
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the 
company that originally developed the product. Please note that Infineon will continue 
to offer the product to new and existing customers as part of the Infineon product 
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product 
portfolio does not lead to any changes to this document. Future revisions will occur 
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the 
ordering part numbers listed in the datasheet for ordering.



 

 
 PSoC® Creator™ Component Datasheet 

Cypress Semiconductor Corporation   •   198 Champion Court   •   San Jose, CA 95134-1709   •   408-943-2600 

Document Number: 001-85000 Rev. *C Revised November 24, 2017 

 

Features 

▪ Wakes up devices from low-power modes: Alternate Active 
and Sleep  

▪ Contains configurable option for issuing interrupt 

▪ Generates periodic interrupts while the device is in Active mode 

▪ Supports twelve discrete intervals: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 
4096 ms 

General Description 

The Sleep Timer component can be used to wake the device from Alternate Active and Sleep 
modes at a configurable interval. It can also be configured to issue an interrupt at a configurable 
interval. 

When to Use a Sleep Timer 

You can use the Sleep Timer component to periodically wake a device from Alternate Active and 
Sleep low-power modes at a configurable interval, with or without (PSoC 3 only) issuing 
interrupts. You can also use it to generate periodic interrupts while the device is in Active mode, 
like a counter. 

Hardware counters can also implement periodic interrupts. However, this would use hardware 
resources inefficiently and would require the device to remain in Active mode. 

The Sleep Timer uses a unique set of resources, so only one is available for each design. 

interrupt – Output 

The Sleep Timer has one output connection, interrupt. It has no input connections. The interrupt 
output uses the Central Time Wheel (CTW) interrupt source. An interrupt is issued when the 
CTW counter reaches the terminal count, specified in the component customizer or by API 
function. 

The output may be hidden on the symbol by deselecting the Enable Sleep Timer Interrupt 
parameter. 

Sleep Timer 
3.20 



Sleep Timer PSoC® Creator™ Component Datasheet 

Page 2 of 11 Document Number: 001-85000 Rev. *C 

Schematic Macro Information 

The default Sleep Timer in the Component Catalog is a schematic macro using a Sleep Timer 
component with default settings. The Sleep Timer component is connected to an Interrupt 
component, which also is configured with default settings. 

Component Parameters 

Drag a Sleep Timer schematic macro onto your design and double-click the Sleep Timer 
component to open the Configure dialog. 

 

The Sleep Timer component contains the following parameters: 

Wake up interval 

Defines the interval at which the Sleep Timer wakes the device, generates interrupts if it is 
configured to do so, or both. Only discrete intervals are accepted: 2, 4, 8, 16, 32, 64, 128, 256, 
512, 1024, 2048, and 4096 ms.  

These interval values assume a 1-kHz input clock from the ILO. In reality, the ILO's frequency, 
and thus the Sleep Timer interval, varies as described in the device datasheet. 

This parameter defines an initial configuration. The software can reconfigure this value only 
when the Sleep Timer is stopped.  

Enable Sleep Timer interrupt 

This parameter defines whether the Sleep Timer component will issue an interrupt after the 
selected interval has elapsed. Note that an interrupt is required for the ARM-based devices for 



PSoC® Creator™ Component Datasheet Sleep Timer 

Document Number: 001-85000 Rev. *C Page 3 of 11 

CPU to wake up. Refer to the Power Management section in the System Reference Guide for 
details. 

This parameter defines an initial configuration. The software can reconfigure this parameter’s 
setting. 

Clock Selection 

The Sleep Timer component uses the CTW and requires a 1-kHz clock for its operation. This 
clock is produced by the internal low-speed oscillator (ILO). The ILO 1-kHz clock feeds directly to 
the CTW counter. The ILO produces clocks with no external components, and with very low 
power consumption.  

The API function that starts the Sleep Timer automatically enables the 1-kHz clock and leaves it 
enabled even after the component is stopped. The first interval can range from 1 to (period + 1) 
milliseconds. Additional intervals occur at the nominal period. 

