

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-85024 Rev. *B Revised September 23, 2014

Features
 Industry-standard NXP® I2C bus interface

 Supports slave, master, multi-master and multi-master-slave operation

 Requires only two pins (SDA and SCL) to interface to I2C bus

 Supports standard data rates of 100/400/1000 kbps

 High-level APIs require minimal user programming

General Description
The I2C component supports I2C slave, master, and multi-master configurations. The I2C bus is
an industry-standard, two-wire hardware interface developed by Philips. The master initiates all
communication on the I2C bus and supplies the clock for all slave devices.
The I2C component supports standard clock speeds up to 1000 kbps. It is compatible1 with I2C
Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus
specification. The I2C component is compatible with other third-party slave and master devices.
Note This version of the component datasheet covers both the fixed hardware I2C block and the
UDB version.

1 The I2C peripheral is non-compliant with the NXP I2C specification in the following areas: analog glitch filter, I/O

VOL/IOL, I/O hysteresis. The I2C Block has a digital glitch filter (not available in sleep mode). The Fast-mode
minimum fall-time specification can be met by setting the I/Os to slow speed mode. See the I/O Electrical
Specifications in "Inputs and Outputs" section of device datasheet for details.

I2C Master/Multi-Master/Slave
3.30

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 2 of 54 Document Number: 001-85024 Rev. *B

When to Use an I2C Component
The I2C component is an ideal solution when networking multiple devices on a single board or
small system. The system can be designed with a single master and multiple slaves, multiple
masters, or a combination of masters and slaves.

I2C Temperature
Sensors

Vcc

I2C Serial
EEPROMs

Bridges
(with I2C)

I2C A/D or D/A
Convertors

SPI
UART

USB

I2C LED
Controlers

MCUs
(with I2C)

Input/Output Connections
This section describes the various input and output connections for the I2C component. An
asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.

sda – In/Out
Serial data (SDA) is the I2C data signal. It is a bidirectional data signal used to transmit or
receive all bus data. The pin connected to sda should be configured as Open-Drain-Drives-Low.

scl – In/Out
Serial clock (SCL) is the master-generated I2C clock. Although the slave never generates the
clock signal, it may hold the clock low, stalling the bus until it is ready to send data or ACK/NAK2
the latest data or address. The pin connected to scl should be configured as Open-Drain-Drives-
Low.

2 NAK is an abbreviation for negative acknowledgment or not acknowledged. I2C documents commonly use NACK

while the rest of the networking world uses NAK. They mean the same thing.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 3 of 54

clock – Input *
The clock input is available when the Implementation parameter is set to UDB. The UDB
version needs a clock to provide 16 times oversampling.

Bus Clock

50 kbps 800 kHz

100 kbps 1.6 MHz

400 kbps 6.4 MHz

1000 kbps 16 MHz

reset – Input *
The reset input is available when the Implementation parameter is set to UDB. If the reset pin is
held to logic high, the I2C block is held in reset, and communication over I2C stops. This is a
hardware reset only. Software must be independently reset using the I2C_Stop() and I2C_Start()
APIs. The reset input may be left floating with no external connection. If nothing is connected to
the reset line, the component will assign it a constant logic 0.

I2C Bus Multiplexing
The following inputs and outputs are only available when the External OE buffer option is
selected (on the Advanced tab). The internal OE buffers are removed and bidirectional scl and
sda terminals are replaced with separate sda_i and scl_i inputs as well as sda_o and scl_o
outputs. This allows internal I2C bus multiplexing.

sda_i – Input *
Serial data input signal used to receive data. The sda_i terminal should be connected to a tri-
state buffer feedback signal for an SDA bidirectional pin.

scl_i – Input *
Serial clock input clock signal used to receive clocks in slave mode and handle clock
synchronization in master mode. The scl_i terminal should be connected to a tri-state buffer
feedback signal for an SCL bidirectional pin.

sda_o – Output *
Serial data output signal used to transmit data. The sda_o terminal should be connected to a tri-
state buffer direct input signal for an SDA bidirectional pin.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 4 of 54 Document Number: 001-85024 Rev. *B

scl_o – Output *
Serial clock output signal used by a slave or master to hold the clock line low, stalling the bus
until it is ready for operation. The scl_o terminal should be connected to a tri-state buffer direct
input signal for an SCL bidirectional pin.

Schematic Macro Information
By default, the PSoC Creator Component Catalog contains four schematic macro
implementations for the I2C component. These macros contain already connected and
configured pins and provide a clock source, as needed. The schematic macros use I2C Slave
and Master components, configured for fixed-function and UDB hardware, as shown below.

Fixed-Function I2C Slave with Pins Fixed-Function I2C Master Pins

UDB I2C Slave with Clock and Pins UDB I2C Master with Clock and Pins

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 5 of 54

Component Parameters
Drag an I2C component onto your design and double-click it to open the Configure dialog.

Basic Configuration Tab

The I2C component provides the following parameters.

Mode
Use this option to select the I2C mode: slave, master, multi-master, or multi-master-slave.

Mode Description

Slave Slave-only operation (default).

Master Master-only operation.

Multi-Master Supports more than one master on the bus.

Multi-Master-Slave Simultaneous slave and multi-master operation.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 6 of 54 Document Number: 001-85024 Rev. *B

Data Rate
This parameter is used to set the I2C data rate value up to 1000 kbps; the actual speed may
differ based on available clock speed and divider range. The standard data rates3 are 50, 100
(default), 400, and 1000 kbps. If Implementation is set to UDB and the UDB Clock Source
parameter is set to External Clock, the Data Rate parameter is ignored; the 16x input clock
determines the data rate.
Note If Implementation is set to UDB and the Mode parameter is set to Master, Multi-Master,
or Multi-Master-Slave, the real master speed for Data Rate above 400 kbps may differ
depending on the BUS_CLK value, rise and fall times of fSCL

4, and component placement.

Slave Address
This is the I2C address that will be recognized by the slave. If slave operation is not selected, this
parameter is ignored. You can select a slave address between 0 and 127 (0x00 and 0x7F); the
default is 8. This address is the 7-bit right-justified slave address and does not include the R/W
bit. You can enter the value as decimal or hexadecimal; for hexadecimal numbers type ‘0x’
before the address. If a 10-bit slave address is required, you must use software address
decoding and provide decode support for the second byte of the 10-bit address in the ISR.

Implementation
This option determines how the I2C hardware is implemented on the device.

Implementation Description

Fixed Function Use the fixed-function block on the device (default).

UDB Implement the I2C in the UDB array.

Address Decode
This parameter allows you to choose between software and hardware address decoding. For
most applications where the provided APIs are sufficient and only one slave address is required,
hardware address decoding is preferred. In applications where you prefer to modify the source
code to provide detection of multiple slave addresses or 10-bit addresses, you must use
software address detection. Hardware is the default. If hardware address decode is enabled, the
block automatically NAKs addresses that are not its own without CPU intervention. It
automatically interrupts the CPU on correct address reception, and holds the SCL line low until
CPU intervention.

3 Fixed-function implementation supports only standard data rates 50, 100 or 400 kbps for PSoC 5 devices. The

UDB-based implementation should be used instead for different data rates up to 1000 kbps.
4 Refer to the I2C-Bus Specification (Rev. 3 from June 2007), section 7.2.1 Reduced fSCL.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 7 of 54

Pins
This parameter determines which type of pins to use for SDA and SCL signal connections. There
are three possible values: Any, I2C0, and I2C1. The default is Any.

Value Pins

Any Any GPIO or SIO pins through schematic routing

I2C0 SCL = SIO pin P12[4], SDA = SIO pin P12[5]

I2C1 SCL = SIO pin P12[0], SDA = SIO pin P12[1]

Any means general-purpose I/O (GPIO or SIO). If Enable wakeup from Sleep Mode is not
required, use Any for SDA and SCL. If Enable wakeup from Sleep Mode is required, use I2C0
or I2C1; using either I2C0 or I2C1 allows you to configure the device for wakeup on I2C address
match.
The I2C component does not check the correct pin assignments.

Enable wakeup from Sleep Mode
This option allows the system to be awakened from sleep when an address match occurs. This
option is only valid if Address Decode is set to Hardware and the SDA and SCL signals are
connected to SIO pins (I2C0 or I2C1). The option is disabled by default. This option is supported
by the PSoC 3 and PSoC 5LP devices.
You must enable the possibility for the I2C to wake up the device on slave address match while
switching to the sleep mode. You can do this by calling the I2C_Sleep() API; also refer to the
Wakeup on Hardware Address Match section and to the “Power Management APIs” section of
the System Reference Guide.

UDB Clock Source
This parameter allows you to choose between an internally configured clock and an externally
configured clock for data rate generation. When set to Internal Clock, PSoC Creator calculates
and configures the required clock frequency based on the Data Rate parameter, taking into
account 16 times oversampling. In External Clock mode the component does not control the
data rate but displays the actual data rate based on the user-connected clock source. If this
parameter is set to Internal Clock then the clock input is not visible on the symbol.
You can enter the desired tolerance values for the internal clock. Clock tolerances are specified
as a percentage. The default range for slave mode is -5% to +50%. The clock can be fast in this
mode. For the remaining modes, the default range is -25% to +5%. Again, the master can be
slow. At the maximum data rate (1000 kbps), the clock should be equal or slower, but not faster
than expected. This could cause unexpected behavior.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 8 of 54 Document Number: 001-85024 Rev. *B

Enable UDB Slave Fixed Placement
This parameter allows you to choose a fixed component placement that improves the component
performance over unconstrained placement. If this parameter is set, all of the component
resources are fixed in the top right corner of the device. This parameter controls the assignment
of pins connected to the component. The choice of pin assignment is not a determining factor for
component performance. This option is only valid if Mode is set to Slave and Implementation is
set to UDB. This option is disabled by default.
The fixed placement aspect of the component removes the routing variability. It also allows the
fixed placement to continue to operate the same as a non-fixed placed design would in a fairly
empty design.

Advanced Configuration Tab

External OE buffer
This parameter allows internal I2C bus multiplexing. The internal OE buffer is removed and
bidirectional scl and sda terminals are replaced with separate inputs (sda_i and scl_i) and
outputs (sda_o and scl_o).

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 9 of 54

Clock Selection
When the internal clock configuration is selected, PSoC Creator calculates the needed frequency
and clock source and generates the resource for implementation. Otherwise, you must supply
the clock component and calculate the required clock frequency. That frequency is 16x the
desired data rate available. For example, a 1.6-MHz clock is required for a 100-kbps data rate.
The fixed-function block uses BUS_CLK, which is calculated by the customizer divider to archive
the 16/32 oversampling rate (50-kbps oversampling rate is 32, all other rates are 16).

