

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 002-10814 Rev. *E Revised January 25, 2018

Features

▪ Industry-standard NXP® I2C bus interface

▪ Standard SPI Master and Slave interfaces with Motorola, Texas
Instruments, and the National Semiconductor's Microwire protocols

▪ Standard UART TX and RX interfaces with SmartCard reader and IrDA protocols

▪ EZ I2C mode which emulates a common I2C EEPROM interface

▪ Supports wakeup from Deep Sleep mode

▪ Run-time reconfigurable

▪ I2C Bootloader support

General Description
The PSoC 4 SCB Component is a multifunction hardware block that implements the following
communication Components: I2C, SPI, UART, and EZI2C. Each is available as a pre-configured
schematic macro in the PSoC Creator Component Catalog, labeled with “SCB Mode.”

Note PSoC 4000 devices support only I2C modes. The UART or SPI mode choice is not
available.

Click on one of the links below to jump to the appropriate section:

I2C EZI2C SPI UART

There is also an Unconfigured SCB Component entry in the Component Catalog.

PSoC 4 Serial Communication Block (SCB)
3.20

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 2 of 211 Document Number: 002-10814 Rev. *E

When to Use an SCB Component

The SCB can be used in a pre-configured mode: I2C, EZI2C, SPI, and UART. Alternatively, the
SCB can be left unconfigured at build time and then configured during run-time into any of the
modes by calling the appropriate API functions. All configuration settings made at build time can
also be made during run time.

The following figure shows the Component Configure dialog used to select the desired mode.

Note PSoC 4000 devices support only I2C modes. The UART or SPI mode choice is not
available.

The pre-configured modes are the typical use case. They are the simplest method to configure
the SCB into the mode of operation that is desired. The unconfigured method can be used to
create designs for multiple applications and where the specific usage of the SCB in the design is
not known when the PSoC Creator hardware design is created.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 3 of 211

Unconfigured SCB
The SCB can be run-time configured for operation in any of the modes(I2C, SPI, UART, EZI2C)
from the Unconfigured mode. It can also be re-configured from any of these modes to any of the
other modes during run time. For example, you can reconfigured the SCB from SPI to UART
during run time.

Input/Output Connections

This section describes the various input and output connections for the SCB Component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.

clock – Input

Clock that operates this block. This terminal is required in Unconfigured mode. For other modes
the option is provided to use an internal clock or an external clock connected to this terminal.

The interface-specific pins are buried inside the Component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.

Note The input buffer of buried output pins is disabled so as not to cause current linkage in low
power mode. Reading the status of these pins always returns zero. To get the current status, the
input buffer must be enabled before status read.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 4 of 211 Document Number: 002-10814 Rev. *E

SCB Tab

Use the SCB tab to select the pins that will be used by the SCB Component in Unconfigured
mode. The communication type along with the pin name is listed with a check box to enable pin.
When the pin is enabled it is reserved for the SCB, and cannot be used by other functions. To
see what pins were reserved consult the pins tab in the .cydwr file

The Enable UART RX wake adds an interrupt to the RX pin to accomplish the UART wake-up
capability. This option restricts the processing of any other pin interrupts from the port where this
RX pin is placed.

Note PSoC 4000 devices only support I2C modes. The following pin names are used for this
device:

▪ UART RX / I2C SCL / SPI MOSI pin name is I2C SCL

▪ UART TX / I2C SDA / SPI MISO pin name is I2C SDA

▪ SPI SCLK, SPI SS0 – SS3 pins are not available, nor is the Enable UART RX wake
option

Note PSoC 4100 / PSoC 4200 devices do not support UART hardware flow control. The
following pin name changes are used for these devices:

▪ UART CTS / SPI SCLK pin name is SPI SCLK

▪ UART RTS / SPI SS0 pin name is SPI SS0

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 5 of 211

Note PSoC 4100 BLE / PSoC 4200 BLE devices have different locations for the SCL and SDA
pins. The following pin name changes are used for these devices:

▪ UART RX / I2C SCL / SPI MOSI pin name is UART RX / I2C SDA / SPI MOSI

▪ UART TX / I2C SDA / SPI MISO pin name is UART TX / I2C SCL / SPI MISO

Unconfigured mode operation

Before starting operation in Unconfigured mode, determine which communication interfaces will
be used (more than one communication interface can be used in one SCB). Next, use the SCB
parameters tab to select pins required to implement the chosen communication interfaces.

The communication interface name is listed first, followed by the pin name related to the specific
interface. For example, UART RX / I2C SCL / SPI MOSI means this pin functions as MOSI when
the SCB is configured to utilize the SPI interface; it functions as SCL for the I2C interface; and as
RX for the UART interface.

Next, a clock Component must be connected to the SCB clock input. This clock frequency along
with the SCB oversampling configuration (set in the interface-specific Init API function)
determines the operation speed of the communications interface. The clock frequency will be
configured later in the firmware by setting a clock divider, using the clock's API. The possible
choice of clock configuration is: source HFCLK with divider 1.

To use the UART and I2C interfaces, select the following pins on the SCB tab:

▪ UART RX / I2C SCL / SPI MOSI pin

▪ UART TX / I2C SDA / SPI MISO pin

To use the SPI interface, select the following pins on the SCB tab:

▪ UART RX / I2C SCL / SPI MOSI pin

▪ UART TX / I2C SDA / SPI MISO pin

▪ SPI SCLK

▪ Any combination of SPI SS0 – SPI SS3

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 6 of 211 Document Number: 002-10814 Rev. *E

Interface data rate configuration

The data rate is a function of the clock source frequency and the Component configuration of the
oversampling parameter. The oversampling parameter is only important for master modes and
has no effect for slave (UART mode has the same dependency on oversampling as master
modes). For slave modes only, the connected clock source frequency is important.

For I2C master modes, SPI master, and UART, the data rate is calculated using the formula
below (where fSCBCLK is the frequency of the clock Component connected to the SCB):

Data rate = (fSCBCLK / Oversampling value)

fSCBCLK = Data rate * Oversampling value

Note For the I2C interface in master modes, the oversampling value is a sum of Low and High
oversampling factor values.

For I2C and EZI2C in slave modes, the fSCBCLK must match the values provided in Table 2 on
page 16.

For SPI slave mode, the clock source frequency impacts TDSO parameter. Refer to SPI AC
Specifications for the selected device and to the Slave data rate section.

Refer to the applicable I2C / EZI2C / SPI / UART Parameter section for more information about
data rate and oversampling. To change fSCBCLK clock frequency, the clock divider must be
changed. The clock Component provides API to perform this task.

DivSCBCLK = fHFCLK / fSCBCLK

Note The DivSCBCLK must be an integer value.

Example of DivSCBCLK calculation for I2C and UART is as follows:

Design HFCLK configuration of fHFCLK = 24 MHz

Required I2C slave data rate = 100 kbps and UART baud rate = 115200 bps

The fSCBCLK = 1.6MHz is taken from Table 2 on page 16 for data rate 100 kbps:

DivSCBCLK = fHFCLK / fSCBCLK = 24 MHz / 1.6 MHz = 15

The oversampling default value 16 is chosen to calculate DivSCBCLK for the UART.

fSCBCLK = Data rate * Oversampling value = 115200 * 16 = ~1,843 MHz

DivSCBCLK = fHFCLK / fSCBCLK = 24 MHz / 1, 843 MHz = ~13

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 7 of 211

For the UART, the fSCBCLK accuracy is important for correct operation and the actual fSCBCLK must
be calculated to use fHFCLK and DivSCBCLK.

Actual fSCBCLK = fHFCLK / DivSCBCLK = 24 MHz / 13 = ~1,846 MHz

The deviation of actual fSCBCLK from desired must be calculated:

(1,843MHz – 1,846 MHz) / 1,843 MHz = ~0.2%

Taking into account HFCLK accuracy ±2%, the total error is: 0.2 + 2= 2.2%. The total error value
is less than 5% and it is enough for correct UART operation.

The following numbers are calculated:

▪ I2C master data rate = 100 kbps: DivSCBCLK = 15

▪ UART baud rate = 115200 bps: Oversampling = 16, DivSCBCLK = 13

Run-time Configuration

Configuration structures are provided for each interface. These structures provide configuration
fields that match the selections available in the Configure dialog for the specific interface. The
description of each structure is provided in the APIs section of corresponding interface:

▪ void SCB_I2CInit(SCB_I2C_INIT_STRUCT *config)

▪ void SCB_EzI2CInit(SCB_EZI2C_INIT_STRUCT *config)

▪ void SCB_SpiInit(SCB_SPI_INIT_STRUCT *config)

▪ Void SCB_UartInit(SCB_UART_INIT_STRUCT *config)

Allocate structures for the selected interfaces and fill the structure with the required configuration
information. A pointer to this structure is passed to the appropriate initialization function of the
selected interface. The list of initialization functions for each interface is provided above.

The following example provides configuration structures for:

▪ I2C slave, data rate 100 kbps, slave address is 0x08

▪ UART RX+TX, sub-mode Standard, buffer size 16 for TX and RX (implies software buffer
utilization)

The following code snippets are taken from the SCB Uncofigured example project
SCB_UnconfiguredComm.

/***

* Common Definitions

***/

/* Constants */

#define ENABLED (1u)

#define DISABLED (0u)

#define NON_APPLICABLE (DISABLED)

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 8 of 211 Document Number: 002-10814 Rev. *E

/* Common RX and TX buffers for I2C and UART operation */

#define COMMON_BUFFER_SIZE (16u)

uint8 bufferTx[COMMON_BUFFER_SIZE];

/* UART RX buffer requires one extra element for proper operation. One element

* remains empty while operation. Keeping this element empty simplifies

* circular buffer operation.

*/

uint8 bufferRx[COMMON_BUFFER_SIZE + 1u];

/***

* I2C Configuration

***/

#define I2C_SLAVE_ADDRESS (0x08u)

#define I2C_SLAVE_ADDRESS_MASK (0xFEu)

#define I2C_STANDARD_MODE_MAX (100u)

#define I2C_RX_BUFFER_SIZE (PACKET_SIZE)

#define I2C_TX_BUFFER_SIZE (PACKET_SIZE)

#define I2C_RX_BUFER_PTR bufferRx

#define I2C_TX_BUFER_PTR bufferTx

/* I2C slave desired data rate is 100 kbps. The datasheet Table 1 provides a

* range of possible clock values 1.55 - 12.8 MHz. The CommCLK = 1.6 MHz is

* selected from this range. The clock divider has to be calculated to control

* clock frequency as clock Component provides interface to it.

* Divider = (HFCLK / CommCLK) = (24MHz / 1.6 MHz) = 15. But the value written

* into the register has to decremented by 1. The end result is 14.

*/

#define I2C_CLK_DIVIDER (14u)

/* Comm_I2C_INIT_STRUCT provides the fields which match the selections available

* in the customizer. Refer to the I2C customizer for detailed description of

* the settings.

*/

const Comm_I2C_INIT_STRUCT configI2C =

{

 Comm_I2C_MODE_SLAVE, /* mode: slave */

 NON_APPLICABLE, /* oversampleLow: N/A for slave */

 NON_APPLICABLE, /* oversampleHigh: N/A for slave */

 NON_APPLICABLE, /* enableMedianFilter: N/A */

 I2C_SLAVE_ADDRESS, /* slaveAddr: slave address */

 I2C_SLAVE_ADDRESS_MASK, /* slaveAddrMask: single slave address */

 DISABLED, /* acceptAddr: disabled */

 DISABLED, /* enableWake: disabled */

 DISABLED, /* enableByteMode: disabled */

 I2C_STANDARD_MODE_MAX, /* dataRate: 100 kbps */

 DISABLED, /* acceptGeneralAddr */

};

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 9 of 211

/***

* UART Configuration

***/

#define UART_OVERSAMPLING (16u)

#define UART_DATA_WIDTH (8u)

#define UART_RX_INTR_MASK (Comm_INTR_RX_NOT_EMPTY)

#define UART_TX_INTR_MASK (0u)

#define UART_RX_BUFFER_SIZE (COMMON_BUFFER_SIZE)

#define UART_TX_BUFFER_SIZE (COMMON_BUFFER_SIZE)

#define UART_RX_BUFER_PTR bufferRx

#define UART_TX_BUFER_PTR bufferTx

/* UART desired baud rate is 115200 bps. The selected Oversampling parameter is

* 16. The CommCLK = Baud rate * Oversampling = 115200 * 16 = 1.843 MHz.

* The clock divider has to be calculated to control clock frequency as clock

* Component provides interface to it.

* Divider = (HFCLK / CommCLK) = (24MHz / 1.8432 MHz) = 13. But the value

* written into the register has to decremented by 1. The end result is 12.

* The clock accuracy is important for UART operation. The actual CommCLK equal:

* CommCLK(actual) = (24MHz / 13MHz) = 1.846 MHz

* The deviation of actual CommCLK from desired must be calculated:

* Deviation = (1.843MHz – 1.846 MHz) / 1.843 MHz = ~0.2%

* Taking into account HFCLK accuracy ±2%, the total error is: 0.2 + 2= 2.2%.

* The total error value is less than 5% and it is enough for correct

* UART operation.

*/

#define UART_CLK_DIVIDER (12u)

/* Comm_UART_INIT_STRUCT provides the fields which match the selections

* available in the customizer. Refer to the I2C customizer for detailed

* description of the settings.

*/

const Comm_UART_INIT_STRUCT configUart =

{

 Comm_UART_MODE_STD, /* mode: Standard */

 Comm_UART_TX_RX, /* direction: RX + TX */

 UART_DATA_WIDTH, /* dataBits: 8 bits */

 Comm_UART_PARITY_NONE, /* parity: None */

 Comm_UART_STOP_BITS_1, /* stopBits: 1 bit */

 UART_OVERSAMPLING, /* oversample: 16 */

 DISABLED, /* enableIrdaLowPower: disabled */

 DISABLED, /* enableMedianFilter: disabled */

 DISABLED, /* enableRetryNack: disabled */

 DISABLED, /* enableInvertedRx: disabled */

 DISABLED, /* dropOnParityErr: disabled */

 DISABLED, /* dropOnFrameErr: disabled */

 NON_APPLICABLE, /* enableWake: disabled */

 UART_RX_BUFFER_SIZE, /* rxBufferSize: TX software buffer size */

 UART_RX_BUFER_PTR, /* rxBuffer: pointer to RX software buffer */

 UART_TX_BUFFER_SIZE, /* txBufferSize: TX software buffer size */

 UART_TX_BUFER_PTR, /* txBuffer: pointer to TX software buffer */

 DISABLED, /* enableMultiproc: disabled */

 DISABLED, /* multiprocAcceptAddr: disabled */

 NON_APPLICABLE, /* multiprocAddr: N/A */

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 10 of 211 Document Number: 002-10814 Rev. *E

 NON_APPLICABLE, /* multiprocAddrMask: N/A */

 ENABLED, /* enableInterrupt: enable internal interrupt

 * handler for the software buffer */

 UART_RX_INTR_MASK, /* rxInterruptMask: enable INTR_RX.NOT_EMPTY to

 * handle RX software buffer operations */

 NON_APPLICABLE, /* rxTriggerLevel: N/A */

 UART_TX_INTR_MASK, /* txInterruptMask: no TX interrupts on start up */

 NON_APPLICABLE, /* txTriggerLevel: N/A */

 DISABLED, /* enableByteMode: disabled */

 DISABLED, /* enableCts: disabled */

 DISABLED, /* ctsPolarity: disabled */

 DISABLED, /* rtsRxFifoLevel: disabled */

 DISABLED, /* rtsPolarity: disabled */

};

The following example implements a function that changes the SCB configuration according to
the passed opMode, and returns the status of the configuration change. This function refers to
configuration structures provided for the I2C and UART previously.

The instance name of the SCB Component is “Comm” and the instance name of the clock
Component is “CommCLK”.

/* Operation mode: I2C slave or UART */

#define OP_MODE_UART (0u)

#define OP_MODE_I2C (1u)

/* Global variables to manage current operation mode and initialization state */

uint32 mode = OP_MODE_UART;

/***

* Function Name: ConfigurationChange

**

static cystatus ConfigurationChange(uint32 opMode)

{

 cystatus status = CYRET_SUCCESS;

 if (OP_MODE_I2C == opMode)

 {

 /***

 * Configure SCB in I2C mode and enable Component after completion.

 ***/

 /* Disable Component before re-configuration */

 Comm_Stop();

 /* Set clock divider to provide clock frequency to the SCB Component

 * to operated with desired data rate.

 */

 CommCLK_SetFractionalDividerRegister(I2C_CLK_DIVIDER, 0u);

 /* Configure SCB Component. The configuration is stored in the I2C

 * configuration structure.

 */

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 11 of 211

 Comm_I2CInit(&configI2C);

 /* Set read and write buffers for the I2C slave */

 Comm_I2CSlaveInitWriteBuf(I2C_RX_BUFER_PTR, I2C_RX_BUFFER_SIZE);

 Comm_I2CSlaveInitReadBuf (I2C_TX_BUFER_PTR, I2C_TX_BUFFER_SIZE);

 /* Start Component after re-configuration is complete */

 Comm_Start();

 }

 else if (OP_MODE_UART == opMode)

 {

 /***

 * Configure SCB in UART mode and enable Component after completion

 ***/

 /* Disable Component before re-configuration */

 Comm_Stop();

 /* Set clock divider to provide clock frequency to the SCB Component

 * to operated with desired data rate.

 */

 CommCLK_SetFractionalDividerRegister(UART_CLK_DIVIDER, 0u);

 /* Configure SCB Component. The configuration is stored in the UART

 * configuration structure.

 */

 Comm_UartInit(&configUart);

 /* Start Component after re-configuration is complete */

 Comm_Start();

 }

 else

 {

 status = CYRET_BAD_PARAM; /* Unknown operation mode - no action */

 }

 return (status);

}

Note The ConfigurationChange() is a custom function that is not part of the Component API.

Note Before changing the configuration, the SCB Component must be disabled.

Note The SCB_Init() function does not initialize the Component when the mode is Unconfigured.
The SCB_“Mode”Init() specific APIs have to called.

API Names

Some APIs contain specific interface prefixes as part of their name. These APIs operate
correctly only when the Component is configured to utilize this interface. For example, the
SCB_I2CSlaveStatus() function works with the I2C interface.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 12 of 211 Document Number: 002-10814 Rev. *E

Other APIs are shared between two interfaces. In these cases, the API name contains each
interface. For example, the SCB_SpiUartWriteTxData() works with both the SPI or UART
interfaces.

APIs that do not belong to specific interfaces do not contain interface prefixes. For example,
SCB_Enable() or SCB_EnableInt().

I2C

The I2C bus is an industry-standard, two-wire hardware interface developed by Philips. The
master initiates all communication on the I2C bus and supplies the clock for all slave devices. I2C
is an ideal solution when networking multiple devices on a single board or small system.

The Component supports I2C Slave, Master, Multi-Master and Multi-Master-Slave configurations.

The Component supports standard clock speeds up to 1000 kbps. It is compatible [1] with I2C
Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus
specification [2] on the NXP web site at www.nxp.com. The Component is compatible with other
third-party slave and master devices.

Input/Output Connections

This section describes the various input and output connections for the SCB Component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.

clock – Input*

Clock that operates this block. The presence of this terminal varies depending on the Clock from
terminal parameter.

1 The PSoC 4 I2C peripherals are not completely compliant with the I2C specification except PSoC 4100 BLE /
PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L which have GPIO_OVT pins. For detailed
information refer to the Device datasheet.

2. Refer to the I2C-Bus Specification (Rev. 6 from October 2012) on the NXP web site at www.nxp.com.

http://www.nxp.com/
http://www.nxp.com/

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 13 of 211

Internal Pins Configuration

The I2C SCL and SDA pins are buried inside Component: SCB_scl and SCB_sda. These pins
are buried because they use dedicated connections and are not routable as general purpose
signals. Refer to the I/O System section in the device Technical Reference Manual (TRM) for
more information.

Note The instance name is not included in the Pin Name provided in the following table.

Table 1. I2C Pins Configuration

Pin
Name

Direction Drive Mode Initial Drive
State

Threshold Slew
Rate

Descriptiion

scl Bidirectional Open Drain
Drives Low

High CMOS Fast Serial clock (SCL) is the master-generated I2C clock.

This pins configuration requires connection of external pulls on
the I2C bus. The other option is applying internal pull-ups,
described in the Internal Pull-Ups section.

For PSoC 4100 / PSoC 4200 devices, I2C pins output enable is
assigend to 0 to make High-Z state when I2C device does not
drive the bus. This behavior supresses usage of internal pull-
ups (changing Drive Mode to Resistive pull-up has no effect).

For other devices, I2C pins output enable tied to 1 and pin state
depends on drive mode and output signal. The internal pull-ups
can be used.

sda Bidirectional Open Drain
Drives Low

High CMOS Fast Serial data (SDA) is the I2C data pin.

This pins configuration requires connection of external pulls on
the I2C bus. The other option is applying internal pull-ups which
is described in the Internal Pull-Ups section.

For PSoC 4100 / PSoC 4200 devices I2C pins output enable is
assigend to 0 to make High-Z state when I2C device does not
drive the bus. This behaviour supresses usage of internal pull-
ups (changing Drive Mode to Resistive pull-up has no effect).

For other devices: I2C pins output enable tied to 1 and pin state
depends on pin’s drive mode and output signal. The internal
pull-ups can be used.

The Input threshold level CMOS should be used for the vast majority of application connections.

The Output slew rate can be changed use Slew rate parameter. The other Input and Output pin’s
parameters are set to default. Refer to pin Component datasheet for more information about
parameters values.

To change I2C pins configuration the pin’s Component APIs should be used or direct pin
registers configuration. For example refer to the Internal Pull-Ups section.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 14 of 211 Document Number: 002-10814 Rev. *E

Basic I2C Parameters

The I2C Basic tab has the following parameters:

Mode

This option determines which mode will be supported: Slave, Master, Multi-Master or Multi-
Master-Slave.

▪ Slave – Slave only operation (default)

▪ Master – Master only operation

▪ Multi-Master – Supports more than one master on the bus

▪ Multi-Master-Slave – Simultaneous slave and multi-master operation

Data rate

This parameter is used to set the I2C data rate value up to 1000 kbps (400 kbps for PSoC 4000
family); the actual data rate may differ from the selected data rate due to available clock
frequency and Component settings. The standard data rates are 100 (default), 400, and 1000
kbps. This parameter has no effect if the Clock from terminal option is enabled.

Refer to the Data rate configuration section for more information about provided options of the
data rate selection.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 15 of 211

Actual data rate

The actual data rate displays the data rate at which the Component will operate with current
settings. The factors that affect the actual data rate calculation are: the accuracy of the
Component clock (internal or external) and oversampling factor (only for the Master modes). If
any of these parameters change the actual data rate is unknown. To calculate the new actual
data rate press the Apply button.

Note For Slave mode the actual data rate always provides maximum value for the selected data
rate mode (Standard-mode, Fast-mode, Fast-mode Plus).

Oversampling factor

This parameter defines the oversampling factor of the I2C SCL clock; the number of Component
clocks within one I2C SCL clock period.

For Slave mode, the oversampling factor is not applicable. The Component configures the SCB
clock to be within the valid range for the selected data rate. The valid clock frequency range is
taken from the Table 2 on page 16.

For Master modes, the Oversampling factor is the sum of Low and High oversampling values.
These values are used to generate the Low and High phases of the I2C clock.

The valid range of the Oversampling factor values is 12–32. The default is 16.

Low

This parameter is only applicable for Master modes. It specifies the oversampling factor of the
I2C SCL clock low phase; the number of Component clocks within one low period of the I2C SCL
clock. The minimum oversampling factor value is 7. The default is 8.

High

This parameter is only applicable for Master modes. It specifies the oversampling factor of the
I2C SCL clock high phase; the number of Component clocks within one high period of the I2C
SCL clock. The minimum oversampling factor value is 5. The default is 8.

Manual oversample control

This option is only available for Master modes. It allows a choice between manual and automatic
selection of I2C Oversampling factor parameters.

In the case of manual oversample control all oversampling parameters are editable. The
oversampling factor is used to calculate internal clock frequency to achieve this amount of
oversampling for the defined Data rate: fSCBCLK = Data rate * Oversampling factor. The
oversampling Low and High values are editable but sum of them must be equal to Oversampling
factor.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 16 of 211 Document Number: 002-10814 Rev. *E

In the case of automatic oversample control all oversampling parameters are disabled and
calculated by the GUI. The GUI requests an internal clock that is in range provided in the Table 3
on page 16 for the selected data rate. Creator creates a clock in this range and returns the clock
frequency to the GUI. The GUI uses this clock frequency and the selected data rate to calculate
the oversampling value. The oversampling values Low and High are adjusted to meet the
request data rate.

Note Refer to the Clock from terminal section to get more information about possible deviation of
requested clock frequency and actual value.

Clock from terminal

This check box allows choosing an internally configured clock (by the Component) or an
externally configured clock (by the user) for Component operation. Refer to the Oversampling
factor section to understand relationship between Component clock frequency and the
Component parameters.

When this option is enabled, the Component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency and the Component
oversampling factor (only for the Master modes). When this option is not enabled, the clock
configuration is provided by the Component. The clock source frequency is calculated or
selected by the Component based on the Data rate parameter and Oversampling factor (only for
the Master mode).

The following tables show the valid ranges for the Component clock for each data rate. When
using the Clock from terminal option, ensure that the external clock is within these ranges.

Table 2. I2C Slave clock frequency ranges

Parameter

Standard-mode

(0-100 kbps)

Fast-mode

(0-400 kbps)

Fast-mode Plus

(0-1000 kbps)

Units Min Max Min Max Min Max

fSCB 1.55 12.8 7.82 15.38 15.84 48.0 MHz

Note For Slave mode, if the clock frequency is less than lower limit of 1.55 MHz, an error is
generated while building the project.

Table 3. I2C Master modes clock frequency ranges

Parameter

Standard-mode

(0-100 kbps)

Fast-mode

(0-400 kbps)

Fast-mode Plus

(0-1000 kbps)

Units Min Max Min Max Min Max

fSCB 1.55 3.2 7.82 10.00 14.32 25.8 MHz

Oversampling Low 8 16 13 16 9 16 –

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 17 of 211

Parameter

Standard-mode

(0-100 kbps)

Fast-mode

(0-400 kbps)

Fast-mode Plus

(0-1000 kbps)

Units Min Max Min Max Min Max

Oversampling High 8 16 8 16 6 16 –

Taking into account the ranges provided in Table 3 on page 16 for clock frequency and
oversampling the calculated data rate ranges are provided in Table 4 on page 17.

It is possible to create data rates that are outside of the ranges provided in Table 4 on page 17.
However creating these data rates requires using clock frequencies or oversampling outside of
the ranges provided in Table 3 on page 16. If a clock frequency or oversampling is used outside
of the range provided in Table 3 on page 16 certain I2C parameters in the I2C specification may
be violated. To determine which specifications are violated refer to the I2C spec parameters
calculation section.

Table 4. I2C master modes data rates ranges

Parameter

Standard-mode

(0-100 kbps)

Fast-mode

(0-400 kbps)

Fast-mode Plus

(0-1000 kbps)

Units Min Max Min Max Min Max

Data rate 48 100 244 400 447 1000 kbps

Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, Component
settings or external clock to fit the clocking system requirements.

Byte mode

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M /
PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.
It allows doubling the TX and RX FIFO depth from 8 to 16 bytes. Increasing FIFO depth
improves performance of I2C operation, as more bytes can be transmitted or received without
software interaction.

Slave address (7-bits)

This is the I2C address that will be recognized by the slave. It is only applicable for slave modes.
This address is the 7-bit right-justified slave address and does not include the R/W bit. A slave
address between 0x08 and 0x7F may be selected; the default is 0x08.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 18 of 211 Document Number: 002-10814 Rev. *E

The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address. The binary input format is supported as well.

Slave address mask

This parameter is used to mask bits of the slave address during the address match procedure.
Bit 0 of the address mask corresponds to the read/write direction bit and is always a do not care
in the address match.

▪ Bit value 0 – excludes bit from address comparison.

▪ Bit value 1 – the bit needs to match with the corresponding bit of the I2C slave address.

The following example shows the 7-bit slave address is 0x1B and the 8-bit address Mask is
0xDE.

 7-bits Slave address R/W

Address 0 0 1 1 0 1 1 x

Mask 1 1 0 1 1 1 1 0

Result 0 0 x 1 0 1 1 x

x = Do not care

Thus the matched 7-bit slave addresses are 0x1B and 0x0B.

The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address. The binary input format is supported as well.

Accept matching address in RX FIFO

This parameter determines whether to accept a matched I2C slave address in the RX FIFO or
not. This can be useful when more than one I2C address is implemented in a single SCB. In
order to access this address a callback function needs to be registered with the
SCB_SetI2cAddressCustomInterruptHandler() function. Inside this call back function the address
can be read out of the RX FIFO, and then appropriate action can be taken based on the address
in the FIFO. This may include a status update or changing read or write buffer. The callback
function must return the decision made to ACK or NACK the address. The NACK or ACK
command is executed by the I2C slave ISR. If the callback function is not registered the accepted
addresses are ACKed and the address is read from the RX FIFO and discarded.

For more information, refer to the Accept matching address RX FIFO section under the I2C
chapter in this document.

Note If this option is checked and the address is not read in a callback function the address will
appear in the write buffer. This may not be desirable behavior.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 19 of 211

Accept general call address

This option enables the hardware to accept the I2C general call address (0x00). In order to
access this general call address a callback function needs to be registered with the
SCB_SetI2cAddressCustomInterruptHandler() function. Inside this callback function the general
call address accept status can be checked, and then appropriate action can be taken based on
the address in the FIFO. This may include status update, changing read or write buffer. The
callback function must return the decision made to ACK or NACK the address. The NACK or
ACK command is executed by the I2C slave ISR. If the callback function is not registered the
general call address is ACKed.

For more information, refer to the Accept General Call section under the I2C chapter in this
document.

Note The general call address accept does not cause wakeup event to occur.

Enable wakeup from Deep Sleep Mode

Use this option to enable the Component to wake the system from Deep Sleep when a slave
address match occurs. It is only available for Slave or Multi-Master-Slave mode.

For PSoC 4100 / PSoC 4200 devices, the Slave address (7-bits) must be even (bit 0 equal zero)
when this option is enabled.

For all supported devices, the data rate must be less than or equal to 400 kbps for Multi-Master-
Slave mode when this option is enabled.

Refer to the Low power modes section under the I2C chapter in this document; refer also to the
Power Management APIs section of the System Reference Guide for more information.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 20 of 211 Document Number: 002-10814 Rev. *E

Advanced I2C Parameters

The I2C Advanced tab contains the following parameters:

Slew rate

This option allows to control slew rate setting of the SCL and SDA pins. The slow slew rate
increases the fall time on the lines, reducing EMI and coupling with neighboring signals. For
devices supporting GPIO Over-Voltage Tolerance (GPIO_OVT) pins, I2C FM+ options should be
used when I2C data rate is greater than 400 kbps. This option also requires the I2C bus voltage
to be defined. Refer to the Device Datasheet to determine which pins are GPIO_OVT capable.
Default is fast.

Notes

▪ GPIO_OVT pins are fully compliant with the I2C specification (except for hot swap
capability during I2C active communication), but the slew rate must be set appropriately:

□ Slew rate "Slow" for Standard mode (100 kbps) and Fast mode (400 kbps)

□ Slew rate "I2C FM+" for Fast mode plus (1 Mbps)

Common GPIO pins are not completely compliant with the I2C specification. Refer to the
Device Datasheet for the details.

▪ Slew rate settings are applied to all pins of the associated port.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 21 of 211

I2C bus voltage (V)

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L devices. It specifies the voltage applied to the I2C pull up resistors when
Slew rate is I2C FM+. The voltage no less than applied to I2C pulls up resistors must be provided
by the VDDD supply input, otherwise the I2C pins cannot be placed. Valid values of VDDD are
determined by the settings in the Design-Wide Resources System Editor (in the <project>.cydwr
file). This range check is performed outside this dialog; the results appear in the Notice List
window if the check fails. Default is 3.3 V.

External Electrical Connections

As shown in the following figure, the I2C bus requires external pull-up resistors. The pull-up
resistors (RP) are primarily determined by the supply voltage, bus speed, and bus capacitance.
For detailed information on how to calculate the optimum pull-up resistor value for your design
we recommend using the UM10204 I2C-bus specification and user manual Rev. 6, available from
the NXP website at www.nxp.com.

Figure 1. Connection of Devices to the I2C Bus

Device 1

SDA (Serial Data Line)

SCL (Serial Clock Line)

Device 2

Rp Rp

+VDD

pull-up

resistors

For most designs, the default values shown in the following table provide excellent performance
without any calculations. The default values were chosen to use standard resistor values
between the minimum and maximum limits.

Table 5. Recommended Default Pull-up Resistor Values

Standard Mode
(0 – 100 kbps)

Fast Mode
(0 – 400 kbps)

Fast Mode Plus
(0 – 1000 kbps)

Units

4.7 k, 5% 1.74 k, 1% 620, 5% Ω

These values work for designs with 1.8 V to 5.0V VDD, less than 200 pF bus capacitance (CB), up
to 25 µA of total input leakage (IIL), up to 0.4 V output voltage level (VOL), and a max VIH of 0.7 *
VDD.

http://www.nxp.com/

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 22 of 211 Document Number: 002-10814 Rev. *E

Standard Mode and Fast Mode can use either GPIO [1] or GPIO_OVT PSoC pins. Fast Mode
Plus requires use of GPIO_OVT pins to meet the VOL spec at 20 mA. Calculation of custom pull-
up resistor values is required if; your design does not meet the default assumptions, you use
series resistors (RS) to limit injected noise, or you want to maximize the resistor value for low
power consumption.

Calculation of the ideal pull-up resistor value involves finding a value between the limits set by
three equations detailed in the NXP I2C specification. These equations are:

 Equation 1: RPMIN = (VDD(max) – VOL(max)) / IOL(min)

 Equation 2: RPMAX = TR(max) / 0.8473 x CB(max)

 Equation 3: RPMAX = VDD(min) – (VIH(min) + VNH(min)) / IIH(max)

Equation parameters:

▪ VDD = Nominal supply voltage for I2C bus

▪ VOL = Maximum output low voltage of bus devices.

▪ IOL= Low level output current from I2C specification

▪ TR = Rise Time of bus from I2C specification

▪ CB = Capacitance of each bus line including pins and PCB traces

▪ VIH = Minimum high level input voltage of all bus devices

▪ VNH = Minimum high level input noise margin from I2C specification

▪ IIH = Total input leakage current of all devices on the bus

The supply voltage (VDD) limits the minimum pull-up resistor value due to bus devices maximum
low output voltage (VOL) specifications. Lower pull-up resistance increases current through the
pins and can therefore exceed the spec conditions of VOH. Equation 1 is derived using Ohm’s law
to determine the minimum resistance that will still meet the VOL specification at 3 mA for standard
and fast modes, and 20 mA for fast mode plus at the given VDD.

Equation 2 determines the maximum pull-up resistance due to bus capacitance. Total bus
capacitance is comprised of all pin, wire, and trace capacitance on the bus. The higher the bus
capacitance the lower the pull-up resistance required to meet the specified bus speeds rise time
due to RC delays. Choosing a pull-up resistance higher than allowed can result in failing timing
requirements resulting in communication errors. Most designs with five of fewer I2C devices and
up to 20 centimeters of bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value is total bus leakage calculated
in Equation 3. The primary source of leakage is I/O pins connected to the bus. If leakage is too
high, the pull-ups will have difficulty maintaining an acceptable VIH level causing communication
errors. Most designs with five or fewer I2C devices on the bus have less than 10 µA of total
leakage current.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 23 of 211

Internal Pull-Ups

PSoC also has an internal pull-up resistor for each pin that can be used instead of external pull-
up resistors connected to the I2C bus. These resistors are weak (5.6k Ω); therefore, their usage
is limited to Standard mode operation according to Table 5 on page 21. Refer to Device
Datasheet parameter RPULLUP for resistor value specification. It is not recommended to use
internal I2C pull-up resistors because their value cannot be changed if needed later in the
design.

The I2C pins SCL and SDA are buried inside the SCB Component. The drive mode for these pins
is “Open Drain, Drives Low” for use with external pull-up resistors on the I2C bus. To enable use
of the PSoC internal pull-up resistor, the drive mode of the pin must be changed to “Resistive Pull
Up.” The SCB Component GUI does not provide this option; therefore, the drive mode must be
changed by firmware. The pin names are generated from the Component name in the schematic and
may require updating. The following code must be added before starting the Component:

/* Change SCL and SDA pins drive mode to Resistive Pull Up */

SCB_scl_SetDriveMode(SCB_scl_DM_RES_UP);

SCB_sda_SetDriveMode(SCB_sda_DM_RES_UP);

Note For PSoC 4100 / PSoC 4200 I2C pins output enable is assigned to 0 to make High-Z state
when I2C device does not drive the bus. This behavior suppresses usage of internal pull-ups

(changing Drive Mode to Resistive pull-up has no effect). The external pull-ups must be used.

I2C APIs

Application Programming Interface (API) functions allow you to configure the Component using
software. The following table lists and describes the interface to each function. The subsequent
section discusses each function in more detail.

By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.

Function Description

SCB_Start() Starts the SCB Component.

SCB_Init() Initialize the SCB Component according to defined parameters in the
customizer.

SCB_Enable() Enables the SCB Component operation.

SCB_Stop() Disable the SCB Component.

SCB_Sleep() Prepares the SCB Component to enter Deep Sleep.

SCB_Wakeup() Prepares Component for Active mode operation after Deep Sleep.

SCB_I2CInit() Configures the SCB Component for operation in I2C mode. Only applicable
when Component is in unconfigured mode.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 24 of 211 Document Number: 002-10814 Rev. *E

Function Description

SCB_I2CSlaveStatus() Returns slave status flags.

SCB_I2CSlaveClearReadStatus() Returns the slave read status flags and clears slave read status flags.

SCB_I2CSlaveClearWriteStatus() Returns the slave write status and clears the slave write status flags.

SCB_I2CSlaveSetAddress() Sets slave address, a value between 0 and 127 (0x00 to 0x7F).

SCB_I2CSlaveSetAddressMask() Sets slave address mask, a value between 0 and 254 (0x00 to 0xFE).

SCB_I2CSlaveInitReadBuf() Sets up the slave receive data buffer (master <- slave).

SCB_I2CSlaveInitWriteBuf() Sets up the slave write buffer (master -> slave).

SCB_I2CSlaveGetReadBufSize() Returns the number of bytes read by the master since
SCB_I2CSlaveClearReadBuf() was called.

SCB_I2CSlaveGetWriteBufSize() Returns the number of bytes written by the master since
SCB_I2CSlaveClearWriteBuf() was called.

SCB_I2CSlaveClearReadBuf() Resets the read buffer counter to zero.

SCB_I2CSlaveClearWriteBuf() Resets the write buffer counter to zero.

SCB_I2CMasterStatus() Returns the master status.

SCB_I2CMasterClearStatus() Returns the master status and clears the status flags.

SCB_I2CMasterWriteBuf() Writes the referenced data buffer to a specified slave address.

SCB_I2CMasterReadBuf() Reads data from the specified slave address and places the data in the
referenced buffer.

SCB_I2CMasterSendStart() Generates a start condition and sends specified slave address.

SCB_I2CMasterSendRestart() Generates a restart condition and sends specified slave address.

SCB_I2CMasterSendStop() Generates a stop condition.

SCB_I2CMasterWriteByte() Writes a single byte. This is a manual command that should only be used with
the SCB_I2CMasterSendStart() or SCB_I2CMasterSendRestart() functions.

SCB_I2CMasterReadByte() Reads a single byte. This is a manual command that should only be used
with the SCB_I2CMasterSendStart() or SCB_I2CMasterSendRestart()
functions.

SCB_I2CMasterGetReadBufSize() Returns the number of bytes that have been transferred with the
SCB_I2CMasterReadBuf() function.

SCB_I2CMasterGetWriteBufSize() Returns the number of bytes that have been transferred with the
SCB_I2CMasterWriteBuf() function.

SCB_I2CMasterClearReadBuf() Resets the read buffer pointer back to the beginning of the buffer.

SCB_I2CMasterClearWriteBuf() Resets the write buffer pointer back to the beginning of the buffer.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 25 of 211

void SCB_Start(void)

Description: Invokes SCB_Init() and SCB_Enable(). After this function call the Component is
enabled and ready for operation. This is the preferred method to begin Component
operation.

When configuration is set to “Unconfigured SCB”, the Component must first be
initialized to operate in one of the following configurations: I2C, SPI, UART or EZ I2C.
Otherwise this function does not enable the Component.

void SCB_Init(void)

Description: Initializes SCB Component to operate in one of selected configurations: I2C, SPI, UART
or EZ I2C.

When the configuration is set to “Unconfigured SCB”, this function does not do any
initialization. Use mode-specific initialization APIs instead: SCB_I2CInit, SCB_SpiInit,
SCB_UartInit or SCB_EzI2CInit.

void SCB_Enable(void)

Description: Enables SCB Component operation; activates the hardware and internal interrupt. It
also restores TX interrupt sources disabled after the SCB_Stop() function was called
(note that level-triggered TX interrupt sources remain disabled to not cause code lock-
up).

For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI
and UART modes the interrupt can be configured as none, internal or external.

The SCB configuration should be not changed when the Component is enabled. Any
configuration changes should be made after disabling the Component.

When configuration is set to “Unconfigured SCB”, the Component must first be
initialized to operate in one of the following configurations: I2C, SPI, UART or EZ I2C,
using the mode-specific initialization API. Otherwise this function does not enable the
Component.

void SCB_Stop(void)

Description: Disables the SCB Component: disable the hardware and internal interrupt. It also
disables all TX interrupt sources so as not to cause an unexpected interrupt trigger
because after the Component is enabled, the TX FIFO is empty.

Refer to the function SCB_Enable() for the interrupt configuration details.

This function disables the SCB Component without checking to see if communication is
in progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 26 of 211 Document Number: 002-10814 Rev. *E

void SCB_Sleep(void)

Description: Prepares the SCB Component to enter Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:

• Checked: configures the Component to be wakeup source from Deep Sleep.

• Unchecked: stores the current Component state (enabled or disabled) and disables
the Component. See SCB_Stop() function for details about Component disabling.

Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function. Refer
to the PSoC Creator System Reference Guide for more information about power
management functions and Low power section of this document for the selected mode.

This function should not be called before entering Sleep.

void SCB_Wakeup(void)

Description: Prepares the SCB Component for Active mode operation after Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has influence on this function
implementation:

• Checked: restores the Component Active mode configuration.

• Unchecked: enables the Component if it was enabled before enter Deep Sleep.

This function should not be called after exiting Sleep.

Side Effects: Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.

void SCB_I2CInit(SCB_I2C_INIT_STRUCT *config)

Description: Configures the SCB for I2C operation.

This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in I2C mode using this
function, the Component can be enabled using the SCB_Start() or SCB_Enable() function.

This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the customizer
settings.

Parameters: config: pointer to a structure that contains the following list of fields. These fields match the
selections available in the customizer. Refer to the customizer for further description of the
settings.

