(infineon

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product

portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.infineon.com

&= CYPRESS

<> EMBEDDED IN TOMORROW™ PSoC® Creator™ Component Datasheet

LIN Slave

5.0

PSoC 4

Features LIN 1
LIN Slave

® FullLIN 2.2, 2.1 or 2.0 Slave Node implementation

® Compliance with ISO 17987 specification

® Compliance with SAE J2602 specification

® Compliance with LIN 1.3 specification

® Full transport layer support

® Automatic baud rate synchronization

® Automatic detection of bus inactivity

® Fully implements a Diagnostic Class | Slave Node

® Supports implementation of Diagnostic Class Il and Ill Slave Node
® Full error detection

® Automatic configuration services

® Customizer for fast and easy configuration

® Supports import of *.ncf and *.Idf files, export of *.ncf files

® Editor with syntax checking for *.ncf and*.Idf files

General Description

The LIN Slave Component implements a LIN 2.2, ISO 17987, and SAE J2602 compliance slave
node on PSoC 4 devices. Options for LIN 1.3 and LIN 2.0 compliance are also available. This
Component consists of the hardware blocks necessary to communicate on the LIN bus, and an
API to allow the application code to easily interact with the LIN bus communication. The
Component provides an API that conforms to the API specified by the ISO 17987 Specification.

The Component provides a good combination of flexibility and ease of use. A comprehensive
customizer allows you to easily configure all parameters of the LIN Slave Node. The Component
supports both NCF and LDF files to configure the LIN Slave Node.

Cypress Semiconductor Corporation « 198 Champion Court + San Jose, CA 95134-1709 < 408-943-2600
Document Number: 002-26390 Rev. *B Revised February 26, 2021

LIN Slave PSoC® Creator™ Component Datasheet

For PSoC 4 devices only, the LIN Slave Component is certified by the C&S group GmbH based
on the standard protocol and data link layer conformance tests. A complete certification report
can be made available on request. Contact Cypress Technical Support or check the Component
web page for details.

PSoC 3 and PSoC 5LP devices are not supported with LIN v5.0. Use the LIN v4.0 Component
for these devices.

Definitions

Many of the definitions given in this datasheet are from the ISO 17987:2015 and SEA J2602-1
specifications. In these cases, refer to the specified section of the 1ISO 17987:2015 or SEA
J2602-1 specification for a proper understanding of the term.

Input/Output Connections

This section describes input and output connections for the LIN Slave.

TXD — Output

This is a digital output terminal. This terminal’s signal is the data that this LIN node sends onto
the LIN bus.

RXD - Input

This is a digital input terminal. This terminal’s signal is the CMOS form of the signals on the
physical LIN bus. Note that this terminal generally also receives any signals that come out of the
TXD terminal. This is because a LIN physical layer transceiver has a built-in loop back that
receives all signals on the bus, whether they are from some other LIN node, or from its own LIN
node.

Schematic Macro Information

The PSoC Creator Component Catalog contains a schematic macro for the LIN Component.
This macro does not have pin Components displayed. Pins must be assigned with TXD and RXD
on the pins configuration page. Dedicated pins are named “\LIN_1:SCB:rx\” and
“\LIN_1:SCB:tx\". If pins are not configured, the first available SCB pins will be assigned for the
LIN Component. The following shows the schematic macro with the default Component
configuration.

LIN 1
LIN Slave

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 2 of 57 Document Number: 002-26390 Rev. *B

https://secure.cypress.com/myaccount/index.cfm?id=25&createCase=CustomerMarketing
http://www.cypress.com/documentation/component-datasheets/lin-slave
http://www.cypress.com/documentation/component-datasheets/lin-slave

PSoC® Creator™ Component Datasheet LIN Slave

Component Parameters

Drag a LIN Slave Component onto your design and double click it to open the Configure LIN
dialog. The LIN Component contains parameters on several tabs.

General Tab

Configure 'LIN_1' ? *
Name: [LIN_1
~ General |" BaudRate | Frames [Signals | TransportLayer | Config. Services | Built-in q

& Importfile 2 Export file | 7 LIN file text editor
Protocol specification
(® LIN 2.2 compatibility IS0 17987 compliance

() LIN 2.0 compatibility J2602 compliance
() LIN 1.3 compatibility

[J Muttiple instance support

General settings

Use automatic response_ermor signal

Bus inactivity timeout detection (ms): | 7000

Break detection threshold (bit times): 11 ~

Datasheet Apply Cancel

Protocol specification

LIN 2.2 Compatibility

This option selects whether this Component is compatible with the LIN 2.2 specification. The
status of this option affects other areas of the dialog.

LIN 2.0 Compatibility

This option selects whether this Component is compatible with the LIN 2.0 specification. The
status of this radio button option affects other areas of the dialog.

LIN 1.3 Compatibility

This option selects whether this Component is compatible with the LIN 1.3 specification. The
status of this option affects other areas of the dialog.

o CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 3 of 57

LIN Slave PSoC® Creator™ Component Datasheet

ISO 17987 Compliance

This option selects whether this Component is compliant with the 1ISO 17987 specification. The
status of this check box affects other areas of the dialog. The LIN 2.2 compatiility option must be
selected.

Enable J2602 Compliance

The SAE J2602 specification is parallel to the LIN 2.x specifications. It adds restrictions to the
LIN 2.0 requirements. However, there are also a few extra features that are supported by this
Component that make it 32602 compliant. The status of this check box affects other areas of the
dialog. The LIN 2.0 compatiility option must be selected.

Multiple instance support

This option enables/disables support for placement of two LIN Component instances in the same
project. If two LIN Component instances are present on the schematic, this option must be
selected for both instances, and these instances must have different interface numbers.

Interface number

This option defines the interface number of the current Component instance. This parameter is
passed in APl dynamic calls as the interface handle definition. For example, if two LIN instances:
LIN_1 with interface number 1 and LIN_2 with interface number 2 are present on the
schematic, the values of these definitions are:

LIN 1 IFC HANDLE = 0, LIN 2 IFC_HANDLE = 1

General settings

Use automatic response_error signal

This check box sets the automatic error signal selection. This check box is always selected when
LIN 2.0 or LIN 2.2 mode is enabled, so a 1-bit signal is automatically added in the Signals tab.
This signal has a default name of “Response_Error.” The Component sets it automatically
whenever a response error occurs. The Component also automatically clears this signal after it
has been successfully sent to the master. This signal provides the response error notification to
the LIN master as required by the ISO 17987 specification.

For J2602 compliance mode a 3-bits of J2602 Status ERR[2:0] are added into the first byte of
each frame.

Bus Inactivity Timeout Detection

This option controls the availability of the bus inactivity feature and its value. After a specified
time of bus inactivity, the corresponding status bit is set. The value of this bit can be obtained by
the L_IOCTL_READ_STATUS operation of the |_ifc_ioctl() function. See the Function
Description section for more information.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 4 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Note The minimal timeout value in this field is restricted to 4000 milliseconds, as defined in the
ISO 17987 specification. When the LIN 1.3 Compatibility option is enabled, this value could be
insufficient for a LIN 1.3 inactivity timeout (25000 bit-times) at bus speed > 6000 bit/s. In such a
case, the application must poll the activity bit using the | _ifc_read_status() function and
implement its own software inactivity timer. This approach is less optimal in terms of resource
usage; however, it is directly defined in the LIN standard.

Break Detection Threshold

This option configures slave node break detection threshold. Default value is 11 dominant local
slave bit times. See section 5.2.2.3. of the ISO 17987-3 specification for more information about
break detection threshold selection criteria.

General Toolbar

There is a toolbar at the top of the General tab. This toolbar provides access to operations with
files.

3 Import file 2 Export file | 2 LIN file text editor

Import File

Clicking this button allows you to import a LIN Description File (LDF) or a Node Capability File
(NCF). An imported file configures the customizer settings to match the configuration of the node
that was selected from the list of the existing nodes of the NCF/LDF file.

If the syntax in the imported file is correct, a list of available nodes is displayed. A similar list is
shown in Figure 1. Choose one of the available node descriptions to import.

Figure 1. List of Available Nodes of NCF File to Import

List of Available Nodes of NCF File te Import.ncf .,

1. BasicTransmissionOperationExample

2. TransmissionOperationExampleExtendad

oK

The syntax for *.ncf and *.Idf files is verified according to the LIN Node Capability Language
Specification (ISO 17987-2:2015) and to the LIN Configuration Language Specification (ISO
17987-2:2015), respectively.

If the imported file contains errors, a dialog window similar to Figure 2 displays. There are two
options in this case: edit the imported file to correct the errors using LIN Enhanced Editor Tool
(see LIN File Text Editor for more information) or cancel the import by clicking the No button.

& CYPRESS

EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 5 of 57

LIN Slave

Figure 2. NCF File Import Failed

Import MCF File Status

o Importing NCF file "NCF file import failed .ncf" failed.
Do you want to edt this file?

1. Line 23 : Column 2 -> missing ;" at 'bitrate’

PSoC® Creator™ Component Datasheet

After the node to import is chosen and the import to the customizer is completed, a dialog box
that describes the importing results is displayed (see Figure 3). The importing results contain the
LIN Slave Component parameters that were not affected during import.

Figure 3. NCF File Import Information

Import NCF File Status x

Node "Basic TransmissionCperation Example™ from
NCF file "List of Available Nodes of NCF File to
Import ncf" was imported successfully.

Additional info: o

LIMN parameters which weren't configured by
NCF file during importing:

General tab

Baud Rate tab

Automatic Baud Rate Synchronization

Frames / Signals tab

Transport Layer tab

Use Transport Layer
AP| Format Selection

Configuration Semvices

Automatic Configuration Request Handling

Mamfairatinn Cannna Calantine

OK

Page 6 of 57

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Export File

This tool enables you to save information about the Component configuration into a Node
Capability File (NCF).

Figure 4. NCF File Export Information

Export NCF File Status *

@ Project was successfully exported in file C:\Temp
\ExportNCF ncf

Additional info: ~

NCF parameters which weren't exported in file:

Diagnostic definition:

P2_min
ST_min
N_As_timeout
N_Cr_timeout

Frames definition:

min_period
max_period

Signals definition:

encoding_name

Encoding definition:

all parameters

Free Text definition :

free_text v

OK

o CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 7 of 57

LIN Slave

LIN File Text Editor

This tool is used to create, edit, and verify the syntax of the NCF/LDF file. The syntax for *.ncf
files is verified according to ISO 17987-2:2015 and LIN Node Capability Language Specification
(Revisions 2.2, 2.1, and 2.0). The syntax for *.Idf files is verified according to ISO 17987-2:2015
and LIN Configuration Language Specification (Revisions 2.2, 2.1, 2.0, and 1.3).

Figure 5. LIN File Text Editor Tool

PSoC® Creator™ Component Datasheet

LIN Enhan:

ced Editor Tool

File - 1
1

Lo W b

EHRB P

LIN description file;
LIN protocol_ version
LIN language version
LIN speed = 1%.2 kbps;

SIS]
SIS]

6 Nodes {

Master: MSE, & ms, 0.1 ms ;

Slaves: BasicTransmissionOperationExample;

H

1liNode_attributes

{

There is a toolbar at the top of the LIN Enhanced Editor Tool window (see Figure 6).

Figure 6. LIN File Text Editor Toolbar
[fle 105 H 2 P

New file Ctrl+N

Open file Ctrl+0O

Save file Ctrl+5

Check syntax Ctrl+H

Find... Ctrl+F

Exit

® New File — Creates a new file of the selected LIN file type.

® Open File — Opens the specified existing LIN file.

