
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

PSoC® Creator™

PSoC 4 System Reference Guide

cy_boot Component v6.10

Document Number: 002-32414 Rev. **

Cypress Semiconductor
An Infineon Technologies Company

198 Champion Court
San Jose, CA 95134-1709

www.cypress.com
www.infineon.com

http://www.cypress.com/
http://www.infineon.com/

 Copyrights

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 2

© Cypress Semiconductor Corporation, 2021. This document is the property of Cypress Semiconductor
Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any
software or firmware included or referenced in this document (“Software”), is owned by Cypress under
the intellectual property laws and treaties of the United States and other countries worldwide. Cypress
reserves all rights under such laws and treaties and does not, except as specifically stated in this
paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a
written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a
personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright
rights in the Software (a) for Software provided in source code form, to modify and reproduce the
Software solely for use with Cypress hardware products, only internally within your organization, and (b)
to distribute the Software in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims
of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make,
use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR
ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by
applicable law, Cypress reserves the right to make changes to this document without further notice.
Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design
information or programming code, is provided only for reference purposes. It is the responsibility of the
user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed,
intended, or authorized for use as critical components in systems designed or intended for the operation
of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could
cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the
failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or
in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress
harmless from and against all claims, costs, damages, and other liabilities, including claims for personal
injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC,
CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com.
Other names and brands may be claimed as property of their respective owners.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 3

Contents

1 Introduction .. 9

Migrating from Previous cy_boot Versions .. 9

Conventions ... 10

References .. 10

Sample Firmware Source Code .. 10

Definitions .. 10

Revision History ... 12

2 Standard Types, APIs, and Defines .. 13

Base Types .. 13

Hardware Register Types .. 13

Compiler Defines ... 13

Return Codes... 14

Interrupt Types and Macros ... 14

Interrupt vector address type .. 14

Intrinsic Defines ... 14

Device Version Defines ... 15

Variable Attributes .. 15

Instance APIs ... 16

General APIs ... 16

Low Power APIs .. 16

PSoC Creator Generated Defines ... 17

Project Type .. 17

Chip Configuration Mode .. 17

Debugging Mode ... 18

Chip Protection Mode.. 18

Stack and Heap ... 18

Voltage Settings .. 18

System Clock Frequency .. 19

JTAG/Silicon ID ... 19

IP Block Information .. 19

3 Clocking .. 20

PSoC Creator Clocking Implementation .. 20

Overview ... 20

 Contents

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 4

Clock Connectivity ... 21

Clock Synchronization .. 21

Routed Clock Implementation ... 21

Using Asynchronous Clocks ... 25

Clock Crossing .. 25

Gated Clocks ... 26

Fixed-Function Clocking ... 27

UDB-Based Clocking .. 27

Changing Clocks in Run-time ... 28

APIs ... 28

High Frequency Clocks ... 28

Low Frequency Clocks .. 32

External Crystal Oscillator (ECO) APIs ... 33

Phase-Locked Loop(PLL) APIs (PSoC 4200L / PSoC 4100S Plus / PSoC 4500) 36

Low Voltage Analog Boost Clocks .. 46

4 Power Management ... 47

Implementation .. 47

Clock Configuration (PSoC 4100 BLE / PSoC 4200 BLE / PRoC BLE) 48

Power Management APIs ... 48

5 Interrupts .. 51

APIs ... 51

CyGlobalIntEnable .. 51

CyGlobalIntDisable ... 51

uint32 CyDisableInts() ... 51

void CyEnableInts(uint32 mask) ... 51

void CyIntEnable(uint8 number) ... 51

void CyIntDisable(uint8 number) ... 52

uint8 CyIntGetState(uint8 number) ... 52

cyisraddress CyIntSetVector(uint8 number, cyisraddress address) 52

cyisraddress CyIntGetVector(uint8 number) ... 52

cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address) 53

cyisraddress CyIntGetSysVector(uint8 number) ... 53

void CyIntSetPriority(uint8 number, uint8 priority) .. 53

uint8 CyIntGetPriority(uint8 number) .. 54

void CyIntSetPending(uint8 number) .. 54

void CyIntClearPending(uint8 number) ... 54

6 Pins .. 55

PSoC 4 APIs .. 55

CY_SYS_PINS_READ_PIN(portPS, pin) ... 55

CY_SYS_PINS_SET_PIN(portDR, pin) .. 55

CY_SYS_PINS_CLEAR_PIN(portDR, pin) ... 56

Contents

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 5

CY_SYS_PINS_SET_DRIVE_MODE(portPC, pin, mode) ... 56

CY_SYS_PINS_READ_DRIVE_MODE(portPC, pin) ... 57

7 Register Access ... 58

APIs ... 58

uint8 CY_GET_REG8(uint32 reg) ... 58

void CY_SET_REG8(uint32 reg, uint8 value) ... 58

uint16 CY_GET_REG16(uint32 reg)... 59

void CY_SET_REG16(uint32 reg, uint16 value) ... 59

uint32 CY_GET_REG24(uint32 reg)... 59

void CY_SET_REG24(uint32 reg, uint32 value) ... 59

uint32 CY_GET_REG32(uint32 reg)... 59

void CY_SET_REG32(uint32 reg, uint32 value) ... 59

uint8 CY_GET_XTND_REG8(uint32 reg) ... 60

void CY_SET_XTND_REG8(uint32 reg, uint8 value) ... 60

uint16 CY_GET_XTND_REG16(uint32 reg) ... 60

void CY_SET_XTND_REG16(uint32 reg, uint16 value) ... 60

uint32 CY_GET_XTND_REG24(uint32 reg) ... 60

void CY_SET_XTND_REG24(uint32 reg, uint32 value) ... 60

uint32 CY_GET_XTND_REG32(uint32 reg) ... 61

void CY_SET_XTND_REG32(uint32 reg, uint32 value) ... 61

Bit Field Manipulation .. 61

CY_GET_REG8_FIELD(registerName, bitFieldName) .. 62

CY_SET_REG8_FIELD(registerName, bitFieldName, value) .. 62

CY_CLEAR_REG8_FIELD(registerName, bitFieldName).. 63

CY_GET_REG16_FIELD(registerName, bitFieldName) .. 63

CY_SET_REG16_FIELD(registerName, bitFieldName, value) .. 64

CY_CLEAR_REG16_FIELD(registerName, bitFieldName) ... 64

CY_GET_REG32_FIELD(registerName, bitFieldName) .. 65

CY_SET_REG32_FIELD(registerName, bitFieldName, value) .. 65

CY_CLEAR_REG32_FIELD(registerName, bitFieldName) ... 66

CY_GET_FIELD(regValue, bitFieldName) .. 66

CY_SET_FIELD(regValue, bitFieldName, value) ... 67

8 Flash .. 68

Memory Architecture .. 68

Working with Flash .. 68

APIs ... 70

uint32 CySysFlashWriteRow(uint32 rowNum, const uint8 rowData[]) 70

void CySysFlashSetWaitCycles(uint32 freq) .. 70

uint32 CySysSFlashWriteUserRow(uint32 rowNum, uint8 *rowData) 71

uint32 CySysFlashStartWriteRow(uint32 rowNum, const uint8 rowData[]) 72

uint32 CySysFlashGetWriteRowStatus(void) ... 73

 Contents

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 6

void CySysFlashResumeWriteRow(void) ... 73

9 System Functions .. 74

General APIs.. 74

uint8 CyEnterCriticalSection(void) .. 74

void CyExitCriticalSection(uint8 savedIntrStatus) ... 74

void CYASSERT(uint32 expr) ... 74

void CyHalt(uint8 reason) ... 75

void CySoftwareReset(void) ... 75

void CyGetUniqueId(uint32* uniqueId) ... 75

void CySysSetRamAccessArbPriority (uint32 source) ... 75

void CySysSetFlashAccessArbPriority(uint32 source) ... 75

void CySysSetDmacAccessArbPriority(uint32 source) ... 76

void CySysSetPeripheralAccessArbPriority(uint32 source).. 76

void CySysEnablePumpClock (uint32 enable) ... 76

CyDelay APIs ... 76

void CyDelay(uint32 milliseconds) .. 77

void CyDelayUs(uint16 microseconds) ... 77

void CyDelayFreq(uint32 freq) .. 77

void CyDelayCycles(uint32 cycles) ... 77

Voltage Detect APIs ... 78

void CySysLvdEnable(uint32 threshold) ... 78

void CySysLvdDisable(void) ... 78

uint32 CySysLvdGetInterruptSource(void) ... 78

void CySysLvdClearInterrupt(void) ... 79

Programmable Voltage Reference (All PSoC 4 devices with PRB) .. 79

void CySysPrbSetGlobalVrefSource (uint32 source) ... 79

void CySysPrbSetBgGain (uint32 gain) .. 79

void CySysPrbSetGlobalVrefVoltage (uint32 voltageTap) .. 80

void CySysPrbEnableDeepsleepVddaRef (void) .. 80

void CySysPrbDisableDeepsleepVddaRef (void) ... 81

void CySysPrbEnableVddaRef (void) ... 81

void CySysPrbDisableVddaRef (void) .. 81

void CySysPrbSetBgBufferTrim(int32 bgTrim) .. 81

int32 CySysPrbGetBgBufferTrim (void) .. 81

Macro Callbacks .. 82

Watchdog Timer (WDT) APIs .. 82

10 Startup and Linking ... 83

GCC Implementation... 84

Realview Implementation (applicable for MDK) .. 84

CMSIS Support ... 85

High-Level I/O Functions ... 86

Contents

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 7

The printf() Usage Model .. 86

Preservation of Reset Status ... 87

uint32 CySysGetResetReason(uint32 reason) ... 87

API Memory Usage ... 87

PSoC 4000 (GCC) .. 87

PSoC 4100/PSoC 4200 (GCC) ... 87

PSoC 4100 BLE/PRoC BLE/PSoC 4200 BLE (GCC) ... 88

PSoC 4100M /PSoC 4200M (GCC) .. 88

PSoC 4200L (GCC) .. 88

PSoC Analog Coprocessor (GCC) .. 88

PSoC 4000S (GCC) .. 88

PSoC 4100S (GCC) .. 88

PSoC 4100S Plus (GCC) .. 88

PSoC 4500 (GCC) .. 89

Performance .. 89

Functions Execution Time ... 89

Critical Sections Duration .. 89

11 MISRA Compliance .. 90

Verification Environment .. 90

Project Deviations .. 91

Documentation Related Rules ... 92

PSoC Creator Generated Sources Deviations .. 93

cy_boot Component-Specific Deviations [] ... 94

12 System Timer (SysTick) ... 96

Functional Description ... 96

APIs ... 96

Macro .. 96

Functions ... 96

Global Variables .. 100

13 cy_boot Component Changes .. 101

Version 6.10 ... 101

Version 6.0 ... 101

Version 5.90 ... 101

Version 5.81 ... 101

Version 5.80 ... 102

Version 5.70 ... 102

Version 5.60 ... 102

Version 5.50 ... 102

Version 5.40 ... 103

Version 5.30 ... 103

Version 5.20 ... 104

 Contents

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 8

Version 5.10 ... 104

Version 5.0 ... 104

Version 4.20 ... 106

Version 4.11 ... 109

Version 4.10 ... 109

Version 4.0 ... 110

Version 3.40 and Older ... 111

Version 3.40 ... 111

Version 3.30 ... 111

Version 3.20 ... 111

Version 3.10 .. 112

Version 3.0 .. 112

Version 2.40 ... 114

Version 2.30 and Older .. 114

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 9

1 Introduction

This System Reference Guide describes functions supplied by the PSoC Creator cy_boot component.

The cy_boot component provides the system functionality for a project to give better access to chip

resources. The functions are not part of the component libraries but may be used by them. You can use

the function calls to reliably perform needed chip functions.

The cy_boot component is unique:

◼ Included automatically into every project

◼ Only a single instance can be present

◼ No symbol representation

◼ Not present in the Component Catalog (by default)

As the system component, cy_boot includes various pieces of library functionality. This guide is organized

by these functions:

◼ Flash

◼ Clocking

◼ Power management

◼ Startup code

◼ Various library functions

◼ Linker scripts

The cy_boot component presents an API that enables user firmware to accomplish the tasks described in

this guide. There are multiple major functional areas that are described separately.

Migrating from Previous cy_boot Versions

The cy_boot component version 5.0 and later is fully backward compatible with cy_boot version 4.20 (and

previous versions). For PSoC 4 devices, the CyLFClk (low-frequency clock) APIs have been moved into

separate files (CyLFClk.h/CyLFClk.c). See the CyLFClk Component Datasheet available from the System

Reference Guides item of the PSoC Creator Help menu.

Firmware projects created using PSoC Creator 3.1 will work with no issues in PSoC Creator 3.2 and later

if the project.h file is referenced, regardless of the cy_boot update. However, if the project.h file is not

included in the project being migrated, you must add a reference to the CyLFClk.h file in the project for

the availability of CyLFClk APIs.

If you choose not to update to cy_boot version 5.0 or later while migrating projects from PSoC Creator 3.1

to PSoC Creator 3.2 and later, CyLFClk.h/CyLFClk.c files will not be generated.

 Introduction

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 10

Conventions

The following table lists the conventions used throughout this guide:

Convention Usage

Courier New Displays file locations and source code:

C:\ …cd\icc\, user entered text

Italics Displays file names and reference documentation:

sourcefile.hex

[bracketed, bold] Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]

File > New Project Represents menu paths:

File > New Project > Clone

Bold Displays commands, menu paths and selections, and icon names in
procedures:

Click the Debugger icon, and then click Next.

Text in gray boxes Displays cautions or functionality unique to PSoC Creator or the PSoC device.

References

This guide is one of a set of documents pertaining to PSoC Creator and PSoC devices. Refer to the

following other documents as needed:

◼ PSoC Creator Help

◼ System Reference Guides HTML (from PSoC Creator Help menu)

◼ PSoC Creator Component Datasheets

◼ PSoC Creator Component Author Guide

◼ PSoC Technical Reference Manual (TRM)

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code in the

Find Example Project dialog. For component-specific examples, open the dialog from the Component

Catalog or an instance of the component in a schematic. For general examples, open the dialog from the

Start Page or File menu. As needed, use the Filter Options in the dialog to narrow the list of projects

available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Definitions

◼ API – Application Programming Interface

◼ BLE – Bluetooth Low Energy

◼ CMSIS – Cortex® Microcontroller Software Interface Standard

◼ CPU – Central Processing Unit

◼ CTW – Central Time Wheel

◼ DMA – Direct Memory Access

Introduction

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 11

◼ DSI – Digital Signal Interconnect

◼ ECC – Error Checking And Correction

◼ EEPROM – Electrically Erasable and Programmable Read Only Memory

◼ EXCO/ECO – External Crystal Oscillator

◼ FTW – Fast Time Wheel

◼ GCC – GNU Compiler Collection

◼ HFCLK – High Frequency Clock

◼ HVI – High Voltage Interrupt

◼ ILO – Internal Low Speed Oscillator

◼ IMO – Internal Main Oscillator

◼ ISR – Interrupt Service Routine

◼ LFCLK – Low Frequency Clock

◼ LPM – Low Power Mode

◼ LSB – Least Significant Bit

◼ LVD – Low Voltage Detect

◼ LVI – Low Voltage Interrupt

◼ MISRA – Motor Industry Software Reliability Association

◼ MSB – Most Significant Bit

◼ NOP – No Operation

◼ OPPS – One Pulse Per Second

◼ OTA – Over The Air

◼ PGA – Programmable Gain Amplifier

◼ PLL – Phase Locked Loop

◼ POR – Power-On Reset

◼ PSoC – Programmable System on Chip

◼ ROM – Read Only Memory

◼ RTC – Real Time Clock

◼ RTOS – Real Time Operating System

◼ SPC IF– System Performance Controller Interface

◼ SRAM – Static Random Access Memory

◼ SROM – Supervisory Read Only Memory

◼ TIA – Trans-Impedance Amplifier

◼ TRM – Technical Reference Manual

◼ UDB – Universal Digital Block

◼ XRES – External Reset

◼ XTAL – External Crystal

 Introduction

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 12

◼ WCO – Watch Crystal Oscillator

◼ RCOSC – RC Oscillator

◼ WDT – Watch Dog Timer

Revision History

Document Title: PSoC® Creator™ PSoC 4 System Reference Guide, cy_boot Component v6.10

Document Number: 002-25675

Revision Date Description of Change

** 11/19/18 New document for version 5.80 of the cy_boot component. Refer to the
change section for component changes from previous versions of cy_boot.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 13

2 Standard Types, APIs, and Defines

To support the operation of the same code across multiple CPUs with multiple compilers, the cy_boot

component provides types and defines (in the cytypes.h file) that create consistent results across

platforms.

Base Types

Type Description

char8 8-bit (signed or unsigned, depending on the compiler selection for char)

uint8 8-bit unsigned

uint16 16-bit unsigned

uint32 32-bit unsigned

int8 8-bit signed

int16 16-bit signed

int32 32-bit signed

float32 32-bit float

float64 64-bit float

int64 64-bit signed

uint64 64-bit unsigned

Hardware Register Types

Hardware registers typically have side effects and therefore are referenced with a volatile type.

Define Description

reg8 Volatile 8-bit unsigned

reg16 Volatile 16-bit unsigned

reg32 Volatile 32-bit unsigned

Compiler Defines

The compiler being used can be determined by testing for the definition of the specific compiler.

Define Description

__GNUC__ ARM GCC compiler

__ARMCC_VERSION ARM Realview compiler used by Keil MDK tool sets

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 14

Return Codes

Return codes from Cypress routines are returned as an 8-bit unsigned value type: cystatus. The standard

return values are:

Define Description

CYRET_SUCCESS Successful

CYRET_UNKNOWN Unknown failure

CYRET_BAD_PARAM One or more invalid parameters

CYRET_INVALID_OBJECT Invalid object specified

CYRET_MEMORY Memory related failure

CYRET_LOCKED Resource lock failure

CYRET_EMPTY No more objects available

CYRET_BAD_DATA Bad data received (CRC or other error check)

CYRET_STARTED Operation started, but not necessarily completed yet

CYRET_FINISHED Operation completed

CYRET_CANCELED Operation canceled

CYRET_TIMEOUT Operation timed out

CYRET_INVALID_STATE Operation not setup or is in an improper state

Interrupt Types and Macros

Types and macros provide consistent definition of interrupt service routines across compilers and

platforms. Note that the macro to use is different between the function definition and the function

prototype.

Function definition example:

CY_ISR(MyISR)

{

 /* ISR Code here */

}

Function prototype example:

CY_ISR_PROTO(MyISR);

Interrupt vector address type

Type Description

cyisraddress Interrupt vector (address of the ISR function)

Intrinsic Defines

Define Description

CY_NOP Processor NOP instruction

Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 15

Device Version Defines

Define Description

CY_PSOC4 Any PSoC 4 Device

CY_PSOC4_4000 PSoC 4000 device family.

CY_PSOC4_4100 PSoC 4100 device family.

CY_PSOC4_4200 PSoC 4200 device family.

CY_PSOC4_4100BL PSoC 4100 device family with BLE support.

CY_PSOC4_4200BL PSoC 4200 device family with BLE support.

CY_PSOC4_4200M PSoC 4200M device family.

CY_PSOC4_4200L PSoC 4200L device family.

CY_PSOC4_4000S PSoC 4000S device family.

CY_PSOC4_4100S PSoC 4100S device family.

CY_PSOC4_4400 PSoC Analog Coprocessor device family support.

CY_PSOC4_4100MS PSoC 4100S device family with ECO/PLL.

Variable Attributes

Define Description

CY_NOINIT Specifies that a variable should be placed into uninitialized data section that
prevents this variable from being initialized to zero on startup.

CY_ALIGN Specifies a minimum alignment (in bytes) for variables of the specified type.

CY_PACKED,
CY_PACKED_ATTR

Attached to an enum, struct, or union type definition, specified that the minimum
required memory be used to represent the type.

Example:
 CYPACKED typedef struct {

 uint8 freq;

 uint8 absolute;

 } CYPACKED_ATTR imoTrim;

CY_INLINE Specifies that compiler can perform inline expansion: insert the function code at
the address of each function call.

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 16

Instance APIs

General APIs

Most components have an instance-specific set of the APIs that allow you to initialize, enable and disable

the component. These functions are listed below generically. Refer to the individual datasheet for specific

information.

`=instance_name`_InitVar

Description: This global variable Indicates whether the component has been initialized. The
variable is initialized to 0 and set to 1 the first time _Start() is called. This allows the
component to restart without reinitialization after the first call to the _Start() routine.

If reinitialization of the component is required, then the _Init() function can be called
before the _Start() or _Enable() function.

void `=instance_name`_Start (void)

Description: This function intended to start component operation. The _Start() sets the _initVar
variable, calls the _Init function, and then calls the _Enable function.

void `=instance_name`_Stop (void)

Description: Disables the component operation.

void `=instance_name`_Init (void)

Description: Initializes component's parameters to those set in the customizer placed on the
schematic. All registers will be reset to their initial values. This reinitializes the
component. Usually called in _Start().

void `=instance_name`_Enable (void)

Description: Enables the component block operation.

Low Power APIs

Most components have an instance-specific set of low power APIs that allow you to put the component

into its low power state. These functions are listed below generically. Refer to the individual datasheet for

specific information regarding register retention information if applicable.

void `=instance_name`_Sleep (void)

Description: The _Sleep() function checks to see if the component is enabled and saves that
state. Then it calls the _Stop() function and calls _SaveConfig() function to save the
user configuration.

• PSoC 4: Call the _Sleep() function before calling the CySysPmDeepSleep()
function.

Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 17

void `=instance_name`_Wakeup (void)

Description: The _Wakeup() function calls the _RestoreConfig() function to restore the user
configuration. If the component was enabled before the _Sleep() function was
called, the _Wakeup() function will re-enable the component.

Side Effects: Calling the _Wakeup() function without first calling the _Sleep() or _SaveConfig()
function may produce unexpected behavior.

void `=instance_name`_SaveConfig(void)

Description: This function saves the component configuration. This will save non-retention
registers. This function will also save the current component parameter values, as
defined in the Configure dialog or as modified by appropriate APIs. This function is
called by the _Sleep() function.

void `=instance_name`_RestoreConfig(void)

Description: This function restores the component configuration. This will restore non-retention
registers. This function will also restore the component parameter values to what
they were prior to calling the _Sleep() function.

Side Effects: Calling this function without first calling the _Sleep() or _SaveConfig() function may
produce unexpected behavior.

PSoC Creator Generated Defines

PSoC Creator generates the following macros in the cyfitter.h file.

Project Type

The following are defines for project type (from Project > Build Settings):

◼ CYDEV_PROJ_TYPE

◼ CYDEV_PROJ_TYPE_BOOTLOADER

◼ CYDEV_PROJ_TYPE_LOADABLE

◼ CYDEV_PROJ_TYPE_MULTIAPPBOOTLOADER

◼ CYDEV_PROJ_TYPE_STANDARD

◼ CYDEV_PROJ_TYPE_LOADABLEANDBOOTLOADER

Chip Configuration Mode

The following are defines for chip configuration mode (from System DWR). Options vary by device:

All

◼ CYDEV_CONFIGURATION_MODE

◼ CYDEV_CONFIGURATION_MODE_COMPRESSED

◼ CYDEV_CONFIGURATION_MODE_DMA

◼ CYDEV_CONFIGURATION_MODE_UNCOMPRESSED

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 18

◼ CYDEV_DEBUGGING_ENABLE or
CYDEV_PROTECTION_ENABLE (Debugging or protection enabled. Mutually exclusive.)

PSoC 4

◼ CYDEV_CONFIG_READ_ACCELERATOR (Flash read accelerator enabled?)

◼ CYDEV_USE_BUNDLED_CMSIS (Include the CMSIS standard library.)

