
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 002-28712 Rev.*B Revised April 16, 2020

Features

▪ Offers best-in-class signal-to-noise ratio (SNR)

▪ Supports Self-Capacitance (CSD) and Mutual-Capacitance (CSX)
sensing methods

▪ Features SmartSense™ auto-tuning technology for CSD sensing to avoid complex
manual tuning process

▪ Supports various Widgets, such as Buttons, Matrix Buttons, Sliders, Touchpads, and
Proximity Sensors

▪ Provides ultra-low power consumption and liquid tolerant capacitive sensing technology

▪ Contains integrated graphical Tuner GUI tool for real-time tuning, testing, and debugging

▪ Provides superior immunity against external noise and low radiated emission.

▪ Offers best-in-class liquid tolerance

▪ Contains built-in self-test (BIST) library for implementing Class-B requirements for
CapSense

▪ Supports one-finger and two-finger gestures

General Description

CapSense is a Cypress capacitive sensing solution. Capacitive sensing can be used in a variety
of applications and products where conventional mechanical buttons can be replaced with sleek
human interfaces to transform the way users interact with electronic systems. These include
home appliances, automotive, IoT, and industrial applications. CapSense supports multiple
interfaces (widgets) using both CSX and CSD sensing methods, with robust performance.

This CapSense Component solution includes a configuration wizard to create and configure
CapSense widgets, API to control the Component from the application firmware, and a
CapSense Tuner application for tuning, testing, and debugging for easy and smooth design of
human interfaces on customer products. This datasheet includes the following sections:

▪ Quick Start – Helps you quickly configure the Component to create a simple demo.

PSoC 4 Capacitive Sensing (CapSense®)
7.0

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 2 of 160 Document Number: 002-28712 Rev.*B

▪ Component Configuration Parameters – Contains descriptions of the Component’s
parameters in the configuration wizard.

▪ Application Programming Interface – Provides descriptions of the API in the firmware
library, as well as descriptions of the data structures (Register map) used by the firmware
library.

▪ CapSense Tuner – Contains descriptions of the user-interface controls in the Tuner
application.

▪ Electrical Characteristics – Provides the Component performance specifications and other
details such as certification specifications.

Note Important information such as the CapSense-technology overview, appropriate Cypress
device for the design, CapSense system and sensor design guidelines, as well as different
interfaces and tuning guidelines necessary for a successful design of a CapSense system is
available in the Getting Started with CapSense® document and the product-specific CapSense
design guide. Cypress highly recommends starting with these documents. They can be found on
the Cypress web site at www.cypress.com. For details about application notes, code examples,
and kits, see the References section in this datasheet.

When to Use a CapSense Component

CapSense has become a popular technology to replace conventional mechanical- and optical-
based user interfaces. There are fewer parts involved, which saves cost and increases reliability,
with no wear-and-tear. The main advantages of CapSense compared with other solutions
include:

▪ robust performance in harsh environmental conditions

▪ rejection of a wide range of external noise sources

Use CapSense for:

▪ Touch and gesture detection for various interfaces

▪ Proximity detection for innovative user experiences and low-power optimization

▪ Replacement for IR-based proximity detection which is sensitive to skin and colors

▪ Contactless liquid level sensing in a variety of applications

▪ Touch free operations in hazardous materials

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/an85951
http://www.cypress.com/an85951
http://www.cypress.com/

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 3 of 160

Limitations

This Component supports all CapSense-enabled devices in the PSoC 4 family of devices,
including:

▪ Third-generation CapSense: PSoC 4000, PSoC 4100, PSoC 4200, PSoC 4100M,
PSoC 4200M, PSoC 4200L, PSoC 4100 BLE, PSoC 4200 BLE, and PRoC BLE.

▪ Fourth-generation CapSense: PSoC 4000S, PSoC 4100S, PSoC 4100S Plus, PSoC
4700S and PSoC Analog Coprocessor.

However, some features are restricted:

▪ This version of the Component supports gesture detection on one widget at a time.

▪ The second hardware CSD block is not supported in PSoC 4100M / PSoC 4200M
devices.

▪ The CSX sensing method is not supported in PSoC 4100 devices.

Note Component operation is dependent on a high-frequency (system clock) input to the block.
Changing the clock frequency during run-time will impact Component operation, and the
Component may not operate as expected.

Quick Start

This section will help you create a PSoC Creator project with a Linear Slider interface using the
CSD sensing method. After creating the project, refer to the Tuning Quick Start with EzI2C
section for information on how to to monitor sensor performance using the CapSense Tuner.

Note The CY8CKIT-042 PSoC® 4 Pioneer Kit with PSoC 4200 devices include a built-in linear
slider.

As needed, refer to the following documents for more information about PSoC Creator:

▪ Quick Start Guide

▪ PSoC Creator Help

Step 1: Create Design in PSoC Creator

Create a project using PSoC Creator and select the desired CapSense-enabled PSoC 4 device
from the drop-down menu in the New Project wizard.

Step 2: Place and Configure CapSense Component

Drag and drop the CapSense Component from the Component Catalog onto the design to add
the CapSense functionality to the project.

Double-click on the dropped Component in the schematic to open the Configure dialog.

http://www.cypress.com/CY8CKIT-042

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 4 of 160 Document Number: 002-28712 Rev.*B

The Component Configuration Parameters are arranged over the multiple tabs and sub-tabs.

Basic Tab

1. Use this tab to select the Widget Type, Sensing mode, and a number of Widget Sensing
element(s) required for the design.

2. Type the desired Component name (in this case: CapSense for the code in Step 4 to work).

3. Click ‘+’ and select the Widget Type required from the drop-down list. This Component offers
six different types of widgets.

4. Add the Linear Slider widget.

Note Each widget consumes a specific set of port pins from the device. The number of Pins
required should always be less than or equal to Pins availabl in the selected device to
successfully build a project.

5. Use the CSD tuning mode pull-down menu to select one of the following options:

□ SmartSense (Full Auto-Tune) – With full auto-tuning mode, the majority of
configuration parameters in the Advanced Tab are automatically set by the
SmartSense algorithm.

□ SmartSense (Hardware parameters only)

□ Manual tuning

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 5 of 160

Note SmartSense auto-tuning is available for widgets using the CSD sensing method only.
Widgets that use CSX mode must be configured manually. This example uses SmartSense
(Full Auto-Tune) tuning mode.

The Basic tab contains a table with the following columns:

▪ Widget Type – Shows the selected widget type.

▪ Widget Name – Changes the name of each widget if required (In this example, default
name LinearSlider0 is used).

▪ Sensing mode – Selects mode for each widget. This Component supports both Self-cap
and Mutual-cap sensing methods for the Button, Matrix Buttons and Touchpad widgets.
(In this example, the default (CSD) sensing mode is used).

▪ Widget Sensing element(s) – Selects a number of sensing elements for each widget. The
number of sensing elements is configurable as the application requires (In this example,
the default value of 5 is used).

▪ Finger capacitance – Selects Finger capacitance between 0.1pF and 1pF in SmartSense
(Full Auto-Tune) tuning mode and between 0.02pF to 20.48pF in SmartSense (Hardware
parameters only) tuning mode to get 50-count signal. Note that this parameter is available
for the CSD (Self-cap) Sensing mode when SmartSense (Full Auto-Tune) mode is
enabled.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 6 of 160 Document Number: 002-28712 Rev.*B

Advanced Tab

Use this tab to configure parameters required for an extensive level of manual tuning. This tab
has multiple sub-tabs used to systematically arrange parameters. Refer to the Component
Configuration Parameters section for details of these parameters.

The sub-tabs contain:

▪ General – The parameters common for all widgets in the Component.

▪ CSD Settings – The parameters common for all CSD widgets.

▪ CSX Settings – The parameters common for all CSX widgets.

▪ Widget Details – The parameters specific for each widget and sensing element.

▪ Scan Order – No editable content. It provides scan time for sensors.

Step 3: Place and Configure EZI2C Component

1. Drag an EZI2C Slave (SCB mode) Component from the Component Catalog onto the
schematic to add an I2C communication interface to the project. This I2C slave interface is
required for the Tuner GUI to monitor the Component parameters in real time.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 7 of 160

2. Double-click the EZI2C Component in the schematic to open the Configure dialog and set the
following parameters:

□ Type the desired Component name (in this case: EZI2C).

□ Set Data Rate (kbps) to 400.

□ Set Number of Addresses to 1.

□ Set Primary Slave Address (7-bits) to 0x08.

□ Set Sub-Address Size (bits) to 16 bits.

3. Click OK to close the GUI and save changes.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 8 of 160 Document Number: 002-28712 Rev.*B

Step 4: Write Application Code

Copy the following code into the main.c file:

#include "project.h"

int main()

{

 __enable_irq(); /* Enable global interrupts. */

 EZI2C_Start(); /* Start EZI2C Component */

 /*

 * Set up communication and initialize data buffer to CapSense data structure

 * to use Tuner application

 */

 EZI2C_EzI2CSetBuffer1(sizeof(CapSense_dsRam),

 sizeof(CapSense_dsRam),

 (uint8_t *)&(CapSense_dsRam));

 CapSense_Start(); /* Initialize Component */

 CapSense_ScanAllWidgets(); /* Scan all widgets */

 for(;;)

 {

 /* Do this only when a scan is done */

 if(CapSense_NOT_BUSY == CapSense_IsBusy())

 {

 CapSense_ProcessAllWidgets(); /* Process all widgets */

 CapSense_RunTuner(); /* To sync with Tuner application */

 if (CapSense_IsAnyWidgetActive()) /* Scan result verification */

 {

 /* add custom tasks to execute when touch detected */

 }

 CapSense_ScanAllWidgets(); /* Start next scan */

 }

 }

}

Note The provided example shows the simplest way of using the Component.

Step 5: Assign Pins in Pin Editor

Open the Pin Editor and assign physical pins for all CapSense sensors and I2C pins.

If you are using a Cypress kit, refer to the kit user guide to select the USB-I2C bridge pin. This
bridge firmware enables the I2C communication between the PSoC and the Tuner application
across the USB. Alternatively, you can use a MiniProg3 or MiniProg4 debugger/programmer kit
as the USB-I2C Bridge.

Step 6: Build Design and Program PSoC Device

Select Program from the Debug menu to download the hex file into the device. This will also
perform a build if needed.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 9 of 160

Step 7: Launch Tuner Application

Right-click the CapSense Component in the schematic and select Launch Tuner from the
context menu.

The CapSense Tuner application opens as shown. Note that the 5-element slider, called
LinearSlider0, appears in the Widget View panel automatically.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 10 of 160 Document Number: 002-28712 Rev.*B

Step 8: Configure Communication Parameters

To establish communication between the Tuner and a target device, configure the Tuner
communication parameters to match the I2C Component parameters.

1. Open the Tuner Communication Setup dialog from PSoC Creator by selecting Tools > Tuner
Communication Setup…

2. Select the appropriate I2C communication device and set the following parameters:

□ I2C Address: 8 (or the address set in the EzI2C Component configuration wizard).

□ Sub-address: 2 bytes.

□ I2C Speed: 400 kHz (or the speed set in the Component configuration wizard).

Note The I2C address, Sub-address, and I2C speed fields in the Tuner Communication
Setup dialog must be identical to the Primary slave address, Sub-address size, and Data
Rate parameters in the EZI2C Component Configure dialog (see Step 3). Sub-address must
be set to 2-Bytes in both places.

Note MiniProg3 does not support UART communication. You can use KitProg, MiniProg3 or
MiniProg4 debugger/programmer kit as the USB-I2C Bridge.

Step 9: Start Communication

1. Click Connect to establish a connection and then Start to extract data.

2. Select the Synchronized control in the Graph Setup Pane. This ensures the Tuner only
collects data when CapSense is not scanning. Refer to Graph Setup Pane for details about
synchronized operation.

The Status Bar shows the communication bridge connection status and communication refresh
rate. You can see the status of the LinearSlider0 widget in the Widget View and signals for each
of the five sensors in the Graph View. Touch the sensors on the kit to observe the CapSense
operation.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 11 of 160

Refer to the CapSense Tuner section for more details.

Input / Output Connections

This section describes the various input and output connections for the CapSense Component.
These do not appear as connectable terminals on the Component symbol but these terminals
can be assigned to the port pins in the PSoC Creator Pin Editor. The Pin Editor provides
guidelines on the recommended pins for each terminal and does not allow an invalid pin
assignment.

Name [1] I/O Type Description

Cmod
[2] Analog External modulator capacitor. Mandatory for operation of the CSD sensing method

and required only if CSD sensing is used. The recommended value is
2.2nF/5V/X7R or an NP0 capacitor.

CintA [2] Analog Integration capacitors. Mandatory for operation of the CSX sensing method and
required only if the CSX sensing is used. The recommended value is
470pF/5V/X7R or NP0 capacitors. CintB [2] Analog

Csh
[2] Analog Shield tank capacitor. Used for an improved shield electrode driver when the CSD

sensing is used. This capacitor is optional. The recommended value is
10nF/5V/X7R or an NP0 capacitor.

Shield Analog Shield electrode. Reduces the effect of the parasitic capacitance (Cp) of the
sensor in the CSD sensing method. The number of shields depends on the user
selection in the Component configuration wizard.

Sns Analog Sensors of CSD widgets. The number of sensors depends on the CSD widgets
selected.

Tx Digital Output Transmitter electrodes of CSX widgets. The number of sensors depends on the
CSX widgets selected.

Rx Analog Receiver electrodes of CSX widgets. The number of sensors depends on the CSX
widgets selected.

1 No input/output terminals described in the table appear on the Component symbol in the Schematic Editor.

2 The applied rules of restricted placement depend on devices used. For details, refer to the device datasheet or
PSoC Creator Pin Editor.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 12 of 160 Document Number: 002-28712 Rev.*B

Component Configuration Parameters

This section describes the configurable parameters in the Component Configure dialog. This
section does not provide design and tuning guidelines. For complete guidelines on the
CapSense system design and CapSense tuning, refer to the Getting Started with CapSense®
document and the product-specific CapSense design guide.

