for your device.

Toolbar Buttons

Use the Add Report button to add and configure HID Report Descriptors.

Use the Import button to import the HID report. In the drop-down list you can choose one of the
templates or From file.

The template options immediately load the selected HID report. The From file option will open a
HID report that was created by the USBFS Component, or from the USB-IF HID Descriptor Tool.
Refer to the USB-IF website for information about the HID Descriptor Tool:

 http://www.usb.org/developers/hidpage#HID Descriptor Tool

Version 2.4 of the tool is supported. The file formats supported are .hid, .h, and .dat. You need to
choose an appropriate file extension in the Open File dialog depending on the source file format.

http://www.usb.org/developers/hidpage#HID Descriptor Tool

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 28 of 117 Document Number: 002-19744 Rev. *A

HID Descriptors

▪ HID Items List – Report descriptors are composed of pieces of information. Each piece of
information is called an Item. This area allows you to add Items to add in the HID report.
Detailed information on the HID descriptors is available in the Device Class Definition for
Human Interface Devices (HID).

▪ Item Value (USAGE) – This area allows you select a value that is appropriate for the
currently selected HID item. The parameters in these windows are context based and will
vary depending upon the item value selected in the HID Items List window.

Audio Descriptor Tab

The Audio Descriptor tab is used to add and configure audio interface descriptors. See the
USBFS Audio section for more information.

MIDI Descriptor Tab

The MIDI Descriptor tab is used to add and configure MIDI Streaming interface descriptors. See
the USBFS MIDI section for more information.

http://www.usb.org/developers/hidpage/HID1_11.pdf
http://www.usb.org/developers/hidpage/HID1_11.pdf

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 29 of 117

CDC Descriptor Tab

The CDC Descriptor tab is used to add and configure communications and data interface
descriptors. See the USBUART (CDC) section for more information.

MSC Descriptor Tab

The MSC Descriptor tab is used to add and configure Mass Storage Class interface descriptors.
See the USBFS MSC section for more information.

Interrupts Tab

The Interrupts tab is only visible for PSoC 4200L devices and used to map interrupt sources to
the hardware interrupts.

The USB block has 13 interrupt sources which are mapped to the 3 hardware interrupts. These
interrupts are named Interrupt Low, Interrupt Medium, and Interrupt High. The USBFS
Component automatically maps interrupt sources to an interrupt and this can be used as a
guideline to assign the actual interrupt priority in the <project>.cydwr file. You can change the
interrupt to which each interrupt source it belongs to by using the radio buttons. The interrupt
sources are visible only when they are used for the USBFS Component operation. Refer also to
the Interrupt Service Routine section to get more details about interrupts utilized by USBFS
Component.

Note This tab is used only to map all the available interrupt sources to three interrupts. The
actual priority level for an interrupt is assigned in the Interrupts tab of the <project>.cydwr file.

▪ Start of Frame (SOF) Interrupt – This interrupt source triggers when a start of frame is
received. To enable this interrupt source, the Enable SOF interrupt option has to be
checked.

▪ Bus Reset Interrupt – This interrupt source triggers when a USB bus reset even occurs. It
is mandatory for USBFS Component operation.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 30 of 117 Document Number: 002-19744 Rev. *A

▪ Control Endpoint 0 Interrupt – This interrupt source triggers whenever the host tries to
communicate over the control endpoint. It is mandatory for USBFS Component operation.

▪ Data Endpoint 1-8 Interrupts – These interrupt sources trigger whenever the host
completes communication over the corresponding data endpoint. They are available only
when an endpoint is utilized by the device.

▪ Link Power Management (LPM) Interrupt – This interrupt source triggers when an LPM
entry USB extension packet is received. It is available when there is at least one BOS
descriptor present in the Device Descriptor tab.

▪ Arbiter Interrupt – This interrupt source triggers when one of the following conditions for
any endpoint are met: IN endpoint buffer full, endpoint DMA grant, endpoint buffer
overflow, endpoint buffer underflow, endpoint error in transaction, endpoint DMA
terminated (applicable for PSoC 4200L). It is available only when Endpoint Buffer
Management is set to DMA with Manual Buffer Management or DMA with Automatic
Buffer Management. Refer to the Interrupt Service Routine section.

Advanced Tab

This tab is used to provide advanced options related to vendor specific firmware implementations
and hardware level configurations.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 31 of 117

Enable SOF output

This parameter exposes the sof output on the USBFS symbol. The Start-of-Frame (SOF) output
allows the device to identify the start of the frame and synchronize application events with it. The
host issues SOF packets at a nominal rate of once every 1 ms for a full-speed bus. The host
stops sending SOF packets for more than 3 ms to suspend the USB device. This option is
unchecked by default.

Enable SOF interrupt

This parameter enables the interrupt generation when a SOF packet is received from the host.
The Component provides empty SOF interrupt handler which takes care about clearing interrupt
source. The user code can be inserted inside this interrupt handler use callback macros. Refer to
the Macro Callbacks section for more details. This option is unchecked by default.

Handle class requests in user code

The Component provides class requests handler for the supported classes (available in the
USBFS_cls.c file). This parameter overrides the class request handler function with a user
implementation. The USBFS_DispatchClassRqst() function must be implemented by the user to
service incoming class requests. This function is invoked whenever the class request is received
and must return with an indication on whether it was handled or not. This option is unchecked by
default.

Handle vendor requests in user code

The Component provides an empty vendor request handler (available in the USBFS_vnd.c file)
for unsupported vendor requests. This parameter overrides the vendor request handler function
with a user implementation. The USBFS_HandleVendorRqst() function must be implemented by
the user to service incoming vendor requests. This function is invoked whenever the vendor
request is received and must return with an indication on whether it was handled or not. This
option is unchecked by default.

VBUS Monitoring

The USB specification requires that no device supplies current on VBUS at its upstream facing
port at any time. To meet this requirement, the device must monitor for the presence or absence
of VBUS and remove power from the Dp/Dm pull-up resistor if VBUS is absent.

Note For bus-powered designs, power is removed when the USB cable is removed from the
host. It is imperative that for proper operation and USB certification, your device complies with
this requirement.

Note For self-powered designs, refer to the USB Compliance for Self-Powered Devices section.

By default, Enable VBUS Monitoring checkbox is unchecked. There are three sub-options
provided for VBUS monitoring:

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 32 of 117 Document Number: 002-19744 Rev. *A

▪ IO pin internal to the Component – the VBUS pin is added inside the USBFS
Component. The input state of this IO is returned by USBFS_VBusPresent() function. The
polling method should be used to monitor VBUS. The pin drive mode is High Impedance
Digital but could be changed using the pin-specific function,
USBFS_VBUS_SetDriveMode().

Note For PSoC 4200L device VBUS pin must be assigned to P0[0].

▪ IO pin external to the Component – vbusdet input terminal is exposed by the USBFS
Component. A digital input Pin Component must be connected to vbusdet terminal.
General use case for this option is to detect the VBUS using the port specific interrupt
logic on the IO pin rather than periodically reading the pin state. The input state of this IO
is returned by USBFS_VBusPresent() function. This option is set by default if VBUS
monitoring is enabled.

Note For PSoC 4200L device pin connected to vbsudet terminal must be assigned to
P0[0].

▪ VBUS power pad – This option is only applicable for PSoC 4200L devices. The USBFS
Component uses the VBUS power pad to return the VBUS status through the
USBFS_VBusPresent() function. This option allows you to save GPIO pins using a
dedicated power pin instead.

It is recommended to connect the VBUS through the resistive network, when the IO pin external
to the Component option is selected. Main aim of such connection is to save pin from voltage
picks on VBUS. An example schematic is shown in the following figure.

For a PSoC 3/PSoC 5LP device, the VBUS monitoring pin can be directly connected to VBUS, if
it is assigned to an SIO port. This configuration utilizes the hot swap capabilities of these pins.

Enable battery charger detection

This option is only applicable for PSoC 4200L devices. It allows you to detect USB host port with
charging capabilities by using the function USBFS_Bcd_DetectPortType(). If the host supports
battery charging, the device is allowed to draw up to 1.5 A of current from the host. This can be
used to charge a battery connected to the system. This option is unchecked by default.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 33 of 117

Generate 16-bit endpoint access APIs

This option is only applicable for PSoC 4200L devices. It enables generation of functions that
execute 16-bit access to the endpoint data registers:

▪ void USBFS_LoadInEP16(uint8 epNumber, const uint8 pData[], uint16 length)

▪ uint16 USBFS_ReadOutEP16(uint8 epNumber, uint8 pData[], uint16 length)

These functions provide faster processing of endpoints data but they require special SRAM
buffer allocation. For more information, refer to 16-bit Endpoint Access API section. This option
is unchecked by default.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the Component using
software. The following table lists and describes the interface to each function. The subsequent
sections discuss each function in more detail.

By default, PSoC Creator assigns the instance name “USBFS_1” to the first instance of a
Component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“USBFS.”

Basic USBFS Device APIs

Function Description

USBFS_Start() Activates the Component for use with the device and specific voltage
mode.

USBFS_Init() Initializes the Component's hardware.

USBFS_InitComponent() Initializes the Component's global variables and initiates communication
with host by pull-up D+ line.

USBFS_Stop() Disables the Component.

USBFS_GetConfiguration() Returns the currently assigned configuration. Returns 0 if the device is not
configured.

USBFS_IsConfigurationChanged() Returns the clear-on-read configuration state.

USBFS_GetInterfaceSetting() Returns the current alternate setting for the specified interface.

USBFS_GetEPState() Returns the current state of the specified USBFS endpoint.

USBFS_GetEPAckState() Determines whether an ACK transaction occurred on this endpoint.

USBFS_GetEPCount() Returns the current byte count from the specified USBFS endpoint.

USBFS_InitEP_DMA() Initializes DMA for EP data transfers.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 34 of 117 Document Number: 002-19744 Rev. *A

Function Description

USBFS_Stop_DMA() Stops DMA channel associated with endpoint.

USBFS_LoadInEP() Loads and enables the specified USBFS endpoint for an IN transfer.

USBFS_LoadInEP16() Loads and enables the specified USBFS endpoint for an IN transfer. This
API uses the 16-bit Endpoint registers to load the data.

USBFS_ReadOutEP() Reads the specified number of bytes from the Endpoint RAM and places it
in the RAM array pointed to by pSrc. Returns the number of bytes sent by
the host.

USBFS_ReadOutEP16() Reads the specified number of bytes from the Endpoint buffer and places it
in the system SRAM. Returns the number of bytes sent by the host. This
API uses the 16-bit Endpoint registers to read the data.

USBFS_EnableOutEP() Enables the specified USB endpoint to accept OUT transfers.

USBFS_DisableOutEP() Disables the specified USB endpoint to NAK OUT transfers.

USBFS_SetPowerStatus() Sets the device to self-powered or bus-powered.

USBFS_Force() Forces a J, K, or SE0 State on the USB Dp/Dm pins. Normally used for
remote wakeup.

USBFS_SerialNumString() Provides the source of the USB device serial number string descriptor
during run time.

USBFS_TerminateEP() Terminates endpoint transfers.

USBFS_VBusPresent() Determines VBUS presence for self-powered devices.

USBFS_Bcd_DetectPortType() Determines if the host is capable of charging a downstream port.

USBFS_GetDeviceAddress() Returns the currently assigned address for the USB device.

USBFS_EnableSofInt() Enables interrupt generation when a Start-of-Frame (SOF) packet is
received from the host.

USBFS_DisableSofInt Disables interrupt generation when a Start-of-Frame (SOF) packet is
received from the host.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 35 of 117

void USBFS_Start(uint8 device, uint8 mode)

Description: This function performs all required initialization for the USBFS Component. After this function
call, the USB device initiates communication with the host by pull-up D+ line. This is the
preferred method to begin Component operation.

Note that global interrupts have to be enabled because interrupts are required for USBFS
Component operation.

PSoC 4200L devices: when USBFS Component configured to DMA with Automatic Buffer
Management, the DMA interrupt priority is changed to the highest (priority 0) inside this
function.

PSoC 3/PSoC 5LP devices: when USBFS Component configured to DMA with Automatic
Buffer Management, the Arbiter interrupt priority is changed to the highest (priority 0) inside
this function.

Parameters: uint8 device: Contains the device number of the desired device descriptor. The device
number can be found in the Device Descriptor Tab of Configure dialog, under the settings of
desired Device Descriptor, in the Device Number field.

 uint8 mode: Operating voltage. This determines whether the voltage regulator is enabled for
5-V operation or if pass-through mode is used for 3.3-V operation. Symbolic names and their
associated values are given in the following table.

Power Setting Notes

USBFS_3V_OPERATION Disable the voltage regulator and pass-through VCC for
pull-up

USBFS_5V_OPERATION Enable the voltage regulator and use the regulator for
pull-up

USBFS_DWR_POWER_OPERATION Enable or disable the voltage regulator depending on the
power supply voltage configuration in the DWR tab. For
PSoC 3/5LP devices, the VDDD supply voltage is
considered and for PSoC 4A-L, the VBUS supply voltage
is considered.

void USBFS_Init(void)

Description: This function initializes or restores the Component according to the customizer Configure
dialog settings. It is not necessary to call USBFS_Init() because the USBFS_Start() routine
calls this function and is the preferred method to begin Component operation.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 36 of 117 Document Number: 002-19744 Rev. *A

void USBFS_InitComponent(uint8 device, uint8 mode)

Description: This function initializes the Component’s global variables and initiates communication with
the host by pull-up D+ line.

Parameters: uint8 device: Contains the device number of the desired device descriptor. The device
number can be found in the Device Descriptor Tab of Configure dialog, under the settings of
desired Device Descriptor, in the Device Number field.

 uint8 mode: Operating voltage. This determines whether the voltage regulator is enabled for
5-V operation or if pass-through mode is used for 3.3-V operation. Symbolic names and their
associated values are given in the following table.

Power Setting Notes

USBFS_3V_OPERATION Disable the voltage regulator and pass-through VCC for
pull-up

USBFS_5V_OPERATION Enable the voltage regulator and use the regulator for
pull-up

USBFS_DWR_POWER_OPERATION Enable or disable the voltage regulator depending on
the power supply voltage configuration in the DWR
tab. For PSoC 3/5LP devices, the VDDD supply
voltage is considered and for PSoC 4A-L, the VBUS
supply voltage is considered.

void USBFS_Stop(void)

Description: This function performs all necessary shutdown tasks required for the USBFS Component.

uint8 USBFS_GetConfiguration(void)

Description: This function gets the current configuration of the USB device.

Return Value: uint8: Returns the currently assigned configuration. Returns 0 if the device is not configured.

uint8 USBFS_IsConfigurationChanged(void)

Description: This function returns the clear-on-read configuration state. It is useful when the host sends
double SET_CONFIGURATION requests with the same configuration number or changes
alternate settings of the interface.

After configuration has been changed the OUT endpoints must be enabled and IN endpoint
must be loaded with data to start communication with the host.

Return Value: uint8: Returns a nonzero value when a new configuration has been changed; otherwise, it
returns zero.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 37 of 117

uint8 USBFS_GetInterfaceSetting(uint8 interfaceNumber)

Description: This function gets the current alternate setting for the specified interface.

It is useful to identify which alternate settings are active in the specified interface.

Parameters: uint8 interfaceNumber: Interface number

Return Value: uint8: Returns the current alternate setting for the specified interface.

uint8 USBFS_GetEPState(uint8 epNumber)

Description: This function returns the state of the requested endpoint.

Parameters: uint8 epNumber: Data endpoint number

Return
Value:

uint8: Returns the current state of the specified USBFS endpoint. Symbolic names and their
associated values are given in the following table. Use these constants whenever you write
code to change the state of the endpoints, such as ISR code, to handle data sent or received.

Return Value Description

USBFS_NO_EVENT_PENDING The endpoint is awaiting SIE action

USBFS_EVENT_PENDING The endpoint is awaiting CPU action

USBFS_NO_EVENT_ALLOWED The endpoint is locked from access

USBFS_IN_BUFFER_FULL The IN endpoint is loaded and the mode is set to ACK IN

USBFS_IN_BUFFER_EMPTY An IN transaction occurred and more data can be loaded

USBFS_OUT_BUFFER_EMPTY The OUT endpoint is set to ACK OUT and is waiting for data

USBFS_OUT_BUFFER_FULL An OUT transaction has occurred and data can be read

uint8 USBFS_GetEPAckState(uint8 epNumber)

Description: This function determines whether an ACK transaction occurred on this endpoint by reading
the ACK bit in the control register of the endpoint. It does not clear the ACK bit.

Parameters: uint8 epNumber: Contains the data endpoint number.

Return Value: uint8: If an ACKed transaction occurred, this function returns a nonzero value. Otherwise, it
returns zero.

uint16 USBFS_GetEPCount(uint8 epNumber)

Description: This function returns the transfer count for the requested endpoint. The value from the count
registers includes two counts for the two-byte checksum of the packet. This function
subtracts the two counts.

Parameters: uint8 epNumber: Contains the data endpoint number.

Return Value: uint16: Returns the current byte count from the specified USBFS endpoint or 0 for an invalid
endpoint.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 38 of 117 Document Number: 002-19744 Rev. *A

void USBFS_InitEP_DMA(uint8 epNumber, const uint8 *pData)

Description: This function allocates and initializes a DMA channel to be used by the USBFS_LoadInEP()
or USBFS_ReadOutEP() APIs for data transfer. It is available when the Endpoint Memory
Management parameter is set to DMA.

This function is automatically called from the USBFS_LoadInEP() and USBFS_ReadOutEP()
APIs.

Parameters: uint8 epNumber: Contains the data endpoint number.

const uint8 *pData: Pointer to a data array that is related to the EP transfers.

void void USBFS_Stop_DMA(uint8 epNumber)

Description: This function stops DMA channel associated with endpoint. It is available when the Endpoint
Buffer Management parameter is set to DMA.

Call this function when endpoint direction is changed from IN to OUT or vice versa to trigger
DMA re-configuration when USBFS_LoadInEP() or USBFS_ReadOutEP() functions are
called the first time.

Parameters: uint8 epNumber: The data endpoint number for which associated DMA channel is stopped.
The range of valid values is between 1 and 8.

To stop all DMAs associated with endpoints call this function with USBFS_MAX_EP
argument.

void USBFS_LoadInEP(uint8 epNumber, const uint8 pData[], uint16 length)

Description: This function performs different functionality depending on the Component’s configured
Endpoint Buffer Management. This parameter is defined in the Descriptor Root section in
Component Configure window.

Manual (Static/Dynamic Allocation): This function loads and enables the specified USB
data endpoint for an IN data transfer.

DMA with Manual Buffer Management: Configures DMA for a data transfer from system
SRAM to endpoint buffer. Generates request for a transfer.

DMA with Automatic Buffer Management:

1. Configure DMA. This is required only once, with parameter pData is not NULL.

2. Initiate DMA transaction on demand, with the pData pointer is NULL. Sets Data ready
status: This generates the first DMA transfer and prepares data in endpoint buffer.

Parameters: uint8 epNumber: IN data endpoint number into which the data is loaded.

const uint8 pData[]: Pointer to a data array from which the data into the endpoint space is
copied.

uint16 length: The number of bytes to transfer from the array and then send as a result of an
IN request. The valid values are between 0 and 512 for Manual Buffer Management modes
and up to 1023 for DMA with Automatic Buffer Management mode.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 39 of 117

void USBFS_LoadInEP16(uint8 epNumber, const uint8 pData[], uint16 length)

Description: This function performs different functionality depending on the Component’s configured
Endpoint Buffer Management. This parameter is defined in the Descriptor Root section in
Component Configure window.

Manual (Static/Dynamic Allocation): This function loads and enables the specified USB
data endpoint for an IN data transfer.

DMA with Manual Buffer Management: Configures DMA for a data transfer from system
SRAM to endpoint buffer. Generates request for a transfer.

DMA with Automatic Buffer Management:

1. Configure DMA. This is required only once, with parameter pData is not NULL.

2. Initiate DMA transaction on demand, with the pData pointer is NULL. Sets Data ready
status: This generates the first DMA transfer and prepares data in endpoint buffer.