® Save File — Saves the created LIN file to the specified location.

Page 8 of 57

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet

LIN Slave

® Check Syntax — This control allows you to check whether an *.ncf or *.Idf file syntax is
correct. If there are any syntax errors, the errors are listed in the output area of the editor
window with the line and column numbers of their location and a short error description

(Figure 7). The code lines containing errors are highlighted in red.

Double-clicking the error line in the output area navigates to the line containing an error in

file.

Figure 7. LIN File Syntax Check

1. Line 8 : Column 21 -* extraneous input '-' expecting 'ms'
2. Line 12 : Column 0 -> missing '} at 'Node_attributes’
3. Line 17 : Column 6 -= missing *;' at 'configured_NAD"

LIN Enhanced Editor Tool)
File- D S5 H QA 2
6! Nodes 'jJ
T e
8 Master: MSE, 88— ms, 0.1 ms; =
g Slaves: BasicTransmissionOperationExample;
10
11
12 Node attributes
134
14 BasicTransmissionOperationExample
15 {
leg LIN protocol = "2.2"
17 | configured NAD = 0x01;
18 initial NAD = 0x01; -
J,
Errors:

® Find - This tool allows you to find the term specified in the search field in a LIN file. The
Find Next button allocates the next match. If the Mark Line check box of the tool is
selected, the lines containing the necessary term are labeled with yellow circles after
clicking the Find All button. The Style found token check box enables or disables
highlighting of the found token in yellow after clicking the Find All button, as shown in

Figure 8. The Clear button removes all highlighted tokens.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B

Page 9 of 57

LIN Slave

Figure 8. LIN File Finding Results

PSoC® Creator™ Component Datasheet

LIMN Enhanced Editor Tool

B

I

i »

Fle- DS HR P
O 1 1IN gescription file;
O 2 i protocol_version = "Z.2
O 3 i language_ version = "2.2
O 4 i speed = 19.2 kbps;
& Nodes
74
8 Master: MSR, 8 ms, 0.1 ms;
] Slaves: BasicTransmissionOperationExample;
100
11
12! Node_attributes
13 ¢
J 4
[No Errors detected.

All tools are also available in the File menu of the LIN Enhanced Editor Tool (see Figure 5) and

through the appropriate toolbar commands.

Baud Rate Tab

Configure 'LIN_1' ? *
Name: |LIN_I
W Frames |~ Signals |* TransportLayer |© Config. Services | Built-n q Pk

Automatic baud rate synchronization

Mominal LIM bus baud rate (baud): | 15200 e

Source clock frequency (kHz): 307 69

Source clock divider: 73

Actual LIN bus baud rate {baud): 19231

Datasheet Apply Cancel

Page 10 of 57

o CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Automatic Baud Rate Synchronization

This option allows you to enable or disable automatic baud rate synchronization. By default, this
option is enabled.

If this option is enabled, the Component measures the exact baud rate of the bus from the sync
byte field of each LIN frame header.

If this option is disabled, the Component does not measure the baud rate from the sync byte
field. Instead, it receives the sync byte field as a 0x55 data byte.

As required by the ISO 17987-4 specification, LIN slave nodes with a frequency deviation of
+1.5 percent or less do not need to use automatic baud rate synchronization to measure the
sync byte field of each frame. However, if the frequency deviation of the LIN slave node is more
than £1.5 percent, then the slave node must use automatic baud rate synchronization to
measure the sync byte field of each frame.

Therefore, frequency deviation specifications must be checked for the clock source from which
HFCLK clock for PSoC 4 devices is derived (this is typically the Internal Main Oscillator (IMO)).

Nominal LIN Bus Baud Rate

Enter the nominal LIN bus baud rate at which this LIN slave node must operate. The maximum
value is 20000 baud and the minimum value is 1000 baud. The customizer does not allow you to
select baud rates outside of this range. The values in the drop down list are 19200, 10417, 9600,
and 2400. However, the combo box allows to type in any value between 1000 and 20000. If
Nominal LIN Bus Baud Rate is modified, press the Apply button to get new values for the
Source Clock Frequency, Source Clock Divider, and Actual LIN Bus Baud Rate fields.

Source Clock Frequency
This is the clock frequency, oversampled by 16, that is used for the data transmission.

Source Clock Divider

This is the value of the clock divider that is used to get the clock frequency specified in Source
Clock Frequency from the Master clock for PSoC 3/ PSoC 5LP devices or HFCLK clock for
PSoC 4 devices.

Actual LIN Bus Baud Rate

The actual value of the bus baud rate is displayed here. The LIN slave will work on this baud
rate. The Master clock for PSoC 3 / PSoC 5LP devices or HFCLK clock for PSoC 4 devices
value can be modified to make Nominal LIN Bus Baud Rate equal to Actual LIN Bus Baud
Rate.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 11 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Frames Tab

This tab is used to configure how the LIN Slave responds to PID values that are sent by the
master on the bus. The settings configured on this tab are used to correctly generate the
Component API and ISR code. During operation, the LIN slave receives a PID with a frame ID in
it that determines how the LIN Slave (the Component) must respond.

Configure 'LIN_1' 7 X
Name: |LIN_1 |
General Baud Rate Frames] Signals |~ TransportLayer [~ Config. Services | Built-n 4Pk
Index Name Default 1D Direction Length Type Association
_ =01 Publish |~ _ Uncond... |~ ||Mone ~| |4 Add
7+ Delete
i Up
M. Down
o Broadcast
Datasheet Apply Cancel

Frame Configuration Table

The configuration table contains rows and columns. Each row corresponds to one LIN frame.
Note that this tab shows only “user” LIN frames. The MRF and SRF frames are supported by this
Component but are not shown in this table.

There are eight possible columns in the data field, as follows:
|

The fields in the Index column show an ordering number of each used frame. These
numbers cannot be directly modified.

The fields in the Name column are used to enter the name of each frame. Any string that
would be valid in C code may be entered. The name of each frame must be unique.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Page 12 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

® The fields in the Default ID column are used to define the frame ID that the frame will use
before any configuration requests by the master. Note that these frame IDs are dynamic.
In other words, the LIN master can reconfigure frame IDs at run time. You must enter a
value from 0x00 to 0x3B into these cells. The values can be entered in hex or decimal
format.

Note If SEA J2602 compliance is selected, the Default ID values depend on the selected
NAD and will be changed when the NAD changes. The values from 0x38 to 0x3B are
broadcast frames. Their Default ID will not change.

® The Message ID column is not normally visible. This column is only available if the LIN
2.0 Compatibility check box in the General tab of the customizer has been selected. Any
16-bit value can be entered. The value can be entered in hex or decimal format. All
message ID values must be unigue. Also, message ID values entered into this table
should be unique for the entire LIN cluster. For example, if some other LIN slave has a
frame with a message ID of 0xO000F, this Component should not have any frames with a
message ID of 0xO00F.

® The fields in the Direction column define which direction the data for the frame is sent
(with respect to this slave). Publish means a data transmission; Subscribe means a data
reception.

® The fields in the Length column define how many bytes are received or sent for each
frame. Values from 1 to 8, inclusive, are valid.

® The fields in the Type column are used to define the type of the LIN frame. There are two
types of frames for LIN slave devices: Unconditional and Event-Triggered. You cannot
choose the event-triggered type when the frame is a subscribe frame. In this case, this
cell cannot be modified. If you change this cell from Event-Triggered to Unconditional,
you must change the name of this frame to None in the Association column, if its name
appears in any cells in that column.

Note If 2602 Compliance is enabled, the Event-Triggered frames are not accessible.

® The fields in the Association column are used to associate unconditional frames with
event-triggered frames. An event-triggered frame must have at least one unconditional
frame that is associated with it, according to the LIN specification. Therefore, the
Association setting allows the selection of the frame name of any unconditional frames
that are not already associated with an event-triggered frame. The valid values for this
setting are the names of any existing unassociated unconditional frames. Only one
unconditional frame can be associated with an event-triggered frame. As a result, when
one of these cells has the name of an unconditional frame in it, this unconditional frame
name cannot be available to any of the other rows. An event-triggered frame that is
associated with an unconditional frame must have the same length and direction as the
unconditional frame with which it is associated. Therefore, the name of an event-triggered
frame appears only in unconditional frame rows in which these criteria apply. If you click
the global OK button of the customizer, or if you exit this tab by clicking on another tab,

~ |

Document Number: 002-26390 Rev. *B Page 13 of 57

LIN Slave PSoC® Creator™ Component Datasheet

the customizer checks to make sure that there are no event-triggered frames that are not
associated with any unconditional frames.

Note: The total number of frames cannot exceed 60. The total size of all frames is limited to
256 bytes.

Frames Tab Buttons
There are four buttons available on this tab.

® The Add button adds a new frame to the table.

® The Delete button deletes the currently selected frame from the table. The index number
fields are changed accordingly. If a frame is deleted on this tab, any signals that are
packed into it (configured with the Signals tab) are moved into the Unplaced Signals
region (See Sort Signals button in the Signals Tab section).

® You can use the Up and Down buttons to reorder the Index number values for each
frame.

® The Broadcast button is enabled in J2602 compliance mode. It adds four frames with
Default IDs 0x38, 0x39, 0x3A and 0x3B. A frame is not added if a frame with the same 1D
already exists. Broadcast frames cannot be moved up in the frame table. These default
IDs are not changed when the NAD is changed.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 14 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Signals Tab
This tab is used to define the “signals” that are packed into the LIN frames.
Configure 'LIN_1' ? d
Name: |LIN_1 |
General © Baud Rate |© Frames Signals] Transport Layer [~ Config. Services [Built-n L
+* X | ?‘a“lg' §| %= [| Signals transparency: 4—© [\| i |
Unplaced signals Frames & signals relations
FE Diata 1 Diats 2
£ Framet:| | | [[[[] [[[[[T]]]
£ >
Legend
D Name Attribute Type Length (bits) Position Initia ™
Unplaced
Response_Emor Response emor Scalar 1 0 D w
£ >
Datasheet Apply Cancel

Frames & Signals relations

This graphical region of the Signals tab displays interactive graphics of the frames and the
signals that you have defined with the customizer.

® Frame Graphics — One frame graphic represents each frame defined in the Frames tab
of the customizer.

® Signal Graphics — Each signal graphic represents one signal defined for the LIN slave.
The graphic for a signal appears as a solid bar. A signal can be placed on top of the
frames using drag and drop. These signals occupy bits or bytes of the frames.

Clicking on a signal selects that signal. Rolling over a signal causes relevant information about
that signal to appear in a tool-tip.

Unplaced Signals

This graphical region is a temporary region where the signals are stored after they have been
added, but not placed. Signals can be moved back and forth between the Unplaced Signals
region and the Frames & Signals relations region.

& CYPRESS

EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 15 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Note If a frame is deleted on the Frames tab, any signals that are packed into it (configured with
the Signals tab) are moved into the Unplaced Signals region.

response_error

The 1-bit response_error signal is automatically added in the Signals tab of the customizer. You
can change the name of the response_error signal, but you cannot delete it from the Signals
tab.

There can be only one instance of the response_error signal and its name must be unique for
this Component. The response_error signal is a Boolean signal and can be placed anywhere on
a frame that is published by the LIN slave.

The purpose of this signal is to report status information to the LIN master.

For additional information about this signal see section 5.5.4 “Reporting to the Cluster” of the
ISO 17987 specification.

J2602 Status Byte

When J2602 compliance is enabled, the J2602 Status byte is added automatically to the frames
with Publish direction. It consists of five bits of APINFO and three bits of ERR fields.