Drag a Component onto the design canvas and double-click to open the dialog.

Common Controls

▪ Load configuration – Open (load) a previously saved configuration (XML) file for the
CapSense Component.

▪ Save configuration – Save the current Component configuration into a (XML) file.

▪ Export Register Map – The CapSense Component firmware library uses a data structure
(known as Register map) to store the configurable parameters, various outputs and
signals of the Component. The Export Register Map button creates an explanation for
registers and bit fields of the register map in a PDF or XML file that serves as a reference
for development.

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/an85951

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 13 of 160

Basic Tab

The Basic tab defines the high-level Component configuration. Use this tab to add various
Widget Type and assign Sensing mode, Widget Sensing element(s)(s) and Finger capacitance
for each widget.

The following table provides descriptions of the various Basic tab parameters:

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 14 of 160 Document Number: 002-28712 Rev.*B

Name Description

CSD tuning
mode

Tuning is a process of finding appropriate values for configurable parameters (Hardware
parameters and Threshold parameters) for proper functionality and optimized performance of the
CapSense system.

SmartSense Auto-tuning is an algorithm embedded in the Component that automatically finds the
optimum values for configurable parameters, based on the hardware properties of the capacitive
sensors, therefore avoids the manual tuning process by the user.

Configurable parameters that affect the operation of the sensing hardware are called Hardware
parameters. Parameters that affect the operation of the touch-detection firmware algorithm are
called Threshold parameters.

This parameter is a drop-down menu to select the tuning mode for CSD widgets only.

▪ SmartSense (Full Auto-Tune) – This is the quickest way to tune a design. Most
hardware and threshold parameters are automatically tuned by the Component and the
GUI displays them as Set by SmartSense mode. In this mode, the following parameters
are automatically tuned:

o CSD Settings tab: Enable common sense clock, Enable IDAC auto-calibration,
Sense clock frequency

o Widget Details tab: The CSD-related parameters of the Widget Hardware
Parameters and Widget Threshold Parameters groups

o Widget Details tab: the Compensation IDAC value parameter if Enable
compensation IDAC is set.

▪ SmartSense (Hardware parameters only) – The Hardware parameters are
automatically set by the Component. Threshold parameters are set manually. This mode
consumes less memory and less CPU processing time. This consumes lower average
power. In this mode, the following parameters are automatically tuned:

o CSD Settings tab: Enable common sense clock, Enable IDAC auto-calibration,
Sense clock frequency

o Widget Details tab: The CSD-related parameters of the Widget Hardware
Parameters group

o Widget Details tab: Compensation IDAC value parameter if Enable compensation
IDAC is set.

▪ Manual –SmartSense auto-tuning is disabled. The Widget Hardware Parameters and
Widget Threshold Parameters must be tuned manually. The is the lowest memory and
CPU process-time consumption mode.

SmartSense Auto-tuning (both Full Auto-Tune and Hardware parameters only) supports the
IDAC sourcing configuration only.

If the SmartSense (Full Auto-Tune) is enabled, then Enable multi-frequency scan cannot be
enabled.

Also, if SmartSense (Full Auto-Tune) is enabled, the Enable self-test library cannot be enabled.

SmartSense auto-tuning requires the Modulator clock frequency to be set at 6000 kHz or higher
for Fourth-generation CapSense and 3000 kHz or higher for Third-generation CapSense.

SmartSense operating conditions (see Performance Characteristics):

▪ Sensor capacitance Cp range 5 pF to 61 pF

▪ The typical value of the GPIO resistance is 500 Ω and the recommended external
resistance is 560 Ω.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 15 of 160

Name Description

Widget Type A widget is one sensor or a group of sensors that perform a specific user-interface function. The
following describe the widgets types:

▪ Button – One or more sensors. Each sensor in the widget can detect the presence or
absence (i.e., only two states) of a finger on the sensor.

▪ Linear Slider – More than one sensor arranged in a specific order to detect the presence
and movement of a finger on a linear axis. If a finger is present, the Linear Slider detects
the physical position (single axis position) of the finger.

▪ Radial Slider – More than one sensor arranged in a circular order to detect the presence
and radial movement of a finger. If a finger is present, the Radial Slider detects the
physical position of the finger.

▪ Matrix Buttons – Two or more sensors arranged in a specific horizontal and vertical
order to detect the presence or absence of a finger on the intersections of vertically and
horizontally arranged sensors.

If M and N are numbers of sensors in the horizontal and vertical axis, respectively, the
total of the M x N intersection positions can detect a finger touch. When using the CSD
sensing method, a simultaneous finger touch on more than one intersection is invalid and
produces invalid results. This limitation does not apply when using the CSX sensing
method and all intersections can detect a valid touch simultaneously.

▪ Touchpad – Multiple sensors arranged in the specific horizontal and vertical order to
detect the presence or absence of a human finger. If a finger is present, the widget will
detect the physical position (both X and Y axis position) of the touch. More than one
simultaneous touch in the CSD sensing method is invalid. The CSX sensing method
supports detection of up to 3 simultaneous finger touches.

▪ Proximity Sensor – One or more sensors. Each sensor in the widget can detect the
proximity of conductive objects, such as a human hand or finger to the sensors. The
proximity sensor has two thresholds:

o Proximity threshold – To detect an approaching hand or finger.

o Touch threshold – To detect a finger touch on the sensor.

Widget Name A widget name can be defined to aid in referring to a specific widget in a design. A widget name
does not affect functionality or performance. A widget name is used throughout source code to
generate macro values and data structure variables.

A maximum of 16 alphanumeric characters (the first letter must be an alphabetic character) is
acceptable for a widget name.

Sensing mode The parameter to select the sensing mode for each widget:

▪ CSD sensing method (Capacitive Sigma Delta) – A Cypress patented method of
performing self-capacitance measurements. All widget types support CSD sensing.

▪ CSX sensing method – A Cypress patented method of performing mutual-capacitance
measurements. Only buttons, matrix buttons, and touchpad widgets support CSX
sensing.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 16 of 160 Document Number: 002-28712 Rev.*B

Name Description

Widget
Sensing
element(s)

A sensing element refers to the Component terminals assigned to port pins to connect to physical
sensors on a user-interface panel (such as a pad or layer on a PCB, ITO, or FPCB).

The following element numbers are supported by the CSD sensing method:

▪ Button – Supports 1 to 32 sensors within a widget.

▪ Linear Slider – Supports 3 to 32 segments within a widget.

▪ Radial Slider – Supports 3 to 32 segments within a widget.

▪ Matrix Buttons – Support 2 to 16 rows and columns. The number of total intersections
(sensors) is equal to that of rows x columns, limited to the maximum of 32.

▪ Touchpad – Supports 3 to 16 rows and columns.

▪ Proximity – Supports 1 to 16 sensors within a widget.

The following element numbers are supported by the CSX sensing method:

▪ Button – 1 to 32 Rx electrodes (for 1 to 32 sensors) and Tx is fixed to 1.

▪ Matrix Buttons – 2 to 16 Tx and Rx. The total intersections (node) number is equal to
Tx × Rx limited to the maximum of 32.

▪ Touchpad – Supports 3 to 16 Tx and Rx. The total intersections (node) number is equal to
Tx × Rx. The maximum number of nodes is 256.

Finger
capacitance

Finger capacitance is defined as capacitance introduced by a user touch on the sensors. This
parameter is used to indicate how a sensitive CSD widget is tuned by the SmartSense Auto-
tuning algorithm.

The supported Finger capacitance range:

▪ SmartSense (Full Auto-Tune) mode – 0.1 pF to 1 pF with a 0.02-pF step.

▪ SmartSense (Hardware parameters only) mode – 0.02 pF to 20.48 pF on the exponential
scale.

CapSense sensor sensitivity is inversely proportional to a finger capacitance value. A smaller
value of finger capacitance provides higher sensitivity for a sensor. To detect a user touch on a
thick overlay (4-mm plastic overlay), finger capacitance is set to a small value (e.g., 0.1pF). For a
sensor with a thin overlay or no overlay, the 0.1pF finger capacitance setting makes the sensor
too sensitive and may cause false touches. For robust operation, it is important to set the
appropriate finger capacitance value by considering the sensor size and overlay thickness of the
design. Refer to the CapSense design guide for more information.

Move up /
Move down

Moves the selected widget up or down by one on the list. It defines the widget scanning order.

Note Moving a widget may break a pin assignment, which requires repairing the assignment in
the Pin Editor.

Delete Deletes the selected widget from the list.

Note Deleting a widget may break a pin assignment, which requires repairing the assignment in
the Pin Editor.

CSD
electrodes

Indicates the total number of electrodes (port pins) used by the CSD widgets, including the
Cmod, Csh and Shield electrodes.

CSX
electrodes

Indicates the total number of electrodes (port pins) used by the CSX widgets, including the CintA
and CintB capacitors.

http://www.cypress.com/an85951

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 17 of 160

Name Description

Pins required Indicates the total number of port pins required for the design. This does not include port pins
used by other Components in the project or SWD pins in Debug mode. The number of
Pins required must always be less than or equal to that of Pins availabl for a project to build
successfully.

Pins required includes the number of CSD and CSX electrodes, Cmod, Csh, Shield, CintA ,and
CintB electrodes.

Pins available Indicates the total number of port pins available for the selected device.

Advanced Tab

This tab provides advanced configuration parameters. In SmartSense Auto-tuning, most of the
advanced parameters are automatically tuned by the algorithm and the user does not need to set
values for these parameters. When the manual tuning mode is selected, this tab allows the user
to control and configure all the Component parameters.

The parameters in the Advanced tab are arranged in the follwing sub-tabs.

▪ General – Contains parameters common for all widgets respective of the sensing method
used for the widgets.

▪ CSD Settings – Contains parameters common for all widgets using the CSD sensing
method. This tab is relevant only if one or more widget use the CSD sensing method.

▪ CSX Settings – Contains parameters common for all widgets using the CSX sensing
method. This tab is relevant only if one or more widget use the CSX sensing method.

▪ Widget Details – Contains parameters specific to widgets and/or sensors.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 18 of 160 Document Number: 002-28712 Rev.*B

▪ Scan Order – Provides information such as scan time for each sensor and total scan time
for all sensors.

General Sub-Tab

Contains parameters common for all widgets respective of Sensing mode used for widgets.

These parameters are described in the following sections:

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 19 of 160

Regular widget raw count filter type

The Regular widget raw count filter type applies to raw counts of sensors belonging to non-
proximity widgets. These parameters can be enabled only when one or more non-proximity
widgets are added to the Basic tab. The filter algorithm is executed when any processing
function is called by the application layer. When enabled, each filter consumes RAM to store a
previous raw count (filter history). If multiple filters are enabled, the total filter history
correspondingly increases so that the size of the total filter history is equal to a sum of all
enabled filter histories.

Name Description

Enable IIR filter
(First order)

Enables the infinite-impulse response filter (See equation below) with a step response
similar to an RC low-pass filter, thereby passing the low-frequency signals (finger touch
responses).

()
Outputprevious

K

NK
input

K

N
Output

−
+=

where:

K is always 256.

N is the IIR filter raw count coefficient selectable from 1 to 128 in the customizer.

A lower N (set in the IIR filter raw count coefficient parameter) results in lower noise, but
slows down the response. This filter eliminates high-frequency noise.

Consumes 2 bytes of RAM per each sensor to store a previous raw count (filter history).

IIR filter raw count
coefficient

The coefficient (N) of IIR filter for raw counts is explained in the Enable IIR filter (First
order) parameter.

The range of valid values: 1-128

Enable median filter
(3-sample)

Enables a non-linear filter that takes three of most recent samples and computes the
median value. This filter eliminates spike noise typically caused by motors and switching
power supplies.

Consumes 4 bytes of RAM per each sensor to store a previous raw count (filter history).

Enable average
filter (4-sample)

The finite impulse response filter (no feedback) with equally weighted coefficients. It takes
four of most recent samples and computes their average. Eliminates periodic noise (e.g.
noise from AC mains).

Consumes 6 bytes of RAM per each sensor to store a previous raw count (filter history).

Note If the Enable multi-frequency scan parameter is enabled, the memory consumption of filters
increases by three times.

Note If multiple filters are enabled, the execution order is as follows:

1. Median filter

2. IIR filter

3. Average filter

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 20 of 160 Document Number: 002-28712 Rev.*B

Proximity widget raw count filter type

The proximity widget raw count filter applies to raw counts of sensors belonging to the proximity
widgets. These parameters can be enabled only when one or more proximity widgets are added
on the Basic tab.

Parameter Name Description

Enable IIR filter (First order) The design of these parameters is the same as the Regular widget raw count
filter type parameters. The Proximity sensors require high-noise reduction.
These dedicated parameters allow for setting the proximity filter configuration
and behavior differently compared to other widgets.

IIR filter raw count coefficient

Enable median filter (3-sample)

Enable average filter (2-sample)

Baseline filter settings

Baseline filter settings are applied to all sensors baselines. However, filter coefficients for the
proximity and regulator widgets can be controlled independently from each other.

The design baseline IIR filter is the same as the raw count Enable IIR filter (First order)
parameter, but filter coefficients can be separate for both baseline and raw count filters to
produce a different roll-off. The baseline filter is applied to a filtered raw count (if the widget raw
count filters are enabled).

Name Description

Regular widget
baseline coefficient

Baseline IIR filter coefficient selection for sensors in non-proximity widgets. The range of
valid values: 1-255.

Proximity widget
baseline coefficient

The design of these parameters is the same as the Regular widget baseline coefficient,
but with a dedicated parameter allows controlling the baseline update-rate of the
proximity sensors differently compared to other widgets.

General settings

General settings are applicable to the whole Component behavior.

Name Description

Enable sensor auto-
reset

When enabled, the baseline is always updated. When disabled, the baseline is updated
only when the difference between the baseline and raw count is less than the noise
threshold.

