(infineon

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product

portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.infineon.com

&= CYPRESS

~ap” EMBEDDED IN TOMORROW™ PSoC® Creator™ Component Datasheet

Serial Peripheral Interface (SPI) Master

2.40
___SPIM_1
Features SPI Master

[Hmiso mosi]

® 3-to 16-bit data width sclklg

® Four SPI operating modes SSIE)

. +>clock

® Bit rate up to 18 Mbps 1 - .
rese

rX_interrupth=
tx_interrupt}-]

General Description Bt

The SPI Master component provides an industry-standard, 4-wire master SPI interface. It can
also provide a 3-wire (bidirectional) SPI interface. Both interfaces support all four SPI operating
modes, allowing communication with any SPI slave device. In addition to the standard 8-bit word
length, the SPI Master supports a configurable 3- to 16-bit word length for communicating with
nonstandard SPI word lengths.

SPI signals include the standard Serial Clock (SCLK), Master In Slave Out (MISO), Master Out
Slave In (MOSI), bidirectional Serial Data (SDAT), and Slave Select (SS).

When to Use the SPI Master

You can use the SPI Master component any time the PSoC device must interface with one or
more SPI slave devices. In addition to “SPI slave” labeled devices, the SPI Master can be used
with many devices implementing a shift-register-type serial interface.

You should use the SPI Slave component in instances in which the PSoC device must
communicate with an SPI master device. You should use the Shift Register component in
situations where its low-level flexibility provides hardware capabilities not available in the SPI
Master component.

1 This value is valid only for the case when High Speed Mode Enable option is set (see DC and AC Electrical
Characteristics for details) . Otherwise maximum bit rate value is up to 9 Mbps.

Cypress Semiconductor Corporation « 198 Champion Court + San Jose, CA 95134-1709 < 408-943-2600
Document Number: 001-85038 Rev. *F Revised November 28, 2017

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Input/Output Connections

This section describes the various input and output connections for the SPI component. An
asterisk (*) in the list of I/Os indicates that the /0O may be hidden on the symbol under the
conditions listed in the description of that 1/O.

miso — Input *

The miso input carries the Master In Slave Out (MISO) signal from a slave device. This input is
visible when the Data Lines parameter is set to MOSI + MISO. If visible, this input must be
connected.

sdat - Inout *

The sdat inout carries the Serial Data (SDAT) signal. This input is used when the Data Lines
parameter is set to Bi-Directional.

Note Bidirectional Mode provides internal loopback functionality, so in each of two modes other
direction is still active (filling or emptying their buffers).

Figure 1. SPI Bidirectional Mode (data transmission from Master to Slave)

SDAT y

Tx Shift Register <~ Tx Shift Register

ENB

Rx Shift Register Rx Shift Register

Internal loopback

Figure 2. SPI Bidirectional Mode (data transmission from Slave to Master)

yfb yfb

| SDAT |yl [Ghi Regetr |

ENB

[T st regier |4

ENB

(oSt Regie | [xS Regier |

SCLK

SS

Internal loopback

&= CYPRESS

s> EMBEDDED IN TOMORROW

Page 2 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Initial component’s state in Bi-directional Mode is Rx mode or Data transmission from Slave to
Master as it is shown on Figure 2. SPIM_TxEnable() and SPIM_Tx_Disable() API functions
should be used to switch between Rx and Tx mode.

clock —Input *

The clock input defines the bit rate of the serial communication. The bit rate is one-half the input
clock frequency.

The clock input is visible when the Clock Selection parameter is set to External Clock. If
visible, this input must be connected. If you select Internal Clock, then you must define the
desired data bit rate; the required clock is solved and provided by PSoC Creator.

reset — Input

Resets the SPI state machine to the idle state. This throws out any data that was currently being
transmitted or received but does not clear data from the FIFO that has already been received or
is ready to be transmitted. The reset input may be left floating with no external connection. If
nothing is connected to the reset line, the component will assign it a constant logic O.

mosi — Output *

The mosi output carries the Master Out Slave In (MOSI) signal from the master device on the
bus. This output is visible when the Data Lines parameter is set to MOSI + MISO.

sclk— Output

The sclk output carries the Serial Clock (SCLK) signal. It provides the master synchronization
clock output to the slave devices on the bus.

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 3 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

ss — Output

The ss output is hardware controlled. It carries the Slave Select (SS) signal to the slave devices
on the bus. You can connect a digital demultiplexer to handle multiple slave devices, or to have a
completely firmware-controlled SS. See Figure 3 and Figure 4 for examples.

Figure 3. Slave Select Output to Demultiplexer

SPIM_1
SPI Master
MISO_1 [=]-»— —miso mosif-—— =] MOSI_1
sclkl-—— =] SCLK_1
ss|- — —{] 8S_1
| — {1 $8_2
[Hreset
rX_interrupti- — —{7] 8S_3
tx_interrupti- 2
3ot n — 1SS 4
Control Reg 1
Control Reg
control_0 |- [F])]
control 1| (1

Unless inverters are put at the output of the demux, a logic ‘0’ can’t be transferred through it,
because the other unselected channels will also have logic ‘0’. To compensate for this, an
inverter is put at the input of demux.

Figure 4. Firmware Controlled Slave Selects

SPIM_1
SPI Master

MISO_1 [}+— —|miso mosif-——] MOSI_1
sclk —+[x] SCLK_1
ssf-

[Hreset

rx_interrupt
tx_interrupfl:'

8-bit

Control_Reg_1
Control Reg

|
|
=

control_0 S
control_1] S
control_2 ———{x] S
control 3 ———+{x]S

&= CYPRESS

N EMBEDDED IN TOMORROW ™

Page 4 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Figure 5 shows the timing correlation between SS and SCLK.

Figure 5. SS and SCLK Timing Correlation

CPHA =0:

SCLK L

SS os s | 1 scuk pepos
CPHA =1:

SCLK R A

gg v R

Note SS is not set to high during a multi-byte/word transmission if the “SPI1 Done” condition was
not generated.

rx_interrupt — Output

The interrupt output is the logical OR of the group of possible Rx interrupt sources. This signal
will go high while any of the enabled Rx interrupt sources are true.

tx_interrupt — Output

The interrupt output is the logical OR of the group of possible Tx interrupt sources. This signal
will go high while any of the enabled Tx interrupt sources are true.

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 5 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Schematic Macro Information

By default, the PSoC Creator Component Catalog contains Schematic Macro implementations
for the SPI Master component. These macros contain already connected and adjusted input and
output pins and clock source. Schematic Macros are available both for 4-wire (Full Duplex) and
3-wire (Bidirectional) SPI interfacing.

Figure 6. 4-Wire (Full Duplex) Interfacing Schematic Macro

SPIM_1
SPI Master

MISO_1 [=} »— —miso mosif——— =« MOSI_1
sclk — & [x] SCLK_1
ssi=

i

reset
rX_interrupt
tx_interrupti-

8-bit

Figure 7. 3-Wire (Bidirectional) Interfacing Schematic Macro

SPIM 1
SPI Master

SDAT_1[i}+— —{sdat

sclk
S5

—o[«] SCLK_1

reset
rx_interrupt
tx_interrupti-

F

8-bit

Note If you do not use a Schematic Macro, configure the Pins component to deselect the Input
Synchronized parameter for each of the assigned input pins (MISO or SDAT inout). The
parameter is located under the Pins > Input tab of the applicable Pins Configure dialog.

&= CYPRESS

N EMBEDDED IN TOMORROW ™

Page 6 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Component Parameters

Drag an SPI Master component onto the design. Double click the component symbol to open the
Configure dialog.

The following sections describe the SPI Master parameters, and how they are configured using
the Configure dialog. They also indicate whether the options are implemented in hardware or
software.

Hardware versus Software Options

Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value, which can be modified at any time with the
provided APIs. Hardware-only parameters are marked with an asterisk (*).

Configure Tab

The Configure tab contains basic parameters required for every SPI component. These
parameters are the first ones that appear when you open the Configure dialog.

Configure "SPL_Master' @

Mame:

_/m Advanced - Built-in 1k
=) B

MOos| }{D?KDBKDSXWLXDS}{DZ}{M]{DDK
miISa }{D?J‘:DBKDﬁ:’:D4XDS}{D2}:D1]{DDK
sample [| | | |

Mods: [CPHA =0, CPOL=0 -

DataLines: |MOSI+MISO

-

Data Bits: |8 = Shift Direction: |MSB First v|

Bit Rate: ¥/2 fnpuf Clock Freguency

D atazhest Apply Cancel

Note The sample signal in the waveform is not an input or output of the system; it only indicates
when the data is sampled at the master and slave for the mode settings selected.