Three bits of ERR field are always present with default name “J2602_Status.” They are handled
by Component and there is no read nor write API. The application can only call

LIN_j2602Status Reset() to clear all error states and indicate that the LIN Slave needs to be
configured by the LIN Master. The lock sign indicates that signals cannot be changed.

ERR2 | ERR1 | ERRO Fault State Priority
0 0 0 No Detected Fault 0 (lowest)
0 0 1 Reset 1
0 1 0 Reserved 2
0 1 1 Reserved 3
1 0 0 Data Error 4
1 0 1 Checksum Error 5
1 1 0 Byte Field Framing Error |6
1 1 1 ID Parity Error 7 (highest)

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 16 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Five bits of APINFO field are defined by application. APINFO fields of all published frames must
be identical. It is allowed to add or edit signals in APINFO field of first published frame. These
signals will be cloned to rest of publish frames. Lock sign indicates that signals cannot be
changed.

Frames & signals relations

]
7]

Diat

el - 12602
Pubiish: [1APINFO 20260 [[|]

(=]
5

Diata 1

susesiet: [T T T 1 T T T T T T
Datafh - T2602

Pubiisi22 [3APINFO |a.4260.. | | |
Datafl s - T2602

Pubiish3 | 5APINFO |6.4260.. | | |

£ >

(=]

]
I

it
it
ste 1
it

Note The initial value of J2602_Status byte, after component initialization, is zero, regardless on
loaded configuration.

Signals Toolbar

There is a toolbar at the top of the Signals tab. This toolbar provides an easy way to manage the
signals on the tab.

l:,-'.a ¥ | %_a | ﬂg, | ﬁﬁ | | . 'é | Signals transparency: 4—© T'| o=

1. Add/Delete buttons

The Add Signal button adds a signal to the Unplaced Signals region. The Delete Signal
button removes selected signals from the Component. The Delete All Signals button
removes all existing signals.

2. Clone Signal button
3. Clones selected signal to the Unplaced Signals region.Signal Properties button

This control opens the Signal Properties window for the selected signal. This window can be
used to change the properties for the signal. Note that the properties window for a signal can
also be accessed by double clicking on a signal.

4. Find Signal button
This button allows you to search for a certain signal.
5. Sort Signals button

This button sorts the signals in the Unplaced Signals region. Signals can be sorted by
Name, Length, or Type.

o

Renumber Signals button
This button renumbers the signal index values in ascending order.
7. Move buttons

& CYPRESS

EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 17 of 57

LIN Slave PSoC® Creator™ Component Datasheet

The Unplace Signal button moves the selected signal from the Frames & Signals relations
region to the Unplaced Signals region.

The Unplace All Signals button moves all signals to the Unplaced Signals region.
8. Show/Hide Event-triggered frames button

This button allows you to show or hide the frames graphics that correspond to event-triggered
frames in the Frames & Signals relations region.

9. Show/Hide Legend button

This button allows you to show or hide the legend area describing the signals’ properties.
10.Signals Transparency slider

This slider sets the transparency for signals graphics.
11.Page setup and Print buttons

These buttons allow to print out the Frames & Signals relations region.
Signal Properties Window

Adding Signals

There is an Add Signal button on the tool bar. This button causes a new window to appear with
signal property options that can be configured (see Figure 9). After the properties have been
configured, a new signal is added. The various signal properties that can be configured on this
window are described in this section.

Figure 9. Signal Properties Window

T Signal Properties X
Main signal properties Signal appearance
Attribute: USER SIGNAL Fill color: |
: Not Avaliable
[t was Signal description
MName: Signall
Type: ‘Scalar -

Length (bits): 8

Initial value: 0

A {4

Preview:

I Signal0 | LI PP PP PP P PP PP PP PPl T

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 18 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Name

The Name property is used to choose the name of the signal. The default signal name is
Signalx, where X’ is equal to the index number of the signal. The name entered for the signal
must be a valid symbol name in C code.

Note If several signals have the same name:

® These signals must have equal “Type”, “Length”, and “Initial Value” properties.
® One Frame cannot accept two or more duplicates.

® Signals can have duplicates only on Data Frames which “Direction” property is set to
“Publish.”

Type

This property is used to select the type of the signal. There are two types of signal, as defined in
the ISO 17987 specification. A Scalar signal is 1 to 16 bits in length and a ByteArray signal is 1
to 8 bytes in length.

Length

This property is used to select the length of the signal. Scalar signals can have a length of 1 to
16 bits. A ByteArray signal can have a length of 1 to 8 bytes.

Initial Value

This property is used to select the initial value for the signal. This value must be entered in
decimal format.

Fill Color
This control is used to select a color for the signal graphic.

Signal Description

This property can be used to enter any relevant description or other information related to the
signal.

Preview
This graphical area shows what the signal will look like when it is added.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 19 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Transport Layer Tab

Configure 'LIN_1' ? d
Name: |LIN_1
General © Baud Rate - Frames © Signals .~ Transport Layer] Config. Services | Built-n 4Pk

Use transport layer

APl format selection Transport layer data buffer lengths
(@) Cooked transport layer API Maximum message length: 512 =
() Raw transport layer AP T¥ queue length: 32 5
RX length: 32 =
Iritial NAD 01 e = I

Application should provide buffer with length
not less than "Maximum message length”

Datasheet Apply Cancel

Use Transport Layer

If the Use Transport Layer check box is not selected, the slave node will not support the
Transport Layer. If it is selected, the slave node Component will support the Transport Layer.
See the ISO 17987-2 specification for detailed information on the Transport Layer.

APl Format Selection

This control is used to select the format for the Transport Layer API functions. There is a
Cooked Transport Layer API option and a Raw Transport Layer API option. Typically, the
cooked format is recommended for LIN slave applications. Raw API is intended for LIN
gateway applications.

The cooked format is used to send and receive Transport Layer messages using just one API
function for each message. The raw format is used to send or receive each frame that makes up
a Transport Layer message using one API function call for each frame.

The two formats of the Transport Layer API are defined by ISO 17987-5 in Transport layer
section.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 20 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Initial NAD

This field is used to select the Network Address (NAD) of the slave node. The NAD is used in
MRF and SRF frames to address one particular slave node in a cluster. Note that this field is
used to select the Initial NAD for the node. The NAD of a slave node can change at run time.

By default, the Initial NAD value can be in the range from 0x01 to OxFF. The NAD value of 0x00
is reserved for a “Go To Sleep” command. The NAD value of OX7E is reserved as a “Functional
NAD” which is used for diagnostic services. The NAD value of Ox7F is reserved as a “wildcard”

NAD. Therefore, the customizer restricts you from entering 0x00, OX7E, or Ox7F into this field.

If the J2602 compliance check box is checked, the Initial NAD value on the Transport Layer Tab

is restricted to 0x60 to Ox6F. The default value is 0x60. The initial value range is further restricted
based on the number of frames that are used on the Frames tab of the customizer. See Table 1

for more information.

Table 1. Initial NAD Restriction Based on the Number of Frames Used in Slave Node

Number of Frames Available Initial NAD Values
lto 4 0x60 to Ox6F
5to8 0x60, 0x62, 0x64, 0x66, 0x68, OX6A, 0Xx6C, OX6E, OX6F
9to 16 0x60, 0x64, 0x68, OX6E, OX6F
More than 16 0x60, OX6E, Ox6F

Maximum Message Length

This property is used to select the maximum Transport Layer message length that this slave
node supports. The minimum value is 6, because there are up to six Transport Layer message
data bytes in messages that use only one frame. This Component only supports Transport Layer
messages with lengths up to 4095 bytes. Note that the actual Transport Layer message buffer is
located in the application code of the node.

TX Queue Length/RX Queue Length

These properties are only applicable when the Raw Transport Layer API format is selected.
When using the raw API format, there is a message “queue” that buffers the frame response
data that is being sent or received. If the slave cannot update the queues very quickly, then the
gueue lengths should be made longer. If the slave can update the queues very quickly, then the
gueues can be made shorter to decrease RAM memory use. The Component supports queue
lengths from 8 to 2048 with 8-byte steps. The default size of each queue is 32 bytes.

~ |

Document Number: 002-26390 Rev. *B Page 21 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Configuration Services Tab

Configure 'LIN_1' ? d
Name: |LIN_1
General Baud Rate © Frames © Signals -~ Transport Layer .~ Config. Services | Built-n 4Pk

Automatic configuration request handling

Configuration requests to handle Slave information
[Service (xBO - "Assign NAD" Supplier ID: ¢ |C3 =

Service (xB1 - "Assign frame identifier” Function |D: O |FFFE <
Service (kB2 - "Read by identifier” Variart: o 0 -
[] Service BxB3 - "Conditional change NAD"

Service (kB4 - "Data dump”

Service (kB5 - "Assign NAD via SNPD"
[] service 0xBE - "Save configuration”
Service (xB7 - "Assign frame identifier range™

Datasheet Apply Cancel

The ISO 17987 specification defines Configuration Service requests that the slave must support
(some are mandatory and some are optional with regard to the 1ISO 17987 specification). This
Component supports all mandatory requests and some optional service requests.

There are eight total configuration service requests (OxBO to OxB7). There is a list of these
services in Table 6 of the ISO 17987-3 specification. You have the option of disabling or enabling
each of the supported services individually. The configuration service requests are described in
section 6.3.6 Node configuration services of the ISO 17987-3 specification.

Automatic Configuration Request Handling

The Component is designed so that it automatically handles configuration service requests. In
other words, you do not have to use any API or application code to service these requests from
the master. However, you can disable this automatic handling and handle these requests with
your own custom application code.

To simplify this option, there is an Automatic Configuration Request Handling check box on
this tab. If the box is checked, all of the other options on the tab are available. If the check box is
not checked, then all of the other options on the tab are disabled.

Any service that is enabled in this tab is automatically handled by this Component. Whenever
any of these automatically handled requests occur during LIN bus operation, the corresponding
MRF and SRF frames will not be available to the application through the Transport Layer API. If
a service request is not automatically handled (that is, if it is not enabled on this tab), then the

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 22 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

corresponding MRF and SRF frames of the configuration service request must be received or
sent by the application using the Transport Layer API.

Configuration Service Selection

Each of the supported configuration service requests is listed on the tab with a check box. You
can individually select the services that you want to be automatically handled.

® Service 0xBO — “Assign NAD”
This is an optional service in the ISO 17987 specification.
This is a service request where a new NAD value is assigned to the slave node.

This service request is not likely to be needed for this Component, due to the highly-
programmable nature of PSoC devices. The PSoC can easily configure its NAD to a
desired value after it boots up, and probably does not need the LIN master to request a
NAD change.

B Service 0xB1 - “Assign Frame Identifier”

This is an obsolete service in the ISO 17987 specification. It is only available if the LIN 2.0
Compatibility checkbox has been selected on the General tab of the customizer.

This configuration service request is used to change the frame ID value for a frame to
which this slave node responds.

This service is described in the LIN 2.0 specification in section 2.5.1. This service is
available in this Component for backwards compatibility purposes.

® Service 0xB2 — “Read by identifier”

This configuration service request is mandatory according to the ISO 17987 specification.
This request is used to allow the LIN master to read the slave's identification information
(Supplier ID, Function ID, Variant). This Component supports the LIN Product
Identification version, Serial number, optional NCF/LDF version for ISO 17987 nodes, and
'‘Message ID' parameter for LIN 2.0 nodes of this request.

B Service 0xB3 — “Conditional Change NAD”
This is an optional service in the LIN 2.2 and ISO 17987 specifications.