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component during
run time. The following table lists and describes the interface to each function. The subsequent
sections discuss each function in more detail.
By default, PSoC Creator assigns the instance name “I2C_1” to the first instance of a component
in a given design. You can rename the instance to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“I2C.”
All API functions assume that data direction is from the perspective of the I2C master. A write
event occurs when data is written from the master to the slave. A read event occurs when the
master reads data from the slave.

Generic Functions
This section includes the functions that are generic to I2C slave or master operation.

Function Description

I2C_Start() Initializes and enables the I2C component. The I2C interrupt is enabled, and the
component can respond to I2C traffic.

I2C_Stop() Stops responding to I2C traffic (disables the I2C interrupt).

I2C_EnableInt() Enables interrupt, which is required for most I2C operations.

I2C_DisableInt() Disables interrupt. The I2C_Stop() API does this automatically.

I2C_Sleep() Stops I2C operation and saves I2C nonretention configuration registers (disables the
interrupt). Prepares wake on address match operation if Wakeup from Sleep Mode is
enabled (disables the I2C interrupt).

I2C_Wakeup() Restores I2C nonretention configuration registers and enables I2C operation (enables the
I2C interrupt).

I2C_Init() Initializes I2C registers with initial values provided from the customizer.

I2C_Enable() Activates I2C hardware and begins component operation.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 10 of 54 Document Number: 001-85024 Rev. *B

Function Description

I2C_SaveConfig() Saves I2C nonretention configuration registers (disables the I2C interrupt).

I2C_RestoreConfig() Restores I2C nonretention configuration registers saved by I2C_SaveConfig() or
I2C_Sleep() (enables the I2C interrupt).

Global Variables
Knowledge of these variables is not required for normal operations.

Variable Description

I2C_initVar I2C_initVar indicates whether the I2C component has been initialized. The variable is
initialized to 0 and set to 1 the first time I2C_Start() is called. This allows the component
to restart without reinitialization after the first call to the I2C_Start() routine.
If reinitialization of the component is required, then the I2C_Init() function can be called
before the I2C_Start() or I2C_Enable() function.

I2C_state Current state of the I2C state machine.

I2C_mstrStatus Current status of the I2C master.

I2C_mstrControl Controls the master end of the transaction with or without generating a Stop.

I2C_mstrRdBufPtr Pointer to the master read buffer.

I2C_mstrRdBufSize Size of the master read buffer.

I2C_mstrRdBufIndex Current index within the master read buffer.

I2C_mstrWrBufPtr Pointer to the master write buffer.

I2C_mstrWrBufSize Size of the master write buffer.

I2C_mstrWrBufIndex Current index within the master write buffer.

I2C_slStatus Current status of the I2C slave.

I2C_slAddress Software address of the I2C slave.

I2C_slRdBufPtr Pointer to the slave read buffer.

I2C_slRdBufSize Size of the slave read buffer.

I2C_slRdBufIndex Current index within the slave read buffer.

I2C_slWrBufPtr Pointer to the slave write buffer.

I2C_slWrBufSize Size of the slave write buffer.

I2C_slWrBufIndex Current index within the slave write buffer.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 11 of 54

Generic Functions

void I2C_Start(void)
Description: This is the preferred method to begin component operation. I2C_Start() calls the I2C_Init()

function, and then calls the I2C_Enable() function. I2C_Start() must be called before I2C bus
operation.
This API enables the I2C interrupt. Interrupts are required for most I2C operations.
You must set up the I2C Slave buffers before this function call to avoid reading or writing
partial data while the buffers are setting up.
I2C slave behavior is as follows when enabled and buffers are not set up:
I2C Read transfer – Returns 0xFF until the read buffer is set up. Use the
I2C_SlaveInitReadBuf() function to set up the read buffer;
I2C Write transfer – Send NAK because there is no place to store received data. Use the
I2C_SlaveInitWriteBuf() function to set up the read buffer;

Parameters: None

Return Value: None

Side Effects: None

void I2C_Stop(void)
Description: This function disables I2C hardware and interrupt.

FF implementation(PSoC 3 and PSoC5 LP): Releases the I2C bus if it was locked up by the
device and sets it to the idle state.
UDB implementation: Releases the I2C bus if it was locked up by the device and sets it to
the idle state.

Parameters: None

Return Value: None

Side Effects: None

void I2C_EnableInt(void)
Description: This function enables the I2C interrupt. Interrupts are required for most operations.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 12 of 54 Document Number: 001-85024 Rev. *B

void I2C_DisableInt(void)
Description: This function disables the I2C interrupt. This function is not normally required because the

I2C_Stop() function disables the interrupt.

Parameters: None

Return Value: None

Side Effects: If the I2C interrupt is disabled while the I2C is still running, it can cause the I2C bus to lock
up.

void I2C_Sleep(void)
Description: This is the preferred API to prepare the component for sleep.

Wakeup on address match enabled: If a transaction intended for this device executes
during this API call, it waits until the current transaction is completed. All subsequent I2C
traffic intended for this device is NAKed until the device is put to sleep. The address match
event wakes up the chip.
Wakeup on address match disabled: This API checks current I2C component state,
saves it, and disables the component by calling I2C_Stop() if it is currently enabled.
I2C_SaveConfig() is then called to save the I2C nonretention configuration registers.
Call the I2C_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. See the PSoC Creator System Reference Guide for more information about
power-management functions.

Parameters: None

Return Value: None

Side Effects: None

void I2C_Wakeup(void)
Description: This is the preferred API to restore the component to the state when I2C_Sleep() was last

called. Wakeup on address match enabled: This API enables I2C master functionality if it
was enabled before sleep, and disables the I2C backup regulator. The incoming transaction
continues as soon as the regular I2C interrupt handler is set.
Wakeup on address match disabled: This API restores the I2C nonretention
configuration registers by calling I2C_RestoreConfig(). If the component was enabled
before the I2C_Sleep() function was called, I2C_Wakeup() re-enables it.

Parameters: None

Return Value: None

Side Effects: Calling the I2C_Wakeup() function without first calling the I2C_Sleep() or I2C_SaveConfig()
function can produce unexpected behavior.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 13 of 54

void I2C_Init(void)
Description: This function initializes or restores the component according to the customizer Configure

dialog settings. It is not necessary to call I2C_Init() because the I2C_Start() API calls this
function, which is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void I2C_Enable(void)
Description: This function activates the hardware and begins component operation. It is not necessary

to call I2C_Enable() because the I2C_Start() API calls this function, which is the preferred
method to begin component operation. If this API is called, I2C_Start() or I2C_Init() must be
called first.

Parameters: None

Return Value: None

Side Effects: None

void I2C_SaveConfig(void)
Description: This function saves the I2C component nonretention configuration registers.

Wakeup on address match enabled: This API disables the I2C master, if it was enabled
before, and enables the I2C backup regulator. If a transaction intended for this device
executes during this API call, it waits until the current transaction is completed and I2C is
ready to go to sleep. All subsequent I2C traffic is NAKed until the device is put to sleep.
Wakeup on address match disabled: Refer to the main description.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 14 of 54 Document Number: 001-85024 Rev. *B

void I2C_RestoreConfig(void)
Description: This function restores the I2C component nonretention configuration registers to the state

they were in before I2C_Sleep() or I2C_SaveConfig() was called.
Wakeup on address match enabled: This API enables I2C master functionality, if it was
enabled before, and disables the I2C backup regulator. Generates the I2C interrupt if I2C
was wake up source to release the bus and handles in-coming I2C transaction.
Wakeup on address match disabled: Refer to the main description.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the I2C_Sleep() or I2C_SaveConfig() function can
produce unexpected behavior.

Slave Functions
This section lists the functions that are used for I2C slave operation. These functions are
available if slave operation is enabled.

Function Description

I2C_SlaveStatus() Returns the slave status flags.

I2C_SlaveClearReadStatus() Returns the read status flags and clears the slave read status flags.

I2C_SlaveClearWriteStatus() Returns the write status and clears the slave write status flags.

I2C_SlaveSetAddress() Sets the slave address, a value between 0 and 127 (0x00 to 0x7F).

I2C_SlaveInitReadBuf() Sets up the slave receive data buffer. (master <- slave)

I2C_SlaveInitWriteBuf() Sets up the slave write buffer. (master -> slave)

I2C_SlaveGetReadBufSize() Returns the number of bytes read by the master since the buffer was reset.

I2C_SlaveGetWriteBufSize() Returns the number of bytes written by the master since the buffer was reset.

I2C_SlaveClearReadBuf() Resets the read buffer counter to zero.

I2C_SlaveClearWriteBuf() Resets the write buffer counter to zero.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 15 of 54

uint8 I2C_SlaveStatus(void)
Description: This function returns the slave’s communication status.

Parameters: None

Return Value: uint8: Current status of I2C slave. This status incorporates read and write status flags.
Each constant is a bit field value. The value returned may have multiple bits set to indicate
the status of the read or write transfer.

Slave Status Constants Description

I2C_SSTAT_RD_CMPLT5 Slave read transfer complete. Set when the master sends a
NAK to say that it is done reading.

I2C_SSTAT_RD_BUSY Slave read transfer in progress. Set when the master
addresses the slave with a read, cleared when RD_CMPLT
is set.

I2C_SSTAT_RD_ERR_OVFL The master attempted to read more bytes than are in the
buffer.

I2C_SSTAT_WR_CMPLT6 Slave write transfer complete. Set when a Stop condition is
received.

I2C_SSTAT_WR_BUSY Slave write transfer in progress. Set when the master
addresses the slave with a write and cleared when
WR_CMPLT is set.

I2C_SSTAT_WR_ERR_OVFL The master attempted to write past the end of the buffer.
The incoming byte is NAKed by the slave.

Side Effects: None

uint8 I2C_SlaveClearReadStatus(void)
Description: This function clears the read status flags and returns their values.

The I2C_SSTAT_RD_BUSY flag is not affected by this function call.

Parameters: None

Return Value: uint8: Current read status of the I2C slave. See the I2C_SlaveStatus() function for
constants.

Side Effects: None

5 The definition was changed from I2C_SSTAT_RD_CMPT to I2C_SSTAT_RD_CMPLT to comply with the master

read complete definition. The component supports both definitions , but the I2C_SSTAT_RD_CMPT will become
obsolete.