Field Description

uint32 mode Mode of operation for I2C. The following defines are available choices:

• SCB_I2C_MODE_SLAVE

• SCB_I2C_MODE_MASTER

• SCB_I2C_MODE_MULTI_MASTER

• SCB_I2C_MODE_MULTI_MASTER_SLAVE

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 27 of 211

uint32 oversampleLow Oversampling factor for the low phase of the I2C clock. Ignored for Slave
mode operation. The oversampling factors need to be chosen in
conjunction with the clock rate in order to generate the desired rate of I2C
operation.

uint32 oversampleHigh Oversampling factor for the high phase of the I2C clock. Ignored for Slave
mode operation.

uint32 enableMedianFilter This field is left for compatibility and its value is ignored. Median filter is
enabled or disabled depends on the data rate and operation mode.

uint32 slaveAddr 7-bit slave address. Ignored for non-slave modes.

uint32 slaveAddrMask 8-bit slave address mask. Bit 0 must have a value of 0. Ignored for non-
slave modes.

Parameters
(cont.)

config :

Field Description

uint32 acceptAddr 0 – disable

1 – enable

When enabled the matching address is received into the RX FIFO.

The callback function has to be registered to handle the address accepted
in the RX FIFO. Refer to section Accept matching address RX FIFO for
more information.

uint32 enableWake 0 – disable

1 – enable

Ignored for non-slave modes.

uint8 enableByteMode Ignored for all devices other than PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S /
PSoC Analog Coprocessor

0 – disable

1 – enable

When enabled the TX and RX FIFO depth is 16 bytes.

uint16 dataRate Data rate in kbps used while the of I2C is in operation. Valid values are
between 1 and 1000.

Note This filed must be initialized for correct operation if Unconfigured SCB
was utilized with previous version of the Component.

uint8 acceptGeneralAddr 0 – disable

1 – enable

When enabled the I2C general call address (0x00) will be accepted by the
I2C hardware and trigger an interrupt

The callback function has to be registered to handle a general call address.
Refer to section Accept General Call for more information.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 28 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_I2CSlaveStatus(void)

Description: Returns the slave’s communication status.

Return Value: uint32: Current status of I2C slave.

This status incorporates read and write status constants. Each constant is a bit field
value. The value returned may have multiple bits set to indicate the status of the read or
write transfer.

Slave Status constants Description

SCB_I2C_SSTAT_RD_CMPLT Slave read transfer complete. Set when master indicates
it is done reading by sending a NAK [3]

.

The read error condition status bit must be checked to
ensure that the read transfer was completed successfully.

SCB_I2C_SSTAT_RD_BUSY Slave read transfer is in progress. Set when master
addresses slave with a read, cleared when RD_CMPLT is
set.

SCB_I2C_SSTAT_RD_OVFL Master attempted to read more bytes than are in buffer.
Slave continually returns 0xFF byte in this case.

SCB_I2C_SSTAT_RD_ERR Slave captured error on the bus during a read transfer.
The sources of error are: misplaced Start or Stop
condition or lost arbitration while slave drives SDA.

SCB_I2C_SSTAT_WR_CMPLT Slave write transfer complete. Set at reception of a Stop
or ReStart condition.

The write error condition status bit must be checked to
ensure that write transfer was completed successfully.

SCB_I2C_SSTAT_WR_BUSY Slave write transfer is in progress. Set when the master
addresses the slave with a write, cleared when
WR_CMPLT is set.

SCB_I2C_SSTAT_WR_OVFL Master attempted to write past end of buffer. Further
bytes are ignored.

SCB_I2C_SSTAT_WR_ERR Slave captured error on the bus during write transfer. The
sources of error are: misplaced Start or Stop condition or
lost arbitration while slave drives SDA.

The write buffer may contain invalid bytes or part of the
data transfer when SCB_I2C_SSTAT_WR_ERR is set. It
is recommended to discard write buffer content in this
case.

3 NAK is an abbreviation for negative acknowledgment or not acknowledged. I2C documents commonly use NACK
while the rest of the networking world uses NAK. They mean the same thing.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 29 of 211

uint32 SCB_I2CSlaveClearReadStatus(void)

Description: Clears the read status flags and returns their values. No other status flags are affected.

Return Value: uint32: Current read status of slave. See the SCB_I2CSlaveStatus() function for constants.

Side Effects: This function does not clear SCB_I2C_SSTAT_RD_BUSY.

uint32 SCB_I2CSlaveClearWriteStatus(void)

Description: Clears the write status flags and returns their values. No other status flags are affected.

Return Value: uint32: Current write status of slave. See the SCB_I2CSlaveStatus() function for constants.

Side Effects: This function does not clear SCB_I2C_SSTAT_WR_BUSY.

void SCB_I2CSlaveSetAddress(uint32 address)

Description: Sets the I2C slave address

Parameters: uint32 address: I2C slave address. This address is the 7-bit right-justified slave address
and does not include the R/W bit.

The address value is not checked to see if it violates the I2C spec. The preferred addresses
are between 8 and 120 (0x08 to 0x78).

void SCB_I2CSlaveSetAddressMask(uint32 addressMask)

Description: Sets the I2C slave address

Parameters: uint32 addressMask: I2C slave address mask.

Bit value 0 – excludes bit from address comparison.

Bit value 1 – the bit needs to match with the corresponding bit of the I2C slave address.

The range of valid values is between 0 and 254 (0x00 to 0xFE). The LSB of the address
mask must be 0 because it corresponds to R/W bit within I2C slave address byte.

void SCB_I2CSlaveInitReadBuf(uint8 * rdBuf, uint32 bufSize)

Description: Sets the buffer pointer and size of the read buffer. This function also resets the transfer
count returned with the SCB_I2CSlaveGetReadBufSize() function.

Parameters: uint8* rdBuf: Pointer to the data buffer to be read by the master.

uint32 bufSize: Size of the buffer exposed to the I2C master.

Side Effects: If this function is called during a bus transaction, data from the previous buffer location
and the beginning of the current buffer may be transmitted.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 30 of 211 Document Number: 002-10814 Rev. *E

void SCB_I2CSlaveInitWriteBuf(uint8 * wrBuf, uint32 bufSize)

Description: Sets the buffer pointer and size of the write buffer. This function also resets the transfer
count returned with the SCB_I2CSlaveGetWriteBufSize() function.

Parameters: uint8* wrBuf: Pointer to the data buffer to be written by the master.

uint32 bufSize: Size of the write buffer exposed to the I2C master.

Side Effects: If this function is called during a bus transaction, data may be received in the previous
buffer and the current buffer location.

uint32 SCB_I2CSlaveGetReadBufSize(void)

Description: Returns the number of bytes read by the I2C master since the
SCB_I2CSlaveInitReadBuf() or SCB_I2CSlaveClearReadBuf() function was called.

The maximum return value is the size of the read buffer.

Return Value: uint32: Bytes read by master. If the transfer is not yet complete, it returns zero until
transfer completion.

Side Effects: The returned value is not valid if SCB_I2C_SSTAT_RD_ERR was captured by the
slave.

uint32 SCB_I2CSlaveGetWriteBufSize(void)

Description: Returns the number of bytes written by the I2C master since the
SCB_I2CSlaveInitWriteBuf() or SCB_I2CSlaveClearWriteBuf() function was called.

The maximum return value is the size of the write buffer.

Return Value: uint32: Bytes written by master. If the transfer is not yet complete, it returns the byte
count transferred so far.

Side Effects: The returned value is not valid if SCB_I2C_SSTAT_WR_ERR was captured by the
slave.

void SCB_I2CSlaveClearReadBuf(void)

Description: Resets the read pointer to the first byte in the read buffer. The next byte read by the
master will be the first byte in the read buffer.

void SCB_I2CSlaveClearWriteBuf(void)

Description: Resets the write pointer to the first byte in the write buffer. The next byte written by the
master will be the first byte in the write buffer.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 31 of 211

uint32 SCB_I2CMasterStatus(void)

Description: Returns the master’s communication status.

Return Value: uint32: Current status of I2C master. This status incorporates status constants. Each
constant is a bit field value. The value returned may have multiple bits set to indicate the
status of the read or write transfer.

Master Status constants Description

SCB_I2C_MSTAT_RD_CMPLT Read transfer complete.

The error condition status bits must be checked
to ensure that read transfer was completed
successfully.

SCB_I2C_MSTAT_WR_CMPLT Write transfer complete.

The error condition status bits must be checked
to ensure that write transfer was completed
successfully.

SCB_I2C_MSTAT_XFER_INP Transfer in progress.

SCB_I2C_MSTAT_XFER_HALT Transfer has been halted. The I2C bus is
waiting for ReStart or Stop condition
generation.

SCB_I2C_MSTAT_ERR_SHORT_XFER Error condition: Write transfer completed
before all bytes were transferred.

The slave NAKed the byte which was expected
to be ACKed.

SCB_I2C_MSTAT_ERR_ADDR_NAK Error condition: Slave did not acknowledge
address.

SCB_I2C_MSTAT_ERR_ARB_LOST Error condition: Master lost arbitration during
communications with slave.

SCB_I2C_MSTAT_ERR_BUS_ERROR Error condition: bus error occurred during
master transfer due to misplaced Start or Stop
condition on the bus.

SCB_I2C_MSTAT_ERR_ABORT_XFER Error condition: Slave was addressed by
another master while master performed the
start condition generation. As a result, master
has automatically switched to slave mode and
is responding. The master transaction has not
taken place

This error condition only applicable for Multi-
Master-Slave mode.

SCB_I2C_MSTAT_ERR_XFER Error condition: This is the ORed value of all
error conditions provided above.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 32 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_I2CMasterClearStatus(void)

Description: Clears all status flags and returns the master status.

Return Value: uint32: Current status of master. See the SCB_I2CMasterStatus() function for
constants.

uint32 SCB_I2CMasterWriteBuf(uint32 slaveAddress, uint8 * wrData, uint32 cnt,
uint32 mode)

Description: Automatically writes an entire buffer of data to a slave device. Once the data transfer is
initiated by this function, further data transfer is handled by the included ISR.

Enables the I2C interrupt and clears SCB_ I2C_MSTAT_WR_CMPLT status.

Parameters: uint32 slaveAddress: Right-justified 7-bit Slave address (valid range 8 to 120).

uint8 wrData: Pointer to buffer of data to be sent.

uint32 cnt: Number of bytes of buffer to send.

uint32 mode: Transfer mode defines:

(1) Whether a start or restart condition is generated at the beginning of the transfer,
and

(2) Whether the transfer is completed or halted before the stop condition is generated
on the bus.

Transfer mode, mode constants may be ORed together.

Transfer Mode constants Description

SCB_I2C_MODE_COMPLETE_XFER Perform complete transfer from Start to Stop.

SCB_I2C_MODE_REPEAT_START Send Repeat Start instead of Start.

A Stop is generated after transfer is completed
unless NO_STOP is specified.

SCB_I2C_MODE_NO_STOP Execute transfer without a Stop.

The following transfer expected to perform
ReStart.

Return Value: uint32: Error status.

Error Status constants Description

SCB_I2C_MSTR_NO_ERROR Function complete without error. The master started the
transfer.

SCB_I2C_MSTR_BUS_BUSY Bus is busy. Nothing was sent on the bus. The attempt
has to be retried.

SCB_I2C_MSTR_NOT_READY Master is not ready for to start transfer.

A master still has not completed previous transaction or
a slave operation is in progress (in multi-master-slave
configuration).

Nothing was sent on the bus. The attempt has to be
retried.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 33 of 211

uint32 SCB_I2CMasterReadBuf(uint32 slaveAddress, uint8 * rdData, uint32 cnt,
uint32 mode)

Description: Automatically reads an entire buffer of data from a slave device. Once the data transfer is
initiated by this function, further data transfer is handled by the included ISR.

Enables the I2C interrupt and clears SCB_ I2C_MSTAT_RD_CMPLT status.

Parameters: uint32 slaveAddress: Right-justified 7-bit Slave address (valid range 8 to 120).

uint8 rdData: Pointer to buffer where to put data from slave.

uint32 cnt: Number of bytes of buffer to read.

uint32 mode: Transfer mode defines:

(1) Whether a start or restart condition is generated at the beginning of the transfer, and

(2) Whether the transfer is completed or halted before the stop condition is generated on
the bus.

Transfer mode, mode constants may be ORed together. See SCB_I2CMasterWriteBuf()
function for constants.

Return Value: uint32: Error status.

Error Status constants Description

SCB_I2C_MSTR_NO_ERROR Function complete without error. The master started
the transfer.

SCB_I2C_MSTR_BUS_BUSY Bus is busy. Nothing was sent on the bus. The
attempt has to be retried.

SCB_I2C_MSTR_NOT_READY Master is not ready for to start transfer.

A master still has not completed previous transaction
or a slave operation is in progress (in multi-master-
slave configuration).

Nothing was sent on the bus. The attempt has to be
retried.

uint32 SCB_I2CMasterGetReadBufSize(void)

Description: Returns the number of bytes that has been transferred with an
SCB_I2CMasterReadBuf() function.

Return Value: uint32: Byte count of transfer. If the transfer is not yet complete, it returns the byte count
transferred so far.

Side Effects: This function returns an invalid value if SCB_I2C_MSTAT_ERR_ARB_LOST or
SCB_I2C_MSTAT_ERR_BUS_ERROR occurred during the read transfer.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 34 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_I2CMasterGetWriteBufSize(void)

Description: Returns the number of bytes that have been transferred with an
SCB_I2CMasterWriteBuf() function.

Return Value: uint32: Byte count of transfer. If the transfer is not yet complete, it returns zero unit
transfer completion.

Side Effects: This function returns an invalid value if SCB_I2C_MSTAT_ERR_ARB_LOST or
SCB_I2C_MSTAT_ERR_BUS_ERROR occurred during the write transfer.

void SCB_I2CMasterClearReadBuf(void)

Description: Resets the read buffer pointer back to the first byte in the buffer.

void SCB_I2CMasterClearWriteBuf(void)

Description: Resets the write buffer pointer back to the first byte in the buffer.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 35 of 211

uint32 SCB_I2CMasterSendStart(uint32 slaveAddress, uint32 bitRnW)

Description: Generates Start condition and sends slave address with read/write bit. Disables the I2C
interrupt.

This function is blocking. It does not return until the Start condition and address byte are
sent, a ACK/NAK is received, or errors have occurred.

Parameters: uint32 slaveAddress: Right justified 7-bit Slave address (valid range 8 to 120).

uint32 bitRnW: Direction of the following transfer. It is defined by read/write bit within
address byte.

Direction constants Description

SCB_I2C_WRITE_XFER_MODE Set write direction for the following transfer.

SCB_I2C_READ_XFER_MODE Set read direction for the following transfer.

Return Value: uint32: Error status.

Error Status constants Description

SCB_I2C_MSTR_NO_ERROR Function complete without error.

SCB_I2C_MSTR_BUS_BUSY Bus is busy. Nothing was sent on the bus. The
attempt has to be retried.

SCB_I2C_MSTR_NOT_READY Master is not ready for to start transfer.

A master still has not completed previous
transaction or a slave operation is in progress (in
multi-master-slave configuration).

Nothing was sent on the bus. The attempt has to
be retried.

SCB_I2C_MSTR_ERR_LB_NAK Error condition: Last byte was NAKed.

SCB_I2C_MSTR_ERR_ARB_LOST Error condition: Master lost arbitration.

SCB_I2C_MSTR_ERR_BUS_ERR Error condition: Master encountered a bus error.
Bus error is misplaced start or stop detection.

SCB_I2C_MSTR_ERR_ABORT_START Error condition: The start condition generation
was aborted due to beginning of Slave operation.
This error condition is only applicable for Multi-
Master-Slave mode.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 36 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_I2CMasterSendRestart(uint32 slaveAddress, uint32 bitRnW)

Description: Generates ReStart condition and sends slave address with read/write bit.

If the last transaction was a read the NAK is sent before the ReStart to complete the
transaction.

This function is blocking and does not return until the ReStart condition and address are
sent, a ACK/NAK is received, or errors have occurred.

Parameters: uint32 slaveAddress: Right-justified 7-bit Slave address (valid range 8 to 120).

uint32 bitRnW: Direction of the following transfer. It is defined by read/write bit within
address byte. See SCB_I2CMasterSendStart() function for constants.

Return Value: uint32: Error status. See SCB_I2CMasterSendStart() function for constants.

Side Effects: A valid Start or ReStart condition must be generated before calling this function. This
function does nothing if Start or ReStart conditions failed before this function was called.

For read transaction, at least one byte has to be read before ReStart generation.

uint32 SCB_I2CMasterSendStop(void)

Description: Generates Stop condition on the bus. The NAK is generated before Stop in case of a
read transaction.

At least one byte has to be read if a Start or ReStart condition with read direction was
generated before.

This function is blocking and does not return until a Stop condition is generated or error
occurred.

Return Value: uint32: Error status. See the SCB_MasterSendStart() command for constants.

Side Effects: A valid Start or ReStart condition must be generated before calling this function. This
function does nothing if Start or ReStart condition failed before this function was called.

For read transaction, at least one byte has to be read before Stop generation.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 37 of 211

uint32 SCB_I2CMasterWriteByte(uint32 theByte)

Description: Sends one byte to a slave.

This function is blocking and does not return until the byte is transmitted or an error
occurs.

Parameters: uint32 theByte: Data byte to send to the slave.

Return Value: uint32: Error status.

Error Status constants Description

SCB_I2C_MSTR_NO_ERROR Function complete without error.

SCB_I2C_MSTR_NOT_READY Master is not active master on the bus. A Slave
operation may be in progress. Nothing was sent on
the bus. The attempt has to be retried.

SCB_I2C_MSTR_ERR_LB_NAK Error condition: Last byte was NAKed.

SCB_I2C_MSTR_ERR_ARB_LOST Error condition: Master lost arbitration.

SCB_I2C_MSTR_ERR_BUS_ERR Error condition: Master encountered a bus error.
Bus error is misplaced start or stop detection.

Side Effects: A valid Start or ReStart condition must be generated before calling this function. This
function does nothing if Start or ReStart conditions failed before this function was called.

uint32 SCB_I2CMasterReadByte(uint32 ackNack)

Description: Reads one byte from a slave and generates ACK or prepares to generate NAK. The
NAK will be generated before Stop or ReStart condition by SCB_I2CMasterSendStop()
or SCB_I2CMasterSendRestart() function appropriately.

This function is blocking. It does not return until a byte is received or an error occurs.

Parameters: uint32 ackNack: Response to received byte.

Response constants Description

SCB_I2C_ACK_DATA Generates ACK.

The master notifies slave that transfer continues.

SCB_I2C_NAK_DATA Prepares to generate NAK.

The master will notify slave that transfer is
completed.

Return Value: uint32: Byte read from the slave. In case of error the MSB of returned data is set to 1.

Side Effects: A valid Start or ReStart condition must be generated before calling this function. This
function does nothing and returns invalid byte value if Start or ReStart conditions failed
before this function was called.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 38 of 211 Document Number: 002-10814 Rev. *E

Global Variables

Knowledge of these variables is not required for normal operations.

Variable Description

SCB_initVar SCB_initVar indicates whether the SCB Component has been initialized. The variable is initialized
to 0 and set to 1 the first time SCB_Start() is called. This allows the Component to restart without
reinitialization after the first call to the SCB_Start() routine.

If reinitialization of the Component is required, then the SCB_Init() function can be called before
the SCB_Start() or SCB_Enable() function.

I2C Function Appliance

Function Slave Master
Multi-

Master

Multi-
Master-
Slave

SCB_I2CInit() + + + +

SCB_I2CSlaveStatus() + – – +

SCB_I2CSlaveClearReadStatus() + – – +

SCB_I2CSlaveClearWriteStatus() + – – +

SCB_I2CSlaveSetAddress() + – – +

SCB_I2CSlaveSetAddressMask() + – – +

SCB_I2CSlaveInitReadBuf() + – – +

SCB_I2CSlaveInitWriteBuf() + – – +

SCB_I2CSlaveGetReadBufSize() + – – +

SCB_I2CSlaveGetWriteBufSize() + – – +

SCB_I2CSlaveClearReadBuf() + – – +

SCB_I2CSlaveClearWriteBuf() + – – +

SCB_I2CMasterStatus() – + + +

SCB_I2CMasterClearStatus() – + + +

SCB_I2CMasterWriteBuf() – + + +

SCB_I2CMasterReadBuf() – + + +

SCB_I2CMasterSendStart() – + + +

SCB_I2CMasterSendRestart() – + + +

SCB_I2CMasterSendStop() – + + +

SCB_I2CMasterWriteByte() – + + +

SCB_I2CMasterReadByte() – + + +

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 39 of 211

Function Slave Master
Multi-

Master

Multi-
Master-
Slave

SCB_I2CMasterGetReadBufSize() – + + +

SCB_I2CMasterGetWriteBufSize() – + + +

SCB_I2CMasterClearReadBuf() – + + +

SCB_I2CMasterClearWriteBuf() – + + +

Bootloader Support

The SCB Component in I2C mode can be used as a communication Component for the
Bootloader. You should use the following configurations to support communication protocol from
an external system to the Bootloader:

▪ Mode: Slave or Multi-Master-Slave

▪ Data Rate: Must match Host (boot device) data rate

▪ Slave Address: Must match Host (boot device) selected slave address

For more information about the Bootloader, refer to the Bootloader Component datasheet.

The following API functions are provided for Bootloader use.

Function Description

SCB_CyBtldrCommStart() Starts the I2C Component and enables its interrupt.

SCB_CyBtldrCommStop() Disable the I2C Component and disables its interrupt.

SCB_CyBtldrCommReset() Sets read and write I2C buffers to the initial state and resets the slave status.

SCB_CyBtldrCommRead() Allows the caller to read data from the bootloader host (the host writes the data).

SCB_CyBtldrCommWrite() Allows the caller to write data to the bootloader host (the host writes the data).

void SCB_CyBtldrCommStart(void)

Description: Starts the I2C Component and enables its interrupt.

Every incoming I2C write transaction is treated as a command for the bootloader.

Every incoming I2C read transaction returns 0xFF until the bootloader provides a response
to the executed command.

void SCB_CyBtldrCommStop(void)

Description: Disables the I2C Component and disables its interrupt.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 40 of 211 Document Number: 002-10814 Rev. *E

void SCB_CyBtldrCommReset(void)

Description: Sets read and write I2C buffers to the initial state and resets the slave status.

cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

Description: Allows the caller to read data from the bootloader host (the host writes the data). The
function handles polling to allow a block of data to be completely received from the host
device.

Parameters: uint8 pData[]: Pointer to the block of data to be read from bootloader host.

uint16 size: Number of bytes to be read from bootloader host.

uint16 *count: Pointer to variable to write the number of bytes actually read by the
bootloader host.

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, refer to the “Return Codes” section of
the System Reference Guide.

cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: Allows the caller to write data to the bootloader host (the host reads the data). The function
does not use timeout and returns after data has been copied into the slave read buffer. This
data available to be read by the bootloader host until following host data write.

Parameters: const uint8 pData[]: Pointer to the block of data to send to the bootloader host.

uint16 size: Number of bytes to send to bootloader host.

uint16 *count: Pointer to variable to write the number of bytes actually written to the
bootloader host.

uint8 timeOut: The timeout is not used by this function. The function returns as soon as
data is copied into the slave read buffer.

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information refer to the “Return Codes” section of
the System Reference Guide.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 41 of 211

I2C Functional Description

This Component supports I2C Slave, Master, Multi-Master, and Multi-Master-Slave
configurations. The following sections provide an overview of how to use the Component in
these configurations.

This Component requires that you enable global interrupts since the I2C hardware is interrupt-
driven. Even though this Component requires interrupts, you do not need to add any code to the
ISR (interrupt service routine). The Component services all interrupts (data transfers)
independent of your code. The memory buffers allocated for this interface look like simple dual-
port memory between your application and the I2C master/slave.

Slave Operation

The slave interface consists of two buffers in memory, one for data written to the slave by a
master and a second buffer for data read by a master from the slave. Remember that reads and
writes are from the perspective of the I2C master. The I2C slave read and write buffers are set by
the initialization commands below. These commands do not allocate memory, but instead copy
the array pointer and size to the internal Component variables. You must instantiate the arrays
used for the buffers because they are not automatically generated by the Component. The same
buffer may be used for both read and write buffers, but you must be careful to manage the data
properly.

void SCB_I2CSlaveInitReadBuf(uint8 * rdBuf, uint32 bufSize)

void SCB_I2CSlaveInitWriteBuf(uint8 * wrBuf, uint32 bufSize)

Using the functions above sets a pointer and byte count for the read and write buffers. The
bufSize for these functions may be less than or equal to the actual array size, but it should never
be larger than the available memory pointed to by the rdBuf or wrBuf pointers.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 42 of 211 Document Number: 002-10814 Rev. *E

Figure 2. Slave Buffer Structure

Memory

0x0000

0x1230

0xFFFF

0x1243

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

I2C Read

Buffer

uint8 rdBuf[10];

I2C_SlaveInitReadBuf(rdBuf, 10);

0x1237

0x123A

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

I2C Write

 Buffer

uint8 wrBuf[8];

I2C_SlaveInitWriteBuf(wrBuf, 8);

Index

Index

When the SCB_I2CSlaveInitReadBuf() or SCB_I2CSlaveInitWriteBuf() function is called, the
internal index is set to the first value in the array pointed to by rdBuf and wrBuf, respectively. As
bytes are read or written by the I2C master, the index is incremented until the offset is one less
than the bufSize. At any time the number of bytes transferred may be queried by calling either
SCB_I2CSlaveGetReadBufSize() or SCB_I2CSlaveGetWriteBufSize() for the read and write
buffers, respectively. Reading or writing more bytes than are in the buffers causes an overflow.
The overflow status is set in the slave status byte and may be read with the
SCB_I2CSlaveStatus() API.

To reset the index back to the beginning of the array, use the following commands:

void SCB_I2CSlaveClearReadBuf(void)

void SCB_I2CSlaveClearWriteBuf(void)

This resets the index back to zero. The next byte read or written by the I2C master is the first
byte in the array. Before these clear buffer commands are used, the data in the arrays should be
read or updated.

Multiple reads or writes by the I2C master continue to increment the array index until the clear
buffer commands are used or the array index attempts to grow beyond the array size. Figure 3
shows an example where an I2C master has executed two write transactions. The first write was
four bytes and the second write was six bytes. The sixth byte in the second transaction was
NAKed by the slave to signal that the end of the buffer had occurred. If the master tried to write a
seventh byte for the second transaction or started to write more bytes with a third transaction,
each byte would be NAKed and discarded until the buffer is reset.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 43 of 211

Using the SCB_I2CSlaveClearWriteBuf() function after the first transaction resets the index back
to zero and causes the second transaction to overwrite the data from the first transaction. Make
sure data is not lost by overflowing the buffer. The data in the buffer should be processed by the
slave before resetting the buffer index.

Figure 3. System Memory

1

2

3

4

5

6

7

8

9

0x0000

0x1230

0 Trans1 Byte1

Trans1 Byte2

Trans1 Byte3

Trans1 Byte4

Trans2 Byte1

Trans2 Byte2

Trans2 Byte3

Trans2 Byte4

Trans2 Byte5

Trans2 Byte6

Transaction 1

Transaction 2

Index

Read or Write

Buffer

Visible by

I
2
C Master

0x1239

0xFFFF

System Memory
uint8 wrBuf[10];

I2C_SlaveInitWriteBuf((uint8 *) wrBuf, 10);

Both the read and write buffers have four status bits to signal transfer complete, transfer in
progress, and buffer overflow. When a transfer starts, the busy flag is set. When the transfer is
complete, the transfer complete flag is set and the busy flag is cleared. If a second transfer is
started, both the busy and transfer complete flags may be set at the same time. The following
table shows read and write status flags.

Slave Status Constants Description

SCB_I2C_SSTAT_RD_CMPLT Slave read transfer complete.

SCB_I2C_SSTAT_RD_BUSY Slave read transfer in progress (busy).

SCB_I2C_SSTAT_RD_OVFL Master attempted to read more bytes than are in buffer.

SCB_I2C_SSTAT_RD_ERR Slave captured error on the bus while read transfer.

SCB_I2C_SSTAT_WR_CMPLT Slave write transfer complete.

SCB_I2C_SSTAT_WR_BUSY Slave Write transfer in progress (busy).

SCB_I2C_SSTAT_WR_OVFL Master attempted to write past end of buffer.

SCB_I2C_SSTAT_WR_ERR Slave captured error on the bus while write transfer.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 44 of 211 Document Number: 002-10814 Rev. *E

The following code example initializes the write buffer then waits for a transfer to complete. Once
the transfer is complete, the data is then copied into a working array to handle the data. In many
applications, the data does not have to be copied to a second location, but instead can be
processed in the original buffer. You could create an almost identical read buffer example by
replacing the write functions and constants with read functions and constants. Processing the
data may mean new data is transferred into the slave buffer instead of out.

uint8 wrBuf[10u];

uint8 userArray[10u];

uint32 byteCnt;

uint32 status;

/* Initialize write buffer before call SCB_Start */

SCB_I2CSlaveInitWriteBuf((uint8 *) wrBuf, 10u);

/* Start I2C Slave operation */

SCB_Start();

/* The code below is not protected from the interruption. This might be required

to not cause buffer update by the following I2C write transaction while it is

handled.*/

/* Wait for I2C master to complete a write */

status = SCB_I2CSlaveStatus();

if(0u != (status & SCB_I2C_SSTAT_WR_CMPLT))

{

 if(0u == (status & SCB_I2C_SSTAT_WR_ERR))

 {

 byteCnt = SCB_I2CSlaveGetWriteBufSize();

 for(i=0; i < byteCnt; i++)

 {

 userArray[i] = wrBuf[i]; /* Copy data to local array */

 }

 }

 /* Clean-up status and buffer pointer */

 SCB_I2CSlaveClearWriteStatus();

 SCB_I2CSlaveClearWriteBuf();

}

Multiple address support

The I2C slave Component is able to support more than a single slave address. Multiple slave
addresses are handled by a user written callback function that is registered with the Component.
Whenever an address is received, the hardware will stretch the clock while the user callback
function is called. The callback function is responsible for evaluating the received address and
returning an ACK or NACK depending on whether or not the address is valid. This is also an
opportunity for the application to store the received address and change I2C buffer pointers
based on the received address, if needed. Once the callback function returns, the hardware will
handle performing the ACK or NACK on the I2C bus depending on the return value from the
callback function.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 45 of 211

The callback function is registered with the Component using the
SCB_SetI2cAddressCustomInterruptHandler() function by passing a pointer to the callback
function as an argument. If the function is not registered, all accepted addresses are ACKed but
the same I2C buffer will be used for all I2C communication.

The Component provides two options to enable multiple addresses reception: accept matching
address RX FIFO and accept general call. The following chapters describe the usage of these
options.

Accept matching address RX FIFO

The I2C slave has two settings to configure the slave address: slave address and mask. The
slave address defines a specific slave address while the mask defines a range of accepted
addresses. This range may differ from a single address to 128 different addresses. The accepted
addresses are called matched as they match acceptance criteria. Refer to section Slave address
mask for more information on how to configure the slave address and mask to accept more than
a single slave address.

Enabling the “Accept matching address RX FIFO” option in the I2C Basic Tab allows an
application to evaluate two or more slave addresses. This option forces the Component to place
all matched addresses in the RX FIFO and call the user defined custom callback function, which
is responsible for evaluating the matched address and deciding whether the address should be
ACK’d or NACK’d and perform any additional address specific processing.

The following code provides an example of custom function which handles two address
addresses (7-bits): 0x24 and 0x30. The slave address is 0x24 (7-bits) and slave mask is 0xD6
(8-bits). The accepted matched addresses (7-bits) are 0x20, 0x30, 0x24 and 0x34.

/* Address 1 read and write buffers */

#define ADDR1_BUFFER_SIZE (10u)

uint8 addr1BufRead[ADDR1_BUFFER_SIZE];

uint8 addr1BufWrite[ADDR1_BUFFER_SIZE];

/* Address 2 read and write buffers */

#define ADDR2_BUFFER_SIZE (20u)

uint8 addr2BufRead[ADDR2_BUFFER_SIZE];

uint8 addr2BufWrite[ADDR2_BUFFER_SIZE];

/* Store the address which was more recently accessed */

uint8 activeAddress;

#define I2C_SLAVE_ADDRESS1 (0x24u)

#define I2C_SLAVE_ADDRESS2 (0x34u)

uint32 AddressAccepted(void)

{

 uint32 response;

 /* Set default response as NAK */

 response = SCB_I2C_NAK_ADDR;

 /* Read 7-bits right justified slave address */

 activeAddress = SCB_GET_I2C_7BIT_ADDRESS(SCB_RX_FIFO_RD_REG);

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 46 of 211 Document Number: 002-10814 Rev. *E

 switch(activeAddress)

 {

 case (I2C_SLAVE_ADDRESS1):

 /* Address 1: Setup buffers for read and write */

 SCB_I2CSlaveInitReadBuf (addr1BufRead, ADDR1_BUFFER_SIZE);

 SCB_I2CSlaveInitWriteBuf(addr1BufWrite, ADDR1_BUFFER_SIZE);

 response = SCB_I2C_ACK_ADDR;

 break;

 case (I2C_SLAVE_ADDRESS2):

 /* Address 2: Setup buffers for read and write */

 SCB_I2CSlaveInitReadBuf (addr2BufRead, ADDR2_BUFFER_SIZE);

 SCB_I2CSlaveInitWriteBuf(addr2BufWrite, ADDR2_BUFFER_SIZE);

 response = SCB_I2C_ACK_ADDR;

 break;

 default:

 /* NAK all other accepted addresses.

 * The SCB_I2C_SSTAT_WR_CMPLT or SCB_I2C_SSTAT_RD_CMPLT flags are not

 * affected when address is NACKed */

 break;

 }

 return (response);

}

int main()

{

 /* Register address callback function */

 SCB_SetI2cAddressCustomInterruptHandler(&AddressAccepted);

 /* Start I2C slave operation */

 SCB_Start();

 CyGlobalIntEnable;

 for(;;)

 {

 if (0u != (SCB_I2CSlaveStatus() & SCB_I2C_SSTAT_WR_CMPLT))

 {

 if (I2C_SLAVE_ADDRESS1 == activeAddress)

 {

 /* Handle slave address 1: master writes */

 }

 else

 {

 /* Handle slave address 2: master writes */

 }

 /* Clean-up status and buffer pointer */

 SCB_I2CSlaveClearWriteBuf();

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 47 of 211

 SCB_I2CSlaveClearWriteStatus();

 }

 if (0u != (SCB_I2CSlaveStatus() & SCB_I2C_SSTAT_RD_CMPLT))

 {

 if (I2C_SLAVE_ADDRESS1 == activeAddress)

 {

 /* Handle slave address 1: master reads */

 }

 else

 {

 /* Handle slave address 2: master reads */

 }

 /* Clean-up status and buffer pointer */

 SCB_I2CSlaveClearReadBuf();

 SCB_I2CSlaveClearReadStatus();

 }

 }

}

Note All slave functions return the values related to the most recent slave address which was
accessed by the master.

Note Any slave matched address wakes device from deep sleep independently whether it will be
ACKed or NACKed.

Accept General Call

The general call address is used for addressing every device connected to the I2C-bus at the
same time. In the default I2C configuration, the I2C slave ignores the general call address and will
generate a NAK response. Enabling the “Accept general call address” option in the I2C Basic
Tab forces the Component to accept the general call address and will call the user generated
custom callback function after an address (the specific slave address or general call address) is
received. The interrupt source SCB_INTR.SLAVE_I2C_GENERAL notifies that general call
address is received.

The following code provides an example of a custom function which handles the general call
address and a single slave address.

/* Slave read and write buffers */

#define SLAVE_BUFFER_SIZE (10u)

uint8 slaveBufWrite[SLAVE_BUFFER_SIZE];

uint8 slaveBufRead[SLAVE_BUFFER_SIZE];

/* Gen call write buffer */

#define GEN_CALL_BUFFER_SIZE (2u)

uint8 genCallBufWrite[GEN_CALL_BUFFER_SIZE];

/* Store the address which was more recently accessed */

uint8 activeAddress;

#define I2C_SLAVE_ADDRESS (SCB_I2C_SLAVE_ADDRESS)

#define I2C_GENERAL_CALL_ADDRESS (0x00u)

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 48 of 211 Document Number: 002-10814 Rev. *E

uint32 AddressAccepted(void)

{

 uint32 response;

 /* ACK slave address or general call address access */

 response = SCB_I2C_ACK_ADDR;

 /* Prepare for general call address */

 if (0u != (SCB_GetSlaveInterruptSourceMasked() & SCB_INTR_SLAVE_I2C_GENERAL))

 {

 /* Setup only write buffer as R/W bit is always 0 */

 SCB_I2CSlaveInitWriteBuf(genCallBufWrite, GEN_CALL_BUFFER_SIZE);

 /* Set active address to be general call */

 activeAddress = I2C_GENERAL_CALL_ADDRESS;

 }

 /* Prepare for slave address access */

 else

 {

 /* Restore slave write buffer */

 SCB_I2CSlaveInitWriteBuf(slaveBufWrite, SLAVE_BUFFER_SIZE);

 /* Set active address to be slave address */

 activeAddress = I2C_SLAVE_ADDRESS;

 }

 return (response);

}

int main()

{

 /* Register address callback function */

 SCB_SetI2cAddressCustomInterruptHandler(&AddressAccepted);

 /* Start I2C slave operation */

 SCB_Start();

 CyGlobalIntEnable;

 for(;;)

 {

 if (0u != (SCB_I2CSlaveStatus() & SCB_I2C_SSTAT_WR_CMPLT))

 {

 if (I2C_SLAVE_ADDRESS == activeAddress)

 {

 /* Handle slave address: master writes */

 }

 else

 {

 /* Handle general call address: master writes */

 }

 /* Clean-up status and buffer pointer */

 SCB_I2CSlaveClearWriteBuf();

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 49 of 211

 SCB_I2CSlaveClearWriteStatus();

 }

 }

}

Note All slave functions return the values related to the most recent slave address which was
accessed by the master.

Note The general call address wakes up the device from deep sleep.

Master/Multi-Master Operation

Master and Multi-Master operation are basically the same, with two exceptions. When operating
in Multi-Master mode, the bus should always be checked to see if it is busy. Another master may
already be communicating with another slave. In this case, the program must wait until the
current operation is complete before issuing a start transaction. The program looks at the return
value, which sets a busy status if another master has control of the bus.

The second difference is that, in Multi-Master mode, two masters can start at the exact same
time. If this happens, one of the two masters loses arbitration. You must check for this condition
after each byte is transferred. The Component automatically checks for this condition and
responds with an error if arbitration is lost.

There are two options when operating the I2C master: manual and automatic. In automatic mode,
a buffer is created to hold the entire transfer. In the case of a write operation, the buffer is
prefilled with the data to be sent. If data is to be read from the slave, a buffer at least the size of
the packet needs to be allocated. To write an array of bytes to a slave in automatic mode, use
the following function.

uint32 SCB_I2CMasterWriteBuf(uint32 slaveAddress, uint8 * wrData, uint32 cnt,

uint32 mode)

The slaveAddress variable is a right-justified 7-bit slave address of 0 to 127. The Component API
automatically appends the write flag to the LSb of the address byte. The array of data to transfer
is pointed to with the second parameter, wrData. The cnt parameter is the number of bytes to
transfer. The last parameter, mode, determines how the transfer starts and stops. A transaction
may begin with a restart instead of a start, or halt before the stop sequence. These options allow
back-to-back transfers where the last transfer does not send a stop and the next transfer issues
a restart instead of a start.

A read operation is almost identical to the write operation. The same parameters with the same
constants are used.

uint32 SCB_I2CMasterReadBuf(uint32 slaveAddress, uint8 * rdData, uint32 cnt,

uint32 mode);

Both of these functions return status. See the status table for the SCB_I2CMasterStatus()
function return value. Since the read and write transfers complete in the background during the
I2C interrupt code, the SCB_I2CMasterStatus() function can be used to determine when the
transfer is complete. A code snippet that shows a typical write to a slave follows.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 50 of 211 Document Number: 002-10814 Rev. *E

SCB_I2CMasterClearStatus(); /* Clear any previous status */

SCB_I2CMasterWriteBuf(8u, (uint8 *) wrData, 10u, SCB_I2C_MODE_COMPLETE_XFER);

for(;;)

{

 if(0u != (SCB_I2CMasterStatus() & SCB_I2C_MSTAT_WR_CMPLT))

 {

 /* Transfer complete. Check Master status to make sure that transfer

 completed without errors. */

 break;

 }

}

The I2C master can also be operated manually. In this mode, each part of the write transaction is
performed with individual commands.

status = SCB_I2CMasterSendStart(8u, SCB_I2C_WRITE_XFER_MODE);

if(SCB_I2C_MSTR_NO_ERROR == status) /* Check if transfer completed without

errors */

{

 /* Send array of 5 bytes */

 for(i=0; i<5u; i++)

 {

 status = SCB_I2CMasterWriteByte(userArray[i]);

 if(SCB_I2C_MSTR_NO_ERROR != status)

 {

 break;

 }

 }

}

SCB_I2CMasterSendStop(); /* Send Stop */

A manual read transaction is similar to the write transaction except the last byte should be
NAKed. The example below shows a typical manual read transaction.

status = SCB_I2CMasterSendStart(8u, SCB_I2C_READ_XFER_MODE);

if(SCB_I2C_MSTR_NO_ERROR == status) /* Check if transfer completed without

errors */

{

 /* Read array of 5 bytes */

 for(i=0; i<5u; i++)

 {

 if(i < 4u)

 {

 userArray[i] = SCB_I2CMasterReadByte(SCB_I2C_ACK_DATA);

 }

 else

 {

 userArray[i] = SCB_I2CMasterReadByte(SCB_I2C_NAK_DATA);

 }

 }

}

SCB_I2CMasterSendStop(); /* Send Stop */

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 51 of 211

Multi-Master-Slave Mode Operation

Both Multi-Master and Slave are operational in this mode. The Component may be addressed as
a slave, but firmware may also initiate master mode transfers. In this mode, when a master loses
arbitration during an address byte, the slave hardware checks which winning master addressed
it. In case of an address match, the slave becomes active.

For Master and Slave operation examples look at the Slave Operation and Master sections.

Note The master and slave share the same SCB hardware block. The master cannot address its
own slave because the hardware and firmware cannot run both roles simultaneously. Any
attempt to do this will cause unpredictable behavior. You must not allow the master address its
own slave.

Low power modes

The Component in I2C mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.

Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the Component or code before entering/exiting sleep. Any communication intended to
the slave causes an interrupt to occur and leads to wakeup. Any master activity that involves an
interrupt to occur leads to wakeup.

Master modes (Master, Multi-Master) are not able to be a wakeup source from Deep Sleep. This
capability is only available for slave modes (Slave, Multi-Master-Slave). The slave has to be
configured properly to enable this functionality. The “Enable wakeup from Deep Sleep Mode”
must be checked in the I2C configuration dialog. The SCB_Sleep() and SCB_Wakeup()
functions must be called before/after entering/exiting Deep Sleep.

The wakeup event is a slave address match. The externally clocked logic performs address
matching, when the address matches an interrupt request is generated, thus waking up the
device. The slave stretches the SCL line until control is passed to its interrupt routine to ACK the
address. The wakeup interrupt source is disabled in the interrupt handler or by SCB_Wakeup()
after address match has occurred.