This is very similar to the Assign NAD configuration service. One major difference is that
this service uses the slave’s current (volatile) NAD instead of the initial (nonvolatile) NAD.
When this request occurs, the slave does some logic processing on the data bytes
received from the master and only updates its current (volatile) NAD if the result of the
processing is zero.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 23 of 57

LIN Slave PSoC® Creator™ Component Datasheet

® Service 0xB4 — “Data Dump”

This service is reserved for initial configuration of a slave node by the slave node supplier
and the format of this message is application specific and is not supported by this
Component. Received data is transferred to application with transport layer.

B Service 0xB5 — “Assign NAD via SNPD” (Targeted Reset)

“Assign NAD via SNPD” (0xB5) service is not supported by the ISO 17987 specification.
However, when the Enable J2602-1 Compliance check box is selected on the General
tab, this service (0xB5) has a different meaning: Targeted Reset, which is supported by
the Component.

If a Targeted Reset request is processed by this slave, a flag is set in the
L_IOCTL_READ_STATUS operation of the |_ifc_ioctl() function to let the application know
that a Targeted Reset should occur. Refer to the API description for more information.

B Service 0xB6 — “Save Configuration”

This is an optional service request in the ISO 17987 specification.

The slave device can save its configuration data (NAD value and PID values) in
nonvolatile memory (flash). However, the application code must implement the actual
flash writing operations.

When this configuration service request occurs, the Save Configuration flag in the status
returned by the |_ifc_read_status() API function is set. This lets the application know that it
must save its current LIN slave node configuration information to nonvolatile memory
(flash).

B Service 0xB7 — “Assign frame identifier range”

This is a mandatory configuration service request in the ISO 17987 specification.

This service allows the LIN master to change the volatile frame PID values for the slave’s
frames.

Slave Information

If you have checked the Automatic Configuration Request Handling check box, three fields
become available.

The fields are Supplier ID, Function ID, and Variant. The Supplier ID is a 16-bit value, but its
valid range is from 0x0000 to Ox7FFE. The Function ID is also 16 bits, and its valid range is
0x0000 to OXFFFE. The Variant is 8 bits and its valid range is from 0x00 to OxFF.

These values are used in the configuration service requests to differentiate between the different
slave nodes in a LIN cluster. So, these values act as a type of slave address in some ways.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 24 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Clock Selection

PSoC Creator calculates the needed frequency and clock source and generates the resource
needed for implementation. The clock tolerance must be within +1.5 percent when the
Automatic Baud Rate Synchronization option is disabled and +14 percent when enabled. A
warning will be displayed if the clock cannot be generated within this limit. In this case, you
should modify the HFCLK clock source for PSoC 4 devices in the DWR.

Placement

Placement of two Components is allowed for a PSoC 4 design with the assistance of the
LIN_Dynamic Component.

LIN_Dynamic Component

The LIN Component is linked with a hidden design-wide LIN_Dynamic Component, which is
always present in a design to support the placement of multiple instances of the LIN Component.

The LIN_Dynamic Component routes all LIN dynamic API calls to the appropriate instance of the
Component. Dynamic API functions consist of a single switch statement that calls the
corresponding static API function depending on the passed parameters:

® | _signal_handle for signal interaction functions
® | _flag_handle for notification functions

® |_ifc_handle for interface management and transport layer functions

Notes:

® The |_signal_and|_flag_handles are defined in the LIN.h file and enumerated in range
(0..127) for the first LIN instance and in range (128..255) for the second instance.

® The |_ifc_handles are also defined in the LIN.h file. They are equal to 0 for the first LIN
instance and 1 for second instance.

Additionally, the LIN_Dynamic Component contains an implementation of |_sys_init() API
function, which is common for all LIN Component instances as defined by the LIN Specification.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 25 of 57

LIN Slave PSoC® Creator™ Component Datasheet

LIN Version and Updates

The LIN_Dynamic version must be the same as LIN Component used in the design. Therefore,
both the LIN and the LIN_Dynamic Components must be updated synchronously.

The LIN_Dynamic Component is also shown in the Component Update Tool because of its
nature as a design-wide Component. If you do not have a LIN Component in your design, then
no action is required, and the LIN_Dynamic Component is inactive and colored gray.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the Component using
software. The following tables list and describe the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “LIN_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “LIN.”

Core API Functions

Initialization Subgroup

Function Description

|_sys_init() Initializes the LIN core.

|_bool |_sys _init()

Description: Initializes the LIN core. If the Automatic Baud Rate Synchronization parameter is
enabled in the Configure dialog, then this function saves the initial SYSCLK-to-
UARTCLK divider’s value, calculated by PSoC Creator. If the parameter is not
enabled, this function does nothing.

Static Prototype: |_bool |_sys_init(void)

Return Value: Always returns zero.

o CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 26 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Signal Interaction Functions Subgroup

In all static signal API calls that follow, the “sss” is the name of the signal, for example,
|_u8_rd_EngineSpeed(). For dynamic signal API calls that follow, the “sss” is a signal handle, as
defined in Application Programming Interface.

Function Description
|_bool_rd() Reads and returns the current value of the signal for one-bit signals.
[_u8_rd() Reads and returns the current value of the signal for signals of two to eight bits.
[ul6_rd() Reads and returns the current value of the signal for signals of 9 to 16 bits.
|_bytes rd() Reads and returns the current values of the selected bytes in byte array signal.
|_bool_wr() Sets the current value of the signal for one-bit signals.
| u8 wr() Sets value for signals of two to eight bits.
| ul6_wr() Sets value for signals of 9 to 16 bits.
|_bytes_wr() Sets values of the selected bytes in byte array signal.
|_bool_rd()
Description: Reads and returns the current value of the signal for one-bit signals. If an invalid
signal handle is passed into the function, no action is taken, function returns 0x00.
Static Prototype: |_bool |_bool_rd_sss(void)
Dynamic Prototype: | _bool |_bool_rd(l_signal_handle sss)
Parameters: sss: Signal handle of the signal to read.
Return Value: Returns the current value of the signal.
| u8_rd()
Description: Reads and returns the current value of the signal. If an invalid signal handle is
passed into the function, no action is taken, function returns 0x00.
Static Prototype: | u8 1 _u8_rd_sss(void)
Dynamic Prototype: | _u8I_u8_rd(l_signal_handle sss)
Parameters: sss: Signal handle of the signal to read
Return Value: Returns the current value of the signal.
A

ws CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 27 of 57

LIN Slave

| u16_rd()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

|_bytes rd()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Side Effects:

|_bool_wr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Page 28 of 57

PSoC® Creator™ Component Datasheet

Reads and returns the current value of the signal. If an invalid signal handle is
passed into the function, no action is taken, function returns 0x00.

| ul61_ul6_rd_sss(void)

| ul61_ul6_rd(l_signal_handle sss)
Sss: Signal handle of the signal to read
Returns the current value of the signal.

This function does not guarantee that the data bytes that are read are atomic. If it is
necessary for the data bytes to be atomic, then the application must ensure that this
is the case.

Reads and returns the current values of the selected bytes in the signal. The sum of
the start and count parameters must never be greater than the length of the byte
array. Note that when the sum of start and count is greater than the length of the
signal byte array, an accidental data is read.

If an invalid signal handle is passed into the function, no action is taken.

Assume that a byte array is 8 bytes long, numbered 0 to 7. Reading bytes from 2 to 6
from a user-selected array requires start to be 2 (skipping byte 0 and 1) and count
to be 5. In this case, byte 2 is written to user_selected_array[0] and all consecutive
bytes are written into user_selected_array in ascending order.

void |_bytes_rd_sss(l_u8 start, |_u8 count, |_u8* const data)
void |_bytes_rd(l_signal_handle sss, |_u8 start, |_u8 count, |_u8* const data)

sss: Signal handle of the signal to read

start: First byte to read from

count: Number of bytes to read

data: Pointer to array, in which the data read from the signal is stored

This function does not guarantee that the data bytes that are read are atomic. If it is

necessary for the data bytes to be atomic, then the application must ensure that this
is the case.

Writes to the one-bit signal. If an invalid signal handle is passed into the function, no
action is taken.

void |_bool_wr_sss(l_bool v)
void |_bool_wr(l_signal_handle sss, |_bool v)

sss: Signal handle of the signal to write
v: Value of the signal to be set

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

| u8 wr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

| ul6e_wr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Side Effects:

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Writes to the signal of two to eight bits. If an invalid signal handle is passed into the
function, no action is taken. If the value written to the signal is larger than the signal’s
length, the higher bits are discarded.

void |_u8 wr_sss(l_u8 v)
void |_u8 wr(l_signal_handle sss, |_u8 v)

sss: Signal handle of the signal to write
v: Value of the signal to be set

Writes to the signal of 9 to 16 bits. If an invalid signal handle is passed into the
function, no action is taken. If the value written to the signal is larger than the signal’s
length, the higher bits are discarded.

void |_ul6_wr_sss(l_ul6 v)
void |_u16_wr(l_signal_handle sss, |_ul6 v)

sss: Signal handle of the signal to write;
v: Value of the signal to be set.
This function does not guarantee that the data bytes that are written will be read

atomically by the LIN master. If it is necessary for the data bytes to be atomic, then
the application must ensure that this is the case.

Document Number: 002-26390 Rev. *B Page 29 of 57

LIN Slave

|_bytes wr()

Description:

Static Prototype:
Dynamic Prototype:

Parameters:

Side Effects:

PSoC® Creator™ Component Datasheet

Writes the current value of the selected bytes to the signal specified by the name sss.
The sum of start and count must never be greater than the length of the byte array,
although the device driver may choose not to enforce this in run time. Note that when
the sum of start and count is greater than the length of the signal byte array an
accidental memory area is affected.

If an invalid signal handle is passed into the function, no action is taken.

Assume that a byte array signal is 8 bytes long, numbered 0 to 7. Writing byte 3 and 4
of this array requires start to be 3 (skipping bytes 0, 1, and 2) and count to be 2. In this
case, byte 3 of the byte array signal is written from user_selected_array[0] and byte 4

is written from user_selected_array[1].

void |_bytes_wr_sss(l_u8 start, |_u8 count, const |_u8* const data)
void |_bytes_wr(l_signal_handle sss, |_u8 start, |_u8 count, const |_u8* const data)

sss: Signal handle of the signal to write

start: First byte to write to

count: Number of bytes to write

data: Pointer to array, in which the data to transmit to LIN master is located

This function does not guarantee that the data bytes that are written are read atomically

by the LIN master. If it is necessary for the data bytes to be atomic, then the application
must ensure that this is the case.

Notification Functions Subgroup

Notification flags are used to synchronize the application program with the LIN core. The flags
are automatically set by the LIN core and can only be tested or cleared by the application
program. A notification flag can correspond with a signal, a signal in a particular frame (in the
case that the same signal is packed into multiple frames), or a frame. A flag is set by this
Component when the corresponding signal or frame is successfully sent or received.

In all of the following flag API routines the “fff” is the name of the flag, for example,
|_flg_tst RxEngineSpeed(). For the dynamic flag API routines the “fff’ is a signal handle, as
defined earlier in Application Programming Interface.

Function Description
|_flg_tst() Returns a boolean indicating the current state of the flag.
I_flg_clr() Sets the current value of the flag to zero.

Page 30 of 57

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

|_flg_tst()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

|_flg_clr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

This function returns current state of the flag specified by the name “fff.” It returns
false if the flag is cleared and true otherwise. If this routine returns a “true” value, then
it indicates that the corresponding signal or frame has been successfully sent or
received.

|_bool |_flg_tst_fff(void)
|_bool | flg_tst(l_flag_handle fff)
fff: Name of the flag handle

Returns a C boolean indicating the current state of the flag specified by the name “fff”.
false: The flag is cleared;
true: The flag is not cleared.