When enabled, this feature prevents sensors from permanently turning on when the raw
count accidentally rises due to a large power supply voltage fluctuation or other spurious
conditions.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 21 of 160

Name Description

Enable self-test
library

The Component provides the Built-In Self-Test (BIST) library to support Class B
(IEC-60730), safety integrity-level compliant design such as white goods and automotive,
and design for manufacturing testing. The library includes a set of tests for board
validation, as well as Component configuration and operation. Enable the feature to get
these advantages. Include the safety functions for risk-reduction, validate boards at
manufacturing, and verify the Component operation in run-time.

The provided tests are classified into two categories:

1. HW Tests – To confirm the CSD block and sensor hardware (external to chip) are
functional:

• Chip analog routing verification

• Pin faults checking

• PCB-trace opens / shorts checking

• External capacitors and sensors capacitance measurement

• VDDA measurement.

2. FW Tests – To confirm the integrity of data used for decision making on the sensor
status:

• Component global and widget specific configuration verification

• Sensor baseline duplication

• Sensor raw count and baseline are in the specified range

The application layer is responsible for running each test at start and run-time as required
by the product requirements.

The high-level function CapSense_RunSelfTest() executes a set of tests based on an
enable-mask input. This function allows running all tests or only the selected tests. The
return status contains a PASS/FAIL bit for each test. Also, a set of low-level functions
allows executing tests specific to a widget and a sensor. The execution time of each test is
less than 10 ms at PeriClk = 12 MHz when low-level functions are used. Refer to the
Application Programming Interface section for more details.

Note Use CapSense_SetParam() to update the CapSense Data Structure parameters. Any
other method invalids the CRC.

Note If SmartSense (Full Auto-Tune) is enabled, the self-test library cannot be enabled.

Note BIST and scanning cannot operate simultaneously. The status of a sensor scan must
be checked using the CapSense_IsBusy() function prior to run testing.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 22 of 160 Document Number: 002-28712 Rev.*B

Name Description

Enable multi-
frequency scan

The multi-frequency scan performs a triple-sensor scan with different frequencies. Then, it
chooses a median sensor difference-count for further processing. Enable the feature for
robust and reliable operation in the presence of external noise at a certain sensor scan
frequency.

When the multi-frequency scan is enabled, each sensor is scanned three times with three
different sensor frequencies. The Component changes the IMO frequency of the device
during a triple scan. The frequency of the scan is called a channel. The base channel (zero
channel) is the nominal IMO frequency. Based on the device limitations, the second and
the third channels frequencies are: +5% and +10% or -5% and +5% or -5% and -10%.
When a sensor scan is complete, the nominal IMO frequency is configured back. The
Component finishes sensor scanning after all the three frequency scans have been
performed. The Component tracks the raw count and baseline for a sensor separately for
each frequency channel, then calculates three difference counts. Finally, it chooses the
optimal difference count by applying the median filter to the calculated difference counts.

If Enable compensation IDAC is enabled, then each sensor has three IDAC values
corresponding to each scan channel.

If any of the raw count filters is enabled (Regular widget raw count filter type or Proximity
widget raw count filter type), it is applied to the three sensor raw counts and their filter
history separately.

The multi-frequency scan algorithm is common for the CSX and CSD sensing methods.
The multi-frequency scan and SmartSense (Full Auto-Tune) features are mutually
exclusive. I.e. if the multi-frequency scan is enabled, it is not possible to enable
SmartSense (Full Auto-Tune) or vice-versa.

Side effects:

▪ Increased flash and RAM usage. Refer to the Memory Usage section for details.

▪ Increased the sensor scan duration by three times and partially processing time.

▪ The multi-frequency scan changes the IMO clock. All Components which reuse IMO
for critical time-dependent operations will be affected by the CapSense Component.
For example, the communication-oriented Component.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 23 of 160

CSD Settings Sub-Tab

This sub-tab contains parameters common for all widgets using the CSD sensing method. It is
relevant only if at least one widget uses the CSD sensing method.

These parameters are described in the following table:

Name Description

Modulator
clock
frequency

Selects the modulator clock frequency used for the CSD sensing method. It is the operating
frequency of the CSD block. The minimum value is 1000 kHz. The maximum value is device-
dependent as follows:

▪ PSoC 4000: 16000 kHz or equal or HFCLK, whichever is lower.

▪ PSoC 4100/PSoC 4200: 24000 kHz or HFCLK/2, whichever is lower.

▪ PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor: 48000 kHz or
HFCLK, whichever is lower.

▪ Other devices (PSoC 4200 BLE/PRoC BLE/PSoC 4200M/PSoC 4200L): 24000 kHz or
HFCLK, whichever is lower.

Enter any value between the min and max limits based on the availability of the clock divider,
the next valid lower value is selected by the Component, and the actual frequency is shown in
the read-only label below the drop-down list.

The default value is the highest modulator clock. A higher modulator clock-frequency reduces
the sensor scan time. This results in lower average power consumption and reduces the noise
in the raw counts. Cypress recommends using the highest possible frequency.

SmartSense Auto-tuning requires the Modulator clock frequency to be set at 6000 kHz or higher
for Fourth-generation CapSense and 3000 kHz or higher for Third-generation CapSense.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 24 of 160 Document Number: 002-28712 Rev.*B

Name Description

Sense clock
source

Sense clock frequency is derived from the Modulator clock frequency using a clock-divider and
is used to sample the sensor. Both the clock source and clock frequency are configurable.

The Spread Spectrum Clock (SSC) provides a dithering clock source with a center frequency
equal to the frequency set in the Sense clock frequency parameter. The PRS clock source
spreads the clock using the pseudo-random sequencer and the Direct source disables both
SSC and PRS sources and uses a fixed-frequency clock.

Both PRS and SSC reduce the radiated noise by spreading the clock and improve the immunity
against external noise. Using a higher number of bits of SSC and PRS lowers the radiation and
increases the immunity against external noise.

The following sources are available:

▪ Direct – PRS and SSC are disabled and a fixed clock is used.

▪ PRS8 – The clock spreads using PRS to Modulator Clock / 256.

▪ PRS12 – The clock spreads using PRS to Modulator Clock / 4096.

▪ Auto – The Component automatically selects optimal SSC, PRS or Direct sources
individually for each widget. The Auto is the recommended sense clock source selection.

In addition to the listed above options, the following sense-clock sources are available as
follows:

▪ Fourth-generation CapSense: SSC6, SSC7, SSC9 and SSC10 – The clock spreads
using a range of 6 bits to 10 bits of the sense-clock divider respectively.

The following rules and recommendations for the SSC selection:

▪ The ratio between the Modulator clock frequency and Sense clock frequency must be
greater than or equal to 20.

▪ 20% of the ratio between the Modulator clock frequency and Sense clock frequency
should be greater or equal to the SSC frequency range = 32. It allows varying the ratio
between the Modulator and Sense clock frequencies to 32 different clocks evenly spaced
over +/- 10% from the center frequency.

SnsClk

ModClk
160

Where ModClk is the Modulator clock frequency and SnsClk is Sense clock frequency.

▪ At least one full-spread spectrum polynomial should end during the scan time:

SnsClkModClk

SSCNN 1212 −

−

where N is the Scan resolution, SSCN is the number of bits used for SSC (6, 7, 9 and 10
for Fourth-generation CapSense),

ModClk is Modulator clock frequency and SnsClk is Sense clock frequency.

▪ The number of sub-conversions for the widget should be an integer multiple of the SSC
polynomial selected. For example, if SSC6 is selected, the number of the sub-conversion
should be multiple of (2SSC6-1) = 63.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 25 of 160

Name Description

Sense clock
source (cont.)

The recommendation for the PRS selection:

▪ At least one full PRS polynomial should finish during the scan time:

SnsClkModClk

PRSNN 1212 −

−

where N is the Scan resolution, PRSN is the number of bits used for PRS (8 and 12),

ModClk is the Modulator clock frequency and SnsClk is the average Sense clock
frequency

Enable
common
sense clock

When selected, all CSD widgets share the same sense clock at a frequency specified in the
Sense clock frequency (kHz) parameter. Otherwise, Sense clock frequency can be entered
separately for each CSD widget in the Widget Details tab.

Using a common sense clock for all CSD widgets results in lower power consumption and
optimized memory usage. However, if the sensor parasitic capacitance significantly differs for
each widget, then a common sense clock may not produce the optimal performance.

To enable SmartSense Auto-tuning, disable this parameter, because SmartSense will set a
Sense clock for each widget based on the sensor properties for the optimal performance.

Sense clock
frequency

Sets the CSD Sense clock frequency. The minimum value is 45 kHz. The maximum value
depends on the selected device:

▪ PSoC 4100 / PSoC 4200: 12000 kHz or MODCLK/2, whichever is lower (MODCLK is
CSD Modulator clock frequency).

▪ PSoC 4000S / PSoC 4100S / PSoC 4100S Plus / PSoC Analog Coprocessor: 6000 kHz
or HFCLK/2, whichever is lower.

▪ Other devices: 12000 kHz or HFCLK/2, whichever is lower.

Enter any value between the min and max limits, basing on the clock divider availability, the next
valid lower value is selected by the Component, and the actual frequency appears in the read-
only label below the drop-down list.

When SmartSense is selected in CSD tuning mode, the Sense Clock frequency is automatically
set by the Component to an optimal value by following the 2*5*R*C rule (refer to CapSense
design guide for more information on this rule) and this control is grayed out.

When Enable common sense clock is unselected, the Sense clock frequency can be set
individually for each widget in the Widget Details tab, and this control is grayed out.

Note If the PeriClk frequency or Modulator clock frequency changes, the Component
automatically recalculates the next closest Sense clock frequency value to a possible one.

Inactive
sensor
connection

Selects the state of all non-scanned sensors during CSD scanning:

▪ Ground (default) – Inactive sensors are connected to ground.

▪ High-Z – Inactive sensors are floating (not connected to GND or Shield).

▪ Shield - Inactive sensors are connected to Shield. This option is available only if the
Enable shield electrode check box is set.

Ground is the recommended selection for this parameter when water tolerance is not required
for the design. Select Shield when the design needs water tolerance or to reduce the sensor
parasitic capacitance in the design.

http://www.cypress.com/an85951
http://www.cypress.com/an85951

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 26 of 160 Document Number: 002-28712 Rev.*B

Name Description

IDAC sensing
configuration

Selects the type of IDAC switching:

▪ IDAC sourcing (default) – Sources current into the modulator capacitor (Cmod). The
analog switches are configured to alternate between the Cmod and GND. IDAC Sourcing
is recommended for most designs because of the better signal-to-noise ratio

▪ IDAC sinking – Sinks current from the modulator capacitor (Cmod). The analog
switches are configured to alternate between VDD and Cmod.

Enable IDAC
auto-
calibration

When enabled, values of the CSD widget IDACs are automatically set by the Component. It
includes IDAC code and IDAC gain. Select the Enable IDAC Auto-calibration parameter for
robust operation. The SmartSense Auto-tuning parameter can be enabled only when the Enable
IDAC auto-calibration is selected.

Enable
compensation
IDAC

The compensation IDAC is used to compensate for sensor parasitic capacitance to improve
performance. Enabling the compensation IDAC is recommended unless one IDAC is required
for general purpose (other than CapSense) in the project.

Enable shield
electrode

The shield electrode is used to reduce the sensor parasitic capacitance, enable water-tolerant
CapSense designs and enhance the detection range for the Proximity sensors. When the shield
electrode is disabled, configurable parameters associated with the shield electrode are hidden.

Enable shield
tank (Csh)
capacitor

The shield tank capacitor is used to increase the drive capacity of the shield electrode driver.
The recommended value for a shield tank capacitor is 10nF/5V/X7R or an NP0 capacitor. Refer
to CapSense design guide for details on shield tank capacitor usage.

The shield tank capacitor is not supported in configurations that include both CSD and CSX
sensing-based widgets.

Csh
initialization
source

Selects the initialization source for the shield tank electrode, when Enable shield tank (Csh)
capacitor is enabled. The two options are available:

▪ Vref – Precharge the shield tank by connecting VREF to the Csh capacitor.

▪ IO Buffer – Precharge the shield tank by connecting the VDD supply to the Csh
capacitor and turning it off using the feedback system when the Csh voltage reaches
Vref. This option is available only when the Csh capacitor is assigned to one of the
dedicated Csh pins (refer to the device datasheet for pin details) and these dedicated
pins are available for the Csh when the CSX sensing method is not used in the project.

The recommended source of precharge is the IO buffer.

Note This parameter is available for Third-generation CapSense only.

Shield SW
resistance

Selects the resistance of switches used to drive the shield electrode. The four options:

▪ Low

▪ Medium (default)

▪ High

▪ Low EMI

Note This parameter is available for Fourth-generation CapSense only.

http://www.cypress.com/an85951

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 27 of 160

Name Description

Number of
shield
electrodes

Selects the number of shield electrodes required in the design.

Most designs work with one dedicated shield electrode, but some designs require multiple
dedicated shield electrodes to ease the PCB layout routing or to minimize the PCB area used
for the shield layer.

The minimum value is 0 (i.e. shield signal could be routed to sensors using the Inactive sensor
connection parameter) and the maximum value is equal to the total number of CapSense-
enabled port pins available for the selected device.

CSX Settings Sub-tab

The parameters in this sub-tab apply to all widgets that use the CSX sensing method. If no
widget uses the CSX sensing method, the configuration parameters in this sub-tab are grayed
out and become not configurable.

These parameters are described in the following table:

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 28 of 160 Document Number: 002-28712 Rev.*B

Name Description

Modulator clock
frequency

Selects the modulator clock frequency used for the CSX sensing method. It is the operating
frequency of the CSD block. The minimum value is 1000 kHz. The maximum value is device
dependent as follows:

▪ PSoC 4000: 16000 kHz or equal or HFCLK, whichever is lower.

▪ PSoC 4100/PSoC 4200: 24000 kHz or HFCLK/2, whichever is lower.

▪ PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor: 48000 kHz or
HFCLK, whichever is lower.