Before entering Deep Sleep, the ongoing transaction intended for the slave has to be completed.
The following code is suggested:

/* Enter critical section to lock the slave state */

uint8 intState = CyEnterCriticalSection();

/* Check if slave is busy */

status = (SCB_I2CSlaveStatus() & (SCB_I2C_SSTAT_RD_BUSY | SCB_I2C_SSTAT_WR_BUSY));

if (0u == status)

{

 /* Slave is not busy: enter Deep Sleep */

 SCB_Sleep(); /* Configure the slave to be wakeup source */

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 52 of 211 Document Number: 002-10814 Rev. *E

 CySysPmDeepSleep();

 /* Exit critical section to continue slave operation */

 CyExitCriticalSection(intState);

 SCB_Wakeup(); /* Configure the slave to active mode operation */

}

else

{

 /* Slave is busy. Do not enter Deep Sleep. */

 /* Exit critical section to continue slave operation */

 CyExitCriticalSection(intState);

}

For devices other than PSoC 4100 / PSoC 4200, the Component clock must be disabled
before calling SCB_Sleep(), and then enabled after calling SCB_Wakeup(); otherwise, the SCL
will lock up after wakeup from Deep Sleep. Disabling and re-enabling the Component clock is
managed by the SCB_Sleep() and SCB_Wakeup() APIs when the Clock from terminal option is
disabled. Otherwise, when the Clock from terminal option is enabled, the code provided above
requires modification to enable and disable the clock source connected to the SCB Component.
Review the following modified code and highlighted in blue (ScbClock – the instance name of
clock Component connected to the SCB):

if(0u == status)

{

 SCB_Sleep(); /* Configure the slave to be wakeup source */

 ScbClock_Stop(); /* Disable the SCB clock */

 CySysPmDeepSleep();

 /* Exit critical section to continue slave operation */

 CyExitCriticalSection(intState);

 SCB_Wakeup(); /* Configure the slave to active mode operation */

 ScbClock _Start(); /* Enable the SCB clock */

}

For devices other than PSoC 4100 / PSoC 4200 configured in Multi-Master-Slave mode only, in
order for the Component to be a wake-up source from deep sleep, the configuration of the
Component must be changed before deep sleep and after the part wakes from deep sleep. This
configuration change occurs automatically in the SCB_Sleep() function, and any function that
starts an I2C master transaction. During this configuration change the Component is disabled.
After the configuration has been changed, it is re-enabled. During the time it is disabled, any
incoming addresses to the slave will be NAKed; the external master will have to retry to access
the slave.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 53 of 211

Figure 4. Master transaction wakes up device on slave address match

Clock strechingAddressS Data P

Address

match

AAR/W

Device wakeup time

Transfer to other slave

Or bus IDLE

Deep Sleep ActiveMode transition

SCB_Sleep()

call

Active

SCB_Wakeup()

call

Data rate configuration

For correct operation of I2C mode the Component must meet the data rate requirement of the
connected I2C bus. For master mode this means the master data rate cannot be faster than the
slowest slave in the system. For slave mode this means the slave cannot be slower than the
fastest master in the system.

For slave mode the frequency of the connected clock source is the only parameter used in
determining the maximum data rate the slave can operate at. The connected clock is the clock
that runs the SCB, not SCL. The frequency of the connected clock source must be fast enough
to provide enough oversampling of the SCL and SDA signals to ensure that all I2C specifications
are meet. Table 2 provides the ranges of allowed clock frequencies for the standard I2C data
rates (Standard Mode, Fast Mode, and Fast-mode Plus). There are two ways to control the
frequency of the connected clock for slave mode:

1. Use a clock Component that is internal to the SCB Component (this clock still uses clock
divider resources). Based on the data rate set in the GUI the Component asks PSoC
Creator to create a clock with a frequency in the range provided in Table 2 on page 16.

2. Connect a user configurable clock to the SCB Component. This option is enabled by
checking the “Clock from terminal” control. In this mode it is the user’s responsibility to
ensure the connected clock frequency is in the range provided in Table 2 on page 16. If
the frequency is not in that range then proper I2C operation is no longer guaranteed.

Independent of the chosen method the Component will display the actual data rate. This is the
maximum data rate at which the slave can operate. If the system data rate is faster than the
displayed actual data rate correct I2C operation is no longer guaranteed.

For I2C master mode the data rate is determined by the connected Component clock, and the
oversampling factor. These two factors are used to set the frequency of SCL, one SCL period is
equal to the period of the connected clock multiplied by the oversampling factor. The
oversampling factor is divided into low and high to enable independent control of the high and
low phases of SCL. The low and high oversampling factor can be configured independently but
their sum has to be equal to overall oversampling. In order to ensure that the master meets all
I2C specifications the connected clock frequency and oversampling factor must be within a
specified range. Table 3 on page 16 provides a range of clock frequencies and oversampling
factors for the standard I2C data rates.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 54 of 211 Document Number: 002-10814 Rev. *E

The Component provides three methods to configure data rate:

1. Set the desired data rate and disable Manual oversampling control. This option uses a
clock Component that is internal to the SCB Component (this clock still uses clock divider
resources). Based on the data rate set in the GUI the Component asks PSoC Creator to
create a clock with a frequency in the range provided in Table 3 on page 16. When
available clock frequency is returned the oversampling factors low and high are calculated
to meet the set data rate, and the oversampling ranges provided in Table 3 on page 16.

2. Select desired data rate and enable Manual oversampling control. This option uses a
clock Component that is internal to the SCB Component (this clock still uses clock divider
resources). The Component asks PSoC Creator to create a clock frequency equal to
desired (Data rate * Oversampling). The oversampling is controlled by the user. This
method is left to provide backward compatibility with previous versions of Component.

3. Connect a user configurable clock to the SCB Component. This option is enabled by
checking the “Clock from terminal” control. The user still uses the GUI to configure the
oversampling factor low and high. This method provides full control of the data rate
configuration.

Independent of chosen method the Component displays actual data rate for Master. This data
rate might differ from the observed data rate on the bus due to the tR and tF time.

I2C spec parameters calculation

The ranges provided in Table 3 on page 16 assume worst case conditions on the bus; often a
bus will never experience worst case conditions. The following section describes how to
calculate various I2C parameters based on the connected clock frequency and oversampling
factors. This information can be used to determine if the chosen connected clock frequency and
oversampling factor meet I2C specifications on your I2C bus.

To find the frequency of the connected clock open the PSoC Creator Design-Wide Resources
(DWR) file, and open the Clock Tab. If you used an internal clock look for a clock name that
contains the Component instance name with the suffix “_SCBCLK”. If you used the clock from
terminal option, look for the name of your clock. The Nominal frequency has to be taken but it
might differ from the Desired frequency due to design clock configuration.

Also the clock accuracy should be taken to account. The master device generates fSCL with the
accuracy of the provided clock source. Therefore when maximum data rate (for selected data
rate mode) is used the slave has to tolerate this inaccuracy otherwise the fSCL has to be reduced
or more accurate clock source provided.

The slave device is less sensitive to clock accuracy than the master as only when clock
frequency is close to low or high limit (for the selected data rate mode) is provided the clock
source accuracy has to be taken into account. The clock should not run too slow due negative
deviation as well as too fast due to positive deviation. The slave has wide range of allowed
clocks therefore selecting clock frequency in range (low limit + negative deviation) to (high limit –
positive deviation) eliminates effect of the clock source accuracy.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 55 of 211

For master modes Table 3 on page 16 contains the ranges of clock frequencies for the selected
data rate. Keeping the clock frequency within these ranges ensures that tVD;DAT and tVD;ACK

parameters from I2C spec are met.

For Data rates of 0-400 kbps:

tVD;DAT = (3/ fSCBCLK) + tR_0%_70% + 90 nsec

For Data rates of 401-1000 kbps:

tVD;DAT = (4/ fSCBCLK) + tR_0%_70%

Note tR_0%_70% is the rising time from 0% to 70% to be measured for specific I2C bus.

Note The same equation applies for tVD;ACK

Meeting tVD;DAT parameter ensures that tSU;DAT parameters is also met.

Meeting tLOW and tHIGH parameter ensures that tBUF, tSU;STA, tHD;STA and tSU;STO parameters are also
met. To calculate tLOW and tHIGH the use following equation:

tLOW = ((1/ fSCBCLK) * Oversampling factor Low) – tF

tHIGH = ((1/ fSCBCLK) * Oversampling factor High) – tR

fSCBCLK is a frequency of the connected Component clock; Oversampling factor Low and High are
parameters of the Component.

Note The tF and tR values have to be measured for specific I2C bus.

Note Calculated tHIGH value might be less than observed on the bus due to clock synchronization
in the device. The device resets its internal counter of tHIGH when it detects a low level on SCL
line while expecting high level. Therefore when tR and internal device delay is greater than one
Component clock period – tHIGH is extended. This causes the data rate to be less than expected.

For the slave mode the Table 2 on page 16 contains the ranges of clock frequencies for the
selected data rate. Keep the clock frequency within these ranges to ensure that the slave meets
all parameters of I2C specification.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 56 of 211 Document Number: 002-10814 Rev. *E

EZI2C [4]

The I2C bus is an industry standard, two-wire hardware interface developed by Philips®. The
master initiates all communication on the I2C bus and supplies the clock for all slave devices.
The EZI2C Slave implements an I2C register-based slave device. It is compatible [1] with I2C
Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus
specification.

The EZI2C Slave is a unique implementation of an I2C slave in that all communication between
the master and slave is handled in the ISR (Interrupt Service Routine) and requires no
interaction with the main program flow. The interface appears as shared memory between the
master and slave. Once the EZI2C_Start() function is called, there is little need to interact with
the API.

Input/Output Connections

This section describes the various input and output connections for the SCB Component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.

clock – Input*

Clock that operates this block. The presence of this terminal varies depending on the Clock from
terminal parameter.

Internal Pins Configuration

The I2C SCL and SDA pins are buried inside Component: SCB_scl and SCB_sda. These pins
are buried because they use dedicated connections and are not routable as general purpose
signals. Refer to the I/O System section in the device Technical Reference Manual (TRM) for
more information.

Note The instance name is not included into the Pin Names provided in the following table.

4 This is a firmware implementation of the EZI2C protocol on top of I2C (non-EZ mode). All communication
between the master and slave is handled in the ISR (Interrupt Service Routine). The data buffer has to be
allocated in the RAM. The SCB Component does not support EZI2C (EZ-mode), which uses a 32-bytes
hardware buffer.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 57 of 211

Table 6. I2C Pins Configuration

Pin
Name

Direction Drive
Mode

Initial
Drive State

Threshold Slew
Rate

Descriptiion

scl Bidirectional Open Drain
Drives Low

High CMOS Fast Serial clock (SCL) is the master-generated I2C clock.

This pins configuration requires connection of external pulls on the
I2C bus. The other option is applying internal pull-ups which is
described in the Internal Pull-Ups section.

For PSoC 4100 / PSoC 4200 devices I2C pins output enable is
assigend to 0 to make High-Z state when I2C device does not drive
the bus. This behaviour supresses usage of internal pull-ups
(changing Drive Mode to Resistive pull-up has no effect).

For other devices: I2C pins output enable tied to 1 and pin state
depends on drive mode and output signal. The internal pull-ups can
be used

sda Bidirectional Open Drain
Drives Low

High CMOS Fast Serial data (SDA) is the I2C data pin.

This pins configuration requires connection of external pulls on the
I2C bus. The other option is applying internal pull-ups which is
described in the Internal Pull-Ups section.

For PSoC 4100 / PSoC 4200 devices I2C pins output enable is
assigend to 0 to make High-Z state when I2C device does not drive
the bus. This behaviour supresses usage of internal pull-ups
(changing Drive Mode to Resistive pull-up has no effect).

For other devices: I2C pins output enable tied to 1 and pin state
depends on pin’s drive mode and output signal. The internal pull-
ups can be used.

The Input threshold level CMOS should be used for the vast majority of application connections.

The Output slew rate can be changed use Slew rate parameter. The other Input and Output pin’s
parameters are set to default. Refer to pin Component datasheet for more information about
parameters values.

To change I2C pins configuration the pin’s Component APIs should be used or direct pin
registers configuration. For example refer to the Internal Pull-Ups section.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 58 of 211 Document Number: 002-10814 Rev. *E

Basic EZI2C Parameters

The EZI2C Basic tab has the following parameters:

Data rate

This parameter is used to set the I2C data rate value up to 1000 kbps (400 kbps for PSoC 4000
family); the actual data rate may differ from the selected data rate due to available clock
frequency. The standard data rates are 100 (default), 400, and 1000 kbps. The Data rate is
limited to a maximum of 400 kbps if the Clock stretching option is disabled. This parameter has
no effect if the Clock from terminal parameter is enabled.

Actual data rate

Actual data rate displays the data rate at which the Component will operate with current settings.
The selected data rate could be different from actual data rate. The factors that affect the actual
data rate calculation are: system clock and accuracy of the Component clock (internal or
external). When a change is made to any of the Component parameters that affect the actual
data rate, it becomes unknown. To calculate the new actual data rate press the Apply button.

Note The actual data rate always provides maximum value for the selected data rate mode
(Standard-mode (100 kbps), Fast-mode (400 kbps), Fast-mode Plus (1000 kbps)).

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 59 of 211

Clock from terminal

This parameter allows choosing between an internally configured clock (by the Component) or
an externally configured clock (by the user) for the Component operation.

When this control is enabled, the Component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency. When this control is not
enabled, the clock configuration is provided by the Component. The clock source frequency is
selected by the Component based on the Data rate parameter. The table below shows the valid
ranges for the Component clock for each data rate. When using clock from terminal ensure that
the external clock is within these ranges.

Table 7. EZI2C Slave clock frequency ranges

Parameter

Standard-mode

(0-100 kbps)

Fast-mode

(0-400 kbps)

Fast-mode Plus

(0-1000 kbps)

Units Min Max Min Max Min Max

fSCB 1.55 12.8 7.82 15.38 15.84 48.0 MHz

Note When the clock frequency is less than the lower limit of 1.55 MHz, an error is generated
while building the project.

Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, Component
settings or external clock to fit the clocking system requirements.

Clock stretching

This parameter applies clock stretching on the SCL line if the EZ I2C slave is not ready to
respond. Enabling this option ensures consistent slave operation for any EZ I2C slave interrupt
latency because the I2C transaction is paused by clock stretching. Without the clock stretching
option enabled, the design needs to service the EZ I2C slave interrupt fast enough to provide
correct slave operation.

Byte mode

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
allows doubling the TX and RX FIFO depth from 8 to 16 bytes. Increasing the FIFO depth
improves performance of EZ I2C operation when clock stretching is enabled, as more bytes can
be transmitted or received without software interaction. This option does not improve EZ I2C
operation when clock stretching is disabled; therefore, it is not available for this mode.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 60 of 211 Document Number: 002-10814 Rev. *E

Number of addresses

This option determines whether 1 (default) or 2 independent I2C slave addresses are recognized.
If two addresses are recognized, then address detection will be performed in software. When the
Clock Stretching option is disabled, the number of address choices is restricted to 1.

Primary slave address (7-bits)

This is an I2C address that will be recognized by the slave as the primary address. This address
is the 7-bit right-justified slave address and does not include the R/W bit. A slave address
between 0x08 and 0x7F may be selected; the default is 0x08.

The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address.

Secondary slave address (7-bits)

This is an I2C address that will be recognized by the slave as the secondary address. This
address is the 7-bit right-justified slave address and does not include the R/W bit. A slave
address between 0x08 and 0x7F may be selected; the default is 0x09. Refer to Preferable
Secondary Address Choice.

The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address.

Sub-address size

This option determines what range of data can be accessed. You can select a sub-address of 8
bits (default) or 16 bits. If you use a sub-address size of 8 bits, the master can only access data
offsets between 0 and 255. You may also select a sub-address size of 16 bits. That will allow the
I2C master to access data arrays of up to 65,535 bytes.

Enable wakeup from Deep Sleep Mode

Use this option to enable the Component to wake the system from Deep Sleep when a slave
address match occurs.

Enabling this option adds the following restrictions (only for PSoC 4100/PSoC 4200 devices):

▪ Clock stretching must be enabled

▪ Slave address (7-bits) must be even (bit 0 equal zero)

Refer to the Low power modes section in the EZI2C chapter of this document and Power
Management APIs section of the System Reference Guide for more information.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 61 of 211

Advanced EZI2C Parameters

The EZI2C Advanced tab contains the following parameters:

Slew rate

This option allows to control slew rate setting of the SCL and SDA pins. The slow slew rate
increases the fall time on the lines, reducing EMI and coupling with neighboring signals. For
devices supporting GPIO Over-Voltage Tolerance (GPIO_OVT) pins, I2C FM+ options should be
used when I2C data rate is greater than 400 kbps. This option also requires the I2C bus voltage
to be defined. Refer to the Device Datasheet to determine which pins are GPIO_OVT capable.
Default is fast.

Notes

▪ GPIO_OVT pins are fully compliant with the I2C specification but the slew rate must be set
appropriately:

□ Slew rate "Slow" for Standard mode (100 kbps) and Fast mode (400 kbps)

□ Slew rate "I2C FM+" for Fast mode plus (1 Mbps)

Common GPIO pins are not completely compliant with the I2C specification. Refer to the
Device Datasheet for the details.

▪ Slew rate settings are applied to all pins of the associated port.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 62 of 211 Document Number: 002-10814 Rev. *E

I2C bus voltage (V)

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L devices. It specifies the voltage applied to the I2C pull up resistors when
Slew rate is I2C FM+. The voltage no less than applied to I2C pulls up resistors must be provided
by the VDDD supply input, otherwise the I2C pins cannot be placed. Valid values of VDDD are
determined by the settings in the Design-Wide Resources System Editor (in the <project>.cydwr
file). This range check is performed outside this dialog; the results appear in the Notice List
window if the check fails. Default is 3.3 V.

External Electrical Connections

Refer to the External Electrical Connections section for I2C.

Internal pull ups

Refer to the Internal Pull-Ups section for I2C.

EZI2C APIs

Application Programming Interface (API) functions allow you to configure the Component using
software. The following table lists and describes the interface to each function. The subsequent
section discusses each function in more detail.

By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.

Function Description

SCB_Start() Starts the SCB Component.

SCB_Init() Initialize the SCB Component according to defined parameters in the
customizer.

SCB_Enable() Enables the SCB Component operation.

SCB_Stop() Disable the SCB Component.

SCB_Sleep() Prepares the SCB Component to enter Deep Sleep.

SCB_Wakeup() Prepares Component for Active mode operation after Deep Sleep.

SCB_EzI2CInit() Configures the SCB Component for operation in EZ I2C mode. Only
applicable when the Component is in unconfigured mode.

SCB_EzI2CGetActivity() Returns EZ I2C slave status.

SCB_EzI2CSetAddress1() Sets the primary EZ I2C slave address.

SCB_EzI2CGetAddress1() Returns the primary EZ I2C slave address.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 63 of 211

Function Description

SCB_EzI2CSetBuffer1() Sets up the data buffer to be exposed to the I2C master on a primary
slave address request.

SCB_EzI2CSetReadBoundaryBuffer1() Sets the read only boundary of the data buffer to be exposed by I2C
master by the primary address request.

SCB_EzI2CSetAddress2() Sets the secondary EZ I2C slave address.

SCB_EzI2CGetAddress2() Returns the secondary EZ I2C slave address.

SCB_EzI2CSetBuffer2() Sets up the data buffer to be exposed to the I2C master on a secondary
slave address request.

SCB_EzI2CSetReadBoundaryBuffer2() Sets the read boundary of the data buffer to be exposed by I2C master
by the secondary address request.

void SCB_Start(void)

Description: Invokes SCB_Init() and SCB_Enable(). After this function call the Component is
enabled and ready for operation. This is the preferred method to begin Component
operation.

When configuration is set to “Unconfigured SCB”, the Component must first be
initialized to operate in one of the following configurations: I2C, SPI, UART or EZ I2C.
Otherwise this function does not enable Component.

void SCB_Init(void)

Description: Initializes the SCB Component to operate in one of the selected configurations: I2C,
SPI, UART or EZ I2C.

When configuration set to “Unconfigured SCB”, this function does not do any
initialization. Use mode-specific initialization APIs instead: SCB_I2CInit, SCB_SpiInit,
SCB_UartInit or SCB_EzI2CInit.

void SCB_Enable(void)

Description: Enables SCB Component operation; activates the hardware and internal interrupt. It
also restores TX interrupt sources disabled after the SCB_Stop() function was called
(note that level-triggered TX interrupt sources remain disabled to not cause code lock-
up).

For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI
and UART modes the interrupt can be configured as none, internal or external.

The SCB configuration should be not changed when the Component is enabled. Any
configuration changes should be made after disabling the Component.

When configuration is set to “Unconfigured SCB”, the Component must first be
initialized to operate in one of the following configurations: I2C, SPI, UART or EZ I2C,
Using the mode-specific initialization API. Otherwise this function does not enable the
Component.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 64 of 211 Document Number: 002-10814 Rev. *E

void SCB_Stop(void)

Description: Disables the SCB Component: disable the hardware and internal interrupt. It also
disables all TX interrupt sources so as not to cause an unexpected interrupt trigger
because after the Component is enabled, the TX FIFO is empty.

Refer to the function SCB_Enable() for the interrupt configuration details.

This function disables the SCB Component without checking to see if communication is
in progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.

void SCB_Sleep(void)

Description: Prepares Component to enter Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:

• Checked: configures the Component to be wakeup source from Deep Sleep.

• Unchecked: stores the current Component state (enabled or disabled) and disables
the Component. See SCB_Stop() function for details about Component disabling.

Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function. Refer
to the PSoC Creator System Reference Guide for more information about power
management functions.

This function should not be called before entering Sleep.

void SCB_Wakeup(void)

Description: Prepares Component to Active mode operation after Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection influences this function
implementation:

• Checked: restores the Component Active mode configuration.

• Unchecked: enables the Component if it was enabled before enter Deep Sleep.

This function should not be called after exiting Sleep.

Side Effects: Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 65 of 211

void SCB_EzI2CInit(SCB_EZI2C_INIT_STRUCT *config)

Description: Configures the SCB for EZ I2C operation.

This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in EZ I2C mode, the
Component can be enabled using the SCB_Start() or SCB_Enable() function.

This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the
customizer settings.

Parameters: config: pointer to a structure that contains the list of fields. These fields match the
selections available in the customizer. Refer to the customizer for further description of the
settings.

Field Description

uint32 enableClockStretch 0 – disable

1 – enable

When enabled the SCL is stretched as required for proper
operation.

uint32 enableMedianFilter This field is left for compatibility and its value is ignored.
Median filter is disabled for EZI2C mode.

uint32 numberOfAddresses Number of supported addresses:

SCB_EZI2C_ONE_ADDRESS

SCB_EZI2C_TWO_ADDRESSES

uint32 primarySlaveAddr Primary 7-bit slave address.

uint32 secondarySlaveAddr Secondary 7-bit slave address.

uint32 subAddrSize Size of sub-address:

SCB_EZI2C_SUB_ADDR8_BITS

SCB_EZI2C_SUB_ADDR16_BITS

uint32 enableWake 0 – disable

1 – enable

When enabled the matching address generates a wakeup
request.

uint8 enableByteMode Ignored for all devices other than PSoC 4100 BLE /
PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC
4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor.

0 – disable

1 – enable

When enabled the TX and RX FIFO depth is 16 bytes.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 66 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_EzI2CGetActivity(void)

Description: Returns EZ I2C slave status.

The read, write and error status flags reset to zero after this function call.

The busy status flag is cleared when the transaction intended for the EZ I2C slave
completes.

This function disables EZ I2C slave interrupt during execution to operate correctly. This
may have significant impact to correctness of EZ I2C slave operation when the clock
stretching option is disabled. The amount of time that the interrupt is disabled should be
less than the maximum EZ I2C slave interrupt latency. Refer to section Clock Stretching
Disable for more details.

Return Value: uint32: Current status of EZ I2C slave.

This status incorporates a number of status constants. Each constant is a bit field value.
The value returned may have multiple bits set to indicate the status of the transfer.

Slave Status Constants Description

SCB_EZI2C_STATUS_READ1 Read transfer complete. The transfer used the primary
slave address.

The error condition status bit must be checked to
ensure that read transfer was completed successfully.

SCB_EZI2C_STATUS_WRITE1 Write transfer complete. The buffer content was
modified. The transfer used the primary slave address.

The error condition status bit must be checked to
ensure that write transfer was completed successfully.

SCB_EZI2C_STATUS_READ2 Read transfer complete. The transfer used the
secondary slave address.

The error condition status bit must be checked to
ensure that read transfer was completed successfully.

SCB_EZI2C_STATUS_WRITE2 Write transfer complete. The buffer content was
modified. The transfer used the secondary slave
address

The error condition status bit must be checked to
ensure that write transfer was completed successfully.

SCB_EZI2C_STATUS_BUSY A transfer intended for the primary or secondary
address is in progress. The status bit is set after an
address match and cleared on a Stop or ReStart
condition.

SCB_EZI2C_STATUS_ERR An error occurred during a transfer intended for the
primary or secondary slave address. The sources of
error are: misplaced Start or Stop condition or lost
arbitration while slave drives SDA.

The write buffer may contain invalid byte or part of the
transaction when SCB_EZI2C_STATUS_ERR and
SCB_EZI2C_STATUS_WRITE1/2 is set. It is
recommended to discard buffer content in this case.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 67 of 211

void SCB_EzI2CSetAddress1(uint32 address)

Description: Sets the primary EZ I2C slave address.

Parameters: uint32 address: primary I2C slave address.

This address is the 7-bit right-justified slave address and does not include the R/W bit.

The address value is not checked to see if it violates the I2C spec. The preferred
addresses are in the range between 8 and 120 (0x08 to 0x78).

uint32 SCB_EzI2CGetAddress1(void)

Description: Returns primary the EZ I2C slave address.

This address is the 7-bit right-justified slave address and does not include the R/W bit.

Return Value: uint32: Primary I2C slave address.

void SCB_EzI2CSetBuffer1(uint32 bufSize, uint32 rwBoundary, volatile uint8 * buffer)

Description: Sets up the data buffer to be exposed to the I2C master on a primary slave address
request.

Parameters: uint32 bufSize: Size of the data buffer in bytes.

uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.

This value must be less than or equal to the buffer size.

uint8* buffer: Pointer to the data buffer.

Side Effects: Calling this function in the middle of a transaction intended for the primary slave
address leads to unexpected behavior.

void SCB_EzI2CSetReadBoundaryBuffer1(uint32 rwBoundary)

Description: Sets the read only boundary in the data buffer to be exposed to the I2C master on a
primary slave address request.

Parameters: uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.

This value must be less than or equal to the buffer size.

Side Effects: Calling this function in the middle of a transaction intended for the primary slave
address leads to unexpected behavior.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 68 of 211 Document Number: 002-10814 Rev. *E

void SCB_EzI2CSetAddress2(uint32 address)

Description: Sets the secondary EZ I2C slave address.

Parameters: uint32 address: secondary I2C slave address.

This address is the 7-bit right-justified slave address and does not include the R/W bit.

The address value is not checked to see if it violates the I2C spec. The preferred
addresses are in the range between 8 and 120 (0x08 to 0x78).

uint32 SCB_EzI2CGetAddress2(void)

Description: Returns the secondary EZ I2C slave address.

This address is the 7-bit right-justified slave address and does not include the R/W bit.

Return Value: uint32: Secondary I2C slave address.

void SCB_EzI2CSetBuffer2(uint32 bufSize, uint32 rwBoundary, volatile uint8 * buffer)

Description: Sets up the data buffer to be exposed to the I2C master on a secondary slave address
request.

Parameters: uint32 bufSize: Size of the data buffer in bytes.

uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.

This value must be less than or equal to the buffer size.

uint8* buffer: Pointer to the data buffer.

Side Effects: Calling this function in the middle of a transaction intended for the secondary slave
address leads to unexpected behavior.

void SCB_EzI2CSetReadBoundaryBuffer2(uint32 rwBoundary)

Description: Sets the read only boundary in the data buffer to be exposed to the I2C master on a
secondary address request.

Parameters: uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.

This value must be less than or equal to the buffer size.

Side Effects: Calling this function in the middle of a transaction intended to the secondary slave
address leads to unexpected behavior.

Global Variables

Knowledge of these variables is not required for normal operations.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 69 of 211

Variable Description

SCB_initVar SCB_initVar indicates whether the SCB Component has been initialized. The variable is initialized
to 0 and set to 1 the first time SCB_Start() is called. This allows the Component to restart without
reinitialization after the first call to the SCB_Start() routine.

If reinitialization of the Component is required, then the SCB_Init() function can be called before
the SCB_Start() or SCB_Enable() function.

Bootloader Support

The SCB Component in EZ I2C mode cannot be used as a communication Component for the
Bootloader.

EZI2C Functional Description

This Component supports an I2C slave device with one or two I2C addresses. Either address
may access a memory buffer defined in RAM or flash data space. Flash memory buffers are
read only, while RAM buffers may be read/write. The addresses are right justified.

When using this Component, you must enable global interrupts because the I2C hardware is
interrupt driven. Even though this Component requires interrupts, you do not need to add any
code to the ISR (Interrupt Service Routine). The Component services all interrupts (data
transfers) independently from your code. The memory buffers allocated for this interface look like
simple dual-port memory between your application and the I2C master.

If required, you can create a higher-level interface between a master and slave by defining
semaphores and command locations in the data structure.

Memory Interface

To an I2C master the interface looks very similar to a common I2C EEPROM. The EZ I2C buffer
can be configured as a variable, array, or structure but it is preferable to use an array. The buffer
acts as a shared memory interface between your program and an I2C master through the I2C
bus. The Component permits read and write I2C master access to the specified buffer memory
and prevents any access outside the buffer or write access into a read only region.

For example, the buffer for the primary slave address is configured using the code below. The
buffer elements from 4 to 9 are read only.

#define BUFFER_SIZE (0x0Au)

#define BUFFER_RW_BOUNDARY (0x04u)

uint8 ezi2cBuffer[BUFFER_SIZE];

SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_RW_BOUNDARY, ezi2cBuffer);

The buffer ezi2cBuffer is allocated in memory as shown in Figure 5.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 70 of 211 Document Number: 002-10814 Rev. *E

Figure 5. EZ I2C buffer exposed to an I2C master

Access type Exposed Buffer

Read/Write

Read Only

ezi2cBuffer[0]

RAM

0x0000

0x00FF

0x000D

0x0016

ezi2cBuffer[1]

ezi2cBuffer[2]

ezi2cBuffer[3]

ezi2cBuffer[4]

ezi2cBuffer[5]

ezi2cBuffer[6]

ezi2cBuffer[7]

ezi2cBuffer[8]

ezi2cBuffer[9]

To configure the whole buffer for read and write access, the buffer size and read/write boundary
need to use the same value. For example:

SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_SIZE, ezi2cBuffer);

Handling endianness

The EZ I2C buffer can be set up as a variable. A variable with a size of more than one byte will
require knowledge of endianness (little-endian or big-endian). The endianness will determine the
byte order on the I2C bus. It is the I2C master’s responsibility to handle byte ordering properly.

uint16 ezi2cBuffer = 0xAABB;

#define BUFFER_SIZE (2u)

SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_SIZE, (uint8 *) &ezi2cBuffer);

All PSoC 4 devices are little-endian devices, so the master will read these two bytes in order as:
0xBB 0xAA.

Handling structures

The EZ I2C buffer can be set up as structure. The compiler lays out structures in memory and
may add extra bytes. This is called byte padding. The compiler will add these bytes to align the
fields of the structure to match the requirements of the Cortex-M0. This processor does not
support unaligned access to multi-byte fields. When using a structure, the application must take

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 71 of 211

this alignment into account. If fields need to be packed, then a byte array should be used instead
of a structure.

Handling a status byte

To define a higher level protocol, a status byte placed inside the EZ I2C buffer may be required.
This status byte would be modified by the I2C master, but the compiler is not aware that an
interrupt routine may modify this buffer. This can result in the compiler optimizing a while loop
that tests for a change in the status byte. The keyword volatile must be used to inform the
compiler that the status byte might change state even though no statements in the program
appear to change it.

Code example:

#define BUFFER_SIZE (0x0Au)

#define STATUS_BYTE_POS (0u)

volatile uint8 ezi2cBuffer[BUFFER_SIZE];

SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_SIZE, ezi2cBuffer);

ezi2cBuffer[STATUS_BYTE_POS] = 0x01u;

while(0x01u == ezi2cBuffer[STATUS_BYTE_POS])

{

 /* Wait for status byte to be changed by the master */

}

Interface as Seen by an External Master

The EZ I2C slave Component supports basic read and write operations for the read/write region
and read operations for the read-only region. The two I2C address interfaces contain separate
data buffers that are addressed with separate base addresses. The base address is an index
within the EZ I2C buffer, its range is 0 to buffer size - 1. The base address comes first, followed
by the data bytes. The base address size depends on Sub-address size parameter: one byte
(Sub-address size = 8bits) or two bytes (Sub-address size = 16bits). The sub-address size of 8
bits is used to access buffers up to 256 bytes and sub-address size of 16 bits is used for buffers
up to 65535 bytes. In the case of a two byte address, the first byte is the high byte and the
second is the low byte of the 16-bit value Figure 6.

For example, the desired base address to access is 0x0201: high byte is 0x02 and low is 0x01.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 72 of 211 Document Number: 002-10814 Rev. *E

Figure 6. The 8-bit and 16-bit Sub-Address Size

BASE ADDRESS

LSBMSBLSBMSB

LSBMSB

BASE ADDRESS HIGH BASE ADDRESS LOW

For write operations, a base address is always provided and is one or two bytes depending on
the configuration. This base address is retained and will be used for later read operations.
Following the base address is a sequence of bytes that are written into the buffer starting from
the base address location. The buffer index is incremented for each written byte, but this does
not affect the base address, which is retained. The length of a write operation is limited by the
maximum buffer read/write region size. The EZ I2C slave behaves differently on the I2C bus
when a master attempts to write outside the read/write region or past the end of the buffer
depending on the setting for Clock Stretching:

▪ Enabled: the byte is NAKed by the slave and the master has to stop the current
transaction. The NAKed byte is discarded by the slave.

▪ Disabled: all written bytes are ACKed by the slave, but these bytes are discarded.

Figure 7. I2C Master writes X bytes to the EZ I2C Slave buffer

S A
R
W

A
6

A
5

A
4

A
3

A
2

A
1

B
1

B
7

B
6

B
5

B
4

B
3

B
2

A
0

B
0

A

Slave Address
Base

Address (n)

P

S
ta

rt

S
to

p

W
ri
te

A
C

K

A
C

K

D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n]

D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n+1]

D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n+x]

A
C

K

A
C

K

A
C

K

Data from EZ I2C Slave component

Data from I
2
C master

A read operation always starts from the base address set by the most recent write operation.
The buffer index is incremented for each read byte. Two sequential read operations start from
the same base address no matter how many bytes were read. The length of a read operation is
not limited by the maximum size of the data buffer. The EZ I2C slave returns 0xFF bytes if the
read operation passes the end of the buffer.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 73 of 211

Figure 8. I2C Master reads X bytes from the EZ I2C Slave buffer

S A
R
W

A
6

A
5

A
4

A
3

A
2

A
1

D
1

D
7

D
6

D
5

D
4

D
3

D
2

A
0

D
0

A

Slave Address

P

S
ta

rt

S
to

p

R
e

a
d

A
C

K

A
C

K

D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A
D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n+2]

D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n+x]

N
A

C
K

A
C

K

A
C

K

Data[n] Data[n+1]

Typically, a read operation requires the base address to be updated before starting the read. In
this case, the write and read operations need to be combined together. The I2C master may use
ReStart or Stop/Start conditions to combine the operations. The write operation only sets the
base address and the following read operation will start reading from the new base address. In
cases where the base address remains the same, there is no need for a write operation to be
performed.

Figure 9. I2C Master sets the base address and reads X bytes from the EZ I2C Slave buffer

S A
R
W

A
6

A
5

A
4

A
3

A
2

A
1

B
1

B
7

B
6

B
5

B
4

B
3

B
2

A
0

B
0

A

Slave Address
Base

Address (n)

P

S
ta

rt

S
to

p

W
ri
te

A
C

K

A
C

K

A
0

A
6

A
5

A
4

A
3

A
2

A
1

R
W

A
D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n]

D
1

D
7

D
6

D
5

D
4

D
3

D
2

D
0

A

Data[n+x]

N
A

C
K

A
C

K

A
C

K

S

r

R
e

S
ta

rt

Slave Address

R
e

a
d

Detailed descriptions of the I2C bus and its implementation are available in the complete I2C
specification on the NXP website, and by referring to the device datasheet.

Data Coherency

Although a data buffer may include a data structure larger than a single byte, a Master read or
write operation consists of multiple single-byte operations. This can cause a data coherency
problem, because there is no mechanism to guarantee that a multi-byte read or write will be
synchronized on both sides of the interface (Master and Slave). For example, consider a buffer
that contains a single two-byte integer. While the master is reading the two-byte integer one byte
at a time, the slave may have updated the entire integer between the time the master read the
first byte of the integer (LSB) and was about to read the second byte (MSB). The data read by
the master may be invalid, since the LSB was read from the original data and the MSB was read
from the updated value.

You must provide a mechanism on the master, slave, or both that guarantees that updates from
the master or slave do not occur while the other side is reading or writing the data. The
SCB_EzI2CGetActivity() function can be used to develop an application-specific mechanism.

Note The buffer setup APIs are not interrupt protected and must be called when the Component
is disabled or the slave is not busy.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 74 of 211 Document Number: 002-10814 Rev. *E

Clock Stretching

Clock stretching pauses a transaction by holding the SCL line low. The transaction cannot
continue until the SCL line is released allowing the signal to go high again. The support of clock
stretching is an optional feature of the I2C spec. For that reason, the EZ I2C slave provides an
option to enable or disable this feature.

Clock Stretching Enable

Enabling the clock stretching option makes is possible for the slave to insert a pause into the
transaction at the byte level. This allows for consistent EZ I2C slave operation for any slave
interrupt latency. The drawback is that the master has to support clock stretching as well.

Clock Stretching Disable

Disabling clock stretching configures the EZ I2C slave to operate with an optimized interrupt
service routine. This allows the EZ I2C slave to operate without clock stretching. Despite the
optimization, the slave interrupt still must be serviced fast enough. The maximum time that the
slave interrupt service can be delayed is defined as the maximum EZ I2C slave interrupt latency.
A design that does not satisfy the required maximum EZ I2C slave interrupt latency will cause
erroneous slave behavior. It is recommended to enable clock stretching if the design cannot
satisfy the required maximum EZ I2C slave interrupt latency. When selecting the clock stretching
disable option, refer also to the following:

▪ Maximum slave interrupt latency

▪ Transactions chained with ReStart

▪ Slave busy management

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 75 of 211

Maximum slave interrupt latency

All master transactions begin with a Start condition. The slave hardware detects this condition
and generates an interrupt request, which starts slave operation (Figure 10). The ReStart
condition has the same effect on the slave as Start condition, except previous transaction
completion flags have to be set; service of the ReStart condition has greater priority.

Figure 10. EZ I2C slave starts operation

Start / ReStart

 condition is detected

A

CPU operation

S
A

6

A

5

A

4

A

3

A

2

A

1

A

0
R

ISRTask Task

EZI2C interrupt
request

tTX UPDATE

Master drives the bus

Slave drives the bus EZI2C interrupt
hander

The time between starting the slave interrupt handler to the moment when the TX FIFO has been
updated with the first byte is referred as tTX UPDATE

[5] [6] (Figure 10). The TX FIFO update consists
of clearing the TX FIFO and writing a byte from the slave buffer into the TX FIFO. The TX FIFO
update must be completed before the master starts reading the first data byte. Otherwise, a
number of issues can occur, including: reading old the TX FIFO content, clock stretching when
the TX FIFO is cleared [7], or reading a partial byte due to the TX FIFO clear in the middle of the
byte transfer.

The constraint applied to the TX FIFO update during the master read transaction causes the
maximum slave interrupt latency to be defined as maximum delay, which can be inserted from
the Start condition detection by the slave hardware, to the start of the execution of the slave
interrupt handler (Figure 11 on page 76).

5 This time depends on design settings such as CPU clock, compiler, optimization, etc.

6 This time does not include interrupt latency of the Cortext-M0 processor.

7 The slave hardware stretches the clock when TX FIFO is empty.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 76 of 211 Document Number: 002-10814 Rev. *E

Therefore, the maximum interrupt latency must be less than the master address byte transmit
time (tADDRESS) plus slave ACK bit transmit time (tACK). But taking to account TX FIFO update
constraint, the maximum interrupt latency must be less than:

tMAX LATENCY = (tADDRESS + tACK) – tTX UPDATE = (8bits / fSCL + 1bit / fSCL) –
tTX UPDATE = 9 / fSCL – tTX UPDATE

For example I2C data rate of 100 kbps, the maximum interrupt latency must be less than:

tMAX LATENCY = 9 / fSCL – tTX UPDATE = 90 uS – tTX UPDATE

The number of CPU cycles to put the first byte into TX FIFO is calculated in the EZ I2C interrupt.
This number is equal to 71 cycles (mode Release, Compiler GCC, optimization Size). Taking into
account that the maximum interrupt latency of the Cortext-M0 processor is 16 cycles; the number
of cycles is increased to 87.

With the assumption that clock configuration of the design is internal IMO and HFCLK = SYSCLK
= 24 MHz, the tMAX LATENCY is calculated for the I2C data rate of 100 kbps. The accuracy of the
internal IMO is +/-2%; therefore, the number of CPU cycles is increased by 2% and equal to
~89 cycles. The tTX UPDATE = 89 / SYSCLK = 3.71uS. Referring to the above equation, the
maximum interrupt latency is equal to:

tMAX LATENCY = 9 / fSCL – tTX UPDATE = 90 uS – tTX UPDATE = 90 uS – 3.71 uS = 86.29 uS

Figure 11. EZ I2C slave maximum interrupt latency

D

6

D

7

EZI2C interrupt
request

Start / ReStart

condition is detected

A

CPU operation

S
A

6

A

5

A

4

A

3

A

2

A

1

A

0
R

D

5

D

4

D

3

D

2

D

1

Maximum slave interrupt latency TaskTask

tMAX LATENCY

EZI2C interrupt
hander

tTX UPDATE

Master drives the bus

Slave drives the bus

ISR

tADDRESS

tACK

Design recommendations:

1. Use the highest possible SYSCLK frequency, as it runs the CPU to reduce execution time
of the EZ I2C slave interrupt.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 77 of 211

2. Use optimization options of the compiler as it reduces the number of instructions to
execute in the EZ I2C slave interrupt.

3. Set the EZ I2C interrupt priority to be the highest in the design. If there are other interrupts
with the same priority, make sure that their execution time is less than EZ I2C maximum
interrupt latency.

4. Calculate the duration of the each critical section in the design and compare with the
EZ I2C maximum interrupt latency to make sure that design meets criteria.

Transactions chained with ReStart

A common use case is for the master to write the base address, and then using a repeated start
(no Stop) read data from the slave starting at the base address (Figure 12 on page 78). The
base address (or data byte) written by the master is received into the RX FIFO and must be
serviced by the slave interrupt handler (Figure 12, case 1). The service of the RX FIFO has
greater priority than the ReStart condition service because the base address may have been
updated by the master write transaction, and it is used for the TX FIFO update. The time spent to
service the RX FIFO might affect the service of the ReStart condition. If this is the case
(Figure 12, case 2), the maximum interrupt latency is reduced by the time it takes to service the
RX FIFO after the ReStart condition is detected:

tMAX LATENCY = 9 / fSCL – (tRX DELAY + tTX UPDATE)

The RX FIFO service will affect tMAX LATENCY when it takes longer than (1bit / fSCL + tLOW + tSU;STA),
(where 1bit / fSCL is duration of ACK condition generation, tLOW and tSU;STA minimum values for
the selected bus speed mode). For data rate 100 kbps this time equal to: 10 uS + 4.7 uS + 4.7
uS = 19.4 uS.