Parameters: uint8 epNumber: IN data endpoint number into which the data is loaded.

const uint8 pData[]: Pointer to a data array from which the data into the endpoint space is
copied. The allocated data array size must be greater for one byte then endpoint maximum
packet size if its packet size is odd (data array size should be even). Also data array must be
aligned to the boundary of two bytes for ensure correct 16-bit data access to its elements
otherwise a hard fault condition will occur.

uint16 length: The number of bytes to transfer from the array and then send as a result of an
IN request. The valid values are between 0 and 512 for Manual Buffer Management modes
and up to 1023 for DMA with Automatic Buffer Management mode.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 40 of 117 Document Number: 002-19744 Rev. *A

uint16 USBFS_ReadOutEP(uint8 epNumber, uint8 pData[], uint16 length)

Description: This function performs different functionality depending on the Component’s configured
Endpoint Buffer Management. This parameter is defined in the Descriptor Root section in
Component Configure window.

Manual (Static/Dynamic Allocation): This function copies the specified number of bytes
from endpoint buffer to system SRAM buffer. After data has been copied the endpoint is
released to allow the host to write next data.

The function does not support partial data reads therefore all received bytes has to be read
at once. The length argument must be equal to the number of actually received bytes from
the host. Call function USBFS_GetEPCount() to get actual number of received bytes.

DMA with Manual Buffer Management: Configures DMA to transfer data from endpoint
buffer to system SRAM buffer and generates a DMA request. The firmware must wait until
the DMA completes the data transfer after calling the USB_ReadOutEP() API. For example,
by checking endpoint state:

while (USB_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))

{

}

The USBFS_EnableOutEP() has to be called to allow the host to write data into the endpoint
buffer after DMA has completed transfer data from OUT endpoint buffer to system SRAM
buffer.

The function does not support partial data reads therefore all received bytes has to be read
at once. The length argument must be equal to the number of actually received bytes from
the host. Call function USBFS_GetEPCount() to get actual number of received bytes.

DMA with Automatic Buffer Management: Configures DMA to transfer data from endpoint
buffer to system SRAM buffer. Generally, this function should be called once to configure
DMA for operation. Then use USBFS_EnableOutEP() to release endpoint to allow the host to
write next data. The allocated buffer size and length parameter must be equal to endpoint
maximum packet size.

Note We recommend calling it with length equal to endpoint maximum packet size to read all
received data bytes. Use return value to get actual number of received bytes.

Parameters: uint8 epNumber: OUT data endpoint number from where the data is read.

uint8 pData[]: Pointer to a data array to which the data from the endpoint space is copied.

uint16 length: The number of bytes to copy from the OUT endpoint buffer into system SRAM
data array. The valid values are between 1 and 512 for Manual Buffer Management modes
and up to 1023 for DMA with Automatic Buffer Management mode.

The additional restrictions for length parameter are provided in the function description.

Return Value: uint16: Number of bytes received

Side Effects: DMA with Automatic Buffer Management: The hardware can put more bytes in the SRAM
buffer than the host writes into OUT endpoint. The function USBFS_GetEPCount() should be
called to get actual number of bytes written by the host. For PSoC 3/PSoC 5LP the allocated
SRAM buffer size for OUT endpoint should be (Max Packet Size + 2) if it is not multiple of 32
to void memory corruption.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 41 of 117

uint16 USBFS_ReadOutEP16(uint8 epNumber, uint8 pData[], uint16 length)

Description: This function performs different functionality depending on the Component’s configured
Endpoint Buffer Management. This parameter is defined in the Descriptor Root section in
Component Configure window.

Manual (Static/Dynamic Allocation): This function copies the specified number of bytes
from endpoint buffer to system SRAM buffer. After data has been copied the endpoint is
released to allow the host to write next data.

The function does not support partial data reads therefore all received bytes has to be read at
once. The length argument must be equal to the number of actually received bytes from the
host. Call function USBFS_GetEPCount() to get actual number of received bytes.

DMA with Manual Buffer Management: Configures DMA to transfer data from endpoint
buffer to system SRAM buffer and generates a DMA request. The firmware must wait until the
DMA completes the data transfer after calling the USB_ReadOutEP() API. For example, by
checking endpoint state:

while (USB_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))

{

}

The USBFS_EnableOutEP() has to be called to allow the host to write data into the endpoint
buffer after DMA has completed transfer data from OUT endpoint buffer to system SRAM
buffer.

The function does not support partial data reads therefore all received bytes has to be read at
once. The length argument must be equal to the number of actually received bytes from the
host. Call function USBFS_GetEPCount() to get actual number of received bytes.

DMA with Automatic Buffer Management: Configures DMA to transfer data from endpoint
buffer to system SRAM buffer. Generally, this function should be called once to configure
DMA for operation. Then use USBFS_EnableOutEP() to release endpoint to allow the host to
write next data. The allocated buffer size and length parameter must be equal to endpoint
maximum packet size.

Note We recommend calling it with length equal to endpoint maximum packet size to read all
received data bytes. Use return value to get actual number of received bytes.

Parameters: uint8 epNumber: OUT data endpoint number from where the data is read.

uint8 pData[]: Pointer to a data array to which the data from the endpoint space is copied. The
allocated data array size must be greater for one byte then endpoint maximum packet size if
its packet size is odd (data array size should be even). Also data array must be aligned to the
boundary of two bytes for ensure correct 16-bit data access to its elements otherwise a hard
fault condition will occur.

uint16 length: The number of bytes to copy from the OUT endpoint buffer into system SRAM
data array. The valid values are between 1 and 512 for Manual Buffer Management modes
and up to 1023 for DMA with Automatic Buffer Management mode.

The additional restrictions for length parameter are provided in the function description

Return Value: uint16: Number of bytes received

Side Effects: DMA with Automatic Buffer Management: The hardware can put more bytes in the SRAM
buffer than the host writes into OUT endpoint. The function USBFS_GetEPCount() should be
called to get actual number of bytes written by the host.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 42 of 117 Document Number: 002-19744 Rev. *A

void USBFS_EnableOutEP(uint8 epNumber)

Description: This function enables the specified endpoint for OUT transfers. Do not call this function for IN
endpoints.

Parameters: uint8 epNumber: Contains the data endpoint number.

void USBFS_DisableOutEP(uint8 epNumber)

Description: This function disables the specified USBFS OUT endpoint. Do not call this function for IN
endpoints.

Parameters: uint8 epNumber: Contains the data endpoint number.

void USBFS_SetPowerStatus(uint8 powerStatus)

Description: This function sets the current power status. The device replies to USB GET_STATUS
requests based on this value. This allows the device to properly report its status for USB
Chapter 9 compliance. Devices can change their power source from self-powered to bus-
powered at any time and report their current power source as part of the device status. You
should call this function any time your device changes from self-powered to bus-powered or
vice versa, and set the status appropriately.

Parameters: uint8 powerStatus: Contains the desired power status, one for self-powered or zero for bus-
powered. Symbolic names and their associated values are given here:

Power Status Description

USBFS_DEVICE_STATUS_BUS_POWERED Set the device to bus-powered

USBFS_DEVICE_STATUS_SELF_POWERED Set the device to self-powered

void USBFS_Force(uint8 state)

Description: This function forces a USB J, K, or SE0 state on the D+/D– lines. It provides the necessary
mechanism for a USB device application to perform a USB Remote Wakeup. For more
information, see the USB 2.0 Specification for details on Suspend and Resume.

Parameters: uint8 state: A byte indicating which of the four bus states to enable. Symbolic names and
their associated values are listed here:

State Description

USBFS_FORCE_SE0 Force a Single Ended 0 onto the D+/D– lines

USBFS_FORCE_J Force a J State onto the D+/D– lines

USBFS_FORCE_K Force a K State onto the D+/D– lines

USBFS_FORCE_NONE Return bus to SIE control

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 43 of 117

void USBFS_SerialNumString(uint8 snString[])

Description: This function is available only when the User Call Back option in the Serial Number String
descriptor properties is selected. Application firmware can provide the source of the USB
device serial number string descriptor during run time. The default string is used if the
application firmware does not use this function or sets the wrong string descriptor.

Parameters: uint8 snString[]: Pointer to the user-defined string descriptor. The string descriptor should
meet the Universal Serial Bus Specification revision 2.0 chapter 9.6.7

Offset Size Value Description

0 1 N Size of this descriptor in bytes

1 1 0x03 STRING Descriptor Type

2 N - 2 Number UNICODE encoded string

For example: uint8 snString[16]={0x0E,0x03,'F',0,'W',0,'S',0,'N',0,'0',0,'1',0};

void USBFS_TerminateEP(uint8 epNumber)

Description: This function terminates the specified USBFS endpoint. This function should be used before
endpoint reconfiguration.

Parameters: uint8 epNumber: Contains the data endpoint number.

Side Effects: The device responds with a NAK for any transactions on the selected endpoint.

uint8 USBFS_VBusPresent(void)

Description: Determines VBUS presence for self-powered devices.

This function is available when the VBUS Monitoring option is enabled in the Advanced tab.

Return Value: The return value can be the following:

Return Value Description

1 VBUS is present

0 VBUS is absent

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 44 of 117 Document Number: 002-19744 Rev. *A

uint8 USBFS_Bcd_DetectPortType (void)

Description: This function implements the USB Battery Charger Detection (BCD) algorithm to determine
the type of USB host downstream port. This API is available only for PSoC 4 devices, and
should be called when the VBUS voltage transition (OFF to ON) is detected on the bus. If the
USB device functionality is enabled, this API first calls USBFS_Stop() API internally to
disable the USB device functionality, and then proceeds to implement the BCD algorithm to
detect the USB host port type. The USBFS_Start() API should be called after this API if the
USB communication needs to be initiated with the host.

Note This API is generated only if the “Enable Battery Charging Detection” option is enabled
in the “Advanced” tab of the Component GUI.

Note API implements the steps 2-4 of the BCD algorithm which are – Data Contact Detect,
Primary Detection, and Secondary Detection. The first step of BCD algorithm, namely, VBUS
detection – shall be handled at the application firmware level.

Return Value: uint8: The return value can be the following:

Return Value Description

USBFS_BCD_PORT_SDP Standard downstream port detected

USBFS_BCD_PORT_CDP Charging downstream port detected

USBFS_BCD_PORT_DCP Dedicated charging port detected

USBFS_BCD_PORT_UNKNOWN Unable to detect charging port type (proprietary charger type)

USBFS_BCD_PORT_ERR Error condition in detection process

uint8 USBFS_GetDeviceAddress(void)

Description: This function returns the currently assigned address for the USB device.

Return Value: uint8: Returns the currently assigned address. Returns 0 if the device has not yet been
assigned an address.

void USBFS_EnableSofInt(void)

Description: This function enables interrupt generation when a Start-of-Frame (SOF) packet is received
from the host.

void USBFS_DisableSofInt(void)

Description: This function disables interrupt generation when a Start-of-Frame (SOF) packet is received
from the host.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 45 of 117

Human Interface Device (HID) Class Support

Function Description

USBFS_UpdateHIDTimer() Updates the HID Report timer for the specified interface and returns 1 if the timer
expired and 0 if not. If the timer expired, it reloads the timer.

USBFS_GetProtocol() Returns the protocol for the specified interface

uint8 USBFS_UpdateHIDTimer(uint8 interface)

Description: This function updates the HID Report idle timer and returns the status and reloads the timer if
it expires.

Parameters: uint8 interface: Contains the interface number.

Return
Value:

uint8: Returns the state of the HID timer. Symbolic names are given here:

Return Value Notes

USBFS_IDLE_TIMER_EXPIRED The timer expired.

USBFS_IDLE_TIMER_RUNNING The timer is running.

USBFS_IDLE_TIMER_IDEFINITE The report is sent when data or state changes.

uint8 USBFS_GetProtocol(uint8 interface)

Description: This function returns the HID protocol value for the selected interface.

Parameters: uint8 interface: Contains the interface number.

Return Value: uint8: Returns the protocol value.

Bootloader Support

The USBFS Component can be used as a communication Component for the Bootloader. You
should use the following configurations to support communication protocol from an external
system to the Bootloader:

▪ Endpoint Number: EP1, Direction: OUT, Transfer Type: INT, Max Packet Size: 64

▪ Endpoint Number: EP2, Direction: IN, Transfer Type: INT, Max Packet Size: 64

Full recommended configurations are stored in the template file (bootloader.root.xml). Select
Descriptor Root on the Device Descriptor tree, click the Import button, browse to the following
directory, and open the bootloader.root.xml file.

< PSoC Creator Installation Folder >\psoc\content\cyComponentlibrary\
CyComponentLibrary.cylib\USBFS_v3.20\Custom\template\

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 46 of 117 Document Number: 002-19744 Rev. *A

See the System Reference Guide for more information about the Bootloader.

The USBFS Component provides a set of API functions for Bootloader use.

Function Description

USBFS_CyBtldrCommStart() Performs all required initialization for the USBFS Component, waits on
enumeration, and enables communication.

USBFS_CyBtldrCommStop() Calls the USBFS_Stop() function.

USBFS_CyBtldrCommReset() Resets the receive and transmit communication buffers.

USBFS_CyBtldrCommWrite() Allows the caller to write data to the bootloader host. The function handles polling
to allow a block of data to be completely sent to the host device.

USBFS_CyBtldrCommRead() Allows the caller to read data from the bootloader host. The function handles
polling to allow a block of data to be completely received from the host device.

void USBFS_CyBtldrCommStart(void)

Description: This function performs all required initialization for the USBFS Component, waits on
enumeration, and enables communication.

Side Effects: This function starts the USBFS with 3-V operation.

void USBFS_CyBtldrCommStop(void)

Description: This function performs all necessary shutdown tasks required for the USBFS Component.

Side Effects: Calls the USBFS_Stop() function.

void USBFS_CyBtldrCommReset(void)

Description: This function resets receive and transmit communication buffers.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 47 of 117

cystatus USBFS_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 *count, uint8
timeOut)

Description: Sends data to the host controller. A timeout is enabled. Reports the number of bytes
successfully sent.

Parameters: const uint8 pData[]: Pointer to the bytes of data to be written.

 uint16 size: Number of bytes to be written.

 uint16 *count: Pointer to where the Component writes the number of bytes actually written.

 uint8 timeOut: Amount of time (in units of 10 milliseconds) that the Component waits before
indicating that communication have timed out.

Return Value: cystatus: Returns CYRET_SUCCESS or CYRET_TIMEOUT

Return Value Description

CYRET_SUCCESS Returned if one or more bytes were successfully written

CYRET_TIMEOUT Returned if the host controller did not respond to the write in 10 *
timeOut milliseconds

cystatus USBFS_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 *count, uint8
timeOut)

Description: Receives data from the host controller. A timeout is enabled. Reports the number of bytes
successfully read.

Parameters: uint8 pData[]: Pointer to storage for the bytes of data to be read.

 uint16 size: Number of bytes to read.

 uint16 *count: Pointer to where the Component writes the number of bytes actually read.

 uint8 timeOut: Amount of time (in units of 10 milliseconds) that the Component waits before
indicating that communication have timed out.

Return Value: Returns CYRET_SUCCESS or CYRET_TIMEOUT

Return Value Description

CYRET_SUCCESS Returned if one or more bytes were successfully written

CYRET_TIMEOUT Returned if the host controller did not respond to the write in 10 *
timeOut milliseconds

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 48 of 117 Document Number: 002-19744 Rev. *A

USB Suspend, Resume, and Remote Wakeup

The USBFS Component supports USB Suspend, Resume, and Remote Wakeup functionality.
This functionality is tightly related with the user application, the USBFS Component only provides
the APIs to help user archive desired behavior. The additional processing required from the user
application. The description of application processing is provided in the bottom of this section.

Normally a SOF packet (at full speed) is sent by the host every 1 ms, and this is what keeps the
device awake. The host suspending the device by not sending anything to the device for 3 ms.
To recognize this condition the bus activity has to be checked. It can be done use
USBFS_CheckActivity() function. A suspended device may draw no more than 0.5 mA from
Vbus therefore it is desired to put device into low power mode to consume less current. The
USBFS_Suspend() function must be called before entering low power mode.

Note After entering low power mode, the data which is left in the IN or OUT endpoint buffers is
not restored after wakeup and lost. Therefore, it should be stored in the SRAM for OUT endpoint
or read by the host for IN endpoint before enter low power mode.

When the host wants to wake the device up after a suspend, it does so by reversing the polarity
of the signal on the data lines for at least 20ms. The signal is completed with a low speed end of
packet signal. The falling edge interrupt on Dp pin wakes up device and leads to exit low power
mode when host drives resume. The USBFS_Resume() function must be called after exit low
power mode.

To resume communication with the host the data endpoints has to be managed: the OUT
endpoints have to be enabled and IN endpoints have to be loaded with data. For DMA with
Automatic Buffer Management all endpoints buffers has to be initialized again before making
them available to the host.

Function Description

USBFS_CheckActivity() Returns the activity status of the bus since the last call of the function.

USBFS_Suspend() Prepares the USBFS Component to enter low power mode.

USBFS_Resume() Prepares the USBFS Component for active mode operation after exit low power
mode.

USBFS_RWUEnabled() Returns current remote wakeup status.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 49 of 117

uint8 USBFS_CheckActivity(void)

Description: This function returns the activity status of the bus. It clears the hardware status to provide
updated status on the next call of this function. It provides a way to determine whether any
USB bus activity occurred. The application should use this function to determine if the USB
suspend conditions are met.

Return Value: uint8 cystatus: Status of the bus since the last call of the function.

Return Value Description

1 Bus activity was detected since the last call to this function

0 Bus activity was not detected since the last call to this function

void USBFS_Suspend(void)

Description: This function prepares the USBFS Component to enter low power mode.

The interrupt on falling edge on Dp pin is configured to wakeup device when the host drives
resume condition. The pull-up is enabled on the Dp line while device is in low power mode.
The supported low power modes are Deep Sleep (PSoC 4200L) and Sleep (PSoC 3/ PSoC
5LP).

Note For PSoC 4200L devices, this function should not be called before entering device
Sleep mode. PSoC 4200L Sleep mode is only for CPU suspending.

Note After enter low power mode, the data which is left in the IN or OUT endpoint buffers is
not restored after wakeup and lost. Therefore it should be stored in the SRAM for OUT
endpoint or read by the host for IN endpoint before enter low power mode.

void USBFS_Resume(void)

Description: This function prepares the USBFS Component for active mode operation after exit low
power mode. It restores the Component active mode configuration such as device address
assigned previously by the host, endpoints buffer and disables interrupt on Dp pin.

The supported low power modes are Deep Sleep (PSoC 4200L) and Sleep (PSoC 3 /
PSoC 5LP).

Note For PSoC 4200L devices, this function should not be called after exiting Sleep.

Note To resume communication with the host, the data endpoints must be managed: the
OUT endpoints must be enabled and IN endpoints must be loaded with data. For DMA with
Automatic Buffer Management, all endpoints buffers must be initialized again before making
them available to the host.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 50 of 117 Document Number: 002-19744 Rev. *A

uint8 USBFS_RWUEnabled(void)

Description: This function returns the current remote wakeup status.

If the device supports remote wakeup, the application should use this function to determine
if remote wakeup was enabled by the host. When the device is suspended and it
determines the conditions to initiate a remote wakeup are met, the application should use
the USBFS_Force() function to force the appropriate J and K states onto the USB bus,
signaling a remote wakeup.

Return Value: Returns non-zero value if remote wakeup is enabled and zero otherwise.

Enter/Exit Low Power Mode Example

The following code is suggested to enter/exit low power mode after suspend condition has been
detected (host does not send anything to device for 3 ms):

/* Prepare USBFS to enter low power mode. */

USBFS_Suspend();

/* Enter low power mode: DeepSleep for PSoC 4 or Sleep for PSoC 3/

 * PSoC 5LP. The device wakes up when host drives resume on the bus.

 * The wakeup source is PICU - USB Dp pin falling edge.

 */

#if (CY_PSOC4)

 CySysPmDeepSleep();

#else

 CyPmSaveClocks();

 /* Specify wakeup source explicitly. */

 CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_PICU);

 CyPmRestoreClocks();

#endif /* (CY_PSOC4) */

/* Restore USBFS for active mode operation. */

USBFS_Resume();

/* Restore communication with host for IN and OUT endpoints. The code below

 * intended to show common approach and depends on USBFS Component

 * configuration. It has to be modified to suite your needs.

 */

/* Register buffers for IN and OUT endpoints (only applicable for DMA with

 * Automatic Buffer Management).