▪ Other devices (PSoC 4200 BLE/PRoC BLE/PSoC 4200M/PSoC 4200L): 24000 kHz or
HFCLK, whichever is lower.

Enter any value between the min and max limits, basing on the availability of the clock divider,
the next valid lower value is selected by the Component, and the actual frequency appears in
the read-only label below the drop-down list.

A higher modulator clock-frequency reduces the sensor scan time, results in lower power, and
reduces the noise in raw counts. Cypress recommends using the highest possible frequency.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 29 of 160

Name Description

Tx clock source The Tx clock frequency derives from the Modulator clock frequency using a clock-divider and is
used to sample the sensor. Both the type of the clock source and the clock frequency are
configurable in Fourth-generation CapSense devices, in Third-generation CapSense, Direct
clock source is used and not configurable.

The Spread Spectrum Clock (SSC) provides a dithering clock source with a center frequency
equal to the frequency set in the Tx clock frequency parameter and the Direct source disables
the SSC source and uses a fixed frequency clock. The SSC reduces the radiated noise by
spreading the clock and improves the immunity against external noise. Using a higher number
of bits of SSC lowers the radiation and increases the immunity against external noise.

The following clock sources are available:

▪ Direct – SSC is disabled and a fixed clock is used.

▪ Auto – The Component automatically selects optimal SSC or Direct sources individually
for each widget. Auto is the recommended Sense clock source selection.

In addition to the listed above options, the following sense-clock sources are available as
follows:

▪ Fourth-generation CapSense: SSC6, SSC7, SSC9 and SSC10 – The clock spreads
using a range of 6 bits to 10 bits of the sense-clock divider respectively.

The rules and recommendations for the SSC selection:

▪ The ratio between the Modulator clock frequency and Tx clock frequency must be
greater than or equal to 20.

▪ 20% of the ratio between the Modulator clock frequency and Tx clock frequency should
be greater or equal to the SSC frequency range = 32. It allows varying the ratio between
the Modulator and Tx clock frequencies to 32 different clocks evenly spaced over +/-
10% from the center frequency.

TxClk

ModClk
160

where ModClk is the Modulator clock frequency and TxClk is Tx clock frequency.

▪ It is recommended that at least one full-spread spectrum polynomial should end during
the scan time.

()12 − SSCN

SubN

where NSub is the Number of sub-conversions, SSCN is the number of bits used for SSC
(6, 7, 9 and 10).

▪ It is recommended that Number of sub-conversions for the widget should be an integer
multiple of the SSC polynomial selected. For example, if SSC6 is selected, the number
of sub-conversion should be multiple of (2SSC6-1) = 63.

Enable common
Tx clock

When selected, all CSX widgets share the same Tx clock with the frequency specified in the Tx
clock frequency (kHz) parameter. Otherwise, the Tx clock frequency is entered separately for
each CSX widget in the Widget Details tab.

Using the common Tx clock for all CSX widgets results in lower power consumption and
optimized memory usage and it is the recommended setting for the CSX widgets. But, in rare
cases, if the electrode properties capacitance is significantly different for each widget, a
common Tx clock may not produce the optimal performance.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 30 of 160 Document Number: 002-28712 Rev.*B

Name Description

Tx clock
frequency

Sets the Tx clock frequency. The minimum value is 45 kHz for all device families. The
maximum value depends on the selected device as follows:

▪ Fourth-generation CapSense: 3000 kHz.

▪ Third-generation CapSense: 300 kHz.

Set any value between the min and max limits, basing on the clock divider availability, the next
valid lower value is selected by the Component, and the actual frequency appears in the read-
only label below the drop-down list.

The highest Tx clock frequency produces the maximum signal and is the recommended setting.

When Enable common Tx clock is unselected, the Tx clock frequency is set individually for
each widget in the Widget Details tab, and this control is grayed out.

Note If the PeriClk frequency or Modulator clock frequency is changed, the Component
automatically recalculates the next closest Tx clock frequency value to a possible one.

Inactive
electrode
connection

Selects the state of all non-scanned electrode during CSX scanning:

▪ Ground (default) – Inactive sensors are connected to ground.

▪ High-Z – Inactive sensors are floating (not connected to GND).

Ground is the recommended selection for this parameter.

Number of
reported fingers

Sets the number of reported fingers for a CSX Touchpad widget only. The available options are
from 1 to 3.

Enable IDAC
auto-calibration

When enabled, IDAC values are automatically set by the Component. It includes IDAC code
only (IDAC gain is not included). It is recommended to select the Enable IDAC auto-calibration
for robust operation.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 31 of 160

Widget Details Sub-tab

This sub-tab contains parameters specific to each widget and sensor. These parameters must
be set when SmartSense (Full Auto-Tune) is not enabled. The parameters are unique for each
widget type.

These parameters are described in the following table:

Name Description

Widget General Parameters

Diplexing Enabling Diplexing allows doubling the slider physical touch sensing area by using a specific
duplexing sensor pattern and without using additional port pins and sensors in the
Component.

Maximum position Represents the maximum Centroid position for the slider. A touch on the slider would
produce a position value from 0 to the maximum position-value set. No Touch would produce
0xFFFF.

Maximum X-axis
position

Represents the maximum column (X-axis) Centroid position and row (Y-axis) Centroid
positions for a touchpad. A touch on the touchpad would produce a position value from 0 to
the maximum position set. No Touch would produce 0xFFFF.

Maximum Y-axis
position

Widget Hardware Parameters

Note All Widget Hardware parameters for CSD widgets are automatically set when SmartSense (Full Auto-Tune)
is selected in the CSD tuning mode.

Sense clock
frequency

This parameter is identical to the Sense clock frequency parameter in the CSD Settings tab.
When Enable common sense clock is unselected in the CSD Settings tab, a sense-clock
frequency for each widget is set here.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 32 of 160 Document Number: 002-28712 Rev.*B

Name Description

Row sense clock
frequency

These parameters are identical to the Sense clock frequency parameter, and are used to set
a sense-clock frequency for row and column sensors of the Matrix Buttons and Touchpad
widgets.

Column sense
clock frequency

Tx clock
frequency

This parameter is identical to the Tx clock frequency parameter in the CSX Settings tab.
When Enable common Tx clock is unselected in the CSX Settings tab, a Tx clock frequency
for each widget is set here.

Scan resolution Selects the scan resolution of CSD widgets (resolution of capacitance to digital conversion).
Acceptable values are from 6 to 16 bits.

Number of sub-
conversions

Selects the number of sub-conversions in the CSX sensing method.

ModClk

TxClk
N Sub

•

162

where,

ModClk is the CSX Modulator clock frequency

TxClk is the Tx clock frequency

NSub is the value of this parameter

Modulator IDAC Sets the modulator IDAC value for the CSD Button, Slider, or Proximity widget.

The value of this parameter is automatically set when Enable IDAC auto-calibration is
selected in the CSD Settings tab.

Row modulator
IDAC

Sets a separate modulator IDAC value for the row and column sensors of the CSD Matrix
Buttons and Touchpad widget.

These parameters values are automatically set when Enable IDAC auto-calibration is
checked in the CSD Settings tab.

Column modulator
IDAC

Gain IDAC Sets the IDAC gain. The default value corresponds to 2.4uA for CSD sensors and 0.3uA for
CSX sensors per one IDAC code set in Modulator IDAC / Compensation IDAC value and
IDAC Values.

The value of this parameter is automatically set for CSD widgets when the CSD IDAC auto-
calibration is enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 33 of 160

Name Description

Widget Threshold Parameters

Note All the threshold parameters for the CSD widgets are automatically set when SmartSense (Full Auto-Tune)
is selected in the CSD tuning mode parameter.

Finger threshold The finger threshold parameter is used along with the hysteresis parameter to determine the
sensor state as follows:

▪ ON – Signal > (Finger Threshold + Hysteresis)

▪ OFF – Signal ≤ (Finger Threshold – Hysteresis).

Note that “Signal” in the above equations refers to:

Difference Count = Raw Count – Baseline.

It is recommended to set the Finger threshold parameter value equal to the 80% of the touch
signal.

The Finger Threshold parameter is not available for the Proximity widget. Instead, Proximity
has two thresholds:

▪ Proximity threshold

▪ Touch threshold

Noise threshold Sets a raw count limit below which a raw count is considered as noise. When a raw count is
above the Noise Threshold, a difference count is produced and the baseline is updated only if
Enable sensor auto-reset is selected. In other words, the baseline remains constant as long
as the raw count is above the baseline + noise threshold. This prevents the baseline from
following raw counts during a finger touch detection event.

It is recommended to set the noise threshold parameter value equal to 2x noise in the raw
count or the 40% of the signal.

Negative noise
threshold

Sets a raw count limit below which the baseline is not updated for the number of samples
specified by the Low baseline reset parameter.

The negative noise threshold ensures that the baseline does not fall low because of any high-
amplitude repeated negative-noise spikes on a raw count caused by different noise sources
such as ESD events.

It is recommended to set the negative noise threshold parameter value equal to the Noise
threshold parameter value.

Low baseline
reset

This parameter is used along with the Negative noise threshold parameter. It counts the
number of abnormally low raw counts required to reset the baseline.

If a finger is placed on the sensor during a device startup, the baseline gets initialized to a
high raw count value at a startup. When the finger is removed, the raw count falls to a lower
value. In this case, the baseline should track low raw counts. The Low Baseline Reset
parameter helps handle this event. It resets the baseline to a low raw count value when the
number of low samples reaches the low-baseline reset number.

Note After a finger is removed from the sensor, the sensor will not respond to finger touches
for low baseline-reset time.

The recommended value is 30, which works for most designs.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 34 of 160 Document Number: 002-28712 Rev.*B

Name Description

Hysteresis The hysteresis parameter is used along with the Finger threshold parameter (Proximity
threshold and Touch threshold for Proximity sensor) to determine the sensor state. The
hysteresis provides immunity against noisy transitions of the sensor state.

See the description of the Finger threshold parameter for details.

The recommend value for the hysteresis is the 10% Finger threshold.

ON debounce Selects a number of consecutive CapSense scans during which a sensor must be active to
generate an ON state from the Component. Debounce ensures that high-frequency, high-
amplitude noise does not cause false detection

▪ Buttons/Matrix buttons/Proximity – An ON status is reported only when the sensor is
touched for a consecutive debounce number of samples.

▪ Sliders/Touchpads – The position status is reported only when any of the sensors is
touched for a consecutive debounce number of samples.

The recommended value for the Debounce parameter is 3 for reliable sensor status
detection.

Proximity
threshold

The design of these parameters is the same as for the Finger threshold parameters. The
proximity sensor requires a higher noise reduction, and supports two levels of detection:

▪ The proximity level to detect an approaching hand or finger

▪ The touch level to detect a finger touch on the sensor similarly to other Widget Type
sensors

Note that for valid operation, the Proximity threshold must be lower than the Touch threshold.

The threshold parameters such as Hysteresis and ON debounce are applicable to both
detection levels.

Touch threshold

Velocity Defines the maximum speed of a finger movement in terms of the squared distance of the
touchpad resolution. The parameter is applicable for a multi-touch touchpad (CSX Touchpad)
only. If the detected position of the next scan is further than the defined squared distance,
then this touch is considered as a separate touch with a new touch ID.

Position Filter Parameters

These parameters enable firmware filters on a centroid position to reduce noise. These filters are available for
Slider and Touchpad widgets only. If multiple filters are enabled, the execution order corresponds to the listed
below and the total RAM consumption increases so that the size of the total filter history is equal to a sum of all
enabled filter histories.

Median filter Enables a non-linear filter that takes three of most recent samples and computes the median
value. This filter eliminates the spikes noise typically caused by motors and switching power
supplies. Consumes 4 bytes of RAM per each position (filter history).

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 35 of 160

Name Description

IIR filter Enables the infinite-impulse response filter (see equation below) with a step response.

()
Outputprev

K

NK
Input

K

N
Output

−
+=

where:

K is always 256;

N is the IIR filter raw count coefficient selectable from 1 to 255 in the customizer.

A lower N (set in the IIR filter coefficient parameter) results in lower noise, but slows down the
response. This filter eliminates high-frequency noise.

Consumes 2 bytes of RAM per each position (filter history).

IIR filter coefficient The coefficient (N) of the IIR filter for a position as explained in the IIR filter parameter.

The range of valid values: 1-255.

Adaptive IIR filter Enables the Adaptive IIR filter. It is the IIR filter that changes its IIR coefficient according to
the speed of the finger movement. This is done to smooth the fast movement of the finger
and at the same time control properly the position movement. The filter coefficients are
automatically adjusted by the adaptive algorithm with the speed of the finger movement. If the
finger moves slowly, the IIR coefficient decreases; if the finger moves fast, the IIR coefficient
increases from the existing value.

Consumes 3 bytes of RAM per each position (filter history).

When this filter is enabled, the Adaptive IIR Filter Parameters are available for configuration.

The adaptive IIR filter is available for gesture-enabled part numbers.

Average filter Enables the finite-impulse response filter (no feedback) with equally weighted coefficients. It
takes two of most recent samples and computes their average. Eliminates periodic noise
(e.g. noise from AC mains). Consumes 2 bytes of RAM per each position (filter history).

Jitter filter This filter eliminates the noise in the position data that toggles between the two most recent
values. If the most recent position value is greater than the previous one, the current position
is decremented by 1; if it is less, the current position is incremented by 1. The filter is most
effective at low noise. Consumes 2 bytes of RAM per each position (filter history).

Ballistic multiplier Enables the Ballistic multiplier filter used to provide better user experience of the pointer
movement. Fast movement will move the cursor by more pixels. Consumes 16 bytes of RAM
when enabled.

Note The Ballistic multiplier filter can be enabled for only one CSD Touchpad widget. The
Ballistic multiplier filter is available for gesture-enabled part numbers. The Ballistic multiplier
filter depends on the scanning refresh rate.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 36 of 160 Document Number: 002-28712 Rev.*B

Name Description

Adaptive IIR Filter Parameters

These parameters are available when the Adaptive IIR filter is enabled.