Debugging Mode

The following are defines for debugging mode (from System DWR):

◼ CYDEV_DEBUGGING_DPS

◼ CYDEV_DEBUGGING_DPS_Disable

◼ CYDEV_DEBUGGING_DPS_JTAG_4

◼ CYDEV_DEBUGGING_DPS_JTAG_5

◼ CYDEV_DEBUGGING_DPS_SWD

◼ CYDEV_DEBUGGING_DPS_SWD_SWV

Chip Protection Mode

The following are defines for chip protection mode (from System DWR):

◼ CYDEV_DEBUG_PROTECT

◼ CYDEV_DEBUG_PROTECT_KILL

◼ CYDEV_DEBUG_PROTECT_OPEN

◼ CYDEV_DEBUG_PROTECT_PROTECTED

Stack and Heap

The following are defines for the number of bytes allocated to the stack and heap (from System DWR).

These are only for PSoC 4.

◼ CYDEV_HEAP_SIZE

◼ CYDEV_STACK_SIZE

Voltage Settings

The following are defines for voltage settings (from System DWR). Options vary by device:

◼ CYDEV_VARIABLE_VDDA

◼ CYDEV_VDDA

◼ CYDEV_VDDA_MV

◼ CYDEV_VDDD

◼ CYDEV_VDDD_MV

◼ CYDEV_VDDIO0

◼ CYDEV_VDDIO0_MV

◼ CYDEV_VDDIO1

Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 19

◼ CYDEV_VDDIO1_MV

◼ CYDEV_VDDIO2

◼ CYDEV_VDDIO2_MV

◼ CYDEV_VDDIO3

◼ CYDEV_VDDIO3_MV

◼ CYDEV_VIO0

◼ CYDEV_VIO0_MV

◼ CYDEV_VIO1

◼ CYDEV_VIO1_MV

◼ CYDEV_VIO2

◼ CYDEV_VIO2_MV

◼ CYDEV_VIO3

◼ CYDEV_VIO3_MV

System Clock Frequency

The following are defines for system clock frequency (from Clock DWR):

PSoC 4

◼ CYDEV_BCLK__HFCLK__HZ

◼ CYDEV_BCLK__HFCLK__KHZ

◼ CYDEV_BCLK__HFCLK__MHZ

◼ CYDEV_BCLK__SYSCLK__HZ

◼ CYDEV_BCLK__SYSCLK__KHZ

◼ CYDEV_BCLK__SYSCLK__MHZ

JTAG/Silicon ID

The following is the define for JTAG/Silicon ID for the current device:

◼ CYDEV_CHIP_JTAG_ID

IP Block Information

PSoC Creator generates the following macros for the IP blocks that exist on the current device:

#define CYIPBLOCK_<BLOCK NAME>_VERSION <version>

For example:

#define CYIPBLOCK_P3_TIMER_VERSION 0

#define CYIPBLOCK_P3_USB_VERSION 0

#define CYIPBLOCK_P3_VIDAC_VERSION 0

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 20

3 Clocking

PSoC Creator Clocking Implementation

PSoC devices supported by PSoC Creator have flexible clocking capabilities. These clocking capabilities

are controlled in PSoC Creator by selections within the Design-Wide Resources settings, connectivity of

clocking signals on the design schematic, and API calls that can modify the clocking at runtime. The

clocking API is provided in the CyLib.c and CyLib.h files.

This section describes how PSoC Creator maps clocks onto the device and provides guidance on

clocking methodologies that are optimized for the PSoC architecture.

The System Clock consolidates System Clock (SYSCLK) on PSoC 4 devices. The Master Clock

consolidates High-Frequency Clock (HFCLK) on PSoC 4 devices.

Overview

The clock system includes these clock resources:

◼ Two internal clock sources increase system integration:

 PSoC 4000: 24, 32 and 48 MHz IMO ±2% across all frequencies when Vddd is above or

equal to 2.0 V and +/-4% below 2.0 V

 Other PSoC 4 families: 3 to 48 MHz IMO ±2% across all frequencies

 32 kHz ILO outputs

◼ External Clock (EXTCLK) generated using a signal from a single designated I/O pin:

 The allowable external clock frequency has the same limits as the system clock

frequency.

 The device always starts up using the IMO and the external clock must be enabled, so

the device cannot be started from a reset clocked by the external clock.

◼ HFCLK selected from IMO or external clock:

 PSoC 4000: The HFCLK frequency cannot exceed 16 MHz

 Other PSoC 4 families: The HFCLK frequency cannot exceed 48 MHz

◼ Low-Frequency Clock (LFCLK) sourced by ILO. PSoC 4100 BLE / PSoC 4200 BLE / PRoC BLE /
PSoC 4200M: LFCLK can be sourced by Watch Crystal Oscillator (WCO).

◼ Dedicated prescaler for SYSCLK sourced by HFCLK. The SYSCLK must be equal to or faster
than all other clocks in the device.

 PSoC 4000: The SYSCLK frequency cannot exceed 16 MHz

 Other PSoC 4 families: The SYSCLK frequency cannot exceed 48 MHz

◼ Four peripheral clock dividers, each containing three chainable 16-bit dividers

◼ 16 digital and analog peripheral clocks

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 21

Power Modes

The IMO is available in Active and Sleep modes. It is automatically disabled/enabled for the proper Deep

Sleep and Hibernate mode entry/exit. The IMO is disabled during Deep Sleep and Hibernate modes.

The EXTCLK is available in Active and Sleep modes. The system will enter/exit Deep Sleep and

Hibernate using external clock. The device will re-enable the IMO if it was enabled before entering Deep

Sleep or Hibernate, but it does not wait for the IMO before starting the CPU. After entering Active mode,

the IMO may take an additional 2 us to begin toggling. The IMO will startup cleanly without glitches, but

any dependency should account for this extra startup time. If desired, firmware may increase wakeup

hold-off using CySysPmSetWakeupHoldoff() function to include this 2 us and ensure the IMO is toggling

by the time Active mode is reached.

The ILO is available in all modes except Hibernate and Stop.

Clock Connectivity

The PSoC architecture includes flexible clock generation logic. Refer to the Technical Reference Manual

for a detailed description of all the clocking sources available in a particular device. The usage of these

various clocking sources can be categorized by how those clocks are connected to elements of a design.

System Clock

This is a special clock. It is closely related to Master Clock. For most designs, Master Clock and System

Clock will be the same frequency and considered to be the same clock. These must be the highest speed

clocks in the system. The CPU will be running off of System Clock and all the peripherals will

communicate to the CPU and DMA using System Clock. When a clock is synchronized, it is synchronized

to Master Clock. When a pin is synchronized it is synchronized to System Clock.

Global Clock

This is a clock that is placed on one of the global low skew digital clock lines. This also includes System

Clock. When a clock is created using a Clock component, it will be created as a global clock. This clock

must be directly connected to a clock input or may be inverted before connection to a clock input. Global

clock lines connect only to the clock input of the digital elements in PSoC. If a global clock line is

connected to something other than a clock input (that is, combinatorial logic or a pin), then the signal is

not sent using low skew clock lines.

Routed Clock

Any clock that is not a global clock is a routed clock. This includes clocks generated by logic (with the

exception of a single inverter) and clocks that come in from a pin.

Clock Synchronization

Each clock in a PSoC device is either synchronous or asynchronous. This is in reference to System Clock

and Master Clock. PSoC is designed to operate as a synchronous system. This was done to enable

communication between the programmable logic and either the CPU or DMA. If these are not

synchronous to a common clock, then any communication requires clocking crossing circuitry. Generally,

asynchronous clocking is not supported except for PLD logic that does not interact with the CPU system.

Routed Clock Implementation

The clocking implementation in PSoC directly connects global clock signals to the clock input of clocked

digital logic. This applies to both synchronous and asynchronous clocks. Since global clocks are

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 22

distributed on low skew clock lines, all clocked elements connected to the same global clock will be

clocked at the same time.

Routed clocks are distributed using the general digital routing fabric. This results in the clock arriving at

each destination at different times. If that clock signal was used directly as the clock, then it would force

the clock to be considered an asynchronous clock. This is because it cannot be guaranteed to transition

at the rising edge of System Clock. This can also result in circuit failures if the output of a register clocked

by an early arriving clock is used by a register clocked by a late arriving version of the same clock.

Under some circumstances, PSoC Creator can transform a routed clock circuit into a circuit that uses a

global clock. If all the sources of a routed clock can be traced back to the output of registers that are

clocked by common global clocks, then the circuit is transformed automatically by PSoC Creator. The

cases where this is possible are:

◼ All signals are derived from the same global clock. This global clock can be asynchronous or
synchronous.

◼ All signals are derived from more than one synchronous global clock. In this case, the common
global clock is System Clock.

The clocking implementation in PSoC includes a built-in edge detection circuit that is used in this

transformation. This does not use PLD resources to implement. The following shows the logical

implementation and the resulting clock timing diagram.

This diagram shows that the resulting clock occurs synchronous to the global clock on the first clock after

a rising edge of the routed clock.

When analyzing the design to determine the source of a routed clock, another routed clock that was

transformed may be encountered. In that case, the global clock used in that transformation is considered

the source clock for that signal.

The clock transformation used for every routed clock is reported in the report file. This file is located in the

Workspace Explorer under the Results tab after a successful build. The details are shown under the

"Initial Mapping" heading. Each routed clock will be shown with the "Effective Clock" and the "Enable

Signal". The "Effective Clock" is the global clock that is used and the "Enable Signal" is the routed clock

that is edge detected and used as the enable for that clock.

Latch

(Transparent

when Low)

GlobalClk

(Effective

Clock)

RoutedClk

(Enable)

Clk

GlobalClk

RoutedClk

Clk

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 23

Example with a Divided Clock

A simple divided clock circuit can be used to observe how this transformation is done. The following circuit

clocks the first flip-flop (cydff_1) with a global clock. This generates a clock that is divided by 2 in

frequency. That signal is used as a routed clock that clocks the next flip-flop (cydff_2).

The report file indicates that one global clock has been used and that the single routed clock has been

transformed using the global clock as the effective clock.

The resulting signals generated by this circuit are as follows.

It may appear that the Div4 signal is generated by the falling edge of the Div2 signal. This is not the case.

The Div4 signal is generated on the first Clock_1 rising edge following a rising edge on Div2.

Example with a Clock from a Pin

In the following circuit, a clock is brought in on a pin with synchronization turned on. Since

synchronization of pins is done with System Clock, the transformed circuit uses System Clock as the

Effective Clock and uses the rising edge of the pin as the Enable Signal.

Clock_1

Div2

Div4

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 24

If input synchronization was not enabled at the pin, there would not be a global clock to use to transform

the routed clock, and the routed clock would be used directly.

Example with Multiple Clock Sources

In this example, the routed clock is derived from flip-flops that are clocked by two different clocks. Both of

these clocks are synchronous, so System Clock is the common global clock that becomes the Effective

Clock.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 25

If either of these clocks had been asynchronous, then the routed clock would have been used directly.

Overriding Routed Clock Transformations

The automatic transformation that PSoC Creator performs on routed clocks is generally the

implementation that should be used. There is however a method to force the routed clock to be used

directly. The UDBClkEn component configured in Async mode will force the clock used to be the routed

clock, as shown in the following circuit.

Using Asynchronous Clocks

Asynchronous clocks can be used with PLD logic. However, they are not automatically supported by

control registers, status registers and datapath elements because of the interaction with the CPU those

elements have. Most Cypress library components will only work with synchronous clocks. They

specifically force the insertion of a synchronizer automatically if the clock provided is asynchronous.

Components that are designed to work with asynchronous clocks such as the SPI Slave will specifically

describe how they handle clocking in their datasheet.

If an asynchronous clock is connected directly to something other than PLD logic, then a Design Rule

Check (DRC) error is generated. For example, if an asynchronous pin is connected to a control register

clock, a DRC error is generated.

As stated in the error message, the error can be removed by using a UDBClkEn component in async

mode. That won’t remove the underlying synchronization issue, but it will allow the design to override the

error if the design has handled synchronization in some other way.

Clock Crossing

Multiple clock domains are commonly needed in a design. Often these multiple domains do not interact

and therefore clocking crossings do not occur. In the case where signals generated in one clock domain

need to be used in another clock domain, special care must be taken. There is the case where the two

clock domains are asynchronous from each other and the case where both clock domains are

synchronous to System Clock.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 26

When both clocks are synchronous to System Clock, signals from the slower clock domain can be freely

used in the other clock domain. In the other direction, care must be taken that the signals from the faster

clock domain are active for a long enough period that they will be sampled by the slower clock domain. In

both directions the timing constraints that must be met are based on the speed of System Clock not the

speed of either of the clock domains.

The only guarantee between the clock domains is that their edges will always occur on a rising edge of

System Clock. That means that the rising edges of the two clock domains can be as close as a single

System Clock cycle apart. This is true even when the clock domains are multiples of each other, since

their clock dividers are not necessarily aligned. If combinatorial logic exists between the two clock

domains, a flip-flop may need to be inserted to keep from limiting the frequency of System Clock

operation. By inserting the flip-flop, the crossing from one clock domain to the other is a direct flip-flop to

flip-flop path.

When the clock domains are unrelated to each other, a synchronizer must be used between the clock

domains. The Sync component can be used to implement the synchronization function. It should be

clocked by the destination clock domain.

The Sync component is implemented using a special mode of the status register that implements a

double synchronizer. The input signal must have a pulse width of at least the period of the sampling clock.

The exact delay to go through the synchronizer will vary depending on the alignment of the incoming

signal to the synchronizing clock. This can vary from just over one clock period to just over two clock

periods. If multiple signals are being synchronized, the time difference between two signals entering the

synchronizer and those same two signals at the output can change by as much as one clock period,

depending on when each is successfully sampled by the synchronizer.

Gated Clocks

Global clocks should not be used for anything other than directly clocking a circuit. If a global clock is

used for logic functionality, the signal is routed using an entirely different path without guaranteed timing.

A circuit such as the following should be avoided since timing analysis cannot be performed.

This circuit is implemented with a routed clock, has no timing analysis support, and is prone to the

generation of glitches on the clock signal when the clock is enabled and disabled.

The following circuit implements the equivalent function and is supported by timing analysis, only uses

global clocks, and has no reliability issues. This circuit does not gate the clock, but instead logically

enables the clocking of new data or maintains the current data.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 27

If access to a clock is needed, for example to generate a clock to send to a pin, then a 2x clock should be

used to clock a toggle flip-flop. The output of that flip-flop can then be used with the associated timing

analysis available.

Fixed-Function Clocking

On the schematic, the clock signals sent to fixed-function peripherals and to UDB-based peripherals

appear to be the same clock. However, the timing relationship between the clock signals as they arrive at

these different peripheral types is not guaranteed. Additionally the routing delay for the data signals is not

guaranteed. Therefore when fixed-function peripherals are connected to signals in the UDB array, the

signals must be synchronized as shown in the following example. No timing assumptions should be made

about signals coming from fixed-function peripherals.

UDB-Based Clocking

If the component allows asynchronous clocks, you may use any clock input frequency within the device's

frequency range. If the component requires synchronization to the SYSCLK, then when using a routed

clock for the component, the frequency of the routed clock cannot exceed one half the routed clock’s

source clock frequency.

◼ If the routed clock is synchronous to the SYSCLK, then it is one half the SYSCLK.

◼ If the routed clock is synchronous to one of the clock dividers, its maximum is one half of that
clock rate.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 28

Changing Clocks in Run-time

Impact on Components Operation

The components with internal clocks are directly impacted by the change of the system clock frequencies

or sources. The components clock frequencies obtained using design-time dividers. The run-time change

of components clock source will correspondingly change the internal component clock. Refer to the

component datasheet for the details.

CyDelay APIs

The CyDelay APIs implement simple software-based delay loops. The loops compensate for system clock

frequency. The CyDelayFreq() function must be called in order to adjust CyDelay(), CyDelayUs() and

CyDelayCycles() functions to the new system clock value.

Cache Configuration

If the CPU clock frequency increases during device operation, the number of clock cycles cache will wait

before sampling data coming back from Flash should be adjusted. If the CPU clock frequency decreases,

the number of clock cycles can be also adjusted to improve CPU performance. See

“CySysFlashSetWaitCycles()” for PSoC 4 for more information.

APIs

High Frequency Clocks

void CySysClkImoStart(void)

Description: Enables the IMO.

For PSoC 4100M / PSoC 4200M / PSoC 4000S / PSoC 4100S / PSoC 4500 /
PSoC Analog Coprocessor devices, this function will also enable the WCO lock if
"Trim with WCO" is selected on the Configure System Clocks dialog.

For PSoC 4200L devices, this function will also enable the USB lock feature if
selected in the Design Wide Resources Clock Editor.

void CySysClkImoStop(void)

Description: Disables the IMO.

For PSoC 4100M / PSoC 4200M / PSoC 4000S / PSoC 4100S / PSoC 4500 /
PSoC Analog Coprocessor devices, this function will also disable the WCO lock if
"Trim with WCO" is selected on the Configure System Clocks dialog.

For PSoC 4200L device families, this function will also enable the USB lock
feature if selected in the Design Wide Resources Clock Editor.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 29

void CySysClkWriteHfclkDirect (uint32 clkSelect)

Description: Selects the direct source for the HFCLK.

Parameters: clkSelect: One of the available HFCLK direct sources.

Define Source

CY_SYS_CLK_HFCLK_IMO IMO

CY_SYS_CLK_HFCLK_EXTCLK External clock pin

CY_SYS_CLK_HFCLK_ECO External crystal oscillator (applicable only for
PSoC BLE / PRoC BLE / PSoC 4200L / PSoC
4100S / PSoC 4500 with ECO devices).

CY_SYS_CLK_HFCLK_PLL0 PLL0 (applicable only for PSoC 4200L / PSoC
4100S / PSoC 4500 with PLL devices)

CY_SYS_CLK_HFCLK_PLL1 PLL1 (applicable only for PSoC 4200L)

Side Effects and
Restrictions:

The new source must be running and stable before calling this function.

If the SYSCLK frequency increases during device operation, call
CySysFlashSetWaitCycles() with the appropriate parameter to adjust the number
of clock cycles the cache will wait before sampling data comes back from Flash. If
the SYSCLK frequency decreases, call CySysFlashSetWaitCycles() to improve
CPU performance. See CySysFlashSetWaitCycles() description for more
information.

• PSoC 4000: The SYSCLK has a maximum speed of 16 MHz, so HFCLK
and SYSCLK dividers should be selected in a way to not to exceed 16
MHz for the System clock.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 30

void CySysClkWriteSysclkDiv (uint32 divider)

Description: Selects the prescaler divide amount for SYSCLK from HFCLK.

Parameters: divider: Power of 2 prescaler selection.

Define Divider

CY_SYS_CLK_SYSCLK_DIV1 1

CY_SYS_CLK_SYSCLK_DIV2 2

CY_SYS_CLK_SYSCLK_DIV4 4

CY_SYS_CLK_SYSCLK_DIV8 8

CY_SYS_CLK_SYSCLK_DIV16 16

CY_SYS_CLK_SYSCLK_DIV32 32

CY_SYS_CLK_SYSCLK_DIV64 64

CY_SYS_CLK_SYSCLK_DIV128 128

Note The dividers above CY_SYS_CLK_SYSCLK_DIV8 are not available for the
PSoC 4000 family.

Side Effects and
Restrictions:

If the SYSCLK frequency increases during device operation, call
CySysFlashSetWaitCycles() with the appropriate parameter to adjust the number
of clock cycles the cache will wait before sampling data comes back from Flash. If
the SYSCLK clock frequency decreases, call CySysFlashSetWaitCycles() to
improve CPU performance. See CySysFlashSetWaitCycles() description for more
information.

• PSoC 4000: The SYSCLK has a maximum speed of 16 MHz, so HFCLK
and SYSCLK dividers should be selected in a way to not to exceed 16
MHz for the System clock.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 31

void CySysClkWriteImoFreq (uint32 freq)

Description: Sets the frequency of the IMO.

If IMO is currently driving the HFCLK, and if the HFCLK frequency decreases,

call CySysFlashSetWaitCycles () to improve CPU performance. See

CySysFlashSetWaitCycles () for more information.

For PSoC 4000 family of devices, maximum HFCLK frequency is 16 MHz. If IMO
is configured to frequencies above 16 MHz, ensure to set the appropriate HFCLK

pre-divider value first.

For PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor device families, if WCO lock feature is enabled then this API will
disable the lock, write the new IMO frequency and then re-enable the lock.

For PSoC 4200L device families, this function enables the USB lock when 24 or
48 MHz passed as a parameter if the USB lock option is enabled in Design Wide
Resources tab or CySysClkImoEnableUsbLock() was called before. Note the
USB lock is disabled during IMO frequency change.

Parameters: All PSoC 4 families excluding PSoC 4000: Valid range [3-48] with step size
equals 1.

PSoC 4000: Valid range [24-48] with step size equals 4.

Note The CPU is halted if new frequency is invalid and project is compiled in
debug mode.

Side Effects and
Restrictions:

If the SYSCLK frequency increases during device operation, call
CySysFlashSetWaitCycles() with the appropriate parameter to adjust the number
of clock cycles the cache will wait before sampling data comes back from Flash. If
the SYSCLK clock frequency decreases, call CySysFlashSetWaitCycles() to
improve CPU performance. See CySysFlashSetWaitCycles() description for more
information.

PSoC 4000: The SYSCLK has maximum speed of 16 MHz, so HFCLK and
SYSCLK dividers should be selected in a way, to not to exceed 16 MHz for the
System clock.

void CySysClkImoEnableWcoLock(void)

Description: Enables the IMO to WCO lock feature.

This function works only if the WCO is already enabled. If the WCO is not
enabled then this function returns without enabling the lock feature.

This is applicable for PSoC 4100M / PSoC 4200M / PSoC 4000S / PSoC 4100S /
PSoC 4500 / PSoC Analog Coprocessor / PSoC 4200L family of devices only.

For PSoC 4200L devices, note that the IMO can lock to either WCO or USB but
not both.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 32

void CySysClkImoDisableWcoLock(void)

Description: Disables the IMO to WCO lock feature.

This is applicable for PSoC 4100M / PSoC 4200M / PSoC 4000S / PSoC 4100S /
PSoC 4500 / PSoC Analog Coprocessor / PSoC 4200L devices only.

uint32 CySysClkImoGetWcoLock(void)

Description: Reports the IMO to WCO lock enable state.

This is applicable for PSoC 4100M / PSoC 4200M / PSoC 4000S / PSoC 4100S /
PSoC 4500 / PSoC Analog Coprocessor / PSoC 4200L devices only.

Parameters: 0 – Lock is disabled

1 – Lock is enabled

void CySysClkImoEnableUsbLock(void)

Description: Enables the IMO to USB lock feature.

This function must be called before CySysClkWriteImoFreq().

This function is called from CySysClkImoStart() function if USB lock selected in
the Design Wide Resources tab. This is applicable for PSoC 4200L family of
devices only.

For PSoC 4200L devices, note that the IMO can lock to either WCO or USB but
not both.

void CySysClkImoDisableUsbLock(void)

Description: Disables the IMO to USB lock feature.

This function is called from CySysClkImoStop() function if USB lock selected in
the Design Wide Resources tab.

This is applicable for PSoC 4200L family of devices only.

uint32 CySysClkImoGetUsbLock(void)

Description: Reports the IMO to USB lock enable state.

This is applicable for PSoC 4200L family of devices only.

Parameters: 0 – Lock is disabled.

1 – Lock is enabled.

Low Frequency Clocks

For PSoC 4 devices, the CyLFClk (low-frequency clock) APIs are located in separate files

(CyLFClk.h/CyLFClk.c). See the CyLFClk Component Datasheet available from the System Reference

Guides item of the PSoC Creator Help menu.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 33

External Crystal Oscillator (ECO) APIs

cystatus CySysClkEcoStart(uint32 timeoutUs)

Description: Starts the External Crystal Oscillator (ECO). Refer to the device datasheet for
the ECO startup time.

The timeout interval is measured based on the system frequency defined by
PSoC Creator at build time. If System clock frequency is changed in runtime,
the CyDelayFreq() with the appropriate parameter should be called.