Mode *

The Mode parameter defines the clock phase and clock polarity mode you want to use in the
communication. These modes are defined in the following table. See APl Memory Usage

&2 CYPRESS

EMBEDDED IN TOMORROW "

Document Number: 001-85038 Rev. *F Page 7 of 42

Serial Peripheral Interface (SPI) Master

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for

PSoC® Creator™ Component Datasheet

all APIs available in the given component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be

analyzed to determine the memory usage.

PSoC 3 (Keil_PK51)

PSoC 5LP (GCC)

Configuration Flash SRAM Flash SRAM
Bytes Bytes Bytes Bytes
8-bit (MOSI+MISO) 372 5 580 5
8-bit (Bidirectional) 366 5 580 5
16-bit (MOSI+MISO) 431 5 620 5
16-bit (Bidirectional) 439 5 620 5
8-bit High Speed
(MOSI+MISO) 312 5 580 5
8-bit High Speed
(Bidirectional) 370 5 580 5
16-bit High Speed
439 5 620 5
(MOSI+MISO)
16-bit High Speed
(Bidirectional) 437 5 620 5

Functional Description for more information.

CPHA CPOL
0 0
0 1
1 0
1 1
Data Lines

The Data Lines parameter defines which interface is used for SPI communication — 4-wire

(MOSI + MISO) or 3-wire (Bidirectional).

Page 8 of 42

Document Number: 001-85038 Rev. *F

&= CYPRESS

N EMBEDDED IN TOMORROW

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Data Bits *

The number of Data Bits defines the bit width of a single transfer as transferred with the
SPIM_ReadRxData() and SPIM_WriteTxData() functions. The default number of bits is a single
byte (8 bits). Any integer from 3 to 16 is a valid setting.

Shift Direction *

The Shift Direction parameter defines the direction in which the serial data is transmitted. When
set to MSB First, the most-significant bit is transmitted first. This is implemented by shifting the
data left. When set to LSB First, the least-significant bit is transmitted first. This is implemented
by shifting the data right.

Bit Rate *

If the Clock Selection parameter (on the Advanced tab) is set to Internal Clock, the Bit Rate
parameter defines the SCLK speed in Hertz. The clock frequency of the internal clock will be 2x
the SCLK rate. This parameter has no affect if the Clock Selection parameter is set to External
Clock.

Advanced Tab
The Advanced tab contains parameters that provide additional functionality.

Configure "SPL_Master' @

MHarnne: SFIM_1
__ configure Advanced | Buikt-in 4 b

Clock Selection:

Internal Clock. @ Euternal Clock
High Speed Mode:
Enable High Speed Mode
Buffer Sizes:

Fix Bulfer Size [8-bit words): 4

Ll R L3

T« Buffer Size [8-bit words]: 4

Interrupts:
Enable Tx Internal Intermupt Enable R Intermal Intermupt
Interrupt On SFI Done Interrupt O Rx FIFO Full
Interrupt On Tx FIFQ Empty Interrupt Om Ax FIFD Mot Empty
Interrupt On Tx FIFD Mot Ful Interupt On Ry FIFD Overrun

Interrupt On ByteSw'ord Transfer Complete
Interupt On SFI dle

D atazhest Apply Cancel

2 CYPRESS

EMBEDDED IN TOMORROW "

Document Number: 001-85038 Rev. *F Page 9 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Clock Selection *

The Clock Selection parameter allows you to choose between an internally configured clock or
an externally configured clock for data rate and SCLK generation. When set to Internal Clock,
the required clock frequency is calculated and configured by PSoC Creator based on the Bit
Rate parameter. When set to External Clock, the component does not control the data rate but
will display the expected bit rate based on the user-connected clock source. If this parameter is
set to Internal Clock, the clock input is not visible on the symbol.

Note When setting the bit rate or external clock frequency value, make sure that PSoC Creator
can provide this value using the current system clock frequency. Otherwise, a warning about the
clock accuracy range is generated while building the project. This warning contains the actual
clock value set by PSoC Creator. Choose whether the system clock or component clock should
be changed to fit the clocking system requirements and achieve an optimal value.

RX Buffer Size *

The RX Buffer Size parameter defines the size (in bytes/words) of memory allocated for a
circular data buffer. If this parameter is set to 1 to 4, the fourth byte/word of the FIFO is
implemented in the hardware. Values 1 to 3 are available only for compatibility with the previous
versions; using them causes an error icon to display that the value is incorrect. All other values
up to 255 bytes/words use the 4-byte/word FIFO and a memory array controlled by the supplied
API.

TX Buffer Size *

The TX Buffer Size parameter defines the size (in bytes/words) of memory allocated for a
circular data buffer. If this parameter is set to 1 to 4, the fourth byte/word of the FIFO is
implemented in the hardware. Values 1 to 3 are available only for compatibility with the previous
versions; using them causes an error icon to display that the value is incorrect. All other values
up to 255 use the 4-byte/word FIFO and a memory array controlled by the supplied API.

Using the Software Buffer

Selecting Rx/Tx Buffer Size values greater than 4 allows you to use the Rx/Tx circular software
buffers. The internal interrupt handler is used when you select the Tx/Rx software buffer option.
Its main purpose is to provide interaction between software and hardware Tx/Rx buffers. In the
initial state, the BufferRead and BufferWrite pointers point to the zero element of the software
buffer. After writing the first data, the BufferWrite pointer moves to the first element of the
software buffer and points to writing data; the BufferRead pointer stays on the zero element. As
the buffers work, the pointers move to the next buffer elements. The BufferWrite pointer points to
the last written data. The BufferRead pointer points to the oldest data that has not been read.
Software buffer overflow can happen without any overflow indication. You must handle any
software buffer overflow situation.

You should also consider that using the software buffer leads to greater timing intervals between
transmitted words because of the extra time the interrupt handler needs to execute (depending

&= CYPRESS

s> EMBEDDED IN TOMORROW

Page 10 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

on the selected bus clock value). When setting timing intervals between transmitted words, use
DMA along with a hardware buffer.

Enable High Speed Mode

The Enable High Speed Mode parameter allows enlarging of the maximum bit rate value up to
18 mbps (see DC and AC electrical characteristics section for details).

Enable TX / RX Internal Interrupt

The Enable TX / RX Internal Interrupt options allow you to use the predefined Tx and Rx ISRs
of the SPI Master component, or supply your own custom ISRs. If enabled, you may add your
own code to these predefined ISRs if small changes are required. If the internal interrupt is
deselected, you may supply an external interrupt component with custom code connected to the
interrupt outputs of the SPI Master.

If the Rx or Tx buffer size is greater than 4, the component automatically sets the appropriate
parameters, as the internal ISR is needed to handle transferring data from the hardware FIFO to
the Rx buffer, the Tx buffer, or both. The interrupt output pins of the SPI master are always
visible and usable, outputting the same signal that goes to the internal interrupt. This output can
then be used as a DMA request source or as a digital signal to be used as required in the
programmable digital system.

Notes

® When Rx buffer size is greater than 4 bytes/words, the ‘RX FIFO NOT EMPTY’ interrupt is
always enabled and cannot be disabled, because it causes incorrect buffer functionality.

® When Tx buffer size is greater than 4 bytes/words, the ‘TX FIFO NOT FULL’ interrupt is
always enabled and cannot be disabled, because it causes incorrect buffer functionality.

® For buffer sizes greater than 4 bytes/words, the SPI slave and global interrupt must be
enabled for proper buffer handling.

Interrupts

The Interrupts selection parameters allow you to configure the internal events that are enabled
to cause an interrupt. Interrupt generation is a masked OR of all of the enabled Tx and Rx status
register bits. The bits chosen with these parameters define the mask implemented with the initial
component configuration.

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 11 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Clock Selection

When the internal clock configuration is selected, PSoC Creator calculates the needed frequency
and clock source, and generates the clocking resource needed for implementation. Otherwise,
you must supply the clock component and calculate the required clock frequency. That
frequency is 2x the desired bit rate and SCLK frequency.

Note When setting the bit rate or external clock frequency value, make sure that PSoC Creator
can provide this value by using the current system clock frequency. Otherwise, a warning about
the clock accuracy range is generated while building the project. This warning contains the real
clock value set by PSoC Creator. Choose whether the system clock or component clock should
be changed to fit the clocking system requirements and achieve an optimal value.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software at runtime. The following table lists and describes the interface to each function. The
subsequent sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “SPIM_1" to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol for the instance. For readability, the instance name used in
the following table is “SPIM.”