Clears the flag that is specified by the name “fff”. This routine should be used to clear
a flag after it has been tested (after |_flg_tst() API). The Component does not
automatically clear notification flags. This routine is the only way that a notification
flag can be cleared.

void |_flg_clr_fff(void)
void I_flg_clr(l_flag_handle fff)
fff: Name of the flag handle

Interface Management Functions* Subgroup

These calls manage the specific interfaces (the logical channels to the bus). Each interface is
identified by its interface name, denoted by the “iii” extension for each static API call, for
example, |_ifc_init_MyLinlfc(). For static prototypes, the interface name is the same as the
Component instance name. This Component supports a maximum of two interfaces. Therefore,
there will never be more than two valid identifiers for “iii.” For dynamic prototypes, iii is a number
defined as MyLinlfc_IFC_HANDLE. It is equal to O for a single instance and equal to 0 or 1 when
both interfaces are present in the schematic.

Function

Description

|_ifc_init()

Initializes the LIN Slave Component.

|_ifc_wake_up()

Transmits one wakeup signal.

|_ifc_ioctl() Controls functionality beyond the specification.
I_ifc_rx() The LIN Slave Component calls this API routine automatically.
|_ifc_tx() The LIN Slave Component calls this API routine automatically.
|_ifc_aux() The LIN Slave Component calls this API routine automatically.
AR .
ws CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 31 of 57

LIN Slave

PSoC® Creator™ Component Datasheet

Function

Description

|_ifc_read_status()

Returns the status of the specified LIN interface.

|_ifc_init()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

|_ifc_wake_up()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Page 32 of 57

|_ifc_init() initializes the LIN Slave Component instance that is specified by the name
“iii.” It sets up internal functions such as the baud rate and starts up digital blocks that
are used by the LIN Slave Component. This is the first call that must be performed,
before using any other interface-related LIN Slave API functions.

|_bool |_ifc_init_iii(void)
|_bool |_ifc_init(l_ifc_handle iii)
iii: Name of the interface handle

The function returns zero if the initialization was successful and nonzero if it failed.

This function transmits one wakeup signal. The wakeup signal is transmitted directly
when this function is called. When you call this API function, the application is
blocked until a wakeup signal is transmitted on the LIN bus. The CyDelayUs()
function is used as the timing source. The delay is calculated based on the clock
configuration entered in PSoC Creator.

void |_ifc_wake_up_iii(void)
void |_ifc_wake_up(l_ifc_handle iii)

ii. Name of the interface handle

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

|_ifc_ioctl()

Description: This API controls functionality that is not covered by the other API calls. This function
is used to control this Component in device-specific ways.

For the operations that are supported by this function, refer to the Component
Parameters section.

Static Prototype: |_ul6 |_ifc_ioctl_iii(l_ioctl_op op, void* pv)

Dynamic Prototype: | _ul6 |_ifc_ioctl(l_ifc_handle iii, |_ioctl_op op, void* pv)

Parameters: iii: Name of the interface handle to which the operation defined in op is applied
op: Parameter used to specify the operation
pv: Pointer to a set of optional parameters for the specified operation that must be
provided to the function
The following table describes the possible operations and their code values supported
by the |_ifc_ioctl API function. The parameter list in the table shows how many
parameters there are and what data type they have.

“op” Operation “pv” Parameter A
(Symbolic Name) vEle List R
L_IOCTL_READ_STATUS 0x00u None Optional status indicators
L_IOCTL_SET_BAUD_RATE 0x01u |_ule* Modify baud rate
L_IOCTL_SLEEP 0X02U None Prepare device for low-power-mode
entry
L_IOCTL_WAKEUP 0x03u None Restore Component state after
wakeup
" Return current number of sync field
L_IOCTL_SYNC_COUNTS 0x04u |_u8 timer counts in “pv”
L IOCTL_SET_SERIAL_NUMBER | 0x05u |_u8* Update the pointer to the serial
number
L _IOCTL_GET_NAD 0x06u |_u8* Return configured NAD
L_IOCTL_SET_NAD 0x07u |_u8* Set configured NAD
L_IOCTL_GET_FRAME_PID 0x08u | | |\ NEW PID* | Return frame PID by frame table
- - index
L_IOCTL_SET_FRAME_PID 0x09u | LIN_NEW_PID* | Set frame PID by frame table index
L IOCTL_SET_DNN 0x0AuU |_u8* Set DNN in J2602 compliance
L_IOCTL_SET_FRAME_PID_BY_ | OxOBu | LINS_NEW_PID | Set frame PID by Message ID
MESSAGE_ID _BY_MSG_ID* [(LIN 2.0 only)

Return Value: There is no error code value returned for the operation selected. This means that you
must ensure that the values passed into the function are correct.
L_IOCTL_READ_STATUS operation
The first bit in this byte is the flag that indicates that there has been no signaling on
the bus for a certain elapsed time (available when the Bus Inactivity Timeout
Detection option is enabled). If the elapsed time is past a certain threshold, this flag is
set. Calling this API clears all status bits after they are returned. The second bit is the
flag that indicates that a Targeted Reset service request (OxB5) was received (when
J2602 Compliance is enabled).

A

ws CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 33 of 57

LIN Slave

Return Value:
(cont.)

Page 34 of 57

PSoC® Creator™ Component Datasheet

Symbolic Name Value Description

No signal was detected on the bus for a certain

LIN_IOCTL_STS_BUS_INACTIVITY 0x0001u .
- - = - elapsed time

Targeted Reset service request (0xB5) was

LIN_IOCTL_STS TARGET_RESET 0x0002u .
- — - - received

L _IOCTL_SET_BAUD_RATE operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SLEEP operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_WAKEUP operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SYNC_COUNTS operation

Returns current number of sync field timer counts for 8 bits of the synchronization field
byte.

L_IOCTL_SET_SERIAL_NUMBER operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_GET_NAD operation

Returns configured NAD.

L_IOCTL_SET_NAD operation

Sets configured NAD. NAD must not be 00, 7E nor 7F.

In J2602 compliance mode frame PIDs are also updated according to new NAD.
Returns 0 if operation succeeded and 1 if frame PIDs can not be updated due to NAD
and frame count mismatch (see SEA J2602-1 specification 5.7.2.2 Message ID
Assignment, Table 1). NAD is not updated in case of message PID update failure.

L_IOCTL_GET_FRAME_PID operation

Returns frame PIDs by frame table index.

L_IOCTL_SET_FRAME_PID operation

Sets frame PIDs by frame table index.

Uses LIN_NEW_PID structure as input parameter.

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SET_DNN operation

Writes DNN value to initial NAD and configured NAD, limiting its range to 0x60-0x6F.
DNN must be set at start-up if node uses hardware defined NAD.

Frame PIDs are also updated according to new NAD.

Returns 0 if operation succeeded and 1 if frame PIDs can not be updated due to NAD
and frame count mismatch (see SEA J2602-1 specification 5.7.2.2 Message ID
Assignment, Table 1). Initial NAD and configured NAD are updated regardless on
message PID update success.

L_IOCTL_SET_FRAME_PID_BY_MESSAGE_ID operation
Sets frame PID to frame with specified Message ID (LIN 2.0 only).

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Uses LINS_NEW_PID_BY_MSG_ID structure as input parameter.

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

|_ifc_rx()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

|_ifc_tx()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

|_ifc_aux()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B

The LIN Slave Component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

void |_ifc_rx_iii(void)
void |_ifc_rx(l_ifc_handle iii)

iii: Name of the interface handle

The LIN Slave Component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

void |_ifc_tx_iii(void)
void |_ifc_tx(l_ifc_handle iii)

iii: Name of the interface handle

The LIN Slave Component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

void |_ifc_aux_iii(void)
void |_ifc_aux(l_ifc_handle iii)

iii: Name of the interface handle

Page 35 of 57

LIN Slave

|_ifc_read_status()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

PSoC® Creator™ Component Datasheet

This function returns the status of the previous communication. Refer to the 1SO
17987 specification for detailed information on each status information field in the LIN
Slave status word.

| ul6 |_ifc_read_status_iii(void)
|_ul6 |_ifc_read_status(l_ifc_handle iii)
iii: Name of the interface handle

The call returns the status word (16-bit value), as shown in the following table:

15|14|13|12|11|10|9|87 6 5 4 3 2 1 0
Last frame PID 0| Save Event Bus Go Over | Successful | Errorin
configu | triggered | activity | to run | transfer response
ration frame sleep
collision

The status word is only set based on a frame transmitted or received by the node
(except bus activity). The status word is cleared after API is called.

User-Provided Callouts

The Component does not need these callouts because it works only on Cypress chips; you can
enable/disable interrupts using PSoC Creator macros.

|_sys_irg_disable()

Node Configuration Functions

Function

Description

Id_read_configuration()

Serializes the current configuration and copies it to the area (data pointer) provided
by the application.

Id_set_configuration()

Configures the NAD and the PIDs according to the configuration specified by input
parameter.

Id_read_by id_callout()

Used when the master node transmits a read by identifier request with an identifier in
the user defined area.

Page 36 of 57

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Id_read_configuration()

Description: This function is used to read the NAD and PID values from volatile memory. This
function can be used to read the current configuration data, and then save this data
into nonvolatile (flash) memory. The application should save the configuration data to
flash when the “Save Configuration” bit is set in the LIN status register (returned by
|_ifc_read_status()).

The configuration data that is read is a series of bytes. The first byte is the current
NAD of the slave.

The next bytes are the current PID values for the frames that the slave responds to.
The PID values are in the order in which the frames appear in the LDF or NCF file.
Dynamic Prototype: |_u8 Id_read_configuration(l_ifc_handle iii, |_u8* const pData, |_u8* length)

Parameters: iii: Name of the interface handle;
pData: Array into which configuration data is to be read

length: Size of configuration data in bytes. The value pointed to the length pointer
parameter is set to the actual length of the configuration data.

Return Value: The function returns values listed in the following table.
Symbolic Name Description
LD_READ_OK Returned if the configuration data read was successful

LD_LENGTH_TOO_SHORT | Returned if the value pointed to by the length pointer parameter is
less than the actual length of the configuration data

Id_set_configuration()

Description: This function is used to set the volatile NAD and PID values of the slave node. This
can be used to modify the NAD and PID values at run time. This should normally only
be done just after bootup or after the master requests it. Otherwise, if the slave
changes its NAD or PID values, or both, the master may no longer be able to
communicate with the slave.

See the Id_read_configuration() function for information on what the configuration
data contains and how it is stored.

Dynamic Prototype: | u8Id_set configuration(l_ifc_handle iii, const |_u8* const pData, |_ul6 length)

Parameters: iii. Name of the interface handle
pData: Array of configuration data which is to be applied to the slave node
length: Size of configuration data in bytes

Return Value: The function return values are listed in the following table.
Symbolic Name Description
LD_SET_OK Returned if the configuration data was successfully set

LD_LENGTH_NOT_CORRECT | Returned if the value of the length parameter is not equal to the
value of the configuration data of the slave node

LD_DATA_ERROR Returned if the configuration data was not set correctly

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 37 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Id_read_by id_callout()

Description: This callout is used when the master node transmits a read by identifier request with
an identifier in the user-defined area. The slave node application is called from the
driver when such a request is received.

Note This function has no implementation. Implement this function with the desired
functionality and override the default return value of the function which is
LD_NEGATIVE_RESPONSE.