The longest RX FIFO service path in the EZ I2C interrupt is consumed by the handling of base
address written by the master (tRX SERVICE). It consumes 100 CPU cycles (mode Release,
Compiler GCC, optimization Size). Taking into account that the maximum interrupt latency of the
Cortext-M0 processor is 16 cycles; the number of cycles is increased to 116.

With the assumption that clock configuration of the design is internal IMO and HFCLK = SYSCLK
= 24 MHz, the tRX SERVICE is calculated. The accuracy of the internal IMO is +/-2%; therefore, the
number of CPU cycles is increased by 2% and equal to ~118 cycles. The tRX SERVICE = 118 /
SYSCLK = 4.92 uS which is less than 19.4 uS, therefore tRX DELAY = 0 uS.

The master ReStart timings must be examined; the I2C spec provides minimum values. Some
masters before ReStart generation extend tLOW to prepare for the next transaction, but it is device
specific. If there is possibility to control this time, the RX FIFO service effect on the maximum
interrupt latency can be eliminated by increasing tLOW before ReStart until tRX DELAY is equal to
zero.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 78 of 211 Document Number: 002-10814 Rev. *E

Figure 12. Master set base address and read data

EZI2C interrupt
request

Start condition is detected

A

Get byte from

RX FIFO

ReStart condition

is detected

S
A

6

A

5

A

4

A

3

A

2

A

1

A

0
W A

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0
Sr

ISR ISR ISRTask Task

Task

A
A

6

A

5

A

4

A

3

A

2

A

1

A

0
R A

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0
P

ISR ISRTask

Task

Task

Add byte

into TX FIFO

Stop condition

is detected

SCL

SDA

A Sr

tLOW

tTX UPDATE tTX UPDATE

CPU operation

EZI2C interrupt
request

ISR ISR ISRTask Task ISR ISRTask

Task

Task

tTX UPDATE tTX UPDATE

CPU operation

tRX DELAY

Case 1:

Case 2:

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 79 of 211

Slave busy management

The SCB_EzI2CGetActivity() API and SCB_Sleep() API use address match status to track slave
busy status. This event is triggered by hardware on the rising edge of 8th SCL within the address
byte for PSoC 4100 / PSoC 4200 devices and on falling edge of 8th SCL for other PSoC4
devices (Figure 13, black circle 2).

To be used as slave busy status, the address match is cleared by firmware on the Start / ReStart
or Stop condition (Figure 13, black circle 1). If Start / ReStart interrupt service is delayed for
maximum interrupt latency, the address match status is cleared too early (Figure 13, red circle
1).

This causes incorrect slave busy reporting. For correct slave busy status reporting, the maximum
interrupt latency must be reduced to 1.5 bit / fSCL for PSoC 4100 / PSoC 4200 devices and to
1 bit / fSCL for other PSoC4 devices. As an alternative, the SCB hardware bus busy status can be
used to manage bus activity. See the SCB_I2C_STATUS register bit SCB_BUS_BUSY
description in Technical Reference Manual (TRM) for more information.

Figure 13. Slave busy management

EZI2C interrupt
request

Start/ReStart

 condition is detected

S

ISRTask

A
A

6

A

5

A

4

A

3

A

2

A

1

A

0
R A

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0
P

ISR ISRTask

Task

Task

Add byte

into TX FIFO

Stop condition

is detected

CPU operation

TaskTask ISRCPU operation

Address match
status

1

1

1

2

1 Address match status is cleared by firmware

2 Address match status is set by hardware

tTX UPDATE

Maximum slave interrupt latency

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 80 of 211 Document Number: 002-10814 Rev. *E

Preferable Secondary Address Choice

The hardware address-match-logic uses address bit masking to support both addresses. The
address mask defines which bits in the address are treated as non-significant while performing
an address match. One non-significant bit results in two matching addresses; two bits will match
4 and so on. Due to this reason, it is preferable to select a secondary address that is different
from the primary by one bit. The address mask in this case makes one bit non-significant. If the
two addresses differ by more than a single bit, then the extra addresses that will pass the
hardware match and will rely on firmware address matching to generate a NAK.

For example:

▪ Primary address = 0x24 and secondary address = 0x34, only one bit differs. Only the two
addresses are treated as matching by the hardware.

▪ Primary address = 0x24 and secondary address = 0x30, two bits differ. Four addresses
are treated as matching by the hardware: 0x24, 0x34, 0x20 and 0x30. Firmware is
required to ACK only the primary and secondary addresses 0x24 and 0x30 and NAK all
others 0x20 and 0x34.

Low power modes

The Component in EZ I2C mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.

Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the Component or code before entering/exiting this mode. Any communication
intended to the slave causes interrupt to occur and leads to wakeup.

Deep Sleep mode requires that the slave be properly configured to be a wakeup source. The
“Enable wakeup from Deep Sleep Mode” must be checked in the I2C configuration dialog. The
SCB_Sleep() and SCB_Wakeup() functions must be called before/after entering/exiting Deep
Sleep.

The wakeup event is slave address match. The externally clocked logic performs address
matching and when a matched address is detected the hardware generated an interrupt request.
But the slave behavior after address match depends on clock stretching option selection.

Clock stretching enable: the slave stretches SCL line until control is passed to the slave
interrupt routine to ACK the address.

Before entering Deep Sleep, the on-going transaction intended for the slave must be completed
as suggested in the following code:

/* Enter critical section to lock the slave state */

uint8 intState = CyEnterCriticalSection();

/* Check if slave is busy */

status = (SCB_EzI2CGetActivity() & SCB_EZI2C_STATUS_BUSY);

if (0u == status)

{

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 81 of 211

 /* Slave is not busy: enter Deep Sleep */

 SCB_Sleep(); /* Configure the slave to be wakeup source */

 CySysPmDeepSleep();

 /* Exit critical section to continue slave operation */

 CyExitCriticalSection(intState);

 SCB_Wakeup(); /* Configure the slave to active mode operation */

}

else

{

 /* Slave is busy. Do not enter Deep Sleep. */

 /* Exit critical section to continue slave operation */

 CyExitCriticalSection(intState);

}

For devices other than PSoC 4100 / PSoC 4200, the Component clock must be disabled
before calling SCB_Sleep(), and then enabled after calling SCB_Wakeup(); otherwise, the SCL
will lock up after wakeup from Deep Sleep. Disabling and re-enabling the Component clock is
managed by the SCB_Sleep() and SCB_Wakeup() APIs when the Clock from terminal option is
disabled. Otherwise, when the Clock from terminal option is enabled, the code provided above
requires modification to enable and disable the clock source connected to the SCB Component.
Review the following modified code and highlighted in blue (ScbClock – the instance name of
clock Component connected to the SCB):

if (0u == status)

{

 /* Slave is not busy: enter to Deep Sleep */

 SCB_Sleep(); /* Configure the slave to be wakeup source */

 ScbClock_Stop(); /* Disable the SCB clock */

 CySysPmDeepSleep();

 /* Exit critical section to continue slave operation */

 CyExitCriticalSection(intState);

 ScbClock _Start(); /* Enable SCB clock */

}

Figure 14. Master transfer wakes up device on slave address match (Clock stretching
enable)

Clock strechingAddressS Data P

Address

match

AAR/W

Device wakeup time

Transfer to other slave

Or bus IDLE

Deep Sleep ActiveMode transition

SCB_Sleep()

call

Active

SCB_Wakeup()

call

Note The values for the primary and secondary addresses affect the range of matched
addresses. The preferable choice for the secondary address is when it differs from the primary

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 82 of 211 Document Number: 002-10814 Rev. *E

only by one bit. If it differs by more than one bit, then some transactions that are not intended for
this device will still wake the device from deep sleep. The address is going to be NAKed in this
case.

Clock stretching disable: the slave NAKs the matched address and any subsequent
transactions until the device wakes up.

Before entering Deep Sleep, the ongoing transaction intended for the slave must be completed.
The waiting loop is implemented inside the SCB_Sleep() function. This function is blocking and
waits until the slave is free to configure it to be a wakeup source. For proper SCB_Sleep()
function operation the slave busy status has to be managed properly by the EZI2C slave(refer to
the Slave busy management section for more information). After reconfiguration, the sampling of
the address match event is started and the device has time to enter Deep Sleep mode. To
operate correctly in active mode, the slave configuration must be restored back by
SCB_Wakeup(). The agreement between slave and master must be concluded so as not to
access the slave after wakeup until SCB_Wakeup() is executed. The following code is
suggested:

SCB_Sleep(); /* Wait for the slave to be free and configures it to be wakeup

source */

CySysPmDeepSleep();

SCB_Wakeup(); /* Configure the slave to active mode operation */

Note The interrupts are required for the slave operations and global interrupts must be enabled
before calling SCB_Sleep().

Figure 15. Master transfer wakes up device on slave address match (Clock stretching
disable)

Address

match

Transfer to other slave

Or bus IDLE

Deep Sleep ActiveMode transition

A AddressS R\W ABus IDLE

SCB_Wakeup()

call

Data PA

SCB_Sleep()

call

Active

AddressS R\W

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 83 of 211

SPI

This Component provides an industry-standard, 4-wire SPI interface. Three different SPI
protocols or modes are supported:

▪ Original SPI protocol as defined by Motorola.

▪ TI: Uses a short pulse on “spi_select” to indicate start of transaction.

▪ National Semiconductor (Microwire): Transmission and Receptions occur separately.

In addition to the standard 8-bit word length, the Component supports a configurable 4 to 16-bit
data width for communicating at nonstandard SPI data widths.

Input/Output Connections

This section describes the various input and output connections for the SCB Component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.

clock – Input*

Clock that operates this block. The presence of this terminal varies depending on the Clock from
terminal parameter.

interrupt – Output*

This signal can only be connected to an interrupt Component or left unconnected. The presence
of this terminal varies depending on the Interrupt parameter.

rx_tr_out – Output*

This signal can only be connected to a DMA channel trigger input. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the RX FIFO level. The presence of
this terminal varies depending RX Output parameter.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 84 of 211 Document Number: 002-10814 Rev. *E

tx_tr_out – Output*

This signal can only be connected to a DMA channel trigger input. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the TX FIFO level. The presence of
this terminal varies depending TX Output parameter.

The interface-specific pins are buried inside Component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.

Note The input buffer of buried output pins is disabled so as not to cause current linkage in low
power mode. Reading the status of these pins always returns zero. To get the current status, the
input buffer must be enabled before status read.

Internal Pins Configuration

The SPI Slave and Master pins are buried inside Component: SCB_miso_s, SCB_mosi_s,
SCB_sclk_s, SCB_ss_s and SCB_miso_m, SCB_mosi_m, SCB_sclk_m, SCB_ss0_m,
SCB_ss1_m, SCB_ss2_m, SCB_ss3_m. These pins are buried because they use dedicated
connections and are not routable as general purpose signals. Refer to the I/O System section in
the device Technical Reference Manual (TRM) for more information.

Note The instance name is not included into the Pin Names provided in the following tables.

Table 8. SPI Slave Pins Configuration

Pin
Name

Direction Drive
Mode

Initial
Drive State

Threshold Slew
Rate

Descriptiion

mosi_s Input High
Impeda

nce
Digital

Low CMOS – The mosi_s input pin receives the Master Output Slave Input (MOSI)
signal from a master device. This pin presents if the Remove MOSI is
unchecked.

The pin output enable is tied to 0 to make pin state High-Z. The Drive
Mode settings has no effect.

sclk_s Input High
Impeda

nce
Digital

Low CMOS – The sclk_s input pin receives the Serial Clock (SCLK) signal. It
provides the slave synchronization clock input to the device.

The pin output enable is tied to 0 to make pin state High-Z. The Drive
Mode settings has no effect.

ss_s Input High
Impeda

nce
Digital

Low CMOS – The ss_s input pin receives the Slave Select (SS) signal to the device.

The pin output enable is tied to 0 to make pin state High-Z. The Drive
Mode settings has no effect.

miso_s Output Strong
Drive

High – Fast The s_miso output pin drives the Master In Slave Out (MISO) signal to
the master device on the bus.

This pin presents if the Remove MISO is unchecked.The pin output
enable is assigend to 0 when slave is not selected. The Drive Mode
settings has no effect in that moment and pins state is High-Z.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 85 of 211

Table 9. SPI Master Pins Configuration

Pin
Name

Direction Drive
Mode

Initial
Drive State

Threshold Slew
Rate

Descriptiion

miso_m Input High
Impedance

Digital

Low CMOS – The miso_m input pin receives the Master In Slave Out (MISO)
signal from a slave device. This pin presents if the Remove MOSI is
unchecked.

The pin output enable is tied to 0 to make pin state High-Z. The
Drive Mode settings has no effect.

mosi_m Output Strong
Drive

High – Fast The mosi_m output pin drives the Master Output Slave Input
(MOSI) signal from the master device on the bus. This pin presents
if the Remove MISO is unchecked.

sclk_m Output Strong
Drive

High – Fast The sclk_m output pin drives the Serial Clock (SCLK) signal. It
provides the master synchronization clock output to the slave
devices on the bus. This pin presents if the Remove SCLK is
unchecked.

ss0_m –

ss3_m

Output Strong
Drive

High – Fast The ss0_m – ss3_m output pin drives the Slave Select (SS) signal
to the slave devices on the bus. The master is capable to provide
up to 4 hardware controlled slave select lines. This number
depends on value of Number of SS parameter.

The Input threshold level for input pins is CMOS which should be used for the vast majority of
application connections.

The Input Buffer for output pins is disabled so as not to cause current linkage in low power
mode. Reading the status of these pins always returns zero. To get the current status, the input
buffer must be enabled before a status read.

The other input pins and output pins parameters are set to default. Refer to pin Component
datasheet for more information about default parameters values.

To change SPI buried pins configuration the pin’s Component APIs should be used or direct pin
registers configuration. For example:

/* Change SPI slave MISO pin drive mode to Open Drain Drives Low. */

SCB_miso_s_SetDriveMode(SCB_miso_s_DM_OD_LO);

Note Refer to Table 8 on page 84 to ensure that Drive Mode settings are not overridden by the
SCB block connection to pin.

Glitch Avoidance at System Reset

The SPI outputs are in High Impedance Digital state when device is coming out of System Reset
this can cause glitches on the outputs. This is important if you are concerned with SPI Master
SS0 – SS3 (ss0_m – ss3_m) or SCLK (sclk_m) output pins activity at either chip startup or when
coming out of Hibernate mode. The external pull-up or pull-down resistor has to be connected to
the output pin to keep it in the inactive state.

The inactive state of SPI Master SS0 – SS3 pins depends on SS0-SS3 polarity parameters and
inactive state of SCLK depends on SCLK mode parameter.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 86 of 211 Document Number: 002-10814 Rev. *E

The Component takes care and sets SPI master SS0 – SS3 (ss0_m – ss3_m) and SCLK
(sclk_m) outputs in the inactive state when Component is disabled or in Deep Sleep mode.

SmartIO support

The following connections are shown only if Enable SmartIO support option is enabled.
Additional visibility conditions are listed in the following input and output descriptions. Only the
Pin or SmartIO Component is allowed to be connected to these terminals.

Note The SCB block performs synchronization of the inputs internally therefore Sync Input
option in the Digital Input Pin Component must be set to Transparent.

s_mosi – Input *

The slave s_mosi input carries the Master Output Slave Input (MOSI) signal from a master
device. This input is visible if the Remove MOSI is disabled. It must be connected if visible.

s_sclk– Input *

The slave s_sclk input carries the Serial Clock (SCLK) signal. It provides the slave
synchronization clock input to the device. This input is always visible and must be connected.

s_ss – Input *

The slave s_ss input carries the Slave Select (SS) signal to the device. This input is always
visible and must be connected.

s_miso – Output *

The slave s_miso output carries the Master In Slave Out (MISO) signal to the master device on
the bus. This output is visible if the Remove MISO is disabled.

m_miso – Input *

The master m_miso input carries the MISO signal from a slave device. This input is visible if the
Remove MOSI is disabled. It must be connected if visible.

m_mosi – Output *

The master m_mosi output carries the MOSI signal from the master device on the bus. This
output is visible if the Remove MISO is disabled.

m_sclk– Output *

The master m_sclk output carries the Serial Clock (SCLK) signal. It provides the master
synchronization clock output to the slave devices on the bus. This output is visible if the Remove
SCLK is disabled.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 87 of 211

m_ss0 – m_ss3 – Output *

The master ss0-ss3 outputs carries the Slave Select (SS) signal to the slave devices on the bus.
The master is capable to provide up to 4 hardware controlled slave select lines. This number
depends on value of Number of SS parameter.

Basic SPI Parameters

The SPI Basic tab contains the following parameters:

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 88 of 211 Document Number: 002-10814 Rev. *E

Mode

This option determines in which SPI mode the SCB operates.

▪ Slave – Slave only operation (default).

▪ Master – Master only operation.

Note For Slave activation the in the Motorola or National Semiconductor (Microwire) mode it is
not enough to tie the slave select input to the active level. The initial falling edge for slave select
active low or rising edge for slave select active high is required after slave was enabled.

Sub mode

This option determines what SPI sub-modes are supported:

▪ Motorola – The original SPI protocol as defined by Motorola (default).

▪ TI (Start Coincides) – The Texas Instruments’ SPI protocol.

▪ TI (Start Precedes) – The Texas Instruments’ SPI protocol.

▪ National Semiconductor (Microwire) – The National Semiconductor's Microwire
protocol.

SCLK mode

This parameter defines the serial clock phase and clock polarity mode for communication.

▪ CPHA = 0, CPOL= 0 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. SCLK idles low. This is default mode.

▪ CPHA = 0, CPOL= 1 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. SCLK idles high.

▪ CPHA = 1, CPOL= 0 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. SCLK idles low

▪ CPHA = 1, CPOL= 1 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. SCLK idles high

Refer to the section Motorola sub mode operation in the SPI chapter of this document for more
information.

Data rate

This parameter is used to set the SPI data rate value up to 8000 kbps; the actual rate may differ
based on available clock frequency and Component settings. The standard data rates are 500,
1000 (default), 2000, 4000 to 8000 in multiples of 2000 kbps. This parameter has no effect if the
Clock from terminal parameter is enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 89 of 211

Actual data rate

The actual data rate displays the data rate at which the Component will operate with current
settings. The factors that affect the actual data rate calculation are: the accuracy of the
Component clock (internal or external) and oversampling factor (only for the Master mode).
When a change is made to any of the Component parameters that affect actual data rate, it
becomes unknown. To calculate the new actual data rate press the Apply button.

Note For Slave mode the actual data rate always provides maximum value for the selected clock
frequency. As external Master parameters are unknown, the assumption was made that MISO is
sampled in the leading edge of SCLK.

Refer to the Slave data rate section for actual data rate calculation which takes to account
external environment timing conditions.

Oversampling

This parameter defines the oversampling factor of the SPI clock; the number of Component
clocks within one SPI clock period. Oversampling factor is used to calculate the internal
Component clock frequency required to achieve this amount of oversampling as follows:
SCBCLK = Data rate * Oversampling factor.

▪ For Slave mode, only the Component clock source frequency is important. The
oversampling value is used to create a clock fast enough to operate at the selected data
rate. Refer to the Maximum data rate calculation section for more information. The
created clock is equal to the (data rate * Oversampling).

▪ For Master mode, the oversampling value is used for serial clock signal (SCLK)
generation. The oversampling is equal to number of Component clocks within one SPI
clock period. When the oversampling is even the first and second phase of the clock
period are the same. Otherwise the first phase of the clock signal period is one
Component clock cycle longer than the second phase. The level of the first phase of the
clock period depends on CPOL settings: 0 – low level and 1 – high level.

An oversampling factor maximum value is 16 and minimum depends on Component settings.
For Master the minimum oversampling factor value is 6. For Slave the minimum oversampling
value 6 (Median filter is disabled) or 8 (Median filter is enabled).

Clock from terminal

This parameter allows choosing between an internally configured clock (by the Component) or
an externally configured clock (by the user) for the Component operation. Refer to the
Oversampling section to understand relationship between Component clock frequency and the
Component parameters.

When this option is enabled, the Component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency and the Component
oversampling factor (only for the Master mode). When this option is not enabled, the clock

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 90 of 211 Document Number: 002-10814 Rev. *E

configuration and Oversampling factor (only for the Master mode) is provided by the Component.
The clock source frequency is calculated by the Component based on the Data rate parameter.

Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, Component
settings or external clock to fit the clocking system requirements.

Median filter

This parameter applies 3 taps digital median filter on the input line. The master has one input
line: MISO, and the slave has three input lines: SCLK, MOSI, and SS. This filter reduces the
susceptibility to errors. However, minimum oversampling factor value is increased. The default
value is a Disabled.

SCLK free running

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices in
Master mode. It allows master to generate SCLK continually. It is useful when master SCLK is
connected to the slave device which uses it for functional operation rather than just SPI
functionality.

The default value is a Disabled.

Enable late MISO sample

This option allows the master to sample the MISO signal by half of SCLK period later (on the
alternate serial clock edge). Late sampling addresses the round-trip delay associated with
transmitting SCLK from the master to the slave and transmitting MISO from the slave to the
master. The default value is a Disabled.

Enable wakeup from Deep Sleep Mode

Use this option to enable the Component to wake the system from Deep Sleep when slave
select occurs.

To enable this option all of the following restrictions must be met:

▪ Sub mode is Motorola

▪ SCLK mode is CPHA = 0, CPOL = 0 (only for PSoC 4100/PSoC 4200 devices)

▪ Interrupt is Internal

Refer to the Low power modes section under the SPI chapter in this document and Power
Management APIs section of the System Reference Guide for more information.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 91 of 211

TX data bits

This option defines the bit width in a transmitted data frame. The default number of bits is a
single byte (8 bits). Any integer from 4 to 16 is a valid setting.

RX data bits

This option defines the bit width in a received data frame. The default number of bits is a single
byte (8 bits). Any integer from 4 to 16 is a valid setting.

Note The number of TX data bits and RX data bits should be set the same for Motorola and
Texas Instruments sub-modes; they can be set different for National Semiconductor sub-
mode.

Bit order

The Bits order parameter defines the direction in which the serial data is transmitted. When set
to MSB first, the most-significant bit is transmitted first. When set to LSB first, the least-
significant bit is transmitted first.

Remove SCLK

This option allows removal of the SCLK pin from the SPI interface. If selected, this pin is no
longer available in the Design-Wide Resources System Editor (in the <project>.cydwr file) on the
Pins Tab. The SCLK pin cannot be removed in Slave mode.

Remove MOSI

This option allows removal of the MOSI pin from the SPI interface. If selected, this pin is no
longer available in the Design-Wide Resources System Editor (in the <project>.cydwr file) on the
Pins Tab.

Remove MISO

This option allows removal of the MISO pin from the SPI interface. If selected, this pin is no
longer available in the Design-Wide Resources System Editor (in the <project>.cydwr file) on the
Pins Tab.

Number of SS

This parameter determines the number of SPI slave select lines. Only one slave select line is
available in Slave mode and it is not optional. The values between 0 and 4 are valid choices in
Master mode. The default number of lines is 1.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 92 of 211 Document Number: 002-10814 Rev. *E

Transfer separation

This parameter determines if individual data transfers are separated by slave select de-selection
(only applicable for Master mode):

▪ Continuous – The slave select line is held in active state until the end of transfer
(default).

The master assigns the slave select output after data has been written into the TX FIFO
and keeps it active as long as there are data elements to transmit. The slave select output
becomes inactive when all data elements have been transmitted from the TX FIFO and
shifter register.

Note This can happen even in the middle of the transfer if the TX FIFO is not loaded fast
enough by the CPU or DMA. To overcome this behavior, the slave select can be
controlled by firmware. For more information about slave select control, refer to the Slave
select lines section.

▪ Separated – Every data frame 4-16 bits is separated by slave select line de-selection by
one SCLK period.

SS0-SS3 polarity

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
determines the active polarity of the slave select signal as Active Low (default) or Active High.
For other devices, only Active Low is available.

Each slave select line active polarity can be configured independently.

For Texas Instruments precede/coincide sub-modes the active polarity logic is inverted:

▪ Active Low – Slave select line is inactive low and generated pulse is active high.

▪ Active High – Slave select line is inactive high and generated pulse is active low.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 93 of 211

Advanced SPI Parameters

The SPI Advanced tab contains the following parameters:

RX buffer size

The RX buffer size parameter defines the size (in bytes/words) of memory allocated for a
receive data buffer. The minimum value is equal to the RX FIFO depth. The RX FIFO is
implemented in hardware. Values greater than the RX FIFO depth up to (232 – 2) imply using the
RX FIFO, a circular software buffer controlled by the supplied APIs, and the internal interrupt
handler. The software buffer size is limited only by the available memory. The interrupt mode is
automatically set to internal and the RX FIFO not empty interrupt source is reserved to manage
software buffer operation: move data from the RX FIFO into the circular software buffer.

▪ For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8 bytes/words.

▪ For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L /
PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices, the RX and TX FIFO
depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more information.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 94 of 211 Document Number: 002-10814 Rev. *E

TX buffer size

The TX buffer size parameter defines the size (in bytes/words) of memory allocated for a
circular transmit data buffer. The TX buffer size minimum value is equal to the TX FIFO depth.
The TX FIFO is implemented in hardware. Values greater than the TX FIFO depth up to (232 – 1)
imply using the TX FIFO, circular software buffer controlled by the supplied APIs, and the
internal interrupt handler. The software buffer size is limited only by the available memory. The
interrupt mode is automatically set to the internal and the TX FIFO not full interrupt source is
reserved to manage software buffer operation: move data from the circular software buffer into
the TX FIFO.

▪ For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8 bytes/words.

▪ For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L /
PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices, the RX and TX FIFO
depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more information.

Byte mode

This option is only applicable to PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
allows doubling the TX and RX FIFO depth from 8 to 16 bytes, by reducing the FIFO width from
16bits to 8 bits. This implies that the number of TX and RX data bits must be less than or equal
to 8 bits. Increasing FIFO depth improves performance of SPI operation as more bytes can be
transmitted or received without software interaction.

Interrupt

This option determines what interrupt modes are supported None, Internal or External.

▪ None – This option removes the internal interrupt Component.

▪ Internal – This option leaves the interrupt Component inside the SCB Component. The
predefined internal interrupt handler is hooked up to the interrupt. The Interrupt sources
option sets one or more interrupt sources, which trigger the interrupt. To add your own
code to the interrupt service routine you need to register a function using the
SCB_SetCustomInterruptHandler() function.

▪ External – This option removes the internal interrupt and provides an output terminal.
Only an interrupt Component can be connected to this terminal if an interrupt handler is
desired. The Interrupt sources option sets one or more interrupt sources, which trigger
the interrupt output.

Note For buffer sizes greater than the hardware FIFO depth, the Component automatically
enables the internal interrupt sources required for proper internal software buffer operations. In
addition, the global interrupt enable must be explicitly enabled for proper buffer handling.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 95 of 211

DMA

DMA is only available in PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC Analog
Coprocessor devices. The RX Output and TX Output options determine if DMA output trigger
terminals are available on the Component symbol.

RX Output

This option determines if the rx_tr_out terminal is available on the Component symbol. This
signal can only be connected to a DMA channel trigger input. The output of this terminal is
controlled by the RX FIFO level. This option is active only when RX buffer size equal to FIFO
depth.

TX Output

This option determines if the tx_tr_out terminal is available on the Component symbol. This
signal can only be connected to a DMA channel trigger input. The output of this terminal is
controlled by the TX FIFO level. This option is active only when TX buffer size equal to FIFO
depth.

Interrupt sources

The interrupt sources are either level or pulse. Level-triggered interrupt sources in the following
list are indicated with an asterisk (*). Refer to sections TX FIFO interrupt sources and RX FIFO
interrupt sources for more information about level interrupt sources operation. The SPI supports
interrupts on the following events:

▪ SPI done – Master transfer done event: all data elements from the TX FIFO are sent. This
interrupt source triggers later than TX FIFO empty by the amount of time it takes to
transmit a single data element. The TX FIFO empty triggers when the last data element
from the TX FIFO goes to the shifter register. However, SPI done triggers after this data
element has been transmitted. This means SPI done will be asserted one SCLK clock
cycle earlier than the reception of the data element has been completed. It is
recommended to use SCB_SpiIsBusBusy() after checking SPI done to determine when
the data element reception has been fully completed. As an alternative, the number of
received data elements can be checked to make sure that it is equal to the number of the
transmitted data elements.

▪ TX FIFO not full * – TX FIFO is not full. At least one data element can be written into the
TX FIFO.

▪ TX FIFO empty * – TX FIFO is empty.

▪ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

▪ TX FIFO underflow * – Hardware attempts to read from an empty TX FIFO.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 96 of 211 Document Number: 002-10814 Rev. *E

Note For SPI master, this interrupt source is level-triggered. It sets whenever there is no
data to transmit (it can be used as an indication that the transfer is finished). For SPI
slave, it is not level triggered and sets when the slave does not have any data to transmit
on master request.

▪ TX FIFO level * – An interrupt request is generated whenever the number of data
elements in the TX FIFO is less than the value of TX FIFO level.

▪ SPI bus error – SPI slave deselected at an unexpected time during the SPI transfer.

▪ RX FIFO not empty * – RX FIFO is not empty. At least one data element is available in
the RX FIFO to be read.

▪ RX FIFO full * – RX FIFO is full.

▪ RX FIFO overflow – Hardware attempts to write to a full RX FIFO.

▪ RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.

▪ RX FIFO level * – An interrupt request is generated whenever the number of data
elements in the RX FIFO is greater than the value of RX FIFO level.

Notes

When RX buffer size is greater than the RX FIFO depth, the RX FIFO not empty interrupt
source is reserved by the Component and used for the internal interrupt.

When TX buffer size is greater than the TX FIFO depth, the TX FIFO not full interrupt source is
reserved by the Component and used for the internal interrupt.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 97 of 211

Figure 16. TX interrupt sources operation

TX FIFO

Used = 0

Component Started

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO

Used = 0

Write 1 byte

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO

Used = 1

Write 1 more byte

Level = 4

TX FIFO Empty = 0 (W1C)

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO

Used = 5

Write 4 more bytes

Level = 4

TX FIFO Empty = 0

TX FIFO Level = 0 (W1C)

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO

Transmit 1 byte

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO Used = 8

Write 3 more bytes

Level = 4

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not Full = 0 (W1C)

SPI Done = 0

TX Shifter

TX FIFO

Used = 4

Trasmit 3 more bytes

Level = 4

TX FIFO Empty = 0

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO

Used = 0

Trasmit 4 more bytes

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 0

TX Shifter

TX FIFO

Used = 0

Trasmit 7 more bits

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 1

TX Shifter

Used = 7

Level = 4

TX FIFO

Used = 0

Trasmit last bit

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

TX FIFO Underflow = 1

TX Shifter

Note W1C – Write One to Clear interrupt source. The firmaware has to execute this action to clear interrupt source.

Note TX FIFO interrupt sources Empty, Level and Full are level triggered. It means that interrupt source active state is restored after clear

 operation if FIFO state is not changed.

 For example: the TX FIFO Empty interrupt source cannot be cleared if hardware still have bytes to transmit from TX FIFO.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 98 of 211 Document Number: 002-10814 Rev. *E

Figure 17. RX interrupt sources operation

RX FIFO

Used = 0

Component Started

Level = 4

RX FIFO Not Empty = 0

RX FIFO Level = 0

RX FIFO Full = 0

RX Shifter

RX FIFO

Used = 0

Recevice 1 byte

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 0

RX FIFO Full = 0

RX Shifter

RX FIFO

Used = 5

Receive 4 more byte

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 0

RX Shifter

RX FIFO

Read 1 byte

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 0 (W1C)

RX Shifter

RX FIFO Used = 8

Receive 3 more bytes

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX Shifter

RX FIFO

Used = 4

Read 3 more bytes

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 0 (W1C)

RX FIFO Full = 0

RX Shifter

RX FIFO

Used = 0

Read 4 more bytes

Level = 4

RX FIFO Not Empty = 1 (W1C)

RX FIFO Level = 0

RX FIFO Full = 0

RX Shifter

Used = 7

Level = 4

RX FIFO Used = 8

Receive 3 more bytes

Level = 4

Dropped

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX FIFO Oveflow = 1

RX Shifter

Note W1C – Write One to Clear interrupt source. The firmaware has to execute this action to clear interrupt source.

Note RX FIFO interrupt sources Not Empty, Level and Full are level triggered. It means that interrupt source active state is restored after clear

 operation if FIFO state is not changed.

 For example: the RX FIFO Full interrupt source cannot be cleared if firmware is not read at least single byte from full RX FIFO.

Figure 18. SPI Master (Motorola) single byte transfer

CPOL = 0, CPHA = 0

Oversampling = 6 (1 SCLK period contains 6 SCBCLK periods), Median filter = disabled.

SCLK

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MOSI

MISO

SS0

SCBCLK

Master SPI Done

SPI Busy Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FW: Write byte into

TX FIFO

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 99 of 211

FIFO level

The RX and TX FIFO level settings control behavior of the appropriate level interrupt sources as
well as RX and TX DMA triggers outputs.

RX FIFO

The interrupt or DMA trigger output signal remains active until the number of data elements in
the RX FIFO is greater than the value of RX FIFO level.

For example, the RX FIFO has 8 data elements and the RX FIFO level is 0. The DMA trigger
signal remains active until DMA does not read all data from the RX FIFO.

TX FIFO

The interrupt or DMA trigger output signal remains active until the number of data elements in
the TX FIFO is less than the value of TX FIFO level.

For example, the TX FIFO has 0 data elements (empty) and the TX FIFO level is 7. The DMA
trigger signal remains active until DMA does not load TX FIFO with 7 data elements.

Enable SmartIO support

This option removes buried SPI pins inside the Component and exposes appropriate input and
output terminals for the slave or master. Only the Pin or SmartIO Component is allowed to be
connected to these terminals. See Input/Output Connections section for descriptions of these
terminals. This option is disabled by default and supported only by PSoC 4200L / PSoC 4000S /
PSoC 4100S / PSoC Analog Coprocessor devices.

Note The SCB Component stops managing the pin states when the Component is disabled or
the device is in low power, when the Enable SmartIO support option is enabled. In this case, you
must take care of these pin states.

SPI APIs

APIs allow you to configure the Component using software. The following table lists and
describes the interface to each function. The subsequent sections discuss each function in more
detail.

By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.

Function Description

SCB_Start() Starts the SCB.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 100 of 211 Document Number: 002-10814 Rev. *E

Function Description

SCB_Init() Initialize the SCB Component according to defined parameters in the
customizer.

SCB_Enable() Enables SCB Component operation.

SCB_Stop() Disable the SCB Component.

SCB_Sleep() Prepares Component to enter Deep Sleep.

SCB_Wakeup() Prepares Component for Active mode operation after Deep Sleep.

SCB_SpiInit() Configures the SCB for SPI operation.

SCB_SpiIsBusBusy() Returns the current status on the bus.

SCB_SpiSetActiveSlaveSelect() Selects the active slave select line. Only applicable in Master mode.

SCB_SpiSetSlaveSelectPolarity() Sets active polarity for the slave select line.

SCB_SpiUartWriteTxData() Places a data entry into the transmit buffer to be sent at the next available bus
time.

SCB_SpiUartPutArray() Places an array of data into the transmit buffer to be sent.

SCB_SpiUartGetTxBufferSize() Returns the number of elements currently in the transmit buffer.

SCB_SpiUartClearTxBuffer() Clears the transmit buffer and TX FIFO.

SCB_SpiUartReadRxData() Retrieves the next data element from the receive buffer.

SCB_SpiUartGetRxBufferSize() Returns the number of received data elements in the receive buffer.

SCB_SpiUartClearRxBuffer() Clears the receive buffer and RX FIFO.

void SCB_Start(void)

Description: Invokes SCB_Init() and SCB_Enable(). After this function call the Component is enabled
and ready for operation. This is the preferred method to begin Component operation.

When configuration is set to “Unconfigured SCB”, the Component must first be initialized to
operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise this
function does not enable Component.

void SCB_Init(void)

Description: Initializes the SCB Component to operate in one of the selected configurations: I2C, SPI,
UART or EZ I2C.

When configuration is set to “Unconfigured SCB”, this function does not do any initialization.
Use mode-specific initialization APIs instead: SCB_I2CInit, SCB_SpiInit, SCB_UartInit or
SCB_EzI2CInit.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 101 of 211

void SCB_Enable(void)

Description: Enables SCB Component operation; activates the hardware and internal interrupt. It also
restores TX interrupt sources disabled after the SCB_Stop() function was called (note that
level-triggered TX interrupt sources remain disabled to not cause code lock-up).

For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI and
UART modes the interrupt can be configured as none, internal or external.

The SCB configuration should be not changed when the Component is enabled. Any
configuration changes should be made after disabling the Component.

When configuration is set to “Unconfigured SCB”, the Component must first be initialized to
operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise this
function does not enable Component.

void SCB_Stop(void)

Description: Disables the SCB Component: disable the hardware and internal interrupt. It also disables
all TX interrupt sources so as not to cause an unexpected interrupt trigger because after the
Component is enabled, the TX FIFO is empty.

Refer to the function SCB_Enable() for the interrupt configuration details.

This function disables the SCB Component without checking to see if communication is in
progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.

void SCB_Sleep(void)

Description: Prepares Component to enter Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:

• Checked: configures the Component to be wakeup source from Deep Sleep.

• Unchecked: stores the current Component state (enabled or disabled) and disables the
Component. See SCB_Stop() function for details about Component disabling.

Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function. Refer to
the PSoC Creator System Reference Guide for more information about power-management
functions.

This function should not be called before entering Sleep.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 102 of 211 Document Number: 002-10814 Rev. *E

void SCB_Wakeup(void)

Description: Prepares Component for Active mode operation after Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has influence to on this function
implementation:

• Checked: restores the Component Active mode configuration.

• Unchecked: enables the Component if it was enabled before enter Deep Sleep.

This function should not be called after exiting Sleep.

Side Effects: Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.

void SCB_SpiInit(SCB_SPI_INIT_STRUCT *config)

Description: Configures the SCB for SPI operation.

This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in SPI mode, the
Component can be enabled using the SCB_Start() or SCB_Enable() function.

This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the
customizer settings.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 103 of 211

Parameters: config: pointer to a structure that contains the following list of fields. These fields match
the selections available in the customizer. Refer to the customizer for further description
of the settings.

Field Description

uint32 mode Mode of operation for SPI. The following defines are available
choices:

SCB_SPI_SLAVE

SCB_SPI_MASTER

uint32 submode Submode of operation for SPI. The following defines are available
choices:

SCB_SPI_MODE_MOTOROLA

SCB_SPI_MODE_TI_COINCIDES

SCB_SPI_MODE_TI_PRECEDES

SCB_SPI_MODE_NATIONAL

uint32 sclkMode Determines the sclk relationship for Motorola submode. Ignored for
other submodes. The following defines are available choices:

SCB_SPI_SCLK_CPHA0_CPOL0

SCB_SPI_SCLK_CPHA0_CPOL1

SCB_SPI_SCLK_CPHA1_CPOL0

SCB_SPI_SCLK_CPHA1_CPOL1

uint32 oversample Oversampling factor for the SPI clock. Ignored for Slave mode
operation.

uint32 enableMedianFilter 0 – disable

1 – enable

uint32 enableLateSampling 0 – disable

1 – enable

Ignored for slave mode.

uint32 enableWake 0 – disable

1 – enable

Ignored for master mode.

uint32 rxDataBits Number of data bits for RX direction.

Different dataBitsRx and dataBitsTx are only allowed for National
submode.

uint32 txDataBits Number of data bits for TX direction.

Different dataBitsRx and dataBitsTx are only allowed for National
submode.

uint32 bitOrder Determines the bit ordering. The following defines are available
choices:

SCB_BITS_ORDER_LSB_FIRST

SCB_BITS_ORDER_MSB_FIRST

uint32 transferSeperation Determines whether transfers are back to back or have SS disabled
between words. Ignored for slave mode. The following defines are
available choices:

SCB_SPI_TRANSFER_CONTINUOUS

SCB_SPI_TRANSFER_SEPARATED

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 104 of 211 Document Number: 002-10814 Rev. *E

uint32 rxBufferSize Size of the RX buffer in bytes/words (depends on rxDataBits
parameter). A value equal to the RX FIFO depth implies the usage
of buffering in hardware. A value greater than the RX FIFO depth
results in a software buffer.

The SCB_INTR _RX_NOT_EMPTY interrupt has to be enabled to
transfer data into the software buffer.

For PSoC 4100 / PSoC 4200 devices, the RX and TX FIFO depth is
equal to 8 bytes/words.

For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor devices, the RX and TX FIFO depth is equal to 8
bytes/words or 16 bytes (Byte mode is enabled).

uint8* rxBuffer Buffer space provided for a RX software buffer:

• A NULL pointer must be provided to use hardware buffering.

• A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal (rxBufferSize + 1) in bytes if
dataBitsRx is less or equal to 8, otherwise (2 * (rxBufferSize + 1))
in bytes.

The software RX buffer always keeps one element empty. For
correct operation the allocated RX buffer has to be one element
greater than maximum packet size expected to be received.

uint32 txBufferSize Size of the TX buffer in bytes/words(depends on txDataBits
parameter). A value equal to the TX FIFO depth implies the usage
of buffering in hardware. A value greater than the TX FIFO depth
results in a software buffer.

For PSoC 4100 / PSoC 4200 devices, the RX and TX FIFO depth is
equal to 8 bytes/words.

For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor devices, the RX and TX FIFO depth is equal to 8
bytes/words or 16 bytes (Byte mode is enabled).

uint8* txBuffer Buffer space provided for a TX software buffer:

• A NULL pointer must be provided to use hardware buffering.

• A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal txBufferSize if dataBitsTx is
less or eqal to 8, otherwise (2* txBufferSize).

uint32 enableInterrupt 0 – disable

1 – enable

The interrupt has to be enabled if software buffer is used.

uint32 rxInterruptMask Mask of enabled interrupt sources for the RX direction. This mask
is written regardless of the setting of the enable Interrupt field.
Multiple sources are enabled by providing a value that is the OR of
all of the following sources to enable:

• SCB_INTR_RX_FIFO_LEVEL

• SCB_INTR_RX_NOT_EMPTY

• SCB_INTR_RX_FULL

• SCB_INTR_RX_OVERFLOW

• SCB_INTR_RX_UNDERFLOW

• SCB_INTR_SLAVE_SPI_BUS_ERROR

uint32 rxTriggerLevel FIFO level for an RX FIFO level interrupt. This value is written
regardless of whether the RX FIFO level interrupt source is
enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 105 of 211

uint32 txInterruptMask Mask of enabled interrupt sources for the TX direction. This mask
is written regardless of the setting of the enable Interrupt field.
Multiple sources are enabled by providing a value that is the OR of
all of the following sources to enable:

• SCB_INTR_TX_FIFO_LEVEL

• SCB_INTR_TX_NOT_FULL

• SCB_INTR_TX_EMPTY

• SCB_INTR_TX_OVERFLOW

• SCB_INTR_TX_UNDERFLOW

• SCB_INTR_MASTER_SPI_DONE

uint32 txTriggerLevel FIFO level for a TX FIFO level interrupt. This value is written
regardless of whether the TX FIFO level interrupt source is enabled.

uint8 enableByteMode Ignored for all devices other than PSoC 4100 BLE / PSoC 4200
BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S /
PSoC 4100S / PSoC Analog Coprocessor.