Functions
Function Description
SPIM_Start() Calls both SPIM_Init() and SPIM_Enable(). Should be called the first time the
component is started.
SPIM_Stop() Disables SPI Master operation.
SPIM_EnableTxInt() Enables the internal Tx interrupt irg.
SPIM_EnableRxInt() Enables the internal Rx interrupt irg.
SPIM_DisableTxInt() Disables the internal Tx interrupt irq.
SPIM_DisableRxInt() Disables the internal Rx interrupt irq.

SPIM_SetTxInterruptMode() | Configures the Tx interrupt sources enabled.

SPIM_SetRxInterruptMode() | Configures the Rx interrupt sources enabled.

SPIM_ReadTxStatus() Returns the current state of the Tx status register.

SPIM_ReadRxStatus() Returns the current state of the Rx status register.

SPIM_WriteTxData() Places a byte/word in the transmit buffer which will be sent at the next available bus
time.

&= CYPRESS

s> EMBEDDED IN TOMORROW

Page 12 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet

Function

Description

SPIM_ReadRxData()

Returns the next byte/word of received data available in the receive buffer.

SPIM_GetRxBufferSize()

Returns the size (in bytes/words) of received data in the Rx memory buffer.

SPIM_GetTxBufferSize()

Returns the size (in bytes/words) of data waiting to transmit in the Tx memory
buffer.

SPIM_ClearRxBuffer()

Clears the Rx buffer memory array and Rx FIFO of all received data.

SPIM_ClearTxBuffer()

Clears the Tx buffer memory array or Tx FIFO of all transmit data. Note Tx FIFO
will be cleared only if software buffer is not used.

SPIM_TxEnable()

If configured for bidirectional mode, sets the SDAT inout to transmit.

SPIM_TxDisable()

If configured for bidirectional mode, sets the SDAT inout to receive.

SPIM_PutArray()

Places an array of data into the transmit buffer.

SPIM_ClearFIFO()

Clears any received data from the Rx hardware FIFO.

SPIM_Sleep()

Prepares SPI Master component for low-power modes by calling
SPIM_SaveConfig() and SPIM_Stop() functions.

SPIM_Wakeup()

Restores and re-enables the SPI Master component after waking from low-power
mode.

SPIM_Init()

Initializes and restores the default SPI Master configuration.

SPIM_Enable()

Enables the SPI Master to start operation.

SPIM_SaveConfig()

Saves SPI Master hardware configuration.

SPIM_RestoreConfig()

Restores SPI Master hardware configuration.

void SPIM_Start(void)

Serial Peripheral Interface (SPI) Master

This function calls both SPIM_Init() and SPIM_Enable(). This should be called the first time

Description:
the component is started.
Parameters: None
Return Value: None
Side Effects: None

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F

Page 13 of 42

Serial Peripheral Interface (SPI) Master

void SPIM_Stop(void)

Description:

Parameters:
Return Value:

Side Effects:

PSoC® Creator™ Component Datasheet

Disables SPI Master operation by disabling the internal clock and internal interrupts, if the

SPI Master is configured that way.
None
None

None

void SPIM_EnableTxInt(void)

Description:
Parameters:
Return Value:

Side Effects:

Enables the internal Tx interrupt irq.
None
None

None

void SPIM_EnableRxInt(void)

Description:
Parameters:
Return Value:

Side Effects:

Enables the internal Rx interrupt irq.
None
None

None

void SPIM_DisableTxInt(void)

Description:
Parameters:
Return Value:

Side Effects:

Disables the internal Tx interrupt irq.

None
None

None

void SPIM_DisableRxInt(void)

Description:
Parameters:
Return Value:

Side Effects:

Page 14 of 42

Disables the internal Rx interrupt irq.

None
None

None

&= CYPRESS

N EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

void SPIM_SetTxInterruptMode(uint8 intSrc)

Description: Configures which status bits trigger an interrupt event.
Parameters: uint8 intSrc: Bit field containing the interrupts to enable.
Bit Description

SPIM_INT_ON_SPI_DONE Enable interrupt due to SPI done
SPIM_INT_ON_TX_EMPTY Enable interrupt due to Tx FIFO empty
SPIM_INT_ON_TX_NOT_FULL Enable interrupt due to Tx FIFO not full
SPIM_INT_ON_BYTE_COMP Enable interrupt due to byte/word complete
SPIM_INT_ON_SPI_IDLE Enable interrupt due to SPI IDLE

Based on the bit-field arrangement of the Tx status register. This value must be a
combination of Tx status register bit masks defined in the header file.

For more information, see Defines.
Return Value: None

Side Effects: None

void SPIM_SetRxInterruptMode(uint8 intSrc)

Description: Configures which status bits trigger an interrupt event.
Parameters: uint8 intSrc: Bit field containing the interrupts to enable.
Bit Description
SPIM_INT_ON_RX_FULL Enable interrupt due to Rx FIFO Full
SPIM_INT_ON_RX_NOT_EMPTY Enable interrupt due to Rx FIFO Not Empty
SPIM_INT_ON_RX_OVER Enable interrupt due to Rx Buf Overrun

Based on the bit-field arrangement of the Rx status register. This value must be a
combination of Rx status register bit masks defined in the header file.

For more information, see Defines.
Return Value: None

Side Effects: None

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 15 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

uint8 SPIM_ReadTxStatus(void)

Description:

Parameters:

Return Value:

Side Effects:

Returns the current state of the Tx status register. For more information, see Status Register
Bits.

None

uint8: Current Tx status register value

Bit Description
SPIM_STS_SPI_DONE SPI done
SPIM_STS_TX_FIFO_EMPTY Tx FIFO empty
SPIM_STS_TX_FIFO_NOT_FULL Tx FIFO not full
SPIM_STS BYTE_COMPLETE Byte/Word complete
SPIM_STS_SPI_IDLE SPI IDLE

Tx Status register bits are cleared on read.

uint8 SPIM_ReadRxStatus(void)

Description:

Parameters:

Return Value:

Side Effects:

Returns the current state of the Rx status register. For more information, see Status Register
Bits.

None

uint8: Current Rx status register value

Bit Description

SPIM_STS_RX_FIFO_FULL Rx FIFO Full

SPIM_STS_RX_FIFO_NOT_EMPTY | Rx FIFO Not Empty

SPIM_STS_RX_FIFO_OVERRUN Rx Buf Overrun

Rx Status register bits are cleared on read.

void SPIM_WriteTxData(uint8/uint16 txData)

Description:
Parameters:
Return Value:

Side Effects:

Page 16 of 42

Places a byte/word in the transmit buffer to be sent at the next available SPI bus time.
uint8/uint16 txData: The data value to transmit from the SPI.
None

Data may be placed in the memory buffer and will not be transmitted until all other previous
data has been transmitted. This function blocks until there is space in the output memory
buffer.

Clears the Tx status register of the component.

&= CYPRESS

N EMBEDDED IN TOMORROW

Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

uint8/uint1l6 SPIM_ReadRxData(void)
Description: Returns the next byte/word of received data available in the receive buffer.
Parameters: None
Return Value: uint8/uintl6: The next byte/word of data read from the FIFO.

Side Effects: Returns invalid data if the FIFO is empty. Call SPIM_GetRxBufferSize(), and if it returns a
nonzero value then it is safe to call the SPIM_ReadRxData() function.

uint8 SPIM_GetRxBufferSize(void)

Description: Returns the number of bytes/words of received data currently held in the Rx buffer.
= |f the Rx software buffer is disabled, this function returns 0 = FIFO empty or 1 = FIFO not
empty.

= |f the Rx software buffer is enabled, this function returns the size of data in the Rx
software buffer. FIFO data not included in this count.

Parameters: None
Return Value: uint8: Integer count of the number of bytes/words in the Rx buffer.

Side Effects: Clears the Rx status register of the component.

uint8 SPIM_GetTxBufferSize(void)

Description: Returns the number of bytes/words of data ready to transmit currently held in the Tx buffer.
= |f Tx software buffer is disabled, this function returns 0 = FIFO empty, 1 = FIFO not full, or
4 = FIFO full.

= |f the Tx software buffer is enabled, this function returns the size of data in the Tx software
buffer. FIFO data not included in this count.

Parameters: None
Return Value: uint8: Integer count of the number of bytes/words in the Tx buffer

Side Effects: Clears the Tx status register of the component.

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 17 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

void SPIM_ClearRxBuffer(void)

Description:

Parameters:
Return Value:

Side Effects:

Clears the Rx buffer memory array and Rx hardware FIFO of all received data. Clears the
Rx RAM buffer by setting both the read and write pointers to zero. Setting the pointers to
zero indicates that there is no data to read. Thus, writing resumes at address 0, overwriting
any data that may have remained in the RAM.