Parameters: timeoutUs: Timeout in microseconds. If zero is specified, the function starts the
crystal and returns CYRET_SUCCESS. If non-zero value is passed, the

CYRET_SUCCESS is returned once crystal is oscillating and amplitude reached
60% and it does not mean 24 MHz crystal is within 50 ppm. If it is not oscillating

or amplitude didn't reach 60% after specified amount of time, the
CYRET_TIMEOUT is returned.

Return Value: CYRET_SUCCESS - Completed successfully. The ECO is oscillating and
amplitude reached 60% and it does not mean 24 MHz crystal is within 50 ppm.

CYRET_TIMEOUT - Timeout occurred

void CySysClkEcoStop(void)

Description: Stops the megahertz crystal.

uint32 CySysClkEcoReadStatus(void)

Description: Read status bit for the megahertz crystal.

Return Value: Non-zero indicates that ECO output reached 50 ppm.

void CySysClkWriteEcoDiv(uint32 divider)

Description: Selects value for the ECO divider.

The ECO must not be the HFCLK clock source when this function is called.

The HFCLK source can be changed to the other clock source by call to the

CySysClkWriteHfclkDirect() function. If the ECO sources the HFCLK this

function will not have any effect if compiler in release mode, and halt the

CPU when compiler in debug mode.

Parameters: divider: Power of 2 divider selection.

Define Divider

CY_SYS_CLK_ECO_DIV1 HFCLK = ECO / 1

CY_SYS_CLK_ECO_DIV2 HFCLK = ECO / 2

CY_SYS_CLK_ECO_DIV4 HFCLK = ECO / 4

CY_SYS_CLK_ECO_DIV8 HFCLK = ECO / 8

Return Value: If the SYSCLK clock frequency increases during the device operation, call
CySysFlashSetWaitCycles() with the appropriate parameter to adjust the
number of clock cycles the cache will wait before sampling data comes back
from Flash. If the SYSCLK clock frequency decreases, you can call
CySysFlashSetWaitCycles() to improve the CPU performance. See
CySysFlashSetWaitCycles() description for more information.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 34

void CySysClkConfigureEcoTrim(uint32 wDTrim, uint32 aTrim, uint32 fTrim, uint32 rTrim,

uint32 gTrim)

Description: Selects trim setting values for ECO.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
ECO devices only.

The following parameters can be trimmed for ECO. The affected registers are
ECO_TRIM0 and ECO_TRIM1.

• Watchdog trim - This bit field sets the error threshold below the steady
state amplitude level.

• Amplitude trim - This bit field is to set the crystal drive level when
ECO_CONFIG.AGC_EN = 1.

WARNING Use care when setting this field because driving a crystal
beyond its rated limit can permanently damage the crystal.

• Filter frequency trim - This bit field sets LPF frequency trim and affects
the 3rd harmonic content.

• Feedback resistor trim - This bit field sets the feedback resistor trim
and impacts the oscillation amplitude.

• Amplifier gain trim - This bit field sets the amplifier gain trim and affects
the startup time of the crystal.

Parameters: wDTrim: Watchdog trim

Parameter Value Description

CY_SYS_CLK_ECO_WDTRIM0 Error threshold is 0.05 V

CY_SYS_CLK_ECO_WDTRIM1 Error threshold is 0.10 V

CY_SYS_CLK_ECO_WDTRIM2 Error threshold is 0.15 V

CY_SYS_CLK_ECO_WDTRIM3 Error threshold is 0.20 V

 aTrim: Amplitude trim

Parameter Value Description

CY_SYS_CLK_ECO_ATRIM0 Amplitude is 0.3 Vpp

CY_SYS_CLK_ECO_ATRIM1 Amplitude is 0.4 Vpp

CY_SYS_CLK_ECO_ATRIM2 Amplitude is 0.5 Vpp

CY_SYS_CLK_ECO_ATRIM3 Amplitude is 0.6 Vpp

CY_SYS_CLK_ECO_ATRIM4 Amplitude is 0.7 Vpp

CY_SYS_CLK_ECO_ATRIM5 Amplitude is 0.8 Vpp

CY_SYS_CLK_ECO_ATRIM6 Amplitude is 0.9 Vpp

CY_SYS_CLK_ECO_ATRIM7 Amplitude is 1.0 Vpp

 fTrim: Filter frequency trim

Parameter Value Description

CY_SYS_CLK_ECO_FTRIM0 Crystal frequency > 30 MHz

CY_SYS_CLK_ECO_FTRIM1 24 MHz < Crystal frequency <=
30 MHz

CY_SYS_CLK_ECO_FTRIM2 17 MHz < Crystal frequency <=
24 MHz

CY_SYS_CLK_ECO_FTRIM3 Crystal frequency <= 17 MHz

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 35

Parameters (cont.): rTrim: Feedback resistor trim

Parameter Value Description

CY_SYS_CLK_ECO_RTRIM0 Crystal frequency > 30 MHz

CY_SYS_CLK_ECO_RTRIM1 24 MHz < Crystal frequency <=
30 MHz

CY_SYS_CLK_ECO_RTRIM2 17 MHz < Crystal frequency <=
24 MHz

CY_SYS_CLK_ECO_RTRIM3 Crystal frequency <= 17 MHz

 gTrim: Amplifier gain trim

Calculate the minimum required gm (trans-conductance value). Divide the
calculated gm value by 4.5 to obtain an integer value 'result' . For more
information please refer to the device TRM.

Parameter Value Description

CY_SYS_CLK_ECO_GTRIM0 If result = 1

CY_SYS_CLK_ECO_GTRIM1 If result = 0

CY_SYS_CLK_ECO_GTRIM2 If result = 2

CY_SYS_CLK_ECO_GTRIM2 If result = 3

cystatus CySysClkConfigureEcoDrive(uint32 freq, uint32 cLoad, uint32 esr, uint32

maxAmplitude)

Description: Selects trim setting values for ECO based on crystal parameters.

Use care when setting the maximum amplitude level because driving a crystal
beyond its rated limit can permanently damage the crystal.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
ECO devices only.

Parameters: freq: frequency of the crystal in kHz.

cLoad: crystal load capacitance in pF.

esr: equivalent series resistance of the crystal in ohm.

maxAmplitude: maximum amplitude level in mV. Calculate as below:

𝑚𝑎𝑥𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =

√
𝑑𝑟𝑖𝑣𝑒𝐿𝑒𝑣𝑒𝑙 𝑖𝑛 μ𝑊

(2 × 𝑒𝑠𝑟)

3.14 × 𝑓𝑟𝑒𝑞 × 𝑐𝐿𝑜𝑎𝑑
× 109

Return Value: Parameter Value Description

CYRET_SUCCESS ECO configuration completed
successfully.

CYRET_BAD_PARAM One or more invalid parameters

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 36

Phase-Locked Loop(PLL) APIs (PSoC 4200L / PSoC 4100S Plus / PSoC 4500)

cystatus CySysClkPllStart(uint32 pll, uint32 wait)

Description: Enables the PLL. Optionally waits for it to become stable. Waits at least 250 us
or until it is detected that the PLL is stable.
This API is available only for PSoC 4200L/ PSoC 4100S / PSoC 4500 with PLL devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

wait:

Parameter Value Description

0 Return immediately after configuration.

1 Wait for PLL lock or timeout.

Return Value: status:

Parameter Value Description

CYRET_SUCCESS Completed successfully.

CYRET_TIMEOUT Timeout occurred without detecting a
stable clock. If the clock input source is
jittery, then the lock indication may not
occur. However, after the timeout has
expired, the generated PLL clock can still
be used.

CYRET_BAD_PARAM Either the pll or wait parameter is invalid

Side Effects: If wait is enabled, this API uses the CyDelayUs() function to implement the
timeout feature.

void CySysClkPllStop(uint32 pll)

Description: Disables the PLL. Ensure that either PLL is not the source of HFCLK before it
is disabled.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with PLL
devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

Side Effects: If either PLL is disabled when it is sourcing HFCLK, the CPU will halt.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 37

cystatus CySysClkPllSetFrequency(uint32 pll, uint32 inputFreq, uint32 pllFreq, uint32

divider, uint32 freqTol)

Description: Configures either PLL#0 or PLL#1 for the requested input/output frequencies.

The input frequency is the frequency of the source to the PLL. The source is set
using the CySysClkPllSetSource() function. Consider using CySysClkPllSetPQ
if the PLL configuration parameters are pre-calculated.

The input frequency is in the range of 1 MHz to 49152 kHz and is the frequency
of the source to the PLL. The source is set using the CySysClkPllSetSource()
API. The output frequency is in the range of 22.5 MHz to 49152 kHz. The
additional tolerance specified in ppm is added to the accuracy of the PLL input
clock.

The PLL must not be the system clock source when calling this function. The
PLL output will glitch during this function call.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with PLL
devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

inputFreq – The reference frequency in KHz. The valid range is from 1000 to
49152 KHz

pllFreq – The target frequency in KHz. The valid range is from 22500 to 49152
KHz.

freqTol – The tolerance in ppm, 10 ppm is equal to 0.001%.

divider:

Parameter Value Description

CY_SYS_PLL_OUTPUT_DIVPASS Pass Through

CY_SYS_PLL_OUTPUT_DIV2 Divide by 2

CY_SYS_PLL_OUTPUT_DIV4 Divide by 4

CY_SYS_PLL_OUTPUT_DIV8 Divide by 8

Return Value: CYRET_SUCCESS – if the API was successfully able to configure the PLL for
the requested frequencies.

CYRET_BAD_PARAM – if the input parameters are out of range or if the API
was not able to successfully configure the PLL for the requested frequencies.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 38

cystatus CySysClkPllSetPQ(uint32 pll, uint32 feedback, uint32 reference, uint32 current)

Description: Sets feedback (P) and reference (Q) divider value. This API also sets the
programmable charge pump current value. Note that the PLL has to be
disabled before calling this API. Calling this function while any PLL is sourcing
the SYSCLK will return an error.

The PLL must not be the system clock source when calling this function. The
PLL output will glitch during this function call.

This API is available only for PSoC 4200L / 4100S with PLL devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1(available only for PSoC 4200L)

feedback: P divider

Parameter Value Description

Range 4 - 259 Control bits for feedback divider

reference: Q divider

Parameter Value Description

Range 1 – 64 Divide by reference.

current: charge pump current in µA. 2 µA for output frequencies of 67 MHz or
less, and 3 µA for higher output frequencies. The default value is 2 µA.

Return Value: status:

Parameter Value Description

CYRET_SUCCESS Completed successfully.

CYRET_BAD_PARAM The parameters are out of range or the
specified PLL sources the system clock

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 39

void CySysClkPllSetSource(uint32 pll, uint32 source)

Description: Sets the input clock source to the PLL. The PLL must not be the system clock
source when calling this function. The PLL output will glitch during this function
call.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
PLL devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

source:

Parameter Value Description

CY_SYS_PLL_SOURCE_IMO IMO

CY_SYS_PLL_SOURCE_EXTCLK External Clock (available only
for PSoC 4200L and PSoC
4500 with PLL devices)

CY_SYS_PLL_SOURCE_ECO ECO

CY_SYS_PLL_SOURCE_DSI0 DSI_OUT[0] (available only
for PSoC 4200L)

CY_SYS_PLL_SOURCE_DSI1 DSI_OUT[1] (available only
for PSoC 4200L)

CY_SYS_PLL_SOURCE_DSI2 DSI_OUT[2] (available only
for PSoC 4200L)

CY_SYS_PLL_SOURCE_DSI3 DSI_OUT[3] (available only
for PSoC 4200L)

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 40

cystatus CySysClkPllSetOutputDivider(uint32 pll, uint32 divider)

Description: Sets the output clock divider for the PLL. The PLL must not be the system
clock source when calling this function. The PLL output will glitch during this
function call.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
PLL devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

divider:

Parameter Value Description

CY_SYS_PLL_OUTPUT_DIVPASS Pass Through

CY_SYS_PLL_OUTPUT_DIV2 Divide by 2

CY_SYS_PLL_OUTPUT_DIV4 Divide by 4

CY_SYS_PLL_OUTPUT_DIV8 Divide by 8

Return Value: status:

Parameter Value Description

CYRET_SUCCESS Completed successfully.

CYRET_BAD_PARAM The parameters are out of range or the
specified PLL sources the system clock

void CySysClkPllSetBypassMode(uint32 pll, uint32 bypass)

Description: Sets the bypass mode for the specified PLL. The PLL must not be the system
clock source when calling this function. The PLL output will glitch during this
function call.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
PLL devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

bypass:

Parameter Value Description

CY_SYS_PLL_BYPASS_AUTO 0 or 1

CY_SYS_PLL_BYPASS_PLL_REF Select PLL reference input as
the output. Ignores lock
indicator.

CY_SYS_PLL_BYPASS_PLL_OUT Select PLL output. Ignores
lock indicator.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 41

uint32 CySysClkPllGetUnlockStatus(uint32 pll)

Description: Returns non-zero value if the specified PLL output was unlocked. The unlock
status is an indicator that the PLL has lost lock at least once during its
operation. The unlock status is cleared once it is read using this API.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
PLL devices.

Parameters: pll:

Parameter Value Description

0 PLL#0

1 PLL#1 (available only for PSoC 4200L)

Return Value: Non-zero value if the specified PLL output was unlocked.

uint32 CySysClkPllGetLockStatus(uint32 pll)

Description: Returns non-zero if the output of the specified PLL output is locked.

This API is available only for PSoC 4200L / PSoC 4100S / PSoC 4500 with
PLL devices.

Return Value: Non-zero value if the specified PLL output was unlocked.

uint32 CySysClkPllGetInterruptCauseMasked(void)

Description: Returns a non-zero value that reflects a bit-wise AND between interrupt request
and mask registers. The API allows firmware to read the status of all mask
enabled interrupt causes with a single load operation.

This API is available only for PSoC 4-MC devices.

Parameters: None

Return Value: Bit position:

Parameter Value Description

CY_SYS_PLL_INTR_PLL_LOCK 1

CY_SYS_PLL_INTR_WD_ERR 2

CY_SYS_PLL_INTR_CSV_CLK_SW 4

A set bit indicates the source of the interrupt.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 42

uint32 CySysClkPllGetInterruptCause(void)

Description: Returns a non-zero value that reflects the interrupt request registers.

This API is available only for PSoC 4-MC devices.

Parameters: None

Return Value: Bit position:

Parameter Value Description

CY_SYS_PLL_INTR_PLL_LOCK 1

CY_SYS_PLL_INTR_WD_ERR 2

CY_SYS_PLL_INTR_CSV_CLK_SW 4

A set bit indicates the source of the interrupt.

void CySysClkPllClearPendingInterrupt(uint32 interrupt)

Description: Clears the pending interrupt.

This API is available only for PSoC 4-MC devices.

Parameters: Bit position:

Parameter Value Description

CY_SYS_PLL_INTR_PLL_LOCK 1

CY_SYS_PLL_INTR_WD_ERR 2

CY_SYS_PLL_INTR_CSV_CLK_SW 4

A logical OR of above can be used as input parameter.

void CySysClkPllSetInterruptMask(uint32 intrMask)

Description: This API sets the interrupt mask bit for the corresponding interrupts.

This API is available only for PSoC 4-MC devices.

Parameters: intrMask Bit position:

Parameter Value Description

CY_SYS_PLL_INTR_PLL_LOCK 1

CY_SYS_PLL_INTR_WD_ERR 2

CY_SYS_PLL_INTR_CSV_CLK_SW 4

A logical OR of above can be used as input parameter.

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 43

uint32 CySysClkPllGetInterruptMask(void)

Description: This API returns the current interrupt mask register value.

This API is available only for PSoC 4-MC devices.

Parameters: None

Return Value: Bit position:

Parameter Value Description

CY_SYS_PLL_INTR_PLL_LOCK 1

CY_SYS_PLL_INTR_WD_ERR 2

CY_SYS_PLL_INTR_CSV_CLK_SW 4

If the corresponding bit is reset (0) then the interrupt is masked.

void CySysClkPllSetInterrupt(uint32 interrupt)

Description: This API asserts an interrupt. This can be used for firmware debugging.

This API is available only for PSoC 4-MC devices.

Parameters: Bit position:

Parameter Value Description

CY_SYS_PLL_INTR_PLL_LOCK 1

CY_SYS_PLL_INTR_WD_ERR 2

CY_SYS_PLL_INTR_CSV_CLK_SW 4

A logical OR of the above can be used.

void CySysClkPllCsvEnable(void)

Description: This API enables clock supervision on PLL frequency lock and loss.

This API is available only for PSoC 4-MC devices.

void CySysClkPllCsvDisable(void)

Description: This API disables clock supervision on PLL.

This API is available only for PSoC 4-MC devices.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 44

void CySysClkPllCsvSetSpvrCtl(uint32 startupDelay, uint32 csvSwitch)

Description: This API enables sets the clock supervision parameters.

This API is available only for PSoC 4-MC devices.

Parameters: startupDelay: startup delay time -1 in reference clock cycles after enable or deep
sleep wake up from reference clock start to monitored clock start

csvSwitch:

Parameter Value Description

CY_SYS_PLL_CSV_INT_EN Enable INTR.CSV_CLK_SW if a
clock switch occurs to IMO

CY_SYS_PLL_CSV_TRIG_EN Enable CSV to cause trigger if a
clock switch occurs to IMO

CY_SYS_PLL_CSV_CLK_SW_EN Enable CSV to cause clock
switch IMO (enabled by default in
hardware)

void CySysClkPllCsvSetRefLimits(uint32 lower, uint32 upper)

Description: This API sets the cycle time lower and upper limits.

This API is available only for PSoC 4-MC devices.

Parameters: lower: Sets the lower limit -1, in reference clock cycles, before the next monitored
clock event is allowed to happen. If a monitored clock event happens before this
limit is reached a CSV error is detected.

upper: Sets the upper limit -1, in reference clock cycles, before (or same time) the
next monitored clock event must happen. If a monitored clock event does not
happen before this limit is reached, or does not happen at all (clock loss), a CSV
error is detected.

uint32 CySysClkPllCsvGetRefLimits(void)

Description: This API gets the cycle time lower and upper limits.

This API is available only for PSoC 4-MC devices.

Parameters: None

Return Value: Bits 31:16 – upper limit

Bits 15:0 – lower limit

Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 45

void CySysClkPllCsvSetPeriod(uint32 period)

Description: This API sets the csv period time.

This API is available only for PSoC 4-MC devices.

Parameters: period: Set the Period -1, in monitored clock cycles, before the next monitored
clock event happens.

PERIOD <= (UPPER+1) / FREQ_RATIO -1, with FREQ_RATIO = (Reference
frequency / Monitored frequency)

In case the clocks are asynchronous: PERIOD <= UPPER / FREQ_RATIO -1

uint32 CySysClkPllCsvGetPeriod(void)

Description: This API returns the CSV period time.

This API is available only for PSoC 4-MC devices.

Return Value: Period time

void CySysClkPllCsvEnableReset()

Description: This API enables the system reset feature when the clock supervisor switches the
clock source to IMO. A programmable delay counter starts at delay count value
(see CySysClkPllCsvReloadPgmDlyCounter API) and counts down.

The CSV block will assert system reset when the counter reaches zero unless
firmware intervenes and reloads the counter using
CySysClkPllCsvReloadPgmDlyCounter() API.

This API is available only for PSoC 4-MC devices.

Side Effects: If a clock switch occurs, CSV block will reset the device when the delay counter
reaches zero unless firmware reloads the counter using
CySysClkPllCsvReloadPgmDlyCounter() API.

void CySysClkPllCsvDisableReset()

Description: This API disables the system reset feature when the clock supervisor switches the
clock source to IMO.

This API is available only for PSoC 4-MC devices.

void CySysClkPllCsvReloadPgmDlyCounter(uint32 delayCount)

Description: This API reloads the programmable delay counter with the delay count value.

This API is available only for PSoC 4-MC devices.

Parameters: delayCount: Valid range 0-65535, device default value is 256

Sets the number of counts of IMO clock before system reset is asserted.

 Clocking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 46

Low Voltage Analog Boost Clocks

When the operating voltage (Vdda) of a PSoC device drops below 4.0 V, the analog pumps for the analog

routing switches must be enabled by calling the SetAnalogRoutingPumps() function with the

corresponding parameter. On PSoC 4 devices the pumps may be left on at all voltages, but it is

recommended to disable them above 4.0 V so as to reduce current draw. It is the user's responsibility to

monitor the Vdda level at run-time and enable/disable the pumps as appropriate.

The analog pumps for the analog routing switches are configured on device startup based on the Vdda

and Variable Vdda design-time options. The Variable Vdda option in the System tab of the PSoC

Creator Design-Wide Resources (DWR) file is added to allow for designs in which the value of Vdda is

expected to vary at runtime. If Variable Vdda is enabled, the SetAnalogRoutingPumps() function

described above will be generated. If Vdda < 4.0 V, the routing pumps will be automatically enabled on

reset.

On PSoC 4 devices, the IMO must be enabled if Variable Vdda is enabled or Vdda < 4.0 V. This is

because the clock for the analog switch pump is driven from the IMO.

void SetAnalogRoutingPumps(uint8 enabled)

Description: Enables or disables the analog pumps feeding analog routing switches. Intended
to be called at startup, based on the Vdda system configuration; may be called
during operation when the user informs us that the Vdda voltage crossed the
pump threshold.

Parameters: enabled:

• 1: Enable the pumps.

• 0: Disable the pumps.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 47

4 Power Management

There is a full range of power modes supported by PSoC devices to control power consumption and the

amount of available resources. See the following table for the supported power modes.

Mode
PSoC 4000 / PSoC 4000S / PSoC 4100S /

PSoC Analog Coprocessor
Other devices

Active  

Sleep  

Deep Sleep  

Hibernate 

Stop 

PSoC 4 devices support the following power modes (in order of high to low power consumption): Active,

Sleep, Deep Sleep, Hibernate, and Stop. Active, Sleep and Deep-Sleep are standard ARM defined power

modes, supported by the ARM CPUs. Hibernate/Stop are even lower power modes that are entered from

firmware just like Deep-Sleep, but on wakeup the CPU (and all peripherals) goes through a full reset.

For the ARM-based devices (PSoC 4), an interrupt is required for the CPU to wake up. The Power

Management implementation assumes that wakeup time is configured with a separate component

(component-based wakeup time configuration) for an interrupt to be issued on terminal count.

All pending interrupts should be cleared before the device is put into low power mode, even if they are

masked.

The Power Management API is provided in the CyPm.c and CyPm.h files.

Implementation

For PSoC 4100 and PSoC 4200 devices, the software should set EXT_VCCD bit in the PWR_CONTROL

register when Vccd is shorted to Vddd on the board. This impacts the chip internal state transitions where

it is necessary to know whether Vccd is connected or floating to achieve minimum current in low power

modes. Note Setting this bit turns off the active regulator and will lead to a system reset unless both Vddd

and Vccd pins are supplied externally. Refer to the device TRM for more information.

It is safe to call PM APIs from the ISR. The wakeup conditions for Sleep and DeepSleep low power

modes are illustrated in the following table.

Interrupts State Condition Wakeup ISR Execution

Unmasked
IRQ priority > current level Yes Yes

IRQ priority ≤ current level No No

Masked
IRQ priority > current level Yes No

IRQ priority ≤ current level No No

 Power Management

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 48

Clock Configuration (PSoC 4100 BLE / PSoC 4200 BLE / PRoC BLE)

For PSoC 4100 BLE, PSoC 4200 BLE and PRoC BLE devices, the HFCLK source should be set to IMO

before switching the device into low power mode. The IMO should be enabled (by calling

CySysClkImoStart(), if it is not) and HFCLK source should be changed to IMO by calling

CySysClkWriteHfclkDirect(CY_SYS_CLK_HFCLK_IMO).

If the System clock frequency is increased by switching to the IMO, the CySysFlashSetWaitCycles()

function with an appropriate parameter should be called beforehand. Also, it can optionally be called after

lowering the System clock frequency in order to improve CPU performance. See

CySysFlashSetWaitCycles() description for the details.