Application Programming Interface 

Application Programming Interface (API) routines allow you to configure the component using 
software. The following table lists and describes the interface to each function. The subsequent 
sections cover each function in more detail. 

By default, PSoC Creator assigns the instance name “SleepTimer_1” to the first instance of a 
component in a given design. You can rename the instance to any unique value that follows the 
syntactic rules for identifiers. The instance name becomes the prefix of every global function 
name, variable, and constant symbol. For readability, the instance name used in the following 
table is “SleepTimer.” 

Functions 

Function Description  

SleepTimer_Start() Starts Sleep Timer operation. 

SleepTimer_Stop() Stops Sleep Timer operation. 

SleepTimer_EnableInt() Enables the Sleep Timer component to issue an interrupt on wakeup. 

SleepTimer_DisableInt() Disables the Sleep Timer component to issue an interrupt on wakeup. 

SleepTimer_SetInterval() Sets the interval for the Sleep Timer to wake up. 

SleepTimer_GetStatus() Returns the value of the Power Manager Interrupt Status Register and clears all 
bits in this register. 

SleepTimer_Init() Initializes and restores the default configuration provided with the customizer. 

SleepTimer_Enable() Enables the 1-kHz ILO and the CTW counter. 

 



Sleep Timer PSoC® Creator™ Component Datasheet 

Page 4 of 11 Document Number: 001-85000 Rev. *C 

Global Variables 

Variable Description  

SleepTimer_initVar Indicates whether the Sleep Timer has been initialized. The variable is initialized to 0 and 
set to 1 the first time SleepTimer_Start() is called. This allows the component to restart 
without reinitialization after the first call to the SleepTimer_Start() routine. 

If reinitialization of the component is required, then the SleepTimer_Init() function can be 
called before the SleepTimer_Start() or SleepTimer_Enable() function. 

 

void SleepTimer_Start(void) 

Description: This is the preferred method to begin component operation. SleepTimer_Start() sets the 
initVar variable, calls the SleepTimer_Init() function, and then calls the 
SleepTimer_Enable() function. Enables the 1-kHz ILO clock and leaves it enabled after the 
Sleep Timer component is stopped. 

Parameters: None 

Return Value: None 

Side Effects: If the initVar variable is already set, this function only calls the SleepTimer_Enable() 
function. 

 

void SleepTimer_Stop(void) 

Description: Stops Sleep Timer operation and disables wakeup and interrupt. The device does not wake 
up when the CTW counter reaches terminal count, nor is an interrupt issued. 

Parameters: None 

Return Value: None 

Side Effects: Leaves the 1-kHz ILO clock enabled after the Sleep Timer component is stopped. 

 

void SleepTimer_EnableInt(void) 

Description: Enables the CTW terminal count interrupt. 

Parameters: None 

Return Value: None 

Side Effects: None 

 



PSoC® Creator™ Component Datasheet Sleep Timer 

Document Number: 001-85000 Rev. *C Page 5 of 11 

void SleepTimer_DisableInt(void) 

Description: Disables the CTW terminal count interrupt. 

Parameters: None 

Return Value:  None 

Side Effects: None 

 

void SleepTimer_SetInterval(uint8 interval) 

Description: Sets the CTW interval period. The first interval can range from 1 to (period + 1) milliseconds. 
Additional intervals occur at the nominal period. You can only change the interval value 
when CTW is disabled, which you can do by stopping the component. 

Parameters: uint8 interval: Interval’s value for the CTW. 