Movement threshold

Slow movement threshold

Fast movement threshold

IIR coeff = IIR coefficient minimum limit

IIR coeff = IIR coeff - 1

IIR coeff = IIR coeff + 2

IIR coeff = IIR coeff

IIR coeff Min limit <= IIR coeff <= IIR coeff Max limit

Samples

D
is

p
la

ce
m

en
t

Position
movement
threshold

Defines the position threshold below which a position displacement is ignored or considered
as no movement. If the position displacement is within the threshold limit, the IIR coefficient
equals the IIR coefficient minimum limit and filtering affects a position intensively.

Position slow
movement
threshold

Defines the position threshold below which (and above Position movement threshold) a
position displacement (the difference between the current and previous position) is
considered as slow movement. If the position displacement is within the threshold limits, the
IIR filter coefficient decreases during each new scan. So, the filter impact on the position
becomes less intensive.

Position fast
movement
threshold

Defines the position threshold above which a position displacement is considered as fast
movement. If the position displacement is above the threshold limit, the IIR filter impact on
the position becomes more intensive during each new scan as the filter coefficient increases.

IIR coefficient
maximum limit

Defines the maximum limit of the IIR coefficient when the finger moves fast. The fast
movement event is defined by the Position fast movement threshold.

IIR coefficient
minimum limit

Defines the minimum limit of the IIR coefficient when the finger moves slowly. The slow
movement event is defined by the Position slow movement threshold.

IIR coefficient
divisor

This parameter acts as the scale factor for the filter IIR coefficient.

Outputprevious
Divisor

CoeffDivisor
Input

Divisor

Coeff
Output

−
+=

where:

Input, Output, and Previous Output are the touch positions;

Coeff is the automatically adjusted IIR filter coefficient;

Divisor is the IIR coefficient divisor (this parameter).

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 37 of 160

Name Description

Ballistic Multiplier Parameters

These parameters are available when the Ballistic multiplier is enabled.

The simplified diagram of the Ballistic Multiplier filter operation:

dPosFiltered = dPos * (S / D)

dPos

Speed Threshold

dPosFiltered

dPosFiltered = dPos * (S / D) +
 (dPos – SpeedThreshold) * (S * A / D)

where,

dPos is an input position displacement either in the X axis or Y axis,

dPosFiltered is the filtered displacement;

SpeedThreshold is either the X-axis speed threshold or Y-axis speed threshold;

A is the Acceleration coefficient;

S is the Speed coefficient;

D is the Divisor value.

Acceleration
coefficient

Defines the value at which the position movement needs to be interpolated when the
movement is classified as fast movement. The reported position displacement is multiplied by
this parameter.

Speed coefficient Defines the value at which the position movement is interpolated when the movement is
classified as slow movement. The reported position displacement is multiplied by this
parameter.

Divisor value Defines the divisor value used to create a fraction for the acceleration and speed coefficients.
The interpolated position coordinates are divided by the value of this parameter.

X-axis speed
threshold

Defines the threshold to distinguish fast and slow movement on the X axis. If the X-axis
position displacement reported between two consecutive scans exceeds this threshold, then
it is considered as fast movement, otherwise as slow movement.

Y-axis speed
threshold

Defines the threshold to distinguish fast and slow movement on the Y axis. If the Y-axis
position displacement reported between two consecutive scans exceeds this threshold, then
it is considered as fast movement, otherwise as slow movement.

Centroid Parameters

Centroid parameters are available for the CSD Touchpad widgets only.

Centroid type Selects a sensor matrix size for centroid calculation. The 5x5 centroid (also known as
Advanced Centroid) provides benefits such as Two finger detection, Edge correction, and
improved accuracy.

If Advanced Centroid is selected, the below parameters are configured as well.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 38 of 160 Document Number: 002-28712 Rev.*B

Name Description

Cross coupling
position threshold

Defines the cross coupling threshold. This value is subtracted from the sensor signal used for
centroid position calculation to improve the accuracy.

The threshold should be equal to a sensor signal when a finger is near the sensor but is not
touching the sensor. This can be determined by slowly dragging the finger across the panel
and finding the inflection point of the difference counts at the base of the curve. The
difference value at this point is the Cross-coupling threshold. The default value is 5.

Edge correction This feature is available if the Centroid type is configured to 5x5.

When enabled, a matrix of centroid calculation is updated with virtual sensors on the edges of
a touchpad. It improves the accuracy of the reported position on the edges. When enabled,
two more parameters must be configured: Virtual sensor threshold and Penultimate
threshold.

Virtual sensor
threshold

This parameter is applicable only if Edge correction is enabled and it is used to calculate a
signal (difference count) for a virtual sensor used for the edge correction algorithm.

A touch position on a slider or touchpad is calculated using a signal from the local-maxima
sensor and its neighboring sensors. A touch on the edge sensor of a slider or touchpad does
not accurately report a position because the edge sensor lacks signal from one side of
neighboring sensors of the local-maxima sensor.

Virtual Sensor Threshold
Signal

SNS 0 SNS 1 SNS 2 SNS 3

Sensor on edge

x2

Lo
ca

l M
ax

im
u

m

Touch

VIRTUAL

If the Edge correction is enabled, the algorithm adds a virtual neighbor sensor to correct the
deviation in the reported position. The Virtual sensor signal is defined by the Virtual sensor
threshold:

() 20 −= SNSVIRTUALVIRTUAL DiffCountThresholdDiffCount

where:

DiffCount VIRTUAL is the virtual sensor difference count;

Threshold VIRTUAL is the virtual sensor threshold;

DiffCount SNS0 is the sensor 0 difference count.

The conditions for a virtual sensor (and Edge correction algorithm) to be applied:

▪ Local-maxima detected on the edge sensor

▪ Difference count from the penultimate sensor less than the Penultimate threshold.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 39 of 160

Name Description

Penultimate
threshold

This parameter is applicable only if the Edge correction is enabled and it works along with the
Virtual sensor threshold parameter.

This parameter defines the threshold of penultimate sensor signal. If the signal from
penultimate sensor is below the Penultimate threshold, the edge correction algorithm is
applied to the centroid calculation.

The conditions for the edge correction to be applied:

▪ Local-maxima detected on the edge sensor

▪ The difference count of the penultimate sensor (SNS 1 in the figure below) less than
the Penultimate threshold.

Signal

SNS 0 SNS 1 SNS 2 SNS 3

Sensor on edge

Penultimate Threshold

Lo
ca

l M
ax

im
u

m
Touch

VIRTUAL

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 40 of 160 Document Number: 002-28712 Rev.*B

Name Description

Two finger
detection

Enables the detection of the second finger on a CSD touchpad.

In general, a CSD touchpad can detect only one true touch position. A CSD touchpad widget
consists of two Linear Sliders and each slider reports the X and Y coordinates of a finger
touch. If there are two touches on the touchpad, there are four possible touch positions as
shown in the figure below. The two of these touches are real touches and two are known as
“ghost” touches. There is no possibility to differentiate between ghost and real touches in a
CSD widget (to get true multi-touch performance, use the CSX Touchpad widget).

But, if this feature is enabled, the CSD touchpad can report up to two touches, mainly to be
used in conjunction with two-finger gestures where real and ghost touches do not need to be
fully differentiated. It is available for the CSD touchpad only when the Centroid type is
configured to 5x5.

The Advanced centroid (Centroid type is 5x5) uses the 3x3 centroid matrix when detects two
touches.

Sensor parameters

Compensation
IDAC value

Sets the Compensation IDAC value for each CSD sensor when Enable compensation IDAC
is selected on the CSD Settings tab. If the CSD tuning mode is set to SmartSense Auto-
tuning or Enable IDAC auto-calibration is selected on the CSD Settings tab, the value of this
parameter is set equal to the Modulator IDAC value at a device power-up for the maximum
performance from the sensor.

Select the Enable IDAC auto-calibration for robust operation.

IDAC Values Sets the IDAC value for each CSX sensor/node, a lower IDAC value without saturating raw
counts provides better performance for sensor/nodes.

When Enable IDAC auto-calibration is selected on the CSX Settings tab, the value of this
parameter is automatically set to the lowest possible value at a device power-up for better
performance.

It is recommended to select Enable IDAC auto-calibration for robust operation.

Selected pins Selects a port pin for the sensor (CSD sensing) and electrode (CSX sensing). The available
options use a dedicated pin for a sensor or reuse one or more pins from any other sensor in
the Component. Reusing the pins of any other sensor from any widgets helps create a
ganged sensor.

CSD Touchpad

X-axis Slider

Y-
ax

is
 S

lid
er

(X0,Y0)

(X0,Y1)

(X1,Y0)

(X1,Y1)

Sns0 Sns1 Sns2 Sns3 Sns4 Sns5

Sns0

Sns1

Sns2

Sns3

Sns4

Sns5

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 41 of 160

The following table shows which Widget / Sensor parameters belong to a given widget type.

Parameters

Widget Type

CSD Widget CSX Widget

Button
Linear
Slider

Radial
Slider

Matrix
Button

s

Touch
pad

Proxim
ity

Button
Matrix
Button

s

Touch
pad

Widget General

Diplexing

Maximum position

Maximum X-axis position

Maximum Y-axis position

Widget Hardware

Sense clock frequency

Row sense clock frequency

Column sense clock frequency

Tx clock frequency

Scan resolution

Number of sub-conversions

Modulator IDAC

Row modulator IDAC

Column modulator IDAC

Gain IDAC

Widget Threshold

Finger threshold

Noise threshold

Negative noise threshold

Low baseline reset

Hysteresis

ON debounce

Proximity threshold

Touch threshold

Velocity

Sensor Parameters

Compensation IDAC value

IDAC Values

Selected pins

Position Filter Parameters

Median filter

IIR filter

IIR filter coefficient

Adaptive IIR filter

Average filter

Jitter filter

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 42 of 160 Document Number: 002-28712 Rev.*B

Parameters

Widget Type

CSD Widget CSX Widget

Button
Linear
Slider

Radial
Slider

Matrix
Button

s

Touch
pad

Proxim
ity

Button
Matrix
Button

s

Touch
pad

Ballistic multiplier

Adaptive IIR Filter Parameters

Position movement threshold

Position slow movement
threshold

Position fast movement
threshold

IIR coefficient maximum limit

IIR coefficient minimum limit

IIR coefficient divisor

Ballistic Multiplier Parameters

Acceleration coefficient

Speed coefficient

Divisor value

X-axis speed threshold

Y-axis speed threshold

Centroid Parameters

Centroid type

Cross-coupling position
threshold

Edge correction

Virtual sensor threshold

Penultimate threshold

Two finger detection

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 43 of 160

Scan Order Sub-Tab

This tab provides the Scan time for each sensor in the Component and Total scan time
required to scan all the sensors in the Component.

This Scan Order tab provides hardware scan duration for each sensor and total hardware scan
duration for all the sensors in the component. The actual duration to complete a scan is sum of
duration of hardware scan, duration of initialization prior a scan and duration of firmware
execution. Therefore, it is recommended to measure the time (from start of scan function to end
of CapSense processing function) on hardware for accurate scan time information.

Note If SmartSense Auto-tuning mode is enabled for CSD Widgets, the scan time information is
not available in this tab as tuning parameters are identified by auto-tuning algorithm during
execution. Use the Tuner GUI to read the parameter from device which provides actual scan
time for sensor when is SmartSense enabled.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 44 of 160 Document Number: 002-28712 Rev.*B

Gestures Tab

The Gestures tab provides gesture-related configuration parameters. It is available for gesture-
supported part numbers only. If gestures are enabled, all gesture parameters are systematically
arranged by widgets / gesture groups.

Note This version of the Component supports gesture detection on one widget at a time.

1. Click on a widget (in the left pane) to display all groups of gestures supported on the selected
widget.

2. Use the check boxes (in the middle pane) to enable specific gesture groups or a combination
of gesture groups for the selected widget.

3. Click on a gesture group in the middle pane to display the parameters associated with the
selected gesture group.

4. Configure the parameters for each gesture groups in the right pane.

Note The Flick gestures and One-finger Scroll gestures cannot be enabled simultaneously.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 45 of 160

Gesture groups include: Click, One-finger Scroll, Two-finger Scroll, Two-finger Zoom, One-finger
Edge Swipe, One-finger Flick, One-finger Rotate. The table below shows the gesture groups
supported in each widget type.

Widget Type

Gesture Groups

Click One-finger
Scroll

Two-finger
Scroll

One-finger
Flick

One-finger
Edge Swipe

Two-finger
Zoom

One-finger
Rotate

Button

Linear Slider

Radial Slider

Matrix Buttons

Touchpad

Proximity

General Gesture Parameters

Contains the parameters common for gestures.

Name Description

Enable gestures Master enable for gestures feature.

Two-finger settling
time (ms)

Sets a delay threshold that to be met before gestures are computed. This parameter helps
avoid spurious gestures being reported during transient conditions. The parameter is
applied for the following conditions.

▪ 1 touch → 2 touches

▪ 2 touches → 1 touch

▪ No touch → 2 touches.

Example: A false one-finger click may be reported during a two-finger click gesture, if the
user lifts the fingers non-simultaneously (2 touches → 1 touch → no touch). Two-finger
settling time can help avoid false reporting.

Touchdown
Lift Off

Settling

time

Touchdown Touchdown
Lift OffLift Off

Settling

time

Settling

time

Settling

time

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 46 of 160 Document Number: 002-28712 Rev.*B

Click Group

This group delivers the following gestures:

Touchdown

A simple touch on a widget is reported as a Touchdown event.

Lift Off

Removal of a finger from a widget reported as a Lift Off event. If the Lift Off event triggers
another higher-level Gesture, then the Lift Off event is not reported.

One-finger Single
Click

One-finger single click gesture is a combination of a Touchdown and Lift Off events with
the conditions to be met:

▪ A touchdown event is followed by a Lift Off event.