Power Management APIs

void CySysPmSleep(void)

Description: Puts the part into the Sleep state. This is a CPU-centric power mode. It means that
the CPU has indicated that it is in “sleep” mode and its main clock can be
removed. It is identical to Active from a peripheral point of view. Any enabled
interrupts can cause wakeup from a Sleep mode.

void CySysPmDeepSleep(void)

Description: Puts the part into the Deep Sleep state.

If firmware attempts to enter this mode before the system is ready (that is, when
PWR_CONTROL.LPM_READY = 0), then the device will go into Sleep mode
instead and automatically enter the originally intended mode when the hold-off
expires. The wakeup occurs when an interrupt is received from a DeepSleep or
Hibernate peripheral. For more details, see corresponding peripheral’s datasheet.

void CySysPmHibernate(void)

Description: It puts the part into the Hibernate state. Only SRAM and UDBs are retained; most
internal supplies are off. Wakeup is possible from a pin or a hibernate comparator
only.

Side Effects and
Restrictions:

This function does not apply to the PSoC 4000 family.

It is expected that the firmware has already frozen the IO-Cells using
CySysPmFreezeIo() function before the call to this function. If this is omitted the
IO-cells will be frozen in the same way as they are in the Active to Deep Sleep
transition, but will lose their state on wake up (because of the reset occurring at
that time).

Because all CPU state is lost, the CPU will start up at the reset vector. To save
firmware state through Hibernate low power mode, corresponding variable should
be defined with CY_NOINIT attribute. It prevents data from being initialized to zero
on startup. The interrupt cause of the hibernate peripheral is retained, such that it
can be either read by the firmware or cause an interrupt after the firmware has
booted and enabled the corresponding interrupt. To distinguish the wakeup from
the Hibernate mode and the general Reset event, the CySysPmGetResetReason()
function could be used.

Power Management

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 49

void CySysPmStop(void)

Description: Puts the part into the Stop state. All internal supplies are off; no state is retained.

Wakeup from Stop is performed by toggling the wakeup pin (PSoC 4100 /
PSoC 4200 / PSoC 4200M – P0.7, PSoC 4100 BLE / PSoC 4200 BLE /
PRoC BLE – P2.2), causing a normal boot procedure to occur.

• To configure the wakeup pin, the Digital Input Pin component should be
placed on the schematic, assigned to the appropriate wakeup pin, and
resistively pulled up or down to the inverse state of the wakeup polarity.

• To distinguish the wakeup from the Stop mode and the general Reset
event, CySysPmGetResetReason() function could be used. The wakeup
pin is active low by default. The wakeup pin polarity could be changed with
the CySysPmSetWakeupPolarity() function.

Side Effects and
Restrictions:

This function does not apply to the PSoC 4000 family.

This function freezes IO cells implicitly. It is not possible to enter STOP mode
before freezing the IO cells. The IO cells remain frozen after awake from the Stop
mode until the firmware unfreezes them after booting explicitly with
CySysPmUnfreezeIo() function call.

void CySysPmSetWakeupPolarity(uint32 polarity)

Description: Wake up from stop mode is performed by toggling the wakeup pin (P0.7), causing
a normal boot procedure to occur. This function assigns the wakeup pin active
level. Setting the wakeup pin to this level will cause the wakeup from stop mode.
The wakeup pin is active low by default.

Parameters: polarity: Wakeup pin active level

Define Description

CY_PM_STOP_WAKEUP_ACTIVE_LOW Logical zero will wake up the chip

CY_PM_STOP_WAKEUP_ACTIVE_HIGH Logical one will wake up the chip

uint32 CySysPmGetResetReason(void)

Description: Retrieves last reset reason - transition from OFF/XRES/STOP/HIBERNATE to
RESET state. Note that waking up from STOP using XRES will be perceived as
general RESET.

Return Value: Reset reason

Define Reset reason

CY_PM_RESET_REASON_UNKN Unknown

CY_PM_RESET_REASON_XRES Transition from OFF/XRES to
RESET

CY_PM_RESET_REASON_WAKEUP_HIB Transition/wakeup from
HIBERNATE to RESET

CY_PM_RESET_REASON_WAKEUP_STOP Transition/wakeup from STOP to
RESET

 Power Management

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 50

void CySysPmFreezeIo(void)

Description: Freezes IO-Cells directly to save IO-Cell state on wake up from Hibernate or Stop
mode. It is not required to call this function before entering Stop mode, since the
CySysPmStop() function freezes IO-Cells implicitly.

This API is not available for PSoC 4000 family of devices.

void CySysPmUnfreezeIo(void)

Description: The IO-Cells remain frozen after awake from Hibernate or Stop mode until the
firmware unfreezes them after booting. The call of this function unfreezes IO-Cells
explicitly.

If the firmware intent is to retain the data value on the port, then the value must be
read and re-written to the data register before calling this API. Furthermore, the
drive mode must be re-programmed. If this is not done, the pin state will change to
default state the moment the freeze is removed.

This API is not available for PSoC 4000 family of devices.

void CySysPmSetWakeupHoldoff(uint32 hfclkFrequencyMhz)

Description: Sets the Deep Sleep wakeup time by scaling the hold-off to the HFCLK frequency.

This function must be called before increasing HFCLK clock frequency. It can
optionally be called after lowering HFCLK clock frequency in order to improve
Deep Sleep wakeup time.

It is functionally acceptable to leave the default hold-off setting, but Deep Sleep
wakeup time may exceed the specification.

This function is applicable only for the PSoC 4000 family.

Parameters: uint32 hfclkFrequencyMhz: The HFCLK frequency in MHz. For example, if IMO
frequency is 24 MHz, and HFCLK divider is 2, the function should be called with
parameter 12 (the SYSCLK divider value should not be taken into account).

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 51

5 Interrupts

The APIs in this chapter apply to all architectures except as noted. The Interrupts API is provided in the

CyLib.c and CyLib.h files. Refer also to the Interrupt component datasheet for more information about

interrupts.

APIs

CyGlobalIntEnable

Description: Macro statement that allows interrupts execution by clearing the

PRIMASK register. Refer to the ARM Cortex-M0 documentation for more details.

CyGlobalIntDisable

Description: Macro statement that prevents interrupts execution by setting the

PRIMASK register. Refer to the ARM Cortex-M0 documentation for more details.

uint32 CyDisableInts()

Description: Disables all interrupts.

Return Value: 32-bit mask of interrupts previously enabled.

void CyEnableInts(uint32 mask)

Description: Enables all interrupts specified in the 32-bit mask.

Parameters: mask: 32-bit mask of interrupts to enable.

void CyIntEnable(uint8 number)

Description: Enables the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

 Interrupts

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 52

void CyIntDisable(uint8 number)

Description: Disables the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

uint8 CyIntGetState(uint8 number)

Description: Gets the enable state of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31].

Return Value: Enable status: 1 if enabled, 0 if disabled.

cyisraddress CyIntSetVector(uint8 number, cyisraddress address)

Description: Sets the interrupt vector of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31].

 address: Pointer to an interrupt service routine.

Return Value: Previous interrupt vector value.

cyisraddress CyIntGetVector(uint8 number)

Description: Gets the interrupt vector of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31].

Return Value: Interrupt vector value.

Interrupts

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 53

cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)

Description: This function applies to ARM based processors only. It sets the interrupt vector of
the specified exception. These exceptions in the ARM architecture operate similar
to user interrupts, but are specified by the system architecture of the processor.
The number of each exception is fixed. Note that the numbering of these
exceptions is separate from the numbering used for user interrupts.

Parameters: number: Exception number. Valid range: [0-15].

Define Exception Number

CY_INT_NMI_IRQN Non Maskable Interrupt.

CY_INT_HARD_FAULT_IRQN Hard Fault Interrupt.

CY_INT_MEM_MANAGE_IRQN Memory Management Interrupt.

Not available for PSoC 4.

CY_INT_BUS_FAULT_IRQN Bus Fault Interrupt.

Not available for PSoC 4.

CY_INT_USAGE_FAULT_IRQN Usage Fault Interrupt,

Not available for PSoC 4.

CY_INT_SVCALL_IRQN SV Call Interrupt.

CY_INT_DEBUG_MONITOR_IRQN Debug Monitor Interrupt.

Not available for PSoC 4.

CY_INT_PEND_SV_IRQN Pend SV Interrupt.

CY_INT_SYSTICK_IRQN System Tick Interrupt.

 address: Pointer to an interrupt service routine

Return Value: Previous interrupt vector value

cyisraddress CyIntGetSysVector(uint8 number)

Description: This function applies to ARM based processors only. It gets the interrupt vector of
the specified exception. These exceptions in the ARM architecture operate similar
to user interrupts, but are specified by the system architecture of the processor.
The number of each exception is fixed. Note that the numbering of these
exceptions is separate from the numbering used for user interrupts.

Parameters: number: Exception number. Valid range: [0-15].

Return Value: Interrupt vector value

void CyIntSetPriority(uint8 number, uint8 priority)

Description: Sets the priority of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

 priority: Interrupt priority. 0 is the highest priority. Valid range: [0-3].

 Interrupts

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 54

uint8 CyIntGetPriority(uint8 number)

Description: Gets the priority of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Interrupt priority

void CyIntSetPending(uint8 number)

Description: Forces the specified interrupt number to be pending.

Parameters: number: Interrupt number. Valid range: [0-31]

void CyIntClearPending(uint8 number)

Description: Clears any pending interrupt for the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 55

6 Pins

For PSoC 4, there are status registers, data output registers, and port configuration registers only, so the

macro takes two arguments: port register and pin number. Each port has these registers addresses

defined:

CYREG_PRTx_DR

CYREG_PRTx_PS

CYREG_PRTx_PC

The x is the port number, and the second argument is the pin number.

PSoC 4 APIs

CY_SYS_PINS_READ_PIN(portPS, pin)

Description: Reads the current value on the pin (pin state, PS).

Parameters: portPS: Address of port pin status register (uint32). Definitions for each port are
provided in the cydevice_trm.h file in the form: CYREG_PRTx_PS, where x is a
port number 0 - 4.

pin: pin number 0 – 7.

Return Value: Pin state:

 0: Logic low value

 Non-0: Logic high value

CY_SYS_PINS_SET_PIN(portDR, pin)

Description: Set the output value for the pin (data register, DR) to a logic high.

Note that this only has an effect for pins configured as software pins that are not
driven by hardware.

The macro operation is not atomic. It is not guaranteed that the shared register
will remain uncorrupted during simultaneous read/modify/write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific interrupt is
disabled or within the critical section (all interrupts are disabled).

Parameters: portDR: Address of port output pin data register (uint32). Definitions for each port
are provided in the cydevice_trm.h file in the form: CYREG_PRTx_DR, where x is
a port number 0 - 4.

pin: pin number 0 - 7.

 Pins

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 56

CY_SYS_PINS_CLEAR_PIN(portDR, pin)

Description: This macro sets the state of the specified pin to zero.

The macro operation is not atomic. It is not guaranteed that the shared register
will remain uncorrupted during simultaneous read/modify/write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific interrupt is
disabled or within the critical section (all interrupts are disabled).

Parameters: portDR: Address of port output pin data register (uint32). Definitions for each port
are provided in the cydevice_trm.h file in the form: CYREG_PRTx_DR, where x is
a port number 0 - 4.

pin: pin number 0 – 7.

CY_SYS_PINS_SET_DRIVE_MODE(portPC, pin, mode)

Description: Sets the drive mode for the pin (DM).

The macro operation is not atomic. It is not guaranteed that the shared register
will remain uncorrupted during simultaneous read/modify/write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific interrupt is
disabled or within the critical section (all interrupts are disabled).

Parameters: portPC: Address of port configuration register (uint32). Definitions for each port
are provided in the cydevice_trm.h file in the form: CYREG_PRTx_PC, where x is
a port number 0 - 4.

pin: pin number 0 – 7.

mode: Desired drive mode

Define Source

CY_SYS_PINS_DM_ALG_HIZ Analog HiZ

CY_SYS_PINS_DM_DIG_HIZ Digital HiZ

CY_SYS_PINS_DM_RES_UP Resistive pull up

CY_SYS_PINS_DM_RES_DWN Resistive pull down

CY_SYS_PINS_DM_OD_LO Open drain - drive low

CY_SYS_PINS_DM_OD_HI Open drain - drive high

CY_SYS_PINS_DM_STRONG Strong CMOS Output

CY_SYS_PINS_DM_RES_UPDWN Resistive pull up/down

Pins

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 57

CY_SYS_PINS_READ_DRIVE_MODE(portPC, pin)

Description: Reads the drive mode for the pin (DM).

Parameters: portPC: Address of port configuration register (uint32). Definitions for each port are
provided in the cydevice_trm.h file in the form: CYREG_PRTx_PC, where x is a
port number 0 - 4.

pin: pin number 0 – 7.

Return Value: Current drive mode for the pin

Define Source

CY_SYS_PINS_DM_ALG_HIZ Analog HiZ

CY_SYS_PINS_DM_DIG_HIZ Digital HiZ

CY_SYS_PINS_DM_RES_UP Resistive pull up

CY_SYS_PINS_DM_RES_DWN Resistive pull down

CY_SYS_PINS_DM_OD_LO Open drain - drive low

CY_SYS_PINS_DM_OD_HI Open drain - drive high

CY_SYS_PINS_DM_STRONG Strong CMOS Output

CY_SYS_PINS_DM_RES_UPDWN Resistive pull up/down

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 58

7 Register Access

A library of macros provides read and write access to the registers of the device. These macros are used

with the defined values made available in the generated cydevice_trm.h and cyfitter.h files. Access to

registers should be made using these macros and not the functions that are used to implement the

macros. This allows for device independent code generation.

The PSoC 4 processor architecture use little endian ordering.

SRAM and Flash storage in all architectures is done using the endianness of the architecture and

compilers. However, the registers in all these chips are laid out in little endian order. These macros allow

register accesses to match this little endian ordering. If you perform operations on multi-byte registers

without using these macros, you must consider the byte ordering of the specific architecture. Examples

include usage of DMA to transfer between memory and registers, as well as function calls that are passed

an array of bytes in memory.

The PSoC 4 requires these accesses to be aligned to the width of the transaction.

The PSoC 4 requires peripheral register accesses to match the hardware register size. Otherwise, the

peripheral might ignore the transfer and Hard Fault exception will be generated.

APIs

uint8 CY_GET_REG8(uint32 reg)

Description: Reads the 8-bit value from the specified register.

Parameters: reg: Register address (

Return Value: Read value

void CY_SET_REG8(uint32 reg, uint8 value)

Description: Writes the 8-bit value to the specified register.

Parameters: reg: Register address

 value: Value to write

Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 59

uint16 CY_GET_REG16(uint32 reg)

Description: Reads the 16-bit value from the specified register. This macro implements the byte
swapping required for proper operation.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_REG16(uint32 reg, uint16 value)

Description: Writes the 16-bit value to the specified register. This macro implements the byte
swapping required for proper operation.

Parameters: reg: Register address

 value: Value to write

uint32 CY_GET_REG24(uint32 reg)

Description: Reads the 24-bit value from the specified register. This macro implements the byte
swapping required for proper operation.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_REG24(uint32 reg, uint32 value)

Description: Writes the 24-bit value to the specified register. This macro implements the byte
swapping required for proper operation.

Parameters: reg: Register address

 value: Value to write

uint32 CY_GET_REG32(uint32 reg)

Description: Reads the 32-bit value from the specified register. This macro implements the byte
swapping required for proper operation.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_REG32(uint32 reg, uint32 value)

Description: Writes the 32-bit value to the specified register. This macro implements the byte
swapping required for proper operation.

Parameters: reg: Register address

 value: Value to write

 Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 60

uint8 CY_GET_XTND_REG8(uint32 reg)

Description: Reads the 8-bit value from the specified register. Identical to CY_GET_REG8 for
PSoC 4.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG8(uint32 reg, uint8 value)

Description: Writes the 8-bit value to the specified register. Identical to CY_SET_REG8 for
PSoC 4.

Parameters: reg: Register address

 value: Value to write

uint16 CY_GET_XTND_REG16(uint32 reg)

Description: Reads the 16-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_GET_REG16 for PSoC 4.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG16(uint32 reg, uint16 value)

Description: Writes the 16-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_SET_REG16 for PSoC 4.

Parameters: reg: Register address

 value: Value to write

uint32 CY_GET_XTND_REG24(uint32 reg)

Description: Reads the 24-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_GET_REG24 for PSoC 4.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG24(uint32 reg, uint32 value)

Description: Writes the 24-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_SET_REG24 for PSoC 4.

Parameters: reg: Register address

 Value to write

Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 61

uint32 CY_GET_XTND_REG32(uint32 reg)

Description: Reads the 32-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_GET_REG32 for PSoC 4.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG32(uint32 reg, uint32 value)

Description: Writes the 32-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_SET_REG32 for PSoC 4.

Parameters: reg: Register address

 value: Value to write

Bit Field Manipulation

The following macros shall provide bit field manipulation functionality.

Macro Description

CY_GET_REG8_FIELD Reads the specified bit field value from the specified 8-bit register.

CY_SET_REG8_FIELD Sets the specified bit field value of the specified 8-bit register to the
required value.

CY_CLEAR_REG8_FIELD Clears the specified bit field of the specified 8-bit register.

CY_GET_REG16_FIELD Reads the specified bit field value from the specified 16-bit register.

CY_SET_REG16_FIELD Sets the specified bit field value of the specified 16-bit register to the
required value.

CY_CLEAR_REG16_FIELD Clears the specified bit field of the specified 16-bit register.

CY_GET_REG32_FIELD Reads the specified bit field value from the specified 32-bit register.

CY_SET_REG32_FIELD Sets the specified bit field value of the specified 32-bit register to the
required value.

CY_CLEAR_REG32_FIELD Clears the specified bit field of the specified 32-bit register.

CY_GET_FIELD Reads the specified bit field value from the given 32-bit value.

CY_SET_FIELD Sets the specified bit field value within a given 32-bit value.

 Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 62

CY_GET_REG8_FIELD(registerName, bitFieldName)

Description: Reads the specified bit field value from the specified 8-bit register.

The macro operation is not atomic. It is not guaranteed that shared register will
remain uncorrupted during simultaneous read-modify-write operations performed
by two threads (main and interrupt threads). To guarantee data integrity in such
cases, the macro should be invoked while the specific interrupt is disabled or
within critical section (all interrupts are disabled).

Using this macro on registers of 32-bit and 16-bit width will generate a hard fault
exception. Examples of 8-bit registers are the UDB registers.

Parameters: registerName: fully qualified name of the PSoC 4 device register

 bitFieldName: fully qualified name of the bit field. The biFieldName is automatically
appended with __OFFSET and __SIZE by the macro for usage.

For fully qualified names of register and bit field, please refer to the respective
PSoC family register TRM.

Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The return
value is of type uint32.

CY_SET_REG8_FIELD(registerName, bitFieldName, value)

Description: Sets the specified bit field value of the specified 8-bit register to the
required value.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 32-bit and 16-bit width will generate a hard
fault exception. Examples of 8-bit registers are the UDB registers.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

value: value that the field must be configured for

For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.

Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 63

CY_CLEAR_REG8_FIELD(registerName, bitFieldName)

Description: Clears the specified bit field of the specified 8-bit register.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 32-bit and 16-bit width will generate a hard
fault exception. Examples of 8-bit registers are the UDB registers.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.

CY_GET_REG16_FIELD(registerName, bitFieldName)

Description: Reads the specified bit field value from the specified 16-bit register.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 32-bit and 8-bit width will generate a hard
fault exception. Examples of 16-bit registers are the UDB registers.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

For fully qualified names of register and bit field, please refer to the
respective PSoC family register TRM.

Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The
return value is of type uint32.

 Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 64

CY_SET_REG16_FIELD(registerName, bitFieldName, value)

Description: Sets the specified bit field value of the specified 16-bit register to the
required value.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 32-bit and 8-bit width will generate a hard
fault exception. Examples of 16-bit registers are the UDB registers.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

value: value that the field must be configured for

For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.

CY_CLEAR_REG16_FIELD(registerName, bitFieldName)

Description: Clears the specified bit field of the specified 16-bit register.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 32-bit and 8-bit width will generate a hard
fault exception. Examples of 16-bit registers are the UDB registers.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.

Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 65

CY_GET_REG32_FIELD(registerName, bitFieldName)

Description: Reads the specified bit field value from the specified 32-bit register.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 16-bit and 8-bit width will generate a hard
fault exception.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

For fully qualified names of register and bit field, please refer to the
respective PSoC family register TRM.

Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The
return value is of type uint32.

CY_SET_REG32_FIELD(registerName, bitFieldName, value)

Description: Sets the specified bit field value of the specified 32-bit register to the
required value.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 16-bit and 8-bit width will generate a hard
fault exception.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

value: value that the field must be configured for

For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.

 Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 66

CY_CLEAR_REG32_FIELD(registerName, bitFieldName)

Description: Clears the specified bit field of the specified 32-bit register.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

Using this macro on registers of 16-bit and 8-bit width will generate a hard
fault exception.

Parameters: registerName: fully qualified name of the PSoC 4 device register

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.

CY_GET_FIELD(regValue, bitFieldName)

Description: Reads the specified bit field value from the given 32-bit value.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

This macro has to be used in conjunction with CY_GET_REG32 for atomic
reads.

Parameters: regValue: value as read by CY_GET_REG32

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

For fully qualified names of bit field and the possible values the field can
take, please refer to the respective PSoC family register TRM.

Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The
return value is of type uint32.

Register Access

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 67

CY_SET_FIELD(regValue, bitFieldName, value)

Description: Sets the specified bit field value within a given 32-bit value.

The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).

This macro has to be used in conjunction with CY_GET_REG32 for atomic
reads and CY_SET_REG32 for atomic writes.

Parameters: regValue: value as read by CY_GET_REG32

bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.

value: value that the field must be configured for

For fully qualified names of bit field and the possible values the field can
take, please refer to the respective PSoC family register TRM.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 68

8 Flash

Memory Architecture

Flash memory in PSoC devices provides nonvolatile storage for user firmware, user configuration data,

and bulk data storage. The main flash memory area contains up to 256 KB of user program space,

depending on the device type.

See the device datasheet and TRM for more information on Flash architecture.

The API provides following device-specific definitions:

Value Description

CY_FLASH_BASE The base pointer of the Flash memory.

CY_FLASH_SIZE The size of the Flash memory.

CY_FLASH_SIZEOF_ARRAY The size of Flash array.

CY_FLASH_SIZEOF_ROW The size of the Flash row.

CY_FLASH_NUMBER_ROWS The number of Flash row.

CY_FLASH_NUMBER_ARRAYS The number of Flash arrays.

CY_SFLASH_USERBASE The base pointer of the user SFlash memory.

CY_SFLASH_SIZE The size of the SFlash memory.

CY_SFLASH_SIZEOF_USERROW The size of the SFlash row.

CY_SFLASH_NUMBER_USERROWS The number of SFlash row.

PSoC devices include a flexible flash-protection model that prevents access and visibility to on-chip flash

memory. The device offers the ability to assign one of four protection levels to each row of flash:

◼ Unprotected

◼ Full Protection

The required protection level can be selected using the Flash Security tab of the PSoC Creator DWR

file. Flash protection levels can only be changed by performing a complete flash erase. The Flash

programming APIs will fail to write a row with Full Protection level. For more information on protection

model, refer to the Flash Security Editor section in the PSoC Creator Help.

Working with Flash

Flash programming operations are implemented as system calls. System calls are executed out of SROM

in the privileged mode of operation. Users have no access to read or modify the SROM code. The CPU

requests the system call by writing the function opcode and parameters to the System Performance

Controller (SPC) input registers, and then requesting the SROM to execute the function. Based on the

function opcode, the SPC executes the corresponding system call from SROM and updates the SPC

status register. The CPU should read this status register for the pass/fail result of the function execution.

Flash

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 69

As part of function execution, the code in SROM interacts with the SPC interface to do the actual flash

programming operations.