 */

#if (USBFS_EP_MANAGEMENT_DMA_AUTO)

 USBFS_LoadInEP (IN_EP, bufferIn, IN_EP_LENGTH);

 USBFS_ReadOutEP(OUT_EP, bufferOut, OUT_EP_LENGTH);

#endif /* (USBFS_EP_MANAGEMENT_DMA_AUTO) */

/* Enable OUT endpoint. */

USBFS_EnableOutEP(OUT_EP);

/* Load IN enpoint. */

#if (USBFS_EP_MANAGEMENT_DMA_AUTO)

 USBFS_LoadInEP(IN_EP, NULL, IN_EP_LENGTH);

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 51 of 117

#else

 USBFS_LoadInEP(IN_EP, bufferIn, IN_EP_LENGTH);

#endif /* (USBFS_EP_MANAGEMENT_DMA_AUTO) */

Link Power Management (LPM) Support

The LPM feature is available only for PSoC 4200L devices. The LPM related APIs (provided
below) are generated only if a BOS descriptor is present and Enable LPM option is enabled in
the USB 2.0 Extension Descriptor under any of the device descriptors. For details about LPM
please see Link Power Management (LPM) - 7/2007 spec on the usb.org.

LPM Functions

Function Description

USBFS_Lpm_GetBeslValue() Returns the BESL value sent by the host.

USBFS_Lpm_RemoteWakeUpAllowed() Return the remote wake up permission set for the device by host.

USBFS_Lpm_SetResponse() Set the response for the received LPM token from host.

USBFS_Lpm_GetResponse() Get the current response for the received LPM token from host.

uint32 USBFS_Lpm_GetBeslValue (void)

Description: This function returns the Best Effort Service Latency (BESL) value sent by the host as part
of the LPM token transaction.

Return Value: uint32: 4-bit BESL value received in the LPM token packet from the host

uint32 USBFS_Lpm_RemoteWakeUpAllowed (void)

Description: This function returns the remote wakeup permission set for the device by the host as part
of the LPM token transaction.

Return Value: uint32: 1-bit bRemoteWake field value received in the LPM token that enables device to
wake the host upon application-specific event.

Return Value Description

0 Remote wakeup is not allowed

1 Remote wakeup is allowed

http://www.usb.org/developers/docs/usb20_docs/

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 52 of 117 Document Number: 002-19744 Rev. *A

void USBFS_Lpm_SetResponse(uint32 response)

Description: This function configures the response in the handshake packet the device has to send
when an LPM token packet is received.

Parameters: uint32 response: type of response to return for an LPM token packet

Allowed response values:

Value Description

USBFS_LPM_REQ_ACK next LPM request will be responded with ACK

USBFS_LPM_REQ_NAK next LPM request will be responded with NAK

USBFS_LPM_REQ_NYET next LPM request will be responded with NYET

uint32 USBFS_Lpm_GetResponse(void)

Description: This function returns the currently configured response value that the device will send as
part of the handshake packet when an LPM token packet is received.

Return Value: uint32 response: type of handshake response that will be returned by the device for an
LPM token packet

Possible response values:

Return Value Description

USBFS_LPM_REQ_ACK next LPM request will be responded with ACK

USBFS_LPM_REQ_NAK next LPM request will be responded with NAK

USBFS_LPM_REQ_NYET next LPM request will be responded with NYET

Common Global Variables

Variable Description

USBFS_initVar Indicates whether the USBFS has been initialized. The variable is initialized to 0
and set to 1 the first time USBFS_Start() is called. This allows the Component to
restart without reinitialization after the first call to the USBFS_Start() routine.

If reinitialization of the Component is required, the variable should be set to 0
before the USBFS_Start() routine is called. Alternatively, the USBFS can be
reinitialized by calling the USBFS_Init() and USBFS_InitComponent() functions.

USBFS_device Contains the started device number. This variable is set by the USBFS_Start() or
USBFS_InitComponent() APIs.

USBFS_transferState This variable is used by the communication functions to handle the current
transfer state.

Initialized to TRANS_STATE_IDLE in the USBFS_InitComponent() API and after
a complete transfer in the status stage.

Changed to the TRANS_STATE_CONTROL_READ or
TRANS_STATE_CONTROL_WRITE in setup transaction depending on the
request type.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 53 of 117

Variable Description

USBFS_configuration Contains the current configuration number, which is set by the host using a
SET_CONFIGURATION request. This variable is initialized to zero in
USBFS_InitComponent() API and returned to the application level by the
USBFS_GetConfiguration() function.

USBFS_configurationChanged This variable is set to one after SET_CONFIGURATION and SET_INTERFACE
requests. It is returned to the application level by the
USBFS_IsConfigurationChanged() function.

USBFS_deviceStatus This is a two-bit variable that contains power status in the first (LSB) bit
(DEVICE_STATUS_BUS_POWERED or DEVICE_STATUS_SELF_POWERED)
and remote wakeup status (DEVICE_STATUS_REMOTE_WAKEUP) in the
second bit. This variable is initialized to zero in USBFS_InitComponent() API,
configured by the USBFS_SetPowerStatus() function.

Report Storage Area

If your HID descriptor contains reports, the Customizer creates a report storage area for data
reports from the HID class device. It creates separate report areas for IN, OUT, and FEATURE
reports. This area is sufficient for the case where no Report ID item tags are present in the HID
Report descriptor as well as for multiple Report IDs per report type.

Variable Description

USBFS_hidProtocol This variable is initialized in the USBFS_InitComponent() API to the
PROTOCOL_REPORT value. It is controlled by the host using the
HID_SET_PROTOCOL request. The value is returned to the user code
by the USBFS_GetProtocol() API.

USBFS_hidIdleRate This variable controls the HID report rate. It is controlled by the host
using the HID_SET_IDLE request and used by the
USBFS_UpdateHIDTimer() API to reload timer.

USBFS_hidIdleTimer This variable contains the timer counter, which is decremented and
reloaded by the USBFS_UpdateHIDTimer() API.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 54 of 117 Document Number: 002-19744 Rev. *A

Variable Description

USBFS_DEVICEx_CONFIGURATIONx
_INTERFACEx_ALTERNATEx_HID_F
EATURE[1]_BUF_IDx[2] [][3]

This optional report buffer is variable when feature (in or out) report
descriptor is created inside the HID descriptor. The size of this buffer is
automatically calculated by the customizer based on the HID report
definition and defined as
USBFS_DEVICEx_CONFIGURATIONx_INTERFACEx_ALTERNATEx_
HID_FEATURE[1]_BUF_SIZE_IDx[2][3]. The Host controls this buffer by
using SET_REPORT and GET_REPORT requests. The user code can
check the status completion block to determine if a control transfer on
the specific report ID is complete or not.

USBFS_DEVICEx_CONFIGURATIONx
_INTERFACEx_ALTERNATEx_HID_F
EATURE[1]_RPT_SCB_IDx[2][3]

The status completion block contains two data items, a one byte
completion status code and a two byte transfer length. This block has
the following structure.

typedef struct _USBFS_XferStatusBlock

{

 uint8 status;

 uint16 length;

} T_USBFS_XFER_STATUS_BLOCK;

The “main” application monitors the completion status to determine how
to proceed. Completion status codes are found in the following table.
The transfer length is the actual number of data bytes transferred.

Return Value Notes

USBFS_XFER_I
DLE

Indicates that the associated data buffer does not have
valid data and the application should not use the buffer.
The actual data transfer takes place while the
completion code is USBFS_XFER_IDLE, although it
does not indicate a transfer is in progress.

USBFS_XFER_
STATUS_ACK

Indicates the control transfer status stage completed
successfully. At this time, the application uses the
associated data buffer and its contents.

USBFS_XFER_
PREMATURE

Indicates that the control transfer was interrupted by
the SETUP of a subsequent control transfer. For
control writes, the content of the associated data buffer
contains the data up to the premature completion.

USBFS_XFER_
ERROR

Indicates that the expected status stage token was not
received.

1. The “FEATURE” field in the variable name represents the report type and will be changed to “IN” or “OUT” for the
IN or OUT reports.

2. The “_IDx” field in the variable name is present only when report ID is specified in the report descriptor and the
“x” symbol will be changed to the associated report ID number.

3. The “x” symbol in the name depends on the associated device, configuration, interface and alternate setting
number taken from Descriptor Root in the customizer.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 55 of 117

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the Component’s generated source files,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the Component’s source code.

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

▪ Write the function implementation (in any user file).

Callback Function [4] / Associated Macro Description

USBFS_cls.c

uint8 USBFS_DispatchClassRqst_Callback(uint8 interface) /

USBFS_DISPATCH_CLASS_RQST_CALLBACK

Handles class requests which are not
handled by the Component class handlers.

This callback function provides the interface
to which class request intended to and has to
return USBFS_TRUE if request is handled or
USBFS_FALSE otherwise.

USBFS_cdc.c

uint8 USBFS_DispatchCDCClass_CDC_READ_REQUESTS_Callback(viod) /

USBFS_DISPATCH_CDC_CLASS_CDC_READ_REQUESTS_CALLBACK

Handles CDC Class requests directed from
device to host.

This callback function has to return
USBFS_TRUE if request is recognized and
handled and USBFS_FALSE otherwise.

uint8 USBFS_DispatchCDCClass_CDC_WRITE_REQUESTS_Callback(void) /

USBFS_DISPATCH_CDC_CLASS_CDC_WRITE_REQUESTS_CALLBACK

Handles CDC Class requests directed from
host to device.

This callback function has to return
USBFS_TRUE if request is recognized and
handled and USBFS_FALSE otherwise.

USBFS_msc.c

uint8 USBFS_DispatchMSCClassRqst_Callback(void) /

USBFS_DISPATCH_MSC_CLASS_RQST_CALLBACK

Handles MSC Class requests.

This callback function has to return
USBFS_TRUE if request is recognized and
handled and USBFS_FALSE otherwise.

void USBFS_DispatchMSCClass_MSC_RESET_RQST_Callback(void) /

USBFS_DISPATCH_MSC_CLASS_MSC_RESET_RQST_CALLBACK

Performs application-specific actions before
response to MSC Reset request is sent to
host.

4 The callback function name is formed by Component function name optionally appended by short explanation
and “Callback” suffix.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 56 of 117 Document Number: 002-19744 Rev. *A

Callback Function [4] / Associated Macro Description

USBFS_vnd.c

uint8 USBFS_HandleVendorRqst_Callback(void) /

USBFS_HANDLE_VENDOR_RQST_CALLBACK

Handles vendor requests which are not
handled by the Component handlers.

This callback function has to return
USBFS_TRUE if request is recognized and
handled and USBFS_FALSE otherwise.

USBFS_midi.c

void USBFS_MIDI_Init_Callback(void) /

USBFS_MIDI_INIT_CALLBACK

Used in the USBFS_MIDI_InitInterface()
function to perform additional application-
specific actions.

void USBFS_MIDI_OUT_EP_Service_Callback(void) /

USBFS_MIDI_OUT_EP_SERVICE_CALLBACK

Used in the USBFS_MIDI_OUT_Service()
function to perform additional application-
specific actions.

void USBFS_MIDI1_ProcessUsbOut_EntryCallback(void) /

USBFS_MIDI1_PROCESS_USB_OUT_ENTRY_CALLBACK

Used in the USBFS_MIDI1_ProcessUsbOut()
function to perform additional application-
specific actions.

void USBFS_MIDI1_ProcessUsbOut_ExitCallback(void) /

USBFS_MIDI1_PROCESS_USB_OUT_EXIT_CALLBACK

Used in the USBFS_MIDI1_ProcessUsbOut()
function to perform additional application-
specific actions.

void USBFS_MIDI2_ProcessUsbOut_EntryCallback(void) /

USBFS_MIDI2_PROCESS_USB_OUT_ENTRY_CALLBACK

Used in the USBFS_MIDI2_ProcessUsbOut()
function to perform additional application-
specific actions.

void USBFS_MIDI2_ProcessUsbOut_ExitCallback(void) /

USBFS_MIDI2_PROCESS_USB_OUT_EXIT_CALLBACK

Used in the USBFS_MIDI2_ProcessUsbOut()
function to perform additional application-
specific actions.

USBFS_hid.c

void USBFS_FindReport_Callback(void) /

USBFS_FIND_REPORT_CALLBACK

Used in the USBFS_FindReport() function to
perform additional application-specific
actions.

USBFS_audio.c

void USBFS_DispatchAUDIOClass_AUDIO_READ_REQUESTS_Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_AUDIO_READ_REQUESTS_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

void USBFS_DispatchAUDIOClass_AUDIO_WRITE_REQUESTS_Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_AUDIO_WRITE_REQUESTS_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions

voidUSBFS_DispatchAUDIOClass_MUTE_CONTROL_GET_REQUEST_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_MUTE_CONTROL_GET_REQUEST_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

void USBFS_DispatchAUDIOClass_VOLUME_CONTROL_GET_REQUEST_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_VOLUME_CONTROL_GET_REQUEST_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions

void USBFS_DispatchAUDIOClass_OTHER_GET_CUR_REQUESTS_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_OTHER_GET_CUR_REQUESTS_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 57 of 117

Callback Function [4] / Associated Macro Description

void USBFS_DispatchAUDIOClass_AUDIO_SAMPLING_FREQ_REQUESTS_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_AUDIO_SAMPLING_FREQ_REQUESTS_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

void USBFS_DispatchAUDIOClass_MUTE_SET_REQUEST_Callback(void) /
USBFS_DISPATCH_AUDIO_CLASS_MUTE_SET_REQUEST_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

void USBFS_DispatchAUDIOClass_VOLUME_CONTROL_SET_REQUEST_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_VOLUME_CONTROL_SET_REQUEST_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

void USBFS_DispatchAUDIOClass_OTHER_SET_CUR_REQUESTS_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_OTHER_SET_CUR_REQUESTS_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

void USBFS_DispatchAUDIOClass_AUDIO_CONTROL_SEL_REQUESTS_ Callback(void) /

USBFS_DISPATCH_AUDIO_CLASS_AUDIO_CONTROL_SEL_REQUESTS_CALLBACK

Used in the
USBFS_DispatchAUDIOClassRqst() function
to perform additional application-specific
actions.

USBFS_dvr.c

void USBFS_EP_0_ISR_EntryCallback(void) /

USBFS_EP_0_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_0_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_0_ISR_ExitCallback(void) /

USBFS_EP_0_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_0_ISR()
interrupt handler to perform additional
application-specific actions.

USBFS_pm.c

void USBFS_DP_ISR_EntryCallback(void) /

USBFS_DP_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_DP_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_DP_ISR_ExitCallback(void) /

USBFS_DP_ISR_EXIT_CALLBACK

Used at the end of the USBFS_DP_ISR()
interrupt handler to perform additional
application-specific actions.

USBFS_episr.c

void USBFS_EP_1_ISR_EntryCallback(void) /

USBFS_EP_1_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_1_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_1_ISR_ExitCallback(void) /

USBFS_EP_1_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_1_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_EP_2_ISR_EntryCallback(void) /

USBFS_EP_2_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_2_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_2_ISR_ExitCallback(void) /

USBFS_EP_2_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_2_ISR()
interrupt handler to perform additional
application-specific actions.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 58 of 117 Document Number: 002-19744 Rev. *A

Callback Function [4] / Associated Macro Description

void USBFS_EP_3_ISR_EntryCallback(void) /

USBFS_EP_3_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_3_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_3_ISR_ExitCallback(void) /

USBFS_EP_3_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_3_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_EP_4_ISR_EntryCallback(void) /

USBFS_EP_4_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_4_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_4_ISR_ExitCallback(void) /

USBFS_EP_4_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_4_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_EP_5_ISR_EntryCallback(void) /

USBFS_EP_5_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_5_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_5_ISR_ExitCallback(void) /

USBFS_EP_5_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_5_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_EP_6_ISR_EntryCallback(void) /

USBFS_EP_6_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_6_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_6_ISR_ExitCallback(void) /

USBFS_EP_6_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_6_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_EP_7_ISR_EntryCallback(void) /

USBFS_EP_7_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_7_ISR() interrupt handler to
perform additional application-specific
actions

void USBFS_EP_7_ISR_ExitCallback(void) /

USBFS_EP_7_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_7_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_EP_8_ISR_EntryCallback(void) /

USBFS_EP_8_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_8_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_EP_8_ISR_ExitCallback(void) /

USBFS_EP_8_ISR_EXIT_CALLBACK

Used at the end of the USBFS_EP_8_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_SOF_ISR_EntryCallback(void) /

USBFS_SOF_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_SOF_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_SOF_ISR_ExitCallback(void) /

USBFS_SOF_ISR_EXIT_CALLBACK

Used at the end of the USBFS_SOF_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_BUS_RESET_ISR_EntryCallback(void) /

USBFS_BUS_RESET_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_BUS_RESET_ISR() interrupt
handler to perform additional application-
specific actions.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 59 of 117

Callback Function [4] / Associated Macro Description

void USBFS_BUS_RESET_ISR_ExitCallback(void) /

USBFS_BUS_RESET_ISR_EXIT_CALLBACK

Used at the end of the
USBFS_BUS_RESET_ISR() interrupt
handler to perform additional application-
specific actions.

void USBFS_ARB_ISR_EntryCallback(void) /

USBFS_ARB_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_ARB_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_ARB_ISR_ExitCallback(void) /

USBFS_ARB_ISR_EXIT_CALLBACK

Used at the end of the USBFS_ARB_ISR()
interrupt handler to perform additional
application-specific actions.

void USBFS_ARB_ISR_Callback(uint8 epNumber, uint8 epStatus) /

USBFS_ARB_ISR_CALLBACK

Called in the loop which services active
arbiter interrupt sources from endpoints in
the USBFS_ARB_ISR() interrupt handler.

This callback function provides the endpoint
which has pending arbiter interrupt and its
arbiter status register (ARB_EPx_SR) which
contains only enabled arbiter interrupt
sources.

void USBFS_EP_DMA_DONE_ISR_EntryCallback(void) /

USBFS_EP_DMA_DONE_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_EP_DMA_DONE_ISR() interrupt
handler to perform additional application-
specific actions.

void USBFS_EP_DMA_DONE_ISR_ExitCallback(void) /

USBFS_EP_DMA_DONE_ISR_EXIT_CALLBACK

Used at the end of the
USBFS_EP_DMA_DONE_ISR() interrupt
handler to perform additional application-
specific actions.

void USBFS_EP_DMA_DONE_ISR_Callback(void)/

USBFS_EP_DMA_DONE_ISR_CALLBACK

Used in the_EP_DMA_DONE_ISR() interrupt
handler to perform additional application-
specific actions.

void USBFS_LPM_ISR_EntryCallback(void) /

USBFS_LPM_ISR_ENTRY_CALLBACK

Used at the beginning of the
USBFS_LPM_ISR() interrupt handler to
perform additional application-specific
actions.

void USBFS_LPM_ISR_ExitCallback(void) /

USBFS_LPM_ISR_EXIT_CALLBACK

Used at the end of the USBFS_LPM_ISR()
interrupt handler to perform additional
application-specific actions.

Sample Firmware Source Code

PSoC Creator provides many code examples that include schematics and example code in the
Find Code Example dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Code Example” topic in the PSoC Creator Help for more information.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 60 of 117 Document Number: 002-19744 Rev. *A

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator Components

▪ specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The USBFS Component has the following specific deviations:

Rule Rule Class Rule Description Description of Deviation(s)

11.4 Advisory A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

PutString() API has a pointer to string as an argument.
This function converts this pointer to uint8 array to pass it
to LoadInEP() API for transfer to HOST.

Device Descriptor structures use pointer to void to
combine different descriptor types. These pointers are
cast to a different pointer type.

Comment: This operation is safe because functions which
parse the structures known the type of the object.

11.5 Required A cast shall not be
performed that removes any
const or volatile qualification
from the type addressed by
a pointer.

Device Descriptor structures use const qualification. The
const qualification is removed before passing the pointer
to universal LoadInEP() API.

16.7 Advisory A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

This deviation only applies in DMA Memory management
mode. pData argument of the ReadOutEP() API is used to
modify the addressed object in Manual Memory
management mode.

17.4 Required Array indexing shall be the
only allowed form of pointer
arithmetic.

The Component applies array subscripting to an object of
pointer type to access structures with descriptors.

19.7 Advisory A function should be used in
preference to a function-like
macro.

Deviations with function-like macros to allow for more
efficient code.

The Component incorporates DMA Component. Macros
with arguments are used to achieve high speed of DMA
set up .

This Component has the following embedded Components: Interrupt, Clock, DMA. Refer to the
corresponding Component datasheet for information on their MISRA compliance and specific
deviations.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 61 of 117

API Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 4200L PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Default USBFS 8365 222 5589 215 5591 241

Maximum, with
HID,CDC, Audio, MIDI
and Bootloader

19278 469 11108 496 11218 495

Functional Description

The following diagram shows a simple bus-powered USB application with Dp and Dm pins from
the PSoC device.