▪ The touch duration (duration between touchdown and lift off) must be greater
than One-finger minimum touch duration and less than One-finger maximum
touch duration.

▪ For a touchpad, position displacements in the X and Y axis between the
Touchdown and Lift Off events must be within the click displacement limits (i.e.
Maximum X-axis position displacement and Maximum Y-axis position
displacement).

▪ For a slider, position displacements between the Touchdown and Lift Off events
must be within the Maximum position displacement.

Touchdown
Lift Off

Minimum touch duration

Maximum touch duration

Valid gesture time frame

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 47 of 160

One-finger Double
Click

A One-finger double click gesture is a combination of two sequential one-finger single
click gestures under specific conditions:

▪ Both clicks in the sequence must meet one-finger single click conditions.

▪ The touch duration between the two touchdown events must be within the
Minimum interval between touches and Maximum interval between touches
timeout limits.

▪ For a touchpad, the distance between two clicks must not exceed the Maximum
radius for the second click.

▪ For a slider, the distance between two clicks must not exceed the Maximum
position displacement.

One-finger Click and
Drag

This gesture is a one-finger click and then a hold, followed by a drag. A typical use case
is while moving items on the screen from one point to another. It is triggered when the
finger movement follows this sequence: Touchdown → Lift Off → Touchdown → Drag

Gesture triggering condition: A one-finger click gesture and a subsequent touchdown
were detected within the Minimum interval between touches and Maximum interval
between touches timeout limits and within Maximum radius for the second click (for
Touchpads) or Maximum displacement for second click (for Sliders). Then the finger
exceeds the Maximum X-axis position displacement and Maximum Y-axis position
displacement (for Touchpads) or Maximum position displacement (for Sliders) from a
drag touchdown.

2

Touchdown
Lift Off

Minimum interval

Between touches

Maximum interval

between touches

Valid gesture time frame

Touchdown
Lift Off

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 48 of 160 Document Number: 002-28712 Rev.*B

Two-finger Click

A Two-finger single click gesture is a combination of a Touchdown and Lift Off events
with under specific conditions:

▪ Two simultaneous finger touches (touchdown and lift off) should be detected.

▪ The duration between the second finger touchdown and lift off events of both
fingers must be within the Two-finger minimum touch duration and Two-finger
maximum touch duration timeout limits. The duration counting starts when the
settling time elapsed for the second finger touchdown event.

▪ For a touchpad, a position displacement in the X and Y axes between a
touchdown and lift off events must be less than the click displacement limits (i.e.
Maximum X-axis position displacement and Maximum Y-axis position
displacement).

▪ For a slider, a position displacement between the touchdown and lift off events
must be less than the Maximum position displacement.

The following table shows the One-finger / Two-finger Click Group parameters:

Name Description

Maximum X-axis
position
displacement

Defines the maximum X-axis displacement acceptable between a touchdown and lift off
events for a valid one-finger click gesture on touchpad widget. The click gesture is not
reported if the X-axis displacement is greater than the parameter value. Available for a
Touchpad widget.

Maximum Y-axis
position
displacement

Defines the maximum Y-axis displacement acceptable between a touchdown and lift off
events for a valid one-finger click gesture on a touchpad widget. The click gesture is not
reported if the Y-axis displacement is greater than the parameter value. Available for a
Touchpad widget.

Maximum position
displacement

Defines the maximum displacement acceptable between a touchdown and lift off events for
a valid one-finger click gesture on a slider widget. The click gesture is not reported if the
position displacement is greater than the parameter value. Available for a Slider widget.

Lift Off

Settling

time

Touchdown
Lift Off

Touchdown

Valid gesture time frame

Two-finger minimum touch duration

Two-finger maximum touch duration

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 49 of 160

Name Description

One-finger
minimum touch
duration (ms)

A duration between a touchdown and lift off events in a one-finger click must be greater
than the minimum limit specified by the parameter for a one-finger click gesture to be valid.
If the second click occurs within the Minimum interval between touches, no double click or
click gesture is reported. Use this parameter to filter out a quick double click and short
single click motions.

One-finger
maximum touch
duration (ms)

A duration between a touchdown and lift off events in a one-finger click must be less than
the maximum limit specified by the parameter for a one-finger click gesture to be valid. If
the finger remains on the widget for longer than this value, no click event is reported. This
parameter also sets the maximum duration of how long each click of a one-finger double
click can remain on the widget. If the first-click touch or second-click touch remains on the
widget for longer than this value, the double click is not reported.

Maximum radius for
the second click

Defines the maximum displacement (the center is the position of the first touch) that the
second click in a one-finger double click can extend on a touchpad widget. If the second
click occurs outside this radius limit, the double click is not reported. In this case, a Click
and Drag gesture may be reported if the gesture sequence meets the conditions for the
Click and Drag gesture.

Maximum
displacement for
second click

This parameter defines the maximum displacement (the center is the position of the first
touch) that the second click in a one-finger double click can extend on a slider widget. If the
second click occurs outside this displacement limit, the double click is not reported. In this
case, a Click and Drag gesture may be reported if the gesture sequence meets the
conditions for the Click and Drag gesture.

Minimum interval
between touches
(ms)

This parameter defines the minimum duration between two sequential clicks for a double
click to be considered valid. If the second click occurs within the duration specified by this
parameter, no click or double click gesture is reported. Use this parameter to filter out
quick double-click motions.

Maximum interval
between touches
(ms)

This parameter defines the maximum duration allowed between two sequential touchdowns
for a double click to be considered valid and reported. If the second touchdown occurs
outside the duration specified by this parameter, no double click gesture is reported. Use
this parameter to filter out slow double-click motions.

Two-finger
minimum touch
duration (ms)

This parameter defines the minimum duration between the second touchdown and the first
lift off events in a two-finger click gesture to be considered valid. Use this parameter to filter
out a quick two-finger click gesture.

Two-finger
maximum touch
duration (ms)

This parameter defines the minimum duration between the first touchdown and the second
lift off events in a two-finger click gesture to be considered valid. Use this parameter to filter
out a slow two-finger click gesture.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 50 of 160 Document Number: 002-28712 Rev.*B

One-finger Scroll Group

This group delivers the following gestures:

One-finger
Scroll Up

A One-finger Scroll gesture is a combination of a touchdown followed by a displacement
in a specific direction under specific conditions:

▪ For a touchpad, the position displacement between two consecutive scans must
exceed the X-axis position threshold N or Y-axis position threshold N.

▪ For a slider, the position displacement between two consecutive scans must
exceed the Position threshold N.

▪ The Debounce number of a scroll gesture in the same direction is already
detected.

Notes

▪ If the displacement exceeds the position threshold between 2 consecutives
scans, the corresponding scroll-step number (Scroll step N) is reported.

▪ There are four levels of thresholds: If the displacement between two scans is
greater than Position Threshold 1 and less than Position Threshold 2, then
Scroll Step 1 is reported, and so on.

▪ Scrolls in the four directions are detected and reported: Up, Down, Right, and
Left.

▪ The debounce logic ensures that the direction avoids incorrection results.

One-finger
Scroll Down

One-finger
Scroll Left

One-finger
Scroll Right

Position threshold 1

Scroll

step 1

Scan

(n-1)

Position threshold 2

Position threshold 3

Position threshold 4

Scroll

step 2

Scroll

step 3

Scroll

step 4

Scan

(n)

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 51 of 160

One-finger Scroll
Inertial Up

One-finger Scroll
Inertial Down

A one-finger inertial scroll gesture is reported for the specific
duration after a one-finger inertial scroll gesture is followed by a
lift off. A typical use case is scrolling through the pages.

The conditions for an inertial scroll gesture:

▪ A lift off is detected immediately after the scroll.

▪ For a touchpad, the position displacement between two
consecutive scans must exceed the X-axis position
inertial threshold or Y-axis position inertial threshold.

▪ For a slider, the position displacement between
consecutive scans must exceed the Position Inertial
Threshold.

Note

▪ If an inertial scroll is detected, the reported scroll value
decays through the value selected by the Count level.

One-finger Scroll
Inertial Left

One-finger Scroll
Inertial Right

The following table shows the One-finger Scroll Group parameters:

Name Description

X-axis position
threshold N

Defines the minimum X-axis displacement to be detected on a touchpad between two
consecutive scans for a one-finger scroll to be valid. The reported scroll number (Scroll
step N) corresponds to the exceeded threshold N.

Y-axis position
threshold N

Defines the minimum Y-axis displacement to be detected on a touchpad between two
consecutive scans for a one-finger scroll to be valid. The reported scroll number (Scroll
step N) corresponds to the exceeded threshold N.

Position threshold N Defines the minimum displacement to be detected on a slider between two consecutive
scans for a one-finger scroll to be valid. The reported scroll number (Scroll step N)
corresponds to the exceeded threshold N.

Scroll step N Defines the number of scrolls to be reported when the displacement between two
consecutive scans exceeds the corresponding threshold N (X-axis position threshold N or
Y-axis position threshold N for a Touchpad widget and Position threshold N for a Slider
widget).

Debounce Sets the number of similar, sequential scroll counts that to be detected prior to the scroll is
considered valid. A widget must detect scroll counts, at the minimum of (Debounce + 1)
times in the same direction to be considered as a scroll in that direction.

X-axis position
inertial threshold

Defines the minimum displacement that to be detected on the X axis of a touchpad for a
one-finger scroll gesture followed by a lift off event to be considered as a valid inertial
scroll. Use this parameter to avoid accidental scroll triggers when fingers are removed from
a touchpad after a scroll gesture.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 52 of 160 Document Number: 002-28712 Rev.*B

Name Description

Y-axis position
inertial threshold

This parameter defines the minimum displacement that to be detected on the Y axis of a
touchpad for a one-finger scroll gesture followed by a lift off event to be considered as a
valid inertial scroll. Use this parameter to avoid accidental scroll triggers when fingers are
removed from a touchpad after a scroll gesture.

Position Inertial
Threshold

This parameter defines the minimum displacement that to be detected on a slider for a one-
finger scroll gesture followed by a lift off event to be considered as a valid inertial scroll.
Use this parameter to avoid accidental scroll triggers when fingers are removed from a
slider after a scroll gesture.

Count level This parameter selects the inertial scroll decay rate. The options are High and Low:

▪ Low (default) – Uses a 32-byte array for inertial scroll implementation, reports a
few inertial scrolls.

▪ High – Uses a 64-byte array for inertial scroll implementation, reports more inertial
scrolls.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 53 of 160

Two-finger Scroll Group

This group delivers the following gestures:

Two-finger
Scroll Up

Two-finger
Scroll Down

The design of a two-finger scroll gesture is the same as of a one-
finger scroll gesture, except for the conditions below.

▪ The conditions of a one-finger scroll are met.

▪ There must be two simultaneous finger touches
detected on a widget for a scroll to be considered as a
two-finger scroll.

▪ The displacement of both finger touches must be on
same direction for a two-finger scroll to be valid.

Two-finger
Scroll Left

Two-finger
Scroll Right

Two-finger Scroll
Inertial Up

Two-finger Scroll
Inertial Down

Two-finger Scroll
Inertial Left

Two-finger Scroll
Inertial Right

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 54 of 160 Document Number: 002-28712 Rev.*B

The following table shows the Two-finger Scroll Group parameters:

Name Description

X-axis position
threshold N

This parameter defines the minimum X-axis displacement that to be detected on a
touchpad between two consecutive scans for a two-finger scroll to be valid. The reported
scroll number (Scroll step N) corresponds to the threshold N exceeded by the
displacement.

Y-axis position
threshold N

This parameter defines the minimum Y-axis displacement that to be detected on a
touchpad between two consecutive scans for a two-finger scroll to be valid. The reported
scroll number (Scroll step N) corresponds to the threshold N exceeded by the
displacement.

Position threshold N This parameter defines the minimum displacement that to be detected on a slider between
two consecutive scans for a two-finger scroll to be valid. The reported scroll number (Scroll
step N) corresponds to the threshold N exceeded by the displacement.

Scroll step N This parameter defines the number of scrolls that to be reported when a finger
displacement between two consecutive scans exceeds the corresponding threshold N (X-
axis position threshold N or Y-axis position threshold N for a Touchpad widget or Position
threshold N for a Slider widget).

Debounce Sets the number of similar, sequential scroll counts to be detected prior to a scroll is
considered valid. A widget must detect scroll counts, the minimum of (Debounce + 1) times
in the same direction to be considered as a scroll in that direction.

X-axis position
inertial threshold

This parameter defines the minimum displacement that to be detected on the X axis of a
touchpad for a two-finger scroll gesture followed by a lift off event to be considered as a
valid inertial scroll. Use this parameter to avoid accidental scroll triggers when fingers are
removed from a touchpad after a scroll gesture.

Y-axis position
inertial threshold

This parameter defines the minimum displacement that to be detected on the Y axis of a
touchpad for a two-finger scroll gesture followed by a lift off event to be considered as a
valid inertial scroll. Use this parameter to avoid accidental scroll triggers when fingers are
removed from a touchpad after a scroll gesture.

Position Inertial
Threshold

This parameter defines the minimum displacement that to be detected on a slider for a two-
finger scroll gesture followed by a lift off event to be considered as a valid inertial scroll.
Use this parameter to avoid accidental scroll triggers when fingers are removed from a
slider after a scroll gesture.

Count level This parameter selects the inertial scroll decay rate. The options are High and Low:

▪ Low (default) – Uses a 32-byte array for inertial scroll implementation, reports a
few inertial scrolls.

▪ High – Uses a 64-byte array for inertial scroll implementation, reports more inertial
scrolls.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 55 of 160

One-finger Flick Group

This group delivers the following gestures:

One-finger Flick
Up

One-finger Flick
Down

A flick gesture is a combination of a touchdown followed by a
high-speed displacement and a lift off event.

A flick gesture starts at a touchdown and ends and reported at a
lift off event. The conditions for a flick gesture.

▪ For a touchpad, the displacement must exceed the X-
axis position threshold or Y-axis position threshold.

▪ For a slider, the displacement must exceed the Position
threshold.