It can take as many as 20 milliseconds to write to flash. During this time, the device should not be reset,

or unexpected changes may be made to portions of the flash. Reset sources include XRES pin, software

reset, and watchdog. Make sure that these are not inadvertently activated. Also, the low voltage detect

circuits should be configured to generate an interrupt instead of a reset.

The flash can be read either by the cache controller or the SPC. Flash write can be performed only by the

SPC. Both the SPC and cache cannot simultaneously access flash memory. If the cache controller tries to

access flash at the same time as the SPC, then it must wait until the SPC completes its flash access

operation. The CPU, which accesses the flash memory through the cache controller, is therefore also

stalled in this circumstance. If a CPU code fetch has to be done from flash memory due to a cache miss

condition, then the cache would have to wait until the SPC completes the flash write operation. Thus the

CPU code execution will also be halted till the flash write is complete. Flash is directly mapped into

memory space and can be read directly.

Note Flash write operations on PSoC 4000 devices modify the clock settings of the device during the

period of the write operation. Refer to the CySysFlashWriteRow() API documentation for details.

 Flash

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 70

APIs

uint32 CySysFlashWriteRow(uint32 rowNum, const uint8 rowData[])

Description: Erases a row of Flash and programs it with the new data

Parameters: uint32 rowNum: The flash row number. The number of the flash rows is defined
by the CY_FLASH_NUMBER_ROWS macro for the selected device. Refer to the
device datasheet for the details.

Note The target flash array is calculated based on the specified flash row.

uint8* rowData: Array of bytes to write. The size of the array must be equal to the
flash row size. The flash row size for the selected device is defined by the
CY_FLASH_SIZEOF_ROW macro. Refer to the device datasheet for the details.

Return Value: Status:

Value Description

CY_SYS_FLASH_SUCCESS Successful

CY_SYS_FLASH_INVALID_ADDR Specified flash row address is invalid

CY_SYS_FLASH_PROTECTED Specified flash row is protected

Other non-zero Failure

Side Effects and
Restrictions:

The IMO must be enabled before calling this function. The operation of the flash
writing hardware is dependent on the IMO.

For PSoC 4000, PSoC 4100 BLE, PRoC BLE and PSoC 4200 BLE devices
(PSoC 4100 BLE, PRoC BLE and PSoC 4200 BLE devices with 256K of Flash
memory are not affected), this API will automatically modify the clock settings for
the device. Writing to flash requires that changes be made to the IMO and
HFCLK settings. The configuration is restored before returning. This will impact
the operation of most of the hardware in the device.

For PSoC 4000 devices, the HFCLK will have several frequency changes during
the operation of this API between a minimum frequency of the current IMO
frequency divided by 4 and a maximum frequency of 12 MHz.

For PSoC 4100 BLE, PRoC BLE and PSoC 4200 BLE, the IMO frequency is set
to 48 MHz.

void CySysFlashSetWaitCycles(uint32 freq)

Description: Sets the number of clock cycles the cache will wait before it samples data coming
back from Flash. This function must be called before increasing SYSCLK clock
frequency. It can optionally be called after lowering SYSCLK clock frequency in
order to improve CPU performance.

Parameters: freq: Valid range [3-48]. Frequency for operation of the SYSCLK

Note: Invalid frequency will be ignored.

Flash

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 71

uint32 CySysSFlashWriteUserRow(uint32 rowNum, uint8 *rowData)

Description: Writes data to a row of SFlash user configurable area.

This API is applicable for PSoC 4100 BLE/PRoC BLE/PSoC 4200 BLE/PSoC
4200M/PSoC 4200L/PSoC 4000S/PSoC4100S/ PSoC Analog Coprocessor family
of devices.

Parameters: rowNum: The flash row number. The number of the flash rows is defined by the
CY_SFLASH_NUMBER_USERROWS macro for the selected device. Refer to the
device TRM for details. Valid range is 0-3.

rowData: Array of bytes to write. The size of the array must be equal to the flash
row size. The flash row size for the selected device is defined by the
CY_SFLASH_SIZEOF_USERROW macro. Refer to the device TRM for the
details.

Return Value: Status:

Value Description

CY_SYS_SFLASH_SUCCESS Successful

CY_SYS_SFLASH_INVALID_ADDR Specified sflash row address is invalid

CY_SYS_SFLASH_PROTECTED Specified sflash row is protected

Other non-zero Failure

 Flash

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 72

uint32 CySysFlashStartWriteRow(uint32 rowNum, const uint8 rowData[])

Description: Initiates a write to a row of Flash. A call to this API is non-blocking. Use
CySysFlashResumeWriteRow() to resume flash writes and
CySysFlashGetWriteRowStatus() to ascertain status of the write operation.

This API is applicable only for CCG3/PSoC 4 BLII device families.

For CCG3 devices, parallel code execution and programming of flash is
supported since 128k flash is available as two banks of 64k. Please refer to the
device TRM for more details.

For PSoC 4 BLII devices, parallel code execution and programming of flash is
supported since 256k flash is available as two banks of 128k. Please refer to the
device TRM for more details.

Parameters: uint32 rowNum: The flash row number. The number of the flash rows is defined
by the CY_FLASH_NUMBER_ROWS macro for the selected device. Refer to the
device datasheet for the details.

Note The target flash array is calculated based on the specified flash row.

For CCG3/PSoC 4 BLII, the target flash bank is calculated based on the specified
flash row.

uint8* rowData: Array of bytes to write. The size of the array must be equal to the
flash row size. The flash row size for the selected device is defined by the
CY_FLASH_SIZEOF_ROW macro. Refer to the device datasheet for the details.

Return Value: Status:

Value Description

CY_SYS_FLASH_SUCCESS Successful

CY_SYS_FLASH_INVALID_ADDR Specified flash row address is invalid

CY_SYS_FLASH_PROTECTED Specified flash row is protected

CY_SYS_FLASH_BUSY Specified flash row is being written.

Other non-zero Failure

Side Effects and
Restrictions:

CCG3 devices require HFCLK to be sourced by 48 MHz IMO during flash write.
This API will modify IMO configuration; it can be later restored to original
configuration by calling CySysFlashGetWriteRowStatus().

Flash

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 73

uint32 CySysFlashGetWriteRowStatus(void)

Description: Returns the current status of the flash write operation.

 This API is applicable only for CCG3/PSoC 4 BLII device families.

 For CCG3 devices, parallel code execution and programming of flash is
supported since 128k flash is available as two banks of 64k. Please refer to the
device TRM for more details.

 CCG3 devices require HFCLK to be sourced by 48 MHz IMO during flash write.
This API will restore original IMO configuration; that has been earlier modified by
CySysFlashStartWriteRow().

 For PSoC BLII devices, parallel code execution and programming of flash is
supported since 256k flash is available as two banks of 128k. Please refer to the
device TRM for more details.

Return Value: Status:

Value Description

CY_SYS_FLASH_SUCCESS Successful

CY_SYS_FLASH_INVALID_ADDR Specified flash row address is invalid

CY_SYS_FLASH_PROTECTED Specified flash row is protected

CY_SYS_FLASH_BUSY Specified flash row is being written.

Other non-zero Failure

void CySysFlashResumeWriteRow(void)

Description: This API must be called, once the SPC interrupt is triggered to complete the non-
blocking operation. It is advised not to prolong calling this API for more than 25
ms.

 The non-blocking write row API CySysFlashStartWriteRow() requires that this API
be called 3 times to complete the write. This can be done by configuring SPCIF
interrupt and placing a call to this API.

 For CM0 based device, a non-blocking call to program a row of macro 0 requires
the user to set the CPUSS_CONFIG.VECS_IN_RAM bit so that the interrupt
vector for the SPC is fetched from the SRAM rather than the FLASH.

 For CM0+ based device, if the user wants to keep the vector table in flash when
performing non-blocking flash write then they need to make sure the vector table
is placed in the flash macro which is not getting programmed by configuring the
VTOR register.

 This API is applicable only for CCG3/PSoC 4 BLII device families.

 Note Please consult the example project NonBlockingFlashWrite_Example for an
implementation.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 74

9 System Functions

These functions apply to all architectures.

General APIs

uint8 CyEnterCriticalSection(void)

Description: The function prevents interrupts being executed by setting PRIMASK register and
returns previous state to be used for critical section exit using CyExitCriticalSection()
function. Please refer to the ARM Cortex-M0 documentation for the more details.

Note To avoid corrupting the processor state, it must be the policy that all interrupt
routines restore the interrupt enable bits as they were found on entry.

Return Value: Returns 0 if interrupts were previously enabled or 1 if interrupts were previously
disabled.

void CyExitCriticalSection(uint8 savedIntrStatus)

Description: The function restores the interrupt state as it was before CyEnterCriticalSection()
function call. If interrupts were allowed before CyEnterCriticalSection() function call,
the CyExitCriticalSection() clears the PRIMASK register. Please refer to the ARM
Cortex-M0 documentation for the more details.

If an interrupt was already in the pending state, the processor accepts the interrupt
after CyExitCriticalSection() function was executed. However, processor can execute
up to one additional instruction before entering the interrupt service routine.

Parameters: uint8 savedIntrStatus: Saved interrupt status returned by the
CyEnterCriticalSection() function.

void CYASSERT(uint32 expr)

Description: Macro that evaluates the expression and if it is false (evaluates to 0) then the
processor is halted. This macro is evaluated unless NDEBUG is defined. If NDEBUG
is defined, then no code is generated for this macro. NDEBUG is defined by default
for a Release build setting and not defined for a Debug build setting.

Parameters: expr: Logical expression. Asserts if false.

System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 75

void CyHalt(uint8 reason)

Description: Halts the CPU.

Parameters: reason: Value to be passed for debugging. This value may be useful to know the
reason why CyHalt() was invoked.

void CySoftwareReset(void)

Description: Forces a software reset of the device.

void CyGetUniqueId(uint32* uniqueId)

Description: Returns the 64-bit unique id of the device

Parameters: uniqueId: Pointer to a two element 32-bit unsigned integer array.

Return Value: Returns the 64-bit unique id of the device by loading them into the integer array
pointed to by uniqueId.

void CySysSetRamAccessArbPriority (uint32 source)

Description: Sets RAM access priority between CPU and DMA. The RAM_CTL register is configured to
set the priority. Please refer to the device TRM for more details.
This API is applicable for PSoC 4200M / PSoC 4200L / PSoC 4100S with DMA devices only.

Parameters: source:

Value Description

CY_SYS_ARB_PRIORITY_CPU CPU has priority (Default).

CY_SYS_ARB_PRIORITY_DMA DMA has priority

CY_SYS_ARB_PRIORITY_ROUND Round robin

CY_SYS_ARB_PRIORITY_ROUND_STICKY Round robin sticky

void CySysSetFlashAccessArbPriority(uint32 source)

Description: Sets flash access priority between CPU and DMA. The FLASH_CTL register is configured to
set the priority. Please refer to the device TRM for more details.
This API is applicable for PSoC 4200M / PSoC 4200L / PSoC 4100S with DMA devices only.

Parameters: source:

Value Description

CY_SYS_ARB_PRIORITY_CPU CPU has priority (Default).

CY_SYS_ARB_PRIORITY_DMA DMA has priority

CY_SYS_ARB_PRIORITY_ROUND Round robin

CY_SYS_ARB_PRIORITY_ROUND_STICKY Round robin sticky

 System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 76

void CySysSetDmacAccessArbPriority(uint32 source)

Description: Sets DMAC slave interface access priority between CPU and DMA. The DMAC_CTL
register is configured to set the priority. Please refer to the device TRM for more details.
This API is applicable for PSoC 4200M / PSoC 4200L / PSoC 4100S with DMA devices only.

Parameters: source:

Value Description

CY_SYS_ARB_PRIORITY_CPU CPU has priority (Default).

CY_SYS_ARB_PRIORITY_DMA DMA has priority

CY_SYS_ARB_PRIORITY_ROUND Round robin

CY_SYS_ARB_PRIORITY_ROUND_STICKY Round robin sticky

void CySysSetPeripheralAccessArbPriority(uint32 source)

Description: Sets slave peripheral interface access priority between CPU and DMA. The DMAC_CTL
register is configured to set the priority. Please refer to the device TRM for more details.
This API is applicable for PSoC 4200M / PSoC 4200L / PSoC 4100S with DMA devices only.

Parameters: source:

Value Description

CY_SYS_ARB_PRIORITY_CPU CPU has priority (Default).

CY_SYS_ARB_PRIORITY_DMA DMA has priority

CY_SYS_ARB_PRIORITY_ROUND Round robin

CY_SYS_ARB_PRIORITY_ROUND_STICKY Round robin sticky

void CySysEnablePumpClock (uint32 enable)

Description: Enables/disables the pump clock

Parameters: enable:

Value Description

CY_SYS_CLK_PUMP_DISABLE Disables pump clock

CY_SYS_CLK_PUMP_ENABLE Enables and restores operating
source of pump clock

Side Effects: Enabling/disabling the pump clock does not guarantee glitch free operation when
changing IMO parameters or clock divider settings.

CyDelay APIs

There are four CyDelay APIs that implement simple software-based delay loops. The loops compensate

for SYSCLK frequency.

The CyDelay functions provide a minimum delay. If the processor is interrupted, the length of the loop will

be extended by as long as it takes to implement the interrupt. Other overhead factors, including function

entry and exit, may also affect the total length of time spent executing the function. This will be especially

apparent when the nominal delay time is small.

System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 77

void CyDelay(uint32 milliseconds)

Description: Delay by the specified number of milliseconds. By default the number of cycles to
delay is calculated based on the clock configuration entered in PSoC Creator. If
the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new SYSCLK frequency. CyDelay is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.

Parameters: milliseconds: Number of milliseconds to delay.

Side Effects and
Restrictions:

CyDelay has been implemented with the instruction cache assumed enabled.

void CyDelayUs(uint16 microseconds)

Description: Delay by the specified number of microseconds. By default the number of cycles
to delay is calculated based on the clock configuration entered in PSoC Creator.
If the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new SYSCLK frequency. CyDelayUs is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.

Parameters: microseconds: Number of microseconds to delay.

Return Value: Void

Side Effects and
Restrictions:

CyDelayUS has been implemented with the instruction cache assumed enabled.

If the SYSCLK frequency is a small non-integer number, the actual delay can be
up to twice as long as the nominal value. The actual delay cannot be shorter than
the nominal one.

void CyDelayFreq(uint32 freq)

Description: Sets the SYSCLK frequency used to calculate the number of cycles needed to
implement a delay with CyDelay. By default the frequency used is based on the
value determined by PSoC Creator at build time.

Parameters: freq: SYSCLK frequency in Hz.

 0: Use the default value

 non-0: Set frequency value

void CyDelayCycles(uint32 cycles)

Description: Delay by the specified number of cycles using a software delay loop.

The execution overhead is in range of 16-23 cycles depending on the number of
the delay cycles and device family. The 16-cycle overhead means that
CyDelayCycles(100), will be executed for 116 cycles.

Parameters: cycles: Number of cycles to delay. Valid range is from 0 to the maximum uint32
type value.

 System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 78

Voltage Detect APIs

Applies to all devices except PSoC 4000 / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor.

void CySysLvdEnable(uint32 threshold)

Description: Sets the voltage trip level, enables the output of the digital low-voltage monitor,
and unmasks the associated interrupt in the LVD block.

Note The associated global interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to register the interrupt
service routine and to enable/disable associated interrupt.

Parameters: threshold: Threshold selection for Low Voltage Detect circuit. Threshold variation
is +/- 2.5% from these typical voltage choices.

Define Voltage threshold

CY_LVD_THRESHOLD_1_75_V 1.75 V

CY_LVD_THRESHOLD_1_80_V 1.80 V

CY_LVD_THRESHOLD_1_90_V 1.90 V

CY_LVD_THRESHOLD_2_00_V 2.00 V

CY_LVD_THRESHOLD_2_10_V 2.10 V

CY_LVD_THRESHOLD_2_20_V 2.20 V

CY_LVD_THRESHOLD_2_30_V 2.30 V

CY_LVD_THRESHOLD_2_40_V 2.40 V

CY_LVD_THRESHOLD_2_50_V 2.50 V

CY_LVD_THRESHOLD_2_60_V 2.60 V

CY_LVD_THRESHOLD_2_70_V 2.70 V

CY_LVD_THRESHOLD_2_80_V 2.80 V

CY_LVD_THRESHOLD_2_90_V 2.90 V

CY_LVD_THRESHOLD_3_00_V 3.00 V

CY_LVD_THRESHOLD_3_20_V 3.20 V

CY_LVD_THRESHOLD_4_50_V 4.50 V

void CySysLvdDisable(void)

Description: Disables the low voltage detection. Low voltage interrupt is masked in LVD
block.

Note The associated global interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to enable/disable
associated interrupt.

uint32 CySysLvdGetInterruptSource(void)

Description: Gets the low voltage detection interrupt status (without clearing).

Return Value: Interrupt request value:

• CY_SYS_LVD_INT - Indicates an Low Voltage Detect interrupt

System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 79

void CySysLvdClearInterrupt(void)

Description: Clears the low voltage detection interrupt status.

Programmable Voltage Reference (All PSoC 4 devices with PRB)

void CySysPrbSetGlobalVrefSource (uint32 source)

Description: Selects the source of the global voltage reference. Note that the global voltage
reference uses one of the available programmable voltage reference lines.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

Parameters: source:

Define Description

CY_SYS_VREF_SOURCE_BG Sets bandgap as the source of
the global voltage reference.

CY_SYS_VREF_SOURCE_VDDA Sets VDDA as the source of the
global voltage reference.

Side Effects: This API affects the voltage values available in CySysSetGlobalVrefVoltage()
API.

void CySysPrbSetBgGain (uint32 gain)

Description: Selects the gain of bandgap reference buffer. Note that this API is effective only
when the bandgap is set as the source of global voltage reference.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

Parameters: source:

Define Description

CY_SYS_VREF_ BG_GAINx1 Gain is 1

CY_SYS_VREF_ BG_GAINx2 Gain is 2

Side Effects: This API affects the voltage values available in CySysSetGlobalVrefVoltage()
API and also any component instantiated voltage references that have the
bandgap as source.

 System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 80

void CySysPrbSetGlobalVrefVoltage (uint32 voltageTap)

Description: Selects the value of global voltage reference. Set the source of the global
voltage reference and bandgap buffer gain (if applicable) before calling this API.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

Parameters: voltageTap:

Range: 1 – 16, voltage value is:

0.08 V to 1.20 V in steps of 0.07 V approximately, if source is bandgap (x1).

0.16 V to 2.40 V in steps of 0.14 V approximately, if source is bandgap (x2).

0.21 V to 3.30 in steps of 0.21 V approximately, if source is Vdda and Vdda is equal to
3.3 V. Voltage value will change according to value of Vdda.

 Voltage Value

voltageTap bandgap (x1) bandgap (x2) Vdda (3.3 V)

1 0.08V 0.16V 0.21V

2 0.15V 0.30V 0.41V

3 0.23V 0.46V 0.62V

4 0.30V 0.60V 0.83V

5 0.38V 0.76V 1.03V

6 0.45V 0.90V 1.24V

7 0.53V 1.06V 1.44V

8 0.60V 1.20V 1.65V

9 0.68V 1.36V 1.86V

10 0.75V 1.50V 2.06V

11 0.83V 1.66V 2.27V

12 0.90V 1.80V 2.48V

13 0.98V 1.96V 2.68V

14 1.05V 2.10V 2.89V

15 1.13V 2.26V 3.09V

16 1.20V 2.40V 3.30V

void CySysPrbEnableDeepsleepVddaRef (void)

Description: Enables the Vdda reference in deep sleep mode. The Vdda reference is by
default disabled when entering deep sleep mode.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 81

void CySysPrbDisableDeepsleepVddaRef (void)

Description: Disables the Vdda reference in deep sleep mode. The Vdda reference is by
default disabled when entering deep sleep mode.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

void CySysPrbEnableVddaRef (void)

Description: Enables the Vdda reference. The Vdda reference is by default not enabled.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

void CySysPrbDisableVddaRef (void)

Description: Disables the Vdda reference. The Vdda reference is by default not enabled.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

void CySysPrbSetBgBufferTrim(int32 bgTrim)

Description: Sets the trim for the bandgap reference buffer.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

Parameters: source:

Parameter Value Description

Range -32 to 31 ~1mV per step

Side Effects: Affects all bandgap sourced references.

int32 CySysPrbGetBgBufferTrim (void)

Description: Returns the current trim of the bandgap reference buffer.

This API is applicable for PSoC 4 devices that support the programmable
reference block. Please refer to the device TRM for more details.

Parameters: source:

Parameter Value Description

Range -32 to 31 ~1mV per step

 System Functions

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 82

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated by PSoC

Creator. Refer to the PSoC Creator Help and Component Author Guide for the more details.

In order to add code to the macro callback present in the component’s generated source files, perform the

following:

◼ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will “uncomment”
the function call from the component’s source code.

◼ Write the function declaration (in cyapicallbacks.h). This will make this function visible by all the
project files.

◼ Write the function implementation (in any user file).

Macro Callback [1] Associated Macro Description

CyBoot_IntDefaultHa
ndler_Exception_Entr
yCallback

CY_BOOT_INT_DEFAULT_H
ANDLER_EXCEPTION_ENTR
Y_CALLBACK

Used at the beginning of the
IntDefaultHandler() interrupt handler to
perform additional application-specific
actions in unhandled exceptions on
PSoC 4 devices.

CyBoot_Start_c_Callb
ack

CY_BOOT_START_C_CALLB
ACK

Used in Start_c() to execute custom
pre-main initialization code. This
callback function replaces Cypress
provided initialization routines.

Watchdog Timer (WDT) APIs

For PSoC 4 devices, the Watchdog Timer (WDT) APIs have been moved into separate files

(CyLFClk.h/CyLFClk.c). Refer to the CyLFClk Component Datasheet available from the System

Reference Guides item in the PSoC Creator Help menu.

1 The macro callback name is formed by component function name optionally appended by short explanation and “Callback”

suffix.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 83

10 Startup and Linking

The cy_boot component is responsible for the startup of the system. The following functionality has been

implemented:

◼ Provide the reset vector

◼ Setup processor for execution

◼ Setup interrupts

◼ Setup the stack

◼ Configure the device

◼ Initialize static and global variables with initialization values

◼ Clear all remaining static and global variables

◼ Integrate with the bootloader functionality

◼ Preserve the reset status

◼ Call main() C entry point

The device startup procedure configures the device to meet datasheet and PSoC Creator project

specifications. Startup begins after the release of a reset source, or after the end of a power supply ramp.

There are two main portions of startup: hardware startup and firmware startup. During hardware startup,

the CPU is halted, and other resources configure the device. During firmware startup, the CPU runs code

generated by PSoC Creator to configure the device. When startup ends, the device is fully configured,

and its CPU begins execution of user-authored main() code.

The hardware startup configures the device to meet the general performance specifications given in the

datasheet. The hardware startup phase begins after a power supply ramp or reset event. There are two

phases of hardware startup: reset and boot. After hardware startup ends, code execution from Flash

begins.

Firmware startup configures the PSoC device to behave as described in the PSoC Creator project. It

begins at the end of hardware startup. The PSoC device’s CPU begins executing user-authored main()

code after the completion of firmware startup. The main task of firmware startup is to populate

configuration registers such that the PSoC device behaves as designed in the PSoC Creator project. This

includes configuring analog and digital peripherals, as well as system resources such as clocks and

routing.

The startup procedure may be altered to better fit a specific application’s needs. There are two ways to

modify device startup: using the PSoC Creator design-wide resources (DWR) interface, and modifying the

device startup code.

 Startup and Linking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 84

The startup and linker scripts have been custom developed by Cypress, but both of the toolchain vendors

that we currently support provide example linker implementations and complete libraries that solve many

of the issues that have been created by our custom implementations.

For the more information on the PSoC 4’s CPU architecture, refer to the Cortex™-M0 Technical

Reference Manual on infocenter.arm.com.

GCC Implementation

PSoC Creator integrates the GCC ARM Embedded compiler including making the Newlib-nano and

newlib libraries. Refer to the Red Hat newlib C Library for the C library reference manual.