Dynamic Prototype: | u81d_read by id_callout (I_ifc_handle iii, |_u8 id, |_u8* frameData)

Parameters: iii: Name of the interface handle

id: Identifier in the user defined area (32 to 63), from the read by identifier
configuration request

frameData: Points to a data area with 5 bytes. This area is used by the application to
set up the positive response.

Return Value: The function return values are listed in the following table.

Symbolic Name Description

LD_NEGATIVE_RESPONSE | The default returns status of the API. It is always returned if you do
not modify the API and reassign this to some other status.

LD_NO_RESPONSE You can set this status manually. If set, it specifies that no
response will be provided for the service.

LD_POSITIVE_RESPONSE You can set this status manually. If set, it specifies that response
will be provided for the service. The response will be pointed by the
frameData parameter.

Transport Layer Functions

The Transport Layer is a higher-level layer of the LIN network stack. This layer allows the
application to send or receive data in “message” format instead of “frame” format. Messages can
be many bytes that are sent or received using multiple frames. The Transport Layer is used for
configuration services, diagnostic service, or custom user-defined implementations.

API functions that send and receive Transport Layer messages have two different formats. There
is a cooked format and a raw format. This Component only supports using one format of the
Transport Layer API functions. The API format is chosen in the Transport Layer tab of the
Component customizer.

Note To use the LIN Transport Layer API functions, Transport Layer use must be enabled on the
Transport Layer tab of the LIN Slave Component customizer.

Initialization Subgroup

Function Description

Id_init() Initializes or reinitializes the raw and the cooked layers. All transport layer buffers will
be initialized. If there is an ongoing diagnostic frame transporting a cooked or raw
message on the bus, it will not be aborted.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 38 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Id_init()

Description: This routine initializes or reinitializes the Transport Layer of the slave node. This API
must be called before using any Transport Layer API functions. It must also be
called before the slave node can do any Transport Layer communication. If the API
is called in the middle of an ongoing diagnostic frame transporting a cooked or raw
message on the bus, the message is be aborted; instead, the API waits until the
message is completed.

Dynamic Prototype: void Id_init(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

Raw Transport Layer APl Functions Subgroup

Function Description
Id_put_raw() The call queues the transmission of 8 bytes of data in one frame.
Id_get_raw() Copies the oldest received diagnostic frame data to the memory specified by input
parameter.
Id_raw_tx_status() Returns the status of the raw frame transmission function.
Id_raw_rx_status() Returns the status of the raw frame receive function
Id_put_raw()
Description: This function is used to allow the application code to send data using the Transport

Layer. It essentially copies some data from a user application array to a frame buffer
array. This function is used to send one frame of a complete Transport Layer
message at a time. Therefore, a multiframe Transport Layer message requires
multiple calls to this API function. You should always check to see if there is a place
for the frame in the buffer before calling this API.

Note In J2602 compliance mode J2602 Status is sent in first byte of each frame
when:

- using 0x3C messages with NADs in the User reserved range of 0x80 - OxFF

- using 0x3E messages with any NAD

therefor only 7 bytes of of data can be sent. There is no need to place NAD as first
byte of user data.

Dynamic Prototype: void Id_put_raw(l_ifc_handle iii, const |_u8* const Id_data)

Parameters: iii: Name of the interface handle
Id_data: Array of data bytes to be sent

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 39 of 57

LIN Slave

Id_get_raw()

Description:

Dynamic Prototype:

Parameters:

Id_raw_tx_status()

Description:

Dynamic Prototype:

Parameters:

Return Value:

Id_raw_rx_status()

Description:

Dynamic Prototype:

Parameters:

Return Value:

Page 40 of 57

PSoC® Creator™ Component Datasheet

This function is used to allow the application code to receive data using the
Transport Layer. It essentially copies some data from a frame buffer array to a user
application array. This function is used to receive one frame of a complete
Transport Layer message at a time. Therefore, a multiframe Transport Layer
message requires multiple calls to this API function. If the receive queue is empty,
no data is copied. You should always check to see if there is a place for the frame
in the buffer before calling this API.

void Id_get_raw(l_ifc_handle iii, |_u8* const |d_data)

iii: Name of the interface handle
Id_data: Array to which the oldest received diagnostic frame data will be copied

This call returns the status of the last performed frame transmission on the bus when
a raw APl was used.

|_u8 Id_raw_tx_status(l_ifc_handle iii)

ii. Name of the interface handle

Symbolic Name Description

LD_QUEUE_EMPTY The transmit queue is empty. If previous calls to Id_put_raw() have
been made, all frames in the queue have been transmitted.

LD_QUEUE_AVAILABLE The transmit queue contains entries, but is not full.

LD_QUEUE_FULL The transmit queue is full and cannot accept further frames.

LD_TRANSMIT_ERROR LIN protocol errors occurred during the transfer; initialize and redo the
transfer.

This call returns the status of the last performed frame reception on the bus when a
raw APl was used.

Note In J2602 compliance mode, when both, 0x3C and Ox3E, identifiers are used in
LIN cluster, call function |_ifc_read_status() to identify last received PID. PID is
returned in high byte of |_ul6 result. Calling |_ifc_read_status() clears all status bits
returned in result, so take care to save the status if needed for further operations.

|_u8Id_raw_rx_status(l_ifc_handle iii)

ii. Name of the interface handle.

Symbolic Name Description
LD_NO_DATA The receive queue is empty.
LD_DATA_AVAILABLE The receive queue contains data that can be read.
LD_RECEIVE_ERROR LIN pfrotocol errors occurred during the transfer. Initialize and redo the
transfer.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Cooked Transport Layer APl Functions Subgroup

Function Description

Id_send_message() Packs the information specified by data and length into one or multiple diagnostic
frames. The frames are transmitted to the master node with the address NAD.

Id_receive_message() Prepares the LIN diagnostic module to receive one message and store it in the buffer
pointed to by data. At the call, length specifies the maximum length allowed. When the
reception has completed, length is changed to the actual length and NAD to the NAD
in the message.

Id_tx_status() Returns the status of the last made call to Id_send_message().

Id_rx_status() Returns the status of the last made call to Id_receive_message().

Id_send_message()

Description: This function allows the application code to send data using the Transport Layer. It
is responsible for queuing up data to automatically be sent over the course of
multiple SRF frames. This function is used to send a complete Transport Layer
message. Therefore, a multiframe Transport Layer message requires only one call
to this API function. The length value must be between 6 and 4095 bytes.

If there is a message in progress, the call returns with no action.

Note In J2602 compliance mode J2602 Status is sent in first byte of each frame
instead of NAD when:

- using Ox3C messages with NADs in the User reserved range of 0x80 - OXFF

- using Ox3E messages with any NAD.

This function also forms PCI field according to PDU structure.

Dynamic void Id_send_message(l_ifc_handle iii, |_ul6 length, |_u8 nad, const |_u8* const
Prototype: Id_data)
Parameters: iii.: Name of the interface handle

length: Size of data to be sent in bytes

nad: Address of the slave node to which data is sent

Id_data : Array of data to be sent. The value of the RSID is the first byte in the data
area

Side Effects: The call is asynchronous, that is, not suspended until the message has been sent,
and the buffer may not be changed by the application as long as calls to
Id_tx_status() return LD_IN_PROGRESS.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 41 of 57

LIN Slave

Id_receive_message()

Description:

Dynamic Prototype:

Parameters:

Side Effects:

Page 42 of 57

PSoC® Creator™ Component Datasheet

This function allows the application code to receive data using the Transport Layer.
It is responsible for receiving multiple MRF frames and copying all of the data of the
message to a user application buffer array. This function is used to receive a
complete Transport Layer message. Therefore, a multiframe Transport Layer
message requires only one call to this API function. The length value must be
between 6 and 4095 bytes.

Note In J2602 compliance mode, when both, 0x3C and Ox3E, identifiers are used in
LIN cluster, call function |_ifc_read_status() to identify last received PID. PID is
returned in high byte of |_ul6 result. Calling |_ifc_read_status() clears all status bits
returned in result, so take care to save the status if needed for further operations.

When using 0x3C messages with NADs in the User reserved range of 0x80 — OxFF
or using Ox3E messages with any NAD, this function also requires presense of PCI
field according to PDU structure to get type of frame and length of message.

void Id_receive_message(l_ifc_handle iii, |_u16* const length, |_u8* const nad,
|_u8* const Id_data)

iii: Name of the interface handle

length: Size of data to be received in bytes

nad: Address of the slave node from which data is received

Id_ata: Array of data to be received. The value of the SID is the first byte in the data
area.

The call is asynchronous, that is, not suspended until the message has been
received, and the buffer may not be changed by the application as long as calls to
Id_tx_status() return LD_IN_PROGRESS.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Id_tx_status()

Description: This function returns the status of the last call made to Id_send_message() and the
last Transport Layer data transmission on the bus.

Dynamic Prototype: |_u8 Id_tx_status(l_ifc_handle iii)

Parameters: iii: Name of the interface handle.
Return Value: The following values can be returned.
Symbolic Name Description

LD_IN_PROGRESS The transmission is not yet completed.

LD_COMPLETED The transmission has completed successfully (and you can issue a new
Id_send_message call()). This value is also returned after initialization of
the transport layer.

LD_FAILED The transmission ended in an error. The data was only partially sent. The
transport layer must be reinitialized before processing further messages.
To find out why a transmission has failed, check the status management
function |_read_status().

LD_N_AS_TIMEOUT [The transmission failed because of an N_As timeout, and current message
transmission will be aborted. See Section 7.6.1 of the ISO 17987
specification.

Note If the transmission failed, the error status (e.g., LD_FAILED) could be read just once
by this function. The next read will return LD_COMPLETED status.

This is because the LIN Component automatically initializes the status to
LD_COMPLETED during transport layer re-initialization, due to an error in the
message transmission. This is a result of the automated recovery mechanism
embedded in the LIN Slave Component.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 43 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Id_rx_status()

Description: This function returns the status of the last call made to Id_receive_message() and the
last Transport Layer data reception on the bus.

Dynamic Prototype: |_u8 Id_rx_status(l_ifc_handle iii)

Parameters: li: Name of the interface handle
Return Value: The following values can be returned:
Symbolic Name Description

LD_IN_PROGRESS The reception is not yet completed.

LD_COMPLETED The reception has completed successfully and all information (length, NAD,
data) is available. You can also issue a new Id_receive_message() call.
This value is also returned after initialization of the transport layer.

LD_FAILED The reception ended in an error. The data was only partially received and
should not be trusted. Initialize before processing further transport layer
messages. To find out why a reception has failed, check the status
management function |_read_status().

LD_N_CR_TIMEOUT | The reception failed because of an N_Cr timeout, and current message
reception will be aborted. See Section 7.6.1 of the ISO 17987 specification.

LD_WRONG_SN The reception failed because of an unexpected sequence number.

Note If the reception failed, the error status (e.g., LD_WRONG_SN) could be read just once
by this function. The next read will return LD_COMPLETED status.

This is because the LIN Component automatically initializes the status to
LD_COMPLETED during transport layer re-initialization, due to an error in the
received message. This is a result of the automated recovery mechanism embedded
in the LIN Slave Component.

Non-LIN-Specified API

Function Description
LIN_Start() Starts the Component operation.
LIN_Stop() Stops the Component operation.
LIN_j2602Status_Reset() | Clears all unreported states in the ERR bits of J2602 Status byte and sets Reset state.

LIN_Start()
Description: Starts the Component operation. This function is not required.
Dynamic Prototype: | _bool LIN_Start()

Return Value: Zero: The initialization succeeded.
Nonzero: The initialization failed.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 44 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

LIN_Stop()
Description: Stops the Component operation. This function is not required.