0 – disable

1 – enable

When enabled the TX and RX FIFO depth is 16 bytes. This implies
that number of TX and RX data bits must be less than or equal to 8.

uint8 enableFreeRunSclk Ignored for all devices other than PSoC 4100 BLE / PSoC 4200
BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S /
PSoC 4100S / PSoC Analog Coprocessor.

Enables continuous SCLK generation by the SPI master.

0 – disable

1 – enable

uint8 polaritySs Ignored for all devices other than PSoC 4100 BLE / PSoC 4200
BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S /
PSoC 4100S / PSoC Analog Coprocessor.

Active polarity of slave select lines 0-3. This is bitmask where bit
SCB_SPI_SLAVE_SELECT0 corresponds to slave select 0 polarity,
bit SCB_SPI_SLAVE_SELECT1 – slave select 1 polarity and so on.

Polarity constants are:

SCB_SPI_SS_ACTIVE_LOW

SCB_SPI_SS_ACTIVE_HIGH

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 106 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_SpiIsBusBusy(void)

Description: Returns the current status on the bus. The bus status is determined using the slave
select signal.

• Motorola and National Semiconductor sub-modes: The bus is busy after the slave
select line is activated and lasts until the slave select line is deactivated.

• Texas Instrument sub-modes: The bus is busy at the moment of the initial pulse on
the slave select line and lasts until the transfer is complete.

SPI Master does not assign slave select line immediately after the first word is written
into TX FIFO. It takes up to 2 SCLK clocks to assign slave select. Until this happens the
bus considered not busy.

If SPI Master is configured to use "separated transfers" (see Continuous versus
Separated Transfer Separation), the bus is busy during each element transfer and is
free between each element transfer.

Return Value: uint32: Current status on the bus. If the returned value is nonzero, the bus is busy. If
zero is returned, the bus is free. The bus status is determined using the slave select
signal.

void SCB_SpiSetActiveSlaveSelect(uint32 slaveSelect)

Description: Selects one of the four slave select lines to be active during the transfer. After
initialization the active slave select line is 0.

The Component should be in one of the following states to change the active slave
select signal source correctly:

• The Component is disabled

• The Component has completed transfer

This function does not check that these conditions are met.

This function is only applicable to SPI Master mode of operation.

Parameters: uint32 slaveSelect: slave select line that will be active after the transfer.

Active Slave Select constants Description

SCB_SPI_SLAVE_SELECT0 Slave select 0

SCB_SPI_SLAVE_SELECT1 Slave select 1

SCB_SPI_SLAVE_SELECT2 Slave select 2

SCB_SPI_SLAVE_SELECT3 Slave select 3

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 107 of 211

void SCB_SpiSetSlaveSelectPolarity(uint32 slaveSelect, uint32 polarity)

Description: Sets active polarity for the slave select line.

The Component should be in one of the following states to change the active slave
select signal correctly:

• The Component is disabled

• The Component has completed transfer

This function does not check that these conditions are met.

Only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M /
PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.

Parameters: uint32 slaveSelect: slave select line to change active polarity.

Slave Select constants Description

SCB_SPI_SLAVE_SELECT0 Slave select 0.

For SPI slave mode the slave select 0 is only
valid argument due to slave select placement
constraint.

SCB_SPI_SLAVE_SELECT1 Slave select 1

SCB_SPI_SLAVE_SELECT2 Slave select 2

SCB_SPI_SLAVE_SELECT3 Slave select 3

 uint32 Polarity: active polarity of slave select line.

Active Slave Select constants Description

SCB_SPI_SS_ACTIVE_LOW Slave select is active low

SCB_SPI_SS_ACTIVE_HIGH Slave select is active high

void SCB_SpiUartWriteTxData(uint32 txData)

Description: Places a data entry into the transmit buffer to be sent at the next available bus time.

This function is blocking and waits until there is space available to put the requested
data in the transmit buffer.

Parameters: uint32 txData: the data to be transmitted.

The amount of data bits to be transmitted depends on TX data bits selection (the data
bit counting starts from LSB of txDataByte).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 108 of 211 Document Number: 002-10814 Rev. *E

void SCB_SpiUartPutArray(const uint16/uint8 wrBuf[], uint32 count)

Description: Places an array of data into the transmit buffer to be sent.

This function is blocking and waits until there is a space available to put all the
requested data in the transmit buffer.

The array size can be greater than transmit buffer size.

Parameters: const uint16/uint8 wrBuf[]: pointer to an array of data to be placed in transmit buffer.
The width of the data to be transmitted depends on TX data width selection (the data bit
counting starts from LSB for each array element).

 uint32 count: number of data elements to be placed in the transmit buffer.

uint32 SCB_SpiUartGetTxBufferSize(void)

Description: Returns the number of elements currently in the transmit buffer.

TX software buffer is disabled: Returns the number of used entries in TX FIFO.

TX software buffer is enabled: Returns the number of elements currently used in the
transmit buffer. This number does not include used entries in the TX FIFO. The transmit
buffer size is zero until the TX FIFO is not full.

Return Value: uint32: Number of data elements ready to transmit.

void SCB_SpiUartClearTxBuffer(void)

Description: Clears the transmit buffer and TX FIFO.

uint32 SCB_SpiUartReadRxData(void)

Description: Retrieves the next data element from the receive buffer.

RX software buffer is disabled: Returns data element retrieved from RX FIFO.
Undefined data will be returned if the RX FIFO is empty.

RX software buffer is enabled: Returns data element from the software receive buffer.
Zero value is returned if the software receive buffer is empty.

Return Value: uint32: Next data element from the receive buffer. The amount of data bits to be
received depends on RX data bits selection (the data bit counting starts from LSB of
return value).

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 109 of 211

uint32 SCB_SpiUartGetRxBufferSize(void)

Description: Returns the number of received data elements in the receive buffer.

RX software buffer is disabled: Returns the number of used entries in RX FIFO.

RX software buffer is enabled: Returns the number of elements that were placed in the
receive buffer. This does not include the hardware RX FIFO.

Return Value: uint32: Number of received data elements

void SCB_SpiUartClearRxBuffer(void)

Description: Clears the receive buffer and RX FIFO.

Global Variables

Knowledge of these variables is not required for normal operations.

Variable Description

SCB_initVar SCB_initVar indicates whether the SCB Component has been initialized. The variable is
initialized to 0 and set to 1 the first time SCB_Start() is called. This allows the
Component to restart without reinitialization after the first call to the SCB_Start() routine.

If reinitialization of the Component is required, then the SCB_Init() function can be called
before the SCB_Start() or SCB_Enable() function.

SCB_rxBufferOverflow SCB_rxBufferOverflow sets when internal software receive buffer overflow was
occurred.

SCB_IntrTxMask This global variable stores TX interrupt sources after SCB_Stop() is called. Only these
TX interrupt sources will be restored on a subsequent SCB_Enable() call.

Bootloader Support

The SCB Component in SPI mode can be used as a communication Component for the
Bootloader. You should use the following configuration to support the SPI communication
protocol from an external system to the Bootloader:

▪ SPI Mode: Slave

▪ Sub Mode: Motorola

▪ Data Lines: MOSI, MISO, SCLK, SS

▪ TX data bits and RX data bits: 8

▪ SCLK mode: Must match Host (boot device)

▪ Data rate: Must not be less than Host (boot device)

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 110 of 211 Document Number: 002-10814 Rev. *E

Note The slave uses input signal oversampling to allow the master to successfully
communicate with the slave at a data rate lower than what is selected in the Configure
dialog. However, when the Component is used for the bootloading, the selected data rate
is used to calculate the byte-to-byte timeout interval. This timeout interval can be too small
if the data rate, used by the master to communicate with the slave, is significantly lower
than the data rate set in the Configure dialog. If the timeout interval is too small,
bootloading will fail because the slave is not able to receive data before the byte-to-byte
timeout expired. Refer to the SCB_CyBtldrCommRead details section for more
information about byte-to-byte timeout interval and options to change it.

▪ Bit order: Must match Host (boot device)

▪ RX buffer size: Must match or be greater that maximum size of packet received from
Host. The recommended RX buffer size value to select for bootloading use Bootloader
Host Tool (shipped with PSoC Creator) is 64.

▪ TX buffer size: Must match or be greater that maximum size of packet transmitted to the
Host. The recommended TX buffer size value to select for bootloading use Bootloader
Host Tool (shipped with PSoC Creator) is 64.

For more information about the Bootloader, refer to the Bootloader Component datasheet.

The following API functions are provided for Bootloader use.

Function Description

SCB_CyBtldrCommStart() Starts the SPI Component and enables its interrupt.

SCB_CyBtldrCommStop() Disables the SPI Component and its interrupt.

SCB_CyBtldrCommReset() Resets SPI receive and transmit buffers.

SCB_CyBtldrCommRead() Allows the caller to read data from the bootloader host (the host writes the data).

SCB_CyBtldrCommWrite() Allows the caller to write data to the bootloader host (the host reads the data).

void SCB_CyBtldrCommStart(void)

Description: Starts the SPI Component and enables its interrupt (if TX or RX buffer size is greater
than FIFO depth).

Every incoming SPI transfer is treated as a command for the bootloader.

void SCB_CyBtldrCommStop(void)

Description: Disables the SPI Component and its interrupt.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 111 of 211

void SCB_CyBtldrCommReset(void)

Description: Resets SPI receive and transmit buffers.

cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

Description: Allows the caller to read data from the bootloader host (the host writes the data). The
function handles polling to allow a block of data to be completely received from the host
device.

Parameters: uint8 pData[]: Pointer to the block of data to be read from bootloader host.

uint16 size: Number of bytes to be read from bootloader host.

uint16 *count: Pointer to variable to write the number of bytes actually read by
bootloader host.

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information, refer to the “Return
Codes” section of the System Reference Guide.

cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: Allows the caller to write data to the bootloader host (the host reads the data). The
function handles polling to allow a block of data to be completely sent to the host
device.

Parameters: const uint8 pData[]: Pointer to the block of data to send to the bootloader host.

uint16 size: Number of bytes to send to bootloader host.

uint16 *count: Pointer to variable to write the number of bytes actually written to
bootloader host.

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information refer to the “Return Codes”
section of the System Reference Guide.

SCB_CyBtldrCommRead details

The SPI interface does not provide start and stop conditions to define the start and end of a
transfer like I2C. Therefore, the following approach is used to define when command packet from
the host is received:

1. To determine when the start of a packet has occurred, the RX buffer is checked at a one
millisecond interval until the buffer size is non-zero or timeout is expired. As soon as at
least one data element has been received the communication Component knows a packet
transfer has started and immediately begins looking for the end of the packet.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 112 of 211 Document Number: 002-10814 Rev. *E

2. The transfer is completed if no new data elements are received within the byte-to-byte
timeout interval. This time interval is defined as the time consumed to transfer two data
elements with selected data rate. It is calculated by the Component based on current data
rate selection. If needed, the byte-to-byte interval can be changed by using global defines.
Open project Build Settings -> Compiler -> Command line and provide global define of the
interval in microseconds. For example, to change the interval to 40 microseconds:

 -D SCB_SPI_BYTE_TO_BYTE=40

SPI Functional Description

The Serial Peripheral Interface (SPI) protocol is a synchronous serial interface, with “single-
master-multi-slave” topology. Devices operate in either master or slave mode. The master
initiates transfers of data frames. Multiple slaves are supported with individual slave select lines.

The SPI interface consists of four signals:

▪ SCLK – Serial clock (output from master, input to the slave).

▪ MOSI – Master output, slave input (output from the master, input to the slave).

▪ MISO – Master input, slave output (input to the master, output from the slave).

▪ SELECT – Slave select (typically an active low signal, output from the master, input to the
slave).

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 113 of 211

Figure 19. SPI Bus Connections Example

Motorola sub mode operation

This is the original SPI protocol defined by Motorola. It is a full duplex protocol: transmission and
reception occur at the same time.

The Motorola SPI protocol has four different modes that determine how data is driven and
captured on the MOSI and MISO lines. These modes are determined by clock polarity (CPOL)
and clock phase (CPHA).

▪ CPHA = 0, CPOL= 0 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. The idle state of SCLK line is low.

▪ CPHA = 0, CPOL= 1 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. The idle state of SCLK line is high.

▪ CPHA = 1, CPOL= 0 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. The idle state of SCLK line is low.

▪ CPHA = 1, CPOL= 1 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. The idle state of SCLK line is high.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 114 of 211 Document Number: 002-10814 Rev. *E

Figure 20 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.

Figure 20. SPI Motorola frame format

CPOL = 0 CPHA = 0

SCLK

MISO /

MOSI

SCLK

MISO /

MOSI

SCLK

MISO /

MOSI

SCLK

MISO /

MOSI

MSB LSB

MSB LSB

MSB LSB

MSB LSB

CPOL = 0 CPHA = 1

CPOL = 1 CPHA = 0

CPOL = 1 CPHA = 1

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 115 of 211

Figure 21 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0
(CPOL is '0', CPHA is '0').

Figure 21. SPI Motorola Data Transfer Example

SCLK

SELECT

MOSI

MISO

SCLK

SELECT

MOSI

MISO

CPOL = 0, CPHA = 0 single data transfer

MSB LSB

MSB LSB MSB LSB

LSBMSB

MSB LSB MSB LSB

 CPOL = 0, CPHA = 0 two successive data transfers

Texas Instruments sub modes operation

The Texas Instruments’ SPI protocol redefines the use of the SS signal. It uses the signal to
indicate the start of a data transfer, rather than a low active slave select signal. This protocol only
supports CPHA = 1, CPOL= 0.

The start of a transfer is indicated by a high active pulse of a single bit transfer period. This pulse
may precede the transfer of the first data frame bit on one SCLK period, or may coincide with the
transmission of the first data bit. The transmitted clock SCLK is a free running clock.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 116 of 211 Document Number: 002-10814 Rev. *E

Figure 22 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SS
pulse precedes the first data bit.

Note The SELECT pulse of the second data transfer coincides with the last data bit of the first
data transfer.

Figure 22. TI (Precede) Data Transfer Example

SCLK

SELECT

MOSI

MISO

SCLK

SELECT

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

CPOL=0, CPHA=1 two successive data transfers

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 117 of 211

Figure 23 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SS
pulse coincides with the first data bit.

Figure 23. TI (Coincide) Data Transfer Example

SCLK

SELECT

MOSI

MISO

SCLK

SELECT

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

CPOL=0, CPHA=1 two successive data transfers

National Semiconductor’s (Microwire) sub modes operation

The National Semiconductor's Microwire protocol is a half-duplex protocol. Rather than
transmission and reception occurring at the same time, transmission and reception take turns
(transmission happens before reception). A single “idle” bit transfer period separates
transmission from reception. This protocol only supports CPHA = 1, CPOL= 0.

Note The successive data transfers (transmission and reception) are NOT separated by an “idle”
bit transfer period.

The transmission data transfer size and reception data transfer size may differ.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 118 of 211 Document Number: 002-10814 Rev. *E

Figure 24 illustrates a single data transfer and two successive data transfers. In both cases the
transmission data transfer size is 8 bits and the reception transfer size is 4 bits.

Figure 24. National Semiconductor's Microwire Data Transfer Example

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB

“idle” ‘0’ cycle

“idle” ‘0’ cycle
No “idle” cycle

SCLK

SELECT

MOSI

MISO

SCLK

SELECT

MOSI

MISO

CPOL=0, CPHA=0 single data transfer

CPOL=0, CPHA=0 two successive data transfers

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 119 of 211

MISO late sampling

The MISO is captured by Master by half of SCLK period later (on the alternate serial clock edge).
Late sampling addresses the round-trip delay associated with transmitting SCLK from the master
to the slave and transmitting MISO from the slave to the master.

Figure 25. Late MISO sampling example

CPOL = 0, CPHA = 0

MSB LSB

MSB LSB

MISO

Normal sample

MISO

Late sample

SCLK

Slave select lines

The slave select lines are used by the master to notify the slave device that it will communicate
with it. The master has control of four slave select lines, and one of them has to be chosen as
active before starting communication. To start communication, the data is written into the TX
FIFO. The master hardware then asserts the active slave select line and sends data to the
MOSI.

There are cases when firmware control of the slave select line is desired. In this case, the slave
select lines that are controlled by the master hardware need to be deactivated. There are two
options to do this:

▪ Set the active slave select line to one that is not routed out to the pin. This option is
recommended when less than four slave select lines are used by the master. Example:
SPI master consumes 3 slave select lines SS0, SS1 and SS2. Call
SCB_SpiSetActiveSlaveSelect(SCB_SPIM_ACTIVE_SS3) to deactivate hardware
controlled slave select lines SS0-SS2.

▪ Change the source of the control of the active slave select line in HSIOM (High Speed I/O
Matrix) from the SCB SPI interface to GPIO (CPU firmware control). Refer to the High-
Speed I/O Matrix description in the Technical Reference Manual (TRM) for more
information. This option is recommended when the master uses four slave select lines or
when multiplexing between hardware controlled and firmware controlled slave select lines
is required.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 120 of 211 Document Number: 002-10814 Rev. *E

SELECT and SCLK Timing Correlation

The master activates SELECT before starting the transfer and makes it inactive when the
transfer is completed for Motorola and National Semiconductor’s (Microwire) modes. A minimum
time is guaranteed before SELECT activation and the first SCLK edge and SELECT deactivation
and last SCLK edge. This time depends on the master sampling edge, which is defined by CPHA
settings. Thus, two combinations are available.

Figure 26. SELECT and SCLK Timing Correlation (PSoC 4100/PSoC 4200)

CPHA = 0, CPOL = 0

Oversampling = 6 (1 SCLK period contains 6 SCBCLK periods)

SCLK

SS0

SCBCLK

1 SCLK ½ SCLK

CPHA = 1, CPOL = 0

Oversampling = 6 (1 SCLK period contains 6 SCBCLK periods)

SCLK

SS0

SCBCLK

½ SCLK 1 SCLK

For example above: OversamplingReg = 6 – 1 = 5.

 1 * SCLK = (5 + 1) * SCBCLK = 6 * SCBCLK,

 ½ * SCLK = ((5 / 2) + 1) * SCBCLK) = (2 + 1) * SCBCLK = 3 * SCBCLK.

Note The value 1 * SCLK is equal to ((OversamplingReg + 1) * SCBCLK, where OversamplingReg = Oversampling – 1.

 The value ½ * SCLK is equl to ((OversamplingReg / 2) + 1) * SCBCLK.

 The result of any division operation is rounded down to the nearest integer.

Note The provided timings are guaranteed by SCB block but do not take into account signal propagation time from SCB block

to pins.

Note PSoC 4100 / PSoC 4200 devices support only SCLK gated and active low SELECT
polarity.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 121 of 211

Figure 27. SELECT and SCLK Timing Correlation (PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor)

CPHA = 0, CPOL = 0

Oversampling = 5 (1 SCLK period contains 6 SCBCLK periods)

SCLK

SS0

SCBCLK

¾ SCLK ¼ SCLK

CPHA = 1, CPOL = 0

Oversampling = 5 (1 SCLK period contains 6 SCBCLK periods)

SCLK

SS0

SCBCLK

¼ SCLK ¾ SCLK

For example above: OversamplingReg = 6 – 1 = 5.

 ¾ * SCLK = ((5 / 2) + 1) + (5 / 4 + 1)) * SCBCLK = (3 + 2) * SCBCLK = 5 * SCBCLK.

 ¼ * SCLK = ((5 / 4) + 1) * SCBCLK = 2 * SCBCLK.

Note The value ¾ * SCLK is equal to (((OversamplingReg / 2) + 1) + (OversamplingReg / 4) + 1)),

 where OversamplingReg = Oversampling – 1.

 The value ¼ * SCLK is equal to ((OversamplingReg / 4) + 1).

 The result of any division operation is rounded down to the nearest integer.

Note The provided timings are guaranteed by SCB block but do not take into account signal propagation time from SCB block to

pins.

Note PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC
4000S / PSoC 4100S / PSoC Analog Coprocessor devices support SCLK gated and free
running, as well as active low and high SELECT polarity. For all configurations, the same
correlation is preserved.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 122 of 211 Document Number: 002-10814 Rev. *E

SELECT polarity

The SELECT line polarity for PSoC 4100 / PSoC 4200 devices is active low. PSoC 4100 BLE /
PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S /
PSoC Analog Coprocessor devices provide the capability to select the active polarity of the line
as active low or active high.

Figure 28. SELECT line polarity

SCLK

SELECT

Active Low

Active High

SELECT

SELECT

SELECT

Active High

Active Low

Motorola and National Semiconductor's sub mode

Texas Instruments sub mode

SCLK

Continuous versus Separated Transfer Separation

During separated data transfer, the SELECT line always changes from active to inactive state
between the individual data frames until completion of the transfer.

During continuous data transfer, the individual data frame is not necessarily separated by the
SELECT line inactivation. At the start of data transfer, the SELECT line is activated and keeps its
state active until the end of transfer. The end of transfer is defined as all data from the TX FIFO
and shifter register has been sent out. The alternative approach is to use the SPI Done interrupt
source (refer to the Interrupt sources section to understand the limitations of this approach).
Figure 21 on page 115 illustrates two continuous 8-bit data transfers in SCLK mode: CPHA=0,
CPOL= 0.

FIFO depth

The hardware provides two FIFOs. One is used for the receive direction, RX FIFO, and the other
for transmit direction, TX FIFO. The FIFO depth is 8 data elements. The width of each data
element is 16 bits. The data frame width is configurable from 4-16 bits. One element from the
FIFO is consumed regardless of the data frame width.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 123 of 211

PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S /
PSoC 4100S / PSoC Analog Coprocessor devices provide the ability to double the FIFO depth to
be 16 data elements when the data frame width is 4-8 bits.

Software Buffer

Selecting RX or TX Buffer Size values greater than the FIFO depth enables usage of the RX or
TX FIFO and a circular software buffer. An array of the requested size is allocated internally by
the Component for the TX software buffer. The allocated array for RX software buffer has one
extra element that remains empty while in operation. Keeping this element empty simplifies
circular buffer operation. The interrupt option is automatically set to Internal, and the RX or TX
interrupt source is reserved to provide software buffer operation.

The internal interrupt is connected to the interrupt output. This interrupt runs a predefined
interrupt service routine. Its main purpose is to provide interaction between software buffers and
hardware RX or TX FIFO. The software buffer overflow can happen only for the RX direction.
The data elements read from the RX FIFO that do not fit into the software buffer are discarded.
This event is reported via global variable SCB_rxBufferOverflow. For the TX direction, the
provided APIs do not allow the software buffer overflow.

Interrupts

When RX buffer size or TX buffer size is greater than the FIFO depth, the RX FIFO not empty
or TX FIFO not full interrupt sources are reserved by the Component for the internal software
buffers operations. Do not clear or disable them because it causes incorrect software buffer
operation. However, it is the user’s responsibility to clear interrupt events from other enabled
interrupt sources because they are not cleared automatically. Create a custom function that
clears these interrupt sources and register it using SCB_SetCustomInterruptHandler(). Each time
an internal interrupt handler executes, the custom function is called before handling software
buffer operation.

In case RX buffer size or TX buffer size is equal to the FIFO depth instead of software buffer
only the hardware TX or RX FIFO is used. In the Internal interrupt mode the interrupts are not
cleared automatically. It is user responsibility to do this. The External or None interrupt selection
is preferred in this case.

Low power modes

The Component in SPI mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.

Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the Component or code before entering/exiting this mode. Any communication
intended for the slave causes an interrupt to occur and leads to wakeup. Any master activity that
causes an interrupt to occur leads to wakeup.

The master mode is not able to be a wakeup source from Deep Sleep. This capability is only
available in slave mode. Deep Sleep mode requires that the slave be properly configured to be a

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 124 of 211 Document Number: 002-10814 Rev. *E

wakeup source. The Enable wakeup from Deep Sleep Mode must be checked in the SPI
configuration dialog. The SCB_Sleep() and SCB_Wakeup() functions must be called before/after
entering/exiting Deep Sleep.

The content of TX and RX FIFOs is cleared when the device enters Deep Sleep mode.
Therefore, received data should be stored in the SRAM buffer and transmit data should be
transferred before entering Deep Sleep mode to avoid data loss. Note that functions that return
TX or RX buffer size (SCB_SpiUartGetTxBufferSize() / SCB_SpiUartGetRxBufferSize()) might
return different values for hardware and software buffer after exit Deep Sleep: for hardware
buffer returned value is always 0 (because FIFOs content is cleared) whereas for software buffer
it is equal to number of bytes in available in the Component SRAM buffer. This is applies to both
Master and Slave modes.

In Master mode, the ongoing transfer is stopped asynchronously when the SCB_Sleep() API is
called because this function disables the Component. The following code is suggested to ensure
that transfer is completed before entering Deep Sleep mode. It occurs when all data elements
have been transferred from the software buffer (if utilized), TX FIFO, and shift register. Also, the
slave select line must be deactivated. This method works reliably for any choice of slave select
Transfer separation configuration.

/* Wait until SPI Master completes transfer data */

while (0u != (SCB_SpiUartGetTxBufferSize() + SCB_GET_TX_FIFO_SR_VALID))

{

}

/* Wait until SPI Master deactivates slave select to ensure that the last

* data element has been completely tranferred.

*/

while (0u != SCB_SpiIsBusBusy())

{

}

/* SPI Master is ready to enter Deep Sleep mode. */

SCB_Sleep();

CySysPmDeepSleep();

In Slave mode, data transmission is stopped asynchronously while the device enters Deep
Sleep mode. The moment that the stop occurs depends on the Enable wakeup from Deep Sleep
Mode option. When the option is disabled, the SCB_Sleep() API disables the Component and
the slave stops driving the MISO line at that moment. Otherwise, when the Enable wakeup from
Deep Sleep Mode option is enabled, the slave stops driving the MISO line at the moment when
the device enters Deep Sleep mode.

The slave wakes up the device from Deep Sleep on detecting slave select activation. Waking up
takes time (TDEEPSLEEP) and the ongoing SPI transfer is negatively acknowledged – "0xFF" bytes
are sent out on the MISO line, the data on MOSI is ignored. The master must poll the
Component again after the device wake-up time is passed and data is loaded in the RX buffer.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 125 of 211

The following code is suggested to ensure that SPI slave does not communicate with SPI master
and ready to enter Deep Sleep mode.

/* Check if there is data in the RX buffer to handle. */

if (0u == SCB_SpiUartGetRxBufferSize())

{

 /* Enter critical section to force all enabled and active interrupts become

 * pending. It is required to not miss any activity that should wake up

 * device before CySysPmDeepSleep() is called.

 */

 intState = CyEnterCriticalSection();

 /* Clear and enable SPI wakeup interrupt source.

 * Clear operation is required because SPI wakeup source is activated

 * while active mode communication.

 */

 SCB_Sleep();

 /* Enter Deep Sleep only if SPI bus is in idle state after SPI wakeup

 * interrupt source was cleared.

 */

 if (0u == SCB_SpiIsBusBusy())

 {

 CySysPmDeepSleep();

 }

 /* Exit critical section to allow interrupt handling. */

 CyExitCriticalSection(intState);

 /* Disable SPI wakeup interrupt source. */

 SCB_Wakeup();

}

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 126 of 211 Document Number: 002-10814 Rev. *E

Figure 29. SPI Slave is awaken up from Deep Sleep (Motorola, CPHA = 0, CPOL = 0)

SCLK

Wakeup byte (ignored)MOSI

MISO

SS0

0xFF

Wakeup event

Deep SleepActive DS -> A Active

TDEEPSLEEP

SCB_Sleep() SCB_Wakeup()

Data

Load RX buffer

Data

Slave data rate calculations

The SPI GUI calculates the actual data rate for master or slave devices. This value is based on
the parameters of the Component and does not take to account such factors as: parameters of
external master or slave device as well as PCB delays. The master and slave parameters for
PSoC4 can be found in the DC and AC Electrical Characteristics of this document or Device
datasheet.

The main factor limiting the maximum data rate between master and slave is the round trip path
delay. This delay includes the PCB delay from the falling edge of SCLK at the pin of the master
to the SCLK pin of the slave, the internal slave delay from the falling edge of SCLK to MISO
transition, the PCB delay from the slave MISO pin to the master MISO pin, and the master setup
time. The following equation takes to account delays listed above:

tROUND_TRIP_DELAY = tSCLK_PD_PCB + tDSO_SLAVE + tMISO_PD_PCB + tDSI_MASTER

▪ tSCLK_PD_PCB is the PCB path delay of SCLK from the pin of the master device to the pin of
the slave device.

▪ tDSO_SLAVE is the time it takes the slave to change MISO after SCLK clock driving edge is
captured. This parameter commonly listed in the slave device datasheet.

▪ tMISO_PD_PCB is the PCB path delay of MISO from the pin of the slave device to the pin of
the master device.

▪ tDSI_MASTER is the setup time of MISO signal to be sampled correctly by the master (the
MISO must be valid before SCLK clock capturing edge). This parameter commonly listed
in the master device datasheet.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 127 of 211

When tROUND_TRIP_DELAY was calculated, the maximum communication data rate between master
and slave can be defined as following:

fSCLK (max) = 1 / (2* tROUND_TRIP_DELAY)

The assumption is made that master samples the MISO signal a half SCLK period after the
driving edge.

When master is capable of sampling the MISO signal a full of SCLK period after the driving edge
(late MISO sampling) the communication data rate is doubled and calculated as following:

fSCLK (max) = 1 / tROUND_TRIP_DELAY

Refer to the section MISO late sampling for more information about MISO sampling by the
master device.

As an example the fSCLK (max) is calculated for SCB SPI Master and Slave implemented on
PSoC 4100/PSoC 4200 devices. The design clock settings are following: IMO = HFCLK =
SYSCLK = 48 MHz. The clock source frequency connected to the SCB SPI Slave and Master
Components is equal to 48MHz as well.

tDSO_SLAVE = TDSO = 42 + 3*tSCB = 42 + 3 * (1 / 48 MHz) = 105 ns

tDSI_MASTER = TDSI = 20 ns (Full clock, late MISO Sampling used)

For simplicity of the calculations assume that tSCLK_PD_PCB = 0 ns and tMISO_PD_PCB = 0 ns.

tROUND_TRIP_DELAY = tSCLK_PD_PCB + tDSO_SLAVE + tMISO_PD_PCB + tDSI_MASTER = 0 + 105 + 20 + 0 =
125 ns

fSCLK (max) = 1 / tROUND_TRIP_DELAY = 1 / 125 ns = 8 MHz

The SPI master is capable to generate maximum FSPI = 8 MHz and accordingly to calculation
above the MISO line will be sampled properly for this data rate.

For real applications the PCB delays would need to be added, and tDSO_SLAVE and tDSI_MASTER

adjusted to match the real master or slave device.

DMA Support

DMA is only available in PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC Analog
Coprocessor devices.

The SPI mode provides interface to DMA controller. The signals for transmit and receive
direction can be used to trigger a DMA transfer. To enable this signal, the “RX output” or “TX
output” option must be enabled on the Component Advanced parameter tab. The RX and TX
trigger output signals are hard-wired to the DMA controller; their connection to another source
will result in a build error. These signals are level sensitive and require the RX or TX FIFO level
to be set. The signal behavior for the triggers is as follows:

▪ RX trigger output – the signal remains active until the number of data elements in the RX
FIFO is greater than the value of RX FIFO level.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 128 of 211 Document Number: 002-10814 Rev. *E

▪ TX trigger output – the signal remains active until the number of data elements in the TX
FIFO is less than the value of TX FIFO level.

The following table specifies what DMA Component configuration should be used when it is
connected to the SCB (SPI mode) Component.

DMA Source / Destination
name Direction

Source /
Destination transfer

width

DMA
request
signal

DMA
trigger type Description

SCB_RX_FIFO_RD_PTR Source Word /

Byte or Halfword

rx_tr_out Level
sensitive

Receive FIFO

SCB_TX_FIFO_WR_PTR Destination Data bits /

Byte or Halfword

tx_tr_out Level
sensitive

Transmit FIFO

Note If the number of data bits selected is less or equal to 8 bits the transfer data element width
is byte, if the number of data bits is between 9 and 16 bits the width is halfword.

Note The SCB (SPI mode) clears request signal within 4 SYSCLK cycles therefore level
sensitive configuration of DMA has to be “wait 4 SYSCLK”.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 129 of 211

UART

The UART provides asynchronous communications commonly referred to as RS-232. Three
different UART-like serial interface protocols are supported:

▪ UART – this is the standard UART.

□ UART Hardware flow control

▪ SmartCard – similar to UART, but with the possibility to send a negative
acknowledgement.

▪ IrDA – modification to the modulation scheme used for infrared communication.

Input/Output Connections

This section describes the various input and output connections for the SCB Component. An
asterisk (*) in the list of terminals indicates that the terminals may be hidden on the symbol under
the conditions listed in the description of that terminals.

clock – Input*

Clock that operates this block. The presence of this terminal varies depending on the Clock from
terminal parameter.

interrupt – Output*

This signal can only be connected to an interrupt Component or left unconnected. The presence
of this terminal varies depending on the Interrupt parameter.

rx_tr_out – Output*

This signal can only be connected to a DMA channel Component. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the RX FIFO level. The presence of
this terminal varies depending RX Output parameter.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 130 of 211 Document Number: 002-10814 Rev. *E

tx_tr_out – Output*

This signal can only be connected to a DMA channel Component. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the TX FIFO level. The presence of
this terminal varies depending TX Output parameter.

Internal Pins Configuration

The UART RX, TX, CTS, RTS and TX_RX pins are buried inside Component: SCB_rx
(SCB_rx_wake), SCB_tx, SCB_cts, SCB_rts and SCB_tx_rx. These pins are buried because
they use dedicated connections and are not routable as general purpose signals. Refer to the I/O
System section in the device Technical Reference Manual (TRM) for more information.

Note The instance name is not included into the Pin Names provided in the following table.

Table 10 UART Pins Configuration

Pin
Name

Direction Drive
Mode

Initial
Drive State

Threshold Slew
Rate

Descriptiion

rx /

rx_wake

Input High
Impedance

Digital

Low CMOS – The rx or rx_wake input pin receives the serial data from another
device on the serial bus. This pin presents if the Mode parameter
is Standard or IrDA and Direction is set to RX Only or TX + RX.
When Enable wakeup from Deep Sleep Mode is checked the rx
pin replaced with rx_wake pin which has the same configuration
except interrupt on falling edge is enabled for device wakeup.

The pin output enable is tied to 0 to make pin state High-Z. The
Drive Mode settings has no effect.

cts Input High
Impedance

Digital

Low CMOS – The cts input pin accepts notification that another device is ready
to receive data. This pin presents if the CTS parameter is enabled.

The pin output enable is tied to 0 to make pin state High-Z. The
Drive Mode settings has no effect.

tx Output Strong
Drive

High – Fast The tx_out output pin drives the output serial data to another
device on the serial bus. This pin presents if the Mode parameter
is Standard or IrDA and Direction is set to TX Only or TX + RX.

The pin output enable is tied to 1 therefore drive mode and output
signal detemines the pin state.

rts Output Strong
Drive

High – Fast The rts output pin notifies another device that this device is ready
to receive data. This pin presents if the RTS parameter is enabled.

The pin output enable is tied to 1; therefore, drive mode and
output signal detemine the pin state.

rx_tx Bidirectio
nal

Open Drain
Drvies Low

High CMOS Fast The rx_tx bi-directional pin receives and transmits data from/to
another device on the bus. This pin presents if the Mode
parameter is SmartCard.

The pin output enable is controlled in such way that internal pull-
up can be used (the pin Drive mode has to be changed to
Resistive pull-up).

The Input threshold level for input pins is CMOS which should be used for the vast majority of
application connections.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 131 of 211

The Input Buffer for output pins is disabled so as not to cause current linkage in low power
mode. Reading the status of these pins always returns zero. To get the current status, the input
buffer must be enabled before a status read.

The other input pins and output pins parameters are set to default. Refer to pin Component
datasheet for more information about default parameters values.

To change UART buried pins configuration the pin’s Component APIs should be used or direct
pin registers configuration. For example:

/* Change UART TX pin drive mode to Open Drain Drives Low. */

SCB_tx_SetDriveMode(SCB_tx_DM_OD_LO);

Note Refer to Table 10 on page 130 to ensure that Drive Mode settings are not overridden by
the SCB block connection to pin.

Glitch Avoidance at System Reset

The UART outputs are in High Impedance Digital state when device is coming out of System
Reset this can cause glitches on the outputs. This is important if you are concerned with UART
TX or RTS output pins activity at either chip startup or when coming out of Hibernate mode. The
external pull-up or pull-down resistor has to be connected to the output pin to keep it in the
inactive state.

The inactive state of UART TX pin is high and pull-up resistor has to be connected. The inactive
state of UART RTS pin depends on RTS Polarity parameter.

The Component takes care and sets UART TX and RTS outputs in the inactive state when
Component is disabled or in Deep Sleep mode.

SmartIO support

The following connections are shown only if the Enable SmartIO support option is enabled.
Additional visibility conditions are listed in the input and output description. Only the Pin or
SmartIO Component is allowed to be connected to these terminals.

Note The Component performs synchronization of the inputs internally therefore Sync Input
option in the Digital Input Pin Component must be set to Transparent.

rx_in *

The rx_in input carries the input serial data from another device on the serial bus. This input is
visible if the Mode parameter is Standard or IrDA and Direction is set to RX Only or TX + RX. It
must be connected if visible.

cts_in *

The cts_in input notifies that another device is ready to receive data. This input is visible when
the CTS parameter is enabled. It must be connected if visible.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 132 of 211 Document Number: 002-10814 Rev. *E

tx_out *

The tx_out output carries the output serial data to another device on the serial bus. This output is
visible if the Mode parameter is Standard or IrDA and Direction is set to TX Only or TX + RX.

rts_out *

The rts_out output notifies another device that your device is ready to receive data. This output is
visible when the RTS parameter is enabled.

Refer to section Internal Pins Configuration for more information about UART pins configuration.

Basic UART Parameters

The UART Basic tab contains the following parameters:

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 133 of 211

Mode

This option determines the operating mode of the UART: Standard, SmartCard or IrDA. The
default mode is Standard.

Direction

This parameter defines the functional Components you want to include in the UART. This can be
setup to be a bidirectional TX + RX (default), Receiver (RX only) or Transmitter (TX only).

Baud rate

This parameter defines the baud-rate configuration of the hardware for baud rate generation up
to 921600. The actual baud rate may differ based on available clock frequency and Component
settings. This parameter has no effect if the Clock from terminal parameter is enabled. The
default is 115200.

Note The integer clock divider is used to provide the desired internal clock frequency to obtain
the specified baud rate (Clock from terminal option is disabled). To use a different clock source
configuration (for example: fractional clock divider), the clock must be provided externally to the
Component by enabling the Clock from terminal option.

Actual baud rate

The actual data rate displays the data rate at which the Component will operate with current
settings. The factors that affect the actual data rate calculation are: the accuracy of the
Component clock (internal or external) and oversampling factor. When a change is made to any
of the Component parameters that affect actual data rate, it becomes unknown. To calculate the
new actual data rate press the Apply button

Data bits

This parameter defines the number of data bits transmitted between start and stop of a single
UART transaction. Options are 5, 6, 7, 8 (default), or 9.

▪ Eight data bits is the default configuration, sending a byte per transfer.

▪ The 9-bit mode does not transmit 9 data bits; the ninth bit takes the place of the parity bit
as an indicator of address or data.

Parity

This parameter defines the functionality of the parity bit location in the transfer. This can be set to
None (default), Odd or Even.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 134 of 211 Document Number: 002-10814 Rev. *E

Stop bits

This parameter defines the number of stop bits implemented in the transmitter. This parameter
can be set to 1 (default), 1.5 or 2 data bits.

Oversampling

This parameter defines the oversampling factor of the UART interface; the number of the
Component clocks within one UART bit time. Oversampling factor is used to calculate the
internal Component clock frequency required to achieve this amount of oversampling for the
selected Data rate. An oversampling factor between 8 and 16 is the range of valid values. The
default is 12.

For IrDA mode the oversampling values are predefined and Median filter is always enabled.

Clock from terminal

This parameter allows choosing between an internally configured clock (by the Component) or
an externally configured clock (by the user) for Component operation. Refer to the Oversampling
section to understand relationship between Component clock frequency and the Component
parameters.

When this option is enabled the Component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency and the Component
oversampling factor. When this option is not enabled the clock configuration is provided by the
Component. The clock source frequency is calculated or selected by the Component based on
the Data rate parameter and Oversampling factor.

Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, Component
settings or external clock to fit the clocking system requirements.

Median filter

This parameter applies 3 taps digital median filter on input path of RX line. This filter reduces the
susceptibility to errors. The default value is a Disabled.

Retry on NACK

This option is applicable only for SmartCard mode. It enables retry on NACK feature. The Data
frame is retransmitted when a negative acknowledgement is received.

Inverting RX

This option is applicable only for IrDA mode. It enables the inversion of the incoming RX line
signal.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 135 of 211

Enable wakeup from Deep Sleep Mode

Use this option to enable the Component to wake the system from Deep Sleep on the start bit. It
is applicable for Standard mode when RX Direction is enabled.

Refer to the Low power modes section under UART chapter in this document and Power
Management APIs section of the System Reference Guide for more information.

Note The UART rx_wake pin must be placed on a port at which an interrupt is capable of waking
the device from Deep Sleep. Refer to the selected device datasheet for more information about
ports.

Low power receiving

This option is applicable only when RX Direction is enabled. It enables IrDA low power receiver
mode.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 136 of 211 Document Number: 002-10814 Rev. *E

Advanced UART Parameters

The UART Advanced tab contains the following parameters:

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 137 of 211

RX buffer size

The RX buffer size parameter defines the size (in bytes/words) of memory allocated for a
receive data buffer. The RX buffer size minimum value is equal to the RX FIFO depth. The RX
FIFO is implemented in hardware. Values greater than the RX FIFO depth up to (232 – 2) imply
usage of the RX FIFO, a circular software buffer controlled by the supplied APIs, and internal
ISR. The software buffer size is limited only by the available memory. The interrupt mode is
automatically set to internal and the RX FIFO not empty interrupt source is reserved to manage
software buffer operation: move data from the RX FIFO into the circular software buffer.

▪ For PSoC 4100 / PSoC 4200 devices, the RX and TX FIFO depth is equal to 8
bytes/words.

▪ For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L /
PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor, the RX and TX FIFO depth is
equal to 8 bytes/words or 16 bytes; refer to Byte mode for more information.

TX buffer size

The TX buffer size parameter defines the size (in bytes/words) of memory allocated for a
transmit data buffer. The TX buffer size minimum value is equal to the RX FIFO depth. The TX
FIFO is implemented in hardware. Values greater than the TX FIFO depth up to (232 – 1) imply
usage of the TX FIFO, a circular software buffer controlled by the supplied APIs, and internal
ISR. The software buffer size is limited only by the available memory. The interrupt mode is
automatically set to the internal and the TX FIFO not full interrupt source is reserved to manage
software buffer operation: move data from the circular software buffer into the TX FIFO.