The newlib-nano is configured by default. To choose newlib library, open the Build Settings dialog >

ARM GCC 4.8.4 > Linker > General, and set the “Use newlib-nano” option to False.

By default, with the GNU ARM compiler, the string formatting functions in the C run-time library return

empty strings for floating-point conversions. The newlib-nano library is a stripped-down version of the full

C newlib. It does not include support for floating point formatting and other memory-intensive features.

There are two solutions to this problem: enable floating-point formatting support in newlib-nano, or

change the library to the full newlib.

To enable floating-point formatting, open the Build Settings dialog, go to the Linker page, and add the
string -u _printf_float to the command line options. This change will result in an increase in Flash

and RAM usage in your application.

Note If you also wish to use the scanf functions with floating-point numbers you should add the string
–u _scanf_float as well, with another increase in Flash and RAM usage.

Realview Implementation (applicable for MDK)

Use all the standard libraries (C standardlib, C microlib, fplib, mathlib). All of these libraries are linked in

by default.

◼ Support for RTOS and user replacement of routines. This is possible because the library routines
are denoted as "weak" allowing their replacement if another implementation is provided.

◼ A mechanism is provided that allows for the replacement of the provided linker/scatter file with a
user version. This is implemented by allowing the user to create the file local to their project and
having a build setting that allows the specification of this file as the linker/scatter file instead of the
file provided automatically.

◼ Currently the heap and stack size are specified as a fixed quantity (4 K Stack, 1 K Heap). If
possible the requirement to specify Heap and Stack sizes should be removed entirely. If that is
not possible, then these values should be the defaults with the option to choose other values in
the Design-Wide Resources GUI.

◼ All the code in the Generated Source tree is compiled into a single library as part of the build
process. Then that compiled library is linked in with the user code in the final link.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html
https://sourceware.org/newlib/docs.html

Startup and Linking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 85

CMSIS Support

Cortex Microcontroller Software Interface Standard (CMSIS) is a standard from ARM for interacting with

Cortex M-series processors. There are multiple levels of support. The Core Peripheral Access Layer

(CMSIS Core) support is provided. For the more information refer to CMSIS - Cortex Microcontroller

Software Interface Standard on www.arm.com.

PSoC Creator 3.2 provides support for CMSIS Core version 4.0. Also, PSoC Creator 3.2 provides the

ability to use a custom version of the CMSIS Core.

The following diagram shows how CMSIS Core version 4.0 files are integrated into the cy_boot

component and how custom version of CMSIS Core files can be integrated.

CMSIS-CORE

Device Files (Cypress)

User Program

CMSIS-CORE

Standard Files (ARM)

core_cm0.h

Cm0RealView.scat

(cm0gcc.ld)

Cm0Start.c

core_cm0_psoc4.h

main.c

core_cmFunc.h

core_cmInstr.h

cy_boot

CMSIS v3.30

core_<cpu>.h

startup_<device>.s

system_<device>.h

<device>.h

<user>.c/c++

core_cmFunc.h

core_cmInstr.h

core_cm4_simd.h

system_<device>.c

CMSIS custom

version

The following describe each file from the diagram:

◼ The Cm0Start.c and cm0gcc.ld files (part of the cy_boot component) contain Cortex-M0 device
startup code and interrupt vector tables and completely substitute CMSIS startup_<device>.s
template file.

◼ Vendor-specific device file <device>.h that includes CMSIS Core standard files is represented in
cy_boot component by core_cm0_psoc4.h.

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

 Startup and Linking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 86

◼ The core_cmInstr.h file defines intrinsic functions to access special Cortex-M instructions and
core_cmFunc.h file provides functions to access the Cortex-M core peripherals. These files were
added since CMSIS Core version 2.0.

◼ The core_cm4_simd.h file added to the CMSIS SIMD Instruction Access is relevant for Cortex-M4
only.

◼ system_<device>.h, system_<device>.c – Generic files for system configuration (i.e. processor
clock and memory bus system), are partially covered by Cm0Start.c.

Manual addition of the CMSIS Core files

Beginning with PSoC Creator 2.2, the “Include CMSIS Core Peripheral Library Files” option is added to

the System tab of the DWR file. By default, this option is enabled and CMSIS Core version 4.0 files are

added to the project. This option should be disabled if you wish to manually add CMSIS Core files.

Un-check “Include CMSIS Core Peripheral Library Files” option on the System tab of the DWR file to

detach CMSIS 4.0 files from the cy_boot component.

Add the following CMSIS Core files to the project:

◼ core_cmInstr.h

◼ core_cmFunc.h

◼ core_cm0.h

Based on the CMSIS vendor-specific template file (<device>.h), create device header file, copy device

specific definitions from core_cm0_psoc4.h file and add following definitions at the top of the file:

#include <cytypes.h>

#define __CHECK_DEVICE_DEFINES

#define __CM0_REV 0x0000

#define __NVIC_PRIO_BITS 2

#define __Vendor_SysTickConfig 0

Include the previously created vendor-specific device header file to the application.

High-Level I/O Functions

To use high-level input/output functions, like printf() or scanf(), the application must implement the base

I/O functions. The base I/O API depends on compiler and used C library:

◼ GCC - Red Hat newlib C Library on sourceware.org/newlib.

◼ MDK - The ARM C and C++ Libraries on infocenter.arm.com.

◼ MDK - The ARM C Micro-library on infocenter.arm.com.

The printf() Usage Model

The printf() function formats a series of strings and numeric values and builds a string to write to the

output stream. Its implementation relies on the following low-level library functions:

◼ Keil compiler uses the putchar()

◼ GCC uses _write()

https://sourceware.org/newlib/libc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938932518.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938940288.htmlThe%20ARM%20C%20Micro-library%20on%20http:/infocenter.arm.com/
http://www.keil.com/support/docs/788.htm
https://sourceware.org/newlib/libc.html#Syscalls

Startup and Linking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 87

◼ MDK uses _sys_write() or fputc(). The micro-library uses fputc().

The application should implement these functions and call the communication component API to send

data via selected interface.

Preservation of Reset Status

uint32 CySysGetResetReason(uint32 reason)

Description: The function returns the cause for the latest reset(s) that occurred in the system
and clears those that are defined with the parameter.

 All bits in the RES_CAUSE register assert when the corresponding reset cause
occurs and must be cleared by firmware. These bits are cleared by hardware only
during XRES, POR, or a detected brown-out.

Parameters: reason: bits in the RES_CAUSE register to clear.

Define Source

CY_SYS_RESET_WDT WDT

CY_SYS_RESET_PROTFAULT Protection Fault

CY_SYS_RESET_SW Software reset

Return Value: Status. Same enumerated bit values as used for the reason parameter.

API Memory Usage

API memory usage varies significantly depending on the compiler, device, design-wide resource

configuration, and component configuration used in the design. The following tables provide the memory

usage for the entire empty project with the default design-wide resource configuration options.

The measurements have been done with an associated compiler configured in Release mode with

optimization set for Size. For a specific design, the map file generated by the compiler can be analyzed to

determine the memory usage.

The following data is provided for a blank design with default settings. Resource usage may increase if

any of unused by default cy_boot APIs are used in some particular project.

PSoC 4000 (GCC)

Configuration
PSoC 4000

Flash Bytes SRAM Bytes Stack

Default 992 240 30

PSoC 4100/PSoC 4200 (GCC)

Configuration
PSoC 4100 / PSoC 4200

Flash Bytes SRAM Bytes Stack

Default 1560 388 48

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938932518.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938931411.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938940288.html

 Startup and Linking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 88

PSoC 4100 BLE/PRoC BLE/PSoC 4200 BLE (GCC)

Configuration
PSoC 4100 BLE / PSoC 4200 BLE

Flash Bytes SRAM Bytes Stack

Default 1688 404 30

PSoC 4100M /PSoC 4200M (GCC)

Configuration
PSoC 4100M / PSoC 4200M

Flash Bytes SRAM Bytes Stack

Default 1784 400 30

PSoC 4200L (GCC)

Configuration
PSoC 4200L

Flash Bytes SRAM Bytes Stack

Default 2432 432 30

PSoC Analog Coprocessor (GCC)

Configuration
PSoC Analog Coprocessor

Flash Bytes SRAM Bytes Stack

Default 1768 352 30

PSoC 4000S (GCC)

Configuration
PSoC 4000S

Flash Bytes SRAM Bytes Stack

Default 1408 292 30

PSoC 4100S (GCC)

Configuration
PSoC 4100S

Flash Bytes SRAM Bytes Stack

Default 1744 328 30

PSoC 4100S Plus (GCC)

Configuration
PSoC 4100S Plus

Flash Bytes SRAM Bytes Stack

Default 1800 360 30

Startup and Linking

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 89

PSoC 4500 (GCC)

Configuration
PSoC 4500

Flash Bytes SRAM Bytes Stack

Default 1800 364 30

Performance

Functions Execution Time

The API execution time varies depending on the compiler, device, and design-wide resource

configuration.

The measurements have been done with the default compiler (GCC) configured in Release mode with

optimization set for Size. The project uses default design-wide resource configuration for the

measurements.

The following table provides the numbers for the functions whose execution time is considered to have

significant impact.

PSoC 4 [2]

Description Min Typ Max Units

Device initialization time (from reset to the main() entry) - 4.2 - ms

The CySysFlashWriteRow() function execution time - 12.3 - ms

Critical Sections Duration

The duration of critical sections (code sections with disabled interrupts) varies depending on the compiler,

device and, design-wide resource configuration.

The measurements have been done with the default compiler (GCC) configured in Release mode with

optimization set for Size. The project used default design-wide resource configuration for the

measurements.

The following table provides the numbers for the functions whose critical section duration might have

meaningful impact.

PSoC 4

Description Conditions Min Typ Max Units

The CySysClkWriteImoFreq() function critical section time Default - 302 - cycles

The CySysWdtClearInterrupt() function critical section time Default - 78 - cycles

2 The measurements were performed on PSoC 4200 BLE devices.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 90

11 MISRA Compliance

This chapter describes the MISRA-C:2004 compliance and deviations for the PSoC Creator cy_boot

component and code generated by PSoC Creator.

MISRA stands for Motor Industry Software Reliability Association. The MISRA specification covers a set of

122 mandatory rules and 20 advisory rules that apply to firmware design and has been put together by

the Automotive Industry to enhance the quality and robustness of the firmware code embedded in

automotive devices.

There are two types of deviations defined:

◼ project deviations – deviations that are applicable for all PSoC Creator components

◼ specific deviations – deviations that are applicable for the specific component

This section provides information on the following items:

◼ Verification Environment

◼ Project Deviations

◼ Documentation Related Rules

◼ PSoC Creator Generated Sources Deviations

◼ cy_boot Component-Specific Deviations

Verification Environment

This section provides MISRA compliance analysis environment description.

Component Name Version

Test Specification MISRA-C:2004 Guidelines for the use of the C language in critical systems. October 2004

Target Device PSoC 4 Production

Target Compiler PK51 9.51

GCC 4.8.4

MDK 4.1

PSoC Creator 3.1

Generation Tool Programming Research QA C source code analyzer for Windows 8.1-R

MISRA Checking
Tool

Programming Research QA C MISRA-C:2004 Compliance Module (M2CM) 3.2

MISRA Compliance

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 91

The MISRA rules 1.5, 2.4, 3.3, and 5.7 are not enforced by Programming Research QA C. The

compliance with these rules was verified manually by code review.

Project Deviations

A Project Deviations are defined as a permitted relaxation of the MISRA rules requirements that are

applied for source code that is shipped with PSoC Creator. The list of deviated rules is provided in the

table below.

MISRA-C:

2004 Rule

Rule

Class

(R/A) [3]

Rule Description Description of Deviation(s)

1.1 R This rule states that code shall conform
to C ISO/IEC 9899:1990 standard.

Some C language extensions (like interrupt
keyword) relate to device hardware
functionality and cannot be practically
avoided.

In the main.c file that is generate by PSoC
Creator the non-standard main() declaration is
used: “void main()”. The standard declaration

is “int main()”

The number of macro definitions exceeds
1024 - program does not conform strictly to

ISO:C90.

5.1 R This rule says that both internal and
external identifiers shall not rely on the
significance of more than 31
characters.

The length of names based on user-defined
names depends on the length of the user-
define names.

5.6 A Verify that no identifier in one name
space have the same spelling as an
identifier in another name space, with
the exception of structure member and

union member names.

A name of the structure field may appear as
variable.

5.7 A Verify that no identifier name should is
reused.

Local variables with the same name may
appear in different functions. Aside from
commonly used names such as 'i', generated
API functions for multiple instances of the
same component will have identical local
variable names.

8.7 R Objects shall be defined at block scope
if they are only accessed from within a
single function.

The object 'InstanceName_initVar' is only
referenced by function 'InstanceName_Start',
in the translation unit where it is defined. The
intention of this publicly available global
variable is to be used by user application.

8.10 R All declarations and definitions of
objects or functions at file scope shall
have internal linkage unless external

linkage is required.

Components API are designed to be used in
user application and might not be used in
component API.

11.3 A This rule states that cast should not be
performed between a pointer type and
an integral type.

The cast from unsigned int to pointer does not
have any unintended effect, as it is a
consequence of the definition of a structure
based on hardware registers.

3 Required / Advisory

 MISRA Compliance

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 92

MISRA-C:

2004 Rule

Rule

Class

(R/A) [3]

Rule Description Description of Deviation(s)

14.1 R There shall be no unreachable code. Some functions that are part of the
component API are not used within
component API. Components API are
designed to be used in user application and

might not be used in component API.

21.1 R Minimization of run-time failures shall
be ensured by the use of at least one
of:

a) static analysis tools/techniques;

b) dynamic analysis tools/techniques;

c) explicit coding of checks to handle
run-time faults.

Some components in some specific
configurations can contain redundant
operations introduced because of generalized
implementation approach.

Documentation Related Rules

This section provides information on implementation-defined behavior of the toolchains supported by

PSoC Creator. The list of deviated rules is provided in the table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [3]

Rule Description Description

1.3 R Multiple compilers and/or languages
shall only be used if there is a
common defined interface standard
for object code to which the
languages/compilers/assemblers
conform.

No multiple compilers and languages can be
used at a time for PSoC Creator projects.

The PK51 linker produces OMF-51 object
module format. The GCC linker produces
EABI format files. The MDK linker produces
files of ARM ELF format.

1.4 R The compiler/linker shall be checked
to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.

PK51 and GCC treat more than 31 characters
of internal and external identifier length, and
are case sensitive (e.g., Id and ID are not
equal).

1.5 A Rule states that floating-point
implementation should comply with a

defined floating-point standard.

Floating-point arithmetic implementation
conforms to IEEE-754 standard.

3.1 R All usage of implementation-defined
behavior shall be documented.

For the documentation on PK51 and GCC
compilers, refer to the Help menu,
Documentation sub-menu, Keil and GCC

commands respectively.

3.2 R The character set and the
corresponding encoding shall be
documented.

The Windows-1252 (CP-1252) character set
encoding is used.

Some characters that are used for source
code generation in PSoC Creator are not
included in character set, defined by ISO-IEC
9899-1900 "Programming languages — C".

3.3 A This rule states that implementation of
integer division should be

documented.

When dividing two signed integers, one of
which is positive and one negative compiler

rounds up with a negative remainder.

3.5 R This rules requires implementation
defined behavior and packing of bit
fields be documented.

The use of bit-fields is avoided.

MISRA Compliance

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 93

MISRA-C:

2004 Rule

Rule Class

(R/A) [3]

Rule Description Description

3.6 R All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

The C standard libraries provided with C51,
GCC, and RVCT have not been reviewed for
compliance. Some code uses memset and
memcpy. The compiler may also insert calls to
its vendor-specific compiler support library.

PSoC Creator Generated Sources Deviations

This section provides the list of deviations that are applicable for the code that is generated by PSoC

Creator. The list of deviated rules is provided in the table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [3]

Rule Description Description of Deviation(s)

3.4 R All uses of the #pragma directive shall
be documented.

The #pragma directive is required to ensure
that the C51 compiler produces efficient code
for generated functions related to the
AMuxSeq component.

11.4 A This rule states that cast should not
be performed between a pointer to
object type and a different pointer to
object type.

CYMEMZERO8 and CYCONFIGCPY8 use
void * arguments for compatibility with
memset/memcpy but must use a pointer to an
actual type internally.

14.1 R Rule requires that there shall be no
unreachable code.

The CYMEMZERO, CYMEMZERO8,
CYCONFIGCPY, CYCONFIGCPY8,
CYCONFIGCPYCODE, and
CYCONFIGCPYCODE8 are often but not
always used.

15.2 R Switch cases must end with break
statements.

The code structure is required to ensure that
the C51 compiler produces efficient code for
generated functions related to the AMuxSeq
component.

15.3 R default must be the last clause in a
switch statement.

The code structure is required to ensure that
the C51 compiler produces efficient code for
generated functions related to the AMuxSeq
component.

17.4 R Array indexing shall be only allowed
form of pointer arithmetic.

The CYMEMZERO8 and CYCONFIGCPY8
have void * arguments for compatibility with
memset/memcpy.

19.7 A The rule says that function shall be
used instead of function-like macro.

The CYMEMZERO, CYMEMZERO8,
CYCONFIGCPY, CYCONFIGCPY8,
CYCONFIGCPYCODE, and
CYCONFIGCPYCODE8 macros are used to
call cymemzero, cyconfigcpy, and
cyconfigcpycode in a device-independent way.
The macros cannot be converted to functions
without significantly increasing the time and
memory required for each function call (this is
a limitation of C51). The macros have been
converted to functions for GCC/RVCT.

 MISRA Compliance

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 94

cy_boot Component-Specific Deviations [4]

This section provides the list of cy_boot component specific-deviations. The list of deviated rules is

provided in the table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [3]

Rule Description Description of Deviation(s)

1.2 R No reliance shall be placed on
undefined or unspecified behaviour.

For PSoC 4, the __cy_byte_align8 type,
__cy_region struct, __cy_region_num
constant, _exit and _sbrk functions are
defined.

5.3 R A typedef name shall be a unique
identifier.

For PSoC 4, the __cy_byte_align8 type is
defined.

6.3 A typedefs that indicate size and
signedness should be used in place of
the basic types.

For PSoC 4, the RealView C Library
initialization function __main(void) in startup
file (Cm0Start.c/Cm3Start.c) file returns value
of basic type 'int'.

8.7 R Objects shall be defined at block
scope if they are only accessed from
within a single function.

For PSoC 4, the cySysNoInitDataValid
variable is intentionally declared as global in
Cm0Start.c/Cm3Start.c files to prevent linker
from CY_NOINIT section removal.

8.12 R When an array is declared with
external linkage, its size shall be
stated explicitly or defined implicitly by
initialization.

For PSoC 4 (Cm0Start.c/Cm3Start.c), the
__cy_regions array of structures is declared
with unknown size.

8.8 R An external object or function shall be
declared in one and only one file.

For the PSoC 4, some objects is being
declared with external linkage in
Cm3Start.c/Cm3Start.c file and this
declaration is not in a header file.

10.3 R The value of a complex expression of
integer type may only be cast to a
type that is narrower and of the same
signedness as the underlying type of
the expression.

The DMA API has a composite expression of
'essentially unsigned' type (unsigned char) is
being cast to a wider unsigned type, 'unsigned
long'. This deviation is not present for PSoC 4
cy_boot code.

14.3 R Before preprocessing, a null
statement shall only occur on a line by
itself; it may be followed by a
comment provided that the first
character following the null statement
is a white-space character.

The CYASSERT() macro has null statement is
located close to other code.

11.4 A A cast should not be performed
between a pointer to object type and a
different pointer to object type.

The DMA and Interrupt API use casts
between a pointer to object type and a
different pointer to object type.

11.5 R A cast shall not be performed that
removes any const or volatile
qualification from the type addressed

by a pointer.

The volatile qualification is lost during pointer
cast to pointer to void before passing to the
memcpy() function.

13.7 R Boolean operations whose results are
invariant shall not be permitted.

Different Macro of flash are used for the rows.
The CY_FLASH_GET_MACRO_FROM_ROW
defines the Macro number and it could return
0 for the specific rows.

4 The MISRA rules deviations of the CMSIS files are not documented here. Refer to the CMSIS documentation for the list of the

deviated rules.

MISRA Compliance

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 95

MISRA-C:

2004 Rule

Rule Class

(R/A) [3]

Rule Description Description of Deviation(s)

17.4 R Array indexing shall be the only
allowed form of pointer arithmetic.

The DMA, Flash and Interrupt APIs use array
indexing that are applied to an object of
pointer type to access hardware registers,
buffer allocated by user and vector tables
correspondingly.

19.4 R C macros shall only expand to a
braced initializer, a constant, a
parenthesized expression, a type
qualifier, a storage class specifier, or a
do-while-zero construct.

The CYASSERT(),
INTERRUPT_DISABLE_IRQ,
INTERRUPT_ENABLE_IRQ,
CyGlobalIntEnable, and CyGlobalIntDisable
macro defines a braced code statement block.

19.7 A A function should be used in
preference to a function-like macro.

Deviated since function-like macros are used
to allow more efficient code.

19.12 A There shall be at most one occurrence
of the # or ## preprocessor operator in
a single macro definition.

PSoC 4: Pins and Bit Field Manipulation

APIs: Two preprocessor concatenation
operations are required as PSoC 4 APIs have
two arguments.

19.13 A The # and ## pre-processor operators
should not be used.

PSoC 4: Pins and Bit Field Manipulation

APIs: The preprocessor concatenation
method is used to allow existing PSoC 3 and
PSoC 5LP per-pin APIs to be used in PSoC 4
designs.

20.2 R The names of standard library
macros, objects and functions shall
not be reused.

For PSoC 4, the __cy_byte_align8 type,
__cy_region struct, __cy_region_num
constant, _exit and _sbrk functions are

defined.

20.5 R The error indicator errno shall not be
used.

Caused by use of the error indicator errno
used by the sbrk() function. It is used to report
errors to the malloc() function if no heap
memory is available.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 96

12 System Timer (SysTick)

Functional Description

The SysTick timer is part of the Cortex M0 (PSoC 4) devices. The timer is a down counter with a 24-bit

reload/tick value that is clocked by the System clock (or LF clock for the PSoC 4100 BLE and PSoC 4200

BLE devices). The timer has the capability to generate an interrupt when the set number of ticks expires

and the counter is reloaded. This interrupt is available as part of the Nested Vectored Interrupt Controller

(NVIC) for service by the CPU and can be used for general purpose timing control in user code.

There are components (LIN, CapSense Gesture) that rely on the default interval (1 ms). Changing the

default interval value will impact the functionality of these components.

Changing the SysTick clock source and/or its frequency will change the interrupt interval and therefore

CySysTickSetReload() should be called to compensate for this change.

Since the timer is independent of the CPU (except for the clock), this can be handy in applications

requiring precise timing that don’t have a dedicated timer/counter available for the job.

Refer to the SysTick section (Section 4.4) of the ARM reference guide for complete details on the

registers and their usage.

APIs

Macro

Macro Description

CY_SYS_SYST_NUM_OF_CALLBACKS Number of the SysTick callback slots.

Functions

Function Description

CySysTickStart() Configures and starts the SysTick timer.

CySysTickInit() Configures the SysTick timer.

CySysTickEnable() Enables the SysTick timer and its interrupt.

CySysTickStop() Stops the SysTick timer.

CySysTickEnableInterrupt() Enables the SysTick interrupt.

CySysTickDisableInterrupt() Disables the SysTick interrupt.

CySysTickSetReload() Sets value the counter is set to on startup and after it reaches zero.

CySysTickGetReload() Returns SysTick reload value.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0497a/Babieigh.html

System Timer (SysTick)

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 97

Function Description

CySysTickGetValue() Gets current SysTick counter value.

CySysTickSetClockSource() Sets the clock source for the SysTick counter.

CySysTickGetClockSource() Returns the current clock source of the SysTick counter.