Name Value Nominal Period  

SleepTimer__CTW_2_MS 4'b0001 2 ms 

SleepTimer__CTW_4_MS 4'b0010 4 ms 

SleepTimer__CTW_8_MS 4'b0011 8 ms 

SleepTimer__CTW_16_MS 4'b0100 16 ms 

SleepTimer__CTW_32_MS 4'b0101 32 ms 

SleepTimer__CTW_64_MS 4'b0110 64 ms 

SleepTimer__CTW_128_MS 4'b0111 128 ms 

SleepTimer__CTW_256_MS 4'b1000 256 ms 

SleepTimer__CTW_512_MS 4'b1001 512 ms 

SleepTimer__CTW_1024_MS 4'b1010 1024 ms 

SleepTimer__CTW_2048_MS 4'b1011 2048 ms 

SleepTimer__CTW_4096_MS 4'b1100 4096 ms 
 

Return Value: None 

Side Effects:  None 

 



Sleep Timer PSoC® Creator™ Component Datasheet 

Page 6 of 11 Document Number: 001-85000 Rev. *C 

uint8 SleepTimer_GetStatus(void) 

Description: Returns the state of the Sleep Timer's status register, and clears the pending interrupt status 
bit. The application code must always call this function after wakeup to clear the ctw_int 
status bit. The code must call this function whether the Sleep Timer's interrupt is disabled or 
enabled. 

Parameters: None 

Return Value:  Returns an 8-bit value (uint8) with bits set if a corresponding event has occurred. The 
constants shown in the following table describe the two-bit masks for the two events that this 
return value can contain. 

Constant Description 

SleepTimer_PM_INT_SR_ONEPPSP A one-pps event has occurred 

SleepTimer_PM_INT_SR_CTW A central time wheel event has occurred 

SleepTimer_PM_INT_SR_FTW A fast  time wheel event has occurred (refer 
to the device datasheet for more information 
related to the FTW event). 

 

Side Effects:  If the SleepTimer_GetStatus() function is not called in an interrupt associated with the 
SleepTimer, the interrupt is not cleared and as soon as the interrupt is exited it will be re-
entered.  

After the Sleep Timer has expired, the sleep interval is functionally 0 ms, because the 
interrupt will be called until the ctw_int flag is cleared by the SleepTimer_GetStatus() function. 

If an interrupt is generated at the same time as a register read/clear, the bit remains set 
(which causes another interrupt).  

Reports and then clears all interrupt status bits in the Power Manager Interrupt Status 
Register. Some of the bits are not relevant to this component’s operation. 

The application code must always call this function (when the Sleep Timer's interrupt is 
disabled or enabled) after wakeup to clear the ctw_int status bit. The code must call 
SleepTimer_GetStatus()within 1 ms (1 clock cycle of the ILO) after the CTW event occurred. 

 

void SleepTimer_Init(void) 

Description: Initializes or restores the component according to the customizer Configure dialog settings. It 
is not necessary to call SleepTimer_Init() because the SleepTimer_Start() API calls this 
function and is the preferred method to begin component operation. Sets CTW interval 
period and enables or disables CTW interrupt (according to the customizer's settings). 

Parameters: None 

Return Value:  None 

Side Effects: None 

 



PSoC® Creator™ Component Datasheet Sleep Timer 

Document Number: 001-85000 Rev. *C Page 7 of 11 

void SleepTimer_Enable(void) 

Description: Activates the 1-kHz ILO and the CTW and begins component operation. It is not 
necessary to call SleepTimer_Enable() because the SleepTimer_Start() API calls this 
function, which is the preferred method to begin component operation. 

Parameters: None 

Return Value: None 

Side Effects: None 

MISRA Compliance 
This section describes the MISRA-C:2004 compliance and deviations for the component. There 
are two types of deviations defined:  

▪ project deviations – deviations that are applicable for all PSoC Creator components  

▪ specific deviations – deviations that are applicable only for this component 

This section provides information on component-specific deviations. Project deviations are 
described in the MISRA Compliance section of the System Reference Guide along with 
information on the MISRA compliance verification environment.  

The SleepTimer component does not have any specific deviations. 

Sample Firmware Source Code  

PSoC Creator provides many example projects that include schematics and example code in the 
Find Example Project dialog. For component-specific examples, open the dialog from the 
Component Catalog or an instance of the component in a schematic. For general examples, 
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the 
dialog to narrow the list of projects available to select.  

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information. 