▪ For PSoC 4100 / PSoC 4200 devices, the RX and TX FIFO depth is equal to 8
bytes/words.

▪ For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L /
PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices, the RX and TX FIFO
depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more information.

Byte mode

This option is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
allows doubling the TX and RX FIFO depth from 8 to 16 bytes. This implies that the number of
data bits must be less than or equal to 8 bits. Increasing the FIFO depth improves performance
of UART operation as more bytes can be transmitted or received without software interaction.

Interrupt

This option determines what interrupt modes are supported None, Internal or External.

▪ None – This option removes the internal interrupt Component.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 138 of 211 Document Number: 002-10814 Rev. *E

▪ Internal – This option leaves the interrupt Component inside the SCB Component. The
predefined internal interrupt handler is hooked up to the interrupt. The Interrupt sources
option sets one or more interrupt sources, which trigger the interrupt. To add your own
code to the interrupt service routine you need to register a function using the
SCB_SetCustomInterruptHandler() function.

▪ External – This option removes the internal interrupt and provides an output terminal.
Only an interrupt Component can be connected to the terminal if an interrupt handler is
desired. The Interrupt sources option sets one or more interrupt sources, which trigger
the interrupt output.

Note For buffer sizes greater than the hardware FIFO depth, the Component automatically
enables the internal interrupt sources required for proper internal software buffer operations. In
addition, the global interrupt enable must be explicitly enabled for proper buffer handling.

DMA

DMA is only available in PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC Analog
Coprocessor devices. The provided options determine if DMA output trigger terminals are
available on the Component symbol.

RX Output

This option determines if the rx_tr_out terminal is available on the Component symbol. This
signal can only be connected to a DMA channel trigger input. The output of this terminal is
controlled by the RX FIFO level. This option is active only when RX buffer size equal to FIFO
depth.

TX Output

This option determines if the tx_tr_out terminal is available on the Component symbol. This
signal can only be connected to a DMA channel trigger input. The output of this terminal is
controlled by the TX FIFO level. This option is active only when TX buffer size equal to FIFO
depth.

Interrupt sources

The interrupt sources are either level or pulse. Level-triggered interrupt sources in the following
list are indicated with an asterisk (*). Refer to sections TX FIFO interrupt sources and RX FIFO
interrupt sources for more information about level interrupt sources operation. The UART
supports interrupts on the following events:

▪ UART done – UART transmitter done event: all data elements from the TX FIFO are sent.
This interrupt source triggers later than TX FIFO empty by time it takes to transmit a
single data element. The TX FIFO empty triggers when the last data element from the TX
FIFO goes to the shifter register. However UART done triggers after this data element has
been transmitted.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 139 of 211

▪ TX FIFO not full * – TX FIFO is not full. At least one data element can be written into the
TX FIFO.

▪ TX FIFO empty * – TX FIFO is empty.

▪ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

▪ TX FIFO underflow * – Hardware attempts to read from an empty TX FIFO.

Note This interrupt source is level-triggered. It sets whenever there is no data to transmit
(it can be used as an indication that the transfer is finished).

▪ TX lost arbitration – UART lost arbitration: the value driven on the TX line is not the
same as the value observed on the RX line. This condition event is useful when
transmitter and receiver share a TX/RX line. This is the case in SmartCard mode.

▪ TX NACK – UART transmitter received a negative acknowledgement in SmartCard mode.

▪ TX FIFO level * – An interrupt request is generated whenever the number of data
elements in the TX FIFO is less than the value of TX FIFO level.

▪ RX FIFO not empty * – RX FIFO is not empty. At least one data element is available in
the RX FIFO to be read.

▪ RX FIFO full * – RX FIFO is full.

▪ RX FIFO overflow – Hardware attempts to write to a full RX FIFO.

▪ RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.

▪ RX frame error – Frame error in received data frame. This can be either a start or stop
bit(s) error:

□ Start bit error – after the detection of the beginning of a start bit period (RX line
changes from '1' to '0'), the middle of the start bit period is sampled erroneously
(RX line is '1').

Note A start bit error is detected BEFORE a data frame is received.

□ Stop bit error: the RX line is sampled as '0', but a '1' was expected.

Note A stop bit error may result in failure to receive successive data frame(s). A
stop bit error is detected AFTER a data frame is received.

▪ RX parity error – Parity error in received data frame.

▪ RX FIFO level * – An interrupt request is generated whenever the number of data
elements in the RX FIFO is greater than the value of RX FIFO level.

Notes

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 140 of 211 Document Number: 002-10814 Rev. *E

When RX buffer size is greater than the RX FIFO depth, the RX FIFO not empty interrupt
source is reserved by the Component and used for the internal interrupt.

When TX buffer size is greater than the TX FIFO depth, the TX FIFO not full interrupt source is
reserved by the Component and used for the internal interrupt.

Figure 30. TX interrupt sources operation

TX FIFO

Used = 0

Component Started

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

TX FIFO

Used = 0

Write 1 byte

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

TX FIFO

Used = 1

Write 1 more byte

Level = 4

TX FIFO Empty = 0 (W1C)

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

TX FIFO

Used = 5

Write 4 more bytes

Level = 4

TX FIFO Empty = 0

TX FIFO Level = 0 (W1C)

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

TX FIFO

Transmit 1 byte

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

TX FIFO Used = 8

Write 3 more bytes

Level = 4

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not Full = 0 (W1C)

UART Done = 0

TX Shifter

TX FIFO

Used = 4

Trasmit 3 more bytes

Level = 4

TX FIFO Empty = 0

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

TX FIFO

Used = 0

Trasmit 4 more bytes

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 0

TX Shifter

Used = 7

Level = 4

TX FIFO

Used = 0

Trasmit last bit

Level = 4

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 1

TX Shifter

Note W1C – Write One to Clear interrupt source. The firmaware has to execute this action to clear interrupt source.

Note TX FIFO interrupt sources Empty, Level and Full are level triggered. It means that interrupt source active state is restored after clear

 operation if FIFO state is not changed.

 For example: the TX FIFO Empty interrupt source cannot be cleared if hardware still have bytes to transmit from TX FIFO.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 141 of 211

Figure 31. RX interrupt sources operation

RX FIFO

Used = 0

Component Started

Level = 4

RX FIFO Not Empty = 0

RX FIFO Level = 0

RX FIFO Full = 0

RX Shifter

RX FIFO

Used = 0

Recevice 1 byte

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 0

RX FIFO Full = 0

RX Shifter

RX FIFO

Used = 5

Receive 4 more byte

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 0

RX Shifter

RX FIFO

Read 1 byte

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 0 (W1C)

RX Shifter

RX FIFO Used = 8

Receive 3 more bytes

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX Shifter

RX FIFO

Used = 4

Read 3 more bytes

Level = 4

RX FIFO Not Empty = 1

RX FIFO Level = 0 (W1C)

RX FIFO Full = 0

RX Shifter

RX FIFO

Used = 0

Read 4 more bytes

Level = 4

RX FIFO Not Empty = 1 (W1C)

RX FIFO Level = 0

RX FIFO Full = 0

RX Shifter

Used = 7

Level = 4

RX FIFO Used = 8

Receive 3 more bytes

Level = 4

Dropped

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX FIFO Oveflow = 1

RX Shifter

Note W1C – Write One to Clear interrupt source. The firmaware has to execute this action to clear interrupt source.

Note RX FIFO interrupt sources Not Empty, Level and Full are level triggered. It means that interrupt source active state is restored after clear

 operation if FIFO state is not changed.

 For example: the RX FIFO Full interrupt source cannot be cleared if firmware is not read at least single byte from full RX FIFO.

FIFO level

The RX and TX FIFO level settings control behavior of the appropriate level interrupt sources as
well as RX and TX DMA triggers outputs.

RX FIFO

The interrupt or DMA trigger output signal remains active until the number of data elements in
the RX FIFO is greater than the value of RX FIFO level.

For example, the RX FIFO has 8 data elements and the RX FIFO level is 0. The DMA trigger
signal remains active until DMA does not read all data from the RX FIFO.

TX FIFO

The interrupt or DMA trigger output signal remains active until the number of data elements in
the TX FIFO is less than the value of TX FIFO level.

For example, the TX FIFO has 0 data elements (empty) and the TX FIFO level is 7. The DMA
trigger signal remains active until DMA does not load TX FIFO with 7 data elements.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 142 of 211 Document Number: 002-10814 Rev. *E

Multiprocessor mode

This parameter enables the multiprocessor mode where the 9th bit (in the place of the parity bit)
indicates an address. The default value is a Disabled. The number of Data bits must be set to 9
bits to get possibility to enable this option.

Address (hex)

Slave device address. Used to match when multiprocessor mode is enabled. The default value is
0x02.

Mask (hex)

Slave device address mask. These bits are used when matching to the slave address. The
default value is 0xFF.

▪ Bit value 0 – excludes bit from address comparison.

▪ Bit value 1 – the bit needs to match with the corresponding bit of the address.

Accept matching address in RX FIFO

This parameter determines whether to accept a matched address in the RX FIFO.

Note Non-matching addresses are never put in the RX FIFO.

RX FIFO drop

Provides hardware data drop options for RX FIFO.

▪ On parity error – Defines behavior when a parity check fails. When parity check is
passed, received data is sent to the RX FIFO. Otherwise, received data is dropped and
lost. Only applicable in Standard and SmartCard modes.

▪ On frame error – Defines behavior when a frame error is detected. When no frame error
is captured, received data is sent to the RX FIFO. Otherwise, received data is dropped
and lost.

RTS

This parameter is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
enables the Ready to Send (RTS) output signal. The RTS signal is the part of flow control
functionality used by the receiver. As long as the receiver is ready to accept more data it will
keep the RTS signal active. The RTS FIFO level parameter determines if RTS remains active.
The default value is a Disabled.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 143 of 211

RTS Polarity

This parameter defines active polarity of the RTS output signal as Active Low (default) or Active
High.

RTS FIFO level

This parameter is only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
determines whether the RTS signal remains active. While the RX FIFO has fewer entries than
the RTS FIFO level, the RTS signal remains active; otherwise, the RTS signal becomes inactive.
The RTS remains inactive unit data from RX FIFO will be read to match RTS FIFO level. The
default value is 4.

CTS

This parameter is only applicable for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC
4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. It
enables the Clear to Send (CTS) input signal to be routed-out to the pin. The CTS signal is the
part of flow control functionality utilized by the transmitter. The transmitter checks whether CTS
signal is active before sending data from the TX FIFO. The transmission of data is suspended if
CTS signal is inactive and will be resumed when CTS signal becomes active again. The default
value is a Disabled.

CTS Polarity

This parameter defines active polarity of CTS input signal as Active Low (default) or Active High.

Enable SmartIO support

This option removes the buried UART pins inside the Component and exposes appropriate input
and output terminals. Only the Pin or SmartIO Component is allowed to be connected to these
terminals. See Input/Output Connections section for descriptions of these terminals. This option
is disabled by default and supported only in Standard or IrDA UART modes. Also the Enable
wakeup from Deep Sleep Mode is not supported when this option is enabled because wakeup
requires interrupt from the internal rx pin which is removed. The supported devices are PSoC
4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor.

Note that SCB Component stops managing pins state when Component is disabled or device is
in low power when Enable SmartIO support option is enabled. It becomes user responsibility to
take care about the pins.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 144 of 211 Document Number: 002-10814 Rev. *E

UART APIs

APIs allow you to configure the Component using software. The following table lists and
describes the interface to each function. The subsequent sections discusses each function in
more detail.

By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.

Function Description

SCB_Start() Starts the SCB.

SCB_Init() Initialize the SCB Component according to defined parameters in the
customizer.

SCB_Enable() Enables SCB Component operation.

SCB_Stop() Disable the SCB Component.

SCB_Sleep() Prepares Component to enter Deep Sleep.

SCB_Wakeup() Prepares Component for Active mode operation after Deep Sleep.

SCB_UartInit() Configures the SCB for UART operation. Only used when using the SCB in
unconfigured mode.

SCB_UartPutChar() Places a byte of data in the transmit buffer to be sent at the next available bus
time.

SCB_UartPutString() Places a NULL terminated string in the transmit buffer to be sent at the next
available bus time.

SCB_UartPutCRLF() Places byte of data followed by a carriage return (0x0D) and line feed (0x0A)
to the transmit buffer

SCB_UartGetChar() Retrieves next data element from receive buffer.

SCB_UartGetByte() Retrieves next data element from the receive buffer.

SCB_UartSetRxAddress() Sets the hardware detectable receiver address for the UART in Multiprocessor
mode.

SCB_UartSetRxAddressMask() Sets the hardware address mask for the UART in Multiprocessor mode.

SCB_UartSetRtsPolarity() Sets active polarity of RTS input signal.

SCB_UartSetRtsFifoLevel() Sets level in the RX FIFO to activate RTS signal.

SCB_UartEnableCts() Enables usage of CTS input signal by the UART transmitter.

SCB_UartDisableCts() Disables usage of CTS input signal by the UART transmitter

SCB_UartSetCtsPolarity() Sets active polarity of CTS input signal.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 145 of 211

Function Description

SCB_SpiUartWriteTxData() Places a data entry into the transmit buffer to be sent at the next available bus
time.

SCB_SpiUartPutArray() Places an array of data into the transmit buffer to be sent.

SCB_SpiUartGetTxBufferSize() Returns the number of elements currently in the transmit buffer.

SCB_SpiUartClearTxBuffer() Clears the transmit buffer and TX FIFO.

SCB_SpiUartReadRxData() Retrieves the next data element from the receive buffer.

SCB_SpiUartGetRxBufferSize() Returns the number of received data elements in the receive buffer.

SCB_SpiUartClearRxBuffer() Clears the receive buffer and RX FIFO.

void SCB_Start(void)

Description: Invokes SCB_Init() and SCB_Enable(). After this function call the Component is
enabled and ready for operation. This is the preferred method to begin Component
operation.

When configuration is set to “Unconfigured SCB”, the Component must first be
initialized to operate in one of the following configurations: I2C, SPI, UART or EZ I2C.
Otherwise this function does not enable Component.

void SCB_Init(void)

Description: Initializes the SCB Component to operate in one of the selected configurations: I2C,
SPI, UART or EZ I2C.

When configuration is set to “Unconfigured SCB”, this function does not do any
initialization. Use mode-specific initialization functions instead: SCB_I2CInit,
SCB_SpiInit, SCB_UartInit or SCB_EzI2CInit.

void SCB_Enable(void)

Description: Enables SCB Component operation; activates the hardware and internal interrupt. It
also restores TX interrupt sources disabled after the SCB_Stop() function was called
(note that level-triggered TX interrupt sources remain disabled to not cause code lock-
up).

For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI
and UART modes the interrupt can be configured as none, internal or external. The
SCB configuration should be not changed when the Component is enabled. Any
configuration changes should be made after disabling the Component.

When configuration is set to “Unconfigured SCB”, the Component must first be
initialized to operate in one of the following configurations: I2C, SPI, UART or EZ I2C
using the mode-specific functions: SCB_I2CInit, SCB_SpiInit, SCB_UartInit or
SCB_EzI2Cinit. Otherwise this function does not enable Component.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 146 of 211 Document Number: 002-10814 Rev. *E

void SCB_Stop(void)

Description: Disables the SCB Component: disable the hardware and internal interrupt. It also
disables all TX interrupt sources so as not to cause an unexpected interrupt trigger
because after the Component is enabled, the TX FIFO is empty.

Refer to the function SCB_Enable() for the interrupt configuration details.

This function disables the SCB Component without checking to see if communication is
in progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.

void SCB_Sleep(void)

Description: Prepares Component to enter Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:

• Checked: configures the Component to be wakeup source from Deep Sleep.

• Unchecked: stores the current Component state (enabled or disabled) and disables
the Component. See SCB_Stop() function for details about Component disabling.

Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function.

Refer to the PSoC Creator System Reference Guide for more information about power-
management functions.

This function should not be called before entering Sleep.

void SCB_Wakeup(void)

Description: Prepares Component for Active mode operation after Deep Sleep.

The “Enable wakeup from Deep Sleep Mode” selection has influence to on this function
implementation:

• Checked: restores the Component Active mode configuration.

• Unchecked: enables the Component if it was enabled before enter Deep Sleep.

This function should not be called after exiting Sleep.

Side Effects: Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 147 of 211

Void SCB_UartInit(SCB_UART_INIT_STRUCT *config)

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 148 of 211 Document Number: 002-10814 Rev. *E

Description: Configures the SCB for UART operation.

This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in UART mode, the
Component can be enabled using the SCB_Start() or SCB_Enable() function.

This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the
customizer settings.

Parameters config: pointer to a structure that contains the following ordered list of fields. These
fields match the selections available in the customizer. Refer to the customizer for
further description of the settings.

Field Description

uint32 mode Mode of operation for the UART. The following defines are available
choices:

SCB_UART_MODE_STD

SCB_UART_MODE_SMARTCARD

SCB_UART_MODE_IRDA

uint32 direction Direction of operation for the UART. The following defines are
available choices:

SCB_UART_TX_RX

SCB_UART_RX

SCB_UART_TX

uint32 dataBits Number of data bits

uint32 parity Determines the parity. The following defines are available choices:

SCB_UART_PARITY_EVEN

SCB_UART_PARITY_ODD

SCB_UART_PARITY_NONE

uint32 stopBits Determines the number of stop bits. The following defines are
available choices:

SCB_UART_STOP_BITS_1

SCB_UART_STOP_BITS_1_5

SCB_UART_STOP_BITS_2

uint32 oversample Oversampling factor for the UART.

Note The oversampling factor values are changed when
enableIrdaLowPower is enabled:

SCB_UART_IRDA_LP_OVS16

SCB_UART_IRDA_LP_OVS32

SCB_UART_IRDA_LP_OVS48

SCB_UART_IRDA_LP_OVS96

SCB_UART_IRDA_LP_OVS192

SCB_UART_IRDA_LP_OVS768

SCB_UART_IRDA_LP_OVS1536

uint32 enableIrdaLowPower IrDA low power RX mode is enabled.

0 – disable

1 – enable

The TX functionality does not work when enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 149 of 211

Parameters (cont): Uint32 enableMedianFilter 0 – disable

1 – enable

uint32 enableRetryNack 0 – disable

1 – enable

Ignored for modes other than SmartCard.

Uint32 enableInvertedRx 0 – disable

1 – enable

Ignored for modes other than IrDA.

Uint32 dropOnParityErr Drop data from RX FIFO if parity error is detected.

0 – disable

1 – enable

uint32 dropOnFrameErr Drop data from RX FIFO if a frame error is detected.

0 – disable

1 – enable

uint32 enableWake 0 – disable

1 – enable

Ignored for modes other than standard UART. The RX functionality
has to be enabled.

uint32 rxBufferSize Size of the RX buffer in words:

• The value equal to the RX FIFO depth implies the usage of
buffering in hardware.

• A value greater than the RX FIFO depth results in a software
buffer.

The SCB_INTR _RX_NOT_EMPTY interrupt has to be enabled to
transfer data into the software buffer.

For PSoC 4100 / PSoC 4200 devices, the RX FIFO and TX FIFO
depth is equal to 8 bytes/words.

For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M
/ PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor devices, the RX FIFO and TX FIFO depth is equal to 8
bytes/words or 16 bytes (Byte mode is enabled).

uint8* rxBuffer Buffer space provided for a RX software buffer:

• A NULL pointer must be provided to use hardware buffering.

• A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal (rxBufferSize + 1) in bytes if
dataBits is less or equal to 8, otherwise (2 * (rxBufferSize + 1)) in
bytes.

The software RX buffer always keeps one element empty. For correct
operation allocated RX buffer has to be one element greater than
maximum packet size expected to be received.

uint32 txBufferSize Size of the TX buffer in words:

• The value equal to the RX FIFO depth implies the usage of
buffering in hardware.

• A value greater than the RX FIFO depth results in a software
buffer.

For PSoC 4100 / PSoC 4200 devices, the RX and TX FIFO depth is
equal to 8 bytes/words.

For PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M
/ PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor devices, the RX and TX FIFO depth is equal to 8
bytes/words or 16 bytes (Byte mode is enabled).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 150 of 211 Document Number: 002-10814 Rev. *E

uint8* txBuffer Buffer space provided for a TX software buffer:

• A NULL pointer must be provided to use hardware buffering.

• A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal txBufferSize if dataBits is less
or equal to 8, otherwise (2* txBufferSize).

uint32 enableMultiproc Enables multiprocessor mode.

0 – disable

1 – enable

uint32 multiprocAcceptAddr Enables matched address to be accepted.

0 – disable

1 – enable

uint32 multiprocAddr 8 bit address to match in Multiprocessor mode. Ignored for other
modes.

Uint32 multiprocAddrMask 8 bit mask of address bits that are compared for a Multiprocessor
address match. Ignored for other modes.

Uint32 enableInterrupt 0 – disable

1 – enable

The interrupt has to be enabled if software buffer is used.

Uint32 rxInterruptMask Mask of interrupt sources to enable in the RX direction. This mask is
written regardless of the setting of the enableInterrupt field. Multiple
sources are enabled by providing a value that is the OR of all of the
following sources to enable:

SCB_INTR_RX_FIFO_LEVEL

SCB_INTR_RX_NOT_EMPTY

SCB_INTR_RX_FULL

SCB_INTR_RX_OVERFLOW

SCB_INTR_RX_UNDERFLOW

SCB_INTR_RX_FRAME_ERROR

SCB_INTR_RX_PARITY_ERROR

uint32 rxTriggerLevel FIFO level for an RX FIFO level interrupt. This value is written
regardless of whether the RX FIFO level interrupt source is enabled.

Uint32 txInterruptMask Mask of interrupt sources to enable in the TX direction. This mask is
written regardless of the setting of the enableInterrupt field. Multiple
sources are enabled by providing a value that is the OR of all of the
following sources to enable:

SCB_INTR_TX_FIFO_LEVEL

SCB_INTR_TX_NOT_FULL

SCB_INTR_TX_EMPTY

SCB_INTR_TX_OVERFLOW

SCB_INTR_TX_UNDERFLOW

SCB_INTR_TX_UART_DONE

SCB_INTR_TX_UART_NACK

SCB_INTR_TX_UART_ARB_LOST

uint32 txTriggerLevel FIFO level for a TX FIFO level interrupt. This value is written
regardless of whether the TX FIFO level interrupt source is enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 151 of 211

Uint8 enableByteMode Ignored for devices other than PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC
4100S / PSoC Analog Coprocessor.

0 – disable

1 – enable

When enabled the TX and RX FIFO depth is 16 bytes. This implies
that number of Data bits must be less than or equal to 8.

Uint8 enableCts Ignored for all devices other than PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC
4100S / PSoC Analog Coprocessor.

Enables usage of CTS input signal by the UART transmitter.

0 – disable

1 – enable

uint8 ctsPolarity Ignored for all devices other than PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC
4100S / PSoC Analog Coprocessor.

Sets active polarity of CTS input signal.

SCB_UART_CTS_ACTIVE_LOW

SCB_UART_CTS_ACTIVE_HIGH

uint8 rtsRxFifoLevel Ignored for all devices other than PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC
4100S / PSoC Analog Coprocessor.

RX FIFO level for RTS signal activation. While the RX FIFO has fewer
entries than the RTS FIFO level value the RTS signal remains active,
otherwise the RTS signal becomes inactive. By setting this field to 0,
RTS signal activation is disabled.

uint8 rtsPolarity Ignored for all devices other than PSoC 4100 BLE / PSoC 4200 BLE /
PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC
4100S / PSoC Analog Coprocessor.

Sets active polarity of RTS output signal.

SCB_UART_RTS_ ACTIVE_LOW

SCB_UART_RTS_ACTIVE_HIGH

void SCB_UartPutChar(uint32 txDataByte)

Description: Places a byte of data in the transmit buffer to be sent at the next available bus time.
This function is blocking and waits until there is a space available to put requested data
in the transmit buffer.

For UART Multi Processor mode this function can send 9-bits data as well. Use
SCB_UART_MP_MARK to add a mark to create an address byte.

Note This function is implemented as macro which calls SCB_SpiUartWriteTxData().

Parameters: uint32 txDataByte: the data to be transmitted.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 152 of 211 Document Number: 002-10814 Rev. *E

void SCB_UartPutString(const char8 string[])

Description: Places a NULL terminated string in the transmit buffer to be sent at the next available
bus time.

This function is blocking and waits until there is a space available to put requested data
in transmit buffer.

Parameters: const char8 string[]: pointer to the null terminated string array to be placed in the
transmit buffer.

void SCB_UartPutCRLF(uint32 txDataByte)

Description: Places byte of data followed by a carriage return (0x0D) and line feed (0x0A) in the
transmit buffer

This function is blocking and waits until there is a space available to put all requested
data in transmit buffer.

Parameters: uint32 txDataByte : the data to be transmitted

uint32 SCB_UartGetChar(void)

Description: Retrieves next data element from receive buffer. This function is designed for ASCII
characters and returns a char where 1 to 255 are valid characters and 0 indicates an
error occurred or no data is present.

RX software buffer is disabled: Returns data element retrieved from RX FIFO.

RX software buffer is enabled: Returns data element from the software receive buffer.

Return Value: uint32: Next data element from the receive buffer. ASCII character values from 1 to 255
are valid. A returned zero signifies an error condition or no data available.

Side Effects: The errors bits may not correspond with reading characters due to RX FIFO and
software buffer usage.

RX software buffer is enabled: The internal software buffer overflow is not treated as an
error condition. Check SCB_rxBufferOverflow to capture that error condition.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 153 of 211

Uint32 SCB_UartGetByte(void)

Description: Retrieves next data element from the receive buffer, returns received byte and error
condition.

RX software buffer disabled: Returns data element retrieved from RX FIFO. Undefined
data will be returned if the RX FIFO is empty

RX software buffer enabled: Returns data element from the software receive buffer

Return Value: uint32: Bits 7-0 contain the next data element from the receive buffer and other bits
contain the error condition. The error condition constants are provided below:

RX error conditions Description

SCB_UART_RX_OVERFLOW Attempt to write to a full receiver FIFO.

SCB_UART_RX_UNDERFLOW Attempt to read from an empty receiver FIFO.

SCB_UART_RX_FRAME_ERROR UART framing error detected.

SCB_UART_RX_PARITY_ERROR UART parity error detected.

Side Effects: The errors bits may not correspond with reading characters due to RX FIFO and
software buffer usage.

RX software buffer is disabled: Internal software buffer overflow is not returned as
status by this function. Check SCB_rxBufferOverflow to capture that error condition.

Void SCB_UartSetRxAddress(uint32 address)

Description: Sets the hardware detectable receiver address for the UART in Multiprocessor mode.

Parameters: uint32 address: Address for hardware address detection.

void SCB_UartSetRxAddressMask(uint32 addressMask)

Description: Sets the hardware address mask for the UART in Multiprocessor mode.

Parameters: uint32 addressMask: Address mask.

Bit value 0 – excludes bit from address comparison.

Bit value 1 – the bit needs to match with the corresponding bit of the address.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 154 of 211 Document Number: 002-10814 Rev. *E

void SCB_UartSetRtsPolarity(uint32 polarity)

Description: Sets active polarity of RTS input signal.

Only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M /
PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.

Parameters: uint32 polarity: Active polarity of RTS input signal.

Active RTS polarity constants Description

SCB_UART_RTS_ACTIVE_LOW RTS signal is active low

SCB_UART_RTS_ACTIVE_HIGH RTS signal is active high

void SCB_UartSetRtsFifoLevel (uint32 level)

Description: Sets level in the RX FIFO for RTS signal activation. While the RX FIFO has fewer
entries than the RTS FIFO level the RTS signal remains active, otherwise the RTS
signal becomes inactive.

Only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M /
PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.

Parameters: uint32 level: Level in the RX FIFO for RTS signal activation.

The range of valid level values is between 0 and RX FIFO depth – 1. Setting level value
to 0 disables RTS signal activation.

void SCB_UartEnableCts(void)

Description: Enables usage of CTS input signal by the UART transmitter.

Only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M /
PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.

void SCB_UartDisableCts(void)

Description: Disables usage of CTS input signal by the UART transmitter.

Only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M /
PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 155 of 211

void SCB_UartSetCtsPolarity(uint32 polarity)

Description: Sets active polarity of CTS input signal.

Only available for PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M /
PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices.

Parameters: uint32 polarity: Active polarity of CTS input signal.

Active CTS polarity constants Description

SCB_UART_CTS_ACTIVE_LOW CTS signal is active low

SCB_UART_CTS_ACTIVE_HIGH CTS signal is active high.

void SCB_SpiUartWriteTxData(uint32 txData)

Description: Places a data entry into the transmit buffer to be sent at the next available bus time.
The data transmit direction is LSB.

This function is blocking and waits until there is space available to put the requested
data in the transmit buffer.

For UART Multi Processor mode this function can send 9-bits data. Use
SCB_UART_MP_MARK to add a mark to create an address byte.

Parameters: uint32 txData: the data to be transmitted.

The amount of data bits to be transmitted depends on Data bits selection (the data bit
counting starts from LSB of txDataByte).

void SCB_SpiUartPutArray(const uint16/uint8 wrBuf[], uint32 count)

Description: Places an array of data into the transmit buffer to be sent.

This function is blocking and waits until there is a space available to put all the
requested data in the transmit buffer.

The array size can be greater than transmit buffer size.

Parameters: const uint16/uint8 wrBuf[]: pointer to an array with data to be placed in transmit buffer.
The amount of data bits to be transmitted as one array entry depends on Data bits
selection (the data bit counting starts from LSB for each array entry).

Uint32 count: number of data elements to be placed in the transmit buffer.

uint32 SCB_SpiUartGetTxBufferSize(void)

Description: Returns the number of elements currently in the transmit buffer.

TX software buffer is disabled: Returns the number of used entries in TX FIFO.

TX software buffer is enabled: Returns the number of elements currently used in the
transmit buffer. This number does not include used entries in the TX FIFO; therefore,
the transmit buffer size is zero until the TX FIFO is not full.

Return Value: uint32: Number of data elements ready to transmit.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 156 of 211 Document Number: 002-10814 Rev. *E

void SCB_SpiUartClearTxBuffer(void)

Description: Clears the transmit buffer and TX FIFO.

uint32 SCB_SpiUartReadRxData(void)

Description: Retrieves the next data element from the receive buffer.

RX software buffer is disabled: Returns data element retrieved from RX FIFO.
Undefined data will be returned if the RX FIFO is empty.

RX software buffer is enabled: Returns data element from the software receive buffer.
Zero value will be returned if receive software buffer is empty.

Return Value: uint32: Next data element from the receive buffer.

The amount of data bits to be received depends on Data bits selection (the data bit
counting starts from LSB of return value).

uint32 SCB_SpiUartGetRxBufferSize(void)

Description: Returns the number of received data elements in the receive buffer.

RX software buffer is disabled: Returns the number of used entries in RX FIFO.

RX software buffer is enabled: Returns the number of elements that were placed in the
receive buffer. This does not include the hardware RX FIFO.

Return Value: uint32: Number of received data elements

void SCB_SpiUartClearRxBuffer(void)

Description: Clears the receive buffer and RX FIFO.

Global Variables

Knowledge of these variables is not required for normal operations.

Variable Description

SCB_initVar SCB_initVar indicates whether the SCB Component has been initialized. The variable
is initialized to 0 and set to 1 the first time SCB_Start() is called. This allows the
Component to restart without reinitialization after the first call to the SCB_Start()
routine.

If re-initialization of the Component is required, then the SCB_Init() function can be
called before the SCB_Start() or SCB_Enable() function.

SCB_rxBufferOverflow SCB_rxBufferOverflow sets when internal software receive buffer overflow was
occurred.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 157 of 211

Variable Description

SCB_skipStart This global variable determines whether to enable Skip Start functionality when
SCB_Sleep() is called: 0 – disable, other values – enable. Default value is 1.

It is only available when Enable wakeup from Deep Sleep Mode option is enabled.

SCB_IntrTxMask This global variable stores TX interrupt sources after SCB_Stop() is called. Only these
TX interrupt sources will be restored on a subsequent SCB_Enable() call.

Bootloader Support

The SCB Component in UART mode can be used as a communication Component for the
Bootloader. The following configuration should be used to support UART communication
protocol from an external system to the Bootloader:

▪ Mode: Standard

▪ Direction: TX+RX

▪ Data bits: 8 bits

▪ Baud rate: Must match Host (boot device)

▪ Parity: Must match Host (boot device).

▪ Stop Bits: Must match Host (boot device).

▪ RX buffer size: Must match or be greater than the maximum size of the packet received
from Host. The recommended RX buffer size value to select for bootloading when using
the Bootloader Host Tool (shipped with PSoC Creator) is 64.

▪ TX buffer size: Must match or be greater than the maximum size of the packet transmitted
to Host. The recommended TX buffer size to select for bootloading when using the
Bootloader Host Tool (shipped with PSoC Creator) is 64.

For more information about the Bootloader, refer to the Bootloader Component datasheet.

The following API functions are provided for Bootloader use.

Function Description

SCB_CyBtldrCommStart() Starts the UART Component and enables its interrupt.

SCB_CyBtldrCommStop() Disables the UART Component and its interrupt.

SCB_CyBtldrCommReset() Resets UART receive and transmit buffers.

SCB_CyBtldrCommRead() Allows the caller to read data from the bootloader host (the host writes the data).

SCB_CyBtldrCommWrite() Allows the caller to write data to the bootloader host (the host reads the data).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 158 of 211 Document Number: 002-10814 Rev. *E

void SCB_CyBtldrCommStart(void)

Description: Starts the UART Component and enables its interrupt (if TX or RX buffer size is greater
than FIFO depth).

Every incoming UART transfer is treated as a command for the bootloader.

void SCB_CyBtldrCommStop(void)

Description: Disables the UART Component and its interrupt.

void SCB_CyBtldrCommReset(void)

Description: Resets UART receive and transmit buffers.

cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

Description: Allows the caller to read data from the bootloader host (the host writes the data). The
function handles polling to allow a block of data to be completely received from the host
device.

Parameters: uint8 pData[]: Pointer to the block of data to be read from bootloader host.

uint16 size: Number of bytes to be read from bootloader host.

uint16 *count: Pointer to variable to write the number of bytes actually read by
bootloader host.

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information, refer to the “Return
Codes” section of the System Reference Guide.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 159 of 211

cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: Allows the caller to write data to the bootloader host (the host reads the data). The
function does not use timeout and returns after data has been copied into the transmit
buffer. The data transmission starts immediately after the first data element is written
into the buffer and lasts until all data elements from the buffer are sent.

Parameters: const uint8 pData[]: Pointer to the block of data to send to the bootloader host.

uint16 size: Number of bytes to send to bootloader host.

uint16 *count: Pointer to variable to write the number of bytes actually written to
bootloader host.

uint8 timeOut: The timeout is not used by this function. The function returns as soon as
data is copied into the transmit buffer.

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information refer to the “Return Codes”
section of the System Reference Guide.

SCB_CyBtldrCommRead details

The UART interface does not provide start and stop conditions to define the start and end of a
transfer like I2C. Therefore, the following approach is used to define when a command packet
from the host is received:

1) To determine when the start of a packet has occurred, the RX buffer is checked at a one
millisecond interval until the buffer size is non-zero or timeout is expired. As soon as at
least one data element has been received the communication Component knows a packet
transfer has started and immediately begins looking for the end of the packet.

2) The transfer is completed if no new data elements are received within byte-to-byte
interval. This time interval is defined as the time consumed to transfer two data elements
with selected data rate. It is calculated by the Component based on current data rate
selection. If needed, the byte-to-byte interval can be changed using global defines. Open
project Build Settings -> Compiler -> Command line and provide the global define of the
interval in microseconds. For example, to change interval to 40 microseconds:

-D SCB_UART_BYTE_TO_BYTE=40

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 160 of 211 Document Number: 002-10814 Rev. *E

UART Functional Description

The Universal Asynchronous Receiver/Transmitter (UART) protocol is an asynchronous serial
interface. The UART transmit and receive interfaces consists of 2 signals:

▪ TX – Transmitter

▪ RX – Receiver

Figure 32. UART typical connection

TX

RX RX

TX
UART1 UART2

Standard mode operation

Standard UART is defined with “peer to peer” topology.

A typical UART transfer consists of a “Start Bit” followed by multiple “Data Bits”, optionally
followed by a “Parity Bit” and finally completed by one or more “Stop Bits”. The “Start Bit” value is
always ‘0’, the “Data Bits” values are dependent on the data transferred, the “Parity Bit” value is
set to a value guaranteeing an even or odd parity over the “Data Bits” and the “Stop Bits” value is
‘1’. The “Parity Bit” is generated by the transmitter and can be used by the receiver to detect
single bit transmission errors. When not transmitting data, the TX line is ‘1’; i.e. the same value
as the “Stop Bits”.

The transition of a “Stop Bit” to a “Start Bit” is represented by a change from ‘1’ to ‘0’ on the TX
line. This transition can be used by the receiver to synchronize with the transmitter clock.
Synchronization at the start of each data transfer allows error-free transmission even in the
presence of frequency drift between transmitter and receiver clocks. The required clock accuracy
is dependent on the data transfer size.

The stop period or the amount of “Stop Bits” between successive data transfers is typically
agreed upon between transmitter and receiver, and is typically in the range of 1 to 3 bit transfer
periods.

Figure 33. UART Protocol

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 161 of 211

Flow control

Flow control is a method used to provide reliable communication between the receiver and
transmitter without data loss. This method implies that a receiver tells a transmitter to stop
(suspend) or start (resume) transmitting. Hardware flow control is supported by the UART in
Standard mode by PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC
4200L / PSoC 4000S / PSoC 4100S / PSoC Analog Coprocessor devices. The two extra lines for
hardware flow control are needed in addition to data lines. They are called RTS and CTS. These
lines are cross-coupled between the two devices, so the RTS line on one device is connected to
the CTS line on the other device and vice versa. The Configure dialog provides independent
control of RTS and CTS signals.

Figure 34. UART hardware flow control typical connection

TX

RX RX

TX

RTS

CTS CTS

RTS

UART1 UART2

As long as the receiver is ready to accept more data it will keep the RTS signal active. The RTS
FIFO level parameter determines how the RTS remains active as follows: while the RX FIFO has
fewer entries than the RX FIFO level the RTS signal remains active, otherwise the RTS signal
becomes inactive. The RTS remains inactive unit data from RX FIFO is read to match RTS
activation condition.

Figure 35. UART RTS signal activation

Recevier

RX FIFO

RTS Level

Used

<

RTSACTIVE

RX

Recevier

RX FIFO

RTS Level
Used

<

RTSACTIVE

RX

Recevier

RX FIFO

RTS Level Used

<

RTSINACTIVE

RX

Initial state: RTS is active Data reception: RTS is active Data reception: RTS is inactive

The transmitter checks whether the CTS signal is active before sending data from the TX FIFO
on the bus. The transmission of data is suspended if the CTS signal is inactive and will be
resumed when CTS signal becomes active again.

Typically, the RTS and CTS signals are active low. However, there is a possibility to change the
active polarity of these signals.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 162 of 211 Document Number: 002-10814 Rev. *E

Multiprocessor mode operation

This mode is defined with “single-master-multi-slave” topology. The multiprocessor mode is also
known as UART 9-bits protocol, while standard UART protocol uses a 5-bit to 8-bit data field.

The main properties of multiprocessor mode are:

▪ Single master with multiple slave concept (multi-drop network)

▪ Each slave is identified by a unique address

▪ Using 9 bits data field, with the 9th bit (MSB) as address/data flag. When set ‘1’, it
indicates an address byte; when set ‘0’ it indicates a data byte.

▪ Parity bit is disabled

Figure 36. Multiprocessor Bus Connections

UART MP

Master

UART MP

Slave 1

UART MP

Slave 2

UART MP

Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

To enable Multiprocessor mode, configure the UART with the following options: Mode: Standard,
Data bits: 9 bits, Parity: None.

Figure 37. UART data frame in Multiprocessor mode

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

Because the data link layer of a multi-drop network is a user-defined protocol, it offers a flexible
way of composing the data field.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 163 of 211

All the bits in an address frame can be used to represent a device address. Alternatively, some
bit can be used to represent the address, while the remaining bits can represent a command to
the slave device, and some bits can represent the length of data in following data frames.

The SCB can be used as a master or slave device in multiprocessor mode.

When UART works as slave device, the received address is matched with Address and Mask.
The matched address is written in the RX FIFO when Accept matching address in RX FIFO is
checked. In the case of a match, subsequent received data are sent to the RX FIFO. In the case
of no match, subsequent received data is dropped, until next address received for compare.

UART 9th data bit usage

The 9th bit is sent in the parity bit position and most typically used to define whether the data sent
was an address or standard data. A mark (1) in the parity bit indicates an address was sent and
a space (0) in the parity bit indicates data was sent. The data flow is "Start Bit, Data Bits, Parity,
Stop Bits," similar to the other parity modes but this bit has to be controlled by user firmware
before the transfer rather than being calculated based on the data bit values.

tx_data = 0x31;

tx_data |= UART_UART_MP_MARK; /* Set 9th bit to indicate address */

UART_SpiUartWriteTxData(tx_data);

SmartCard (ISO7816) mode operation

ISO7816 is an asynchronous serial interface, defined with “single-master-single-slave” topology.
Only the master (reader) function is supported in the Component.

SCB provides the basic physical layer support with asynchronous character transmission, and
only “I/O” pin interface of standard ISO7816 [8] pin list is provided. SCB UART TX line will be
connected to SmartCard I/O line, by internally multiplexing between TX and RX control modules.

The higher level protocol implementation is left for firmware to handle from the user level.

SmartCard data transfer

The SmartCard transfer is similar to a UART transfer, with the addition of a negative
acknowledgement (NACK) that may be sent from the receiver to the transmitter. A NACK is
always ‘0’. Both transmitter and receiver may drive the same I/O line, although never at the same
time. Figure 38 illustrates the SmartCard protocol.

Typically, implementations use a tri-state driver with a pull-up resistor, such that when the line is
not driven, its value is ‘1’ (the same value as when not transmitting data or the value of the “Stop
Bit”).

8 Refer to the ISO/IEC 7816-3:2006 – Identification cards – Integrated circuit cards – Part 3: Cards with contacts –
Electrical interface and transmission protocols (1997) on the ISO web site at www.iso.org

http://www.iso.org/

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 164 of 211 Document Number: 002-10814 Rev. *E

Figure 38. SmartCard Data Transfer Example

A SmartCard transfer has the transmitter drive the “Start Bit” and “Data Bits” and a “Parity Bit”.
After these bits, it enters its stop period by releasing the bus. Releasing results in the line being
‘1’ (the value of a “Stop Bit”). After half bit transfer period into the stop period, the receiver may
drive a NACK on the line (a value of ‘0’) for one to two bit transfer period. This NACK is observed
by the transmitter, which reacts by extending its stop period by one bit transfer period. For this
protocol to work, the stop period should be larger than one bit transfer period.

Note Data transfer with a NACK takes one bit transfer period longer than a data transfer without
a NACK.

Example implementation of SmartCard reader

You have to consider how to implement a complete SmartCard system with other available
system resources for “RST” signal, “CLK” signal, card detect signal, card power supply control
signals.