CySysTickGetCountFlag() Returns the SysTick count flag value.

CySysTickClear() Clears the SysTick counter for well-defined startup.

CySysTickSetCallback() Sets the address(es) to the function(s) that will be called on a
SysTick interrupt.

CySysTickGetCallback() Gets the specified callback pointer.

void CySysTickStart(void)

Description: Starts the system timer (SysTick): configures SysTick to generate an interrupt
every 1 ms and enables the interrupt.

There are components (LIN, CapSense Gesture) that rely on the default interval
(1 ms). Changing the interval will negatively impact their functionality.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickInit(void)

Description: Initializes the callback addresses with pointers to NULL, associates the SysTick
system vector with the function that is responsible for calling registered callback
functions, configures SysTick timer to generate interrupt every 1 ms.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

The 1 ms interrupt interval is configured based on the frequency determined by
PSoC Creator at build time. If System clock frequency is changed in runtime, the
CyDelayFreq() with the appropriate parameter should be called to ensure that
actual frequency used for SysTick reload value calculation.

void CySysTickEnable(void)

Description: Enables the SysTick timer and its interrupt.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickStop(void)

Description: Stops the system timer (SysTick).

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

 System Timer (SysTick)

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 98

void CySysTickEnableInterrupt(void)

Description: Enables the SysTick interrupt.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickDisableInterrupt(void)

Description: Disables the SysTick interrupt.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickSetReload(uint32 value)

Description: Sets value the counter is set to on startup and after it reaches zero.

Parameters: value: Counter reset value. Valid range [0x0-0x00FFFFFF].

For example, if the SysTick timer is configured to be clocked off the 48 MHz
System Clock and interrupt every 100 us is desired, the function parameter should
be 4,800 (48,000,000 Hz multiplied by 100/1,000,000 seconds).

uint32 CySysTickGetReload(void)

Description: Returns SysTick reload value.

Side Effects and
Restrictions:

Returns SysTick reload value.

uint32 CySysTickGetValue(void)

Description: Gets current SysTick counter value.

Return Value: Returns SysTick counter value.

System Timer (SysTick)

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 99

void CySysTickSetClockSource(uint32 clockSource)

Description: Sets the clock source for the SysTick counter.

The function is not available on PSoC 4000, PSoC 4100, and PSoC 4200 devices.
The SysTick timer is clocked by the System clock on these devices.

Clears SysTick count flag if it was set. If the clock source is not ready, this function
call will have no effect. After changing the clock source to the low frequency clock,
the counter and reload register values will remain unchanged. So the time to the
interrupt will be significantly bigger and vice versa.

Changing the SysTick clock source and/or its frequency will change the interrupt
interval and therefore CySysTickSetReload() should be called to compensate for
this change.

Parameters: uint32 clockSource:

Constant Description

CY_SYS_SYST_CSR_CLK_SRC_SYSCLK SysTick is clocked by the
System clock.

CY_SYS_SYST_CSR_CLK_SRC_LFCLK SysTick is clocked by the low
frequency clock (LFCLK for
PSoC 4).

uint32 CySysTickGetClockSource(uint32 clockSource)

Description: Returns the current clock source of the SysTick counter.

Return Value:

Constant Description

CY_SYS_SYST_CSR_CLK_SRC_SYSCLK SysTick is clocked by the
System clock.

CY_SYS_SYST_CSR_CLK_SRC_LFCLK SysTick is clocked by the low
frequency clock (LFCLK for
PSoC 4).

uint32 CySysTickGetCountFlag(void)

Description: The count flag is set once SysTick counter reaches zero. The flag is cleared on
read.

Return Value: Returns non-zero value if the counter is set, otherwise zero is returned.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

 System Timer (SysTick)

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 100

void CySysTickClear(void)

Description: Clears the SysTick counter for well-defined startup. This function should be called
if SysTick configuration (reload value or timer clock source) is changed. The
function is called as part of the CySysTickStart() execution.

(void *) CySysTickSetCallback(uint32 number, void(*CallbackFunction)(void))

Description: This function allows up to five user-defined interrupt service routine functions to be
associated with the SysTick interrupt. These are specified through the use of
pointers to the function.

To set a custom callback function without the overhead of the system provided
one, use CyIntSetSysVector(CY_INT_SYSTICK_IRQN, cyisraddress <address>),
where <address> is address of the custom defined interrupt service routine.

Note: a custom callback function overrides the system defined callback functions.

Parameters: uint32 number: The number of the callback function addresses to be set. The valid
range is from 0 to 4.

 void(*CallbackFunction(void): A pointer to the function that will be associated with
the SysTick ISR for the specified number.

Return Value: Returns the address of the previous callback function.

NULL is returned if the specified function address in not initialized.

Side Effects and
Restrictions:

The registered callback functions will be executed in the interrupt.

 (void *) CySysTickGetCallback(uint32 number)

Description: The function get the specified callback pointer.

Parameters: uint32 number: The number of callback function address to get. The valid range is
from 0 to 4.

Return Value: Returns the address of the specified callback function.

The NULL is returned if the specified address in not initialized.

Global Variables

Function Description

uint32 cySysTickInitVar Indicates whether or not the SysTick has been initialized. The variable is
initialized to 0 and set to 1 the first time CySysTickStart() is called.

This allows the component to restart without reinitialization after the first
call to the CySysTickStart() routine.

If reinitialization of the SysTick is required, call CySysTickInit() before
calling CySysTickStart(). Alternatively, the SysTick can be reinitialized by
calling the CySysTickInit() and CySysTickEnable() functions.

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 101

13 cy_boot Component Changes

Version 6.10

This section lists and describes the major changes in the cy_boot component version 6.10:

Description of Version 6.10 Changes Reason for Changes / Impact

Updated the MISRA Compliance table for
Component-Specific Deviations.

Fixed the deviation for MISRA rule 10.1.

Version 6.0

This section lists and describes the major changes in the cy_boot component version 6.0:

Description of Version 6.0 Changes Reason for Changes / Impact

Updated CySysClkWriteHfclkDirect and
CySysClkPllSetSource API functions.

Fixed the defect with EXCO_PGM_CLK register
manipulation when ECO is running.

Updated CySysClkImoEnableUsbLock() and
CySysClkImoDisableUsbLock().

Fixed the defect with IMO trimming with USB on
some PSoC 4200L devices.

Version 5.90

This section lists and describes the major changes in the cy_boot component version 5.90:

Description of Version 5.90 Changes Reason for Changes / Impact

Updated API section.

Updated the API Memory Usage numbers.

Datasheet changes.

Added support for PSoC 4500 family of devices. New device support.

Version 5.81

This section lists and describes the major changes in the cy_boot component version 5.81:

Description of Version 5.81 Changes Reason for Changes / Impact

Updated CySysClkWriteHfclkDirect and
CySysClkPllSetSource API functions.

Fixed the defect with EXCO_PGM_CLK register
manipulation when ECO is running.

Updated CySysClkImoEnableUsbLock() and
CySysClkImoDisableUsbLock().

Fixed the defect with IMO trimming with USB on
some PSoC 4200L devices.

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 102

Version 5.80

This section lists and describes the major changes in the cy_boot component version 5.80:

Description of Version 5.80 Changes Reason for Changes / Impact

Updated algorithm of the WCO lock/unlock
functionality and its impact for the device Deep
Sleep / Wakeup.

Improved the IMO frequency accuracy for WCO
lock/unlock functions and Deep Sleep / Wakeup
on PSoC 4 devices with WCO block support.

Version 5.70

This section lists and describes the major changes in the cy_boot component version 5.70:

Description of Version 5.70 Changes Reason for Changes / Impact

Updated API section.

Updated MISRA section.

Updated the API Memory Usage numbers.

Datasheet changes.

Updated algorithm of the USB lock/unlock
functionality.

Enhancement for PSoC 4200L device

Added support for PSoC 4100S family of devices
with PLL/ECO/DMA functional blocks.

New device support.

Version 5.60

This section lists and describes the major changes in the cy_boot component version 5.60:

Description of Version 5.60 Changes Reason for Changes / Impact

Added support for future PSoC 4 devices. New device support.

Updated the API Memory Usage numbers Datasheet changes.

Updated CMSIS-Core version from 4.30 to 5.0.

GCC compiler support updated to v5.4.

Version 5.50

This section lists and describes the major changes in the cy_boot component version 5.50:

Description of Version 5.50 Changes Reason for Changes / Impact

Added project deviation for the MISRA rule 5.6. Datasheet changes.

Updated the API Memory Usage numbers

New APIs added: CySysTickGetClockSource,
CySysEnablePumpClock.

Default interrupt handler for PSoC 4 is now updated
to catch memory allocation failure errors.

cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 103

Version 5.40

This section lists and describes the major changes in the cy_boot component version 5.40:

Description of Version 5.40 Changes Reason for Changes / Impact

Added support for PSoC Analog Coprocessor,
PSoC 4000S and PSoC 4100S family of devices.

New device support.

Updated CMSIS-Core version from 4.10 to 4.30.

Added System Functions for Programmable Voltage
Reference block support

Programmable Voltage Reference block support.

Updated CySysTickStart and
CySysTickSetClockSource functions descriptions

Datasheet changes.

Updated System Timer Functional Description

Version 5.30

This section lists and describes the major changes in the cy_boot component version 5.30:

Description of Version 5.30 Changes Reason for Changes / Impact

Added support for PSoC 4200L family of devices. New device support.

Added CySysSFlashWriteUserRow() for PSoC 4
BLE/PSoC 4-M/PSoC 4-D/PSoC 4-L devices.

This API can be used to write data to user
configurable areas of SFLASH.

Updated CySysClkWriteHfclkDirect() function with
the PSoC 4200L device support.

Added CY_SYS_CLK_HFCLK_PLL0 and
CY_SYS_CLK_HFCLK_PLL1 parameters.

Updated CMSIS-Core version from 4.00 to 4.10.

The Start_c() function updated with the macro
callback support.

Used in Start_c() to execute custom pre-main
initialization code. This callback function replaces
Cypress provided initialization routines.

Added CySysSetRamAccessArbPriority(),

CySysSetFlashAccessArbPriority(),

CySysSetDmacAccessArbPriority(),

CySysSetPeripheralAccessArbPriority() for the
DMA-capable PSoC devices to configure access
priority between CPU and DMA.

API for the RAM/flash/DMAC/peripheral access
priority between CPU and DMA.

Updated CySysTickSetClockSource() function
description to state that the function is not available
on PSoC 4000, PSoC 4100, and PSoC 4200
devices.

Update CySysPmHibernate() function to disable
input buffers for all ports before entering Hibernate
low power mode for the all PSoC 4 devices but
PSoC 4100 and PSoC 4200.

The operation of the input buffer is not
guaranteed if VCCD drops down to 1.0 V.

Updated CySysClkImoEnableWcoLock() to
eliminate the IMO frequency excursion on the
wakeup from Deep Sleep low power mode.

Updated IAR linker file with the OTA upgradable
stack support required for the
Bootloader/Bootloadable components.

Clock API: PSoC 4200L: Updated
CySysClkImoStart(),CySysClkImoStop(), and
CySysClkWriteImoFreq() function with the Trim to

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 104

Description of Version 5.30 Changes Reason for Changes / Impact

USB functionality. Added
CySysClkImoEnableUsbLock(),
CySysClkImoDisableUsbLock(),
CySysClkImoGetUsbLock() functions.

Version 5.20

This section lists and describes the major changes in the cy_boot component version 5.20:

Description of Version 5.20 Changes Reason for Changes / Impact

Updated linker scripts for adding checksum exclude
section. See Bootloader/Bootloadable components
datasheet for the details.

Provided method to store data in the flash section
with the bootloadable application checksum not
being computed over it.

Fixed CYSWAP_ENDIAN16() and
CYSWAP_ENDIAN32() for signed parameters.

Defect fix.

Added information that Bit Field Manipulation API
deviates the MISRA rules 19.12 and 19.13.

Datasheet changes.

Corrected CyIntSetPriority() priority parameter’s
valid range to be from 0 to 3.

Datasheet changes.

Datasheet update. Added Macro Callbacks section.

Version 5.10

This section lists and describes the major changes in the cy_boot component version 5.10:

Description of Version 5.10 Changes Reason for Changes / Impact

Updated Flash API. Added support for future devices.

Datasheet changes. Updated descriptions of the CySysClkImoStart(),
CySysClkImoStop(), and
CySysClkWriteImoFreq() functions with the Trim
to WCO feature. Added descriptions of the
CySysClkImoEnableWcoLock() and
CySysClkImoDisableWcoLock().

Updated the API Memory Usage numbers for
PSoC 4200M.

Version 5.0

This section lists and describes the major changes in the cy_boot component version 5.0:

Description of Version 5.0 Changes Reason for Changes / Impact

Added support for PSoC 4200M / PSoC 4200M
family of devices.

New device support.

Added support for PSoC 4100 BLE and
PSoC 4200 BLE family of devices with 256 K flash
memory.

New device support.

For PSoC 4 family of devices, the APIs related to
LFCLK including ILO, WCO, WDT are now part of
CyLFClk system wide resource.

This change was done to streamline grouping of
APIs with respect to functionality. Backward
compatibility will not be affected.

cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 105

Description of Version 5.0 Changes Reason for Changes / Impact

New example projects for flash/EEPROM, voltage
detection, interrupts, unique id have been added.

System Reference Guide is now divided into:

System Reference Guide - PSoC 3/PSoC 5LP

System Reference Guide - PSoC 4

System Reference Guide - DMA (PSoC 4)

System Reference Guide - CyLFClk (PSoC 4)

This change was done for ease of use of content.

New CyGetUniqueId() API support for all PSoC
families.

The new API assists users in identifying each
PSoC device on the field using an unique
identification number.

New bit field manipulation APIs for PSoC 4 families. The new APIs can be used to set, reset and
toggle individual bit(s) of registers by their field
names.

Voltage Detect API: Updated implementation of the
CySysLvdEnable() functions to ensure that no false
interrupts are generated.

Voltage Detect API: Updated description of the
CySysLvdEnable() function to clarify that it does not
change state of the associated global interrupt.

Updated CMSIS-Core version from 3.20 to 4.0.

Removed the Bootloader Migration section. Section was for older versions of Creator and not
applicable to v5.0.

Added support for CMSIS-PACK. This feature supports exporting PSoC firmware

projects to Keil Vision v5.

Added attribute definitions CY_PACKED,
CY_PACKED_ATTR and CY_INLINE.

Better programming support.

PSoC 4000 / PSoC 4100 / PSoC 4200: Optimized
implementation of the CySysFlashWriteRow() to
use less stack space.

Clock API: optimized implementation of the
CySysClkWriteImoFreq() to use less flash memory.

SysTick API: Fixed incorrect mask being applied in
the CySysTickGetValue().

To ensure that correct values are returned.

PSoC 4100 BLE/ PSoC 4200 BLE: updated
implementation of the CySysClkWriteEcoDiv() to
skip divider update when ECO sources.

The ECO should not source HFCLK when ECO
divider value is changed. If ECO divider should be
changed: switch to IMO, change ECO divider and
switch back to ECO.

PM API: Replaced 'asm' with '__asm'. To support -std GCC options.

PM API: Updated description of the
CySysPmFreezeIo() and CySysPmUnfreezeIo().

Clock API: PSoC 4200M / PSoC 4200M: Updated
CySysClkImoStart(),CySysClkImoStop(), and
CySysClkWriteImoFreq() function with the Trim to
WCO functionality. Added
CySysClkImoEnableWcoLock() and
CySysClkImoDisableWcoLock().

Fixed the issue when device may jump to default
interrupt handler when the Link-Time Optimization
options is enabled.

Ensured compiler will not inline functions
executed before main().

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 106

Description of Version 5.0 Changes Reason for Changes / Impact

Flash API: Updated implementation for the
PSoC 4200 BLE family of devices with 256 K flash
memory. The CySysFlashWriteRow() does not
modify device clock settings: the IMO and HFCLK
settings are not changed.

Flash API: Update CySysFlashWriteRow() function
implementation to use less stack space.

Bootloader: Fixed the issue when bootloadable
application was not allowed to be placed in the first
available flash row when the “Manual application
image placement” option is enabled in the
Bootloadable component.

Updated IAR linker configuration file to ensure that
maximum size for the ROM vectors block is not
exceeded.

Fix error that causes following message:
"Error[Lp004]: actual size exceeds maximum size
(0x100) for block "ROMVEC"

Bootloader: Added support for the combination
project type. See Bootloader component datasheet
for the details.

Added support for a new functionality of the
Bootloader component.

Corrected references to #defines in
CySysTickSetClockSource() function

Version 4.20

This section lists and describes the major changes in the cy_boot component version 4.20:

Description of Version 4.20 Changes Reason for Changes / Impact

Added support for the PSoC 4100 BLE and
PSoC 4200 BLE families.

Added CySysClkSetLfclkSource() function for the
LFCLK clock source selection.

New device support.

PSoC 3/PSoC5LP: Updated CyWriteRowFull()
function implementation to return
CYRET_BAD_PARAM if invalid parameters values
are passed.

PSoC 3: Fixed a defect that caused the
CyResetStatus global variable to lose its value on
bootloadable application entry.

PSoC 4: The implementation of the
CY_SYS_PINS_READ_PIN macro was optimized
in order to increase performance.

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Updated implementation of the
CySysClkIloStop() to ensure proper pulse length on
LFCLK.

PSoC 4100/PSoC 4200: WDT API: Fixed the defect
in CySysWdtWriteClearOnMatch() that caused clear
on match feature fails to be disabled.

cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 107

Description of Version 4.20 Changes Reason for Changes / Impact

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Updated CySysPmStop() function
implementation to match hardware requirements:
the software delay was replaced with 2 register
read-backs and corrected the procedure of the low
power mode entry.

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Fixed the order of the Stop mode entry
in the CySysPmStop() function to ensure that Stop
mode token is set at the beginning of the low power
mode entry.

Omit the situation when GPIO pins remain frozen
after the reset if reset occurred after IO pin freeze
but before Stop mode entry.

Added following attribute macros: CY_PACKED,
CY_PACKED_ATTR and CY_INLINE.

The declaration of the IntDefaultHandler created in
CyLib.h.

Previously, the IntDefaultHandler was declared in
both interrupt source file and Cm0Start.c files.

PSoC 4000: Corrected the lower bound of the
HFCLK frequency change from the current IMO
frequency divided by 8 to divided by 4 in the wside
effects section of the CySysFlashWriteRow()
function.

PSoC 3/ PSoC 5LP: Updated implementation of the
CySetTemp() function in order to improve execution
time of the first call after Power-On-Reset (POR).

Significantly improved the first Flash write after
POR.

PSoC 4/PSoC 5LP: Added sbrk() function, which is
used by malloc() and other heap-utilizing functions
to check for available memory.

The fix ensures that malloc(), et al, now correctly
handle heap overflow.

Note that some projects will now fail to execute
due to a lack of available heap. The resolution is
to increase the heap size in the Design-Wide
Resources System Editor (<project>.cydwr file),
and re-build the project.

PSoC 4/ PSoC 5LP: Added the following MISRA
rule deviations: 20.5.

Caused by use of the error indicator errno used
by sbrk() function. It is used to report error to the
malloc() function if no heap memory available.

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE:

• Updated CySysWdtEnable() function
implementation to ensure that WDT is
enabled upon function exit;

• Updated CySysWdtWriteMatch() function
implementation to ensure that match value is
updated properly: add delay before (ensures
that last update applied properly) and after
value change (ensures that match update
synchronization started).

• Updated CySysWdtDisable() function
implementation to ensure that WDT is
disabled upon function exit.

PSoC 4/PSoC 5LP: Updated IAR linker script file to
eliminate warning generated by the IAR EW-ARM
v7.10.

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 108

Description of Version 4.20 Changes Reason for Changes / Impact

PSoC 4: The CySysFlashWriteRow() function return
type changed from cystatus to uint32.

To follow hardware-defined error codes. The
basic behavior remains the same: zero for
success and non-zero for any type of failure.

PSoC 5LP: The CyFlash_SetWaitCycles() function
is updated with 80 MHz parts support.

PSoC 4/PSoC 5LP: Added System Timer (SysTick)
API.

PSoC 3/PSoC 5LP: Flash/EEPROM API: updated
implementation to eliminate requirement to call
CySetFlashEEBuffer() function, if the Flash ECC
feature is disabled.

No need to allocate buffer and pass it to
CySetFlashEEBuffer() for both Flash and
EEPROM programming.

PSoC 3/PSoC 5LP: Flash API: added
CY_EEPROM_NUMBER_SECTORS and
CY_EEPROM_SIZEOF_SECTOR.

Defined macros for the number of EEPROM
sectors and size of EEPROM sector.

PSoC 4/PSoC 5LP: Interrupt API: added macros for
the CyIntSetSysVector() and CyIntGetSysVector()
functions exception type numbers.

PSoC 3: The CyPmSleep() and CyPmHibernate()
functions disable clock to the interrupt controller
before Sleep and Hibernate mode entry and re-
enable on wakeup.

Satisfy interrupt controller usage model.

PSoC 3/PSoC 5LP: Updated CyFlash_Start() and
CyEEPROM_Start() functions implementation.

To ensure that EEPROM and Flash are ready for
operation on corresponding function exit.

PSoC 5LP: Changed CyFlushCache()
implementation.

To use Instruction Synchronization Barrier (ISB)
instruction instead of multiple no operation
instructions.

PSoC 4: The CY_SYS_PINS_READ_PIN macro
was optimized for the better performance.

PSoC 4200/PSoC 4100: updated
CySysClkWriteImoFreq() function for better
performance.

PSoC 4: Added the following MISRA rule
deviations: 19.12 and 19.13.

Added the possibility for existing PSoC 3 and
PSoC 5LP per-pin APIs to be used in PSoC 4
designs.

Updated the following MISRA rule deviations:
12.10, 12.13, 13.2, and 13.5.

PSoC 4000: Update WDT API description to clarify
that CySysWdtEnable() and CySysWdtDisable()
correspondingly enables and disables the watchdog
timer reset generation.

PSoC 4000: Fixed the implementation of the
CySysWdtReadIgnoreBits() to return correct
number of the ignored bits in the WDT counter.

PSoC 3/PSoC 5LP: removed LVI/HVI reset
constants for the CyResetStatus global variable in
section “Preservation of Reset Status”.

The LVI and HVI resets are not reported by
CyResetStatus variable.

cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 109

Description of Version 4.20 Changes Reason for Changes / Impact

PSoC 4100/PSoC 4200: Power Management API:
Updated CySysPmDeepSleep() function to bypass
the flash accelerator before Deep Sleep mode entry
and restore it upon wakeup.

Cypress identified a defect with the Flash write
functionality upon wakeup from deep-sleep in
PSoC 4100 and PSoC 4200 devices. The
corrupted data has the potential to be sent to the
CPU on device wakeup.

Version 4.11

This section lists and describes the major changes in the cy_boot component version 4.11:

Description of Version 4.11 Changes Reason for Changes / Impact

The CySysFlashWriteRow() function now checks
the data to be written and, if necessary, modifies it
to have a non-zero checksum. After writing to Flash,
the modified data is replaced (Flash program) with
the correct (original) data.

Cypress identified a defect with the Flash write
functionality of the PSoC 4000, PSoC 4100, and
PSoC 4200 devices. The CySysFlashWriteRow()
function in the cy_boot [v4.0 and v4.10]
component fails to write a row of flash memory if
the data to be written has a zero in the lower 32-
bits of the checksum.

Version 4.10

This section lists and describes the major changes in the cy_boot component version 4.10:

Description of Version 4.10 Changes Reason for Changes / Impact

PSoC 4: Added CySysGetResetReason() function. Reports the cause for the latest reset(s) that
occurred in the system.

Added support for the PSoC 4000 family. New device support.

PSoC 3: Added reentrancy support for the
CySpcLock() and CySpcUnlock() functions.

PSoC 3/ PSoC 5LP: Fixed the defect in
CyPmRestoreClocks() function, that can might to
the device halt during the function execution, in
some clock system configurations, when PLL is

not sourced by IMO and IMO is manually stopped
by user code.