Dm
Dp

Simple USB Application

VCC

D -

D+

GND

VCC

U

S

B

22 Ohm 1%

22 Ohm 1%

PSoC3/
4200L/5LP
Families

USBFS Basic Workflow In Different Modes

USBFS supports three primary modes for Endpoint Buffer Management:

▪ Manual (Static Allocation / Dynamic Allocation)

▪ DMA with Manual Buffer Management (Static Allocation)

▪ DMA with Automatic Buffer Management

The mode is chosen in the Device Descriptor tab by selecting the Descriptor Root node in the
tree view.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 62 of 117 Document Number: 002-19744 Rev. *A

The Component provides all the necessary functions to manage data flow from host to the
device by using OUT endpoints and from device to the host by using IN endpoints. To access
the IN data endpoints, the function USBFS_LoadInEP() is provided. For data OUT endpoints, the
function USBFS_ReadOutEP() is provided. Note that 16-bit accesses are also supported. Refer
to 16-bit Endpoint Access API section for more details.

Manual

Manual endpoint management mode means that firmware intervention is needed to move data
between endpoint buffers and SRAM buffers. Hence the CPU is used to move the data between
them. The SRAM buffer is separate from the endpoint buffer and can be used by the application.

For IN direction, the USBFS_LoadInEP() function returns when the data is written into the
endpoint buffer and the endpoint is exposed to the host to be read.

For OUT direction, the USBFS_ReadOutEP() function returns when the data is read from the
endpoint buffer and the endpoint is exposed to the host to be written.

Data write into the IN endpoint:

/* Check that IN endpoint buffer is empty before write data. */

if (USBFS_IN_BUFFER_EMPTY == USBFS_GetEPState(IN_EP))

{

 /* Write data into IN endpoint buffer.

 * Data is written after function returns and endpoint is available to be

 * read by host.

 */

 USBFS_LoadInEP(IN_EP, buffer, length);

}

Data read from OUT endpoint:

/* Check if OUT endpoint buffer contain data to be read. */

if (USBFS_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))

{

 /* Read data from OUT endpoint buffer.

 * Data is read after function returns and endpoint is available to be

 * written by host.

 */

 USBFS_ReadOutEP(OUT_EP, buffer, length);

}

DMA with Manual Buffer Management

DMA with Manual Buffer Management is almost identical to Manual mode with the difference that
DMA moves data between endpoint buffer and SRAM buffer instead of the CPU. The
USBFS_LoadInEP() and USBFS_ReadOutEP() functions only initiate the DMA data transfer but
do not wait for its completion:

For IN direction, the transfer is handled without user intervention because the arbiter interrupt
triggers when the IN endpoint buffer is full (signaling that the DMA has completed “writing” the
data) and the endpoint is exposed to the host to be read.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 63 of 117

For OUT direction, it is the user’s responsibility to check that the DMA has completed “reading”
the data from the endpoint buffer before accessing this data. After the DMA transfer is complete,
the arbiter interrupt triggers and change the endpoint state from “buffer full” to “buffer empty”.

Data write into the IN endpoint:

/* Check that IN endpoint buffer is empty before write data. */

if (USBFS_IN_BUFFER_EMPTY == USBFS_GetEPState(IN_EP))

{

 /* Write data into IN endpoint buffer.

 * The DMA request is generated to write data into endpoint buffer.

 * When DMA is done the arbiter interrupt fires and makes endpoint available

 * to be read by host.

 */

 USBFS_LoadInEP(IN_EP, buffer, length);

}

Data read from OUT endpoint:

/* Check if OUT endpoint buffer contain data to be read. */

if (USBFS_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))

{

 /* Read data from OUT endpoint buffer.

 * DMA Manual: DMA request is generated to read data from endpoint buffer.

 * When DMA is done arbiter interrupt fires and updates endpoint status that

 * buffer is empty. Also it makes endpoint available to be written by host.

 */

 USBFS_ReadOutEP(OUT_EP, buffer, length);

 /* DMA Manual: wait until DMA is done reading data from OUT endpoint buffer.*/

 while (USBFS_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))

 {

 }

 /* Enable OUT endpoint and allow host to write new data. */

 USBFS_EnableOutEP(OUT_EP);

}

DMA with Automatic Buffer Management

DMA auto management (DMA with Automatic Buffer Management) is quite different from the
modes described above. This mode allows the DMA hardware to manage all data movement
between the endpoint buffers and the SRAM buffers. The implementation details are as follows.

1. Each endpoint buffer size is 32 bytes and the rest of the USB block buffer (size of 512 bytes)
is a common area which acts as a FIFO for the endpoint that to which the host currently
communicates.

2. When the endpoint buffer is full, the data comes into the FIFO (common area). This allocation
allows servicing endpoint sizes greater than the USB block buffer size, because the USB
block buffer is used as the infrastructure to manage data transfers and the actual data is
stored in the system SRAM memory.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 64 of 117 Document Number: 002-19744 Rev. *A

3. The DMA reading from or writing into the endpoint buffer happens in 32 byte chunks per
request. Transfers greater than 32 bytes require multiple DMA requests to complete. The
requests are generated automatically by the USB block when the host starts a
communication with an endpoint.

4. For OUT transfers, the common area stores data which has not yet been read by the DMA.
For IN transfers the DMA tries to fill the common area as much as possible to provide the
USB block with data to send. The DMA also pre-loads 32 bytes into the endpoint buffer
before allowing the host to start reading it. This action adds time for the DMA to write next
chunks of the data while the host reads the pre-loaded data. In case the DMA fails to load
data in time (before the host reads it), the old data which resides in the common area will be
sent on the bus.

In PSoC 3/PSoC 5LP devices, the DMA engine is capable of managing data transfers in chunks
of 32 bytes using multiple requests from the USB block. Therefore functions USBFS_LoadInEP()
and USBFS_ReadOutEP configure the DMA and the transfer is handled automatically by the
hardware.

PSoC 4200L devices have a different DMA engine to the one present in PSoC 3/PSoC 5LP
devices. The usage is the same as PSoC 3/PSoC 5LP, but the architecture necessitates a
background firmware interaction to achieve the same functionality.

1. The DMA channels for USBFS Component are set up with 2 chained descriptors which
transfers 32 bytes each.

2. After the descriptors have executed, they are invalidated and the following DMA request
causes a DMA error interrupt to occur (there is no valid descriptor to execute when a request
comes). To service this interrupt source, the DMA interrupt handler must find the channel that
caused the interrupt and call its ISR handler provided by the USBFS Component (the DMA
engine has a single interrupt for all channels).

3. Inside this handler, the channel descriptors source is updated for IN transfer and destination
for OUT transfer. DMA execution with the updated descriptors is then triggered using
firmware.

Note The DMA interrupt service time is critical for correct USBFS Component operation,
especially for IN traffic. Therefore, the Component sets the DMA interrupt priority to the
highest level (refer to section Interrupt Service Routine). The application must manage other
interrupt priorities, DMA channel priorities and preemption to provide enough bandwidth for
USBFS DMA channels operation.

Note The preferred DMA channel assignment is successive (managed by PSoC Creator).
For example, DMA channel 8 is assigned to endpoint 1, channel 9 to endpoint 2, and so on
up to channel 15. The DMA interrupt handler services the DMA channel in successive order,
so channel 8 is serviced first from DMA channels consumed by the USBFS Component.

The DMA auto management also requires registering SRAM buffers after the device has been
enumerated. The provided SRAM buffer is used by the Component and is accessed whenever
communication to an endpoint occurs. For IN endpoint, ensure that the transfer is completed

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 65 of 117

before modifying the buffer content. For OUT endpoint, received data must be copied from the
buffer or handled before enabling the OUT endpoint to avoid data re-writing.

Initialization of IN and OUT endpoints buffers:

/* Register SRAM buffers for IN and OUT EP endpoints. */

USBFS_LoadInEP (IN_EP, bufferIn, length);

USBFS_ReadOutEP(OUT_EP, bufferOut, length);

Data write into the IN endpoint:

/* Make sure that IN endpoint buffer is empty before write data. */

while (USBFS_IN_BUFFER_EMPTY != USBFS_GetEPState(IN_EP))

{

}

/* The DMA request is generated to write 32 bytes into IN endpoint buffer. When

 * DMA is done the arbiter interrupt fires and makes endpoint available to be

 * read by host. As soon as host starts reading next DMA transfer starts to fill

 * common area.

 * The DMA keeps transferring data until all data has been transferred. The

 * DMA can be paused if common area is full.

 */

USBFS_LoadInEP(IN_EP, NULL, length);

Data read from OUT endpoint:

/* Check if OUT endpoint buffer contains data to be read */

if (USBFS_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))

{

 /* The data is available in the buffer has to be copied from it or handled

 * before enable OUT endpoint. This step is required to avoid data corruption.

 * Because after endpoint is enabled the buffer will be updated as soon as new

 * transfer to OUT endpoint starts.

 */

 length = USBFS_GetEPCount(OUT_EP);

 /* Copy data into the local buffer to handle it later. */

 memcpy(appBufferOut, bufferOut, length);

 /* Enable OUT endpoint and allow host to write new data. */

 USBFS_EnableOutEP(OUT_EP);

}

Note Using loops (for example, while (USBFS_OUT_BUFFER_FULL == USBFS_GetEPState(OUT_EP))
for waiting of data is dangerous in case of changing the endpoint direction during change of
alternate settings. Changing of endpoint direction during waiting in such loop could cause to
infinite waiting, because exit event never happens. Empty IN buffer is interpret as full OUT buffer
and vice versa.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 66 of 117 Document Number: 002-19744 Rev. *A

OUT Packet re-transmission

The USB host can re-transmit the OUT packet to the device if the previous packet was not
received properly. Thus, both received packets have the same data and data toggle bit. The
USBFS hardware receives both OUT packets because it does not check for data toggle bit, and
the firmware also reports both packets’ reception. The application must take care about the re-
transmitted packet (typically, the re-transmitted packet should be discarded). The macro callback
USBFS_EP_X_ISR_EntryCallback (where X is the endpoint number) can be used to insert code
that implements data toggle bit verification and detects the re-transmitted packets.

The following code uses the USBFS_EP_2_ISR_EntryCallback to detect packets with the same
toggle bit for OUT endpoint 2:

/* START: Add this code to cyapicallbacks.h to enable

 * USBFS_EP_2_ISR_ENTRY_CALLBACK in the USBFS_episr.c

 */

#define USBFS_EP_2_ISR_ENTRY_CALLBACK

void USBFS_EP_2_ISR_EntryCallback(void);

/* END */

/* Verify this status variable to detect re-transmitted packets.

 * It must be cleared after OUT endpoint 2 is enabled to receive next data packet.

 */

volatile uint8 skipPacketEp2 = 0u;

/* Implement endpont 2 entry interrupt callback */

void USBFS_EP_2_ISR_EntryCallback(void)

{

 /* Get data toggle bit of received OUT packet */

 uint8 dataToggle = (USBFS_SIE_EP_BASE.sieEp[USBFS_EP2].epCnt0 &

USBFS_EPX_CNT_DATA_TOGGLE);

 /* Check toggle bit */

 if (USBFS_EP[USBFS_EP2].epToggle != dataToggle)

 {

 /* The data toggle bit does not match with expected.

 * Set flag to skip recevied OUT packet by the application.

 */

 skipPacketEp2 = 1u;

 /* Set toggle bit of THIS packet to be updated by code below */

 USBFS_EP[USBFS_EP2].epToggle = dataToggle;

 }

 /* USBFS_EP_2_ISR code updates data toggle for OUT endpoints */

}

USB Compliance

USB drivers can present various bus conditions to the device, including Bus Resets, and
different timing requirements. Not all of these can be correctly illustrated in the examples
provided. It is your responsibility to design applications that conform to the USB spec.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 67 of 117

USB Compliance for Self-Powered Devices

If you are creating a self-powered device, you must connect a GPIO pin to VBUS through a
resistive network and write firmware to monitor the status of the GPIO (see VBUS Monitoring).
You can use the USBFS_Start() and USBFS_Stop() API routines to control the Dp and Dm pin
pull-ups. The pull-up resistor does not supply power to the data line until you call USBFS_Start().
USBFS_Stop() disconnects the pull-up resistor from the data pin.

Note For PSoC 4200L devices, PSoC Creator enables IMO locking (DWR option Trim by USB)
to the USB traffic (SOF packets) whenever the USBFS Component is placed on a schematic. If a
USB cable is not connected, it will cause IMO to produce poor accuracy. Therefore, call the
cy_boot Component function CySysClkImoDisableUsbLock to disable IMO lock for self-powered
devices in the main.c file before your initialization/startup code. The IMO must be locked only
while the USB cable is connected. Therefore, after connecting a USB cable, enable the IMO lock
by calling the cy_boot Component function CySysClkImoEnableUsbLock and disable IMO lock
after a USB cable is disconnected calling CySysClkImoDisableUsbLock.

The device responds to GET_STATUS requests based on the status set with the
USBFS_SetPowerStatus() function. To set the correct status, USBFS_SetPowerStatus() should
be called at least once if your device is configured as self-powered. You should also call the
USBFS_SetPowerStatus() function any time your device changes status.

USB Standard Device Requests

This section describes the requests supported by the USBFS Component. If a request is not
supported, the USBFS Component responds with a STALL, indicating a request error.

Standard Device
Request USB Component Support Description

USB 2.0
Spec

Section

CLEAR_FEATURE Device 9.4.1

Interface

Endpoint

GET_CONFIGURATION Returns the current device configuration value 9.4.2

GET_DESCRIPTOR Returns the specified descriptor if the descriptor exists. 9.4.3

GET_INTERFACE Returns the selected alternate interface setting for the specified interface 9.4.4

GET_STATUS Device 9.4.5

Interface

Endpoint

SET_ADDRESS Sets the device address for all future device accesses 9.4.6

SET_CONFIGURATION Sets the device configuration 9.4.7

SET_DESCRIPTOR This optional request is not supported 9.4.8

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 68 of 117 Document Number: 002-19744 Rev. *A

Standard Device
Request USB Component Support Description

USB 2.0
Spec

Section

SET_FEATURE Device:

DEVICE_REMOTE_WAKEUP support is selected by the bRemoteWakeUp
Component parameter.

TEST_MODE is not supported.

9.4.9

Interface

Endpoint: The specified Endpoint is halted.

SET_INTERFACE Allows the host to select an alternate setting for the specified interface. 9.4.10

SYNCH_FRAME Not supported. Future implementations of the Component will add support
to this request to enable Isochronous transfers with repeating frame
patterns.

9.4.11

HID Class Request

Class Request USBFS Component Support Description

Device Class
Definition for
HID - Section

GET_REPORT Allows the host to receive a report by way of the Control pipe. 7.2.1

GET_IDLE Reads the current idle rate for a particular Input report. 7.2.3

GET_PROTOCOL Reads which protocol is currently active (either the boot or the report
protocol).

7.2.5

SET_REPORT Allows the host to send a report to the device, possibly setting the state of
input, output, or feature controls.

7.2.2

SET_IDLE Silences a particular report on the Interrupt In pipe until a new event occurs
or the specified amount of time passes.

7.2.4

SET_PROTOCOL Switches between the boot protocol and the report protocol (or vice versa). 7.2.6

For other configuration class requests, refer to the specific configuration under Additional USBFS
Configurations.

16-bit Endpoint Access API

The USBFS_LoadInEP16() and USBFS_ReadOutEP16() functions provide 16-bit access to the
endpoint data registers. These functions are available when Generate 16-bit endpoint access
APIs option is enabled in the custom dialog’s Advanced tab (only applicable for PSoC 4200L
devices).

The 16-bit access allows reading or writing two bytes instead of one byte (as is the case when 8-
bit access is used by USBFS_LoadInEP() / USBFS_ReadOutEP() functions). This makes 16-bits

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 69 of 117

access function work two times faster. However, the data buffers for 16-bits functions must be
allocated using the following rules:

▪ Allocated data buffer size must be a multiple of 2 regardless of the transfer length. In
cases when the endpoint maximum packet size is odd, the extra element allocated should
be ignored by the application. For example, when the maximum endpoint packet size is
63 bytes, the allocated data buffer must be 64 bytes.

▪ Allocated data buffer must be aligned to 2-bytes boundary, otherwise hard fault can occur
during 16-bit access. Typically each compiler provides attributes to define the required
alignment.

The following is an example of loading 63 bytes into an IN endpoint using the 16-bit function with
a GCC compiler:

 /* IN endpoint number */

 #define IN_EP (1u)

 /* Number of bytes to transfer for IN request */

 #define TRANSFER_LENGTH (63u)

 /* Buffer size for 16-bit function */

 #define BUFFER_SIZE (64u)

 /* Allocate and align the RAM buffer */

 uint8 buffer[BUFFER_SIZE] __attribute__ ((aligned (2)));

 /* Load data into the IN endpoint buffer to be transferred to the host */

 USBFS_LoadInEP16(IN_EP, buffer, TRANSFER_LENGHT);

Interrupt Service Routine

The USBSF Component supports interrupts from a number of sources. The number of interrupts
vary depending on the Component configuration and selected device.

PSoC 3/PSoC 5LP devices consume up to 13 interrupts, some of which are mandatory for
correct Component operation and some which are optional. Each interrupt source has separate
interrupt handlers in PSoC 3/PSoC 5LP.

PSoC 4200L devices consume up to 3 interrupts – labeled Low, Medium and High. The
configured interrupt sources and their interrupt handlers are mapped to these interrupts. Refer to
the Interrupts Tab section for the list of available interrupt sources. Note that Low, Medium and
High interrupts are just the names assigned for the USB interrupts and has no relation to the
priority assigned to them.

The list of USBFS Component interrupt handlers is provided below:

▪ USBFS_EP_0_ISR – triggered to handle control transfers directed to endpoint 0. This
interrupt handler is mandatory for Component operation.

▪ USBFS_EP_X_ISR – triggered at the end of a transfer directed to endpoints 1–8 (where X
is the endpoint number from 1 to 8). For IN endpoint, it means that the data loaded into

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 70 of 117 Document Number: 002-19744 Rev. *A

endpoint buffer is read by the host. For OUT endpoint it means that data is available in the
endpoint buffer. These are mandatory for Component operation.

For PSoC 4200L, when Endpoint Buffer Management mode is set to DMA with
Automatic Buffer Management, the DMA can still transfer data from OUT endpoint
buffer to SRAM buffer when USBFS_EP_X_ISR occurs. The arbiter interrupt is used to
identify the end of the transfer.

▪ USBFS_BUS_RESET_ISR – triggered when bus reset condition is detected. This
interrupt handler is mandatory for Component operation.

▪ USBFS_LPM_ISR – triggered after LPM (Link Power Management) request is confirmed
by ACK response (applicable for PSoC 4200L). The BOS descriptor should present in
device descriptor tree and Enable LPM option has to be enabled in BOS descriptor to
invoke this interrupt handler. The user can use it to read the BESL value send by the host
and then decide whether to enter low power mode or not.

▪ USBFS_ARB_ISR – triggered when arbitration is needed between SIE (Serial Interface
Engine) and CPU or DMA access to an endpoint buffer. It is mandatory for Component
operation in DMA with Manual or Automatic Buffer Management modes. It is not needed
in Manual mode. The following interrupt sources trigger an arbiter interrupt for each
endpoint:

□ IN endpoint buffer is full – triggers when IN endpoint buffer is loaded with data. It is
used by the Component to release the IN endpoint to be read by the host.

□ Endpoint DMA grant – triggers to indicate completion of the DMA transfer
corresponding to the raised DMA request. It is used by the Component to update
the status of OUT endpoint when the data has been copied from endpoint buffer to
SRAM. It is only used in the Manual DMA endpoint memory management mode.

□ Endpoint buffer overflow – triggers to indicate that overflow condition happened for
a data endpoint. It is only applicable in DMA with Automatic Buffer Management.
This interrupt source is not enabled by the Component and should never occur.

□ Endpoint buffer underflow – triggers to indicate that underflow condition happened
for a data endpoint. It is only applicable in DMA with Automatic Buffer
Management. This interrupt source is not enabled by the Component and should
never occur.

□ Endpoint error in transaction – The error in transaction bit is set whenever an error
is detected. For an IN transaction, this indicates a no response from HOST
scenario. For an OUT transaction, this represents a PID error / CRC error / bit-stuff
error scenario. This interrupt source is not enabled by the Component and should
never occur.