Dynamic Prototype: |_bool LIN_Stop()

LIN_j2602Status_Reset()

Description: Clears all unreported states in the ERR bits of J2602 Status byte sets Reset state.
This function is not required if Service B5 is handled by component.

Dynamic Prototype: none

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the Component’s generated source files,
perform the following:

® Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“‘uncomment” the function call from the Component’s source code.

® Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

® Write the function implementation (in any user file).

Callback Function [Associated Macro Description

LIN_UART_ISR_EntryCallb |LIN_UART_ISR_ENTRY_CALLB | Used at the beginning of the LIN_UART_ISR()
ack ACK interrupt handler to perform additional
application-specific actions.

LIN_UART_ISR_ExitCallbac | LIN_UART_ISR_EXIT_CALLBAC |Used at the end of the LIN_UART_ISR()
k K interrupt handler to perform additional
application-specific actions.

|_ifc_rx_LIN_Callback L_IFC_RX_LIN_CALLBACK Used in the I_ifc_rx_LIN() function to perform
additional application-specific actions.

|_ifc_aux_LIN_Callback L_IFC_AUX_LIN_CALLBACK Used in the I_ifc_aux_LIN() function to perform
additional application-specific actions.

1 The callback function name is formed by Component function name optionally appended by short explanation
and “Callback” suffix.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 45 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Callback Function Associated Macro Description

Id_read_by id_callout LIN_|LD_READ_BY_ID_CALLOUT_LIN | Used in the Id_read_by id_callout_LIN()
Callback _CALLBACK function to perform additional application-
specific actions.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

® project deviations — deviations that are applicable for all PSoC Creator Components

B specific deviations — deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The LIN Slave Component is MISRA compliant, except for following specific deviations:

MISRA- Rule Class
C:2004 (Required/

Rule Advisory) Rule Description Description of Deviation(s)
1.1 R This rule states that code shall Nesting of control structures (statements)
conform to C ISO/IEC 9899:1990 exceeds 15 - program does not conform
standard. strictly to 1SO:C90.

In practice, most compilers will support a
much more liberal nesting limit and therefore
this limit may only be relevant when strict
conformance is required. By comparison,
ISO:C99 specifies a limit of 127 "nesting
levels of blocks.

o CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 46 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet

LIN Slave

MISRA- Rule Class
C:2004 (Required/
Rule Advisory) Rule Description Description of Deviation(s)

8.7 R Obijects shall be defined at block scope | The reason of this violation is that in some
if they are only accessed from within a | configurations following internal variables are
single function. That is, minimize the used only in one function:
scope of objects and variables. LIN_LinSlaveConfig

LIN_prevPci,
messageldTable

8.8 R An external object or function shall be | The interrupt service routine (ISR) for COM
declared in one and only one file. void ComExt_UART _ISR (void);

is defined only once in the file
ComExt_INT.c,

which includes header ComExt.h

with function declaration. No possible issues
expected.

11.3 A Cast between a pointer to volatile Casting performed when accessing SCB
object and an integral type. internal registers.

114 A A cast should not be performed Section 7.2.5.4 of LIN 2.2 specification
between a pointer to object type and a | defines |_ifc_ioctl() with following prototype —
different pointer to object type. |_ul6 |_ifc_ioctl (I_ifc_handle iii, |_ioctl_op

op, void* pv).

Depending on the operation the “pv”
parameter may be converted to pointer to
unsigned char or to unsigned short (I_ul6).

12.1 A Limited dependence should be placed | Extra parentheses recommended to be used
on C’s operator precedence rules in to emphasise order of operations for
expressions. LIN_ET_FRAMES_FLAGS_SIZE define

evaluation.

12.4 R Right hand operand of '&&' or ’||"is an | Expression operates with volatile variable. It
expression with possible side effects. is safe as these variables are accessed only

from interrupt routine.

13.7 R Boolean operations whose results are | Depending on the Component setup there
invariant shall not be permitted. may be condition checks whose results are

invariant. For example when

Id_read_by id_callout() is used it always
returns LD_NEGATIVE_RESPONSE unless
the user will override it. But Component
performs condition check for all of three
possible return values in its source code.

141 R There shall be no unreachable code. This comes in pair with 13.7. Depending on
This refers to code which cannot, the Component setup there may be condition
under any circumstances, be reached. | checks whose results are invariant. This

results in unreachable code.
AR .
ws CYPRESS
- 4 EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

Page 47 of 57

LIN Slave PSoC® Creator™ Component Datasheet
MISRA- Rule Class
C:2004 (Required/
Rule Advisory) Rule Description Description of Deviation(s)

14.2 R The statement has no side-effect — it There are conditionally included parts of

can be removed. code and user-defined callback functions.
Function parameters may be unused if such
code is not enabled. “(void) id;” statements
are used to prevent unused variables
warnings.

14.7 R A function shall have a single point of | The |_ifc_rx() function has a complex
exit at the end of the function. conditional structure and two more “return’

paths are added to return immediately
after receiving of BREAK sequence or if
spurious interrupt occurs.

155 R This 'switch' statement contains only a | This 'switch' is generated in customizer.
single path - it is redundant. Number of its paths depends on quantity of

signals or frames defined by user.

16.7 A A pointer parameter in a function Section 7.2.5.4 of LIN 2.2 specification
prototype should be declared as defines |_ifc_ioctl() with following prototype —
pointer to const if the pointer is not |_ul6 |_ifc_ioctl (I_ifc_handle iii, |_ioctl_op
used to modify the addressed object. op, void* pv).

In some cases, depending on configuration
the “pv” parameter of may not be modified.

17.4 R Array indexing shall be the only To conform to the LIN 2.2 specification the
allowed form of pointer arithmetic. This | Component defines several API functions
still bans the incrementing of a pointer | that use pointers as parameters. These
that was not declared as an array. pointers are used to define arrays of data

and array indexing is used to access the
data.

19.7 A A function shall be used in preference | The following macro is used to increase
to a function-like macro performance:

LIN_SWAP_U8_TO_U16();
LIN_ABS().
19.11 R All macro identifiers in preprocessor The macro 'LIN_1 NCS_0xB5_SEL'used in

directives shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and the
defined() operator.

'#if' expression in |_ifc_ioctl_LIN_1() function
is not defined in case if Automatic
Configuration Request Handling option is
unchecked.

Page 48 of 57

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

APl Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

PSoC 4 (GCC)
Flash Bytes SRAM Bytes

Configuration

P4 _SCB_LIN_Slave_Example 7840 584
project

Functional Description

PSoC and LIN Bus Hardware Interface

You need a LIN physical layer transceiver device when the PSoC LIN slave node is connected
directly to a LIN bus. In this case, the TxD pin of the LIN Component connects to the TXD pin of
the transceiver, and the RxD pin connects to the RXD pin of the transceiver. The LIN transceiver
device is required because the PSoC's electrical signal levels are not compatible with the
electrical signals on the LIN bus.

Some LIN transceiver devices also have an "enable" or "sleep” input signal that is used to control
the operational state of the device. The LIN Component does not provide this control signal.
Instead, use a pin used to output the desired signal to the LIN transceiver device if this signal is
needed.

Note After the Component goes into Sleep mode, the SCB is disconnected from the TxD pin and
this pin goes into high-impedance state. It is a responsibility of the user's code to avoid
generation of low-level pulse. The simplest way is to disable the external LIN transceiver before
entering Sleep mode. While disabled, the transceiver can still transfer wake-up pulses from the
LIN bus to the RxD pin, so a wake-up event will not be missed.

~ |

Document Number: 002-26390 Rev. *B Page 49 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Figure 10. Hardware Interface between PSoC and LIN Bus

PSoC LIN Transceiver |

I

RXD Signal I

RxD RXD I

LIN _

component TXD Signal o
s}
TxD » TXD -
|

Control Signal (optional)
Pin r-—4-—-——---------—-——- -» NSLP

SysTick Timer Usage

For PSoC 4 devices, this Component uses the SysTick timer to monitor LIN bus inactivity and
measure sleep delays.

The SysTick timer is part of the cy_boot Component. All manipulation with the SysTick timer can
be done by using cy_boot APIs. The SysTick timer is configured by cy_boot and enabled by
default. If the SysTick timer is disabled before LIN initialization, then the LIN_TimerEnablelnt()
function configures and enables it. For more information about cy_boot, refer to the System
Reference Guide.

The Bus Inactivity Timer is based on the Cortex-M0 CPU’s SysTick timer. It is configured by
default at Reset time to interrupt period 1 milisecond. The LIN Component uses one callback
handler (out of five) from the SysTick timer. Two LIN instances in the project use two callback
handlers from the SysTick timer.

The CapSense Component can share SysTick timer usage. It also configures the SysTick timer
to 1 millisecond period.

A LIN user may use the SysTick interrupt for custom purposes and change the interrupt period.
In that case, the LIN inactivity function will get overridden and bus inactivity will not be detected.
The LIN Component relies on a 1 milisecond interrupt period.

If 32602 compliance is enabled, SysTick interrupt is also used to detect errors in the SYNC field.
This functionality is active if automatic baud rate synchronization is disabled. Changing the
SysTick interrupt period will affect this functionality. Use automatic baud rate synchronization to
disable SYNC field error detection.

o CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 50 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

If the SysTick interrupt period remains 1 milisecond, set the register callback for the SysTick
interrupt by using the CySysTickSetCallback() function.

Response Pending

For PSoC 4 devices, the Component supports the response pending frames (UDSonLIN based
diagnostic service). See 1ISO 14229-2 and 1SO 17987-2 for more details.

The response pending frame is defined as a SingleFrame negative response with NRC 781s:

Table 2. Response Pending Frame Format

NAD PCI RSID D1 D2 D3 D4 D5

NAD 0316 TF16 SID 7816 FFi6 FFi6 FFi6

The response pending frame could be send by using Id_put_raw() or Id_send_message()
Transport Layer APIs. For Id_put_raw(), the API sets the |d_data parameter to SingleFrame
defined in Table 2. For Id_send_message(), the API sets the Id_data parameter to RSID, D1, D2
specified in Table 2 and length parameter equal to 3.

Note Whenever a response pending frame is used a final positive or negative response is
mandatory for this request.

Resources

The LIN Component (for PSoC 4) is based on an SCB fixed block. The Component uses the
following resources.

Resource Type
Configuration Datapath |\ . . | Status | Control DMA RS
Cells Cells Cells Channels P
P4 _SCB_LIN_Slave_ - - - - - 1+1
Example project (SysTick callback
handler)
P4_SCB_LIN_Slave_Multi_ - - - - - 242
Instance Example project (SysTick callback
handlers)
AR .
ws CYPRESS
- 4 EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B Page 51 of 57

LIN Slave PSoC® Creator™ Component Datasheet

DC and AC Electrical Characteristics

For information about DC and AC Electrical Characteristics refer to the “LIN Physical Layer
Specification” chapter of the LIN 2.2 Specification.

Specifications are valid for —40 °C < Ta < 85 °C and Ty < 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Note Final characterization data for PSoC Analog Coprocessor device is not available at this
time. Once the data is available, the Component datasheet will be updated on the Cypress web
site.

