

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-86283 Rev. *C Revised December 4, 2014

Features
 7 or 8-bit resolution

 7-bit range: 0 to 152.4 or 304.8 µA

 8-bit range: 0 to 306 or 612 µA

 Current sink or source selectable

General Description
The IDAC component gives you a programmable current with a resolution of either 7 or 8 bits.
The 8-bit ranges are approximately 612 and 306 µA and the 7-bit ranges are approximately
304.8 and 152.4 µA.

When to Use IDAC

 Resistance measurements

 Current sink or source

 Capacitance measurements other than CapSense

 Sensor current

 Temperature measurement (diode sensor)

Input/Output Connections
This section describes the various IDAC input and output connections.

lout – Analog
The connection to the DAC’s current source/sink.

PSoC 4 Current Digital to Analog Converter (IDAC)
1.0

PSoC 4 Current Digital to Analog Converter (IDAC) PSoC® Creator™ Component Datasheet

Page 2 of 9 Document Number: 001-86283 Rev. *C

Component Parameters
Drag the IDAC onto your design desktop and double-click it to open the Configure dialog box.

Polarity
Mode of operation. Negative/Sink (default) or Positive/Source.

Resolution
Resolution of the IDAC. 8-bit (default) or 7-bit.

Range
IDAC dynamic range:

 8-bit resolution - 306 µA (default) or 612 µA.

 7-bit resolution 152.4 µA or 304.8 µA

PSoC® Creator™ Component Datasheet PSoC 4 Current Digital to Analog Converter (IDAC)

Document Number: 001-86283 Rev. *C Page 3 of 9

Value
IDAC hexadecimal value (default is 78).
When changing modes the code value is fixed and the current value changes. When you switch
from 8-bit to 7-bit and the value exceeds the 7-bit range, the value automatically changes to 7F.
When the code value changes the current value updates and vice versa.

Placement
The PSoC 4 IDACs are part of the CapSense CSD hardware block. Two IDACs are available.
The 8-bit IDAC is connected to AmuxBusA and the 7-bit IDAC is connected to AmuxBusB.

Resources
Resolution

(bits)
Resource Type

CSD IDAC block

7 1

8 1

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. This table lists and describes the interface for each function. The following sections
cover each function in more detail.
By default, PSoC Creator assigns the instance name "IDAC_1" to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the table is "IDAC".

Functions
Function Description

IDAC_Start() Performs all of the required initialization for the component and enables power to the
block.

IDAC_Stop() Turn off the IDAC block.

IDAC_Init() Initializes or restores the component according to the customizer Configure dialog
settings.

IDAC_Enable() Activates the hardware and begins component operation.

IDAC_SetValue() Sets the DAC’s output value.

PSoC 4 Current Digital to Analog Converter (IDAC) PSoC® Creator™ Component Datasheet

Page 4 of 9 Document Number: 001-86283 Rev. *C

Function Description

IDAC_Sleep() This is the preferred API to prepare the component for sleep.

IDAC_Wakeup() This is the preferred API to restore the component to the state when IDAC_Sleep() was
called.

IDAC_SaveConfig() Saves the configuration of the component.

IDAC_RestoreConfig() Restores the configuration of the component.

void IDAC_Start(void)
Description: Performs all of the required initialization for the component and enables power to the block.

The first time the routine is executed, the component is initialized to the configured settings.
When called to restart the IDAC following a IDAC_Stop() call, the current component
parameter settings are retained.

Parameters: None

Return Value: None

Side Effects: None

void IDAC_Stop(void)
Description: Turn off the IDAC block.

Parameters: None

Return Value: None

Side Effects: Does not affect the IDAC settings.

void IDAC_Init(void)
Description: Initializes or restores the component according to the customizer Configure dialog settings. It

is not necessary to call IDAC_Init() because the IDAC_Start() API calls this function and is
the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

PSoC® Creator™ Component Datasheet PSoC 4 Current Digital to Analog Converter (IDAC)

Document Number: 001-86283 Rev. *C Page 5 of 9

void IDAC_Enable(void)
Description: Activates the hardware and begins component operation. It is not necessary to call

IDAC_Enable() because the IDAC_Start() API calls this function, which is the preferred
method to begin component operation.

Parameters: None

Return Value: None

Side Effects: None

void IDAC_SetValue(uint32 value)
Description: Sets the DAC’s output value. The least significant 7 or 8 bits are used depending on the

resolution of the DAC. This function sets the value from 0 to 0xFF (for 8-bit IDAC) or from 0
to 0x7F (for 7-bit IDAC). The user is responsible for calculation of the correct IDAC value
depending on selected resolution and range.

Parameters: (uint32) value

Return Value: None

void IDAC_Sleep(void)
Description: This is the preferred API to prepare the component for sleep. The IDAC_Sleep() API saves

the current component state. Then it calls the IDAC_Stop() function and calls
IDAC_SaveConfig() to save the hardware configuration. Call the IDAC_Sleep() function
before calling the CySysPmDeepSleep() or the CySysPmHibernate() functions.