□ Endpoint DMA terminated – triggers to indicate that DMA transfer has to be
terminated. This interrupt source only applicable in DMA with Automatic Buffer
Management for PSoC 4200L devices. It is used by the Component to terminate a

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 71 of 117

DMA transfer and update the status of OUT endpoint when the data has been
copied from endpoint buffer to SRAM.

▪ USBFS_EP_DMA_DONE_ISR – triggered when DMA completes a data transfer for any
of the endpoints. This interrupt handler is applicable only in DMA with Automatic Buffer
Management mode for PSoC 3/PSoC 5LP devices. It is mandatory for the Component
operation and is used to override erroneous hardware behavior for IN endpoints. It is
intended for internal Component use only.

▪ USBFS_EPX_DMA_DONE_ISR – triggered when DMA completes transferring a chunk of
data into the endpoint buffer (where X is endpoint number from 1 to 8). This interrupt
handler is applicable only in DMA with Automatic Buffer Management mode for PSoC
4200L devices. It is mandatory for the Component operation and is intended for internal
Component usage only.

▪ USBFS_SOF_ISR – triggered when SOF packet is received. This interrupt handler is not
used for Component operation and is disabled by default. Refer to section Enable SOF
interrupt for information how to enable it.

▪ USBFS_DP_ISR – triggered when host drives resume on the DP line from high to low.
This is only one interrupt, which could wake up device from the suspend mode. See USB
Suspend, Resume, and Remote Wakeup for details.

Each interrupt handler has callbacks inside it, which allows adding custom code. The macro
callbacks are listed in the Macro Callbacks section for more details.

Interrupt priority change

The USBFS Component modifies the priority of interrupts that are critical for its operation under
certain configurations.

PSoC 4200L Devices

When the USBFS Component is configured in DMA with Automatic Buffer Management mode,
the DMA interrupt service of the USBFS channels is critical for correct Component operation.
Therefore USBFS Component changes DMA interrupt priority to the highest (priority 0) inside
USBFS_Start() function.

Note The DMA interrupt is not available in the Design-Wide Resources file on the Interrupts tab.

PSoC 3/PSoC 5LP Devices

When the USBFS Component is configured in DMA with Automatic Buffer Management mode,
the arbiter interrupt (USBFS_arb_int) indicates completion of DMA request service. It is critical
for the system to set the priority of this interrupt higher than the priority of the USBFS_ep[0..8]
interrupts. Therefore USBFS Component changes arbiter interrupt priority to the highest (priority
0) inside USBFS_Start() function.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 72 of 117 Document Number: 002-19744 Rev. *A

Clock Selection

The USB hardware block requires specific configuration of the system clocks. The clocks can be
configured through the PSoC Creator Design-Wide Resources Clock Editor. Refer to the Quick
Start section for clock requirements on different devices.

Link Power Management (LPM)

Link Power Management (LPM) is a USB low power mode feature that provides more flexibility in
terms of features than the existing resume mode. The feature is available only in PSoC 4200L
device. See the LPM related APIs in the Link Power Management (LPM) Support section.

LPM is a new power management feature for USB2.0 which is similar to the existing
suspend/resume, but has transitional latencies of tens of microseconds between power states,
instead of three to greater than 20 millisecond latencies of the USB2.0 suspend/resume.

USB2.0 Power states are re-arranged as below with the introduction of LPM. The existing power
states are re-named with LPM. They are

▪ L0 (On)

▪ L1 (Sleep) -- Newly Introduced State in LPM

▪ L2 (Suspend)

▪ L3 (Powered-Off)

When a host is ready to transition a device from L0 to a deeper power savings state, it issues an
LPM transaction to the device. The device function responds with an ACK if it is ready to make
the transition or a NYET (Not Yet) if it is not currently ready to make the transition (usually
because it is has data pending for the host). A Device will transmit a STALL handshake if it does
not support the requested link state. If the device detects errors in either of the token packets or
does not understand the protocol extension transaction, no handshake is returned.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 73 of 117

Transitions between different power modes are shown as follows:

PSoC 4200L has a separate interrupt for LPM request (see Interrupt Service Routine section).

LPM interrupt has a callback function USBFS_LPM_ISR_EntryCallback(). This is called after
LPM request is ACKed only. You can use this callback function to set a global variable to identify
received LPM request in the application.

LPM related descriptor (USB 2.0 Extension Descriptor) has attributes named Baseline BESL and
deep BESL (see USB2.0 Extension Descriptor section). Using these attributes inform the host
about time it needs to wake up from 2 different suspend modes. Baseline BESL is meant for fast
wake up time and less energy efficiency, whereas Deep BESL translates to slower wake up time
and more energy efficiency.

An application should use baseline BESL and deep BESL values to decide which low power
mode enters to. For example when received BESL is less than baseline BESL leave device in
the Active mode, when it is between baseline BESL and deep BESL put device into the Deep
Sleep mode and when it is greater than deep BESL put device into Hibernate mode.

Note Device will restart after hibernate mode and the USBFS Component needs re-initialization
at the application level. USBFS_Suspend() and USBFS_Resume() APIs do not support
Hibernate mode. During initialization, the Component does not drive Dp signals and reset
condition will be detected if the host drive resume condition less then device wake up time (see
USBFS_LPM_PSoC4 code example). The application should ensure that the device will resume
within the time defined in the BESL value of LPM request.

The following code shows the basic flow for entering/exiting low power mode after receiving an
LPM request (see USBFS_LPM_PSoC4 code example):

/* Global flag for LPM request detection. */

uint8 beslValue;

/* LPM request ISR callback. It updates BESL value in global

 * beslValue variable and set flag that LPM request received.

 */

void USBFS_LPM_ISR_EntryCallback(void)

{

 /* Get BESL value and try to enter low power mode. */

 beslValue = USBFS_Lpm_GetBeslValue();

 activeMode = FALSE;

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 74 of 117 Document Number: 002-19744 Rev. *A

}

/* Main routine. */

/* Check if device is started after hibernate. */

if (CySysPmGetResetReason() != CY_PM_RESET_REASON_WAKEUP_HIB)

{

 /* Normal start. */

}

else

{

 /* Start after hibernate: need to restore Component register and internal

 * structures.

 */

}

/* Active mode operation after start. */

activeMode = TRUE;

/* Main application loop */

for (;;)

{

 if (FALSE != activeMode)

 {

 /* Active mode run. */

 }

 else

 {

 /* Handle enter/exit from low power mode. */

 }

}

/* Section to proceed with low power node*/

/* Check what mode we could enter based on received BESL value in LPM request

 * from host. */

if ((beslValue >= BESL_BASELINE) && (beslValue < BESL_DEEP_MODE))

{

 /* Prepare USBFS to enter low power mode. */

 USBFS_Suspend();

 /* Put device into DeepSleep mode. */

 CySysPmDeepSleep();

 /* Restore USBFS for active mode operation. */

 USBFS_Resume();

 /* Restore communication with host for OUT endpoint. */

 /* Enable OUT endpoint. */

 USBFS_EnableOutEP(OUT_EP);

 /* Active mode operation. */

 activeMode = TRUE;

}

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 75 of 117

else if (beslValue >= BESL_DEEP_MODE) /* We have time to resume from hibernate. */

{

 /* Prepare USBFS to enter low power mode. */

 USBFS_Suspend();

 /* Put device into hibernate mode. */

 CySysPmHibernate();

 /* The exit for Hibernate is reset. */

}

else /* Resume time is too small keep device in active mode. */

{

 /* Continue active mode operation. */

 activeMode = TRUE;

}

Note that USBFS_Start() API configures the device to ACK for LPM requests. You may change
the device response to LPM request using USBFS_Lpm_SetResponse() API.

LPM request also allows performing remote wake up. You can check the value of remote wake
up allowance by using USBFS_Lpm_RemoteWakeUpAllowed() API. Based on the returned
value of this API, the application should decide whether to perform host remote wake up
procedure.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 76 of 117 Document Number: 002-19744 Rev. *A

Additional USBFS Configurations

In addition to the base configuration, the USBFS Component can be configured into the following
options:

▪ USBFS Audio

▪ USBFS MIDI

▪ USBUART (CDC)

▪ USBFS MSC

USBFS Audio

The USBFS Component provides support for Audio class descriptors. The USBFS Audio
interface is implemented according to the Universal Serial Bus Device Class Definition for Audio
Devices 1.0 and 2.0 specifications.

To add and configure audio interface descriptors, open the Configure USBFS dialog and click
the Audio Descriptor tab.

http://www.usb.org/developers/docs/devclass_docs/
http://www.usb.org/developers/docs/devclass_docs/

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 77 of 117

Import Audio Descriptor

The Import button allows you to quickly import the Audio descriptors from saved templates.

In the drop-down list you can choose one of the templates or choose an existing descriptor
template from a file location. The predefined descriptors are available in the folder:

The template options immediately load the selected HID report. The From file option will open
an audio descriptor that was created by the USBFS Component.

Audio Descriptors List

This area allows you to add Audio descriptors. Detailed information on the Audio descriptors is
available in the Universal Serial Bus Device Class Definition for Audio.

Item Value

This area allows you select a value that is appropriate for the currently selected Audio Descriptor
item. The parameters in these windows are context based and will vary depending upon the item
value selected in the Audio Descriptors List window.

To Add Audio Descriptors

1. Select the Audio Descriptors root item in the tree on the left.

2. Under the Audio Descriptors List on the right, select either the Audio Control or Audio
Streaming interface.

3. Click Add to add the descriptor to the tree on the left.

You can rename the Audio Interface x title by selecting a node and clicking on it it again or
by using of Rename context menu item.

http://www.usb.org/developers/docs/devclass_docs/audio10.pdf

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 78 of 117 Document Number: 002-19744 Rev. *A

To Add Class-Specific Audio Control or Audio Streaming Interface Descriptors

1. Select the appropriate AC Alternate Settings x or AS Alternate Settings x item in the tree
on the left.

2. Under the Audio Descriptors List on the right, select one of the items under Audio Control
Descriptors (1.0), Audio Control Descriptors (2.0), Audio Streaming Descriptors (1.0),
or Audio Streaming Descriptors (2.0) as appropriate.

Versions 1.0 and 2.0 refer to the versions of the corresponding specification document
Universal Serial Bus Device Class Definition for Audio Devices.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add Audio Endpoint Descriptors

1. Select the appropriate AC Alternate Settings x or AS Alternate Settings x item in the tree
on the left.

2. Under the Audio Descriptors List on the right, select the Endpoint Descriptor item.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add Standard AS Isochronous Synch Endpoint Descriptor

1. Select the appropriate Endpoint Descriptor in the tree on the left.

2. Under the Audio Descriptors List on the right, select AS Endpoint Descriptor.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add the Configured Audio Interface Descriptor to the Device Descriptor Tree

1. Go to the Device Descriptor tab.

2. Select the Configuration Descriptor to which a new interface will belong.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 79 of 117

3. Click the Add Interface tool button, choose Audio, and select the appropriate item to add.

Audio interfaces are disabled in the Device Descriptor tab list because they can only be
edited on the Audio Descriptor tab.

USBFS Audio Global Variables

Variable Description

USBFS_currentSampleFrequency Contains the current audio sample frequency. It is set by the host using a
SET_CUR request to the endpoint.

USBFS_frequencyChanged Used as a flag for the user code, to inform it that the host has been sent a
request to change the sample frequency. The sample frequency will be sent
on the next OUT transaction. It contains the endpoint address when set. The
following code is recommended for detecting new sample frequency in main
code:

if ((USBFS_frequencyChanged != 0) &&

(USBFS_transferState == USBFS_TRANS_STATE_IDLE))

{

 /* Add core here.*/

 USBFS_frequencyChanged = 0;

}

The USBFS_transferState variable is checked to make sure that the transfer
completes.

USBFS_currentMute Contains the mute configuration set by the host.

USBFS_currentVolume Contains the volume level set by the host.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 80 of 117 Document Number: 002-19744 Rev. *A

Audio Class Request

This section describes the requests supported by the USBFS Component according to Universal
Serial Bus Device Class Definition for Audio Devices 1.0. If a request is not supported, the
USBFS Component responds with a STALL, indicating a request error.

Class Request USBFS Component Support Description Device Class
Definition for

Audio - Section

SET_CUR Interface:

 MUTE_CONTROL

 VOLUME_CONTROL

5.2.1.1

Endpoint:

 SAMPLING_FREQ_CONTROL

GET_CUR Interface:

 MUTE_CONTROL

 VOLUME_CONTROL

5.2.1.2

Endpoint:

 SAMPLING_FREQ_CONTROL

GET_MIN Interface:

 VOLUME_CONTROL

5.2.1.2

GET_MAX Interface:

 VOLUME_CONTROL

5.2.1.2

GET_RES Interface:

 VOLUME_CONTROL

5.2.1.2

GET_STAT The content of the status message is reserved for future use. For now, a
null packet should be returned in the data stage of the control transfer
and the received null packet should be ACKed.

5.2.4.2

http://www.usb.org/developers/docs/devclass_docs/
http://www.usb.org/developers/docs/devclass_docs/

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 81 of 117

USBFS MIDI

USBFS MIDI provides support for communicating with external MIDI equipment. It also provides
support for the USB device class definition for MIDI devices. You can use this Component to add
MIDI I/O capability to a standalone device, or to implement MIDI capability for a host computer or
mobile device through that computer or mobile device's USB port. In such cases, it presents
itself to the host computer or mobile device as a class-compliant USB MIDI device and uses the
native MIDI drivers in the host.

Features

▪ Provides USB MIDI Class Compliant MIDI input and output

▪ Supports hardware interfacing to external MIDI equipment using UART

▪ Provides adjustable transmit and receive buffers managed using interrupts

▪ Handles MIDI running status for both receive and transmit functions

▪ Supports up to 16 input and output ports using only two USB endpoints by using virtual
cables.

The PSoC Creator Component Catalog contains a Schematic Macro implementation of a MIDI
interface. The macro consists of instances of the UART Component with the hardware MIDI
interface configuration (31.25 kbps, 8 data bits) and a USBFS Component with the descriptors
configured to support MIDI devices. This allows the end user to use a MIDI-enabled USBFS
Component with minimal configuration changes.

To start a MIDI-based project, drag the USBMIDI Schematic Macro labeled ‘USBMIDI’ from the
Component Catalog onto your design. This macro has already been configured to function as an
external mode MIDI device with 1 input and 1 output. See the Component Parameters section of
this datasheet for information about modifying the parameters of this interface, such as the VID,
PID, and String Descriptors.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 82 of 117 Document Number: 002-19744 Rev. *A

The UART Component is connected to digital input and output Pins Components. The output pin
is connected through the NOT gate to prepare the inverted signal to be supplied to the external
transistor. Refer to the MIDI 1.0 Detailed Specification for more details about the hardware MIDI
interface.

To add and configure MIDI Streaming interface descriptors, open the Configure USBFS dialog
and click the MIDI Descriptor tab.

Enable MIDI Class API

This parameter enables generation of MIDI Class APIs. The list of generated APIs is provided in
the section USBFS MIDI .

External Mode

This option determines the source of the MIDI messages as external (option is enabled) and
internal (option is disabled). External means that the UART Component is used to send and
receive MIDI messages to external MIDI equipment. The USBFS Component supports up to two
UART instances. Their names have to be "MIDI1_UART" and "MIDI2_UART" because USBFS
Component call their APIs. When option is disabled the local switches and sensors can be used
to create MIDI messages for the host. For more information refer to the USBFS MIDI Functional
Description section.

http://midi.org/techspecs/midispec.php

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 83 of 117

MIDI Descriptors List

This window allows you to add MIDI descriptors. Detailed information on the MIDI descriptors is
available in the Universal Serial Bus Device Class Definition for MIDI Devices Revision 1.0.

Item Value

This window allows you select a value that is appropriate for the currently selected MIDI
Descriptor item. The parameters in these windows are context based and will vary depending
upon the item value selected in the MIDI Descriptors List window.

To update the USBMIDI Schematic Macro for the external mode with 2 inputs and 2
outputs:

1. Open USBMIDI_1 Component customizer. Go to the MIDI Descriptor tab of the USBMIDI_1
Component. Remove MIDI Interface Control and MIDI Interface Streaming interface
descriptors.

2. Click the Import MIDI Interface button, browse to the following directory, and open the
USBMIDI 2x2.midi.xml file.

<PSoC Creator Installation Folder>\psoc\content\cyComponentlibrary\

CyComponentLibrary.cylib\USBFS_v3.20\Custom\template\

3. Go to the Device Descriptor tab. Remove MIDI Interface Control and MIDI Interface
Streaming interface descriptors from Configuration Descriptor.

4. Add interfaces: MIDI Interface Control and MIDI Interface Streaming to Configuration
Descriptor. Close USBMIDI_1 Component customizer by pressing OK button.

5. Clone existing UART instance with NOT gate, MIDI_IN1 and MIDI_OUT1 pins using
Copy/Paste method.

6. Change name of cloned elements, to MIDI2_UART, MIDI_IN2, and MIDI_OUT2 accordingly.

7. Set size of MIDI1_UART and MIDI2_UART Rx/Tx buffers to the recommended using
appropriate customizer (see Interrupt Priority section).

To Add MIDI Descriptors

1. Select the MIDI Descriptors root item in the tree on the left.

2. Under MIDI Descriptors List on the right, select either the Audio Control or MIDI
Streaming interface.

3. Click Add to add the descriptor to the tree on the left.

You can rename the MIDI Interface x title by selecting a node and clicking on it again or by
using of Rename context menu item.

http://www.usb.org/developers/docs/devclass_docs/

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 84 of 117 Document Number: 002-19744 Rev. *A

To Add Class-Specific Audio Control or MIDI Streaming Interface Descriptors

1. Select the appropriate AC Alternate Settings x or MS Alternate Settings x item in the tree
on the left.

2. Under the Audio / MIDI Descriptors List on the right, select one of the items under Audio
Control Descriptors (1.0), Audio Control Descriptors (2.0), or MIDI Streaming
Descriptors as appropriate.

Versions 1.0 and 2.0 refer to the versions of the corresponding specification document
Universal Serial Bus Device Class Definition for Audio Devices.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add MIDI Endpoint Descriptors

1. Select the appropriate AC Alternate Settings x or MS Alternate Settings x item in the tree
on the left.

2. Under the Audio / MIDI Descriptors List on the right, select the Endpoint Descriptor item.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add Standard MS Bulk Data Endpoint Descriptor

1. Select the appropriate Endpoint Descriptor in the tree on the left.

2. Under the Audio / MIDI Descriptors List on the right, select MS Endpoint Descriptor.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add the Configured MIDI Interface Descriptor to the Device Descriptor Tree

1. Go to the Device Descriptor tab.

2. Select the Configuration Descriptor to which a new interface will belong.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 85 of 117

3. Click the Add Interface tool button, choose MIDI, and select the appropriate item to add.

MIDI interfaces are disabled in the Device Descriptor tab list because they can only be
edited on the MIDI Descriptor tab.

Note Click Apply or OK to save the changes on the various tabs. If you click Cancel, the
descriptors you added will not be saved.

USBFS MIDI Functions

The following high-level APIs are available when the Enable MIDI Class API option in the MIDI
Descriptor tab is selected.

Function Description

USBMIDI_MIDI_Init() Initializes the MIDI interface and UARTs to be ready to receive data from
the PC and MIDI ports.

USBMIDI_MIDI_IN_Service() Services the USB MIDI IN endpoint.

USBMIDI_MIDI_OUT_Service() Services the USB MIDI OUT endpoint.

USBMIDI_PutUsbMidiIn() Puts one MIDI message into the USB MIDI IN endpoint buffer. This is a
MIDI input message to the host.

USBMIDI_callbackLocalMidiEvent() Is a callback function from USBMIDI_midi.c to local processing in main.c.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 86 of 117 Document Number: 002-19744 Rev. *A

void USBMIDI_MIDI_Init(void)

Description: This function initializes the MIDI interface and UARTs to be ready to receive data from the
PC and MIDI ports.

Parameters: None

Return Value: None

Side Effects: The priority of the UART RX ISR should be higher than UART TX ISR. So the API changes
the priority of the UARTs’ TX and RX interrupts.

void USBMIDI_MIDI_IN_Service(void)

Description: This function services the traffic from MIDI input ports (RX UARTs) or generated by the
USBMIDI_PutUsbMidiIn() function and sends the data to the USBMIDI IN endpoint. It is
non-blocking and should be called from the main foreground task. This function is not
protected from reentrant calls. When you must use this function in UART RX ISR to
guarantee low latency, take care to protect it from reentrant calls

In PSoC 3, if this function is called from an ISR, you must declare this function as re-
entrant so that different variable storage space is created by the compiler. This is
automatically taken care for PSoC 4200L and PSoC 5LP devices by the compiler.