Figure 39 is example of implementing SmartCard reader function with TCPWM and pins
Components.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 165 of 211

Figure 39. SmartCard reader implementation example

The UART Component is connected to I/O card contact, a pull-up resistor must be connected to
this line. SC_RST, SC_CLK are standard card contacts. SC_DET is for card insertion detection.
SC_PWR is for control of card power on or off. Refer to the ISO7816 specification for more
details.

IrDA mode operation

IrDA is defined with “peer to peer” topology. SCB only provides support [9] for IrDA from the basic
physical layer with rates from 1200 bps to 115200 bps. The physical layer is responsible for the
definition of hardware transceivers for the data transmission. The higher level protocol
implementation is left for firmware to handle from the user level.

The minimum demand for transmission rates for IrDA is only 9600 bps. All transmissions must
be started at this rate to enable compatibility. Higher rates are a matter of negotiation of the ports
after establishing the links.

The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are
modulated. At the receiver, bits are demodulated. The modulation scheme uses a Return-to-
Zero-Inverted (RZI) format. A bit value of ‘0’ is signaled by a short ‘1’ pulse on the line and a bit
value of ‘1’ is signaled by holding the line to ‘0’. IrDA is using 3/16 RZI modulation.

9 Refer to the IrPHY (IrDA Physical Layer Link Specification) (Rev. 1.4 from May 2001) on the IrDA web site at
www.irda.org

http://www.irda.org/

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 166 of 211 Document Number: 002-10814 Rev. *E

The Figure 40 shows UART frame and IR frame, comprised a Start Bit, 8 Data Bits, no Parity Bit
and ending with a Stop Bit.

Figure 40. UART Frame and IR Frame example

Oversampling Selection

IrDA is using 3/16 RZI modulation, so the sampling clock frequency should be set 16x of
selected Baud rate, by configuring Oversampling. Oversampling should always be 16 for
IrDA.

Normal versus Low power transmitting

There are two modes of IrDA operation:

▪ Normal transmission – pulse width is roughly 3/16 of the bit period (for all baud rates)

▪ Low power transmission – pulse width is potentially smaller (down to 1.62 μs typical and
1.41μs minimal) than 3/16 of the bit period (for rates less 115200 bps). Supported only for
RX only direction.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 167 of 211

Inverting RX

This option is used to support two possible demodulation schemes described below.

According to the IrPHY specification, the IR frame modulation (encoding) scheme is shown in
Figure 41.

Figure 41. IR frame modulation scheme

The IR frame demodulation (decoding) scheme is shown in Figure 42. RXIR line voltage level is
default low, active high.

Figure 42. IR frame demodulation scheme 1 (active high)

Note There is a delay from receiving RXIR and decoding RX.

CLK

CLK

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 168 of 211 Document Number: 002-10814 Rev. *E

In an application, the RXIR frame output from IrDA transceiver is often pull-up, default high,
active low. Figure 43 shows another demodulation scheme.

Figure 43. IR frame demodulation scheme 2 (active low)

FIFO depth

The hardware provides two FIFOs. One is used for receive direction, RX FIFO, and the other for
transmit direction, TX FIFO. The FIFO depth is 8 data elements. The width of each data element
is 16 bits. The data frame width is configurable from 4-16 bits. One FIFO element is consumed
regardless of the data frame width.

PSoC 4100 BLE / PSoC 4200 BLE / PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S /
PSoC 4100S / PSoC Analog Coprocessor devices provide the ability to double the FIFO depth to
16 data elements when the data frame width is 4-8 bits.

Software Buffer

Selecting RX or TX Buffer Size values greater than the FIFO depth enables usage of the RX or
TX FIFO and a circular software buffer. The array of requested size is allocated internally by the
Component for the TX software buffer. The allocated array for the RX software buffer has one
extra element that remains empty while in operation. Keeping this element empty simplifies
circular buffer operation. The interrupt option is automatically updated to Internal, and the RX or
TX interrupt source are reserved to provide software buffer operation. The internal interrupt
handler is hooked up to the interrupt. Its main purpose is to provide interaction between software
buffers and the hardware RX or TX FIFO.

The software buffer overflow can happen only for the RX direction when the UART flow control
signal RTS is disabled. The data elements read from the RX FIFO that do not fit into the software
buffer are discarded. This event is reported via global variable SCB_rxBufferOverflow.

The software buffer overflow is not expected when the RTS signal is enabled. When the RX
software buffer becomes full, the RX Not empty interrupt source is disabled and data elements
stop reading from the RX FIFO. However, the transfer continues until the number of data
elements in the RX FIFO is not equal to the RTS trigger level. Then, the RTS signal is activated

CLK

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 169 of 211

to notify the transmitter to pause the transfer. As soon as the data element has been read from
the RX software buffer, the RX Not empty interrupt source is enabled and transfer continues.

For the TX direction, the provided APIs do not allow software buffer overflow.

Interrupts

When RX buffer size or TX buffer size is greater than the FIFO depth, the RX FIFO not empty
or TX FIFO not full interrupt sources are reserved by the Component for internal software buffer
operations. Do not clear or disable them because it can cause incorrect software buffer
operation. However, it is the user’s responsibility to clear interrupts from other enabled interrupt
because they are not cleared automatically. Create a custom function that clears these interrupt
sources and register it using SCB_SetCustomInterruptHandler(). Each time internal interrupt
handler executes the custom function is called before handling software buffer operation. In case
RX buffer size or TX buffer size is equal to the FIFO depth only the hardware TX or RX FIFO is
used. In the Internal interrupt mode the interrupts are not cleared automatically. It is the user’s
responsibility to do this. The External interrupt mode is preferred in this case.

Low power modes

The Component in UART mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.

Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the Component or code before entering/exiting this mode. Any UART activity in TX or
RX direction that involves an interrupt to occur leads to wakeup.

Deep Sleep mode requires that the UART be properly configured to be a wakeup source. The
Enable wakeup from Deep Sleep Mode option must be checked in the UART configuration
dialog (the RX direction must be enabled to allow wakeup). The SCB_Sleep() and
SCB_Wakeup() functions must be called before/after entering/exiting Deep Sleep.

Note The UART rx_wake pin must be placed on a port at which an interrupt is capable of waking
the device from Deep Sleep. Refer to the selected device datasheet for more information about
ports.

A RX GPIO falling edge event that is generated by the incoming start bit will wake up the device.
Note that a RX GPIO interrupt restricts usage of all GPIO interrupts from the port where the
UART rx_wake pin is placed.

The SCB block provides feature to skip start and synchronize on the 1st data bit. Usage of this
feature implies two constrains:

▪ The 1st data bit of wakeup transfer has to be ‘1’ to synchronize the UART receiver.

▪ The wakeup time TDEEPSLEEP of the device must be less than one UART bit duration.
Typical TDEEPSLEEP is equal to 25 µs (check selected device datasheet to get actual
number of TDEEPSLEEP). This reduces the UART baud rate approximately to 40 kbps.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 170 of 211 Document Number: 002-10814 Rev. *E

Figure 44. UART wakeup (Skip Start enabled)

Bit 0

RX line of PSoC

Start

Deep SleepActive DS -> A Active

TDEEPSLEEP

Wakeup
event

UART synchronizes to
sample following data

SCB_Sleep() SCB_Wakeup()

If synchronization does not occur because of violation of the conditions listed below, the UART
receiver will synchronize to the 1st bit which is equal to `1` and received byte or all transfer would
be corrupted.

Note The UART starts sample data after wakeup when it observes that RX line is high state (not
rising edge). This behavior causes that dummy byte is received when wakeup source is not
UART and RX line is in idle.

To overcome UART baud rate limitation and undesired byte reception when other wakeup
sources available the following steps should be done:

▪ The skip start feature has to be disabled. The SCB_skipStart global variable is provided to
manage whether to enable or disable skip start functionality when SCB_Sleep() is called.
Set SCB_skipStart equal to 0 after SCB_Start() was called.

▪ The UART transfer which wakeup the device has to start with preamble which will be
discarded while wakeup. The preamble is used to provide enough time for device to
wakeup. The number of bytes in the preamble depends on TDEEPSLEEP and UART baud
rate. It is recommended to use byte 0x00 for preamble because it does not contain 1 to 0
transition while data bits transfer. Such transition is interpreted by UART as a Start bit and
it starts sample data in the middle of data byte therefore following data will not be sampled
correctly.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 171 of 211

Figure 45. UART wakeup (Skip Start disabled)

RX line of PSoC

...
Start Bit 0 Bit 1 StartBit 7 Stop bits Bit 0

Deep SleepActive DS -> A Active

TDEEPSLEEP

SCB_Sleep() SCB_Wakeup()

Wakeup
event

UART synchronizes to
sample following data

Preamble byte

The content of TX and RX FIFOs is cleared when the device enters Deep Sleep mode.
Therefore, received data should be stored in the SRAM buffer and transmit data should be
transferred before entering Deep Sleep mode to avoid data loss. Note that functions that return
TX or RX buffer size (SCB_SpiUartGetTxBufferSize() / SCB_SpiUartGetRxBufferSize()) might
return different values for hardware and software buffer after exit Deep Sleep: for hardware
buffer returned value is always 0 (because FIFOs content is cleared) whereas for software buffer
it is equal to number of bytes in available in the Component SRAM buffer.

The transmission is stopped asynchronously while the device enters Deep Sleep mode. The
moment that the stop occurs depends on the Enable wakeup from Deep Sleep Mode option.
When the option is disabled the SCB_Sleep() API disables the Component and transfer is
stopped at that moment. Otherwise, when the Enable wakeup from Deep Sleep Mode is
enabled, the transfer is stopped at the moment when the device enters Deep Sleep mode.

The following code is suggested to ensure that transmitter and receiver is ready to enter Deep
Sleep mode: transmitter transfer all data from the TX FIFO and shifter register and receiver does
not have bytes to handle and it is not started to receive the data.

/* For UART baud rate 115200 bps the UART bit period is equal to 8.68us. */

#define SCB_UART_BIT_TIME (9u) /* unit is 1us */

#define SCB_UART_BITS_TO_WAIT (2u) /* constant */

void UART_DeepSleepFlow(void)

{

 uint8 intState;

 uint8 bitsToWait = SCB_UART_BITS_TO_WAIT;

 uint8 enterDeepSleep = 1u;

 /* Wait until UART completes transfer data. */

 while (0u != (SCB_SpiUartGetTxBufferSize() + SCB_GET_TX_FIFO_SR_VALID))

 {

 }

 /* Check if there is data in the RX buffer to handle. */

 if (0u == SCB_SpiUartGetRxBufferSize())

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 172 of 211 Document Number: 002-10814 Rev. *E

 {

 /* Enter critical section to force all enabled and active interrupts

 * become pending. It is required to not miss any activity that should

 * wake up device before CySysPmDeepSleep() is called.

 */

 intState = CyEnterCriticalSection();

 /* Clear and enable UART wakeup interrupt source.

 * Clear operation is required because UART wakeup source is activated

 * while active mode communication.

 */

 SCB_Sleep();

 /* Wait 2 UART bit periods to make sure that RX line remains in idle

 * state or reception of a byte is started after UART wakeup interrupt

 * source was cleared.

 */

 while (0u != bitsToWait)

 {

 CyDelayUs(SCB_UART_BIT_TIME);

 --bitsToWait;

 /* Check if UART is started sampling the byte.

 * SCB_GET_RX_FIFO_SR_VALID: it is set at the middle of first data

 * bit reception and cleared at the end of (stop bits - 1).

 */

 if (0u != SCB_GET_RX_FIFO_SR_VALID)

 {

 /* Do not allow to enter Deep Sleep. UART started

 * receiving the byte.

 */

 enterDeepSleep = 0u;

 break;

 }

 }

 /* Enter Deep Sleep if RX line is still in idle state. */

 if (0u != enterDeepSleep)

 {

 CySysPmDeepSleep();

 /* Exit critical section to allow interrupt handling. */

 CyExitCriticalSection(intState);

 /* Disable UART wakeup interrupt source. */

 SCB_Wakeup();

 }

 else

 {

 /* Exit critical section to allow interrupt handling. */

 CyExitCriticalSection(intState);

 }

 }

}

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 173 of 211

Printf() function Usage Model

The printf() function formats a series of strings and numeric values and builds a string to write to
an output stream. This function can be used in conjunction with a UART to simplify the formatting
and transmission of data. This section describes the code required to allow the use of the printf()
function with a UART Component.

The printf() function has different implementations in different compilers. Each compiler provides
a function that is responsible to send data. These functions are listed below for the supported
compilers:

Compiler Function Name

GCC _write()

MDK fputc()

RVDS fputc()

IAR __write()

The application should revise these functions to call the communication Component API to send
data via the selected interface (in this case, the UART interface).

Note The following code example uses an instance name of "SCB" for the SCB UART
Component:

#include <project.h>

#include <stdio.h>

#if defined (__GNUC__)

 /* Add an explicit reference to the floating point printf library to allow

 the usage of floating point conversion specifier. */

 asm (".global _printf_float");

 /* For GCC compiler revise _write() function for printf functionality */

 int _write(int file, char *ptr, int len)

 {

 int i;

 for (i = 0; i < len; i++)

 {

 SCB_UartPutChar(*ptr++);

 }

 return(len);

 }

#elif defined(__ARMCC_VERSION)

 /* For MDK/RVDS compiler revise fputc() function for printf functionality */

 struct __FILE

 {

 int handle;

 };

 enum

 {

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 174 of 211 Document Number: 002-10814 Rev. *E

 STDIN_HANDLE,

 STDOUT_HANDLE,

 STDERR_HANDLE

 };

 FILE __stdin = {STDIN_HANDLE};

 FILE __stdout = {STDOUT_HANDLE};

 FILE __stderr = {STDERR_HANDLE};

 int fputc(int ch, FILE *file)

 {

 int ret = EOF;

 switch(file->handle)

 {

 case STDOUT_HANDLE:

 SCB_UartPutChar(ch);

 ret = ch;

 break;

 case STDERR_HANDLE:

 ret = ch;

 break;

 default:

 file = file;

 break;

 }

 return(ret);

 }

#elif defined (__ICCARM__)

 /* For IAR compiler revise __write() function for printf functionality */

 size_t __write(int handle, const unsigned char * buffer, size_t size)

 {

 size_t nChars = 0;

 for (/* Empty */; size != 0; --size)

 {

 SCB_UartPutChar(*buffer++);

 ++nChars;

 }

 return (nChars);

 }

#endif /* (__GNUC__) */

int main()

{

 uint32 i = 444444444;

 float f = 55.555f;

 CyGlobalIntEnable; /* Enable interrupts */

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 175 of 211

 SCB_Start(); /* Start communication Component */

 /* Use printf() function which will send formatted data through

 * UART (SCB mode) */

 printf("Test printf function. long: %ld, float: %f \n",i,f);

 for(;;)

 {

 /* Place your application code here. */

 }

}

The log from terminal software:

Test printf function. long: 444444444, float: 55.555000

Note The printf() function prepares the text stream in the buffer and transmits it when new-line
character ‘\n’ is reached.

DMA Support

DMA is only available in PSoC 4100M / PSoC 4200M / PSoC 4200L / PSoC Analog
Coprocessor devices.

The UART mode may interface with the DMA controller. Signals for transmit and receive
direction can be used to trigger a DMA transfer. To enable this signal, the “RX output” or “TX
output” option must be enabled in the Component Advanced parameter tab. The RX and TX
trigger output signals are hard-wired to the DMA controller; their connection to another source
will result in a build error. These signals are level sensitive therefore require the RX or TX FIFO
level to be set. The FIFO level signal behavior is as follows:

▪ RX trigger output – the signal remains active until the number of data elements in the RX
FIFO is greater than the value of RX FIFO level.

▪ TX trigger output – the signal remains active until the number of data elements in the TX
FIFO is less than the value of TX FIFO level.

The following table specifies what DMA Component configuration should be used when it is
connected to the SCB (UART mode) Component.

DMA Source / Destination
name Direction

Source /
Destination transfer

width

DMA
request
signal

DMA
trigger type Description

SCB_RX_FIFO_RD_PTR Source Word /

Byte or Halfword

rx_tr_out Level
sensitive

Receive FIFO

SCB_TX_FIFO_WR_PTR Destination Data bits /

Byte or Halfword

tx_tr_out Level
sensitive

Transmit FIFO

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 176 of 211 Document Number: 002-10814 Rev. *E

Note If the number of data bits are less than or equal to 8 bits the transfer data element width is
byte, if the number of data bits are between 9 and 16 bits the width is halfword.

Note The SCB (UART mode) clears request signal within 4 SYSCLK cycles therefore level
sensitive configuration of DMA has to be “wait 4 SYSCLK”.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 177 of 211

Common SCB Component Information

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the Component’s generated source files,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the Component’s source code.

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

▪ Write the function implementation (in any user file).

Callback Function [10] Associated Macro Description

SCB_EZI2C_STRETCH_ISR_
EntryCallback

SCB_EZI2C_STRETCH_ISR_
ENTRY_CALLBACK

Used at the beginning of the SCB_EZI2C_STRETCH_ISR()
interrupt handler to perform additional application-specific
actions.

SCB_EZI2C_STRETCH_ISR_
ExitCallback

SCB_EZI2C_STRETCH_ISR_
EXIT_CALLBACK

Used at the end of the SCB_EZI2C_STRETCH_ISR()
interrupt handler to perform additional application-specific
actions.

SCB_EZI2C_NO_STRETCH_
ISR_EntryCallback

SCB_EZI2C_NO_STRETCH_
ISR_ENTRY_CALLBACK

Used at the beginning of the
SCB_EZI2C_NO_STRETCH_ISR() interrupt handler to
perform additional application-specific actions.

SCB_EZI2C_NO_STRETCH_
ISR_ExitCallback

SCB_EZI2C_NO_STRETCH_
ISR_EXIT_CALLBACK

Used at the end of the SCB_EZI2C_NO_STRETCH_ISR()
interrupt handler to perform additional application-specific
actions.

SCB_I2C_ISR_EntryCallback SCB_I2C_ISR_ENTRY_CALL
BACK

Used at the beginning of the SCB_I2C_ISR() interrupt
handler to perform additional application-specific actions.

SCB_I2C_ISR_ExitCallback SCB_I2C_ISR_EXIT_CALLBA
CK

Used at the end of the SCB_I2C_ISR() interrupt handler to
perform additional application-specific actions.

SCB_SPI_UART_ISR_EntryC
allback

SCB_SPI_UART_ISR_ENTR
Y_CALLBACK

Used at the beginning of the SCB_SPI_UART_ISR() interrupt
handler to perform additional application-specific actions.

SCB_SPI_UART_ISR_ExitCal
lback

SCB_SPI_UART_ISR_EXIT_
CALLBACK

Used at the end of the SCB_SPI_UART_ISR() interrupt
handler to perform additional application-specific actions.

SCB_UART_WAKEUP_ISR_
EntryCallback

SCB_UART_WAKEUP_ISR_
ENTRY_CALLBACK

Used at the beginning of the SCB_UART_WAKEUP_ISR()
interrupt handler to perform additional application-specific
actions.

10 The callback function name is formed by Component function name optionally appended by short explanation
and “Callback” suffix.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 178 of 211 Document Number: 002-10814 Rev. *E

Callback Function [10] Associated Macro Description

SCB_UART_WAKEUP_ISR_
ExitCallback

SCB_UART_WAKEUP_ISR_
EXIT_CALLBACK

Used at the end of the SCB_UART_WAKEUP_ISR() interrupt
handler to perform additional application-specific actions.

Interrupt APIs

These functions are common for most SCB modes.

By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
Component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“SCB.”

Function Description

SCB_EnableInt() Enables the interrupt in the NVIC (when an internal interrupt is
used).

SCB_DisableInt() Disables the interrupt in the NVIC (when an internal interrupt is
used).

SCB_GetInterruptCause() Returns a mask of bits showing the source of the current
triggered interrupt.

SCB_SetCustomInterruptHandler() Registers a function to be called by the internal interrupt handler.

SCB_SetI2cAddressCustomInterruptHandler() Registers a function to be called by the I2C slave interrupt handler
during the I2C interrupt address processing

SCB_GetTxInterruptSource() Returns TX interrupt request register. This register contains
current status of TX interrupt sources.

SCB_SetTxInterruptMode() Writes TX interrupt mask register. This register configures which
bits from TX interrupt request register will trigger an interrupt
event.

SCB_GetTxInterruptMode() Returns TX interrupt mask register.

SCB_GetTxInterruptSourceMasked() Returns TX interrupt masked request register. This register
contains logical AND of corresponding bits from TX interrupt
request and mask registers.

SCB_ClearTxInterruptSource() Clears TX interrupt sources in the interrupt request register.

SCB_SetTxInterrupt() Sets TX interrupt sources in the interrupt request register.

SCB_SetTxFifoLevel() Sets level in the TX FIFO to generate TX level interrupt.

SCB_GetRxInterruptSource() Returns RX interrupt request register. This register contains
current status of RX interrupt sources.

SCB_SetRxInterruptMode() Writes RX interrupt mask register. This register configures which
bits from RX interrupt request register will trigger an interrupt
event.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 179 of 211

Function Description

SCB_GetRxInterruptMode() Returns RX interrupt mask register.

SCB_GetRxInterruptSourceMasked() Returns RX interrupt masked request register. This register
contains logical AND of corresponding bits from RX interrupt
request and mask registers.

SCB_ClearRxInterruptSource() Clears RX interrupt sources in the interrupt request register.

SCB_SetRxInterrupt() Sets RX interrupt sources in the interrupt request register.

SCB_SetRxFifoLevel() Sets level in the RX FIFO to generate RX level interrupt.

SCB_GetMasterInterruptSource() Returns Master interrupt request register. This register contains
current status of Master interrupt sources.

SCB_SetMasterInterruptMode() Writes Master interrupt mask register. This register configures
which bits from Master interrupt request register will trigger an
interrupt event.

SCB_GetMasterInterruptMode() Returns Master interrupt mask register.

SCB_GetMasterInterruptSourceMasked() Returns Master interrupt masked request register. This register
contains logical AND of corresponding bits from Master interrupt
request and mask registers.

SCB_ClearMasterInterruptSource() Clears Master interrupt sources in the interrupt request register.

SCB_SetMasterInterrupt() Sets Master interrupt sources in the interrupt request register.

SCB_GetSlaveInterruptSource() Returns Slave interrupt request register. This register contains
current status of Slave interrupt sources.

SCB_SetSlaveInterruptMode() Writes Slave interrupt mask register. This register configures
which bits from Slave interrupt request register will trigger an
interrupt event.

SCB_GetSlaveInterruptMode() Returns Slave interrupt mask register.

SCB_GetSlaveInterruptSourceMasked() Returns Slave interrupt masked request register. This register
contains logical AND of corresponding bits from Slave interrupt
request and mask registers.

SCB_ClearSlaveInterruptSource() Clears Slave interrupt sources in the interrupt request register.

SCB_SetSlaveInterrupt() Sets Slave interrupt sources in the interrupt request register.

void SCB_EnableInt(void)

Description: When using an Internal interrupt, this enables the interrupt in the NVIC. When using an
external interrupt the API for the interrupt Component must be used to enable the
interrupt.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 180 of 211 Document Number: 002-10814 Rev. *E

void SCB_DisableInt(void)

Description: When using an Internal interrupt, this disables the interrupt in the NVIC. When using an
external interrupt the API for the interrupt Component must be used to disable the
interrupt.

uint32 SCB_GetInterruptCause(void)

Description: Returns a mask of bits showing the source of the current triggered interrupt. This is
useful for modes of operation where an interrupt can be generated by conditions in
multiple interrupt source registers.

Return Value: uint32: Mask with the OR of the following conditions that have been triggered:

Interrupt causes constants Description

SCB_INTR_CAUSE_MASTER Interrupt from Master

SCB_INTR_CAUSE_SLAVE Interrupt from Slave

SCB_INTR_CAUSE_TX Interrupt from TX

SCB_INTR_CAUSE_RX Interrupt from RX

void SCB_SetCustomInterruptHandler(void (*func) (void))

Description: Registers a function to be called by the internal interrupt handler. First the function that
is registered is called, and then the internal interrupt handler performs any operations
such as software buffer management functions. It is user’s responsibility to not break
the software buffer operations. Only one custom handler is supported; which is the
function provided by the most recent call. At initialization time no custom handler is
registered.

Parameters: func: Pointer to the function to register. The value NULL indicates to remove the
current custom interrupt handler.

void SCB_SetI2cAddressCustomInterruptHandler(uint32 (*func) (void))

Description: Registers a function to be called by the I2C slave interrupt handler during the I2C
interrupt address processing. This function should be used when multiple I2C addresses
need to be decoded or general call address supported. The registered function must
return decision whether to ACK or NACK accepted address. Only one I2C address
handler is supported, which is the function provided by the most recent call. At
initialization time no I2C address handler is registered.

Parameters: func: Pointer to the function to register. The value NULL indicates to remove the current
custom interrupt handler.

The registered function must return decision whether to ACK or NACK accepted
address: 0 – ACK, other values – NACK. The registered callback function does not
perform the ACK/NACK, this operation is performed in the I2C ISR.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 181 of 211

uint32 SCB_GetTxInterruptSource(void)

Description: Returns TX interrupt request register. This register contains current status of TX
interrupt sources.

Return Value: uint32: Current status of TX interrupt sources.

Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.

TX interrupt sources Description

SCB_INTR_TX_FIFO_LEVEL The number of data elements in the TX FIFO is
less than the value of TX FIFO level.

SCB_INTR_TX_NOT_FULL Transmitter FIFO is not full.

SCB_INTR_TX_EMPTY Transmitter FIFO is empty.

SCB_INTR_TX_OVERFLOW Attempt to write to a full transmitter FIFO.

SCB_INTR_TX_UNDERFLOW Attempt to read from an empty transmitter
FIFO.

SCB_INTR_TX_UART_NACK UART received a NACK in SmartCard mode.

SCB_INTR_TX_UART_DONE UART transfer is complete. All data elements
from the TX FIFO are sent.

SCB_INTR_TX_UART_ARB_LOST Value on the TX line of the UART does not
match the value on the RX line.

void SCB_SetTxInterruptMode(uint32 interruptMask)

Description: Writes TX interrupt mask register. This register configures which bits from TX interrupt
request register will trigger an interrupt event.

Parameters: uint32 interruptMask: TX interrupt sources to be enabled (refer to
SCB_GetTxInterruptSource() function for bit field values).

uint32 SCB_GetTxInterruptMode(void)

Description: Returns TX interrupt mask register This register specifies which bits from TX interrupt
request register will trigger an interrupt event.

Return Value: uint32: Enabled TX interrupt sources (refer to SCB_GetTxInterruptSource() function for
return values).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 182 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_GetTxInterruptSourceMasked(void)

Description: Returns TX interrupt masked request register. This register contains logical AND of
corresponding bits from TX interrupt request and mask registers.

This function is intended to be used in the interrupt service routine to identify which of
enabled TX interrupt sources cause interrupt event.

Return Value: uint32: Current status of enabled TX interrupt sources (refer to
SCB_GetTxInterruptSource() function for return values).

void SCB_ClearTxInterruptSource(uint32 interruptMask)

Description: Clears TX interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: TX interrupt sources to be cleared (refer to
SCB_GetTxInterruptSource() function for return values).

Side Effects: The side effects are listed in the table below for each affected interrupt source. Refer to
section TX FIFO interrupt sources for detailed description.

TX interrupt sources Description

SCB_INTR_TX_FIFO_LEVEL Interrupt source is not cleared when transmitter
FIFO has less entries than level.

SCB_INTR_TX_NOT_FULL Interrupt source is not cleared when transmitter
FIFO has empty entries.

SCB_INTR_TX_EMPTY Interrupt source is not cleared when transmitter
FIFO is empty.

SCB_INTR_TX_UNDERFLOW Interrupt source is not cleared when transmitter
FIFO is empty and I2C mode with clock
stretching is selected. Put data into the
transmitter FIFO before clearing it.

This behavior only applicable for
PSoC 4100/PSoC 4200 devices.

void SCB_SetTxInterrupt(uint32 interruptMask)

Description: Sets TX interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: TX interrupt sources to set in the TX interrupt request register
(refer to SCB_GetTxInterruptSource() function for return values).

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 183 of 211

void SCB_ SetTxFifoLevel(uint32 level)

Description: Sets level in the TX FIFO to generate a TX level interrupt.

When the TX FIFO has more entries than the TX FIFO level an TX level interrupt
request is generated.

Parameters: uint32 level: Level in the TX FIFO to generate TX level interrupt

The range of valid level values is between 0 and TX FIFO depth - 1.

uint32 SCB_GetRxInterruptSource(void)

Description: Returns RX interrupt request register. This register contains current status of RX
interrupt sources.

Return Value: uint32: Current status of RX interrupt sources.

Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.

RX interrupt sources Description

SCB_INTR_RX_FIFO_LEVEL The number of data elements in the RX FIFO is
greater than the value of RX FIFO level.

SCB_INTR_RX_NOT_EMPTY Receiver FIFO is not empty.

SCB_INTR_RX_FULL Receiver FIFO is full.

SCB_INTR_RX_OVERFLOW Attempt to write to a full receiver FIFO.

SCB_INTR_RX_UNDERFLOW Attempt to read from an empty receiver FIFO.

SCB_INTR_RX_FRAME_ERROR UART framing error detected.

SCB_INTR_RX_PARITY_ERROR UART parity error detected.

void SCB_SetRxInterruptMode(uint32 interruptMask)

Description: Writes RX interrupt mask register. This register configures which bits from RX interrupt
request register will trigger an interrupt event.

Parameters: uint32 interruptMask: RX interrupt sources to be enabled (refer to
SCB_GetRxInterruptSource() function for bit fields values).

uint32 SCB_GetRxInterruptMode(void)

Description: Returns RX interrupt mask register This register specifies which bits from RX interrupt
request register will trigger an interrupt event.

Return Value: uint32: Enabled RX interrupt sources (refer to SCB_GetRxInterruptSource() function for
return values).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 184 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_GetRxInterruptSourceMasked(void)

Description: Returns RX interrupt masked request register. This register contains logical AND of
corresponding bits from RX interrupt request and mask registers.

This function is intended to be used in the interrupt service routine to identify which of
enabled RX interrupt sources cause interrupt event.

Return Value: uint32: Current status of enabled RX interrupt sources (refer to
SCB_GetRxInterruptSource() function for return values).

void SCB_ClearRxInterruptSource(uint32 interruptMask)

Description: Clears RX interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: RX interrupt sources to be cleared (refer to
SCB_GetRxInterruptSource() function for return values).

Side Effects: The side effects are listed in the table below for each affected interrupt source. Refer to
section RX FIFO interrupt sources for detailed description.

RX interrupt sources Description

SCB_INTR_RX_FIFO_LEVEL Interrupt source is not cleared when the receiver
FIFO has more entries than level.

SCB_INTR_RX_NOT_EMPTY Interrupt source is not cleared when receiver FIFO is
not empty.

SCB_INTR_RX_FULL Interrupt source is not cleared when receiver FIFO is
full.

void SCB_SetRxInterrupt(uint32 interruptMask)

Description: Sets RX interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: RX interrupt sources to set in the RX interrupt request register
(refer to SCB_GetRxInterruptSource() function for return values).

void SCB_SetRxFifoLevel (uint32 level)

Description: Sets level in the RX FIFO to generate a RX level interrupt.

When the RX FIFO has more entries than the RX FIFO level an RX level interrupt
request is generated.

Parameters: uint32 level: Level in the RX FIFO to generate RX level interrupt.

The range of valid level values is between 0 and RX FIFO depth - 1.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 185 of 211

uint32 SCB_GetMasterInterruptSource(void)

Description: Returns Master interrupt request register. This register contains current status of Master
interrupt sources.

Return Value: uint32: Current status of Master interrupt sources.

Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.

Master interrupt sources Description

SCB_INTR_MASTER_SPI_DONE SPI master transfer is complete.

Refer to Interrupt sources section for
detailed description.

SCB_INTR_MASTER_I2C_ARB_LOST I2C master lost arbitration.

SCB_INTR_MASTER_I2C_NACK I2C master received negative
acknowledgement (NAK).

SCB_INTR_MASTER_I2C_ACK I2C master received acknowledgement.

SCB_INTR_MASTER_I2C_STOP I2C master generated STOP.

SCB_INTR_MASTER_I2C_BUS_ERROR I2C master bus error (detection of
unexpected START or STOP condition).

void SCB_SetMasterInterruptMode(uint32 interruptMask)

Description: Writes Master interrupt mask register. This register configures which bits from Master
interrupt request register will trigger an interrupt event.

Parameters: uint32 interruptMask: Master interrupt sources to be enabled (refer to
SCB_GetMasterInterruptSource() function for bit field values).

uint32 SCB_GetMasterInterruptMode(void)

Description: Returns Master interrupt mask register This register specifies which bits from Master
interrupt request register will trigger an interrupt event.

Return Value: uint32: Enabled Master interrupt sources (refer to SCB_GetMasterInterruptSource()
function for return values).

uint32 SCB_GetMasterInterruptSourceMasked(void)

Description: Returns Master interrupt masked request register. This register contains logical AND of
corresponding bits from Master interrupt request and mask registers.

This function is intended to be used in the interrupt service routine to identify which of
enabled Master interrupt sources cause interrupt event.

Return Value: uint32: Current status of enabled Master interrupt sources (refer to
SCB_GetMasterInterruptSource() function for return values).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 186 of 211 Document Number: 002-10814 Rev. *E

void SCB_ClearMasterInterruptSource(uint32 interruptMask)

Description: Clears Master interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: Master interrupt sources to be cleared (refer to
SCB_GetMasterInterruptSource() function for return values).

void SCB_SetMasterInterrupt(uint32 interruptMask)

Description: Sets Master interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: Master interrupt sources to set in the Master interrupt request
register (refer to SCB_GetMasterInterruptSource() function for return values).

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 187 of 211

uint32 SCB_GetSlaveInterruptSource(void)

Description: Returns Slave interrupt request register. This register contains current status of Slave
interrupt sources.

Return Value: uint32: Current status of Slave interrupt sources.

Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.

Slave interrupt sources Description

SCB_INTR_SLAVE_I2C_ARB_LOST I2C slave lost arbitration: the value driven on
the SDA line is not the same as the value
observed on the SDA line.

SCB_INTR_SLAVE_I2C_NACK I2C slave received negative acknowledgement
(NAK).

SCB_INTR_SLAVE_I2C_ACK I2C slave received acknowledgement (ACK).

SCB_INTR_SLAVE_I2C_WRITE_STOP Stop or Repeated Start event for write transfer
intended for this slave (address matching is
performed).

SCB_INTR_SLAVE_I2C_STOP Stop or Repeated Start event for (read or write)
transfer intended for this slave (address
matching is performed).

SCB_INTR_SLAVE_I2C_START I2C slave received Start condition.

SCB_INTR_SLAVE_I2C_ADDR_MATCH I2C slave received matching address.

SCB_INTR_SLAVE_I2C_GENERAL I2C Slave received general call address.

SCB_INTR_SLAVE_I2C_BUS_ERROR I2C slave bus error (detection of unexpected
START or STOP condition).

SCB_INTR_SLAVE_SPI_BUS_ERROR SPI slave deselected at an expected time in the
SPI transfer.

void SCB_SetSlaveInterruptMode(uint32 interruptMask)

Description: Writes Slave interrupt mask register. This register configures which bits from Slave
interrupt request register will trigger an interrupt event.

Parameters: uint32 interruptMask: Slave interrupt sources to be enabled (refer to
SCB_GetSlaveInterruptSource() function for bit field values).

uint32 SCB_GetSlaveInterruptMode(void)

Description: Returns Slave interrupt mask register This register specifies which bits from Slave
interrupt request register will trigger an interrupt event.

Return Value: uint32: Enabled Slave interrupt sources (refer to SCB_GetSlaveInterruptSource()
function for return values).

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 188 of 211 Document Number: 002-10814 Rev. *E

uint32 SCB_GetSlaveInterruptSourceMasked(void)

Description: Returns Slave interrupt masked request register. This register contains logical AND of
corresponding bits from Slave interrupt request and mask registers.

This function is intended to be used in the interrupt service routine to identify which of
enabled Slave interrupt sources cause interrupt event.

Return Value: uint32: Current status of enabled Slave interrupt sources (refer to
SCB_GetSlaveInterruptSource() function for return values).

void SCB_ClearSlaveInterruptSource(uint32 interruptMask)

Description: Clears Slave interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: Slave interrupt sources to be cleared (refer to
SCB_GetSlaveInterruptSource() function for return values).

void SCB_SetSlaveInterrupt(uint32 interruptMask)

Description: Sets Slave interrupt sources in the interrupt request register.

Parameters: uint32 interruptMask: Slave interrupt sources to set in the Slave interrupt request
register (refer to SCB_GetSlaveInterruptSource() function for return values).

Interrupt Function Appliance

Function I2C EZI2C SPI UART

SCB_EnableInt() + + + +

SCB_DisableInt() + + + +

SCB_GetInterruptCause() + + + +

SCB_SetCustomInterruptHandler() [11] + + +/- +/-

SCB_SetI2cAddressCustomInterruptHandler() + - - -

SCB_GetTxInterruptSource() + + + +

SCB_SetTxInterruptMode() + + + +

SCB_GetTxInterruptMode() + + + +

SCB_GetTxInterruptSourceMasked() + + + +

SCB_ClearTxInterruptSource() + + + +

SCB_SetTxInterrupt() + + + +

11 Only available when SPI and UART provide internal interrupt handler.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 189 of 211

Function I2C EZI2C SPI UART

SCB_SetTxFifoLevel() + + + +

SCB_GetRxInterruptSource() + + + +

SCB_SetRxInterruptMode() + + + +

SCB_GetRxInterruptMode() + + + +

SCB_GetRxInterruptSourceMasked() + + + +

SCB_ClearRxInterruptSource() + + + +

SCB_SetRxInterrupt() + + + +

SCB_SetRxFifoLevel() + + + +

SCB_GetMasterInterruptSource() + – + –

SCB_SetMasterInterruptMode() + – + –

SCB_GetMasterInterruptMode() + – + –

SCB_GetMasterInterruptSourceMasked() + – + –

SCB_ClearMasterInterruptSource() + – + –

SCB_SetMasterInterrupt() + – + –

SCB_GetSlaveInterruptSource() + + + –

SCB_SetSlaveInterruptMode() + + + –

SCB_GetSlaveInterruptMode() + + + –

SCB_GetSlaveInterruptSourceMasked() + + + –

SCB_ClearSlaveInterruptSource() + + + –

SCB_SetSlaveInterrupt() + + + –

Clock Selection

The SCB is clocked by a single dedicated clock connection. Depending on the mode of
operation the frequency of this clock may be calculated by the Component based on the
customizer configuration or may be provided externally.

Since the Unconfigured mode customizer is not aware of the end mode of operation the clock
must be provided externally in this case.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator Components

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 190 of 211 Document Number: 002-10814 Rev. *E

▪ specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The SCB Component has the following specific deviations:

MISRA-C:
2004 Rule

Rule Class
[12] Rule Description Description of Deviation(s)

1.1 R This rule states that
code shall conform to
C ISO/IEC
9899:1990 standard.

Nesting of control structures (statements) exceeds 15 -
program does not conform strictly to ISO:C90.

In practice, most compilers will support a much more liberal
nesting limit and therefore this limit may only be relevant
when strict conformance is required. By comparison,
ISO:C99 specifies a limit of 127 "nesting levels of blocks.

The supported compilers (GCC 4.1.1, RVDS and MDK)
support larger number nesting of control structures.

17.4 R Array indexing shall
be the only allowed
form of pointer
arithmetic.

Component uses array indexing operation to access buffers.
The buffer size is checked before access. It is safe
operation unless user provides incorrect buffer size.

19.7 A A function should be
used in preference to
a function-like macro.

Deviated since function-like macros are used to allow more
efficient code.

This Component has the following embedded Components: Pins and Interrupt. Refer to the
corresponding Component datasheets for information on their MISRA compliance and specific
deviations.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Interrupt Service Routine

The SCB supports interrupts on the various events, depending on the mode of operation. All of
the interrupt events are ORed together before being sent to the interrupt controller, so the SCB

12 Required / Advisory

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 191 of 211

can only generate a single interrupt request to the controller at any given time. This signal goes
high when any of the enabled interrupt sources are true.

Some of the modes expose this signal as terminal when it is not needed for internal operation as
described in the Input/Output Connections section. If it is needed for internal operation the
terminal is not present.

Software can service multiple interrupt events in a single interrupt service routine by using
various interrupt APIs.

PSoC Creator generates the necessary interrupt service routines for handling internal operation.
However it is possible to register a custom function using SCB_SetCustomInterruptHandler()
function. This user function will be called first, before the internal interrupt handler performs any
operations such as software buffer management functions. Only one custom handler is
supported.

Note Interrupt sources managed by user are not cleared automatically. It is user responsibility to
do that. Interrupt sources are cleared by writing a ‘1’ in corresponding bit position. The preferred
way to clear interrupt sources is usage APIs (for example: SCB_ClearRxInterruptSource()).

void CustomInterruptHandler(void);

void main()

{

 /* Register custom function */

 SCB_SetCustomInterruptHandler(&CustomInterruptHandler);

 /* Initialize SCB Component in UART mode.

 * The SCB_INTR_RX_PARITY_ERROR is already enabled in GUI:

 * UART Advanced Tab.

 */

 SCB_Start();

 CyGlobalIntEnable; /* Enable global interrupts. */

 for (;;)

 {

 /* Place your application code here. */

 }

}

/* User interrupt handler to insert into SCB interrupt handler.

* Note: SCB interrupt set to Internal in GUI.

*/

void CustomInterruptHandler(void)

{

 if (0u != (SCB_GetRxInterruptSourceMasked() & SCB_INTR_RX_PARITY_ERROR))

 {

 /* Interrupt sources does not clear automatically if it is managed by

 * user. The interrupt sources clearing becomes user responsibility.

 */

 SCB_ClearRxInterruptSource(SCB_INTR_RX_PARITY_ERROR);

 /*

 * Add user interrupt code to manage SCB_INTR_RX_PARITY_ERROR.

 */

 }

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 192 of 211 Document Number: 002-10814 Rev. *E

}

TX FIFO interrupt sources

 The following TX interrupt sources have level-sensitive behavior:

▪ TX FIFO empty

▪ TX FIFO not full

▪ TX FIFO level

These interrupt sources trigger the current status of the TX FIFO, and keep it until a clear
operation. Clearing these interrupt sources does not make any sense if the current status of the
TX FIFO still triggers them, because they are restored back.

The restore operation takes one clock cycle; therefore, the interrupt source is cleared during this
time. The restore time causes false clearing of interrupt sources, which might have an undesired
impact on the design.

The suggested flow to start TX FIFO interrupt sources processing is as follows:

1. Fill the TX FIFO with data. While filling the TX FIFO, it is better to monitor the number of
entries in it rather than try to clear the TX FIFO interrupt source after each byte put in the
TX FIFO.

2. Clear the “old” triggered interrupt source. To clear interrupt source, write ‘1’ to the
corresponding bit position.

3. Enable the interrupt source.

Note The TX FIFO level interrupt source behavior depends on the level value.

Note The described behavior applies only to PSoC 4100 / PSoC 4200 devices. After the SCB
Component is disabled, the TX FIFO becomes empty. It is not possible to clear them due to the
restore nature. Therefore, the Component interrupt or TX interrupt sources must be disabled to
not cause locking in the interrupt handler after the Component was disabled. For other devices,
this behavior is fixed; after the SCB Component is disabled all interrupts are cleared.