DC Characteristics

Fixed UART DC Specifications

Parameter Description Min Typ Max Units

luarTL Block current consumption at 100 Kbit/s - - 9 A

Block current consumption at 100 Kbit/s for

luarT1 - - 55 HA
PSoC 4100/ PSoC 4200,
PSoC 4100 BLE / PSoC 4200 BLE,
PSoC 4100M / PSoC 4200M,
PSoC 4200L, PSoC 4000S, and PSoC 4100S
Performance Characteristics
Symbol Description Conditions Min | Typ Max Units
Feaup Baud Rate Clock = 66 MHz 1 20 kbaud
Clock = 48 MHz 1 20 kbaud
Clock = 24 MHz 1 20 kbaud
Clock = 12 MHz 1 10 kbaud
Clock = 6 MHz 1 5 tbaud
Clock = 3 MHz ! 2:5 baud
Nisr ISR Length - - 729 CPU
Cycles
tisrLAT ISR Latency - - 1/ (Feaup) s

Feaup parameter is limited by HFCLK clock for PSoC 4 devices, only when automatic baud rate
synchronization is enabled (for clock source with a frequency deviation of £1.5 percent or more).

The above Fesaup values are calculated from the following formula:
Feaup max< Fsus cik / (16* DIVIDER_VALUE)

o CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 52 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Where piviber_vaLue = 75. This conservative value provides frequency tuning with granularity of
1/75 =1,33%. As LIN Spec. defines deviation after synchronization < +/-2%, pivipER_VALUE can be
reduced to 25 (4%) for clock source with low short-term deviation.

Maximal ISR Latency is 1 bit-time because transmitter must be disabled at the edge of new
symbol when previously sent symbol received back as erroneous.

Component Errata

Cypress ID | Version Problem Workaround

335998 All LIN slave reports incorrect message | In the LIN.c file, find the following code:
ID when LIN2.0 specification /*D1l= Message ID LSB */
compatibility is selected. LSB and LINS srfBuffer[LINS PDU Dl IDX] =
MSB of the message ID are swapped HI8 (messageldTable [tempStatus]);

in slave response.
/* D2 = Message ID MSB */

LINS srfBuffer [LINS PDU D2 IDX] =
LO8 (messageldTable[tempStatus]);

Swap the HI8() and LO8() functions, so that LSB
is LO8 and MSB is HI8.

IMPORTANT: The LIN.c file is a generated file,
and it is overwritten each time you build the
application. Therefore, you must re-edit the LIN.c
file every time you build or generate code.

&= CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 53 of 57

LIN Slave PSoC® Creator™ Component Datasheet

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact
5.0.b Updated datasheet. Added rule 8.8 to MISRA Compliance table.
5.0.a Edited datasheet. Added Errata item, Cypress ID 335998, to

document an issue with Message ID in response to
a read by ID service.

5.0 Added ISO 17987 and SAE J2602 compliance | New protocols support added.
support.

Added response pending frames support.

Removed support for PSoC 3 and PSoC 5
devices.

Added MISRA violation 14.2.

4.0.a Edited datasheet. Updated certification statement for PSoC 4 devices.
4.0 Updated LIN_ProcessMrf() APl implementation. | Fixed Component Errata with Cypress ID 245706.
Updated CIrRxBuffer(), ClrTxBuffer() and Fixed Component Errata with Cypress ID 250810.

ld_tx_status_LIN(), Id_tx_status_LIN() APIs
implementation.

3.40.d Edited datasheet. Added Errata item, Cypress ID 244944, to
document using diagnostic frames.

Added Errata item, Cypress ID 250810, to
document behavior when erroneous TL packets
reseived.

Updated Id_rx_status() API descriptoin, to
document Component behavior when receiving a
broken packet.

Added clarification about partial compliance with
SAE J2602-1 specification.

Added SysTick timer usage section.

Added final characterization data for the
PSoC 4100S device.

3.40.c Edited datasheet. Added Errata item, Cypress ID 245706, to
document issue with the cooked transport layer.

Added final characterization data for PSoC 4000S
device.

3.40.b Edited datasheet. Added a note that certification is pending for the
3.40 version of this Component.

3.40.a Fixed the following issues in the |_ifc_rx_LIN() | Customer Request.
function related to the Transport layer:

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Page 54 of 57 Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet

LIN Slave

Version Description of Changes Reason for Changes / Impact
- An incorrect frame length value was placed in
the corresponding field of the first frame of the
Segmented Response message;
- The actual NAD address was not updated in
the TL frame header each time when the frame
was constructed.
- Erroneous length check was applied to the
last frame of the Segmented Response
message.
Edited datasheet. Final characterization data for PSoC 4000S,
PSoC 4100S and PSoC Analog Coprocessor
devices is not available at this time. Once the data
is available, the Component datasheet will be
updated on the Cypress web site.
Updated MISRA section.
3.40 Updated versions of the embedded SCB Out of date Components may contain defects or
Component to the most current version. incompatibilities.
3.30 Added PSoC 4200L device support, and New device support.
updated characterization data.
3.20.b Datasheet update. Added Macro Callbacks section.
Added certification statement for PSoC 4 devices,
as well as a statement to explain that this a
prototype Component for PSoC 3 and PSoC 5LP.
3.20.a Added a note to the Bus Inactivity Timeout Clarified the minimal timeout value and compatibility
Detection parameter section. with LIN 1.3.
3.20 Added Errata section Component validation
Added LIN_Dynamic Component section. To explain the use of the LIN_Dynamic Component.
Added recommendations about Sleep mode Validation report
entering procedure concerned to control of
external transceiver
Added 11.3,12.4,14.7,15.5 MISRA violations MISRA related change.
Added support for SCB based LIN Component | Component support for PSoC 4200 device family.
Break Detection Threshold setting options The break width options available for SCB are
needs to be changed based on the hardware limited (only whole no. values). This automatically
implementation has to update the drop down options based on
hardware implementation (UDBs for PSoC 3/
PSoC 5LP; SCB for PSoC 4).
Any integer field in an imported NCF/LDF file Customer Request.
should be imported properly if it is an integer
value in decimal float format (example: 10.0).
A

ws CYPRESS

N

EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

Page 55 of 57

LIN Slave PSoC® Creator™ Component Datasheet
Version Description of Changes Reason for Changes / Impact
Allow multiple instances of LIN Component Customer Request.
(v2.x and v1.3) in a single project based on Component APIs might get affected based on the
hardware availability. number of Component instance in the project.
Added Hover window settings as Auto Baud Based on review comments
rate sync, LIN bus Baud rate and slave
information (Supplier ID & Function ID)
Edited the datasheet. Updated DC and AC Electrical Characteristics
section with PSoC 4100M/PSoC 4200M data.
1.30.b Added Component Errata section applicable to | Document that the Component was changed, but
v1.30 only. there is no impact to designs.
1.30.a Minor datasheet edits.
1.30 Support of PSoC 5 family devices was removed
from the Component.
Following variables were declared as “static”: MISRA related change. These functions are
LIN_Slave_FindPidindex(): designated only for internal Component’s usage.
LIN_Slave_EndFrame();
LIN_Slave_SetAssociatedFlags();
LIN_Slave_GetEtFlagValue();
LIN_Slave_ClearEtFlagValue();
LIN_Slave_ProcessMrf();
LIN_Slave_LinProductld();
LIN_Slave Messageld().
The number of 45 global variables were MISRA related change. These variables are
declared as “static” designated only for internal Component’s usage.
The MISRA Compliance section was updated. | The Component was verified for MISRA
compliance.
The API Memory Usage section was updated The new APl memory usage numbers were
inserted.
1.20 Added MISRA Compliance section. The Component was not verified for MISRA
compliance.
Updated LIN Slave with the latest version of the
Clock and Interrupt Components
1.10 Updated Component characterization data.
Added PSoC 5LP support.
Added all Component APIs with the Not all APIs are truly reentrant. Comments in the
CYREENTRANT keyword when they are Component API source files indicate which
included in the .cyre file. functions are candidates.

Page 56 of 57

&= CYPRESS

~g»” EMBEDDED IN TOMORROW

Document Number: 002-26390 Rev. *B

PSoC® Creator™ Component Datasheet LIN Slave

Version Description of Changes Reason for Changes / Impact

This change is required to eliminate compiler
warnings for functions that are not reentrant used in
a safe way: protected from concurrent calls by flags
or Critical Sections.

Description of 0xB5 service was modified to
insert more clarity on the service usage
depending on Component configuration.

1.0.a Minor datasheet edits and updates

© Cypress Semiconductor Corporation (an Infineon company), 2019-2021. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC
(“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its
patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress
governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the
Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to
distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware
products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

s CYPRESS

~g»” EMBEDDED IN TOMORROW™

Document Number: 002-26390 Rev. *B Page 57 of 57

	Features
	General Description
	LIN Slave
	Definitions
	Input/Output Connections
	TXD – Output
	RXD – Input

	Schematic Macro Information
	Component Parameters
	General Tab
	Protocol specification
	LIN 2.2 Compatibility
	LIN 2.0 Compatibility
	LIN 1.3 Compatibility
	ISO 17987 Compliance
	Enable J2602 Compliance

	Multiple instance support
	Interface number

	General settings
	Use automatic response_error signal
	Bus Inactivity Timeout Detection
	Break Detection Threshold

	General Toolbar
	Import File
	Export File
	LIN File Text Editor

	Baud Rate Tab
	Automatic Baud Rate Synchronization
	Nominal LIN Bus Baud Rate
	Source Clock Frequency
	Source Clock Divider
	Actual LIN Bus Baud Rate

	Frames Tab
	Frame Configuration Table
	Frames Tab Buttons

	Signals Tab
	Frames & Signals relations
	Unplaced Signals
	response_error
	J2602 Status Byte
	Signals Toolbar

	Signal Properties Window
	Adding Signals
	Name
	Type
	Length
	Initial Value
	Fill Color
	Signal Description
	Preview

	Transport Layer Tab
	Use Transport Layer
	API Format Selection
	Initial NAD
	Maximum Message Length
	TX Queue Length/RX Queue Length

	Configuration Services Tab
	Automatic Configuration Request Handling
	Configuration Service Selection
	Slave Information

	Clock Selection
	Placement
	LIN_Dynamic Component
	LIN Version and Updates

	Application Programming Interface
	Core API Functions
	Initialization Subgroup
	l_bool l_sys_init()

	Signal Interaction Functions Subgroup
	l_bool_rd()
	l_u8_rd()
	l_u16_rd()
	l_bytes_rd()
	l_bool_wr()
	l_u8_wr()
	l_u16_wr()
	l_bytes_wr()

	Notification Functions Subgroup
	l_flg_tst()
	l_flg_clr()

	Interface Management Functions* Subgroup
	l_ifc_init()
	l_ifc_wake_up()
	l_ifc_ioctl()
	l_ifc_rx()
	l_ifc_tx()
	l_ifc_aux()
	l_ifc_read_status()

	User-Provided Callouts
	l_sys_irq_disable()

	Node Configuration Functions
	ld_read_configuration()
	ld_set_configuration()
	ld_read_by_id_callout()

	Transport Layer Functions
	Initialization Subgroup
	ld_init()

	Raw Transport Layer API Functions Subgroup
	ld_put_raw()
	ld_get_raw()
	ld_raw_tx_status()
	ld_raw_rx_status()

	Cooked Transport Layer API Functions Subgroup
	ld_send_message()
	ld_receive_message()
	ld_tx_status()
	ld_rx_status()

	Non-LIN-Specified API
	LIN_Start()
	LIN_Stop()
	LIN_j2602Status_Reset()

	Macro Callbacks
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	PSoC and LIN Bus Hardware Interface
	SysTick Timer Usage
	Response Pending

	Resources
	DC and AC Electrical Characteristics
	DC Characteristics
	Fixed UART DC Specifications

	Performance Characteristics
	Component Errata
	Component Changes