Parameters: None

Return Value: None

Side Effects: None

void USBMIDI_MIDI_OUT_Service(void)

Description: This function services the traffic from the USBMIDI OUT endpoint and sends the data to
the MIDI output ports (TX UARTs). It is blocked by the UART when not enough space is
available in the UART TX buffer.

This function is automatically called from OUT EP ISR in DMA with Automatic Memory
Management mode. In Manual and DMA with Manual EP Management modes you must
call it from the main foreground task.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 87 of 117

uint8 USBMIDI_PutUsbMidiIn(uint8 ic, const uint8 midiMsg[], uint8 cable)

Description: This function puts one MIDI message into the USB MIDI In endpoint buffer. This is a MIDI
input message to the host. This function is used only if the device has internal MIDI input
functionality. The USBMIDI_MIDI_IN_Service() function should also be called to send the
message from local buffer to the IN endpoint.

Parameters: uint8 ic: The length of the MIDI message or command is described on the following table.

Value Description

0 No message (should never happen)

1-3 Complete MIDI message in midiMsg

3 - IN EP Max Packet Size Complete SysEx message (without the EOSEX byte) in
midiMsg

USBMIDI_MIDI_SYSEX Start or continuation of SysEx message. Put event bytes
in the midiMsg buffer

USBMIDI_MIDI_EOSEX End of SysEx message. Put event bytes in the midiMsg
buffer

USBMIDI_MIDI_TUNEREQ Tune Request message (single-byte system common
message)

0xF8 to 0xFF Single-byte real-time message

const uint8 midiMsg[]: Pointer to MIDI message

uint8 cable: Cable number

Return Value:

Return Value Description

USBMIDI_TRUE Host is not ready to receive this message

USBMIDI_FALSE Success transfer

Side Effects: None

void USBMIDI_callbackLocalMidiEvent(uint8 cable, uint8* midiMsg)

Description: This is a callback function that locally processes data received from the PC in main.c. You
should implement this function if you want to use it. It is called from the USB output
processing routine for each MIDI output event processed (decoded) from the output
endpoint buffer.

Parameters: uint8 cable: Cable number

uint8* midiMsg: Pointer to the 3-byte MIDI message

Return Value: None

Side Effects: None

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 88 of 117 Document Number: 002-19744 Rev. *A

USBFS MIDI Global Variables

Variable Description

USBMIDI_midiInBuffer Input endpoint buffer with a length equal to MIDI IN EP Max Packet Size. This
buffer is used to save and combine the data received from the UARTs,
generated internally by USBMIDI_PutUsbMidiIn() function messages, or both.
The USBMIDI_MIDI_IN_Service() function transfers the data from this buffer to
the PC.

USBMIDI_midiOutBuffer Output endpoint buffer with a length equal to MIDI OUT EP Max Packet Size.
This buffer is used by the USBMIDI_MIDI_OUT_Service() function to save the
data received from the PC. The received data is then parsed. The parsed data is
transferred to the UARTs buffer and also used for internal processing by the
USBMIDI_callbackLocalMidiEvent() function.

USBMIDI_midiInPointer Input endpoint buffer pointer. This pointer is used as an index for the
USBMIDI_midiInBuffer to write data. It is cleared to zero by the
USBMIDI_MIDI_EP_Init() function.

USBMIDI_midi_in_ep Contains the midi IN endpoint number, It is initialized after a
SET_CONFIGURATION request based on a user descriptor. It is used in MIDI
APIs to send data to the PC.

USBMIDI_midi_out_ep Contains the midi OUT endpoint number. It is initialized after a
SET_CONFIGURATION request based on a user descriptor. It is used in MIDI
APIs to receive data from the PC.

USBMIDI_MIDI1_InqFlags

USBMIDI_MIDI2_InqFlags

These optional variables are allocated when External Mode is enabled. The
following flags help to detect and generate responses for SysEx messages.

Flag Description

USBMIDI_INQ_SYSEX_FLAG Non-real-time SysEx message received.

USBMIDI_INQ_IDENTITY_REQ_
FLAG

Identity Request received. You should
clear this bit when an Identity Reply
message is generated.

USBFS MIDI Functional Description

The MIDI descriptor tab allows you to easily create a MIDI interface device with one or more sets
of physical MIDI ports (you may have to place and configure instances of a UART Component).
It handles all details of sending and receiving MIDI messages to external MIDI equipment. This is
referred to as external MIDI functionality and is an optional setting in the Component.

The MIDI implementation internally handles running status when communicating with external
MIDI equipment. Running status is automatically implemented on the output to reduce serial data
traffic, and running status in managed on the input to correctly assemble complete MIDI
messages when the external MIDI equipment is sent using running status. Refer to MIDI 1.0
Detailed Specification for more details about Running Status feature.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 89 of 117

Figure 2 shows the external mode USB-MIDI interface with two inputs and two outputs.

Figure 2. External Mode USB-MIDI Interface

USB

USBMIDI Component

MIDI BULK OUT EP

MIDI BULK IN EP

MIDI1_UART Component

MIDI1_UART_RXISR

USBMIDI_MIDI_IN_Service()

MIDI1_UART_TXISR

MIDI2_UART Component

MIDI2_UART_RXISR

USBMIDI_MIDI_IN_Service()

MIDI2_UART_TXISR

External MIDI OUT1

External MIDI OUT2

External MIDI IN1

External MIDI IN2

Internal MIDI functionality

Switches or Sensors

USBMIDI_MIDI_IN_Service()

Digital or Analog outputs

USBMIDI_PutUsbMidiIn()

USBMIDI_callbackGetUsbMidiOut()

USBMIDI_MIDI_OUT_EP_Service()

Implementing external functionality requires you to place and configure UART Components with
the names “MIDI1_UART” and “MIDI2_UART”. These hardcoded names allow the USBMIDI
Component to call UART APIs and automatically transfer received data from the host messages
to the external MIDI port. In Manual and DMA with Manual EP management mode, you must call
the USBMIDI_MIDI_OUT_Service() API from the main loop.

For the opposite direction, to service MIDI event data from the UART Components you must call
the USBMIDI_MIDI_IN_Service() API in the main loop for Manual and DMA with Manual memory
management mode. For DMA with Automatic mode, call this function from the user
section(MIDI[1..2]_UART_RXISR_END) of the Interrupt Service Routine for the RX portion of the
UART(MIDI[1..2]_UART_RXISR).

You can use local switches and sensors to create MIDI messages for the host (use the
USBMIDI_PutUsbMidiIn() function). MIDI messages from the host can directly control local
functions such as digital and analog outputs (implement the USBMIDI_callbackLocalMidiEvent()
function, which is called to process all received messages).

Interrupt Priority

The data received from the host is serviced inside the MIDI BULK OUT EP ISR. When you select
a small UART TX Buffer Size, the code waits for the UART transmit operation to complete and
continues filling the TX buffer. The priority of the Interrupt Service Routine for the TX portion of
the UART should be higher than the MIDI BULK OUT EP ISR priority. The
USBMIDI_MIDI_EP_Init() function automatically changes the default priority for the mentioned
interrupt to the USBMIDI_CUSTOM_UART_TX_PRIOR_NUM value. Cypress recommends that

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 90 of 117 Document Number: 002-19744 Rev. *A

you select UART TX Buffer Size to be the same or greater than MIDI BULK OUT EP Max
Packet Size. The optimal Max Packet Size is 255.

The priority of the UART RX ISR should be higher than TX ISR so that the four bytes of
hardware FIFO overloads are not allowed. The optimal UART RX Buffer Size is 255. The
USBMIDI_MIDI_EP_Init() function automatically changes the default priority for the UART RX
interrupt to the USBMIDI_CUSTOM_UART_RX_PRIOR_NUM value. The
USBMIDI_MIDI_EP_Init() function automatically changes the default priority for the UART RX
interrupt to the USBMIDI_CUSTOM_UART_RX_PRIOR_NUM value.

USBUART (CDC)

The PSoC Creator Component Catalog contains a Schematic Macro implementation of a
communications device class (CDC) interface (also known as USBUART). This is a USBFS
Component with the descriptors configured to implement a CDC interface. This allows you to use
a CDC-enabled USBFS Component with minimal configuration required.

To start a USBUART-based project, drag the USBUART Schematic Macro labeled ‘USBUART
(CDC Interface)’ from the Component Catalog onto your design. This macro has already been
configured to function as a CDC device. See the Component Parameters section of this
datasheet for information about modifying the parameters of this interface, such as the VID, PID,
and String Descriptors.

The CDC device requires drivers to be installed. The drivers can be found in the generated
sources folder of your project:

<PROJECT_NAME>.cydsn\Generated_Source\<PSOC_NAME>\<INSTANCE_NAME>_cdc.inf

See the USBFS_UART code example for detailed steps on how to install a driver.

Note The USBUART does not have any transfer rate limitation, but theoretically the transfer rate
is limited by the USB Full Speed (12 Mbit/s). The default COM port configuration is defined by
the USBUART_lineCoding[] global variable. To change the COM port configuration, update the
global variable. Otherwise, the host must issue a SET_LINE_CODING request.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 91 of 117

To add and configure communications and data interface descriptors for the USBUART, open
the Configure USBFS dialog and click the CDC Descriptor tab.

Enable CDC API

This option enables generation of CDC APIs. The list of generated APIs is provided in the
section USBUART (CDC) .

CDC Descriptors List

This area allows you to add CDC descriptors. Detailed information on the CDC descriptors is
available in the Universal Serial Bus Class Definitions for Communication Devices.

Item Value

This window allows you select a value that is appropriate for the currently selected CDC
Descriptor item. The parameters in these windows are context based and will vary depending
upon the item value selected in the CDC Descriptors List window.

To Add CDC Descriptors

1. Select the CDC Descriptors root item in the tree on the left.

2. Under the CDC Descriptors List on the right, select either the Communications or Data
interface.

http://www.usb.org/developers/docs/devclass_docs/

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 92 of 117 Document Number: 002-19744 Rev. *A

3. Click Add to add the descriptor to the tree on the left.

4. You can rename the CDC Interface x title by selecting a node and clicking on it again or by
using of Rename context menu item.

To Add Functional Descriptors

1. Select the appropriate Communications Alternate Settings x item in the tree on the left.

2. Under the CDC Descriptors List on the right, select one of the items under Functional
Descriptors as appropriate.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add Endpoint Descriptors

1. Select the appropriate Communications Alternate Settings x or Data Alternate Settings x
item in the tree on the left.

2. Under the CDC Descriptors List on the right, select the Endpoint Descriptor item.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

To Add the Configured CDC Interface Descriptor to the Device Descriptor Tree

1. Go to the Device Descriptor tab.

2. Select the Configuration Descriptor to which a new interface will belong.

3. Click the Add Interface tool button, choose CDC, and select the appropriate item to add.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 93 of 117

CDC interfaces are disabled in the Device Descriptor tab list because they can only be
edited on the CDC Descriptor tab.

Note Click Apply or OK to save the changes on the various tabs. If you click Cancel, the
descriptors you added will not be saved.

USBUART (CDC) Functions

The following high-level APIs are available when the Enable CDC API option in the CDC
Descriptor tab is selected. These APIs do not support DMA with Automatic Memory
Management.

Function Description

USBUART_CDC_Init() Initializes the CDC interface to be ready for the receive data from the PC

USBUART_PutData() Sends a specified number of bytes from the location specified by a pointer to
the PC

USBUART_PutString() Sends a null terminated string to the PC

USBUART_PutChar() Writes a single character to the PC

USBUART_PutCRLF() Sends a carriage return (0x0D) and line feed (0x0A) to the PC

USBUART_GetCount() Returns the number of bytes that were received from the PC

USBUART_CDCIsReady() Returns a nonzero value if the Component is ready to send more data to the
PC

USBUART_DataIsReady() Returns a nonzero value if the Component received data or received a zero-
length packet

USBUART_GetData() Gets a specified number of bytes from the input buffer and places them in a
data array specified by the passed pointer

USBUART_GetAll() Gets all bytes of received data from the input buffer and places them into a
specified data array

USBUART_GetChar() Reads one byte of received data from the buffer

USBUART_IsLineChanged() Returns the clear-on-read status of the line

USBUART_GetDTERate() Returns the data terminal rate set for this port in bits per second

USBUART_GetCharFormat() Returns the number of stop bits

USBUART_GetParityType() Returns the parity type for the CDC port

USBUART_GetDataBits() Returns the number of data bits for the CDC port

USBUART_GetLineControl() Returns the line control bitmap

USBUART_SendSerialState() Sends the serial state notification to the host using the interrupt endpoint

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 94 of 117 Document Number: 002-19744 Rev. *A

Function Description

USBUART_GetSerialState() Returns the current serial state value

USBUART_SetComPort() If multiple COM ports are instantiated, this function selects which COM port
user wish to address.

USBUART_GetComPort() If multiple COM ports are instantiated, this function returns the current
selected COM port that the user is addressing.

USBUART_NotificationIsReady() Returns a nonzero value if the Component is ready to send more notification
data to the host

void USBUART_CDC_Init(void)

Description: This function initializes the CDC interface to be ready to receive data from the PC. The API
set active communication port to 0 in the case of multiple communication port support. This
API should be called after the device has been started and configured using
USBUART_Start() API to initialize and start the USBFS Component operation. Then call
the USBUART_GetConfiguration() API to wait until the host has enumerated and
configured the device. For example:

USBUART_Start(…);

while(0 == USBUART_GetConfiguration())

{

}

USBUART_CDC_Init();

Parameters: None

Return Value: None

Side Effects: None

void USBUART_PutData(const uint8* pData, uint16 length)

Description: This function sends a specified number of bytes from the location specified by a pointer to
the PC. The USBUART_CDCIsReady() function should be called before sending new data,
to be sure that the previous data has finished sending.

If the last sent packet is less than maximum packet size the USB transfer of this short
packet will identify the end of the segment. If the last sent packet is exactly maximum
packet size, it shall be followed by a zero-length packet (which is a short packet) to assure
the end of segment is properly identified. To send zero-length packet, use
USBUART_PutData() API with length parameter set to zero.

Parameters: const uint8* pData: Pointer to the buffer containing data to be sent

uint16 length: Specifies the number of bytes to send from the pData buffer. Maximum
length is limited to 64 bytes. Data will be lost if length is greater than Max Packet Size.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 95 of 117

void USBUART_PutString(const char8* string[])

Description: This function sends a null terminated string to the PC. This function will block if there is not
enough memory to place the whole string. It will block until the entire string has been
written to the transmit buffer. The USBUART_CDCIsReady() function should be called
before sending data with a new call to USBUART_PutString(), to be sure that the previous
data has finished sending. This function sends zero-length packet automatically, if the
length of the last packet, sent by this API, is equal to Max Packet Size.

Parameters: const char8 string[]: Pointer to the string to be sent to the PC.

Return Value: None

Side Effects: None

void USBUART_PutChar(char8 txDataByte)

Description: This function writes a single character to the PC at a time. This is an inefficient way to send
large amounts of data.

Parameters: char8 txDataByte: Character to be sent to the PC

Return Value: None

Side Effects: None

void USBUART_PutCRLF(void)

Description: This function sends a carriage return (0x0D) and line feed (0x0A) to the PC. This API is
provided to mimic API provided by our other UART Components.

Parameters: None

Return Value: None

Side Effects: None

uint16 USBUART_GetCount(void)

Description: This function returns the number of bytes that were received from the PC. The returned
length value should be passed to USBUART_GetData() as a parameter to read all received
data. If all of the received data is not read at one time by the USBUART_GetData() API, the
unread data will be lost.

Parameters: None

Return Value: uint16: Returns the number of received bytes. The maximum amount of received data at a
time is limited to 64 bytes.

Side Effects: None

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 96 of 117 Document Number: 002-19744 Rev. *A

uint8 USBUART_DataIsReady(void)

Description: This function returns a nonzero value if the Component received data or received a zero-
length packet. The USBUART_GetAll() or USBUART_GetData() API should be called to
read data from the buffer and reinitialize the OUT endpoint even when a zero-length packet
is received. These APIs will return zero value when zero-length packet is received.

Parameters: None

Return Value: uint8: If the OUT packet is received, this function returns a nonzero value. Otherwise, it
returns zero.

Side Effects: None

uint8 USBUART_CDCIsReady(void)

Description: This function returns a nonzero value if the Component is ready to send more data to the
PC; otherwise, it returns zero. The function should be called before sending new data when
using any of the following APIs: USBUART_PutData(), USBUART_PutString(),
USBUART_PutChar or USBUART_PutCRLF(), to be sure that the previous data has
finished sending.

Parameters: None

Return Value: uint8: If the buffer can accept new data, this function returns a nonzero value. Otherwise, it
returns zero.

Side Effects: None

uint16 USBUART_GetData(uint8* pData, uint16 length)

Description: This function gets a specified number of bytes from the input buffer and places them in a
data array specified by the passed pointer. The USBUART_DataIsReady() API should be
called first, to be sure that data is received from the host. The function does not support the
partial data reads therefore all received bytes has to be read at once. The length argument
must be equal to the number of actually received bytes from the host. Call function
USBUART_GetCount() to get actual number of received bytes.

Parameters: uint8* pData: Pointer to the data array where data will be placed

uint16 length: Number of bytes to read into the data array from the RX buffer. The length
must be equal the number of received bytes or 64 bytes.

Return Value: uint16: Number of bytes which function moves from endpoint RAM into the data array. The
function moves fewer than the requested number of bytes if the host sends fewer bytes
than requested or sends zero-length packet.

Side Effects: None

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 97 of 117

uint16 USBUART_GetAll(uint8* pData)

Description: This function gets all bytes of received data from the input buffer and places them into a
specified data array. The USBUART_DataIsReady() API should be called first, to be sure
that data is received from the host.

Parameters: uint8* pData: Pointer to the data array where data will be placed.

Return Value: uint16: Number of bytes received. The maximum amount of the received at a time data is
64 bytes.

Side Effects: None

uint8 USBUART_GetChar(void)

Description: This function reads 1-byte data packet from the buffer. This function must not be called if
more than 1 byte is received, because call of this function for more than 1 byte received
case could lead to unpredicted results. Use USBUART_GetCount() API to get number of
received bytes.

Parameters: None

Return Value: uint8: Received one character

Side Effects: None

uint8 USBUART_IsLineChanged(void)

Description: This function returns the clear-on-read status of the line. It returns not zero value when the
host sends updated coding or control information to the device. The
USBUART_GetDTERate(), USBUART_GetCharFormat() or USBUART_GetParityType() or
USBUART_GetDataBits() API should be called to read data coding information. The
USBUART_GetLineControl() API should be called to read line control information.

Parameters: None

Return Value: uint8: If SET_LINE_CODING or CDC_SET_CONTROL_LINE_STATE requests are
received, it returns a nonzero value. Otherwise, it returns zero.

Return Value Description

USBUART_LINE_CODING_CHANGED Line coding changed

USBUART_LINE_CONTROL_CHANGED Line control changed

Side Effects: None

uint32 USBUART_GetDTERate(void)

Description: This function returns the data terminal rate set for this port in bits per second.

Parameters: None

Return Value: uint32: Returns a value of the data rate in bits per second

Side Effects: None

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 98 of 117 Document Number: 002-19744 Rev. *A

uint8 USBUART_GetCharFormat(void)

Description: This function returns the number of stop bits.

Parameters: None

Return Value: uint8: Returns the number of stop bits.

Return Value Description

USBUART_1_STOPBIT 1 stop bit

USBUART_1_5_STOPBITS 1,5 stop bits

USBUART_2_STOPBITS 2 stop bits

Side Effects: None

uint8 USBUART_GetParityType(void)

Description: This function returns the parity type for the CDC port.

Parameters: None

Return Value: uint8:

Return Value Description

USBUART_PARITY_NONE None

USBUART_PARITY_ODD Odd

USBUART_PARITY_EVEN Even

USBUART_PARITY_MARK Mark

USBUART_PARITY_SPACE Space

Side Effects: None

uint8 USBUART_GetDataBits(void)

Description: This function returns the number of data bits for the CDC port.

Parameters: None

Return Value: uint8: Returns the number of data bits. The number of data bits can be 5, 6, 7, 8, or 16.

Side Effects: None

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 99 of 117

uint16 USBUART_GetLineControl(void)

Description: This function returns the line control bitmap that the host sends to the device.

Parameters: None.

Return Value: uint8:

Return Value Notes

USBUART_LINE_CONTROL_DTR Indicates that a DTR signal is present. This signal
corresponds to V.24 signal 108/2 and RS232 signal
DTR.