6 The definition was changed from I2C_SSTAT_WR_CMPT to I2C_SSTAT_WR_CMPLT to comply with the master
write complete definition. The component supports both definitions , but the I2C_SSTAT_WR_CMPT will become
obsolete.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 16 of 54 Document Number: 001-85024 Rev. *B

uint8 I2C_SlaveClearWriteStatus(void)
Description: This function clears the write status flags and returns their values.

The I2C_SSTAT_WR_BUSY flag is not affected by this function call.

Parameters: None

Return Value: uint8: Current write status of the I2C slave. See the I2C_SlaveStatus() function for
constants.

Side Effects: None

void I2C_SlaveSetAddress(uint8 address)
Description: This function sets the I2C slave address

Parameters: uint8 address: I2C slave address for the primary device. This value can be any address
between 0 and 127 (0x00 to 0x7F). This address is the 7-bit right-justified slave address
and does not include the R/W bit.

Return Value: None

Side Effects: None

void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)
Description: This function sets the buffer pointer and size of the read buffer. This function also resets

the transfer count returned with the I2C_SlaveGetReadBufSize() function.

Parameters: uint8* rdBuf: Pointer to the data buffer to be read by the master.

uint8 bufSize: Size of the buffer exposed to the I2C master.

Return Value: None

Side Effects: If this function is called during a bus transaction, data from the previous buffer location and
the beginning of the current buffer may be transmitted.

void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)
Description: This function sets the buffer pointer and size of the write buffer. This function also resets

the transfer count returned with the I2C_SlaveGetWriteBufSize() function.

Parameters: uint8* wrBuf: Pointer to the data buffer to be written by the master.

uint8 bufSize: Size of the write buffer exposed to the I2C master.

Return Value: None

Side Effects: If this function is called during a bus transaction, data may be received in the previous
buffer and the current buffer location.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 17 of 54

uint8 I2C_SlaveGetReadBufSize(void)
Description: This function returns the number of bytes read by the I2C master since an

I2C_SlaveInitReadBuf() or I2C_SlaveClearReadBuf() function was executed.
The maximum return value is the size of the read buffer.

Parameters: None

Return Value: uint8: Bytes read by the master.

Side Effects: None

uint8 I2C_SlaveGetWriteBufSize(void)
Description: This function returns the number of bytes written by the I2C master since an

I2C_SlaveInitWriteBuf() or I2C_SlaveClearWriteBuf() function was executed.
The maximum return value is the size of the write buffer.

Parameters: None

Return Value: uint8: Bytes written by the master.

Side Effects: None

void I2C_SlaveClearReadBuf(void)
Description: This function resets the read pointer to the first byte in the read buffer. The next byte the

master reads will be the first byte in the read buffer.

Parameters: None

Return Value: None

Side Effects: None

void I2C_SlaveClearWriteBuf(void)
Description: This function resets the write pointer to the first byte in the write buffer. The next byte the

master writes will be the first byte in the write buffer.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 18 of 54 Document Number: 001-85024 Rev. *B

Master and Multi-Master Functions
These functions are only available if master or multi-master mode is enabled.

Function Description

I2C_MasterStatus() Returns the master status.

I2C_MasterClearStatus() Returns the master status and clears the status flags.

I2C_MasterWriteBuf() Writes the referenced data buffer to a specified slave address.

I2C_MasterReadBuf() Reads data from the specified slave address and places the data in the
referenced buffer.

I2C_MasterSendStart() Sends only a Start to the specific address.

I2C_MasterSendRestart() Sends only a Restart to the specified address.

I2C_MasterSendStop() Generates a Stop condition.

I2C_MasterWriteByte() Writes a single byte. This is a manual command that should only be used with
the I2C_MasterSendStart() or I2C_MasterSendRestart() functions.

I2C_MasterReadByte() Reads a single byte. This is a manual command that should only be used with
the I2C_MasterSendStart() or I2C_MasterSendRestart() functions.

I2C_MasterGetReadBufSize() Returns the byte count of data read since the I2C_MasterClearReadBuf()
function was called.

I2C_MasterGetWriteBufSize() Returns the byte count of the data written since the I2C_MasterClearWriteBuf()
function was called.

I2C_MasterClearReadBuf() Resets the read buffer pointer back to the beginning of the buffer.

I2C_MasterClearWriteBuf() Resets the write buffer pointer back to the beginning of the buffer.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 19 of 54

uint8 I2C_MasterStatus(void)
Description: This function returns the master’s communication status.

Parameters: None

Return Value: uint8: Current status of the I2C master. Each constant is a bit field value. The value returned
may have multiple bits set to indicate the status of the transfer along with the generation of
error conditions.

Master status constants Description

I2C_MSTAT_RD_CMPLT Read transfer complete.
The error condition bits must be checked to ensure that
the read transfer was successful.

I2C_MSTAT_WR_CMPLT Write transfer complete.
The error condition bits must be checked to ensure that
the write transfer was successful.

I2C_MSTAT_XFER_INP Transfer in progress

I2C_MSTAT_XFER_HALT Transfer has been halted. The I2C bus is waiting for the
master to generate a Restart or Stop condition.

I2C_MSTAT_ERR_SHORT_XFER Error condition: Write transfer completed before all
bytes were transferred.

I2C_MSTAT_ERR_ADDR_NAK Error condition: The slave did not acknowledge the
address.

I2C_MSTAT_ERR_ARB_LOST Error condition: The master lost arbitration during
communication with the slave.

I2C_MSTAT_ERR_XFER Error condition: This is the ORed value of error
conditions provided in this table.
If all error condition bits are cleared, but this bit is set,
the transfer was aborted because of slave operation.

Side Effects: None

uint8 I2C_MasterClearStatus(void)
Description: This function clears all status flags and returns the master status.

Parameters: None

Return Value: uint8: Current status of the master. See the I2C_MasterStatus() function for constants.

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 20 of 54 Document Number: 001-85024 Rev. *B

uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8 mode)
Description: This function automatically writes an entire buffer of data to a slave device. After the data

transfer is initiated by this function, the included ISR manages further data transfer in byte-by-
byte mode. Enables the I2C interrupt.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 wrData: Pointer to the buffer of the data to be sent.

uint8 cnt: Number of bytes of the buffer to send.

uint8 mode: Transfer mode defines: (1) Whether a Start or Restart condition is generated at
the beginning of the transfer, and (2) Whether the transfer is completed or halted before the
Stop condition is generated on the bus.
Transfer mode, mode constants may be ORed together.

Mode Constants Description

I2C_MODE_COMPLETE_XFER Perform complete transfer from Start to Stop.

I2C_MODE_REPEAT_START Send Repeat Start instead of Start.

I2C_MODE_NO_STOP Execute transfer without a Stop

Return Value: uint8: Error Status. See the I2C_MasterSendStart() function for constants.

Side Effects: None

uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8 mode)
Description: This function automatically reads an entire buffer of data from a slave device. Once this

function initiates the data transfer, the included ISR manages further data transfer in byte by
byte mode. Enables the I2C interrupt.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 rdData: Pointer to the buffer in which to put the data from the slave.

uint8 cnt: Number of bytes of the buffer to read.

uint8 mode: Transfer mode defines: (1) Whether a Start or Restart condition is generated at
the beginning of the transfer and (2) Whether the transfer is completed or halted before the
Stop condition is generated on the bus.
Transfer mode, mode constants may be ORed together

Mode Constants Description

I2C_MODE_COMPLETE_XFER Perform complete transfer for Start to Stop.

I2C_MODE_REPEAT_START Send Repeat Start instead of Start.

I2C_MODE_NO_STOP Execute transfer without a Stop

Return Value: uint8: Error Status. See the I2C_MasterSendStart() function for constants.

Side Effects: None

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 21 of 54

uint8 I2C_MasterSendStart(uint8 slaveAddress, uint8 R_nW)
Description: This function generates a Start condition and sends the slave address with the read/write

bit. Disables the I2C interrupt.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 R_nW: Set to zero, send write command; set to nonzero, send read command.

Return Value: uint8: Error Status.

Mode Constants Description

I2C_MSTR_NO_ERROR Function completed without error.

I2C_MSTR_BUS_BUSY Bus is busy, Start condition was not generated.

I2C_MSTR_NOT_READY The master is not a valid master on the bus, or a
slave operation is in progress.

I2C_MSTR_ERR_LB_NAK The last byte was NAKed.

I2C_MSTR_ERR_ARB_LOST The master lost arbitration while the Start was
generated. (This status is only valid if multi-master
is enabled.)

I2C_MSTR_ERR_ABORT_START_GEN Start condition generation was aborted because of
the start of slave operation. (This status is only valid
in multi-master-slave mode.)

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register.

uint8 I2C_MasterSendRestart(uint8 slaveAddress, uint8 R_nW)
Description: This function generates a restart condition and sends the slave address with the read/write

bit.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 R_nW: Set to zero, send write command; set to nonzero, send read command.

Return Value: uint8: Error Status. See the I2C_MasterSendStart() function for constants.

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 22 of 54 Document Number: 001-85024 Rev. *B

uint8 I2C_MasterSendStop(void)
Description: This function generates an I2C stop condition on the bus. This function does nothing if Start

or Restart conditions failed before this function was called.

Parameters: None

Return Value: uint8: Error Status. See the I2C_MasterSendStart() command for constants.

Side Effects: This function is blocking and does not exit until:
Master: This function waits while a stop condition is generated.
Multi-Master, Multi-Master-Slave: This function waits while a stop condition is generated
or arbitrage is lost on the ACK/NAK bit.

uint8 I2C_MasterWriteByte(uint8 theByte)
Description: This function sends one byte to a slave. A valid Start or Restart condition must be generated

before calling this function. This function does nothing if the Start or Restart conditions failed
before this function was called.

Parameters: uint8 theByte: Data byte to send to the slave.

Return Value: uint8: Error Status.

Mode Constants Description

I2C_MSTR_NO_ERROR Function complete without error.

I2C_MSTR_NOT_READY The master is not a valid master on the bus or slave
operation is in progress.

I2C_MSTR_ERR_LB_NAK The last byte was NAKed.

I2C_MSTR_ERR_ARB_LOST The master lost arbitration. (This status is valid only if multi-
master is enabled.)

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register.

uint8 I2C_MasterReadByte(uint8 acknNak)
Description: This function reads one byte from a slave and ACKs or NAKs the transfer. A valid Start or

Restart condition must be generated before calling this function. This function does nothing
and returns a zero value if the Start or Restart conditions failed before this function was
called.