Functional Description 

The Sleep Timer component is not responsible for the device’s entry into low-power modes. See 
the “Power Management APIs” section of the System Reference Guide for more information. The 
guide is available in PSoC Creator's Help menu. 

The Sleep Timer component uses a Central Time Wheel (CTW). The CTW is a 1-kHz, free-
running, 13-bit counter clocked by the 1-kHz ILO. 

See the device datasheet for information about the relationship between the CTW and the 
Watchdog Timer (WDT). 



Sleep Timer PSoC® Creator™ Component Datasheet 

Page 8 of 11 Document Number: 001-85000 Rev. *C 

As described previously, the Sleep Timer can be configured to the following intervals: 2, 4, 8, 16, 
32, 64, 128, 256, 512, 1024, 2048, or 4096 ms. However, it is important to remember that the 
Sleep Timer's clock source, the ILO, has frequency variation that will affect the Sleep Timer's 
interval. This variation is shown in the device datasheet. 

For proper operation of the Sleep Timer component, you should call the SleepTimer_GetStatus() 
function every time the device wakes up and every time the Sleep Timer interrupt is issued. 

Resources 

The Sleep Timer uses the following device resources: 

▪ 1-kHz ILO clock line 

▪ CTW counter 

▪ CTW counter’s interrupt line 

API Memory Usage 

The component memory usage varies significantly, depending on the compiler, device, number 
of APIs used and component configuration. The following table provides the memory usage for 
all APIs available in the given component configuration.   

The measurements have been done with the associated compiler configured in Release mode 
with optimization set for Size. For a specific design the map file generated by the compiler can 
be analyzed to determine the memory usage. 

Configuration 

PSoC 3 (Keil_PK51) PSoC 5LP (GCC) 

Flash 

Bytes 

SRAM 

Bytes 

Flash 

Bytes 

SRAM 

Bytes 

Default 160 1 226 1 

 



PSoC® Creator™ Component Datasheet Sleep Timer 

Document Number: 001-85000 Rev. *C Page 9 of 11 

Component Changes 

This section lists the major changes in the component from the previous version. 

Version Description of Changes Reason for Changes / Impact 

3.20.c Minor datasheet edits.  

3.20.b Minor datasheet edits.  

3.20.a Edited datasheet to remove references to 
PSoC 5. 

PSoC 5 has been replaced by the PSoC 5LP. 

3.20 Added MISRA Compliance section. The component does not have any specific 
deviations. 

3.10 Changed the set of supported intervals for 
PSoC 5LP to support full range of intervals. 

The Power Management usage model for 
PSoC 5LP has no limits for the available sleep 
times. 

Added note that interrupt is required for CPU to 
wake up in ARM-based devices. 

 

3.0 The set of supported intervals is enlarged to 4, 8, 
16, 32, 64,128 and 256 ms selection for PSoC 5. 

Characterization information is updated. Added 
memory usage info for the PSoC 5LP. 

The Power Management usage model for PSoC 5 
partly releases the available sleep times. Refer to 
the System Reference Guide for more details. 

Minor datasheet edits. Improve readability. 

2.1 Fixed the implementation of 
SleepTimer_GetStatus(): only the CTW interrupt 
status is cleared now. 

The SleepTimer_GetStatus() function is assumed 
to clear only CTW interrupt status as component 
uses this timer. Clearing other interrupt statuses is 
incorrect. 

Refer to the CyPmReadStatus() (this function is 
called from SleepTimer_GetStatus()) description 
in the Power Management section of the System 
Reference Guide for more details. 

The unsupported interval macros for the 
SleepTimer_SetInterval() parameter are not 
generated for PSoC 5. 

Eliminate confusion when macros are generated 
for the intervals that are not supported. 

An error message is shown and customizer is 
prevented from closing for PSo C5 device if an 
invalid interval is selected. 

Incorrect data must not be saved. 

Minor customizer text edits. Fixed a few typos. 

Added a few more register descriptions to the 
component debugger tool window. 

Enhanced debug window support. 