None
None

Any received data not read from the RAM buffer and FIFO is lost when overwritten by new
data.

void SPIM_ClearTxBuffer(void)

Description:

Parameters:
Return Value:

Side Effects:

Clears the Tx buffer memory array of data waiting to transmit. Clears the Tx RAM buffer by
setting both the read and write pointers to zero. Setting the pointers to zero indicates that
there is no data to transmit. Thus, writing resumes at address 0, overwriting any data that
may have remained in the RAM.

None
None

If the software buffer is used, it does not clear data already placed in the Tx FIFO. Any data
not yet transmitted from the RAM buffer is lost when overwritten by new data.

void SPIM_TxEnable(void)

Description:

Parameters:
Return Value:

Side Effects:

If the SPI Master is configured to use a single bidirectional pin, this sets the bidirectional pin
to transmit.

None
None

None

void SPIM_TxDisable(void)

Description:

Parameters:
Return Value:

Side Effects:

Page 18 of 42

If the SPI master is configured to use a single bidirectional pin, this sets the bidirectional pin
to receive.

None
None

None

&= CYPRESS

N EMBEDDED IN TOMORROW

Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

void SPIM_PutArray(const uint8/uintl16 buffer[], uint8 byteCount)

Description:

Parameters:

Return Value:

Side Effects:

Places an array of data into the transmit buffer

const uint8 buffer[]: Pointer to the location in RAM containing the data to send
uint8byteCount: The number of bytes/words to move to the transmit buffer.
None

The system will stay in this function until all data has been transmitted to the buffer. This
function is blocking if there is not enough room in the Tx buffer. It may get locked in this loop
if data is not being transmitted by the master and the Tx buffer is full.

void SPIM_ClearFIFO(void)

Description:
Parameters:
Return Value:

Side Effects:

Clears any data from the Tx and Rx FIFOs.
None
None

Clears status register of the component.

void SPIM_Sleep(void)

Description:

Parameters:
Return Value:

Side Effects:

Prepares SPI Master to enter low-power mode . Calls SPIM_SaveConfig() and SPIM_Stop()
functions.

None
None

None

void SPIM_Wakeup (void)

Description:

Parameters:
Return Value:

Side Effects:

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Restores SPI Master configuration after exit low-power mode. Calls SPIM_RestoreConfig()
and SPIM_Enable() functions. Clears all data from Rx buffer, Tx buffer and hardware FIFOs.

None
None

None

Document Number: 001-85038 Rev. *F Page 19 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

void SPIM_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings.
It is not necessary to call SPIM_Init() because the SPIM _Start() routine calls this function
and is the preferred method to begin component operation.

Parameters: None
Return Value: None

Side Effects: When this function is called, it initializes all of the necessary parameters for execution.
These include setting the initial interrupt mask, configuring the interrupt service routine,
configuring the bit-counter parameters, and clearing the FIFO and Status Register.

void SPIM_Enable(void)

Description: Enables SPI Master for operation. Starts the internal clock if the SPI Master is configured
that way. If it is configure for an external clock it must be started separately before calling
this function. The SPIM_Enable() function should be called before SPI Master interrupts are
enabled. This is because this function configures the interrupt sources and clears any
pending interrupts from device configuration, and then enables the internal interrupts if there
are any. A SPIM_Init() function must have been previously called.

Parameters: None
Return Value: None

Side Effects: None

void SPIM_SaveConfig(void)
Description: Saves SPI Master hardware configuration before entering a low-power mode.
Parameters: None
Return Value: None

Side Effects: None

void SPIM_RestoreConfig(void)

Description: Restores SPI Master hardware configuration saved by the SPIM_SaveConfig() function after
waking from a lower-power mode.

Parameters: None
Return Value: None

Side Effects: If this function is called without first calling SPIM_SaveConfig() then in the following registers
will be restored to the default values from the Configure dialog:

SPIM STATUS MASK REG
SPIM COUNTER PERIOD REG

&= CYPRESS

N EMBEDDED IN TOMORROW

Page 20 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Global Variables

Variable

Description

SPIM_initVar

Indicates whether the SPI Master has been initialized. The variable is initialized to 0
and set to 1 the first time SPIM_Start() is called. This allows the component to restart
without reinitialization after the first call to the SPIM_Start() routine.

If reinitialization of the component is required, then the SPIM_lInit() function can be
called before the SPIM_Start() or SPIM_Enable() function.

SPIM_ txBufferWrite

Transmits buffer location of the last data written into the buffer by the API.

SPIM_txBufferRead

Transmits buffer location of the last data read from the buffer and transmitted by SPI
Master hardware.

SPIM_rxBufferWrite

Receives buffer location of the last data written into the buffer after received by SPI
Master hardware.

SPIM_rxBufferRead

Receives buffer location of the last data read from the buffer by the API.

SPIM_rxBufferFull

Indicates the software buffer has overflowed.

SPIM_rxBuffer[]

Used to store received data.

SPIM_txBuffer[]

Used to store data for sending.

Defines

B SPIM_TX_INIT_INTERRUPTS_MASK - Defines the initial configuration of the interrupt
sources chosen in the Configure dialog. This is a mask of the bits in the Tx status
register that have been enabled at configuration as sources for the interrupt. See Status
Register Bits for bit-field details.

® SPIM_RX_INIT_INTERRUPTS_MASK — Defines the initial configuration of the interrupt
sources chosen in the Configure dialog. This is a mask of the bits in the Rx status
register that have been enabled at configuration as sources for the interrupt. See Status
Register Bits for bit-field details.

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 21 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Status Register Bits

SPIM_TXSTATUS

Bits 7 6 5 4 3 2 1 0
Value Interrupt Unused Unused SPI IDLE | Byte/Word | Tx FIFO Tx FIFO. | SPI Done
Complete Not Full Empty

SPIM_RXSTATUS

Bits 7 6 5 4 3 2 1 0
Value Interrupt Rx Buf. Rx FIFO Rx FIFO Unused Unused Unused Unused
Overrun Not Full
Empty

® Byte/Word Complete: Set when a byte/word of data transmit has completed.

® Rx FIFO Overrun: Set when Rx Data has overrun the 4-byte/word FIFO without being
moved to the Rx buffer memory array (if one exists)

® Rx FIFO Not Empty: Set when the Rx Data FIFO is not empty. That is, at least one
byte/word is in the Rx FIFO (does not indicate the Rx buffer RAM array conditions).

® Rx FIFO Full: Set when the Rx Data FIFO is full (does not indicate the Rx buffer RAM
array conditions).

® Tx FIFO Not Full: Set when the Tx Data FIFO is not full (does not indicate the Tx buffer
RAM array conditions).

® Tx FIFO Empty: Set when the Tx Data FIFO is empty (does not indicate the Tx buffer
RAM array conditions).

® SPI Done: Set when all of the data in the transmit FIFO has been sent. This may be used
to signal a transfer complete instead of using the byte/word complete status. (Set when
Byte/Word Complete has been set and Tx Data FIFO is empty.)

® SPI IDLE: Set when the SPI Master state machine is in the IDLE State. This is the default
state after the component starts. It is also the next state after SPI Done. IDLE is still set
until Tx FIFO Not Empty status has been detected.

SPIM_TX_BUFFER_SIZE

Defines the amount of memory to allocate for the Tx memory array buffer. This does not include
the four bytes/words included in the FIFO. If this value is greater than 4, interrupts are
implemented that move automatically data to the FIFO from the circular memory buffer.

&= CYPRESS

s> EMBEDDED IN TOMORROW

Page 22 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

SPIM_RX_BUFFER_SIZE

Defines the amount of memory to allocate for the Rx memory array buffer. This does not include
the four bytes/words included in the FIFO. If this value is greater than 4, interrupts are
implemented that automatically move data from the FIFO to the circular memory buffer.

SPIM_DATA_WIDTH
Defines the number of bits per data transfer chosen in the Configure dialog.

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

® project deviations — deviations that are applicable for all PSoC Creator components

B specific deviations — deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The SPI Master component has the following specific deviations:

MISRA- | Rule Class
C:2004 | (Required/

Rule Advisory) Rule Description Description of Deviation(s)
19.7 A A function should be used in preference to | Deviated since function-like macros are
a function-like macro. used to allow more efficient code.
The component uses macros with input
parameters:

SPIM_GET_STATUS_TX()
SPIM_GET_STATUS_RX()

This component has the following embedded component: Clock. Refer to the corresponding
component datasheet for information on their MISRA compliance and specific deviations.