Parameters: uint8 acknNak: If zero, sends a NAK; if nonzero sends an ACK.

Return Value: uint8: Byte read from the slave

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 23 of 54

uint8 I2C_MasterGetReadBufSize(void)
Description: This function returns the number of bytes that have been transferred with an

I2C_MasterReadBuf() function.

Parameters: None

Return Value: uint8: Byte count of the transfer. If the transfer is not yet complete, this function returns the
byte count transferred so far.

Side Effects: None

uint8 I2C_MasterGetWriteBufSize(void)
Description: This function returns the number of bytes that have been transferred with an

I2C_MasterWriteBuf() function.

Parameters: None

Return Value: uint8: Byte count of the transfer. If the transfer is not yet complete, this function returns the
byte count transferred so far.

Side Effects: None

void I2C_MasterClearReadBuf (void)
Description: This function resets the read buffer pointer back to the first byte in the buffer.

Parameters: None

Return Value: None

Side Effects: None

void I2C_MasterClearWriteBuf (void)
Description: This function resets the write buffer pointer back to the first byte in the buffer.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 24 of 54 Document Number: 001-85024 Rev. *B

Multi-Master-Slave Functions
Multi-master-slave incorporates slave and multi-master functions.

Bootloader Support
The I2C component can be used as a communication component for the Bootloader. Use the
following configuration to support communication protocol from an external system to the
Bootloader:

 Mode: Slave

 Implementation: Either fixed-function or UDB-based

 Data Rate: Must match Host (boot device) data rate.

 Slave Address: Must match Host (boot device) selected slave address.

 Address Match: Hardware is preferred but not required
For more information about the Bootloader, refer to the “Bootloader System” section of the
System Reference Guide.
For additional information about I2C communication component implementation, refer to the
Bootloader Protocol Interaction with I2C Communication Component section.
The I2C Component provides a set of API functions for Bootloader use.

Function Description

I2C_CyBtldrCommStart Starts the I2C component and enables its interrupt.

I2C_CyBtldrCommStop Disables the I2C component and disables its interrupt.

I2C_CyBtldrCommReset Sets read and write I2C buffers to the initial state and resets the slave status.

I2C_CyBtldrCommRead Allows the caller to read data from the bootloader host. This function manages polling
to allow a block of data to be completely received from the host device.

I2C_CyBtldrCommWrite Allows the caller to write data to the bootloader host. This function manages polling to
allow a block of data to be completely sent to the host device.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 25 of 54

void I2C_CyBtldrCommStart(void)
Description: This function starts the I2C component and enables its interrupt.

Every incoming I2C write transaction is treated as a command for the bootloader.
Every incoming I2C read transaction returns 0xFF until the bootloader provides a response
to the executed command.

Parameters: None

Return Value: None

Side Effects: None

void I2C_CyBtldrCommStop(void)
Description: This function disables the I2C component and disables its interrupt.

Parameters: None

Return Value: None

Side Effects: None

void I2C_CyBtldrCommReset(void)
Description: This function sets the read and write I2C buffers to the initial state and resets the slave

status.

Parameters: None

Return Value: None

Side Effects: None

cystatus I2C_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
Description: This function allows the caller to read data from the bootloader host. The function manages

polling to allow a block of data to be completely received from the bootloader host.

Parameters: uint8 pData[]: Pointer to storage for the block of data to be read from the bootloader host
uint16 size: Number of bytes to be read
uint16 *count: Pointer to the variable to write the number of bytes actually read
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, see the “Return Codes” section of
the System Reference Guide.

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 26 of 54 Document Number: 001-85024 Rev. *B

cystatus I2C_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: This function allows the caller to write data to the bootloader host. The function manages
polling to allow a block of data to be completely sent to the bootloader host.

Parameters: const uint8 pData[]: Pointer to the block of data to be written to the bootloader host
uint16 size: Number of bytes to be written
uint16 *count: Pointer to the variable to write the number of bytes actually written
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information see the “Return Codes” section of the
System Reference Guide.

Side Effects: None

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The I2C component has the following specific deviations:

MISRA-C:
2004 Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

10.1 R The value of an expression of integer type
shall not be implicitly converted to a different
underlying type if:
a) it is not a conversion to a wider integer
type of the same signedness, or
b) the expression is complex, or
c) the expression is not constant and is a
function argument, or
d) the expression is not constant and is a
return expression

The library function memcpy has a generic int
argument for the number of bytes to be copied.
An unsigned 16-bit integer is passed as an
argument to this function.
This action does not cause any side effects
because the number of bytes to copy is always less
than 256.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 27 of 54

MISRA-C:
2004 Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

11.5 R A cast shall not be performed that removes
any const or volatile qualification from the
type addressed by a pointer.

The library function memcpy has pointer to void
arguments for the source and destination.
A pointer to a constant array is passed as the
source argument and the constant qualification is
lost.
The memcpy function implementation never
changes the source and is therefore safe to use
with a constant argument.

17.4 R Array indexing shall be the only allowed form
of pointer arithmetic.

The application allocates buffers and sets them up
for the component providing the pointer and size.
The component uses array indexing operations to
access these buffers. The buffer size is checked
before accessing the buffers.
This implementation is safe as long as the correct
buffer size is provided by the application.

19.7 A A function should be used in preference to a
function-like macro.

Deviations with function-like macros to allow for
more efficient code.
The component incorporates the Fixed Function
and UDB implementations. Macros with arguments
are used to support these two implementations in a
flexible way.

This component has the following embedded component: Clock. Refer to the corresponding
component datasheet for information on their MISRA compliance and specific deviations.

Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Functional Description
This component supports I2C slave, master, multi-master, and multi-master-slave configurations.
The following sections provide an overview of how to use the slave, master, and multi-master
components.
This component requires that you enable global interrupts because the I2C hardware is interrupt
driven. Although this component requires interrupts, you do not need to add any code to the ISR
(interrupt service routine). The component services all interrupts (data transfers) independent of

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 28 of 54 Document Number: 001-85024 Rev. *B

your code. The memory buffers allocated for this interface look like simple dual-port memory
between your application and the I2C master/slave.

Slave Operation
The slave interface consists of two buffers in memory, one for data written to the slave by a
master and a second buffer for data read by a master from the slave. Remember that reads and
writes are from the perspective of the I2C master. The I2C slave read and write buffers are set by
the initialization commands below. These commands do not allocate memory, but instead copy
the array pointer and size to the internal component variables. You must instantiate the arrays
used for the buffers because they are not automatically generated by the component. You can
use the same buffer for both read and write buffers, but you must be careful to manage the data
properly.

void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)
void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)

Using the functions above sets a pointer and byte count for the read and write buffers. The
bufSize for these functions may be less than or equal to the actual array size, but it should never
be larger than the available memory pointed to by the rdBuf or wrBuf pointers.

Figure 1. Slave Buffer Structure
Memory

0x0000

0x1230

0xFFFF

0x1243

0x00

0x01

0x02
0x03

0x04
0x05

0x06

0x07

0x08

0x09

I2C Read
Buffer

uint8 rdBuf[10];
I2C_SlaveInitReadBuf(rdBuf, 10);

0x1237

0x123A

0x00

0x01

0x02
0x03

0x04
0x05

0x06

0x07

I2C Write
 Buffer

uint8 wrBuf[8];
I2C_SlaveInitWriteBuf(wrBuf, 8);

Index

Index

When the I2C_SlaveInitReadBuf() or I2C_SlaveInitWriteBuf() functions are called, the internal
index is set to the first value in the array pointed to by rdBuf and wrBuf, respectively. As the I2C
master reads or writes the bytes, the index is incremented until the offset is one less than the
byteCount. At any time, the number of bytes transferred can be queried by calling either
I2C_SlaveGetReadBufSize() or I2C_SlaveGetWriteBufSize() for the read and write buffers,

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 29 of 54

respectively. Reading or writing more bytes than are in the buffers causes an overflow error. The
error is set in the slave status byte and can be read with the I2C_SlaveStatus() API.
To reset the index back to the beginning of the array, use the following commands.

void I2C_SlaveClearReadBuf(void)
void I2C_SlaveClearWriteBuf(void)

This resets the index back to zero. The next byte the I2C master reads or writes to is the first byte
in the array. Before using these clear buffer commands, the data in the arrays should be read or
updated.
Multiple reads or writes by the I2C master continue to increment the array index until the clear
buffer commands are used or the array index tries to grow beyond the array size. Figure 2 shows
an example where an I2C master has executed two write transactions. The first write was four
bytes and the second write was six bytes. The sixth byte in the second transaction was ACKed
by the slave because buffer has a room to store byte. If the master tried to write a seventh byte
for the second transaction or started to write more bytes with a third transaction, each byte would
be NAKed and discarded until the buffer is reset.
Using the I2C_SlaveClearWriteBuf() function after the first transaction resets the index back to
zero and causes the second transaction to overwrite the data from the first transaction. Make
sure data is not lost by overflowing the buffer. The data in the buffer should be processed by the
slave before resetting the buffer index.

Figure 2. System Memory

1

2

3

4

5

6

7

8

9

0x0000

0x1230

0 Trans1 Byte1

Trans1 Byte2

Trans1 Byte3

Trans1 Byte4

Trans2 Byte1

Trans2 Byte2

Trans2 Byte3

Trans2 Byte4

Trans2 Byte5

Trans2 Byte6

Transaction 1

Transaction 2

Index

Read or Write
Buffer

Visible by
I2C Master

0x1239

0xFFFF

System Memory
uint8 wrBuf[10];

I2C_SlaveInitWriteBuf((uint8 *) wrBuf, 10);

Both the read and write buffers have four status bits to signal transfer complete, transfer in
progress, and buffer overflow. Starting a transfer sets the busy flag. When the transfer is

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 30 of 54 Document Number: 001-85024 Rev. *B

complete, the transfer complete flag is set and the busy flag is cleared. If a second transfer is
started, both the busy and transfer complete flags can be set at the same time. The following
table shows read and write status flags.