2.0 Interval is restricted to 4, 8 or 16 ms selection for 
PSoC 5. 

The Power Management usage model for PSoC 5 
limits the available sleep times. Refer to the 
System Reference Guide for more details. 

1.60.a Minor datasheet edits and updates  



Sleep Timer PSoC® Creator™ Component Datasheet 

Page 10 of 11 Document Number: 001-85000 Rev. *C 

Version Description of Changes Reason for Changes / Impact 

1.60 Fixed the Timewheel Configuration Register 2 
clobbering issue. Updated the source code 
comments. 

Eliminate potential register clobbering issues and 
provide more clear comments 

Minor datasheet edits and updates  

1.50.a A firmware defect was found in version 1.50 of the SleepTimer component. This defect has the 
potential of overwriting shared registers. This defect has been fixed in later versions of the SleepTimer 
component so version 1.50 should not be used 

Added information to the component that 
advertizes its compatibility with silicon revisions. 

The tool reports an error/warning if the component 
is used on incompatible silicon. If this happens, 
update to a revision that supports your target 
device. 

Minor datasheet edits and updates  

1.50 The Keil reentrancy support was added. Support for PSoC 3 with the Keil compiler the 
capability for functions to be called from multiple 
flows of control. 

Changed the API flow: SleepTimer_Start() 
configures hardware according customizer's 
settings. Added the SleepTimer_Init() function. 

All components should have the same execution 
flow. To change the component's parameters, the 
SleepTimer_Stop() should be called, functions to 
change parameters should be called, and then 
component should be started again by calling  
SleepTimer_Start(). To restore customizer's 
settings afterwards, the SleepTimer_initVar global 
variable's value should be set to 0 (while 
component is stopped) and then started again. 

Redesigned the SleepTimer_Start() function to 
always enable 1 kHz ILO clock. Previously, it was 
enabled once in the SleepTimer_Init() function. 

This fixes a potential issue when stopping 
component operation and the 1 kHz ILO, and then 
starting the component again. 

Added XML description of the component. This allows for PSoC Creator to provide a 
mechanism for creating new debugger tool 
windows for this component. 

Optimized auto scroll for Microsoft Windows 7. To avoid unneeded scroll bar appearing. 

1.10 Removed SleepTimer_Reset() function and added 
SleepTimer_GetStatus() function. 

The interrupt output terminal is connected to an 
interrupt component by default when the 
component is placed in a design. 

Various changes were made to fix issues with the 
previous version, which was not fully functional. 

 



PSoC® Creator™ Component Datasheet Sleep Timer 

Document Number: 001-85000 Rev. *C Page 11 of 11 

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”).  This 
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and 
other countries worldwide.  Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, 
trademarks, or other intellectual property rights.  If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use 
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software 
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in 
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s 
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.  Any other use, 
reproduction, modification, translation, or compilation of the Software is prohibited. 

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY 
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of 
the application or use of any product or circuit described in this document.  Any information provided in this document, including any sample design information or programming code, is provided 
only for reference purposes.  It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and 
any resulting product.  Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons 
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous 
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”).  A critical component is any 
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness.  Cypress is not liable, in 
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.  You shall indemnify 
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of 
Cypress products. 

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of 
Cypress in the United States and other countries.  For a more complete list of Cypress trademarks, visit cypress.com.  Other names and brands may be claimed as property of their respective 
owners. 


	Features
	General Description
	When to Use a Sleep Timer

	interrupt – Output
	Schematic Macro Information
	Component Parameters
	Wake up interval
	Enable Sleep Timer interrupt

	Clock Selection
	Application Programming Interface
	Functions
	Global Variables
	void SleepTimer_Start(void)
	void SleepTimer_Stop(void)
	void SleepTimer_EnableInt(void)
	void SleepTimer_DisableInt(void)
	void SleepTimer_SetInterval(uint8 interval)
	uint8 SleepTimer_GetStatus(void)
	void SleepTimer_Init(void)
	void SleepTimer_Enable(void)

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Resources
	API Memory Usage
	Component Changes