▪ The duration between a touchdown and lift off events
must be less than the Maximum sample interval.

Note

The flick gesture is detected in 8 directions:

- Up
- Down
- Left
- Right
- Up-Right
- Down-Left
- Up-Left
- Down-Right

One-finger Flick
Left

One-finger Flick
Right

One-finger Flick
Up-Right

One-finger Flick
Down-Left

One-finger Flick
Up-Left

One-finger Flick
Down-Right

Touchdown
Lift Off

Maximum sample interval

Valid gesture time frame

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 56 of 160 Document Number: 002-28712 Rev.*B

The following table shows the One-finger Flick Group parameters:

Name Description

X-axis position
threshold

Defines the minimum displacement that to be detected on the X-axis of a touchpad
between two consecutive scans for a one-finger flick to be valid.

Y-axis position
threshold

Defines the minimum displacement that to be detected on the Y-axis of a touchpad
between two consecutive scans for a one-finger flick to be valid.

Position threshold Defines the minimum displacement to be detected on a slider between two consecutive
scans for a one-finger flick to be valid.

Maximum sample
interval (ms)

Defines the maximum duration of how long a flick gesture is searched after a touchdown
event. A position displacement and lift off event must happen within the duration defined by
this parameter for a flick to be valid.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 57 of 160

One-finger Edge Swipe Group

This group delivers the following gestures:

One-finger Edge
Swipe Up

One-finger Edge
Swipe Down

An edge swipe gesture is a combination of a touchdown on an
edge followed by a displacement towards the center.

The conditions for an edge swipe gesture:

▪ A touchdown event must occur in the edge area defined
by the Disambiguation region width.

▪ A finger displacement must occur from the edge towards
the center within the angular threshold Top angle
threshold and Bottom angle threshold.

▪ The displacement must exceed the Position threshold
within the Detection time duration.

One-finger Edge
Swipe Left

One-finger Edge
Swipe Right

The following table shows the One-finger Edge Swipe Group parameters:

Name Description

Disambiguation
region width

Defines the maximum edge area where a touchdown must be detected for an edge swipe
to be reported.

Position threshold Defines the minimum displacement to be detected from an edge to the center for an edge
swipe to be reported.

Detection time (ms) Defines the maximum duration within which an edge swipe must occur to be reported. The
displacement must exceed the Position threshold within the duration defined by this
parameter for the edge swipe to be reported.

Timeout interval Defines the time interval for which all other gestures will be ignored after the of a one-finger
edge swipe gesture.

Top angle threshold
(degree)

Defines the maximum angles (in degrees) that the displacement path of a finger can
subtend at the point of a touch-down, near the edge. Degree 1 means that the user can do
gestures only on a single line.

Bottom angle
threshold (degree)

Disambiguation

region width

T
o

u
c
h

p
a

d
 E

d
g

e

Bottom angle

threshold

Position threshold

Top angle

threshold

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 58 of 160 Document Number: 002-28712 Rev.*B

Two-finger Zoom Group

This group delivers the following gestures:

Two-finger
Zoom In

A two-finger zoom gesture is reported when two touches move towards each other
(Zoom Out) or move away from each other (Zoom In).

The conditions for a zoom gesture:

▪ An increase or decrease in distance between two-finger touch positions in X
must exceed the X-axis position threshold or the Y axis must exceed the Y-axis
position threshold.

▪ The Debounce number of a Zoom In or Zoom Out gesture must be sequentially
detected for a Zoom gesture to be reported.

▪ A scroll to the zoom debounce number of a zoom gestures must be sequentially
detected for a Zoom gesture to be reported. If a Zoom gesture occurred after a
scroll, the gesture is reported and there was no lift off event between the scroll
and Zoom gestures.

Two-finger
Zoom Out

The following table shows the Two-finger Zoom Group parameters:

Name Description

X-axis position
threshold

This parameter defines the minimum displacement that to be detected on the X-axis of a
touchpad between two consecutive scans for a two-finger Zoom to be reported.

Y-axis position
threshold

This parameter defines the minimum displacement that to be detected on the Y-axis of a
touchpad between two consecutive scans for a two-finger Zoom to be reported.

Debounce This parameter defines the number of sequential zoom gestures in a particular direction (in
or out) that to be detected before a zoom gesture is deemed valid.

Scroll to zoom
debounce

If a scroll was detected and then a zoom is detected without a lift off event (i.e. without
removing fingers from a touchpad), the first few zoom gestures specified by this parameter
are ignored before reporting a zoom gesture.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 59 of 160

One-finger Rotate Group

This group delivers the following gestures:

One-finger
Rotate CW

(Clockwise)

A one-finger rotate gesture is reported when a circular displacement is detected. The
decoding algorithm uses four directions to identify a circular displacement. A
displacement in all four directions must be in the succession order to report a rotate
gesture. The rotation direction can be clockwise or counter-clockwise.

The conditions for a zoom gesture:

▪ A displacement in the four directions (UP, DOWN, RIGHT and LEFT) in the
succession order must be detected for a rotate gesture to be reported.

▪ At least one and a half circular displacement must be reported for a rotate
gesture to be reported.

▪ A detected scroll count must be less than the Debounce value.

▪ Finger movement must exceed the displacement thresholds X-axis position
threshold N and Y-axis position threshold N defined in One-finger Scroll Group.

To determine a four-direction value, a motion must be present. The motion of a touch
object must exceed the displacement threshold belonging to One-finger Scroll Group: X-
axis position threshold N and Y-axis position threshold N (where N = 1).

One-finger
Rotate CСW

(Counter-clockwise)

The following table shows the One-finger Rotate Group parameter:

Name Description

Debounce This parameter sets the number of sequential scroll counts in a particular direction to deem
a rotate gesture invalid.

For example, if the Debounce value is set to 20, then the touch cannot continue in the
same direction for 20 scroll counts and still have a valid rotate gesture. After this threshold,
the reported gesture stops being a rotate gesture. If this parameter is set to 0, then the
Debounce is disabled. All rotate gestures will be considered valid and no scroll gestures
will be detected until the rotate condition is broken.

The first reported

rotate gesture

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 60 of 160 Document Number: 002-28712 Rev.*B

Application Programming Interface

The Application Programming Interface (API) routines allow controlling and executing specific
tasks using the Component firmware. The following sections list and describe each function and
dependency.

The compilers the CapSense firmware library supports:

▪ ARM GCC compiler

▪ ARM MDK compiler

▪ IAR C/C++ compiler

To use the IAR Embedded Workbench, refer to the PSoC Creator Help > Integrating into 3rd
Party IDEs section.

Note When using the IAR Embedded Workbench, set the path to the static library. This library is
located in the PSoC Creator installation directory:

PSoC Creator\psoc\content\CyComponentLibrary\CyComponentLibrary.cylib\
CapSense_P4_vX_XX\PSoC4\

(Replace vX_XX with the Component version)

By default, the instance name of the Component is “CapSense_1” for the first instance of a
Component in a given design. It can be renamed to any unique text that follows the syntactic
rules for identifiers. The instance name is prefixed to every function, variable, and constant
name. For readability, this section assumes “CapSense” as the instance name.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 61 of 160

CapSense High-Level APIs

Description

High-level APIs represent the highest abstraction layer of the component APIs. These APIs perform tasks such as
scanning, data processing, data reporting and tuning. The different initialization that is required based on a the
sensing method or type of widgets is automatically handled by these APIs, therefore these APIs are agnostic to
sensing methods, features and widget type.

All the tasks required to implement a sensing system can be fulfilled by the high-level APIs. But, there is a set of
CapSense Low-Level APIs which provides access to lower level and specific tasks. If a design require access to
low-level tasks, these APIs can be used. The functions related to a given sensing method are not available if the
corresponding method is disabled.

Functions

• cystatus CapSense_Start(void)

Initializes the Component hardware and firmware modules. This function is called by the application program
prior to calling any other function of the Component.

• cystatus CapSense_Stop(void)

Stops the Component operation.

• cystatus CapSense_Resume(void)

Resumes the Component operation if the CapSense_Stop() function was called previously.

• cystatus CapSense_ProcessAllWidgets(void)

Performs full data processing of all enabled widgets.

• cystatus CapSense_ProcessWidget(uint32 widgetId)

Performs full data processing of the specified widget if it is enabled.

• void CapSense_Sleep(void)

Prepares the Component for deep sleep.

• void CapSense_Wakeup(void)

Resumes the Component after deep sleep power mode.

• uint32 CapSense_DecodeWidgetGestures(uint32 widgetId)

Decodes all enabled gestures for the specified widget and returns the gesture code.

• void CapSense_IncrementGestureTimestamp(void)

Increases the timestamp register for the predefined timestamp interval.

• void CapSense_SetGestureTimestamp(uint32 timestampValue)

Rewrites the timestamp register by the specified value.

• uint32 CapSense_RunSelfTest(uint32 testEnMask)

Runs built-in self-tests specified by the test enable mask.

• cystatus CapSense_SetupWidget(uint32 widgetId)

Performs the initialization required to scan the specified widget.

• cystatus CapSense_Scan(void)

Initiates scanning of all the sensors in the widget initialized by CapSense_SetupWidget(), if no scan is in
progress.

• cystatus CapSense_ScanAllWidgets(void)

Initializes the first enabled widget and scanning of all the sensors in the widget, then the same process is
repeated for all the widgets in the Component, i.e. scanning of all the widgets in the Component.

• uint32 CapSense_IsBusy(void)

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 62 of 160 Document Number: 002-28712 Rev.*B

Returns the current status of the Component (Scan is completed or Scan is in progress).

• uint32 CapSense_IsAnyWidgetActive(void)

Reports if any widget has detected a touch.

• uint32 CapSense_IsWidgetActive(uint32 widgetId)

Reports if the specified widget detects a touch on any of its sensors.

• uint32 CapSense_IsSensorActive(uint32 widgetId, uint32 sensorId)

Reports if the specified sensor in the widget detects a touch.

• uint32 CapSense_IsProximitySensorActive(uint32 widgetId, uint32 proxId)

Reports the finger detection status of the specified proximity widget/sensor.

• uint32 CapSense_IsMatrixButtonsActive(uint32 widgetId)

Reports the status of the specified matrix button widget.

• uint32 CapSense_GetCentroidPos(uint32 widgetId)

Reports the centroid position for the specified slider widget.

• uint32 CapSense_GetXYCoordinates(uint32 widgetId)

Reports the X/Y position detected for the specified touchpad widget.

• uint32 CapSense_RunTuner(void)

Establishes synchronized communication with the Tuner application.

Function Documentation

cystatus CapSense_Start (void)

This function initializes the Component hardware and firmware modules and is called by the application program
prior to calling any other API of the Component. When this function is called, the following tasks are executed as
part of the initialization process:

1. Initialize the registers of the Data Structure variable CapSense_dsRam based on the user selection in the
Component configuration wizard.

2. Configure the hardware to perform sensing.
3. If SmartSense Auto-tuning is selected for the CSD Tuning mode in the Basic tab, the auto-tuning algorithm

is executed to set the optimal values for the hardware parameters of the widgets/sensors.
1. Calibrate the sensors and find the optimal values for IDACs of each widget / sensor, if the Enable IDAC

auto-calibration is enabled in the Mode's Setting tabs.
4. Perform scanning for all the sensors and initialize the baseline history.
5. If the firmware filters are enabled in the Advanced General tab, the filter histories are also initialized.

Any next call of this API repeats an initialization process except for data structure initialization. Therefore, it is
possible to change the Component configuration from the application program by writing registers to the data
structure and calling this function again. This is also done inside the CapSense_RunTuner() function when a
restart command is received.

When the Component operation is stopped by the CapSense_Stop() function, the CapSense_Start() function
repeats an initialization process including data structure initialization.

Returns:

Returns the status of the initialization process. If CYRET_SUCCESS is not received, some of the
initialization fails and the Component may not operate as expected.

Go to the top of the CapSense High-Level APIs section.

cystatus CapSense_Stop (void)

This function stops the Component operation, no sensor scanning can be executed when the Component is
stopped. Once stopped, the hardware block may be reconfigured by the application program for any other
special usage. The Component operation can be resumed by calling the CapSense_Resume() function or the
Component can be reset by calling the CapSense_Start() function.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 63 of 160

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

Returns:

Returns the status of the stop process. If CYRET_SUCCESS is not received, the stop process fails and
retries may be required.

Go to the top of the CapSense High-Level APIs section.

cystatus CapSense_Resume (void)

This function resumes the Component operation if the operation is stopped previously by the CapSense_Stop()
function. The following tasks are executed as part of the operation resume process:

1. Reset all the Widgets/Sensors statuses.
2. Configure the hardware to perform sensing.

Returns:

Returns the status of the resume process. If CYRET_SUCCESS is not received, the resume process fails
and retries may be required.

Go to the top of the CapSense High-Level APIs section.

cystatus CapSense_ProcessAllWidgets (void)

This function performs all data processes for all enabled widgets in the Component. The following tasks are
executed as part of processing all the widgets:

1. Apply raw count filters to the raw counts, if they are enabled in the customizer.
2. Update the thresholds if the SmartSense Full Auto-Tuning is enabled in the customizer.
3. Update the baselines and difference counts for all the sensors.
4. Update the sensor and widget status (on/off), update the centroid for the sliders and the X/Y position for the

touchpads.

This function is called by an application program only after all the enabled widgets (and sensors) in the
Component is scanned. Calling this function multiple times without sensor scanning causes unexpected
behavior.

The disabled widgets are not processed by this function. To disable/enable a widget, set the appropriate values
in the CapSense_WDGT_ENABLE<RegisterNumber>_PARAM_ID register using the CapSense_SetParam()
function.

If the Ballistic multiplier filter is enabled the Timestamp must be updated before calling this function using the
CapSense_IncrementGestureTimestamp() function.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

If the ballistic multiplier filter is enabled, make sure the timestamp is updated before calling this function. Use
one of the following functions to update the timestamp:

• CapSense_IncrementGestureTimestamp().