Slave Status Constants Value Description

I2C_SSTAT_RD_CMPLT 0x01 Slave read transfer complete

I2C_SSTAT_RD_BUSY 0x02 Slave read transfer in progress (busy)

I2C_SSTAT_RD_OVFL 0x04 Master attempted to read more bytes than are in the buffer

I2C_SSTAT_WR_CMPLT 0x10 Slave write transfer complete

I2C_SSTAT_WR_BUSY 0x20 Slave write transfer in progress (busy)

I2C_SSTAT_WR_OVFL 0x40 Master attempted to write past the end of the buffer

The following code example initializes the write buffer then waits for a transfer to complete. After
the transfer is complete, the data is copied into a working array. In many applications, the data
does not have to be copied to a second location, but instead can be processed in the original
buffer. You could create an almost identical read buffer example by replacing the write functions
and constants with read functions and constants. Processing the data may mean new data is
transferred into the slave buffer instead of out.

uint8 wrBuf[10];
uint8 userArray[10];
uint8 byteCnt;

/* Initialize write buffer before call I2C_Start */
I2C_SlaveInitWriteBuf((uint8 *) wrBuf, 10);

/* Start I2C Slave operation */
I2C_Start();

/* Wait for I2C master to complete a write */

for(;;) /* loop forever */
{
 /* Wait for I2C master to complete a write */
 if(0u != (I2C_SlaveStatus() & I2C_SSTAT_WR_CMPLT))
 {
 byteCnt = I2C_SlaveGetWriteBufSize();
 I2C_SlaveClearWriteStatus();
 for(i=0; i < byteCnt; i++)
 {
 userArray[i] = wrBuf[i]; /* Transfer data */
 }
 I2C_SlaveClearWriteBuf();
 }
}

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 31 of 54

Master/Multi-Master Operation
Master and multi-master7,8 operation are basically the same, with two exceptions. When
operating in multi-master mode, the program should always check the return status for a Start
transaction. Another multi-master may already be communicating with another slave. In this
case, the program must wait until that communication is completed and the bus becomes free.
The program can wait in two ways: generate a Start transaction until the return status indicates
success, or check the bus state until the bus becomes free and then generate a Start
transaction. The multi-master transaction can be queued if another multi-master generates the
Start faster. In this case, the error condition is not returned and a multi-master transaction is
generated. This transaction is issued as soon as the bus becomes free.
The second difference is that, in multi-master mode, two masters can start at the same time. If
this happens, one of the two masters loses arbitration.

 Automatic multi-master transaction: The component automatically checks for this
condition and responds with an error if arbitration was lost. The multi-master transaction is
considered complete (appropriate completion status flags are set) when arbitration is lost.

 Manual multi-master transaction: You must check for the return condition after each byte
is transferred.

There are two options when operating the I2C master: manual and automatic. In the automatic
mode, a buffer is created to hold the entire transfer. In the case of a write operation, the buffer is
prefilled with the data to be sent. If data is to be read from the slave, you need to allocate a
buffer at least the size of the packet. To write an array of bytes to a slave in automatic mode, use
the following function.

uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8
mode)

The slaveAddress variable is a right-justified 7-bit slave address of 0 to 127. The component API
automatically appends the write flag to the LSb of the address byte. The second parameter,
xferData, points to the array of data to transfer. The cnt parameter is the number of bytes to
transfer. The last parameter, mode, determines how the transfer starts and stops. A transaction
can begin with a Restart instead of a Start, or halt before the Stop sequence. These options
allow back-to-back transfers where the last transfer does not send a Stop and the next transfer
issues a Restart instead of a Start.

7 In fixed-function implementation for PSoC 5 in master or multi-master mode, if the software sets the Stop condition

immediately after the Start condition, the module generates the Stop condition. This happens after the address
field (sends 0xFF if data write), and the clock line remains low. To avoid this condition, do not set the Stop
condition immediately after Start; transfer at least a byte and set the Stop condition after NAK or ACK.

8 Fixed-function implementation does not support undefined bus conditions. Avoid these conditions, or use the
UDB-based implementation instead.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 32 of 54 Document Number: 001-85024 Rev. *B

A read operation is almost identical to the write operation. It uses the same parameters with the
same constants.

uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8
mode);

Both of these functions return status. See the status table for the I2C_MasterStatus() function
return value. Because the read and write transfers complete in the background during the I2C
interrupt code, you can use the I2C_MasterStatus() function to determine when the transfer is
complete. A code snippet that shows a typical write to a slave follows.

I2C_MasterClearStatus(); /* Clear any previous status */
I2C_MasterWriteBuf(0x08, (uint8 *) wrData, 10, I2C_MODE_COMPLETE_XFER);
for(;;)
{
 if(0u != (I2C_MasterStatus() & I2C_MSTAT_WR_CMPLT))
 {

 /* Transfer complete. Check Master status to make sure that transfer
 completed without errors. */

 break;
 }
}

The I2C master can also be operated manually. In this mode, each part of the write transaction is
performed with individual commands.

status = I2C_MasterSendStart(0x08, I2C_WRITE_XFER_MODE);
if(I2C_MSTR_NO_ERROR == status) /* Check if transfer completed without errors */
{
 /* Send array of 5 bytes */
 for(i=0; i<5; i++)
 {
 status = I2C_MasterWriteByte(userArray[i]);
 if(status != I2C_MSTR_NO_ERROR)
 {
 break;
 }
 }
}
I2C_MasterSendStop(); /* Send Stop */

A manual read transaction is similar to the write transaction except the last byte should be
NAKed. The following example shows a typical manual read transaction.

status = I2C_MasterSendStart(0x08, I2C_READ_XFER_MODE);
if(I2C_MSTR_NO_ERROR == status) /* Check if transfer completed without errors */
{
 /* Read array of 5 bytes */
 for(i=0; i<5; i++)
 {
 if(i < 4)
 {

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 33 of 54

 userArray[i] = I2C_MasterReadByte(I2C_ACK_DATA);
 }
 else
 {
 userArray[i] = I2C_MasterReadByte(I2C_NAK_DATA);
 }
 }
}
I2C_MasterSendStop(); /* Send Stop */

Multi-Master-Slave Mode Operation
Both multi-master and slave work in this mode. The component can be addressed as a slave,
but firmware can also initiate master mode transfers. In this mode, when a master loses
arbitration during an address byte, the hardware reverts to slave mode and the received byte
generates a slave address interrupt.
For master and slave operation examples, see the Slave Operation and Master/Multi-Master
Operation sections.
Arbitrage on address byte limitations with hardware address match enabled: When a
master loses arbitration during an address byte, the slave address interrupt is generated only if
the slave is addressed. In other cases, the lost arbitrage status is lost by interrupt-based
functions. The software address detect eliminates this possibility, but excludes the Wakeup on
Hardware Address Match feature.
The manual function I2C_MasterSendStart() provides correct status information in the case just
described.

Start of Multi-Master-Slave Transfer
When using multi-master-slave, the slave can be addressed at any time. The multi-master must
take time to prepare to generate a Start condition when the bus is free. During this time, the
slave could be addressed and, if so, the multi-master transaction is lost and the slave operation
proceeds. Be careful not to break the slave operation; the I2C interrupt must be disabled before
generating a Start condition to prevent the transaction from passing the address stage. This
action allows you to abort a multi-master transaction and start a slave operation correctly. The
following cases are possible when disabling the I2C interrupt:

 The bus is busy (slave operation is in progress or other traffic is on the bus) before Start
generation. The multi-master does not try to generate a Start condition. Slave operation
proceeds when the I2C interrupt is enabled. The I2C_MasterWriteBuf(),
I2C_MasterReadBuf(), or I2C_MasterSendStart() call returns the status
I2C_MSTR_BUS_BUSY.

 The bus is free before Start generation. The multi-master generates a Start condition on
the bus and proceeds with operation when the I2C interrupt is enabled. The

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 34 of 54 Document Number: 001-85024 Rev. *B

I2C_MasterWriteBuf(), I2C_MasterReadBuf(), or I2C_MasterSendStart() call returns the
status I2C_MSTR_NO_ERROR.

 The bus is free before Start generation. The multi-master tries to generate a Start but
another multi-master addresses the slave before this and the bus becomes busy. The
Start condition generation is queued. The slave operation stops at the address stage
because of a disabled I2C interrupt. When the I2C interrupt is enabled, the multi-master
transaction is aborted from the queue and the slave operation proceeds. The
I2C_MasterWriteBuf() or I2C_MasterReadBuf() call does not notice this and returns
I2C_MSTR_NO_ERROR. The I2C_MasterStatus() returns I2C_MSTAT_WR_CMPLT or
I2C_MSTAT_RD_CMPLT with I2C_MSTAT_ERR_XFER (all other error condition bits are
cleared) after the multi-master transaction is aborted. The I2C_MasterSendStart() call
returns the error status I2C_MSTR_ERR_ABORT_START_GEN.

Interrupt Function Operation
I2C_MasterWriteBuf();
I2C_MasterReadBuf();
I2C_MasterClearStatus(); /* Clear any previous status */
I2C_DisableInt(); /* Disable interrupt */

status = I2C_MasterWriteBuf(0x08, (uint8 *) wrData, 10, I2C_MODE_COMPLETE_XFER);
/* Try to generate, start. The disabled I2C interrupt halt the transaction on
address stage in case of Slave addressed or Master generates start condition */
I2C_EnableInt(); /* Enable interrupt and proceed Master or Slave transaction */

for(;;)
{
 if(0u != (I2C_MasterStatus() & I2C_MSTAT_WR_CMPLT))
 {
 /* Transfer complete. Check Master status to make sure that transfer
 completed without errors. */
 break;
 }
}

if (0u != (I2C_MasterStatus() & I2C_MSTAT_ERR_XFER))
{
 /* Error occurred while transfer, clean up Master status and
 retry the transfer */
}

Manual Function Operation
Manual multi-master operation assumes that the I2C interrupt is disabled, but it is best to take the
following precaution:

I2C_DisableInt(); /* Disable interrupt */
/* Try to generate start condition */
status = I2C_MasterSendStart(0x08, I2C_WRITE_XFER_MODE);
/* Check if start generation completed without errors */

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 35 of 54

if (I2C_MSTR_NO_ERROR ==status)
{
 /* Proceed the write operation */
 /* Send array of 5 bytes */
 for (i=0; i<5; i++)
 {
 status = I2C_MasterWriteByte(userArray[i]);
 if (status != I2C_MSTR_NO_ERROR)
 {
 break;
 }
 }
 I2C_MasterSendStop(); /* Send Stop */
}
I2C_EnableInt(); /* Enable interrupt, if it was enabled before */

Wakeup on Hardware Address Match
The wakeup from sleep on I2C address match event is possible if the following conditions are
met:

 The I2C slave is enabled. Slave or multi-master-slave mode is selected.

 I2C Hardware address detection is selected.

 The SIO pair is connected to SCL and SDA and the proper pair is selected in the
customizer: I2C0 – SCL P12[4], SDA P12[5] and I2C1 – SCL P12[0], SDA P12[1].