PSoC 4: Added note that enabling or disabling a
WDT requires three LFCLK cycles to come into
effect, during that period the SYSCLK should be
available.

The device should not put into Deep Sleep mode
during that period.

PSoC 4: Added note that, after waking from Deep
Sleep, the WDT internal timer value is set to zero
until the ILO loads the register with the correct
value.

This led to an increase in low-power mode current
consumption.

The work around is to wait for the first positive
edge of the ILO clock before allowing the
WDT_CTR_* registers to be read by
CySysWdtReadCount() function.

Added note to the "Working with Flash and
EEPROM" section with the information that CPU
code execution can be halted till the flash write is
complete.

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 110

Description of Version 4.10 Changes Reason for Changes / Impact

Added note to the "Working with Flash and
EEPROM" section with the information that power
manager will not put the device into a low power
state if the system performance controller (SPC) is
executing a command.

PSoC 3 / PSoC 5LP: The CyPmRestoreClocks()
implementation was enhanced by polling status and
proceed as soon as PLL is locked. Added merge
section to add ability of handling cases when
predefined timeout is not enough.

PSoC 4: Fixed a defect in CySysWdtClearInterrupt()
that caused unintentional clearing of the WDT
interrupt status bit.

Version 4.0

This section lists and describes the major changes in the cy_boot component version 4.0:

Description of Version 4.0 Changes Reason for Changes / Impact

Added note to the Flash section about unavailability
of the Store Configuration Data in ECC Memory
DWR option for the bootloader project type.

Added note to the Working with Flash and
EEPROM section that when writing Flash, data in
the instruction cache can become stale.

Call CyFlushCache() to invalidate the data in
cache and force fresh information to be loaded
from Flash.

Fixed issue in the CyDmaChEnable() and
CyDmaChDisable() functions.

If DMA request occurred during these functions,
the DMA channels configuration could be
corrupted. The APIs were changed to address
this problem.

Removed references to PSoC 5 device. PSoC 5 has been replaced by PSoC 5LP.

PSoC Creator Generated Sources Deviations
section was updated with the MISRA deviations
related to the AMuxSeq component.

The CY_IMO_FREQ_74MHZ parameter was added
to the CyIMO_SetFreq() function.

Support of the 80 MHZ PSoC 5LP devices.

PSoC 4: Added CyExitCriticalSection() function call
after WFI instruction in the CySysPmHibernate()
function.

If any interrupt occurred between
CyEnterCriticalSection() and WFI instruction
execution, the device could skip low power mode
entry request and continue code execution with
global interrupts disabled.

cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 111

Version 3.40 and Older

Version 3.40

This section lists and describes the major changes in the cy_boot component version 3.40:

Description of Version 3.40 Changes Reason for Changes / Impact

Added PSoC 4 device support. New device support.

PSoC 3: Updated CyPmSleep() function description
with the information that hardware buzz must be
disabled before sleep mode entry.

As hardware buzz is required for LVI, HVI, and
Brown Out detect operations – they must be
disabled before sleep mode entry and restored on
wakeup. If LVI or HVI is enabled, CyPmSleep() will
halt device if project is compiled in debug mode.

Using hardware buzz in conjunction with other
device wakeup sources can cause the device to
lockup, halting further code execution. Refer to
the device errata for more information.

Version 3.30

This section lists and describes the major changes in the cy_boot component version 3.30:

Description of Version 3.30 Changes Reason for Changes / Impact

Updates to support PSoC Creator 2.2.

Added MISRA Compliance section.

Added Low Voltage Analog Boost Clocks section.

New feature for the SC-based (TIA, Mixer, PGA
and PGA_Inv) components.

Added requirement about interrupt configuration,
when interrupt is sources from PICU and used as a
wakeup event.

For PSoC 5LP, the interrupt component
connected to the wakeup source may not use the
"RISING_EDGE" detect option. Use the "LEVEL"
option instead.

The delay between Bus clock and analog clocks
configuration save/restore moved from
CyPmSleep() and CyPmHibernate() functions to
CyPmSaveClocks() / CyPmRestoreClocks().

This modification decrease CyPmSleep() and
CyPmHibernate() functions execution time.

The components that use analog clock must not
be used after CyPmSaveClocks() execution till
the clocks configuration will be restored by
CyPmRestoreClocks().

Added float32 and float64 data types. The type
float64 is not available for PSoC 3 devices.

Version 3.20

This section lists and describes the major changes in the cy_boot component version 3.20:

Description of Version 3.20 Changes Reason for Changes / Impact

Many minor edits throughout the document to
distinguish features of PSoC 5 and PSoC 5LP
devices.

Improve PSoC 5 and PSoC 5LP documentation.

The interface of the CyIMO_SetFreq() function was
updated for PSoC 5LP to support 62 and 72 MHz
frequencies.

Added interface to configure IMO to 62 and 72
MHz on PSoC 5LP.

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 112

Version 3.10

This section lists and describes the major changes in the cy_boot component version 3.10:

Description of Version 3.10 Changes Reason for Changes / Impact

The Bootloader system was redesigned in cy_boot
version 3.0 to separate the Bootloader and
Bootloadable components. The change is listed
here as well for migrating from older versions.

See Bootolader Migration section in cy_boot
version 3.10 System Reference Guide.

A few edits were applied to the Voltage Detect
APIs: fixed a typo in the register definition, added
CyVdLvDigitEnable() function threshold parameter
mask to protect from invalid parameter values,
updated CyVdLvDigitEnable() and
CyVdLvAnalogEnable() functions to use delay
instead of while loop during hardware initialization.

To improve the overall implementation of these
APIs.

Minor updates to the CyPmSleep() function. Better support of latest PSoC 3 devices.

Version 3.0

This section lists and describes the major changes in the cy_boot component version 3.0:

Description of Version 3.0 Changes Reason for Changes / Impact

The Bootloader system was redesigned to separate
the Bootloader and Bootloadable components.

See Bootolader Migration section in cy_boot
version 3.0 System Reference Guide.

The CyPmSleep() function implementation was
updated to preserve/restore PRES state
before/after Sleep mode. The support of the
HVI/LVI functionality added.

New functionality support.

Added following Voltage Detect APIs:
CyVdLvDigitEnable(),CyVdLvAnalogEnable(),CyVd
LvDigitDisable(),CyVdLvAnalogDisable(),CyVdHvA
nalogEnable(),CyVdHvAnalogDisable(),CyVdSticky
Status() and CyVdRealTimeStatus().

Added voltage monitoring APIs.

The implementation of the Flash API was slightly
modified as the SPC API used in Flash APIs was
refactored.

The implementation quality improvements.

The implementation of the CyXTAL_32KHZ_Start(),

CyXTAL_32KHZ_Stop(),
CyXTAL_32KHZ_ReadStatus() and

CyXTAL_32KHZ_SetPowerMode() APIs was
updated.

Added additional timeouts to ensure proper block
start-up.

The implementation of the CyXTAL_Start() function
for PSoC 5 parts was changed. For more
information on function see Clocking section.

Changes were made to make sure that MHZ
XTAL starts successfully on PSoC 5 parts.

The following APIs were removed for PSoC 5 parts:

CyXTAL_ReadStatus(),

CyXTAL_EnableErrStatus(),

CyXTAL_DisableErrStatus(),

CyXTAL_EnableFaultRecovery(),

CyXTAL_DisableFaultRecovery().

The functionality provided within these APIs is not
supported by the PSoC 5 part.

cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 113

Description of Version 3.0 Changes Reason for Changes / Impact

The CyDmacConfigure() function is now called by
the startup code only if DMA component is placed
onto design schematic.

Increase device startup time in case if DMA is not
used within design. The CyDmacConfigure()
function should be called manually if DMA
functionality is used without DMA component.

The CyXTAL_32KHZ_ReadStatus() function
implementation was changed by removing digital
measurement status return.

The analog status measurement is the only
reliable source.

Updated description of following APIs:
CyFlash_SetWaitCycles().

Changes were made to improve power mode
configuration.

The address of the top of reentrant stack was
decremented from CYDEV_SRAM_SIZE to
(CYDEV_SRAM_SIZE - 3) for PSoC 3.

Prevent rewriting CyResetStatus variable with the
parameters and/or local variables of the reentrant
function during its execution.

The CyIMO_SetFreq() function implementation was
updated by removing support of 74 and 62 MHz
parameters for PSoC 5 parts.

Removal of the functionality that is not supported
by device.

The minimal P divider value for the
CyPLL_OUT_SetPQ() was risen from 4 up to 8.

To meet hardware requirements

The CyXTAL_SetFbVoltage()/SetWdVoltage() were
added for PSoC 5LP devices.

The functionality provided by these APIs is
available in PSoC 5LP.

The description of the CyWdtStart() was updated. Added notes on WDT operation during low power
modes for PSoC 5.

The implementation of the CyPmSleep() for PSoC 5
was changed not to hold CTW in reset on wakeup.

Not putting CTW in reset state on wakeup allows
to combine CTW usage in both Active and low
power modes for PSoC 5.

The Preservation of Reset Status section was
updated with more detailed information.

The software reset behavior of other resets is
explained. Explained how the reset status
variable can be used.

Updated description of following APIs:
CyMasterClk_SetDivider(),CyWdtStart(),CyWdtStart
().

To reflect implementation better.

The Startup and Linking section was updated. The
information on using custom linker script was
added.

To provide more information on device operation.

Following macros were removed: CYWDT_TICKS
CYWDT_CLEAR, CYWDT_ENABLE
CYWDT_DISABLE_AUTO_FEED.

The CyWdtStart() and CyWdtClear() should be
used instead.

The CyCpuClk_SetDivider() was removed for PSoC
5 devices.

The hardware does not support this functionality.

The cystrcpy(), cystrlen(), CyGetSwapReg16() and
CySetSwapReg16() APIs were removed.

The library functions should be used.

The return value description for
CyEnterCriticalSection() function was updated for
PSoC 5.

Function returns 0 if interrupts were previously
enabled or 1 if interrupts were previously
disabled.

Added all APIs with the CYREENTRANT keyword
when they are included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which
functions are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used
in a safe way: protected from concurrent calls by
flags or Critical Sections.

 cy_boot Component Changes

PSoC® Creator™ PSoC 4 System Reference Guide,
Document Number: 002-32414 Rev. ** 114

Description of Version 3.0 Changes Reason for Changes / Impact

Added PSoC 5LP support

Version 2.40

This section lists and describes the major changes in the cy_boot component version 2.40:

Description of Version 2.40 Changes Reason for Changes / Impact

Updated the CyPmSleep() and CyPmHibernate()
APIs.

Changes were made to improve power mode
configuration.

Version 2.30 and Older

Version 2.30 and older are obsolete.

	PSoC 4 System Reference Guide
	cy_boot Component v6.10

	Contents
	1 Introduction
	Migrating from Previous cy_boot Versions
	Conventions
	References
	Sample Firmware Source Code
	Definitions
	Revision History

	2 Standard Types, APIs, and Defines
	Base Types
	Hardware Register Types
	Compiler Defines
	Return Codes
	Interrupt Types and Macros
	Interrupt vector address type

	Intrinsic Defines
	Device Version Defines
	Variable Attributes
	Instance APIs
	General APIs
	`=instance_name`_InitVar
	void `=instance_name`_Start (void)
	void `=instance_name`_Stop (void)
	void `=instance_name`_Init (void)
	void `=instance_name`_Enable (void)

	Low Power APIs
	void `=instance_name`_Sleep (void)
	void `=instance_name`_Wakeup (void)
	void `=instance_name`_SaveConfig(void)
	void `=instance_name`_RestoreConfig(void)

	PSoC Creator Generated Defines
	Project Type
	Chip Configuration Mode
	All
	PSoC 4

	Debugging Mode
	Chip Protection Mode
	Stack and Heap
	Voltage Settings
	System Clock Frequency
	PSoC 4

	JTAG/Silicon ID
	IP Block Information

	3 Clocking
	PSoC Creator Clocking Implementation
	Overview
	Power Modes

	Clock Connectivity
	System Clock
	Global Clock
	Routed Clock

	Clock Synchronization
	Routed Clock Implementation
	Example with a Divided Clock
	Example with a Clock from a Pin
	Example with Multiple Clock Sources
	Overriding Routed Clock Transformations

	Using Asynchronous Clocks
	Clock Crossing
	Gated Clocks
	Fixed-Function Clocking
	UDB-Based Clocking
	Changing Clocks in Run-time
	Impact on Components Operation
	CyDelay APIs
	Cache Configuration

	APIs
	High Frequency Clocks
	void CySysClkImoStart(void)
	void CySysClkImoStop(void)
	void CySysClkWriteHfclkDirect (uint32 clkSelect)
	void CySysClkWriteSysclkDiv (uint32 divider)
	void CySysClkWriteImoFreq (uint32 freq)
	void CySysClkImoEnableWcoLock(void)
	void CySysClkImoDisableWcoLock(void)
	uint32 CySysClkImoGetWcoLock(void)
	void CySysClkImoEnableUsbLock(void)
	void CySysClkImoDisableUsbLock(void)
	uint32 CySysClkImoGetUsbLock(void)

	Low Frequency Clocks
	External Crystal Oscillator (ECO) APIs
	cystatus CySysClkEcoStart(uint32 timeoutUs)
	void CySysClkEcoStop(void)
	uint32 CySysClkEcoReadStatus(void)
	void CySysClkWriteEcoDiv(uint32 divider)
	void CySysClkConfigureEcoTrim(uint32 wDTrim, uint32 aTrim, uint32 fTrim, uint32 rTrim, uint32 gTrim)
	cystatus CySysClkConfigureEcoDrive(uint32 freq, uint32 cLoad, uint32 esr, uint32 maxAmplitude)

	Phase-Locked Loop(PLL) APIs (PSoC 4200L / PSoC 4100S Plus / PSoC 4500)
	cystatus CySysClkPllStart(uint32 pll, uint32 wait)
	void CySysClkPllStop(uint32 pll)
	cystatus CySysClkPllSetFrequency(uint32 pll, uint32 inputFreq, uint32 pllFreq, uint32 divider, uint32 freqTol)
	cystatus CySysClkPllSetPQ(uint32 pll, uint32 feedback, uint32 reference, uint32 current)
	void CySysClkPllSetSource(uint32 pll, uint32 source)
	cystatus CySysClkPllSetOutputDivider(uint32 pll, uint32 divider)
	void CySysClkPllSetBypassMode(uint32 pll, uint32 bypass)
	uint32 CySysClkPllGetUnlockStatus(uint32 pll)
	uint32 CySysClkPllGetLockStatus(uint32 pll)
	uint32 CySysClkPllGetInterruptCauseMasked(void)
	uint32 CySysClkPllGetInterruptCause(void)
	void CySysClkPllClearPendingInterrupt(uint32 interrupt)
	void CySysClkPllSetInterruptMask(uint32 intrMask)
	uint32 CySysClkPllGetInterruptMask(void)
	void CySysClkPllSetInterrupt(uint32 interrupt)
	void CySysClkPllCsvEnable(void)
	void CySysClkPllCsvDisable(void)
	void CySysClkPllCsvSetSpvrCtl(uint32 startupDelay, uint32 csvSwitch)
	void CySysClkPllCsvSetRefLimits(uint32 lower, uint32 upper)
	uint32 CySysClkPllCsvGetRefLimits(void)
	void CySysClkPllCsvSetPeriod(uint32 period)
	uint32 CySysClkPllCsvGetPeriod(void)
	void CySysClkPllCsvEnableReset()
	void CySysClkPllCsvDisableReset()
	void CySysClkPllCsvReloadPgmDlyCounter(uint32 delayCount)

	Low Voltage Analog Boost Clocks
	void SetAnalogRoutingPumps(uint8 enabled)

	4 Power Management
	Implementation
	Clock Configuration (PSoC 4100 BLE / PSoC 4200 BLE / PRoC BLE)
	Power Management APIs
	void CySysPmSleep(void)
	void CySysPmDeepSleep(void)
	void CySysPmHibernate(void)
	void CySysPmStop(void)
	void CySysPmSetWakeupPolarity(uint32 polarity)
	uint32 CySysPmGetResetReason(void)
	void CySysPmFreezeIo(void)
	void CySysPmUnfreezeIo(void)
	void CySysPmSetWakeupHoldoff(uint32 hfclkFrequencyMhz)

	5 Interrupts
	APIs
	CyGlobalIntEnable
	CyGlobalIntDisable
	uint32 CyDisableInts()
	void CyEnableInts(uint32 mask)
	void CyIntEnable(uint8 number)
	void CyIntDisable(uint8 number)
	uint8 CyIntGetState(uint8 number)
	cyisraddress CyIntSetVector(uint8 number, cyisraddress address)
	cyisraddress CyIntGetVector(uint8 number)
	cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)
	cyisraddress CyIntGetSysVector(uint8 number)
	void CyIntSetPriority(uint8 number, uint8 priority)
	uint8 CyIntGetPriority(uint8 number)
	void CyIntSetPending(uint8 number)
	void CyIntClearPending(uint8 number)

	6 Pins
	PSoC 4 APIs
	CY_SYS_PINS_READ_PIN(portPS, pin)
	CY_SYS_PINS_SET_PIN(portDR, pin)
	CY_SYS_PINS_CLEAR_PIN(portDR, pin)
	CY_SYS_PINS_SET_DRIVE_MODE(portPC, pin, mode)
	CY_SYS_PINS_READ_DRIVE_MODE(portPC, pin)

	7 Register Access
	APIs
	uint8 CY_GET_REG8(uint32 reg)
	void CY_SET_REG8(uint32 reg, uint8 value)
	uint16 CY_GET_REG16(uint32 reg)
	void CY_SET_REG16(uint32 reg, uint16 value)
	uint32 CY_GET_REG24(uint32 reg)
	void CY_SET_REG24(uint32 reg, uint32 value)
	uint32 CY_GET_REG32(uint32 reg)
	void CY_SET_REG32(uint32 reg, uint32 value)
	uint8 CY_GET_XTND_REG8(uint32 reg)
	void CY_SET_XTND_REG8(uint32 reg, uint8 value)
	uint16 CY_GET_XTND_REG16(uint32 reg)
	void CY_SET_XTND_REG16(uint32 reg, uint16 value)
	uint32 CY_GET_XTND_REG24(uint32 reg)
	void CY_SET_XTND_REG24(uint32 reg, uint32 value)
	uint32 CY_GET_XTND_REG32(uint32 reg)
	void CY_SET_XTND_REG32(uint32 reg, uint32 value)

	Bit Field Manipulation
	CY_GET_REG8_FIELD(registerName, bitFieldName)
	CY_SET_REG8_FIELD(registerName, bitFieldName, value)
	CY_CLEAR_REG8_FIELD(registerName, bitFieldName)
	CY_GET_REG16_FIELD(registerName, bitFieldName)
	CY_SET_REG16_FIELD(registerName, bitFieldName, value)
	CY_CLEAR_REG16_FIELD(registerName, bitFieldName)
	CY_GET_REG32_FIELD(registerName, bitFieldName)
	CY_SET_REG32_FIELD(registerName, bitFieldName, value)
	CY_CLEAR_REG32_FIELD(registerName, bitFieldName)
	CY_GET_FIELD(regValue, bitFieldName)
	CY_SET_FIELD(regValue, bitFieldName, value)

	8 Flash
	Memory Architecture
	Working with Flash
	APIs
	uint32 CySysFlashWriteRow(uint32 rowNum, const uint8 rowData[])
	void CySysFlashSetWaitCycles(uint32 freq)
	uint32 CySysSFlashWriteUserRow(uint32 rowNum, uint8 *rowData)
	uint32 CySysFlashStartWriteRow(uint32 rowNum, const uint8 rowData[])
	uint32 CySysFlashGetWriteRowStatus(void)
	void CySysFlashResumeWriteRow(void)

	9 System Functions
	General APIs
	uint8 CyEnterCriticalSection(void)
	void CyExitCriticalSection(uint8 savedIntrStatus)
	void CYASSERT(uint32 expr)
	void CyHalt(uint8 reason)
	void CySoftwareReset(void)
	void CyGetUniqueId(uint32* uniqueId)
	void CySysSetRamAccessArbPriority (uint32 source)
	void CySysSetFlashAccessArbPriority(uint32 source)
	void CySysSetDmacAccessArbPriority(uint32 source)
	void CySysSetPeripheralAccessArbPriority(uint32 source)
	void CySysEnablePumpClock (uint32 enable)

	CyDelay APIs
	void CyDelay(uint32 milliseconds)
	void CyDelayUs(uint16 microseconds)
	void CyDelayFreq(uint32 freq)
	void CyDelayCycles(uint32 cycles)

	Voltage Detect APIs
	void CySysLvdEnable(uint32 threshold)
	void CySysLvdDisable(void)
	uint32 CySysLvdGetInterruptSource(void)
	void CySysLvdClearInterrupt(void)

	Programmable Voltage Reference (All PSoC 4 devices with PRB)
	void CySysPrbSetGlobalVrefSource (uint32 source)
	void CySysPrbSetBgGain (uint32 gain)
	void CySysPrbSetGlobalVrefVoltage (uint32 voltageTap)
	void CySysPrbEnableDeepsleepVddaRef (void)
	void CySysPrbDisableDeepsleepVddaRef (void)
	void CySysPrbEnableVddaRef (void)
	void CySysPrbDisableVddaRef (void)
	void CySysPrbSetBgBufferTrim(int32 bgTrim)
	int32 CySysPrbGetBgBufferTrim (void)

	Macro Callbacks
	Watchdog Timer (WDT) APIs

	10 Startup and Linking
	GCC Implementation
	Realview Implementation (applicable for MDK)
	CMSIS Support
	Manual addition of the CMSIS Core files

	High-Level I/O Functions
	The printf() Usage Model

	Preservation of Reset Status
	uint32 CySysGetResetReason(uint32 reason)

	API Memory Usage
	PSoC 4000 (GCC)
	PSoC 4100/PSoC 4200 (GCC)
	PSoC 4100 BLE/PRoC BLE/PSoC 4200 BLE (GCC)
	PSoC 4100M /PSoC 4200M (GCC)
	PSoC 4200L (GCC)
	PSoC Analog Coprocessor (GCC)
	PSoC 4000S (GCC)
	PSoC 4100S (GCC)
	PSoC 4100S Plus (GCC)
	PSoC 4500 (GCC)

	Performance
	Functions Execution Time
	PSoC 4 []

	Critical Sections Duration
	PSoC 4

	11 MISRA Compliance
	Verification Environment
	Project Deviations
	Documentation Related Rules
	PSoC Creator Generated Sources Deviations
	cy_boot Component-Specific Deviations []

	12 System Timer (SysTick)
	Functional Description
	APIs
	Macro
	Functions
	void CySysTickStart(void)
	void CySysTickInit(void)
	void CySysTickEnable(void)
	void CySysTickStop(void)
	void CySysTickEnableInterrupt(void)
	void CySysTickDisableInterrupt(void)
	void CySysTickSetReload(uint32 value)
	uint32 CySysTickGetReload(void)
	uint32 CySysTickGetValue(void)
	void CySysTickSetClockSource(uint32 clockSource)
	uint32 CySysTickGetClockSource(uint32 clockSource)
	uint32 CySysTickGetCountFlag(void)
	void CySysTickClear(void)
	(void *) CySysTickSetCallback(uint32 number, void(*CallbackFunction)(void))
	(void *) CySysTickGetCallback(uint32 number)

	Global Variables

	13 cy_boot Component Changes
	Version 6.10
	Version 6.0
	Version 5.90
	Version 5.81
	Version 5.80
	Version 5.70
	Version 5.60
	Version 5.50
	Version 5.40
	Version 5.30
	Version 5.20
	Version 5.10
	Version 5.0
	Version 4.20
	Version 4.11
	Version 4.10
	Version 4.0
	Version 3.40 and Older
	Version 3.40
	Version 3.30
	Version 3.20
	Version 3.10
	Version 3.0

	Version 2.40
	Version 2.30 and Older