2 CYPRESS

EMBEDDED IN TOMORROW "

Document Number: 001-85038 Rev. *F Page 23 of 42

Serial Peripheral Interface (SPI) Master

API Memory Usage

PSoC® Creator™ Component Datasheet

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

PSoC 3 (Keil_PK51)

PSoC 5LP (GCC)

Configuration Flash SRAM Flash SRAM
Bytes Bytes Bytes Bytes

8-bit (MOSI+MISO) 372 5 580 5
8-bit (Bidirectional) 366 5 580 5
16-bit (MOSI+MISO) 431 5 620 5
16-bit (Bidirectional) 439 5 620 5
8-bit High Speed
(MOSI+MISO) 372 5 580 >
8-bit High Speed
(Bidirectional) 370 5 580 5
16-bit High Speed 439 5 620 5
(MOSI+MISO)
16-bit High Speed
(Bidirectional) 437 5 620 5

Page 24 of 42

&= CYPRESS

N EMBEDDED IN TOMORROW

Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Functional Description

Block Diagram and Configuration

The SPI Master is only available as a UDB configuration. The registers are described here to
define the hardware implementation of the SPI Master.

yfb
X &% Sdat
oe y
miso = —a
M
_ BSPIM
B_SPI_Master
—miso mosi ~=1 mosi
[OF o,
1 sclk - <= sclk
reset N —{reset ssi— S8
— TxInternallnterr
clock _>cmct:_enable ternalinterrupt
IntCIm:zI;ml%l— tx_interpt— -=8 tx_interrupt
rx_interptl— = n_interrupt

B-bit
RxInternallnterrupt

The implementation is described in the following block diagram.

CPU Access

miso Mosi

TX/RX
Shift

Register

Bit-
Counter

clock* o [Ciock2x | *
Bit-Rate sclk >

reset p| Control Logic ss

o CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 25 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Default Configuration

The default configuration for the SPI Master is as an 8-bit SPI Master with (CPHA = 0 CPOL = 0)
configuration. By default, the Internal clock is selected with a bit rate of 1 Mbps.

Modes

The following four waveforms show the component’s status bits and the signal values that they
assume during data transmission. They are based on the assumption that five data bytes are
transmitted (four bytes are written to the SPI Master’s Tx buffer at the beginning of transmission
and the fifth is thrown after the first byte has been loaded into the AO register). The numbers in
circles on the waveforms represent the following events:

1. Tx FIFO Empty is cleared when four bytes are written to the Tx buffer.

2. Tx FIFO Not Full is cleared because Tx FIFO is full after four bytes are written.
3. SPI IDLE state bit is cleared because of bytes detected in the Tx buffer.
4

. Tx FIFO Not Full status is set when the first byte has been loaded into the A0 register and
cleared after the fifth byte has been written to the empty place in the Tx buffer.

o

Slave Select line is set low, indicating beginning of the transmission.

6. Tx FIFO Not Full status is set when the second bit is loaded to the AO. Rx Not Empty
status is set when the first received byte is loaded into the Rx buffer. Byte/Word Complete
is also set.

7. Tx FIFO Empty status is set at the moment that the last byte to be sent is loaded into the
A0 register (to simplify, this is not shown in detail).

8. At the moment the fourth byte is received, Rx FIFO Full is set along with Byte/Word
Complete.

9. Byte/Word Complete, SPI Done, and Rx Overrun are set because all bytes have been
transmitted and an attempt to load data into the full Rx buffer has been detected.

10.SS line is set high to indicate that transmission is complete. SPI IDLE state is also set.

11.Rx FIFO Full is cleared when the first byte has been read from the Rx buffer and Rx FIFO
Empty is set when all of them have been read.

&= CYPRESS

N EMBEDDED IN TOMORROW

Page 26 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet

SPI Master Mode:(CPHA =0, CPOL =0)
This mode has the following characteristics:

1-st byte transmission

2x clock

SCLK
MOSI/MISO|) DR

SS ©) ¥

Serial Peripheral Interface (SPI) Master

End of 4-th byte
transmission

s

T
IDED .

End of 5-th byte
transmission

SPIIDLE '

@
TXFIFO EMPTY —li/ @ @

a
2, Y L__
TX FIFO NOT FULL [/ ,,_ /@
RX FIFO FULL / L | ¥
RX FIFO NOT @_I—_ - \ —'I:
EMPTY
RX FIFO \ GD\\\
OVERRUN \ \ N\
BYTE/WORD 1 [] \1—\
COMPLETE
SPI DONE o 1]
SPI Master Mode: (CPHA =0, CPOL =1)
This mode has the following characteristics:
maste st
acook [L[UUUUUUUUUUUUUUUUU [
Hpligipligigigligis i igis -
MOSIIMISO‘ X 1X zX 3X 4X sx ex 1X aX: ax :x 8 C_
, ©
ss @ |‘“@ . EHIAN |
SPI IDLE @ @ - 1_
TX FIFO EMPTY —I’ @ ‘ :nl_

2. Y
TXFIFONOT FULL.

RX FIFO FULL V4

RX FIFONOT
EMPTY

RXFIFO
OVERRUN

BYTE/WORD

COMPLETE
SP1 DONE

o CYPRESS

- EMBEDDED IN TOMORROW "

Document Number: 001-85038 Rev. *F

Page 27 of 42

Serial Peripheral Interface (SPI) Master

SPI Master Mode: (CPHA =1, CPOL =0)
This mode has the following characteristics:

1-st byte transmission

PSoC® Creator™ Component Datasheet

End of 4-th byte
transmission

LUHUL

SCLK _| |_|
MOSI/MISO| [1 2] s 4] s e 7 s ZX sf 1

End of 5-th byte
transmission

L
T

£ Co
ERE

ss"/@ |j@

\\ L
4

SPI IDLE @
1)77
TX FIFO EMPTY I’ @)

y /
TXFIFONOT FULL.

RXFIFO FULL

RXFIFONOT
EMPTY

RXFIFO
OVERRUN

BYTE/WORD!

COMPLETE
SP1 DONE

SPI Master Mode:(CPHA =1, CPOL =1)

This mode has the following characteristics:

1-st byte transmission

End of 4-th byte
transmission

LUHUL

scLK LIt L
MOSI/MISO| [A 2] e 4 s e 7 s ZX sf 1

End of 5-th byte
transmission

Ly
I

 Co
Oy

ss"/@ |Z@

\\ L
h

SPIIDLE @

TX FIFO EMPTY I’ @
y /
TX FIFO NOT FULL.

RXFIFO FULL

®

RXFIFONOT
EMPTY

RXFIFO
OVERRUN

BYTE/WORD!

COMPLETE
SP1 DONE

Page 28 of 42

Document Number: 001-85038 Rev. *F

o CYPRESS

- EMBEDDED IN TOMORROW ™

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Registers

Tx Status Register

The Tx status register is a read-only register that contains the various transmit status bits defined
for a given instance of the SPI Master component. Assuming that an instance of the SPI Master
is named “SPIM,” you can get the value of this register using the SPIM_ReadTxStatus() function.

The interrupt output signal is generated by ORing the masked bit fields within the Tx status
register. You can set the mask using the SPIM_SetTxInterruptMode() function. Upon receiving
an interrupt, you can retrieve the interrupt source by reading the Tx status register with the
SPIM_ReadTxStatus () function.

Sticky bits in the Tx status register are cleared on reading, so the interrupt source is held until
the SPIM_ReadTxStatus() function is called. All operations on the Tx status register must use
the following defines for the bit fields, because these bit fields may be moved within the Tx status
register at build time. Sticky bits used to generate an interrupt or DMA transaction must be
cleared with either a CPU or DMA read to avoid continuously generating the interrupt or DMA.

There are several bit fields defined for the Tx status registers. Any combination of these bit fields
may be included as an interrupt source. The bit fields indicated with an asterisk (*) in the
following list are configured as sticky bits in the Tx status register. All other bits are configured as
real-time indicators of status. Sticky bits latch a momentary state so that they may be read at a
later time and cleared on read. The following #defines are available in the generated header file
(for example, SPIM.h):

® SPIM_STS SPI_DONE * — Set high as the data-latching edge of SCLK (edge is mode
dependent) is output. This happens after the last bit of the configured number of bits in a
single SPI word is output onto the MOSI line and the transmit FIFO is empty. Cleared
when the SPI Master is transmitting data or the transmit FIFO has pending data. Tells you
when the SPI Master is complete with a multi-word transaction.

® SPIM_STS TX FIFO_EMPTY — Reads high while the transmit FIFO contains no data
pending transmission. Reads low if data is waiting for transmission.

B SPIM_STS TX FIFO_NOT_FULL — Reads high while the transmit FIFO is not full and
has room to write more data. Reads low if the FIFO is full of data pending transmit and
there is no room for more writes at this time. Tells you when it is safe to pend more data
into the transmit FIFO.