USBUART_LINE_CONTROL_RTS Carrier control for half-duplex modems. This signal
corresponds to V.24 signal 105 and RS232 signal
RTS.

RESERVED The rest of the bits are reserved.

Note Some terminal emulation programs do not properly handle these control signals. They
update information about DTR and RTS state only when the RTS signal changes the state.

Side Effects: None

void USBUART_SendSerialState (uint16 serialState)

Description: Sends the serial state notification to the host using the interrupt endpoint for the COM port
selected using the API SetCOMPort().The USBUART_NotificationIsReady() API must be
called to check if the Component is ready to send more serial state to the host. The API will
not send the notification data if the interrupt endpoint Max Packet Size is less than the
required 10 bytes.

Parameters: uint16 serialState: 16-bit value that will be sent from the device to the host as
SERIAL_STATE notification using the IN interrupt endpoint. Refer to revision 1.2 of the CDC
PSTN Subclass specification for bit field definitions of the 16-bit serial state value.

Return Value: None

Side Effects: None

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 100 of 117 Document Number: 002-19744 Rev. *A

uint16 USBUART_GetSerialState (void)

Description: This function returns the current serial state value for the COM port selected using the API
SetCOMPort().

Parameters: None

Return Value: uint16:16-bit serial state value. Refer to revision 1.2 of the CDC PSTN Subclass
specification for bit field definitions of the 16-bit serial state value.

Side Effects: None

int8 USBUART_NotificationIsReady (void)

Description: This function returns a nonzero value if the Component is ready to send more notifications
to the host; otherwise, it returns zero. The function should be called before sending new
notifications when using USBUART_SendSerialState() to ensure that any previous
notification data has been already sent to the host.

Parameters: None

Return Value: uint8: If the buffer can accept new data (endpoint buffer not full), this function returns a
nonzero value. Otherwise, it returns zero.

Side Effects: None

void USBUART_SetComPort(uint8 comPortNumber)

Description: This function allows the user to select from one of the two COM ports they wish to address
in the instance of having multiple COM ports instantiated though the use of a composite
device. Once set, all future function calls related to the USBUART will be affected. This
addressed COM port can be changed during run time.

Parameters: uint8 comNumber: Contains the COM interface the user wishes to address. Value can either
be 0 or 1 since a maximum of only 2 COM ports can be supported. Note that this COM port
number is not the COM port number assigned on the PC side for the UART communication.
If a value greater than 1 is passed, the function returns without performing any action.

Return Value: None

Side Effects: None

int8 USBUART_GetComPort(void)

Description: This function returns the current selected COM port that the user is currently addressing in
the instance of having multiple COM ports instantiated though the use of a composite
device.

Parameters: None

Return Value: uint8: Returns the currently selected COM port. Value can either be 0 or 1 since a maximum
of only 2 COM ports can be supported. . Note that this COM port number is not the COM
port number assigned on the PC side for the UART communication

Side Effects: None

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 101 of 117

USBUART (CDC) Global Variables

Variable Description

USBUART_lineCoding[] Contains the current line coding structure. The host sets it using a
SET_LINE_CODING request and returns it to the user code using the
USBUART_GetDTERate(), USBUART_GetCharFormat(),
USBUART_GetParityType(), and USBUART_GetDataBits() APIs. It is an
array of 2 elements for COM port 1 and COM port 2 for MultiCOM port
support. In case of 1 COM port, data is in 0 element.

The USBUART_lineCoding[] is initialized as follows (this defines default
COM port configuration):

0x00u, 0xC2u, 0x01u, 0x00u, /* Baud rate 115200 */

0x00u, /* 1 Stop bit */

0x00u, /* Parity None */

0x08u /* 8 data bits */

USBUART_lineControlBitmap[] Contains the current control-signal bitmap. The host sets it using a
SET_CONTROL_LINE request and returns it to the user code using the
USBUART_GetLineControl() API. It is an array of 2 elements for COM
port 1 and COM port 2 for MultiCOM port support. In case of 1 COM port,
data is in 0 element.

USBUART_lineChanged[] Used as a flag for the USBUART_IsLineChanged() API, to inform it that
the host has been sent a request to change line coding or control bitmap.
It is an array of 2 elements for COM port 1 and COM port 2 for MultiCOM
port support. In case of 1 COM port, data is in 0 element.

USBUART_serialStateBitmap[] Contains the 16-bit serial state value that was sent using the
USBUART_SendSerialState() API. It is an array of 2 elements for COM
port 1 and COM port 2 for MultiCOM port support. In case of 1 COM port,
data is in 0 element.

USBUART_cdcDataInEp[] Contains the data IN endpoint number. It is initialized after a
SET_CONFIGURATION request based on a user descriptor. It is used in
CDC APIs to send data to the PC. It is an array of 2 elements for COM
port 1 and COM port 2 for MultiCOM port support. In case of 1 COM port,
data is in 0 element.

USBUART_cdcDataOutEp[] Contains the data OUT endpoint number. It is initialized after a
SET_CONFIGURATION request based on user descriptor. It is used in
CDC APIs to receive data from the PC. It is an array of 2 elements for
COM port 1 and COM port 2 for MultiCOM port support. In case of 1
COM port, data is in 0 element.

USBUART_cdcCommInInterruptEp[] Contains the IN interrupt endpoint number used for sending serial state
notification to the host. It is initialized after a SET_CONFIGURATION
request based on a user descriptor. It is used in the CDC API
USBUART_SendSerialState().It is an array of 2 elements for COM port 1
and COM port 2 for MultiCOM port support. In case of 1 COM port, data
is in 0 element.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 102 of 117 Document Number: 002-19744 Rev. *A

USBUART (CDC) Class Request

This section describes the requests supported by the USBUART Component. If a request is not
supported, the USBUART Component responds with a STALL, indicating a request error.

Class Request USBUART Component Support Description

Communications
Class Subclass
Specification for
PSTN Devices

SET_LINE_CODING Allows the host to specify typical asynchronous line-
character formatting properties such as: data terminal rate,
number of stop bits, parity type and number of data bits. It
applies to data transfers both from the host to the device
and from the device to the host.

6.3.10

GET_LINE_CODING Allows the host to find out the currently configured line
coding.

6.3.11

SET_CONTROL_LINE_STATE Generates RS-232/V.24 style control signals – RTS and
DTR.

6.3.12

Supported by the USBUART Component PSTIN subclass specific notification:

Class Notification Description

Communications
Class Subclass
Specification for
PSTN Devices

SERIAL_STATE Allows the host to read the current state of the carrier
detect (CD), DSR, break, and ring signal (RI).

6.5.4

Note Use USBUART_SendSerialState() and USBUART_GetSerialState() API to work with
SERIAL_STATE notification.

Code Example (CE60246) USBUART Migration

Before the addition of USBUART CDC support in the USBFS v2.0 Component (available in
PSoC Creator 2.0 or later), a USBUART Component was available as a Code Example
Component in CE60246 - USBUART in PSoC® 3 / PSoC 5. This Code Example USBUART is no
longer supported and you are encouraged to migrate to the official Component. This section
details the steps required to complete this migration.

Schematic

1. Open your existing design in PSoC Creator 2.0 or later.

2. Take note of your existing Component name, Vendor ID, Product ID, Device Release,
Manufacturer String, and Product String in your existing USBUART Component.

3. Delete your existing USBUART Component.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 103 of 117

4. Place a ‘USBUART (CDC Interface)’ Component from the PSoC Creator Component Catalog
onto your design.

5. Open the new Component and configure the Component with the parameters noted from the
previous USBUART design. See the Component Parameters section of this datasheet for
details about how to enter the VID, PID, and various device strings into the new Component.

API

Table 1 outlines the required API changes to migrate from the CE60246 USBUART to the
USBFS v2.0+ version of the USBUART. Most changes are minor modifications and should have
a minimal effect on the existing project. Note that the USBFS v2.0+ version of the USBUART
includes a larger selection of CDC-specific APIs (see the USBUART (CDC) Functions list earlier
in the datasheet).

Table 1. API Migration

CE60246 API USBFS v2.0+ API
Changes Required in

Migration

void USBUART_Init (void) void USBUART_CDC_Init (void) API name change.

uint8 USBUART_bGetRxCount (void) uint16 USBUART_GetCount (void)

API name change.

Return value changed from
uint8 to uint16.

void USBUART_ReadAll (uint8*
pData)

uint16 USBUART_GetAll (uint8* pData)

API name change.

Return value changed from void
to uint16.

void USBUART_Write (uint8 *pData,
uint8 bLength)

void USBUART_PutData (const uint8*
pData, uint16 length)

API name change.

Length parameter type changed
from uint8 to uint16.

uint8 USBUART_bTxIsReady (void) uint8 USBUART_CDCIsReady (void) API name change.

Note The table assumes the Component name is “USBUART.”

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 104 of 117 Document Number: 002-19744 Rev. *A

USBFS MSC

The USBFS Component provides limited support for mass storage class (MSC) descriptors. To
add and configure mass storage interface descriptors, open the Configure USBFS dialog and
click the MSC Descriptor tab.

Import MSC Descriptor

The Import button allows you to quickly import the MSC descriptors from saved template. The
single MSC descriptors template is provided in the MassStorage_BOT.msc file.

It is possible create MSC manually instead of using template. But it is recomented to start from
the template.

MSC Descriptors List

This area allows you to add MSC descriptors. Detailed information on the MSC descriptors is
available in the Universal Serial Bus Device Class Definition for Mass Storage.

http://www.usb.org/developers/docs/devclass_docs/

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 105 of 117

Item Value

This area allows you select a value that is appropriate for the currently selected MSC Descriptor
item. The parameters in these windows are context based and will vary depending upon the item
value selected in the MSC Descriptors List window.

To Add MSC Descriptors

1. Select the MSC Descriptors root item in the tree on the left.

2. Under the MCS Descriptors List on the right, select the MSC Interface Descriptor.

3. Click Add to add the descriptor to the tree on the left.

You can rename the MSC Interface x title by selecting a node and clicking on it again or by
using of Rename context menu item.

To Add MSC Endpoint Descriptors

1. Select the appropriate MSC Alternate Settings x item in the tree on the left.

2. Under the MSC Descriptors List on the right, select the Endpoint Descriptor item.

3. Under Item Value, enter the appropriate values under Specific.

4. Click Add to add the descriptor to the tree on the left.

Handling MSC Request

The Component provides option Handle MSC Requests in the MSC Descriptor tab which
defines

This option determines if Component handles the MSC requests or it becomes user
responsibility. When this option is enabled the Component handle MSC requests defined in the
Universal Serial Bus Mass Storage Class Bulk-Only Transport specification and provides
functions listed in the MSC section.

Otherwise Component allows users to implement callback function which handles MSC
requests. The callback name is USBFS_DispatchMSCClassRqst_Callback(). Refer to the Macro
Callbacks section for details. For example of class request handler implementation find
USBFS_DispatchMSCClassRqst() function in the USBFS_msc.c file or any other dispatch class
request function.

Number of Logical Units (LUN)

This parameter specifies the number of logical units that is supported by the Mass Storage
device. This filed is available only if Handling MSC Request option is enabled.

http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 106 of 117 Document Number: 002-19744 Rev. *A

MSC Functions

The following functions and callback are available when the Handling MSC Request option is
enabled.

Function Description

USBFS_MSC_SetLunCount() Sets the number of logical units.

USBFS_MSC_GetLunCount() Returns the number of logical units.

void USBFS_MSC_SetLunCount(uint8 lunCount)

Description: This function sets the number of logical units supported in the application.

The default number of logical units is set in the Component customizer.

Parameters: lunCount: Count of the logical units. Valid range is between 1 and 16.

Return Value: None

Side Effects: None

uint8 USBFS_MSC_GetLunCount(void)

Description: This function returns the number of logical units.

Parameters: None

Return Value: uint8: Number of the logical units.

Side Effects: None

MSC Class Request

The MSC Reset request typically requires application service. The Component allows user to
implement callback function USBFS_DispatchMSCClass_MSC_RESET_RQST_Callback() to
add application part of this request service. The response to request is not sent to the host until
application processing completes. Refer to Macro Callbacks section for details how to enable
macro callback.

Component Debug Window

PSoC Creator allows you to view debug information about Components in your design. Each
Component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device technical reference manual.

To open the Component Debug window:

1. Make sure the debugger is running or in break mode.

2. Choose Windows > Components… from the Debug menu.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 107 of 117

3. In the Component Window Selector dialog, select the Component instances to view and click
OK.

The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.

Resources

USB is implemented as a fixed-function block.

Configuration

Resource Type

USBFS Fixed
Blocks

Clocks

Pins PSoC 3 / PSoC 5LP PSoC 4200L

All Configurations 1 IMO, Clock Doubler, 100 kHz ILO IMO, ILO 3

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

USB DC Specifications

Parameter Description Conditions Min Typ Max Units

VUSB_5 Device supply for USB
operation

USB configured, USB
regulator enabled

PSoC 3/5LP

4.35 – 5.25 V

USB configured, USB
regulator enabled
PSoC4200L

4.5 – 5.5 V

VUSB_3.3 USB configured, USB
regulator bypassed

3.15 – 3.6 V

VUSB_3 USB configured, USB
regulator bypassed

2.85 – 3.6 V

IUSB_Configured Device supply current in
device active mode, bus clock
and IMO = 24 MHz

VDDD = 5 V – 10 – mA

VDDD = 3.3 V – 8 – mA

IUSB_Suspended Device supply current in
device sleep mode

VDDD = 5 V, connected to
USB host, PICU configured to
wake on USB resume signal

– 0.5 – mA

VDDD = 5 V, disconnected
from USB host

– 0.3 – mA

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 108 of 117 Document Number: 002-19744 Rev. *A

Parameter Description Conditions Min Typ Max Units

VDDD = 3.3 V, connected to
USB host, PICU configured to
wake on USB resume signal

– 0.5 – mA

VDDD = 3.3 V, disconnected
from USB host

– 0.3 – mA

USB Driver AC Specifications

Parameter Description Conditions Min Typ Max Units

Tr Transition rise time 4 – 20 ns

Tf Transition fall time 4 – 20 ns

TR Rise/fall time matching 90% – 111%

VCRS Output signal crossover voltage 1.3 – 2 V

Component Errata

This section lists known problems with the Component.

Cypress
ID

Component
Version Problem Workaround

227772 All This issue is applicable to the PSoC 3
and PSoC 5LP USB Component
operating in “DMA with Manual Buffer”
mode.

The Component may intermittently fail
to load the IN endpoints completely if
the USB device is overloaded with too
many requests. When this problem
occurs, the IN endpoint is no longer
exposed to the host and reports that
the IN buffer is full.

It is recommenced to use other modes of
operation (“Manual” or “DMA with Automatic
Buffer Management”) if you face this problem.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 109 of 117

Cypress
ID

Component
Version Problem Workaround

284043 All This issue is applicable to the PSoC 3
and PSoC 5LP USB Component
operating in “DMA with Manual Buffer”
mode.

The Component may intermittently fail
to read received data from the OUT
endpoints if the USB device is
overloaded with too many requests.
When this problem occurs, the data
sent to OUT endpoint does not match
data read from OUT endpoint.

It is recommenced to use other modes of
operation (“Manual” or “DMA with Automatic
Buffer Management”) if you face this problem.

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.20.a Updated datasheet. Added errata item 284043.

Updated USB Compliance for Self-Powered Devices
section adding information about IMO locking for
PSoC 4200L devices.

3.20 Fixed endpoint counter register corruption due
to incorrect logical operation.

Fixed errata item 274441: The USBFS Component
fails to recover endpoint operation after the host
issues CLEAR_FEATURE request to the endpoint.

Fixed USB_PutUsbMidiIn() function to properly
handle MIDI SysEx messages.

The MIDI SysEx messages were not handled
properly.

Updated datasheet. Removed errata item 257982: Added section OUT
Packet re-transmission to explain how to handle
data toggle error on application level use macro
callbacks.

Added information about DMA channel assignment
for PSoC4200L devices.

3.10.a Updated datasheet. Added errata items 257982 and 274441.

3.10 Updated Component to fix defects. Fixed issues 231992 and 252866; removed errata
items from the datasheet.

Added the protection in the EP DMA ISR code
against the buffer overrun in cases when arbiter ISR
is not registered/serviced.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 110 of 117 Document Number: 002-19744 Rev. *A

Version Description of Changes Reason for Changes / Impact

3.0.a Datasheet edits. Various formatting and edits to make the document
more clear.

Removed note about data for PSoC 4200L devices
being preliminary.

Added errata item 252866 to document issue with
repeated USB plug in and plug out attempts.

Added errata item 231992 to document power
increase issue after USB_Start USB_Stop
sequence.

3.0 Version 3.0 of the USBFS Component is not
completely backward compatible with the
previous versions due to a change in the
register access format to follow a common
firmware architecture for PSoC 3/PSoC 4200L/
PSoC 5LP. The unused variables were
removed or renamed to match the naming
conversion.

The implementation in previous Component versions
to access registers was inconvenient, and not
scalable to support the newer PSoC 4 family devices
with USB.

The backward compatibility exception is only for the
user section code in the USB Component ISRs.

The compilation error will appear if old variables
were used in the user section code. The user code
would have to be updated to fix the compilation
error.

Change control flow for handling OUT endpoint
in the DMA with Manual Buffer Management
mode. The OUT endpoint is not enabled in the
arbiter interrupt anymore after
USBFS_ReadOutEP() is called.

The condition that DMA has completed transfer data
from OUT endpoint buffer to SRAM buffer can fail
when short USB transfer comes in.

The USBFS_EnableOutEP() has to be called to
allow host to write data into the endpoint buffer after
DMA has completed transfer data from OUT
endpoint buffer to SRAM buffer.

Added support for PSoC 4200L devices.

The new features specific for PSoC 4200L are
BCD and LPM.

Added support for multiple COM ports.

Added support for CDC SERIAL_STATE
notification.

Added support for Mass Storage Class (MSC)
descriptor configuration and MSC request
handling.

Changed initial drive state of D+ pin to high for
PSoC3 / PSoC5LP devices.

Remove glitch on D+ line while device wakeups from
Sleep when host drives resume.

Macro Callbacks section update. Removed SOF callback:
USBFS_SOF_ISR_InterruptCallback()

Added new macro callbacks for SOF:
USBFS_SOF_ISR_EntryCallback() and
USBFS_SOF_ISR_ExitCallback()

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 111 of 117

Version Description of Changes Reason for Changes / Impact

Updated MIDI functions names.

▪ New names: USBFS_MIDI_Init() and
USBFS_MIDI_OUT_Service()

▪ Old names: USBFS_MIDI_EP_Init()
and USBFS_MIDI_OUT_EP_Service()

Made MIDI function more consistent with other
Component functions.

Datasheet updates Improve description in sections:

▪ USB, Suspend, Resume, and Remote
Wakeup

▪ Endpoint Buffer Management

▪ Interrupt Service Routine

Added USBFS Basic Workflow in Different Modes
section.

Added Component Errata section to document issue
with the PSoC 3 and PSoC 5LP USB Component
operating in “DMA with Manual Buffer” mode.

2.80.a Datasheet update. Added Macro Callbacks section.

2.80 In the USB HID configuration, the
“RPT_TABLE” arrays were modified: empty
entries {NULL, NULL, NULL} replaced with
{0x00u, NULL, NULL}.

The ARM GCC 4.8.4 compiler generated a warning
when using HID Report Descriptors with the
REPORT_ID item.

Edited the datasheet. Rearranged sections to conform to the template.

2.70 Fixed respond to GET_DESCRIPTOR request.
If a device does not support a requested
descriptor, it responds with a Request Error.

USB Command Verifier version 1.4.10.2 fails the
chapter 9 and HID tests.

Fixed rare IN endpoint transaction fault in DMA
w/Automatic Memory Management mode.

The fix consumes additional hardware resources.
The epDMAautoOptimization parameter in the
expression view of the Device Descriptor tab
enables resource optimization. Set parameter value
to true only when a single IN endpoint is present in
the device.

USBUART_lineCoding array initialized with
following default configuration: 115200 baud, 8
data bits, None parity, 1 stop bit.

The first GET_LINE_CODING request does not send
proper configuration to the terminal software.

Modified USBUART_PutString() API to send
zero-length packet automatically, if the length of
the last packet, sent by this API, is equal to
maximum packet size.

If the last sent packet is exactly maximum packet
size, it shall be followed by a zero-length packet.