RX FIFO interrupt sources

The following RX interrupt sources have level-sensitive behavior:

▪ RX FIFO not empty

▪ RX FIFO full

▪ RX FIFO level

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 193 of 211

These interrupt sources trigger the current status of the RX FIFO, and keep it until a clear
operation. Clearing these interrupt sources does not make any sense if the current status of the
RX FIFO still triggers them, because they are restored back. The restore operation takes one
clock cycle; therefore, the interrupt source is cleared during this time.

The restore time causes false clearing of RX interrupt sources, which might have an undesired
impact on the design.

The suggested flow to start RX FIFO interrupt sources processing is as follows:

1. Clear the “old” triggered interrupt source. To clear interrupt source, write ‘1’ to the
corresponding bit position.

2. Then enable the interrupt source.

In most cases the clear operation is not required. While getting data from the RX FIFO, it is
better to monitor the number of entries in it rather than try to clear the RX FIFO interrupt source
after each byte read from the RX FIFO.

Note The RX FIFO level interrupt source behavior depends on level value.

Note The described behavior applies only to PSoC 4100 / PSoC 4200 devices. After the SCB
Component is disabled, the triggered RX FIFO interrupt sources are not cleared automatically.
The explicit clear operation must be executed.

Placement

The SCB is placed as Fixed Function block and all placement information is provided to the API
through the cyfitter.h file. The SCB pins placement information is available in the Pins tab of the
PSoC Creator Design-Wide Resources (DWR) file. See the Device datasheet section Pinout for
pins functions and placement information.

Generally, debug pins have an alternate function to be SCB pins. To use these pins for SCB
functionality, debug capability needs to be disabled in the System tab of the PSoC Creator DWR
file. Set Debug Select option to GPIO to allow the tool to use the alternate function.

Note The debugger will not be functional after choosing this option.

This is specifically important for PSoC 4000 devices, which have a limited number of pins. The
debug pins for this device are P3[0] (SWD_IO) and P3[1] (SWD_CLK). The alternate function of
these pins is I2C functionality SCB[0] (SDA) and SCB[0] (SCL). For other devices, refer to the
appropriate device datasheet to determine alternate functions of debug pins.

Registers

See the chip Technical Reference Manual (TRM) for more information about registers.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 194 of 211 Document Number: 002-10814 Rev. *E

Component Debug Window

PSoC Creator allows you to view debug information about Components in your design. Each
Component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device technical reference manual.

To open the Component Debug window:

1. Make sure the debugger is running or in break mode.

2. Choose Windows > Components… from the Debug menu.

3. In the Component Window Selector dialog, select the Component instances to view and
click OK.

The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.

Resources

The SCB is implemented as a fixed-function block.

Configuration

Resource Type

Interrupts Clocks
SCB

(Fixed blocks)

Unconfigured SCB 1 1 1

I2C Slave / Master / Multi-Master / Multi-Master-Slave 1 1 1

EZ I2C Clock stretching: enabled / disabled 1 1 1

SPI Master / Slave
Hardware buffers [13] – 1 1

Software buffers [14] 1 1 1

UART Standard /Smart Card /IrDA
Hardware buffers [13] – 1 1

Software buffers [14] 1 1 1

13 Hardware buffers – The TX and RX buffer size is equal to FIFO depth which is implemented in the hardware; no
memory is allocated for the TX or RX buffer. The RX and TX FIFO depth is equal to 8 bytes/words or 16 bytes;
refer to Byte mode for more information.

14 Software buffers – The TX and RX buffer size is greater than FIFO depth; the TX and RX FIFOs are still used but
the memory is allocated for TX and RX buffer. Internal interrupt handler is automatically enabled to transfer data
between the hardware FIFOs and RX and TX memory buffers.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 195 of 211

API Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration PSoC 4 (GCC)

PSoC 4000 PSoC 4100 /
PSoC 4200

All Other PSoC 4

Flash RAM Flash RAM Flash RAM

Unconfigured SCB 7480 162 11238 180 12378 180

I2C Slave 1624 43 1672 43 1572 43

Master 2560 46 2792 46 2568 46

Multi-Master 2560 46 2792 46 2568 46

Multi-Master-Slave 3884 79 4092 79 3832 79

Slave, Bootloader communication 1700 174 1748 174 1648 174

EZI2C Clock stretching
enabled

One address 1320 26 1352 26 1268 26

Two addresses 1752 50 1824 50 1696 50

Clock stretching
disabled [15]

One address 1256 23 1036 24 1212 23

SPI Slave Hardware buffers [13] N/A N/A 638 5 678 5

Software buffers [14] N/A N/A 1050 25 + BUFRAM 1090 25 + BUFRAM

Bootloader communication [16] N/A N/A 1230 25 + BUFRAM 1230 25 + BUFRAM

Master Hardware buffers [13] N/A N/A 814 5 862 5

Software buffers [14] N/A N/A 1226 25 + BUFRAM 1274 25 + BUFRAM

UART Standard [17] Hardware buffers [13] N/A N/A 784 6 1008 6

Software buffers [14] N/A N/A 1260 26 + BUFRAM 1528 26 + BUFRAM

Bootloader communication [16] N/A N/A 1166 26 + BUFRAM 1186 26 + BUFRAM

15 The “Enable wakeup from Deep Sleep Mode” is enabled for all devices other than PSoC 4100 / PSoC 4200.

16 The software buffers are used for bootloader communication operation.

17 The hardware flow control feature is enabled for devices other than PSoC 4100 / PSoC 4200.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 196 of 211 Document Number: 002-10814 Rev. *E

BUFRAM = ((RX buffer size + 1) * BytesNumberRX) + ((TX buffer size) * BytesNumberTX)

where:

▪ RX buffer size and TX buffer size is equal to appropriate settings on the Advanced Tab for
SPI or UART mode.

▪ BytesNumberRX is number of bytes to store the RX data element. The BytesNumberRX = 1
when RX data bits <= 8 bits and BytesNumberRX = 2 when RX data bits > 8 bits.

▪ BytesNumberTX is number of bytes to store the TX data element. The BytesNumberTX = 1
when TX data bits <= 8 bits and BytesNumberTX = 2 when RX data bits > 8 bits.

Note For UART mode the TX and RX data bits options are combined into the single
option Data bits which value must be used for BUFRAM calculations instead of
BytesNumberRX and BytesNumberTX.

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Note Final characterization data for PSoC Analog Coprocessor devices is not available at this
time. Once the data is available, the Component datasheet will be updated on the Cypress web
site.

PSoC 4000

I2C DC Specifications

Parameter Description Min Typ Max Units Conditions

II2C1
Block current consumption at
100 KHz

– – 10.5 μA

II2C2
Block current consumption at
400 KHz

– – 135 μA

II2C4 I2C enabled in Deep Sleep mode – – 2.5 μA

I2C AC Specifications

Parameter Description Min Typ Max Units Conditions

FI2C1 Bit rate – – 400 Kbps

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 197 of 211

PSoC 4100/PSoC 4200

I2C DC Specifications

Parameter Description Min Typ Max Units Conditions

II2C1
Block current consumption at
100 KHz

– – 10.5 μA

II2C2
Block current consumption at
400 KHz

– – 135 μA

II2C3 Block current consumption at 1 Mbps – – 310 μA

II2C4 I2C enabled in Deep Sleep mode – – 1.4 μA

I2C AC Specifications

Parameter Description Min Typ Max Units Conditions

FI2C1 Bit rate – – 1 Mbps

UART DC Specifications

Parameter Description Min Typ Max Units Conditions

IUART1 Block current consumption at 100 Kbits/sec – – 9 μA

IUART2 Block current consumption at 1000 Kbits/sec – – 312 μA

UART AC Specifications

Parameter Description Min Typ Max Units Conditions

FUART Bit rate – – 1 Mbps

SPI DC Specifications

Parameter Description Min Typ Max Units Conditions

ISPI1 Block current consumption at 1 Mbits/sec – – 360 μA

ISPI2 Block current consumption at 4 Mbits/sec – – 560 μA

ISPI3 Block current consumption at 8 Mbits/sec – – 600 μA

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 198 of 211 Document Number: 002-10814 Rev. *E

SPI AC Specifications

Parameter Description Min Typ Max Units Conditions

FSPI SPI operating frequency (master; 6X
oversampling)

– – 8 MHz

SPI Master AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMO MOSI valid after Sclock driving edge – – 15 ns

TDSI MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used

20 – – ns

THMO Previous MOSI data hold time with respect to
capturing edge at Slave

0 – – ns

SPI Slave AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMI MOSI valid before Sclock capturing edge 40 – – ns

TDSO MISO valid after Sclock driving edge – – 42 + 3 × Tscb ns

THSO Previous MISO data hold time 0 – – ns

TSSELSCK SSEL Valid to first SCK Valid edge 100 – – ns

PSoC 4100 BLE/PSoC 4200 BLE

I2C DC Specifications

Parameter Description Min Typ Max Units Conditions

II2C1
Block current consumption at
100 KHz

– – 50 μA

II2C2
Block current consumption at
400 KHz

– – 155 μA

II2C3 Block current consumption at 1 Mbps – – 390 μA

II2C4 I2C enabled in Deep Sleep mode – – 1.4 μA

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 199 of 211

I2C AC Specifications

Parameter Description Min Typ Max Units Conditions

FI2C1 Bit rate – – 1 Mbps

UART DC Specifications

Parameter Description Min Typ Max Units Conditions

IUART1 Block current consumption at 100 Kbits/sec – – 55 μA

IUART2 Block current consumption at 1000 Kbits/sec – – 312 μA

UART AC Specifications

Parameter Description Min Typ Max Units Conditions

FUART Bit rate – – 1 Mbps

SPI DC Specifications

Parameter Description Min Typ Max Units Conditions

ISPI1 Block current consumption at 1 Mbits/sec – – 360 μA

ISPI2 Block current consumption at 4 Mbits/sec – – 560 μA

ISPI3 Block current consumption at 8 Mbits/sec – – 600 μA

SPI AC Specifications

Parameter Description Min Typ Max Units Conditions

FSPI SPI operating frequency (master; 6X
oversampling)

– – 8 MHz

SPI Master AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMO MOSI valid after Sclock driving edge – – 18 ns

TDSI MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used

20 – – ns

THMO Previous MOSI data hold time with respect to
capturing edge at Slave

0 – – ns

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 200 of 211 Document Number: 002-10814 Rev. *E

SPI Slave AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMI MOSI valid before Sclock capturing edge 40 – – ns

TDSO MISO valid after Sclock driving edge – – 42 + 3 × Tscb ns

THSO Previous MISO data hold time 0 – – ns

TSSELSCK SSEL Valid to first SCK Valid edge 100 – – ns

PSoC 4100M/PSoC 4200M

I2C DC Specifications

Parameter Description Min Typ Max Units Conditions

II2C1
Block current consumption at
100 KHz

– – 50 μA

II2C2
Block current consumption at
400 KHz

– – 135 μA

II2C3 Block current consumption at 1 Mbps – – 310 μA

II2C4 I2C enabled in Deep Sleep mode – – 1.4 μA

I2C AC Specifications

Parameter Description Min Typ Max Units Conditions

FI2C1 Bit rate – – 1 Mbps

UART DC Specifications

Parameter Description Min Typ Max Units Conditions

IUART1 Block current consumption at 100 Kbits/sec – – 55 μA

IUART2 Block current consumption at 1000 Kbits/sec – – 312 μA

UART AC Specifications

Parameter Description Min Typ Max Units Conditions

FUART Bit rate – – 1 Mbps

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 201 of 211

SPI DC Specifications

Parameter Description Min Typ Max Units Conditions

ISPI1 Block current consumption at 1 Mbits/sec – – 360 μA

ISPI2 Block current consumption at 4 Mbits/sec – – 560 μA

ISPI3 Block current consumption at 8 Mbits/sec – – 600 μA

SPI AC Specifications

Parameter Description Min Typ Max Units Conditions

FSPI SPI operating frequency (master; 6X
oversampling)

– – 8 MHz

SPI Master AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMO MOSI valid after Sclock driving edge – – 15 ns

TDSI MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used

20 – – ns

THMO Previous MOSI data hold time with respect to
capturing edge at Slave

0 – – ns

SPI Slave AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMI MOSI valid before Sclock capturing edge 40 – – ns

TDSO MISO valid after Sclock driving edge – – 42 + 3 × Tscb ns

THSO Previous MISO data hold time 0 – – ns

TSSELSCK SSEL Valid to first SCK Valid edge 100 – – ns

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 202 of 211 Document Number: 002-10814 Rev. *E

PSoC 4100L

I2C DC Specifications

Parameter Description Min Typ Max Units Conditions

II2C1
Block current consumption at
100 KHz

– 10.5 55 μA

II2C2
Block current consumption at
400 KHz

– – 135 μA

II2C3 Block current consumption at 1 Mbps – – 310 μA

II2C4 I2C enabled in Deep Sleep mode – – 1.4 μA

I2C AC Specifications

Parameter Description Min Typ Max Units Conditions

FI2C1 Bit rate – – 1 Mbps

UART DC Specifications

Parameter Description Min Typ Max Units Conditions

IUART1 Block current consumption at 100 Kbits/sec – 9 55 μA

IUART2 Block current consumption at 1000 Kbits/sec – – 312 μA

UART AC Specifications

Parameter Description Min Typ Max Units Conditions

FUART Bit rate – – 1 Mbps

SPI DC Specifications

Parameter Description Min Typ Max Units Conditions

ISPI1 Block current consumption at 1 Mbits/sec – – 360 μA

ISPI2 Block current consumption at 4 Mbits/sec – – 560 μA

ISPI3 Block current consumption at 8 Mbits/sec – – 600 μA

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 203 of 211

SPI AC Specifications

Parameter Description Min Typ Max Units Conditions

FSPI SPI operating frequency (master; 6X
oversampling)

– – 8 MHz

SPI Master AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMO MOSI valid after Sclock driving edge – – 15 ns

TDSI MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used

20 – – ns

THMO Previous MOSI data hold time with respect to
capturing edge at Slave

0 – – ns

SPI Slave AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMI MOSI valid before Sclock capturing edge 40 – – ns

TDSO MISO valid after Sclock driving edge – – 42 + 3 × Tscb ns

THSO Previous MISO data hold time 0 – – ns

TSSELSCK SSEL Valid to first SCK Valid edge 100 – – ns

PSoC 4000S / PSoC 4100S

I2C DC Specifications

Parameter Description Min Typ Max Units Conditions

II2C1 Block current consumption at 100 KHz – – 50 μA –

II2C2 Block current consumption at 400 KHz – – 135 μA –

II2C3 Block current consumption at 1 Mbps – – 310 μA –

II2C4 I2C enabled in Deep Sleep mode – – 1.4 μA –

I2C AC Specifications

Parameter Description Min Typ Max Units Conditions

FI2C1 Bit rate – – 1 Mbps –

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 204 of 211 Document Number: 002-10814 Rev. *E

UART DC Specifications

Parameter Description Min Typ Max Units Conditions

IUART1 Block current consumption at 100 Kbits/sec – – 55 μA –

IUART2 Block current consumption at 1000 Kbits/sec – – 312 μA –

UART AC Specifications

Parameter Description Min Typ Max Units Conditions

FUART Bit rate – – 1 Mbps –

SPI DC Specifications

Parameter Description Min Typ Max Units Conditions

ISPI1 Block current consumption at 1 Mbits/sec – – 360 μA –

ISPI2 Block current consumption at 4 Mbits/sec – – 560 μA –

ISPI3 Block current consumption at 8 Mbits/sec – – 600 μA –

SPI AC Specifications

Parameter Description Min Typ Max Units Conditions

FSPI SPI operating frequency (master; 6X
oversampling)

– – 8 MHz
–

SPI Master AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMO MOSI valid after Sclock driving edge – – 15 ns –

TDSI MISO valid before Sclock capturing edge
20 – – ns

Full clock, late
MISO sampling

THMO Previous MOSI data hold time
0 – – ns

Referred to
Slave capturing
edge

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 205 of 211

SPI Slave AC Specifications

Parameter Description Min Typ Max Units Conditions

TDMI MOSI valid before Sclock capturing edge 40 – – ns –

TDSO MISO valid after Sclock driving edge – – 42 + 3 × Tscb ns Tscb = 1 /
Fscb[18]

THSO Previous MISO data hold time 0 – – ns –

TSSELSCK SSEL Valid to first SCK Valid edge – – 100 ns –

Component Errata

This section lists known problems with the Component.

Cypress
ID

Component
Version

Problem Workaround

243067 3.20 When operating in UART mode and “Byte
mode” is selected, Interrupt is Internal, and
“RX FIFO not empty” interrupt source is
enabled, the next time you open the
Configure dialog, it shows that the “RX FIFO
not empty” interrupt source is disabled.

This is a visibility problem; “RX FIFO not
empty” is enabled in the Component.
However, you can enable “RX FIFO not
empty” interrupt source to make sure.

Enable the “RX FIFO not empty”
interrupt source on the UART
Configure dialog’s Advanced tab.

254433 All When operating in Unconfigured mode and
the configuration is set by calling
SCB_SpiInit() or SCB_UartInit(), the RX and
TX buffer sizes from the configuration
structure are casted to uint8. This will cause
the Component to fail if the requested buffer
size is greater than 255 bytes.

Assign Component variables that store
buffer size after SCB_SpiInit() or
SCB_UartInit() is called.

Code example for UART:

SCB_UartInit(&configUart);

SCB_rxBufferSize =

configUart.rxBufferSize;

SCB_txBufferSize =

configUart.txBufferSize;

18 Fscb – clock frequency provided to the SCB block.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 206 of 211 Document Number: 002-10814 Rev. *E

Cypress
ID

Component
Version

Problem Workaround

260180 All When operating in I2C Master modes and
the master attempts to start the transfer the
noise on SDA line can cause multiple bus
error conditions from which the firmware
cannot recover. After this failure the master
drives Start condition on the bus and then
holds SCL and SDA lines low. The firmware
might lock up in the I2C interrupt handler.

The master command to generate Start
condition must be cleared after any
error condition was detected.

The code below catches the master
error conditions before it is handed
inside the interrupt hander and clears
master command register (the I2C entry
callback is used):

void SCB_I2C_ISR_EntryCallback(void)

{

if(

 SCB_CHECK_INTR_MASTER_MASKED(

 SCB_INTR_MASTER_I2C_BUS_ERROR) ||

 SCB_CHECK_INTR_MASTER_MASKED(

 SCB_INTR_MASTER_I2C_ARB_LOST)

)

{

 /* Clear command register in

 * case of error.

 */

 SCB_I2C_MASTER_CMD_REG = 0UL;

}

}

298314 All When calling the SCB_I2CMasterWriteBuf()
function to execute an I2C write transaction
with a restart condition, the master might
send the first data byte instead of the
address byte.

This will occur if execution of the function is
interrupted for a time longer than the restart
condition, between setting the restart
generation command and writing the
address byte into the TX FIFO.

Call the SCB_I2CMasterWriteBuf()
function inside the critical section so it
will not be interrupted when you need
to execute a write transaction with a
restart condition.

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.20.e Updated datasheet. Added errata for issue 298314.

3.20.d Minor datasheet edits.

3.20.c Updated datasheet. Added errata for issue 260180.

Minor datasheet updates.

Added final characterization data for PSoC 4100S
device.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 207 of 211

Version Description of Changes Reason for Changes / Impact

3.20.b Updated datasheet. Added errata for issues 243067 and 254433.

Updated description of SCB_SpiIsBusBusy()
function to reflect hardware behavior.

Added final characterization data for PSoC 4000S
device.

3.20.a Updated SCB_Enable() function to restore TX
interrupt sources which are not level-triggered after
SCB_Stop() was called. Only applicable for SPI
and UART modes.

Added global variable SCB_IntrTxMask which
contains TX interrupt sources which will be
enabled after SCB_Enable() is called.

All TX interrupt sources are disabled when
SCB_Stop() is called and not restored when block
is enabled.

Updated datasheet. Provide examples for TX and RX level operation.

Final characterization data for PSoC 4000S,
PSoC 4100S and PSoC Analog Coprocessor
devices is not available at this time. Once the data
is available, the Component datasheet will be
updated on the Cypress web site.

3.20 Added PSoC 4000S, PSoC 4100S and PSoC
Analog Coprocessor devices support.

New devices support.

Added SmartIO support for SPI and UART modes. Support for new feature.

Fixed Configure dialog behavior of UART “RX
FIFO not empty” interrupt source the RX buffer
size is equal to 16 data elements and the “Byte
mode” parameter is enabled.

Fixed Errata for previous Component versions.

Added global variable SCB_skipStart to control if
enable or disable UART skip start feature when
SCB_Sleep() is called.

Enhancement of UART wakeup from Deep Sleep
functionality. Refer to UART Low power modes
section for the details.

Datasheet update. Added diagrams with TX and RX interrupt
sources.

Updated SPI and UART Low Power modes
sections. Provided code examples about how to
enter low power mode.

3.10 Added PSoC 4200L device support. New device support.

3.0.b Datasheet update. Added Macro Callbacks section.

3.0.a Edited datasheet to add Component Errata
section.

Document an issue with “RX FIFO not empty”
interrupt source when operating in UART mode.

3.0 Added support for PSoC 4100M / PSoC 4200M/
PSoC 4200L devices.

Added support of General call address, as well as
improved access to addresses received into the
RX FIFO for I2C mode.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 208 of 211 Document Number: 002-10814 Rev. *E

Version Description of Changes Reason for Changes / Impact

Added support of SPI pins remove.

Added support of bootloader communication for
SPI and UART modes.

Made pin names consistent among all devices in
SCB Unconfigured mode.

Version 3.0 is not completely backward
compatible with the previous Component version
2.0 but only for SCB Unconfigured mode. Due to
pin names change the compilation error will occur
if you use buried pin APIs. Update APIs with new
names to fix the compilation error.

Fixed SCB_RX_BUFFER_SIZE define to be equal
to RX software buffer size. This define is equal to
the RX software buffer size plus one in the
previous Component versions.

This change is not backward compatible with the
previous Component versions.

Noted that the SCB_Stop() also disables all TX
interrupt sources so as not to cause an unexpected
interrupt trigger because after the Component is
enabled, the TX FIFO is empty.

This change is not backward compatible with the
previous Component versions.

The Component restores TX interrupt sources
which it utilizes but not the user configured TX
interrupt sources. They have to be restored by the
user.

Fixed SPI master and UART output pins behavior
when the Component is disabled. The SPI master
SCLK and/or SS0-SS3 and UART TX and/or RTS
pins keep inactive state.

The SPI master and UART output pins becomes
High-Z when the Component is disabled. This can
cause false SPI slave or UART receiver
activation.

Removed timeout from I2C bootloader write
function SCB_CyBtldrCommWrite(). The function
does not use timeout and returns after data has
been copied into the slave read buffer.

The slave read buffer available to be read by the
bootloader host until following host data write.

Fixed RX software buffer processing which allows
buffer to be overflown when UART flow control is
enabled.

The RTS signal has to protect UART receiver
from overflow event to occur.

Minor improvements to the interrupt handler for
EZI2C without clock stretching.

Datasheet updates. Updated sample code in I2C Low power modes
and EZI2C Low power modes sections to use
CyEnterCriticalSection() / CyExitCriticalSection()
instead of CyGlobalIntEnable /
CyGlobalIntDisable.

Updated I2C External Electrical Connections and
added Internal Pull-Ups sections.

Updated SPI Low power modes and UART Low
power modes sections.

Updated DC and AC Electrical Characteristics
section with PSoC 4100M/ PSoC 4200M/ PSoC
4200L data.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 209 of 211

Version Description of Changes Reason for Changes / Impact

2.0.a Datasheet updates. Fixed a few summary tables to add/remove
tables, plus a few minor edits.

Updated descriptions for a few APIs.

Updated the characterization data.

2.0 Added support for Bluetooth Low Energy devices.

Improved internal clock selection logic for all
modes.

Restricted the I2C master and slave clock
frequency requirements to meet I2C specification
parameters.

Version 2.0 is not completely backward
compatible with the previous Component version
1.20. Internal clock selection has changed for I2C,
EZI2C, SPI and UART modes.

To make version 2.0 backward compatible the
“Clock from terminal” option with previous clock
settings should be used. To do this you need to
discover the clock frequency for the SCB that was
used in version 1.20. This can be found by looking
at the Clock tab of the .cydwr file. Find a clock that
ends in _SCBCLK. In version 2.0 enable the
“Clock from terminal” option in the Component.
Next, connect a clock Component to the clock
terminal on the SCB Component. Set this clock
frequency to the same frequency as the clock
used in version 1.20.

The I2C Slave restricts the input clock frequency
to be no less than 1.58 MHz. The clock frequency
must be increased to reach minimum requirement
to build the project.

Removed Median filter option from the I2C and EZ
I2C modes. The median filter option is set depends
on the selected data rate.

The analog filters applied to I2C lines for most
data rate modes. There is no reason to apply both
filters: analog and median (digital). For I2C master
modes with data rate greater than 400 kbps (Fast
Plus) only median (digital) filter is applied.

If Unconfigured SCB was utilized with previous
version of the Component and configured to I2C
mode the dataRate field of configuration structure
has to be initialized for correct filter selection.

The SCB_Sleep() and SCB_Wakeup() functions
were modified for I2C and EZI2C slave (clock
stretching enabled) modes for PSoC 4000. For
more information refer to Low power modes
section of the appropriate mode.

This change intended to address the SCL lock up
after wakeup from Deep Sleep on address match
event.

Fixed the I2C master operation in the Multi-Master-
Slave mode when Enable wakeup from Deep
Sleep Mode option is enabled for PSoC 4000.

The master was not able to able to start
communication.

PSoC 4 Serial Communication Block (SCB) PSoC® Creator™ Component Datasheet

Page 210 of 211 Document Number: 002-10814 Rev. *E

Version Description of Changes Reason for Changes / Impact

Added APIs to set level in the RX and TX FIFO to
generate appropriate level interrupt:

void SCB_SetRxFifoLevel(uint32 level)

void SCB_SetTxFifoLevel(uint32 level)

Removed SPI Master slave select routing
constrains.

SPI Master slave select output pin can be placed
to the any allowed slave select location, ss0-ss3.

The Number of SS lines is allowed to be 0 for SPI
Master.

This allows removal of all hardware slave select
lines in Master mode. It is useful when slave
select control required to be implemented in
firmware.

Changed SPI Master minimum Oversampling
value to 6 and removed dependencies from other
parameters.

Fixed incorrect oversampling limitations.

Added API function to access SPI bus state:

SCB_SpiIsBusBusy()

This function facilitates detection that SPI transfer
is completed.

Add protection from the Component interruption to
the following APIs:

SCB_I2CSlaveInitReadBuf()

SCB_I2CSlaveInitWriteBuf()

SCB_I2CSlaveClearReadStatus()

SCB_I2CSlaveClearWriteStatus()

SCB_I2CMasterClearStatus()

SCB_I2CMasterStatus()

SCB_I2CMasterClearWriteBuf()

SCB_I2CMasterClearReadBuf()

SCB_EzI2CSetBuffer1()

SCB_EzI2CSetBuffer2()

I2C and EZI2C operations executed by the listed
functions are atomic.

1.20 Fixed EZ I2C with clock stretching operation when
SCB Unconfigured mode is selected.

The complier gives warning while compilation.

Fixed EZ I2C mode with clock stretching buffer
update when master writes number of bytes
multiplied of 8 and starts from base address
multiplied of 8.

The EZ I2C slave completes transfer too early and
last 8 bytes remains in the RX FIFO. The buffer is
not updated properly.

Fixed EZ I2C current address behavior for buffer
size equal to 256 bytes.

When buffer read or write overflow is occurred the
current address wraps around to first element
instead point to outside the buffer.

Improved interrupt handling timings for EZ I2C
mode without clock stretching.

PSoC® Creator™ Component Datasheet PSoC 4 Serial Communication Block (SCB)

Document Number: 002-10814 Rev. *E Page 211 of 211

Version Description of Changes Reason for Changes / Impact

Added support of PSoC 4000 devices.

1.10 EZ I2C mode added.

SPI/UART internal interrupt source to transfer data
from the internal software buffer into the TX FIFO
is changed from TX_EMPTY to TX_NOT_FULL.

This change will result in the TX FIFO being kept
full when data is available in the software buffer.
This will reduce the likelihood that the FIFO will
become empty during a transmission due to a
long interrupt response time.

1.0.a Edits to the Component datasheet to match the
GUI.

1.0 The first release of the SCB Component

© Cypress Semiconductor Corporation, 2016-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, WICED, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use an SCB Component

	Unconfigured SCB
	Input/Output Connections
	clock – Input

	SCB Tab
	Unconfigured mode operation
	Interface data rate configuration
	Run-time Configuration
	API Names

	I2C
	Input/Output Connections
	clock – Input*
	Internal Pins Configuration

	Basic I2C Parameters
	Mode
	Data rate
	Actual data rate
	Oversampling factor
	Low
	High
	Manual oversample control
	Clock from terminal
	Byte mode
	Slave address (7-bits)
	Slave address mask
	Accept matching address in RX FIFO
	Accept general call address
	Enable wakeup from Deep Sleep Mode

	Advanced I2C Parameters
	Slew rate
	I2C bus voltage (V)

	External Electrical Connections
	Internal Pull-Ups
	I2C APIs
	void SCB_Start(void)
	void SCB_Init(void)
	void SCB_Enable(void)
	void SCB_Stop(void)
	void SCB_Sleep(void)
	void SCB_Wakeup(void)
	void SCB_I2CInit(SCB_I2C_INIT_STRUCT *config)
	uint32 SCB_I2CSlaveStatus(void)
	uint32 SCB_I2CSlaveClearReadStatus(void)
	uint32 SCB_I2CSlaveClearWriteStatus(void)
	void SCB_I2CSlaveSetAddress(uint32 address)
	void SCB_I2CSlaveSetAddressMask(uint32 addressMask)
	void SCB_I2CSlaveInitReadBuf(uint8 * rdBuf, uint32 bufSize)
	void SCB_I2CSlaveInitWriteBuf(uint8 * wrBuf, uint32 bufSize)
	uint32 SCB_I2CSlaveGetReadBufSize(void)
	uint32 SCB_I2CSlaveGetWriteBufSize(void)
	void SCB_I2CSlaveClearReadBuf(void)
	void SCB_I2CSlaveClearWriteBuf(void)
	uint32 SCB_I2CMasterStatus(void)
	uint32 SCB_I2CMasterClearStatus(void)
	uint32 SCB_I2CMasterWriteBuf(uint32 slaveAddress, uint8 * wrData, uint32 cnt, uint32 mode)
	uint32 SCB_I2CMasterReadBuf(uint32 slaveAddress, uint8 * rdData, uint32 cnt, uint32 mode)
	uint32 SCB_I2CMasterGetReadBufSize(void)
	uint32 SCB_I2CMasterGetWriteBufSize(void)
	void SCB_I2CMasterClearReadBuf(void)
	void SCB_I2CMasterClearWriteBuf(void)
	uint32 SCB_I2CMasterSendStart(uint32 slaveAddress, uint32 bitRnW)
	uint32 SCB_I2CMasterSendRestart(uint32 slaveAddress, uint32 bitRnW)
	uint32 SCB_I2CMasterSendStop(void)
	uint32 SCB_I2CMasterWriteByte(uint32 theByte)
	uint32 SCB_I2CMasterReadByte(uint32 ackNack)
	Global Variables
	I2C Function Appliance

	Bootloader Support
	void SCB_CyBtldrCommStart(void)
	void SCB_CyBtldrCommStop(void)
	void SCB_CyBtldrCommReset(void)
	cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

	I2C Functional Description
	Slave Operation
	Multiple address support
	Accept matching address RX FIFO
	Accept General Call
	Master/Multi-Master Operation
	Multi-Master-Slave Mode Operation
	Low power modes
	Data rate configuration
	I2C spec parameters calculation

	EZI2C
	Input/Output Connections
	clock – Input*
	Internal Pins Configuration

	Basic EZI2C Parameters
	Data rate
	Actual data rate
	Clock from terminal
	Clock stretching
	Byte mode
	Number of addresses
	Primary slave address (7-bits)
	Secondary slave address (7-bits)
	Sub-address size
	Enable wakeup from Deep Sleep Mode

	Advanced EZI2C Parameters
	Slew rate
	I2C bus voltage (V)

	External Electrical Connections
	Internal pull ups
	EZI2C APIs
	void SCB_Start(void)
	void SCB_Init(void)
	void SCB_Enable(void)
	void SCB_Stop(void)
	void SCB_Sleep(void)
	void SCB_Wakeup(void)
	void SCB_EzI2CInit(SCB_EZI2C_INIT_STRUCT *config)
	uint32 SCB_EzI2CGetActivity(void)
	void SCB_EzI2CSetAddress1(uint32 address)
	uint32 SCB_EzI2CGetAddress1(void)
	void SCB_EzI2CSetBuffer1(uint32 bufSize, uint32 rwBoundary, volatile uint8 * buffer)
	void SCB_EzI2CSetReadBoundaryBuffer1(uint32 rwBoundary)
	void SCB_EzI2CSetAddress2(uint32 address)
	uint32 SCB_EzI2CGetAddress2(void)
	void SCB_EzI2CSetBuffer2(uint32 bufSize, uint32 rwBoundary, volatile uint8 * buffer)
	void SCB_EzI2CSetReadBoundaryBuffer2(uint32 rwBoundary)

	Global Variables
	Bootloader Support
	EZI2C Functional Description
	Memory Interface
	Handling endianness
	Handling structures
	Handling a status byte
	Interface as Seen by an External Master
	Data Coherency

	Clock Stretching
	Clock Stretching Enable
	Clock Stretching Disable
	Maximum slave interrupt latency
	Transactions chained with ReStart
	Slave busy management

	Preferable Secondary Address Choice
	Low power modes

	SPI
	Input/Output Connections
	clock – Input*
	interrupt – Output*
	rx_tr_out – Output*
	tx_tr_out – Output*
	Internal Pins Configuration
	Glitch Avoidance at System Reset
	SmartIO support
	s_mosi – Input *
	s_sclk– Input *
	s_ss – Input *
	s_miso – Output *
	m_miso – Input *
	m_mosi – Output *
	m_sclk– Output *
	m_ss0 – m_ss3 – Output *

	Basic SPI Parameters
	Mode
	Sub mode
	SCLK mode
	Data rate
	Actual data rate
	Oversampling
	Clock from terminal
	Median filter
	SCLK free running
	Enable late MISO sample
	Enable wakeup from Deep Sleep Mode
	TX data bits
	RX data bits
	Bit order
	Remove SCLK
	Remove MOSI
	Remove MISO
	Number of SS
	Transfer separation
	SS0-SS3 polarity

	Advanced SPI Parameters
	RX buffer size
	TX buffer size
	Byte mode
	Interrupt
	DMA
	RX Output
	TX Output
	Interrupt sources
	FIFO level
	RX FIFO
	TX FIFO
	Enable SmartIO support

	SPI APIs
	void SCB_Start(void)
	void SCB_Init(void)
	void SCB_Enable(void)
	void SCB_Stop(void)
	void SCB_Sleep(void)
	void SCB_Wakeup(void)
	void SCB_SpiInit(SCB_SPI_INIT_STRUCT *config)
	uint32 SCB_SpiIsBusBusy(void)
	void SCB_SpiSetActiveSlaveSelect(uint32 slaveSelect)
	void SCB_SpiSetSlaveSelectPolarity(uint32 slaveSelect, uint32 polarity)
	void SCB_SpiUartWriteTxData(uint32 txData)
	void SCB_SpiUartPutArray(const uint16/uint8 wrBuf[], uint32 count)
	uint32 SCB_SpiUartGetTxBufferSize(void)
	void SCB_SpiUartClearTxBuffer(void)
	uint32 SCB_SpiUartReadRxData(void)
	uint32 SCB_SpiUartGetRxBufferSize(void)
	void SCB_SpiUartClearRxBuffer(void)

	Global Variables
	Bootloader Support
	void SCB_CyBtldrCommStart(void)
	void SCB_CyBtldrCommStop(void)
	void SCB_CyBtldrCommReset(void)
	cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	SCB_CyBtldrCommRead details

	SPI Functional Description
	Motorola sub mode operation
	Texas Instruments sub modes operation
	National Semiconductor’s (Microwire) sub modes operation
	MISO late sampling
	Slave select lines
	SELECT and SCLK Timing Correlation
	SELECT polarity
	Continuous versus Separated Transfer Separation
	FIFO depth
	Software Buffer
	Interrupts
	Low power modes
	Slave data rate calculations
	DMA Support

	UART
	Input/Output Connections
	clock – Input*
	interrupt – Output*
	rx_tr_out – Output*
	tx_tr_out – Output*
	Internal Pins Configuration
	Glitch Avoidance at System Reset
	SmartIO support
	rx_in *
	cts_in *
	tx_out *
	rts_out *

	Basic UART Parameters
	Mode
	Direction
	Baud rate
	Actual baud rate
	Data bits
	Parity
	Stop bits
	Oversampling
	Clock from terminal
	Median filter
	Retry on NACK
	Inverting RX
	Enable wakeup from Deep Sleep Mode
	Low power receiving

	Advanced UART Parameters
	RX buffer size
	TX buffer size
	Byte mode
	Interrupt
	DMA
	RX Output
	TX Output
	Interrupt sources
	FIFO level
	RX FIFO
	TX FIFO
	Multiprocessor mode
	Address (hex)
	Mask (hex)
	Accept matching address in RX FIFO
	RX FIFO drop
	RTS
	RTS Polarity
	RTS FIFO level
	CTS
	CTS Polarity
	Enable SmartIO support

	UART APIs
	void SCB_Start(void)
	void SCB_Init(void)
	void SCB_Enable(void)
	void SCB_Stop(void)
	void SCB_Sleep(void)
	void SCB_Wakeup(void)
	Void SCB_UartInit(SCB_UART_INIT_STRUCT *config)
	void SCB_UartPutChar(uint32 txDataByte)
	void SCB_UartPutString(const char8 string[])
	void SCB_UartPutCRLF(uint32 txDataByte)
	uint32 SCB_UartGetChar(void)
	Uint32 SCB_UartGetByte(void)
	Void SCB_UartSetRxAddress(uint32 address)
	void SCB_UartSetRxAddressMask(uint32 addressMask)
	void SCB_UartSetRtsPolarity(uint32 polarity)
	void SCB_UartSetRtsFifoLevel (uint32 level)
	void SCB_UartEnableCts(void)
	void SCB_UartDisableCts(void)
	void SCB_UartSetCtsPolarity(uint32 polarity)
	void SCB_SpiUartWriteTxData(uint32 txData)
	void SCB_SpiUartPutArray(const uint16/uint8 wrBuf[], uint32 count)
	uint32 SCB_SpiUartGetTxBufferSize(void)
	void SCB_SpiUartClearTxBuffer(void)
	uint32 SCB_SpiUartReadRxData(void)
	uint32 SCB_SpiUartGetRxBufferSize(void)
	void SCB_SpiUartClearRxBuffer(void)
	Global Variables

	Bootloader Support
	void SCB_CyBtldrCommStart(void)
	void SCB_CyBtldrCommStop(void)
	void SCB_CyBtldrCommReset(void)
	cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	SCB_CyBtldrCommRead details

	UART Functional Description
	Standard mode operation
	Flow control
	Multiprocessor mode operation
	UART 9th data bit usage
	SmartCard (ISO7816) mode operation
	SmartCard data transfer
	Example implementation of SmartCard reader
	IrDA mode operation
	Oversampling Selection
	Normal versus Low power transmitting
	Inverting RX
	FIFO depth
	Software Buffer
	Interrupts
	Low power modes
	Printf() function Usage Model
	DMA Support

	Common SCB Component Information
	Macro Callbacks
	Interrupt APIs
	void SCB_EnableInt(void)
	void SCB_DisableInt(void)
	uint32 SCB_GetInterruptCause(void)
	void SCB_SetCustomInterruptHandler(void (*func) (void))
	void SCB_SetI2cAddressCustomInterruptHandler(uint32 (*func) (void))
	uint32 SCB_GetTxInterruptSource(void)
	void SCB_SetTxInterruptMode(uint32 interruptMask)
	uint32 SCB_GetTxInterruptMode(void)
	uint32 SCB_GetTxInterruptSourceMasked(void)
	void SCB_ClearTxInterruptSource(uint32 interruptMask)
	void SCB_SetTxInterrupt(uint32 interruptMask)
	void SCB_ SetTxFifoLevel(uint32 level)
	uint32 SCB_GetRxInterruptSource(void)
	void SCB_SetRxInterruptMode(uint32 interruptMask)
	uint32 SCB_GetRxInterruptMode(void)
	uint32 SCB_GetRxInterruptSourceMasked(void)
	void SCB_ClearRxInterruptSource(uint32 interruptMask)
	void SCB_SetRxInterrupt(uint32 interruptMask)
	void SCB_SetRxFifoLevel (uint32 level)
	uint32 SCB_GetMasterInterruptSource(void)
	void SCB_SetMasterInterruptMode(uint32 interruptMask)
	uint32 SCB_GetMasterInterruptMode(void)
	uint32 SCB_GetMasterInterruptSourceMasked(void)
	void SCB_ClearMasterInterruptSource(uint32 interruptMask)
	void SCB_SetMasterInterrupt(uint32 interruptMask)
	uint32 SCB_GetSlaveInterruptSource(void)
	void SCB_SetSlaveInterruptMode(uint32 interruptMask)
	uint32 SCB_GetSlaveInterruptMode(void)
	uint32 SCB_GetSlaveInterruptSourceMasked(void)
	void SCB_ClearSlaveInterruptSource(uint32 interruptMask)
	void SCB_SetSlaveInterrupt(uint32 interruptMask)
	Interrupt Function Appliance

	Clock Selection
	MISRA Compliance
	Sample Firmware Source Code
	Interrupt Service Routine
	TX FIFO interrupt sources
	RX FIFO interrupt sources

	Placement
	Registers
	Component Debug Window
	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	PSoC 4000
	I2C DC Specifications
	I2C AC Specifications

	PSoC 4100/PSoC 4200
	I2C DC Specifications
	I2C AC Specifications
	UART DC Specifications
	UART AC Specifications
	SPI DC Specifications
	SPI AC Specifications
	SPI Master AC Specifications
	SPI Slave AC Specifications

	PSoC 4100 BLE/PSoC 4200 BLE
	I2C DC Specifications
	I2C AC Specifications
	UART DC Specifications
	UART AC Specifications
	SPI DC Specifications
	SPI AC Specifications
	SPI Master AC Specifications
	SPI Slave AC Specifications

	PSoC 4100M/PSoC 4200M
	I2C DC Specifications
	I2C AC Specifications
	UART DC Specifications
	UART AC Specifications
	SPI DC Specifications
	SPI AC Specifications
	SPI Master AC Specifications
	SPI Slave AC Specifications

	PSoC 4100L
	I2C DC Specifications
	I2C AC Specifications
	UART DC Specifications
	UART AC Specifications
	SPI DC Specifications
	SPI AC Specifications
	SPI Master AC Specifications
	SPI Slave AC Specifications

	PSoC 4000S / PSoC 4100S
	I2C DC Specifications
	I2C AC Specifications
	UART DC Specifications
	UART AC Specifications
	SPI DC Specifications
	SPI AC Specifications
	SPI Master AC Specifications
	SPI Slave AC Specifications

	Component Errata
	Component Changes