The I2C component customizer controls these conditions, except correct pin assignments.

How it Works
The I2C block responds to transactions on the I2C bus during sleep mode. The I2C wakes the
system if the incoming address matches with the slave address. Once the address matches, a
wakeup interrupt is asserted to wake up the system and SCL is pulled low. The ACK is sent out
after the system wakes up and the CPU determines the next action in the transaction.

Wakeup and Clock Stretching
The I2C slave stretches the clock while exiting sleep mode. All clocks in the system must be
restored before continuing the I2C transaction after wakeup. The I2C interrupt remains enabled
but interrupt handler is changed before going to sleep. Wakeup on address match triggers I2C
interrupt and I2C wakeup flag is set to notify that. Call I2C_Wakeup() function changes interrupt
handler to regular I2C and generates interrupt based on I2C wakeup flag to process in-coming
transaction. The SCL line remains low after wakeup until I2C_Wake() is called.
Sample code:

I2C_Sleep(); /* Prepare I2C to be able wake up from Sleep mode*/
CyPmSaveClocks(); /* Save clocks settings */

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 36 of 54 Document Number: 001-85024 Rev. *B

CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_I2C);

CyPmRestoreClocks(); /* Restore clocks */
I2C_Wakeup(); /* Retuns I2C for operation in Active mode */
…

AddressS Data P

Wakeup
ISR

A

Restore clocks
CyPmRestoreClocks()

Clock streching A

Process
address

R

I2C_Wakeup()
handle I2C
interrupt

Sleep while address doesn’t
match

Transaction
or bus Idle

Bootloader Protocol Interaction with I2C Communication Component
The bootloader protocol is implemented as command (write transaction) and response (read
transaction).
The time between the host issuing the command and the bootloader sending back the response
is the command execution time. The I2C communication component for the bootloader is
designed in this way: when the host asks for a response, and the bootloader still executes a
command, 0xFF is returned.
Startup: The I2C bootloader communication component expects to receive the command and
does not yet have a valid response. All read transactions from the host return 0xFF. All write
transactions are treated as commands.
Bootloader process: The host is issued the command with a single write transaction and starts
polling for a response. The I2C communication component answers with 0xFF until a valid
response is passed by the bootloader. After receiving 0x01, the host must perform another read
to get the remaining N – 1 bytes of the response. After both reads are complete, the results are
combined to form the full response packet.

Command from Host Command Execution time Response with Result

Host polling for response, but read 0xFF
because there is no valid response yet.

CyBtldrCommRead CyBtldrCommWrite

Read 1st byte
of response

Read N-1 bytes
of response

Tcom_ex Tresp_set

The host must execute polling by reading one byte; reading more bytes could corrupt the
response. For example, in the case of 0xFF 0x01 0x03 (two bytes of response were read,

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 37 of 54

instead of one), the next read of the full response returns two invalid bytes, because these bytes
were already read (0x01 and 0x03).
How to avoid polling: You should measure the command execution time (Tcom_ex) plus the
response setup time (Tresp_set) according to the system settings (CPU speed, compiler,
compiler optimization level). The host must ask for the response after this time. The command
execution time changes across the commands, so you should choose the greater time.
Clock stretching while polling: The I2C communication component requires that interrupts be
enabled while in operation. The Command Program Row (0x39), which writes one row of flash
data to the device, requires interrupts to be disabled. Clock stretching occurs if the address is
accepted by the I2C communication component while interrupts are disabled.

AddressS 0xFF P

ISR
address

ISR
Byte complete

Disable
interrupts

A

Command 0x39 execution

Enable
interrupts

Clock streching A

Process
address

R

How to avoid clock stretching: To avoid clock stretching, measure the Command Program
Row (0x39) execution time (Tcom_ex) according to the system settings (CPU speed, compiler,
and compiler optimization level). The host must ask for a response after this time.

Internal I2C Bus Multiplexing
Selecting the External OE buffer option allows internal I2C bus multiplexing. The internal OE
buffers are removed and bidirectional scl and sda terminals are replaced with separate inputs
sda_i and scl_i and outputs sda_o and scl_o. The following figure shows an example of a 2:1 I2C
slave mux implemented using a schematic. It can easily be extended to support an N:1 mux. The
same idea can be used to connect an I2C master to multiple external downstream I2C buses.
The digital multiplexers are used for selection of sda_o and scl_o from different I2C buses.
Theand gates are used to join sda_i and scl_i signals. The tri-state buffers are used to make
possible control of bidirectional nature of the I2C interface.
To select between I2C buses, the control register (I2C_Bus_Select) must be set accordingly.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 38 of 54 Document Number: 001-85024 Rev. *B

Figure 3. Internal I2C Bus Multiplexing

External Electrical Connections
As Figure 4 shows, the I2C bus requires external pull-up resistors. The pull-up resistors (RP) are
determined by the supply voltage, clock speed, and bus capacitance. Make the minimum sink
current for any device (master or slave) no less than 3 mA at VOLmax = 0.4 V for the output stage.
This limits the minimum pull-up resistor value for a 5-V system to about 1.5 kΩ. The maximum
value for RP depends upon the bus capacitance and clock speed. For a 5-V system with a bus
capacitance of 150 pF, the pull-up resistors are no larger than 6 kΩ. For more information about
sizing pull-up resistors and other physical bus specifications, see The I2C-Bus Specification on
the NXP web site at www.nxp.com.

http://www.nxp.com/

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 39 of 54

Figure 4. Connection of Devices to the I2C Bus

Device 1

SDA (Serial Data Line)

SCL (Serial Clock Line)

Device 2

Rp Rp

+VDD

pull-up
resistors

Note Purchase of I2C components from Cypress or one of its sublicensed Associated
Companies, conveys a license under the Philips I2C Patent Rights to use these components in
an I2C system, provided that the system conforms to the I2C Standard Specification as defined
by Philips. As of October 1, 2006, Philips Semiconductors has a new trade name - NXP
Semiconductors.

Interrupt Service Routine
The interrupt service routine is used by the component code. Do not change it.
The following user sections are provided for slave operations:

 Custom includes and definitions

 Additional address compare

 Prepare read buffer
There are no user sections provided for master operations.
The I2C component uses interrupts for most operations; the status of a transaction is updated
there. Status read and clear functions are not protected from interruption. These functions are
listed below:
Master or multi-master:

 I2C_MasterStatus()

 I2C_MasterClearStatus()

 I2C_MasterGetReadBufSize()

 I2C_MasterGetWriteBufSize()

 I2C_MasterClearReadBuf()

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 40 of 54 Document Number: 001-85024 Rev. *B

 I2C_MasterClearWriteBuf()
Slave:

 I2C_SlaveStatus()

 I2C_SlaveClearReadStatus()

 I2C_SlaveClearWriteStatus()

 I2C_SlaveInitReadBuf()

 I2C_SlaveInitWriteBuf()

 I2C_SlaveGetReadBufSize()

 I2C_SlaveGetWriteBufSize()

 I2C_SlaveClearReadBuf()

 I2C_SlaveClearWriteBuf()

Registers
The functions provided support the common run-time functions required for most applications.
The following register references provide brief descriptions for the advanced user. The I2C_Data
register may be used to write data directly to the bus without using the API. This can be useful
for either CPU or DMA use.
The registers available to each of the configurations of the I2C component are grouped according
to the implementation as fixed function or UDB.

Fixed-Function Master/Slave Registers
See the chip Technical Reference Manual (TRM) for more information about these registers. All
bits that are added in the PSoC 3 and PSoC 5LP devices are indicated with an asterisk (*) in the
definitions listed below.

I2C_XCFG
The extended configuration register is available in the fixed-function hardware block to configure
the hardware address mode and clock source.

Bits 7 6 5 4 3 2 1 0

Value csr_clk_en i2c_on* ready_to_sleep* force_nak* RSVD hw_addr_en

 csr_clk_en: Used to enable gating for the fixed-function block core logic.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 41 of 54

 i2c_on*: Used to select the I2C block as the wakeup source.

 ready_to_sleep*: Used to notify that the block is ready to sleep.

 force_nak*: Used to force NAK the transaction.

 hw_addr_en: Used to enable hardware address comparison mode.

I2C_ADDR
The slave address register is available in the fixed-function hardware block to configure the slave
device address for hardware comparison mode, if enabled in the XCFG register.

Bits 7 6 5 4 3 2 1 0

Value RSVD slave_address

 slave_address: Used to define the 7-bit slave address for hardware address comparison
mode.

I2C_CFG
The configuration register is available in the fixed-function hardware block to configure the basic
functionality.

Bits 7 6 5 4 3 2 1 0

Value sio_select pselect bus_error_ie stop_ie clock_rate[1:0] en_mstr en_slave

 sio_select: Used to select between SIO1 and SIO2 lines for SCL and SDA; pselect must
be set for this bit to have an effect.

 pselect: Used to select between SIO direct connections or DSI routed GPIO/SIO pins for
the SCL and SDA lines.

 bus_error_ie: Used to enable interrupt generation for bus_error.

 stop_ie: Used to enable interrupt generation on stop bit detection.

 clock_rate: Used to select between 16-bit or 32-bit oversample. PSoC 3 and PSoC 5LP
uses only bit2.

 en_mstr: Used to enable master mode.

 en_slave: Used to enable slave mode.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 42 of 54 Document Number: 001-85024 Rev. *B

I2C_CSR
The control and status register is available in the fixed-function hardware block for run-time
control and status feedback.

Bits 7 6 5 4 3 2 1 0

Value bus_error lost_arb* stop_status ack address transmit lrb byte_complete

 bus_error: Bus error detection status bit. This must be cleared by writing a ‘0’ to this bit
position.

 lost_arb*: Lost arbitration detection status bit.

 stop_status: Stop detection status bit. This must be cleared by writing a ‘0’ to this position.

 ack: Acknowledge control bit. This bit must be set to 1 to ACK the last byte received or 0
to NAK the last byte received.

 address: Set if the byte just received was an address byte.

 transmit: Used by firmware to define the direction of a byte transfer.

 lrb: Last Received Bit status. This bit indicates the state of the ninth bit (ACK/NAK)
response from the receiver for the last byte transmitted.

 byte_complete: Transmit or receive status since the last read of this register. In transmit
mode, this bit indicates that eight bits of data plus ACK/NAK have been transmitted since
the last read. In receive mode, this bit indicates that eight bits of data have been received
since the last read of this register.