® SPIM_STS BYTE_COMPLETE * — Set high as the last bit of the configured number of
bits in a single SPI word is output onto the MOSI line. Cleared* as the data latching edge
of SCLK (edge is mode dependent) is output.

® SPIM_STS SPI_IDLE * — This bit is set high as long as the component state machine is
in the SPI IDLE state (component is waiting for Tx data and is not transmitting any data).

&= CYPRESS

~agp> EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 29 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

RX Status Register

The Rx status register is a read-only register that contains the various receive status bits defined
for the SPI Master. You can get the value of this register using the SPIM_ReadRxStatus()
function.

The interrupt output signal is generated by ORing the masked bit fields within the Rx status
register. You can set the mask using the SPIM_SetRxInterruptMode() function. Upon receiving
an interrupt, you can retrieve the interrupt source by reading the Rx status register with the
SPIM_ReadRxStatus () function.

Sticky bits in the Rx status register are cleared on reading, so the interrupt source is held until
the SPIM_ReadRxStatus() function is called. All operations on the Rx status register must use
the following defines for the bit fields, because these bit fields may be moved within the Rx
status register at build time. Sticky bits used to generate an interrupt or DMA transaction must be
cleared with either a CPU or DMA read to avoid continuously generating the interrupt or DMA.

There are several bit fields defined for the Rx status register. Any combination of these bit fields
can be included as an interrupt source. The bit fields indicated with an asterisk (*) in the following
list are configured as sticky bits in the Rx status register. All other bits are configured as real-time
indicators of status. Sticky bits latch a momentary state so that they may be read at a later time
and cleared when read. The following #defines are available in the generated header file (for
example, SPIM.h):

® SPIM_STS RX FIFO_FULL — Reads high when the receive FIFO is full and has no more
room to store received data. Reads low if the FIFO is not full and has room for additional
received data. Tells you if there is room for new received data to be stored.

® SPIM_STS RX FIFO_NOT_EMPTY — Reads high when the receive FIFO is not empty.
Reads low if the FIFO is empty and has room for additional received data.

® SPIM_STS RX FIFO_OVERRUN * — Reads high when the receive FIFO is already full
and additional data was written to it. Tells you if data has been lost from the FIFO
because of slow FIFO servicing.

Tx Data Register

The Tx data register contains the transmit data value to send. This is implemented as a FIFO in
the SPI Master. There is an optional higher-level software state machine that controls data from
the transmit memory buffer. It handles large amounts of data to be sent that exceed the FIFO’s
capacity. All APIs that involve transmitting data must go through this register to place the data
onto the bus. If there is data in this register and the control state machine indicates that data can
be sent, then the data is transmitted on the bus. As soon as this register (FIFO) is empty, no
more data will be transmitted on the bus until it is added to the FIFO. DMA can be set up to fill
this FIFO when empty, using the TXDATA_REG address defined in the header file.

&= CYPRESS

s> EMBEDDED IN TOMORROW

Page 30 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Rx Data Register

The Rx data register contains the received data. This is implemented as a FIFO in the SPI
Master. There is an optional higher-level software state machine that controls data movement
from this receive FIFO into the memory buffer. Typically, the Rx interrupt indicates that data has
been received. At that time, that data has several routes to the firmware. DMA can be set up
from this register to the memory array, or the firmware can simply call the SPIM_ReadRxData()
function. DMA must use the RXDATA_ REG address defined in the header file.

Conditional Compilation Information

The SPI Master requires only one conditional compile definition to handle the 8- or 16-bit
datapath configuration necessary to implement the configured NumberOfDataBits. The API must
conditionally compile for the data width defined. APIs should never use these parameters directly
but should use the following define:

® SPIM_DATA_WIDTH - This defines how many data bits will make up a single “byte”
transfer. Valid range is 3 to 16 bits.

Resources

The SPI Master component is placed throughout the UDB array. The component utilizes the
following resources.

Resource Type
Configuration Datapath | ...\ Status Control DMA T
Cells Cells Cells Channels P

8-bit (MOSI+MISO) 1 13 3 1 - 2
8-bit (Bidirectional) 1 13 3 2 - 2
16-bit (MOSI+MISO) 2 13 3 1 - 2
16-bit (Bidirectional) 2 13 3 2 - 2
8-bit High Speed

(MOSI+MISO) 1 18 3 1 B 2
8-bit High Speed

(Bidirectional) 1 18 3 2 - 2
16-bit High Speed

(MOSI+MISO) 2 18 3 1 B 2
16-bit High Speed

(Bidirectional) 2 18 3 2 - 2

&= CYPRESS

~agp> EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F

Page 31 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

DC and AC Electrical Characteristics

Specifications are valid for —40 °C < Ta <85 °C and T, < 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description Min Typt Max Units
IoD(8-bit) Component current consumption (8-bit; MOSI+MISO)

Idle currentt - 20 - HA/MHZz

Operating current! - 28 - HA/MHZz

Component current consumption (8-bit; Bidirectional)

Idle currentf3] - 21 - HA/MHz

Operating current! - 30 - HA/MHz

Component current consumption (8-bit; High Speed; MOSI+MISO)

Idle currentf3] - 23 - HA/MHz

Operating currentl - 34 - HA/MHZ

Component current consumption (8-bit; High Speed; Bidirectional)

Idle currentl] - 27 - HA/MHZz

Operating currentl - 36 - HA/MHZ
IDD(16-bit) Component current consumption (16-bit; MOSI+MISO)

Idle currentf] - 23 - MA/MHZ

Operating currenttl - 30 - HA/MHZ

Component current consumption (16-bit; Bidirectional)

Idle currentf] - 25 - MA/MHZ

Operating current! - 32 - HA/MHZ

Component current consumption (16-bit; High Speed; MOSI+MISO)

Idle currentl] - 27 - HA/MHz

Operating currentl - 38 - HA/MHZ

2-Device 10 and clock distribution current not included. The values are at 25 °C.
8- Current consumption is specified with respect to the incoming component clock.
4 Current consumed by component while it is enabled but not transmitting/receiving data.

5 Current consumed by component while it is enabled and transmitting/receiving data.

&= CYPRESS

N EMBEDDED IN TOMORROW

Page 32 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Parameter Description Min Typt? Max Units

Component current consumption (16-bit; High Speed; Bidirectional)

Idle currentl] - 30 - HA/MHZz

Operating currenttl - 40 - HA/MHZz

AC Characteristics

Parameter Description Min Typ Max © Units
fscik SCLK frequency
8-bit (MOSI+MISO) - - 9 MHz
8-bit (Bidirectional) - - 9 MHz
16-bit (MOSI+MISO) - - 8 MHz
16-bit (Bidirectional) - - 8 MHz
8-bit High Speed (MOSI+MISO) - - 18 MHz
8-bit High Speed (Bidirectional) - - 18 MHz
16-bit High Speed (MOSI+MISO) - - 16 MHz
16-bit High Speed (Bidirectional) - - 16 MHz
fecLock Component clock frequency - 2 x fscik - MHz
tekn SCLK high time - 0.5 - 1ffscik
teke SCLK low time - 0.5 - 1/fscik
ts_miso MISO input setup time 25 - - ns
tH_misol”! MISO input hold time - 0 - ns
tss_scLk SS active to SCLK active -20 20 ns
tscik_ss SCLK inactive to SS inactive -20 20 ns

6. The maximum component clock frequency is derived from tscik_miso in combination with the routing path delays of
the SCLK input and the MISO output (described later in this document). These “Nominal” numbers provide a
maximum safe operating frequency of the component under nominal routing conditions. It is possible to run the
component at higher clock frequencies, at which point you will need to validate the timing requirements with STA
results.

7 The Vbbio supply voltage from 3.0 V to 5.5 V. The value can vary for PSoC 5, so must be validated with STA
results.

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 33 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

Figure 8. Mode CPHA =0 Timing Diagram

PRLUTEECTS
— | ——
CLOCK
s tss SCLK tekn texe tsck_ss
(CPOL=0)
SCLK m U Y
(cPOL=1)
tl'.ZKL tCKH

SS

le—ts_miso

MOSI(SDAT)—< &)C:D(o X X o X%)C::}.F
t_miso
MISO(SDAT)—| @)L< ol ><_22_>< (N1)>< N) >< © >< ><_(Zg) ™

Byte/Word #1 Byte/Word #2

Figure 9. Mode CPHA =1 Timing Diagram

e loesok

CLOCK
s tss SCLK tekn texe tsck_ss
(CPOL=0)
SCLK m U Y
(CPOL=1)
tl'.ZKL tCKH

SS

) ts_miso

((
MOSI(SDAT) — &) D<‘“”>< o Ko X)(:b.k
tH_miso
MISO(SDAT) — o L< 5 X «2_>< o X >< o X X_EW
|

Byte/Word #1 Byte/Word #2

&= CYPRESS

s> EMBEDDED IN TOMORROW

Page 34 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

How to Use STA Results for Characteristics Data

Nominal route maximums are gathered through multiple test passes with Static Timing Analysis
(STA). You can calculate the maximums for your designs using the STA results with the
following mechanisms:

fsc,k The maximum frequency of SCLK (or the maximum bit rate) is not provided directly in
the STA. However, the data provided in the STA results indicates some of the internal
logic timing constraints. To calculate the maximum bit rate, you must consider several
factors. You will need board layout and slave communication device specs to fully
understand the maximum. The main limiting factor in this parameter is the round trip
path delay from the falling edge of SCLK at the pin of the master, to the slave and the
path delay of the MISO output of the slave back to the master.