Parameters: None

Return Value: None

Side Effects: None

void IDAC_Wakeup(void)
Description: This is the preferred API to restore the component to the state when IDAC_Sleep() was

called. The IDAC_Wakeup() function calls the IDAC_RestoreConfig() function to restore the
configuration. If the component was enabled before the IDAC_Sleep() function was called,
the IDAC_Wakeup() function will also re-enable the component.

Parameters: None

Return Value: None

Side Effects: Calling the IDAC_Wakeup() function without first calling the IDAC_Sleep() or
IDAC_SaveConfig() function may produce unexpected behavior.

PSoC 4 Current Digital to Analog Converter (IDAC) PSoC® Creator™ Component Datasheet

Page 6 of 9 Document Number: 001-86283 Rev. *C

void IDAC_SaveConfig(void)
Description: This function saves the component configuration and non-retention registers. This function is

called by the IDAC_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void IDAC_RestoreConfig(void)
Description: This function restores the component configuration and non-retention registers. This function

is called by the IDAC_Wakeup() function.

Parameters: None

Return Value: None

Side Effects: None

Global Variables
Function Description

IDAC_initVar() Indicates whether or not the IDAC was initialized. The variable is initialized to 0 and set to 1 the
first time IDAC_Start() is called. This allows the component to restart without reinitialization after
the first call to the IDAC_Start() routine.
If reinitialization of the component is required, call IDAC_Init() before calling IDAC_Start().
Alternatively, you can reinitialize the IDAC by calling the IDAC_Init() and IDAC_Enable()
functions.

Sample Firmware Source Code
PSoC Creator has many example projects that include schematics and example code in the Find
Example Project dialog. For component-specific examples, open the dialog from the Component
Catalog or an instance of the component in a schematic diagram. For general examples, open
the dialog from the Start Page or File menu. As needed, use the Filter Options in the dialog to
narrow the list of projects available to select.
See the "Find Example Project" topic in the PSoC Creator Help for more information.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 Project deviations - deviations that are applicable for all PSoC Creator components

PSoC® Creator™ Component Datasheet PSoC 4 Current Digital to Analog Converter (IDAC)

Document Number: 001-86283 Rev. *C Page 7 of 9

 Specific deviations – deviations that are applicable only for this component
This section gives you information on component specific deviations. The project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The IDAC component does not have any specific deviations.

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements were taken with the associated compiler configured in release mode with
optimization set for size. For a specific design, you can analyze the map file generated by the
compiler to determine the memory usage.

Configuration Flash Bytes SRAM Bytes

7 or 8-bit 472 8

Functional Description
Only one instance of each of the 7-bit and 8-bit IDAC components is available in a design. These
are shared with the CapSense CSD component. If the CapSense component is present in the
design it will use the 8-bit IDAC and depending on the configuration it may also use the 7-bit
IDAC.

Block Diagram and Configuration
The component uses the cy_psoc4_idac primitive with hardware enable connected to Logic
High. It is configured using the CSD block configuration registers.

Registers
See the chip Technical Reference Manual (TRM) for more information about registers.

PSoC 4 Current Digital to Analog Converter (IDAC) PSoC® Creator™ Component Datasheet

Page 8 of 9 Document Number: 001-86283 Rev. *C

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

AC Specifications
Parameter Description Min Typ Max Units Conditions

IDAC1 DNL for 8-bit resolution -1 – 1 LSB

IDAC1 INL for 8-bit resolution -3 – 3 LSB

IDAC2 DNL for 7-bit resolution -1 – 1 LSB

IDAC2 INL for 7-bit resolution -3 – 3 LSB

IDAC1_CRT1 Output current of Idac1 (8-bits)
in High range – 612 – µA

IDAC1_CRT2 Output current of Idac1(8-bits)
in Low range – 306 – µA

IDAC2_CRT1 Output current of Idac2 (7-bits)
in High range – 305 – µA

IDAC2_CRT2 Output current of Idac2 (7-bits)
in Low range – 153 – µA

IDAC_SET8 Settling time to 0.5 LSB for 8-
bit IDAC – – 10 µs For PSoC 4000 family. Full-scale

transition. No external load.

IDAC_SET7 Settling time to 0.5 LSB for 7-
bit IDAC – – 10 µs For PSoC4000 family Full-scale

transition. No external load.

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.0.c Edited datasheet. Updated characterization data.

1.0.b Edited datasheet. Updated characterization data.

1.0.a Edited datasheet. Updated the current ranges.

1.0 Initial release

PSoC® Creator™ Component Datasheet PSoC 4 Current Digital to Analog Converter (IDAC)

Document Number: 001-86283 Rev. *C Page 9 of 9

© Cypress Semiconductor Corporation, 2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control, or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use IDAC

	Input/Output Connections
	lout – Analog

	Component Parameters
	Polarity
	Resolution
	Range
	Value

	Placement
	Resources
	Application Programming Interface
	Functions
	void IDAC_Start(void)
	void IDAC_Stop(void)
	void IDAC_Init(void)
	void IDAC_Enable(void)
	void IDAC_SetValue(uint32 value)
	void IDAC_Sleep(void)
	void IDAC_Wakeup(void)
	void IDAC_SaveConfig(void)
	void IDAC_RestoreConfig(void)

	Global Variables
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	Block Diagram and Configuration
	Registers
	DC and AC Electrical Characteristics
	AC Specifications

	Component Changes