I2C_DATA
The data register is available in the fixed-function hardware block for run-time transmission and
receipt of data.

Bits 7 6 5 4 3 2 1 0

Value data

 data: In Transmit mode this register is written with the data to transmit. In receive mode
this register is read upon status receipt of byte_complete.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 43 of 54

I2C_MCSR
The master control and status register is available in the fixed-function hardware block for run-
time control and status feedback of master mode operations.

Bits 7 6 5 4 3 2 1 0

Value RSVD stop_gen* bus_busy master_mode restart_gen start_gen

 stop_gen*: If set, a Stop is generated in master transmitter mode at the end of a byte
transfer

 bus_busy: Indicates bus status. 0 means a Stop condition was detected, 1 indicates a
Start condition was detected.

 master_mode: Indicates that a valid Start condition was generated and a hardware device
is operating as bus master.

 restart_gen: Control registers to create a Restart condition on the bus. This bit is cleared
by hardware after the Restart has been implemented (may be read as status after setting
to poll for completion of the condition).

 start_gen: Control registers to create a Start condition on the bus. This bit is cleared by
hardware after the Start has been implemented (may be read as status after setting to poll
for completion of the condition).

UDB Master
The UDB register definitions are derived from the Verilog implementation of I2C. See the specific
mode implementation Verilog for more information about these registers’ definitions.

I2C_CFG
The control register is available in the UDB implementation for run-time control of the hardware

Bits 7 6 5 4 3 2 1 0

Value start_gen stop_gen restart_gen ack RSVD transmit en_master RSVD

 start_gen: Set to 1 to generate a Start condition on the bus. This bit must be cleared by
firmware before initiating the next transaction.

 stop_gen: Set to 1 to generate a Stop condition on the bus. This bit must be cleared by
firmware before initiating the next transaction.

 restart_gen: Set to 1 to generate a Restart condition on the bus. This bit must be cleared
by firmware after a Restart condition is generated.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 44 of 54 Document Number: 001-85024 Rev. *B

 ack: Set to 1 to NAK the next read byte. Clear to ACK next read byte. This bit must be
cleared by firmware between bytes.

 transmit: Set to 1 to set the current mode to transmit or clear to 0 to receive a byte of data.
This bit must be cleared by firmware before starting the next transmit or receive
transaction.

 en_master: Set to 1 to enable the master functionality.

I2C_CSR
The status register is available in the UDB implementation for run-time status feedback from the
hardware. The status data is registered at the input clock edge of the counter for all bits
configured with mode = 1. These bits are sticky and are cleared on a read of the status register.
All other bits are configured as mode = 0 read directly from the inputs to the status register. They
are not sticky and therefore not cleared on read. All bits configured as mode = 1 are indicated
with an asterisk (*) in the following definitions.

Bits 7 6 5 4 3 2 1 0

Value RSVD lost_arb* stop_status* bus_busy address master_mode lrb byte_complete

 lost_arb*: If set, indicates arbitration was lost (multi-master and multi-master-slave
modes).

 stop_status*: If set, indicates a Stop condition was detected on the bus.

 bus_busy: If set, indicates the bus is busy. Data is currently being transmitted or received.

 address: Address detection. If set, indicates that an address byte was sent.

 master_mode: Indicates that a valid Start condition was generated and a hardware device
is operating as bus master.

 lbr: Last Received Bit. Indicates the state of the last received bit, which is the ACK/NAK
received for the last byte transmitted. Cleared = ACK and set = NAK.

 byte_complete: Transmit or receive status since the last read of this register. In Transmit
mode this bit indicates that eight bits of data plus ACK/NAK have been transmitted since
the last read. In Receive mode this bit indicates that eight bits of data have been received
since the last read of this register.

I2C_INT_MASK
The interrupt mask register is available in the UDB implementation to specify which status bits
are enabled as interrupt sources. Any of the status register bits can be enabled as an interrupt
source with a one-to-one bit correlation to the status register’s bit-field definitions in I2C_CSR.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 45 of 54

I2C_ADDRESS
The slave address register is available in the UDB implementation to configure the slave device
address for hardware comparison mode.

Bits 7 6 5 4 3 2 1 0

Value RSVD slave_address

 slave_address: Used to define the 7-bit slave address for hardware address comparison
mode

I2C_DATA
The data register is available in the UDB implementation block for run-time transmission and
receipt of data.

Bits 7 6 5 4 3 2 1 0

Value data

 data: In transmit mode this register is written with the data to transmit. In receive mode
this register is read upon status receipt of byte_complete.

I2C_GO
The Go register forces the data in the data register to be transmitted when the master transmits.
The Go register forces the data to be received in the data register when the master receives.
Any write to this register forces this action, no matter which value is written.

UDB Slave
The UDB register definitions are derived from the Verilog implementation of I2C. See the specific
mode implementation Verilog for more information about these registers’ definitions.

I2C_CFG
The control register is available in the UDB implementation for run-time control of the hardware

Bits 7 6 5 4 3 2 1 0

Value RSVD RSVD RSVD nak any_address transmit RSVD en_slave

 nak: If set, used to NAK the last byte received. This bit must be cleared by firmware
between bytes.

 any_address: If set, used to enable the device to respond any device addresses it
receives rather than just the single address provided in I2C_ADDRESS.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 46 of 54 Document Number: 001-85024 Rev. *B

 transmit: Used to set the mode to transmit or receive data. This bit must be cleared by
firmware between bytes. Set = transmit and cleared = receive.

 en_slave: Set to 1 to enable the slave functionality.

I2C_CSR
The status register is available in the UDB implementation for run-time status feedback from the
hardware. The status data is registered at the input clock edge of the counter for all bits
configured with mode = 1. These bits are sticky and are cleared on a read of the status register.
All other bits are configured as mode = 0 and read directly from the inputs to the status register.
They are not sticky and therefore not cleared on read. All bits configured as mode = 1 are
indicated with an asterisk (*) in the definitions listed below.

Bits 7 6 5 4 3 2 1 0

Value RSVD RSVD stop* RSVD address RSVD lrb byte_complete

 stop*: If set, indicates a Stop condition was detected on the bus.

 address: Address detection. If set, indicates that an address byte was received.

 lbr: Last Received Bit. Indicates the state of the last received bit, which is the ACK/NAK
received for the last byte transmitted. Cleared = ACK and set = NAK.

 byte_complete: Transmit or receive status since the last read of this register. In transmit
mode this bit indicates that eight bits of data plus ACK/NAK have been transmitted since
the last read. In Receive mode this bit indicates that eight bits of data have been received
since the last read of this register.

I2C_INT_MASK
The interrupt mask register is available in the UDB implementation to specify which status bits
are enabled as interrupt sources. Any of the status register bits can be enabled as an interrupt
source with a one-to-one bit correlation to the status register bit-field definitions in the I2C_CSR
register. Two interrupt sources are used during operation: byte_complete and stop.

I2C_ADDRESS
The slave address register is available in the UDB implementation to configure the slave device
address for hardware comparison mode.

Bits 7 6 5 4 3 2 1 0

Value RSVD slave_address

 slave_address: Used to define the 7-bit slave address for hardware address comparison
mode

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 47 of 54

I2C_DATA
The data register is available in the UDB implementation block for run-time transmission and
receipt of data.

Bits 7 6 5 4 3 2 1 0

Value data

 data: In transmit mode this register is written with the data to transmit. In receive mode
this register is read upon status receipt of byte_complete.

I2C_GO
The Go register forces data in the data register to be transmitted when master transmits. The Go
register forces the data register to receive data when the master receives. Any write to this
register forces this action, no matter which value is written.

Resources
The fixed I2C block and one interrupt are used for fixed-function implementation.
The UDB version of component utilizes the following resources.

Configuration
Resource Type

Datapath
Cells Macrocells Status

Cells
Control

Cells
DMA

Channels Interrupts

Slave 1 25 1 2 – 1

Master 2 33 1 1 – 1

Multi-Master 2 36 1 1 – 1

Multi-Master-Slave 2 65 1 2 – 1

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 48 of 54 Document Number: 001-85024 Rev. *B

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

API Memory Usage (FF Implementation)

Configuration
PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Slave 1155 20 1155 20 1368 27

Master 1754 19 1902 22 2018 26

Multi-Master 1866 19 2026 22 2138 26

Multi-Master-Slave 2707 32 2719 32 3054 27

API Memory Usage (UDB Implementation)

Configuration
PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Slave 927 16 1176 23 1104 23

Master 1703 16 2034 22 1962 22

Multi-Master 1857 16 2190 22 2114 22

Multi-Master-Slave 2640 28 3098 23 2974 23

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 49 of 54

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics (FF Implementation)
Parameter Description Conditions Min Typ Max Units

 Block current consumption Enabled, configured for 100 kbps – – 250 μA

Enabled, configured for 400 kbps – – 260 μA

Wake from sleep mode – – 30 μA

DC Characteristics (UDB Implementation)
Parameter Description Min Typ[9] Max Unit[10]

IDD(Slave) Component current
consumption (Slave)

Standard mode – 200 – µA

Fast mode – 290 – µA

Fast mode plus – 335 – µA

IDD(Master) Component current
consumption (Master)

Standard mode – 210 – µA

Fast mode – 305 – µA

Fast mode plus – 465 – µA

IDD(Multi-Master) Component current
consumption (Multi-Master)

Standard mode – 215 – µA

Fast mode – 320 – µA

Fast mode plus – 515 – µA

IDD(Multi-Master-

Slave)
Component
current
consumption
(Multi-Master-
Slave)

Slave
operation

Standard mode – 200 – µA

Fast mode – 290 – µA

Fast mode plus – 335 – µA

Multi-Master
operation

Standard mode – 215 – µA

Fast mode – 320 – µA

Fast mode plus – 515 – µA

9 Device IO and clock distribution current not included. The values are at 25 °C.
10 Current consumption is specified with respect to the incoming component clock.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 50 of 54 Document Number: 001-85024 Rev. *B

AC Characteristics (FF Implementation)
Parameter Description Conditions Min Typ Max Unit

 Bit rate -- -- 1 Mbps

AC Characteristics (UDB Implementation)
Parameter Description Min Typ Max Unit

fSCL SCL clock frequency –
–
–

–
–
–

100
400
1000

kHz

fCLOCK Component input clock frequency − 16 × fSCL − kHz

tRESET Reset pulse width − 2 − tCY_clock
11

tLOW Low period of the SCL clock 4.7
1.3
0.5

–
–
–

−
–
–

μs

tHIGH High period of the SCL clock 4.0
0.6
0.26

–
–
–

−
–
–

μs

tHD_STA Hold time (repeated) start condition 4.0
0.6
0.26

–
–
–

−
–
–

μs

tSU_STA Setup time for a repeated start condition 4.7
0.6
0.26

–
–
–

−
–
–

μs

tHD_DAT Data hold time 5.0
–
–

–
–
–

−
–
–

μs

tSU_DAT Data setup time 250
100
50

–
–
–

−
–
–

ns

tSU_STO Setup time for stop condition 4.0
0.6
0.26

–
–
–

−
–
–

μs

11 tCY_clock = 1/fCLOCK. This is the cycle time of one clock period.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 51 of 54

Parameter Description Min Typ Max Unit

tBUF Bus free time between a stop and start condition 4.7
1.3
0.5

–
–
–

−
–
–

μs

Figure 5. Data Transition Timing Diagram

tSU_STOtSU_STAtHD_DATtHD_STA

SCL

SDA

tLOW tSU_DATtHIGH

SRS P

tBUF

S

tHD_STA

Component Errata
This section lists known problems with the component.