Figure 10 Calculating Maximum fSCLK Frequency

MISO Sample at
teLk_scLi(master) Master

[

@ Master Internal

CLOCK
ts misogmasten) | |,
@ Master Pin SCLK
SCLKpp_pca
@ Slave Pin SCLK

trp_scLk(slave)

@ Slave Intemal SCLK ‘

tscLk_Miso(siave) [+

@ Slave Internal MISO N >< N-1
(0) (1)
tep_MisO(slave) +—»
N N-1
@ Slave pin MISO ©) >-< 1)
MISOpp_pca |«
N N-1
@ Master pin MISO ©) >-< a

In this case, the component must meet the setup time of MISO at the Master using the
equation below:

trr o< 1/ {[%2 X fscik] — tcLk_scLk(master) — ts_MisO(masten)}
--OR --
fscik < 1 /{2 * [Trr_pp + tcik_scik(master) + ts misomasten] }
Where:

tcLk_scLk(masten) IS the path delay of the input CLK to the SCLK output. This is provided in
the STA results clock to output section as shown below:

&= CYPRESS

~agp> EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 35 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

- Clock To Qutput Section

- SPIM_1_IntClock

| Source | Destination \ Delay (ns) |
et 25/g |scLx 1(0) EZD | 24.800]

ts_miso(master) iS the path delay from MISO input pin to internal logic of the master
component. This is provided in the STA results input to clock section as shown below:

- Input To Clock Section

- SPIM_1_IntClock

| Source | Destination | Delay (ns) |
Miso 1(0) EaD [\SPIM 1:E5PIM:sRE:Dp:ul\/route si | 20.906|

For High Speed Mode setup time equation is as follows:

trr po < 1/ {[fscik] — tcik_scik(master) — ts_miso(masten)}

-OR --

fscik < 1/ {[Trr_pp *+ tcik_scik(master) + ts_misomasten] }

Note There are two values in the report: setup times to the component clock at register
A0 and register Al. You should select the larger one for calculation.

And trT_ppis defined as:
trT_Pp = [SCLKpp pcs + trp_scik(slave) + tscLk_misolave) + tro_misogsiave) ¥ MISOpp_pce]
and:

SCLKepp_pcs is the PCB path delay of SCLK from the pin of the master component to the
pin of the slave component.

tPp_scLk(slave) + tscLk_Miso(slave) + tPD_Mmiso(slave) Must come from the slave device datasheet.
MISOrpb_pcs is the PCB path delay of MISO from the pin of the slave component to the
pin of the master component.

The final equation that provides the maximum frequency of SCLK, and therefore the
maximum bit rate, is:

fsck (Max.) = 1 /{2 x [tcik_scikmasteny T SCLKpp pcs + tep_scik(siave) + tscLk misoslave) +
teo_misosiave) + MISOpp pc + ts misomasten)] }

For High Speed Mode:

fscik (Max.) = 1/ { [tcik_scikmastery + SCLKpp pce + trp_scikslave) T tscik_misogslave) + tpp_miso(siave) T+
M|SOPD_PCB + tS_MISO(master)] }

&= CYPRESS

N EMBEDDED IN TOMORROW

Page 36 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

fcock Maximum component clock frequency is provided in Timing results in the clock
summary as the IntClock (if internal clock is selected) or the named external clock. An
example of the internal clock limitations from the STA report file is shown below:

- Clock Summary Section

Clock Type |[Hominal Fregunency (MH=z)|Regqnired Fregquency (MHz)|[Maximom Fregonency (MHz)|[Vicolation

FIEUS"CLE SYync 60,000 60, 000N/

[ElockolOCKk/CIE Dus|hsync) B0, 000 0. TR

ClockBlock/dclk 0 |Async 15.000 15.000[N/L

ILO Async 0.001 0.001|N/A

IMO Async 3.000 3.000|N/A

MASTEE CLE Sync 60.000 60.000|N/A

PLL OUT L=ync 60.000 60.000[N/R

HISPTM 1 TntClock SYIC 15,000 15,000 6l. 870

Its value is limited to either 2x of the fcLock or by the number from the STA report but in
practice the limitation is 2x of the fcLock.

tckH The SPI Master component generates a 50-percent duty cycle SCLK.
tek The SPI Master component generates a 50-percent duty cycle SCLK.

tcLk_scLk Internal clock to SCLK output time. Time from posedge of Internal Clock to SCLK
available on master pin.

ts_ miso To meet the setup time of the internal logic, MISO must be valid at the pin, before
Internal clock is valid at the pin, by this amount of time.

tv_miso To meet the hold time of the internal logic, MISO must be valid at the pin, after Internal
clock is valid at the pin, by this amount of time.

tss_scLk To meet the internal functionality of the block, Slave Select (SS) must be valid at the pin
before SCLK is valid at the pin, by this parameter.

tscLk_ss Maximum - To meet the internal functionality of the block. Slave Select (SS) must be
valid at the pin after the last falling edge of SCLK at the pin, by this parameter.

Component Errata

This section lists known problems with the component.

Cypress | Component

ID Version Problem Workaround
191257 |v2.40 This component was modified without a version No workaround is necessary.
number change in PSoC Creator 3.0 SP1. For There is no impact to designs.

further information, see Knowledge Base Article
KBA94159 (www.cypress.com/go/kba94159).

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 37 of 42

http://www.cypress.com/go/kba94159

Serial Peripheral Interface (SPI) Master

Component Changes

This section lists the major changes in the component from the previous version.

PSoC® Creator™ Component Datasheet

Version Description of Changes Reason for Changes / Impact

2.40.f Minor datasheet edits.

2.40.e Minor datasheet edits.

2.40.d Edited the datasheet. Updated the table in Resources section.

Document that the reset input may be left floating
with no external connection.

2.40.c Edited datasheet to add Component Errata Document that the component was changed, but
section. there is no impact to designs.

2.40.b Edited the datasheet. Updated the diagram in Configure tab section.

Updates to sections to comply with template.
2.40.a Edited the datasheet. Removed references to obsolete PSoC 5 device.
2.40 Added MISRA Compliance section. The component has specific deviations described.
Added SPIM_rxBufferFull set to zero into all The software RX buffer was not clean properly after
APIs that clear RX buffer. overflow occurred.
2.30 Added all component APIs with the Not all APIs are truly reentrant. Comments in the
CYREENTRANT keyword when they are component API source files indicate which functions
included in the .cyre file. are candidates.
This change is required to eliminate compiler
warnings for functions that are not reentrant used in a
safe way: protected from concurrent calls by flags or
Critical Sections.

Added PSoC 5LP support

Added DC characteristics section to datasheet

221 High Speed Mode functionality is added. Fixed | Verilog implementation is updated to allow maximum

SPI| Modes diagrams bit rate up to 18 Mbps. Added details to description
of Bi-directional Mode. SPI Modes diagrams changed
to hide Rx data as internal implementation details.
Description of High Speed Mode is added to
“Advanced Tab” section. “Resources”, “AC and DC
electrical Characteristics” and “How to use STA
results for Characteristics data” sections are updated
with data related to High Speed Mode.

2.20 Internal clock component has been updated Clock v1_60 is the latest component version. Verilog
with cy _clock vl 60. Fixed verilog defect that | defect fixed to remove STA warning founded using
caused STA warning. the updated STA tool. Screenshots in “AC and DC

electrical characteristics” section are updated by
report generated by the new STA tool.

Page 38 of 42

&= CYPRESS

N EMBEDDED IN TOMORROW

Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet

Serial Peripheral Interface (SPI) Master

Version

Description of Changes

Reason for Changes / Impact

2.10.a

Datasheet corrections (CPHA =1 Diagrams for
modes where CPHA =1 corrected)

Datasheet defects fixed

SPIM_Init()/SPIM_Enable APIs.