Updated USBFS_LoadInEP() API description. Clarified the process to set data ready status.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 112 of 117 Document Number: 002-19744 Rev. *A

Version Description of Changes Reason for Changes / Impact

2.60 Interface Association Descriptor support has
been added.

The Interface Association Descriptor has been
implemented as described in USB ECN: Interface
Association Descriptors documentation.

Quick import of HID templates feature added. Usability improvements.

Added possibility to import HID report
descriptors that were created using the official
USB-IF HID Descriptor Tool.

Updated MISRA Compliance section. The Component verified for MISRA-C:2004 coding
guidelines compliance and has Component specific
deviations.

Added optional vbusdet input. This input provides the ability to connect VBUS for
power monitoring.

Fixed inaccessibility of Interface Protocol field
of Interface descriptor and also Synch Type and
Usage Type fields of Endpoint descriptor in
some cases.

2.50 Editing of HID report's name and comments in
the customizer is available via context menu in
the tree, "Rename" command.

Simplify editing of HID report descriptor.

Fixed USBFS_SetEndpointHalt() and
USBFS_ClearEndpointHalt() functions.

This fix allows continue data transfer when the host
clears the ENDPOINT_HALT feature.

Added MISRA Compliance section. This Component was not verified for MISRA-C:2004
coding guidelines compliance.

2.40 Fixed rare IN endpoint transaction fault and
dynamic endpoint reconfiguration in DMA
w/Automatic Memory Management mode.

The field that displays the device number was
added to the device descriptor in the device
descriptor tab.

This number has to be used in USBFS_Start() API
as a parameter.

Added DMA w/Manual Memory Management
support for PSoC 5 silicon.

DRC with error is generated when Bulk
endpoint MaxPacketSize value is not from the
list {8, 16, 32, 64}

This error is also checked in customizer. User won't
be able to close the customizer if the wrong value is
entered.

Added multiple Report ID support for HID
descriptor.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 113 of 117

Version Description of Changes Reason for Changes / Impact

2.30 Fixed unexpected endpoint reconfiguration after
SET_INTERFACE request sent to interface not
related to affected endpoint.

A device with multiple interfaces and alternate
settings must reconfigure only endpoints which are
required by SetInterface request.

Added user code sections (`#START`...`#END`)
to the SET_CUR/GET_CUR Audio class
requests handler.

To let the user update volume control requests
handler with multi-channel audio volume control
support.

2.20 Added PSoC 5LP silicon support.

Updated characterization data.

Minor datasheet edits.

2.12 Added MIDI devices support:

▪ Added the new “MIDI Descriptor” tab.
This tab allows the user to configure
MIDI descriptors.

▪ Optional high level APIs.

The MIDI interface has been implemented as
described in Universal Serial Bus Device Class
Definition for MIDI Devices v1.0 documentation.

Added the USBFS_Resume_Condition() API for
PSoC 5 only device to check the condition for
resume.

A PSoC 5 device has neither PICU wakeup source
nor standard D+ pin APIs to check the condition for
waking up. This function reads the D+ pin level
through USBIO block and returns the resume
condition.

Reorganized the datasheet.

2.11 Added all USBFS APIs with the
CYREENTRANT keyword when they are
included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
Component API source files indicate which functions
are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used in
a safe way: protected from concurrent calls by flags
or Critical Sections.

The data toggle is always set to DATA0 when
performing an IN data transfer for an
isochronous endpoint.

According to the USB 2.0 specification for
Isochronous Transactions, a full-speed device
should only send DATA0 PIDs in data packets.

Fixed the Stop_DMA function to free all of the
endpoint DMA TDs used for Mode 3 operation.

This function stopped only one channel.

Changed default driver mode for the VBUS
monitor input pin to High Impedance and
removed the suppressing API generation for
this pin.

This change allows you to reduce power
consumption for low power projects.

2.10 Fixed handling of the class-specific requests in
USBFS_DispatchClassRqst() function.

The Audio requests were stalled.

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 114 of 117 Document Number: 002-19744 Rev. *A

Version Description of Changes Reason for Changes / Impact

2.0 Added CDC class support:

▪ Added new “CDC Descriptor” tab. This
tab allows the user to configure CDC
descriptors.

▪ SET_LINE_CODING/GET_LINE_CODI
NG
CLR_CUR/SET_CONTROL_LINE_STA
TE CDC class request support.

▪ Optional high level APIs.

The CDC interface has been implemented as
described in Section 4 of the USB Class Definitions
for Communications Devices v1.2 documentation.

Added Audio Class 2.0 class support.

On the “Audio” tab, added two new groups of
available descriptors.

They are called “Audio Control Descriptors
(2.0)” and “Audio Streaming Descriptors (2.0)”.

Existing groups “Audio Control Descriptors” and
“Audio Streaming Descriptors” were renamed to

“Audio Control Descriptors (1.0)” and “Audio
Streaming Descriptors (1.0)”.

New descriptors represent USB Device Class
Definition for Audio Devices release 2.0
specification.

Added DMA transfers implementation:

▪ Mode2: Manual DMA with Manual
Memory Management

▪ Mode3: Auto DMA with Auto Memory
Management

▪ USBFS_InitEP_DMA() API has been
added.

▪ USBFS_LoadInEP()/USBFS_ReadOutE
P() APIs modified to support DMA
transfers.

DMA transaction releases the CPU use during data
transfers.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 115 of 117

Version Description of Changes Reason for Changes / Impact

Added function
USBFS_IsConfigurationChanged().

Win 7 OS could send double
SET_CONFIGURATION requests with same
configuration number. In this case user-level code
should re-enable OUT endpoints after each request.

This function should be used to detect that
configuration has been changed from the PC. If it
returns a nonzero value, the
USBFS_GetConfiguration() API is can be used to
get the configuration number.

Usage model in main loop:

if(USBFS_IsConfigurationChanged() !=

0)

{

 if(USBFS_GetConfiguration() != 0)

 {

 USBFS_EnableOutEP(OUT_EP);

 }

}

Fixed issue with Wakeup from Sleep mode. USB_BUS_RST_CNT register is nonretention and
should be reloaded after sleep mode for correct USB
enumeration of PSoC 3 ES2 and PSoC 5 silicon.

Moved the endpoint memory management
group box from the device options panel to the
root device options panel.

Endpoint memory management settings should be
global for whole configuration.

In the previous version these settings were individual
for each device descriptor.

1.60 Added function USBFS_TerminateEP(uint8 ep)
to NAK an endpoint.

This function can be used before endpoint
reconfiguration or device mode switching.

Initialized USBFS_hidProtocol variable to
HID_PROTOCOL_REPORT value in
USBFS_InitComponent() and
USBFS_reInitComponent() functions.

To comply with HID “7.2.6 Set_Protocol Request” ---
“When initialized, all devices default to report
protocol.”

Added support for
SET_FEATURE/CLR_FEATURE requests to
an interface.

For passing WHQL test.

Added logic to the SET_IDLE request handling
to support proper timing.

To comply with HID "7.2.4 Set_Idle Request"

Added support for Audio class requests:
SET_CUR/CLR_CUR to an interface and
Endpoint for Sampling Frequency, Mute, and
Volume controls.

To comply with Audio Class Definition “5.2.1.1 Set
Request” and “5.2.1.2 Get Request”

Renamed Bootloader APIs to have instance
name first. Added the backward compatible
defines.

Preparation for future ability to boot from multiple
interfaces.

Added characterization data to datasheet

Full Speed USB (USBFS) PSoC® Creator™ Component Datasheet

Page 116 of 117 Document Number: 002-19744 Rev. *A

Version Description of Changes Reason for Changes / Impact

Minor datasheet edits and updates

1.50.a Made datasheet change log cumulative Customer convenience.

1.50 Added USB Suspend, Resume, and Remote
Wakeup functionality.

The USB device should support suspend and
resume functionality.

Renamed most APIs to remove Hungarian
notation, old names are supported for backward
compatibility.

To comply with corporate coding standards.

Added GET_INTERFACE/SET_INTERFACE
requests support.

A device must support the GetInterface/SetInterface
requests if it has alternate settings for that interface.

Integrated specific APIs to support the
bootloader: CyBtldrCommStart,
CyBtldrCommStop, CyBtldrCommReset,
CyBtldrCommWrite, CyBtldrCommRead.

USB could be used as a communication Component
for the Bootloader with this feature.

Added generic USB Bulk Wraparound Transfer
example to datasheet.

Described generic USB usage for user.

Added the extern_cls and extern_vnd
parameters to the Advanced tab of the
Configure dialog.

These parameters enable other Components at the
solutions level, to provide their handling of Vendor
and Class requests themselves.

Restriction has been added to DMA w/Manual
Memory Management section.

This restriction shows how to properly use Mode 2/3
transfers.

Modified 'Advanced' tab layout. Replaced the data grid with check boxes with
information about each parameter to improve
usability.

Added Audio Descriptors tab to the Configure
dialog.

This allows you to add and configure audio
descriptors for your Component.

Removed SOF ISR enable/disable from
Start/Stop APIs.

SOF interrupts occur each 1 ms, but were not used
by the Component. If an application requires this
interrupt, it can be enabled by calling:

CyIntEnable(USBFS_SOF_VECT_NUM);

1.30.b Added information to the Component that
advertises its compatibility with silicon revisions.

The tool reports an error/warning if the Component
is used on incompatible silicon. If this happens,
update to a revision that supports your target device.

1.30.a Moved local parameters to formal parameter
list.

To address a defect that existed in PSoC Creator
v1.0 Beta 4.1 and earlier, the Component was
updated so that it could continue to be used in newer
versions of the tool. This Component used local
parameters, which are not exposed to the user, to do
background calculations on user input. These
parameters have been changed to formal
parameters which are visible, but not editable. There
are no functional changes to the Component but the
affected parameters are now visible in the
“expression view” of the customizer dialog.

PSoC® Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 002-19744 Rev. *A Page 117 of 117

Version Description of Changes Reason for Changes / Impact

1.30 Updated the Configure dialog and datasheet. Added the Enable SOF Output parameter to the
Advanced tab of the Configure dialog.

Updated the USBFS_ReadOutEP() function in the
datasheet to reflect the correct return value.

1.20.b Added information to the Component that
advertises its compatibility with silicon revisions.

The tool reports an error/warning if the Component
is used on incompatible silicon. If this happens,
update to a revision that supports your target device.

1.20.a Moved local parameters to formal parameter
list.

To address a defect that existed in PSoC Creator
v1.0 Beta 4.1 and earlier, the Component was
updated so that it could continue to be used in newer
versions of the tool. This Component used local
parameters, which are not exposed to the user, to do
background calculations on user input. These
parameters have been changed to formal
parameters which are visible, but uneditable. There
are no functional changes to the Component but the
affected parameters are now visible in the
“expression view” of the customizer dialog.

1.10.b Added information to the Component that
advertises its compatibility with silicon revisions.

The tool reports an error/warning if the Component
is used on incompatible silicon. If this happens,
update to a revision that supports your target device.

1.10.a Moved local parameters to formal parameter
list.

To address a defect that existed in PSoC Creator
v1.0 Beta 4.1 and earlier, the Component was
updated so that it could continue to be used in newer
versions of the tool. This Component used local
parameters, which are not exposed to the user, to do
background calculations on user input. These
parameters have been changed to formal
parameters which are visible, but un-editable. There
are no functional changes to the Component but the
affected parameters are now visible in the
“expression view” of the customizer dialog.

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a USBFS
	Quick Start
	PSoC 4200L
	IMO at 48 MHz, trim with USB.
	IMO at 24 MHz, PLL at 48 MHz.

	PSoC 3 and PSoC 5LP
	IMO at 24 MHz, doubler for USB.

	An Introduction to Universal Serial Bus 2.0
	Definitions
	USB Descriptor Configuration
	Device Descriptor
	Configuration Descriptor
	Interface Descriptor
	Interface Association Descriptor
	Endpoint Descriptor
	String Descriptor
	Miscellaneous Descriptors

	Input/Output Connections
	Dp – In/Out*
	Dm – In/Out*
	sof – Output *
	vbusdet – Input *

	Component Parameters
	Device Descriptor Tab
	Menu items
	Add <Level> Button
	Delete Button
	Import Button
	Save Button

	Descriptor Root
	Endpoint Buffer Management

	Device Descriptor
	Device Attributes

	BOS Descriptor
	BOS Descriptor Attributes

	USB2.0 Extension Descriptor
	USB2.0 Extension Descriptor Attributes

	Configuration Descriptor
	Configuration Attributes

	Interface Association Descriptor
	To Add Interface Association Descriptor

	Interface Association Attributes
	Interface Descriptor
	Alternate Settings
	Interface Attributes

	HID Class Descriptor
	To Add HID Class Descriptor
	HID Class Attributes

	Endpoint Descriptor
	Endpoint Attributes

	String Descriptor Tab
	String Descriptors
	Include Serial Number String
	Include MS OS String Descriptor

	HID Descriptor Tab
	Toolbar Buttons
	HID Descriptors

	Audio Descriptor Tab
	MIDI Descriptor Tab
	CDC Descriptor Tab
	MSC Descriptor Tab
	Interrupts Tab
	Advanced Tab
	Enable SOF output
	Enable SOF interrupt
	Handle class requests in user code
	Handle vendor requests in user code
	VBUS Monitoring
	Enable battery charger detection
	Generate 16-bit endpoint access APIs

	Application Programming Interface
	Basic USBFS Device APIs
	void USBFS_Start(uint8 device, uint8 mode)
	void USBFS_Init(void)
	void USBFS_InitComponent(uint8 device, uint8 mode)
	void USBFS_Stop(void)
	uint8 USBFS_GetConfiguration(void)
	uint8 USBFS_IsConfigurationChanged(void)
	uint8 USBFS_GetInterfaceSetting(uint8 interfaceNumber)
	uint8 USBFS_GetEPState(uint8 epNumber)
	uint8 USBFS_GetEPAckState(uint8 epNumber)
	uint16 USBFS_GetEPCount(uint8 epNumber)
	void USBFS_InitEP_DMA(uint8 epNumber, const uint8 *pData)
	void void USBFS_Stop_DMA(uint8 epNumber)
	void USBFS_LoadInEP(uint8 epNumber, const uint8 pData[], uint16 length)
	void USBFS_LoadInEP16(uint8 epNumber, const uint8 pData[], uint16 length)
	uint16 USBFS_ReadOutEP(uint8 epNumber, uint8 pData[], uint16 length)
	uint16 USBFS_ReadOutEP16(uint8 epNumber, uint8 pData[], uint16 length)
	void USBFS_EnableOutEP(uint8 epNumber)
	void USBFS_DisableOutEP(uint8 epNumber)
	void USBFS_SetPowerStatus(uint8 powerStatus)
	void USBFS_Force(uint8 state)
	void USBFS_SerialNumString(uint8 snString[])
	void USBFS_TerminateEP(uint8 epNumber)
	uint8 USBFS_VBusPresent(void)
	uint8 USBFS_Bcd_DetectPortType (void)
	uint8 USBFS_GetDeviceAddress(void)
	void USBFS_EnableSofInt(void)
	void USBFS_DisableSofInt(void)

	Human Interface Device (HID) Class Support
	uint8 USBFS_UpdateHIDTimer(uint8 interface)
	uint8 USBFS_GetProtocol(uint8 interface)

	Bootloader Support
	void USBFS_CyBtldrCommStart(void)
	void USBFS_CyBtldrCommStop(void)
	void USBFS_CyBtldrCommReset(void)
	cystatus USBFS_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 *count, uint8 timeOut)
	cystatus USBFS_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 *count, uint8 timeOut)

	USB Suspend, Resume, and Remote Wakeup
	uint8 USBFS_CheckActivity(void)
	void USBFS_Suspend(void)
	void USBFS_Resume(void)
	uint8 USBFS_RWUEnabled(void)
	Enter/Exit Low Power Mode Example

	Link Power Management (LPM) Support
	LPM Functions
	uint32 USBFS_Lpm_GetBeslValue (void)
	uint32 USBFS_Lpm_RemoteWakeUpAllowed (void)
	void USBFS_Lpm_SetResponse(uint32 response)
	uint32 USBFS_Lpm_GetResponse(void)

	Common Global Variables
	Report Storage Area
	Macro Callbacks
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	USBFS Basic Workflow In Different Modes
	Manual
	Data write into the IN endpoint:
	Data read from OUT endpoint:

	DMA with Manual Buffer Management
	Data write into the IN endpoint:
	Data read from OUT endpoint:

	DMA with Automatic Buffer Management
	Initialization of IN and OUT endpoints buffers:
	Data write into the IN endpoint:
	Data read from OUT endpoint:

	OUT Packet re-transmission

	USB Compliance
	USB Compliance for Self-Powered Devices
	USB Standard Device Requests
	HID Class Request
	16-bit Endpoint Access API
	Interrupt Service Routine
	Interrupt priority change
	PSoC 4200L Devices
	PSoC 3/PSoC 5LP Devices

	Clock Selection
	Link Power Management (LPM)

	Additional USBFS Configurations
	USBFS Audio
	Import Audio Descriptor
	Audio Descriptors List
	Item Value
	To Add Audio Descriptors
	To Add Class-Specific Audio Control or Audio Streaming Interface Descriptors
	To Add Audio Endpoint Descriptors
	To Add Standard AS Isochronous Synch Endpoint Descriptor
	To Add the Configured Audio Interface Descriptor to the Device Descriptor Tree
	USBFS Audio Global Variables
	Audio Class Request

	USBFS MIDI
	Features
	Enable MIDI Class API
	External Mode
	MIDI Descriptors List
	Item Value
	To update the USBMIDI Schematic Macro for the external mode with 2 inputs and 2 outputs:
	To Add MIDI Descriptors
	To Add Class-Specific Audio Control or MIDI Streaming Interface Descriptors
	To Add MIDI Endpoint Descriptors
	To Add Standard MS Bulk Data Endpoint Descriptor
	To Add the Configured MIDI Interface Descriptor to the Device Descriptor Tree
	USBFS MIDI Functions
	void USBMIDI_MIDI_Init(void)
	void USBMIDI_MIDI_IN_Service(void)
	void USBMIDI_MIDI_OUT_Service(void)
	uint8 USBMIDI_PutUsbMidiIn(uint8 ic, const uint8 midiMsg[], uint8 cable)
	void USBMIDI_callbackLocalMidiEvent(uint8 cable, uint8* midiMsg)

	USBFS MIDI Global Variables
	USBFS MIDI Functional Description
	Interrupt Priority

	USBUART (CDC)
	Enable CDC API
	CDC Descriptors List
	Item Value
	To Add CDC Descriptors
	To Add Functional Descriptors
	To Add Endpoint Descriptors
	To Add the Configured CDC Interface Descriptor to the Device Descriptor Tree
	USBUART (CDC) Functions
	void USBUART_CDC_Init(void)
	void USBUART_PutData(const uint8* pData, uint16 length)
	void USBUART_PutString(const char8* string[])
	void USBUART_PutChar(char8 txDataByte)
	void USBUART_PutCRLF(void)
	uint16 USBUART_GetCount(void)
	uint8 USBUART_DataIsReady(void)
	uint8 USBUART_CDCIsReady(void)
	uint16 USBUART_GetData(uint8* pData, uint16 length)
	uint16 USBUART_GetAll(uint8* pData)
	uint8 USBUART_GetChar(void)
	uint8 USBUART_IsLineChanged(void)
	uint32 USBUART_GetDTERate(void)
	uint8 USBUART_GetCharFormat(void)
	uint8 USBUART_GetParityType(void)
	uint8 USBUART_GetDataBits(void)
	uint16 USBUART_GetLineControl(void)
	void USBUART_SendSerialState (uint16 serialState)
	uint16 USBUART_GetSerialState (void)
	int8 USBUART_NotificationIsReady (void)
	void USBUART_SetComPort(uint8 comPortNumber)
	int8 USBUART_GetComPort(void)

	USBUART (CDC) Global Variables
	USBUART (CDC) Class Request
	Code Example (CE60246) USBUART Migration
	Schematic
	API

	USBFS MSC
	Import MSC Descriptor
	MSC Descriptors List
	Item Value
	To Add MSC Descriptors
	To Add MSC Endpoint Descriptors
	Handling MSC Request
	Number of Logical Units (LUN)
	MSC Functions
	void USBFS_MSC_SetLunCount(uint8 lunCount)
	uint8 USBFS_MSC_GetLunCount(void)

	MSC Class Request

	Component Debug Window
	Resources
	DC and AC Electrical Characteristics
	USB DC Specifications
	USB Driver AC Specifications

	Component Errata
	Component Changes