Cypress
ID

Component
Version Problem Workaround

191257 v3.30 This component was modified without a version
number change in PSoC Creator 3.0 SP1. For
further information, see Knowledge Base Article
KBA94159 (www.cypress.com/go/kba94159).

No workaround is necessary.
There is no impact to designs.

http://www.cypress.com/go/kba94159

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 52 of 54 Document Number: 001-85024 Rev. *B

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.30.b Edited datasheet to add Component
Errata section.

Document that the component was changed, but there is no
impact to designs.

3.30.a Edited the datasheet. Updated the diagram in When to Use an I2C Component
section.
Clarified that the fixed-function implementation uses one
interrupt.

3.30 Added MISRA Compliance section. The component has specific deviations described.

Fixed incorrect behavior of the master
manual APIs when lost arbitration
occurs.

On a lost arbitration event, the master manual APIs returned
the proper status but did not release the I2C bus. Code was
added to release the bus when the lost arbitration event
takes place.

Added footnote about non-compliant with
the NXP I2C specification in some areas.

Documentation enhancement.

Minor datasheet edits and updates.

3.20 New feature was added. Removed the
internal OE buffer and exposed the input
and output terminals.

This feature allows I2C buses multiplexing inside PSoC.

Changed the control flow of the wake up
sequence to avoid disabling the I2C
interrupt.

PSoC 5LP requires an I2C interrupt to be enabled in order to
wake up the device at the event of an address match.

Moved the Stop interrupt to be handled
at the start of a new transaction.

The Stop interrupt was occurring while the next transaction
was beginning. This caused the interrupt code to get into an
improper state and it did not catch the Stop interrupt. This
issue applied to only the slave devices.

3.10 Added support PSoC 5LP.

Fixed wrong SDA behavior (the line
drives low) after address byte was
received.

When master generates transaction with slave address
expected to be NAKed, the wrong Stop detection is possible.
The issue only appears in Slave mode with Software Address
Decode and UDB-based implementation.

3.1.a Documentation change describing how
the effective data rate will vary.

For data rates above 400 kbps, the effective clock rate can
vary.

Documentation change describing the
difference between master and multi-
master modes.

When operating in multi-master mode there are special
considerations to take into account to handle correct
interaction with other masters.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-85024 Rev. *B Page 53 of 54

Version Description of Changes Reason for Changes / Impact

3.1 Changed the definition from
I2C_SSTAT_RD_CMPT to
I2C_SSTAT_RD_CMPLT
Changed the definition from
I2C_SSTAT_WR_CMPT to
I2C_SSTAT_WR_CMPLT

To comply with the master definition of read and write
complete flags. The component supports both definitions, but
the I2C_SSTAT_RD_CMPT and I2C_SSTAT_WR_CMPT
will become obsolete.

Added the CYREENTRANT keyword to
all APIs when they are included in the
.cyre file.

Not all APIs are truly reentrant. Comments in the component
API source files indicate which functions are not candidates.
This change is required to eliminate compiler warnings for
functions that are not reentrant used in a safe way: protected
from concurrent calls by flags or Critical Sections.

3.0.a Minor datasheet edits and updates

3.0 Changed customizer appearance More intuitive and easy to use.

Added the UDB clock tolerance setting. Avoids the appearance of clock warning for many
configurations.

The component in FF implantation with
Enable from Sleep option restores
configuration correctly after exit
hibernate.

Fix component behavior in hibernate mode.

The I2C interrupt is enabled after
I2C_Start() is called.

No errors appear when the user forgets to enable interrupt
after I2C_Start() in slave mode.

Added support of internal clock for UDB
implementation.

Functionality enhancement.

Removed functions
I2C_SlaveGetWriteByte() and
I2C_SlavePutReadByte()

These functions are not usable.

2.20 Added bootloader communication
support to UDB-based implementation of
component.

Allows more than one I2C component that supports
bootloading in the design. This can be used with the custom
bootloader feature included with cy_boot v2.21.

Fixed misplaced start condition detection
during transaction due zero data hold
time.

The slave operates correctly with zero data hold time from
the master.

2.10 Added multi-master-slave mode The support of multi-master-slave functionality is added to
component.

Customizer labels and description edits Improve feel and content of component customizer.

Changed I2C bootloader communication
component behavior to suppress clock
stretching on read.

I2C bootloader communication component holds SCL low
forever if a read command is issued before the start boot
process.

Added characterization data to
datasheet.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 54 of 54 Document Number: 001-85024 Rev. *B

Version Description of Changes Reason for Changes / Impact

Minor datasheet edits and updates

2.0.a Moved the component into subfolders of
the component catalog

Minor datasheet edits and updates

2.0 Added Sleep/Wakeup and Init/Enable
APIs.

To support low-power modes, as well as to provide common
interfaces to separate control of initialization and enabling of
most components.

Updated the component to support
Production PSoC 3 and above. Updated
the Configure dialog:

New requirement to support the Production PSoC 3 device,
thus a new 2.0 version was created.
Version 1.xx supports PSoC 3 ES2 and PSoC 5 silicon
revisions.

Added configuration of I2C pins
connection port for the wakeup on I2C
address match feature.

The I2C component will be able to wake up the device from
Sleep mode on I2C address match.

Updated the datasheet. Updated the Parameters and Setup, Clock Selection, and
Resources sections to reflect the UDB Implementation.
Error in sample code has been fixed.

Add Reentrancy support to the
component.

Allows users to make specific APIs reentrant if reentrancy is
desired.

© Cypress Semiconductor Corporation, 2012-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use an I2C Component

	Input/Output Connections
	sda – In/Out
	scl – In/Out
	clock – Input *
	reset – Input *
	I2C Bus Multiplexing
	sda_i – Input *
	scl_i – Input *
	sda_o – Output *
	scl_o – Output *

	Schematic Macro Information
	Component Parameters
	Basic Configuration Tab
	Mode
	Data Rate
	Slave Address
	Implementation
	Address Decode
	Pins
	Enable wakeup from Sleep Mode
	UDB Clock Source
	Enable UDB Slave Fixed Placement

	Advanced Configuration Tab
	External OE buffer

	Clock Selection
	Application Programming Interface
	Generic Functions
	Global Variables
	Generic Functions
	void I2C_Start(void)
	void I2C_Stop(void)
	void I2C_EnableInt(void)
	void I2C_DisableInt(void)
	void I2C_Sleep(void)
	void I2C_Wakeup(void)
	void I2C_Init(void)
	void I2C_Enable(void)
	void I2C_SaveConfig(void)
	void I2C_RestoreConfig(void)

	Slave Functions
	uint8 I2C_SlaveStatus(void)
	uint8 I2C_SlaveClearReadStatus(void)
	uint8 I2C_SlaveClearWriteStatus(void)
	void I2C_SlaveSetAddress(uint8 address)
	void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)
	void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)
	uint8 I2C_SlaveGetReadBufSize(void)
	uint8 I2C_SlaveGetWriteBufSize(void)
	void I2C_SlaveClearReadBuf(void)
	void I2C_SlaveClearWriteBuf(void)

	Master and Multi-Master Functions
	uint8 I2C_MasterStatus(void)
	uint8 I2C_MasterClearStatus(void)
	uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8 mode)
	uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8 mode)
	uint8 I2C_MasterSendStart(uint8 slaveAddress, uint8 R_nW)
	uint8 I2C_MasterSendRestart(uint8 slaveAddress, uint8 R_nW)
	uint8 I2C_MasterSendStop(void)
	uint8 I2C_MasterWriteByte(uint8 theByte)
	uint8 I2C_MasterReadByte(uint8 acknNak)
	uint8 I2C_MasterGetReadBufSize(void)
	uint8 I2C_MasterGetWriteBufSize(void)
	void I2C_MasterClearReadBuf (void)
	void I2C_MasterClearWriteBuf (void)

	Multi-Master-Slave Functions
	Bootloader Support
	void I2C_CyBtldrCommStart(void)
	void I2C_CyBtldrCommStop(void)
	void I2C_CyBtldrCommReset(void)
	cystatus I2C_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus I2C_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Slave Operation
	Master/Multi-Master Operation
	Multi-Master-Slave Mode Operation
	Start of Multi-Master-Slave Transfer
	Interrupt Function Operation
	Manual Function Operation

	Wakeup on Hardware Address Match
	How it Works
	Wakeup and Clock Stretching
	Bootloader Protocol Interaction with I2C Communication Component

	Internal I2C Bus Multiplexing
	External Electrical Connections

	Interrupt Service Routine
	Registers
	Fixed-Function Master/Slave Registers
	I2C_XCFG
	I2C_ADDR
	I2C_CFG
	I2C_CSR
	I2C_DATA
	I2C_MCSR

	UDB Master
	I2C_CFG
	I2C_CSR
	I2C_INT_MASK
	I2C_ADDRESS
	I2C_DATA
	I2C_GO

	UDB Slave
	I2C_CFG
	I2C_CSR
	I2C_INT_MASK
	I2C_ADDRESS
	I2C_DATA
	I2C_GO

	Resources
	API Memory Usage
	API Memory Usage (FF Implementation)
	API Memory Usage (UDB Implementation)

	DC and AC Electrical Characteristics
	DC Characteristics (FF Implementation)
	DC Characteristics (UDB Implementation)
	AC Characteristics (FF Implementation)
	AC Characteristics (UDB Implementation)

	Component Errata
	Component Changes