2.10 Data Bits range is changed from 2 to 16 bits to | Changes related to status synchronization issues
3to 16. fixed in current version.
“Interrupt on SPI Idle” checkbox is added to the | Component customizer defect fixed
component configure dialog.
“Byte transfer complete” checkbox name is To fit the real meaning
changed to the “Byte/Word transfer complete”
Added characterization data to datasheet
Minor datasheet edits and updates
2.0.a Moved component into subfolders of the
component catalog.
2.0 Added SPIM_Sleep()/SPIM_Wakeup() and To support low-power modes, and to provide

common interfaces to separate control of initialization
and enabling of most components.

Number and positions of component I/Os have
been changed:

= The clock input is now visible in default
placement (external clock source is the
default setting now)

= The reset input has a different position

= The interrupt output was removed.
rx_interrupt, tx_interrupt outputs are added
instead.

The clock input was added for consistency with SPI
Slave.

The reset input place changed because the clock
input was added. Two status interrupt registers (Tx
and Rx) are now presented instead of one shared.

These changes be taken into account to prevent
binding errors when migrating from previous SPI
versions

Removed SPIM_Enableint(),
SPIM_Disablelnt(), SPIM_SetinterruptMode(),
and SPIM_ReadStatus() APIs.

Added SPIM_EnableTxInt(),
SPIM_EnableRxInt(), SPIM_DisableTxInt(),
SPIM_DisableRxInt(),
SPIM_SetTxInterruptMode(),
SPIM_SetRxInterruptMode(),
SPIM_ReadTxStatus(), SPIM_ReadRxStatus()
APls.

The removed APIs are obsolete because the
component now contains Rx and Tx interrupts
instead of one shared interrupt. Also updated the
interrupt handler implementation for Tx and Rx
Buffer.

Renamed SPIM_ReadByte(),
SPIM_WriteByte()APIs to SPIM_ReadRxData(),
SPIM_WriteTxData().

Clarifies the APIs and how they should be used.

The following changes were made to the base SPI Master component B_SPI_Master_v2_0, which is implemented
using Verilog:

spim_ctrl internal module was replaced by a
new state machine.

It uses fewer hardware resources and does not
contain any asynchronous logic.

A

w# CYPRESS

-

EMBEDDED IN TOMORROW "

Document Number: 001-85038 Rev. *F

Page 39 of 42

Serial Peripheral Interface (SPI) Master

PSoC® Creator™ Component Datasheet

Version

Description of Changes

Reason for Changes / Impact

Two status registers are now presented (status

Fixed a defect found in previous versions of the

are separate for Tx and Rx) instead of using
one common status register for both.

/*SPI Master vl 20 status bits*/
SPIM STS SPI DONE BIT = 3'd0;

SPIM STS TX FIFO EMPTY BIT = 3'dl;
SPIM STS TX FIFO NOT FULL BIT =
3'd2;

SPIM STS RX FIFO FULL BIT = 3'd3;
SPIM STS RX FIFO NOT EMPTY BIT =
3'd4;

SPIM STS RX FIFO OVERRUN BIT =
3'd5;

SPIM STS BYTE COMPLETE BIT = 3'dé;

component where software buffers were not working
as expected.

/*SPI Master v2 0 status bits*/

localparam SPIM STS SPI DONE BIT =
3'd0;

localparam

SPIM STS TX FIFO EMPTY BIT =

localparam

SPIM STS TX FIFO NOT FULL BIT =
3'd2;

localparam

SPIM STS BYTE COMPLETE BIT = 3'd3;

localparam SPIM STS SPI IDLE BIT =
3'd4;

localparam

SPIM STS RX FIFO FULL BIT =

localparam

SPIM STS RX FIFO NOT EMPTY BIT =
3'd5;

localparam

SPIM STS RX FIFO OVERRUN BIT =
3'de;

3'dl;

3'd4;

&= CYPRESS

N EMBEDDED IN TOMORROW ™

Page 40 of 42 Document Number: 001-85038 Rev. *F

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Master

Version Description of Changes Reason for Changes / Impact

‘BidirectMode’ boolean parameter is added to Added Bidirectional Mode support to the component
base component.

Control Register with ‘clock’ input and SYNC
mode bit is now selected to drive ‘tx_enable’
output for PSoC 3 Production silicon. Control
Register w/o clock input drives ‘tx_enable’ when
ES2 silicon is selected.

Bufoe component is used on component
schematic to support Bidirectional Mode. MOSI
output of base component is connected to
bufoe X’ input. ‘yfb’ is connected to 'miso' input.
Bufoe ‘y’ output is connected to 'sdat' output
terminal.

Routed reset is connected to datapaths,
Counter7 and State Machine.

udb_clock_enable component is added to New requirements for all clocks used in Verilog to
Verilog implementation with sync = "TRUE" indicate functionality so the tool can support
parameter. synchronization and Static Timing Analysis.

2’ is replaced by ‘<< 1’ in Counter7 period Verilog improvements.

value.

Maximum Bit Rate value is changed to 10 Mbps | Bit Rate value more than 10 Mbps is not supported
(verified during the component characterization)

Description of the Bidirectional Mode is added | Data sheet defect fixed

Reset input description now contains the note Data sheet defect fixed
about ES2 silicon incompatibility

Timing correlation diagram between SS and Data sheet defect fixed
SCLk signals is changed

Sample firmware source code is removed Reference to the component example project is
added instead

SPI Modes diagrams are changed (Tx and Rx Data sheet defect fixed
FIFO status values are added)

&= CYPRESS

- EMBEDDED IN TOMORROW ™

Document Number: 001-85038 Rev. *F Page 41 of 42

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Datasheet

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

&2 CYPRESS

EMBEDDED IN TOMORROW ™

Page 42 of 42 Document Number: 001-85038 Rev. *F

	Features
	General Description
	When to Use the SPI Master

	Input/Output Connections
	miso – Input *
	sdat – Inout *
	clock – Input *
	reset – Input
	mosi – Output *
	sclk– Output
	ss – Output
	rx_interrupt – Output
	tx_interrupt – Output

	Schematic Macro Information
	Component Parameters
	Hardware versus Software Options
	Configure Tab
	Mode *
	Data Lines
	Data Bits *
	Shift Direction *
	Bit Rate *

	Advanced Tab
	Clock Selection *
	RX Buffer Size *
	TX Buffer Size *
	Using the Software Buffer
	Enable High Speed Mode
	Enable TX / RX Internal Interrupt
	Interrupts

	Clock Selection
	Application Programming Interface
	Functions
	void SPIM_Start(void)
	void SPIM_Stop(void)
	void SPIM_EnableTxInt(void)
	void SPIM_EnableRxInt(void)
	void SPIM_DisableTxInt(void)
	void SPIM_DisableRxInt(void)
	void SPIM_SetTxInterruptMode(uint8 intSrc)
	void SPIM_SetRxInterruptMode(uint8 intSrc)
	uint8 SPIM_ReadTxStatus(void)
	uint8 SPIM_ReadRxStatus(void)
	void SPIM_WriteTxData(uint8/uint16 txData)
	uint8/uint16 SPIM_ReadRxData(void)
	uint8 SPIM_GetRxBufferSize(void)
	uint8 SPIM_GetTxBufferSize(void)
	void SPIM_ClearRxBuffer(void)
	void SPIM_ClearTxBuffer(void)
	void SPIM_TxEnable(void)
	void SPIM_TxDisable(void)
	void SPIM_PutArray(const uint8/uint16 buffer[], uint8 byteCount)
	void SPIM_ClearFIFO(void)
	void SPIM_Sleep(void)
	void SPIM_Wakeup (void)
	void SPIM_Init(void)
	void SPIM_Enable(void)
	void SPIM_SaveConfig(void)
	void SPIM_RestoreConfig(void)

	Global Variables
	Defines
	Status Register Bits
	SPIM_TXSTATUS
	SPIM_RXSTATUS
	SPIM_TX_BUFFER_SIZE
	SPIM_RX_BUFFER_SIZE
	SPIM_DATA_WIDTH

	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	Block Diagram and Configuration
	Default Configuration
	Modes
	SPI Master Mode:(CPHA = 0, CPOL = 0)
	SPI Master Mode: (CPHA = 0, CPOL = 1)
	SPI Master Mode: (CPHA = 1, CPOL = 0)
	SPI Master Mode:(CPHA = 1, CPOL = 1)

	Registers
	Tx Status Register
	RX Status Register
	Tx Data Register
	Rx Data Register
	Conditional Compilation Information

	Resources
	DC and AC Electrical Characteristics
	DC Characteristics
	AC Characteristics
	How to Use STA Results for Characteristics Data

	Component Errata
	Component Changes