• CapSense_SetGestureTimestamp().

Returns:

Returns the status of the processing operation. If CYRET_SUCCESS is not received, the processing fails
and retries may be required.

Go to the top of the CapSense High-Level APIs section.

cystatus CapSense_ProcessWidget (uint32 widgetId)

This function performs exactly the same tasks as CapSense_ProcessAllWidgets(), but only for a specified
widget. This function can be used along with the CapSense_SetupWidget() and CapSense_Scan() functions to
scan and process data for a specific widget. This function is called only after all the sensors in the widgets are
scanned. A disabled widget is not processed by this function.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 64 of 160 Document Number: 002-28712 Rev.*B

A pipeline scan method (i.e. during scanning of a widget perform processing of the previously scanned widget)
can be implemented using this function and it may reduce the total execution time, increase the refresh rate and
decrease the average power consumption.

If the Ballistic multiplier filter is enabled the Timestamp must be updated before calling this function using the
CapSense_IncrementGestureTimestamp() function.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

If the specified widget has enabled ballistic multiplier filter, make sure the timestamp is updated before calling
this function. Use one of the following functions to update the timestamp:

• CapSense_IncrementGestureTimestamp().

• CapSense_SetGestureTimestamp().

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID can be found in the CapSense Configuration header file
defined as CapSense_<WidgetName>_WDGT_ID

Returns:

Returns the status of the widget processing:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_INVALID_STATE - The specified widget is disabled.

• CYRET_BAD_DATA - The processing is failed.

Go to the top of the CapSense High-Level APIs section.

void CapSense_Sleep (void)

Currently this function is empty and exists as a place for future updates, this function will be used to prepare the
Component to enter deep sleep.

Go to the top of the CapSense High-Level APIs section.

void CapSense_Wakeup (void)

Resumes the Component after deep sleep power mode. This function is used to resume the Component after
exiting deep sleep.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_DecodeWidgetGestures (uint32 widgetId)

This function decodes all the enabled gestures on a specific widget and returns a code for the detected gesture.
Refer to the Gesture tab section for more details on supported Gestures.

This function is called only after scan and data processing are completed for the specified widget.

The Timestamp must be updated before calling this function using the
CapSense_IncrementGestureTimestamp() function.

Parameters:

widgetId Specifies the ID number of the widget to decode the gesture. A macro
for the widget ID can be found in the CapSense Configuration header
file defined as CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the gesture detection or the detected gesture code:

• CapSense_NON_VALID_PARAMETER

• CapSense_NO_GESTURE

• CapSense_UNRECOGNIZED_GESTURE

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 65 of 160

• CapSense_ONE_FINGER_TOUCHDOWN

• CapSense_ONE_FINGER_LIFT_OFF

• CapSense_ONE_FINGER_SINGLE_CLICK

• CapSense_ONE_FINGER_DOUBLE_CLICK

• CapSense_ONE_FINGER_CLICK_AND_DRAG

• CapSense_ONE_FINGER_SCROLL_UP

• CapSense_ONE_FINGER_SCROLL_DOWN

• CapSense_ONE_FINGER_SCROLL_RIGHT

• CapSense_ONE_FINGER_SCROLL_LEFT

• CapSense_ONE_FINGER_SCROLL_INERTIAL_UP

• CapSense_ONE_FINGER_SCROLL_INERTIAL_DOWN

• CapSense_ONE_FINGER_SCROLL_INERTIAL_RIGHT

• CapSense_ONE_FINGER_SCROLL_INERTIAL_LEFT

• CapSense_ONE_FINGER_FLICK_UP

• CapSense_ONE_FINGER_FLICK_DOWN

• CapSense_ONE_FINGER_FLICK_RIGHT

• CapSense_ONE_FINGER_FLICK_LEFT

• CapSense_ONE_FINGER_FLICK_UP_RIGHT

• CapSense_ONE_FINGER_FLICK_DOWN_RIGHT

• CapSense_ONE_FINGER_FLICK_DOWN_LEFT

• CapSense_ONE_FINGER_FLICK_UP_LEFT

• CapSense_ONE_FINGER_EDGE_SWIPE_UP

• CapSense_ONE_FINGER_EDGE_SWIPE_DOWN

• CapSense_ONE_FINGER_EDGE_SWIPE_RIGTH

• CapSense_ONE_FINGER_EDGE_SWIPE_LEFT

• CapSense_ONE_FINGER_ROTATE_CW

• CapSense_ONE_FINGER_ROTATE_CCW

• CapSense_TWO_FINGER_SINGLE_CLICK

• CapSense_TWO_FINGER_SCROLL_UP

• CapSense_TWO_FINGER_SCROLL_DOWN

• CapSense_TWO_FINGER_SCROLL_RIGHT

• CapSense_TWO_FINGER_SCROLL_LEFT

• CapSense_TWO_FINGER_SCROLL_INERTIAL_UP

• CapSense_TWO_FINGER_SCROLL_INERTIAL_DOWN

• CapSense_TWO_FINGER_SCROLL_INERTIAL_RIGHT

• CapSense_TWO_FINGER_SCROLL_INERTIAL_LEFT

• CapSense_TWO_FINGER_ZOOM_IN

• CapSense_TWO_FINGER_ZOOM_OUT

Go to the top of the CapSense High-Level APIs section.

void CapSense_IncrementGestureTimestamp (void)

This function increments the Component timestamp (CapSense_TIMESTAMP_VALUE register) by the interval
specified in the CapSense_TIMESTAMP_INTERVAL_VALUE register. The unit for both registers is millisecond
and default value of CapSense_TIMESTAMP_INTERVAL_VALUE is 1.

It is the application layer responsibility to periodically call this function or register a periodic callback to this
function to keep the Component timestamp updated and operational, which is vital for the operation of Gesture
and Ballistic multiplier features.

The Component timestamp can be updated in one of the three methods:

• Register a periodic callback for the CapSense_IncrementGestureTimestamp() function.

• Periodically call the CapSense_IncrementGestureTimestamp() function by application layer.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 66 of 160 Document Number: 002-28712 Rev.*B

• Directly modify the timestamp using the CapSense_SetGestureTimestamp() function.

The interval at which this function is called should match with interval defined in
CapSense_TIMESTAMP_INTERVAL_VALUE register. Either the register value can be updated to match the
callback interval or the callback can be made at interval set in the register.

If a timestamp is available from another source or from host controller, application layer may choose to
periodically update the Component timestamp by using CapSense_SetGestureTimestamp() function instead of
registering a callback.

Go to the top of the CapSense High-Level APIs section.

void CapSense_SetGestureTimestamp (uint32 timestampValue)

This function writes the specified value into the Component timestamp (i.e. CapSense_TIMESTAMP_VALUE
register).

If a timestamp is available from another source or from host controller, application layer may choose to
periodically update the Component timestamp by using this function instead of registering a callback.

It is not recommended to modify the Component timestamp arbitrarily or simultaneously use with the
CapSense_IncrementGestureTimestamp() function.

Parameters:

timestampVa
lue

Specifies the timestamp value (in ms).

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_RunSelfTest (uint32 testEnMask)

The function performs various self-tests on all enabled widgets and sensors in the Component. The required set
of tests can be selected using the bit-mask in the testEnMask parameter.

Use CapSense_TST_RUN_SELF_TEST_MASK to execute all the self-tests or any combination of the masks
(defined in testEnMask parameter) to specify the test list.

To execute a single-element test (i.e. for one widget or sensor), the following functions are available:

• CapSense_CheckGlobalCRC()

• CapSense_CheckWidgetCRC()

• CapSense_CheckBaselineDuplication()

• CapSense_CheckIntegritySensorPins()

• CapSense_GetSensorCapacitance()

• CapSense_GetShieldCapacitance()

• CapSense_GetExtCapCapacitance()

• CapSense_GetVdda()

Refer to these functions for detail information on a corresponding test.

Parameters:

testEnMask Specifies the tests to be executed. Each bit corresponds to one test. It
is possible to launch the function with any combination of the available
tests.

• CapSense_TST_GLOBAL_CRC - Verifies the RAM structure
CRC of global parameters.

• CapSense_TST_WDGT_CRC - Verifies the RAM widget
structure CRC for all the widgets.

• CapSense_TST_BSLN_DUPLICATION - Verifies the baseline
consistency of all the sensors (inverse copy).

• CapSense_TST_SNS_SHORT - Checks all the sensors for a

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 67 of 160

short to GND / VDD / other sensors.

• CapSense_TST_SNS_CAP - Measures all the sensors
capacitance.

• CapSense_TST_SH_CAP - Measures the shield capacitance.

• CapSense_TST_EXTERNAL_CAP - Measures the capacitance
of the available external capacitors.

• CapSense_TST_VDDA - Measures the Vdda voltage.

• CapSense_TST_RUN_SELF_TEST_MASK - Executes all
available tests.

Returns:

Returns a bit-mask with a status of execution of the specified tests:

• CYRET_SUCCESS - All the tests are passed.

• CapSense_TST_NOT_EXECUTED - The previously triggered scanning is not completed.

• CapSense_TST_BAD_PARAM - A non-defined test was requested in the testEnMask parameter.

• CapSense_TST_GLOBAL_CRC - Fails the test of the RAM structure CRC of global parameters.

• CapSense_TST_WDGT_CRC - Fails the test of the RAM widget structure CRC of any widget.

• CapSense_TST_BSLN_DUPLICATION - Fails the baseline consistency test of any sensor.

• CapSense_TST_SNS_SHORT - Fails the test of the short to GND or VDD of any sensor.

• CapSense_TST_SNS_CAP - Fails the execution of any sensor capacitance measurement test.

• CapSense_TST_SH_CAP - Fails the execution of the shield capacitance measurement test.

• CapSense_TST_EXTERNAL_CAP - Fails the execution of any external capacitor capacitance
measurement test.

• CapSense_TST_VDDA - Fails the execution of the Vdda voltage measurement test.

Go to the top of the CapSense High-Level APIs section.

cystatus CapSense_SetupWidget (uint32 widgetId)

This function prepares the Component to scan all the sensors in the specified widget by executing the following
tasks:

1. Re-initialize the hardware if it is not configured to perform the sensing method used by the specified widget,
this happens only if multiple sensing methods are used in the Component.

2. Initialize the hardware with specific sensing configuration (e.g. sensor clock, scan resolution) used by the
widget.

3. Disconnect all previously connected electrodes, if the electrodes connected by the lower level
SetupWidgetExt() or ConnectSns() functions and not disconnected.

This function does not start sensor scanning, the CapSense_Scan() function must be called to start the scan
sensors in the widget. If this function is called more than once, it does not break the Component operation, but
only the last initialized widget is in effect.

Parameters:

widgetId Specifies the ID number of the widget to be initialized for scanning. A
macro for the widget ID can be found in the CapSense Configuration
header file defined as CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the widget setting up operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The widget is invalid or if the specified widget is disabled

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

• CYRET_UNKNOWN - An unknown sensing method is used by the widget or any other spurious error
occurred.

Go to the top of the CapSense High-Level APIs section.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 68 of 160 Document Number: 002-28712 Rev.*B

cystatus CapSense_Scan (void)

This function is called only after the CapSense_SetupWidget() function is called to start the scanning of the
sensors in the widget. The status of a sensor scan must be checked using the CapSense_IsBusy() API prior to
starting a next scan or setting up another widget.

Returns:

Returns the status of the scan initiation operation:

• CYRET_SUCCESS - Scanning is successfully started.

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

• CYRET_UNKNOWN - An unknown sensing method is used by the widget.

Go to the top of the CapSense High-Level APIs section.

cystatus CapSense_ScanAllWidgets (void)

This function initializes a widget and scans all the sensors in the widget, and then repeats the same for all the
widgets in the Component. The tasks of the CapSense_SetupWidget() and CapSense_Scan() functions are
executed by these functions. The status of a sensor scan must be checked using the CapSense_IsBusy() API
prior to starting a next scan or setting up another widget.

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - Scanning is successfully started.

• CYRET_BAD_PARAM - All the widgets are disabled.

• CYRET_INVALID_STATE - The previous scanning is not completed and the HW block is busy.

• CYRET_UNKNOWN - There are unknown errors.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_IsBusy (void)

This function returns a status of the hardware block whether a scan is currently in progress or not. If the
Component is busy, no new scan or Widget setup is made. The critical section (i.e. disable global interrupt) is
recommended for the application when the device transitions from the active mode to sleep or deep sleep
modes.

Returns:

Returns the current status of the Component:

• CapSense_NOT_BUSY - No scan is in progress and a next scan can be initiated.

• CapSense_SW_STS_BUSY - The previous scanning is not completed and the hardware block is busy.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_IsAnyWidgetActive (void)

This function reports if any widget has detected a touch or not by extracting information from the wdgtStatus
registers (CapSense_WDGT_STATUS<X>_VALUE). This function does not process a widget but extracts
processed results from the Data Structure.

Returns:

Returns the touch detection status of all the widgets:

• Zero - No touch is detected in all the widgets or sensors.

• Non-zero - At least one widget or sensor detected a touch.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_IsWidgetActive (uint32 widgetId)

This function reports if the specified widget has detected a touch or not by extracting information from the
wdgtStatus registers (CapSense_WDGT_STATUS<X>_VALUE). This function does not process the widget but
extracts processed results from the Data Structure.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 69 of 160

Parameters:

widgetId Specifies the ID number of the widget to get its status. A macro for the
widget ID can be found in the CapSense Configuration header file
defined as CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns the touch detection status of the specified widgets:

• Zero - No touch is detected in the specified widget or a wrong widgetId is specified.

• Non-zero if at least one sensor of the specified widget is active, i.e. a touch is detected.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_IsSensorActive (uint32 widgetId, uint32 sensorId)

This function reports if the specified sensor in the widget has detected a touch or not by extracting information
from the wdgtStatus registers (CapSense_WDGT_STATUS<X>_VALUE). This function does not process the
widget or sensor but extracts processed results from the Data Structure.

For proximity sensors, this function returns the proximity detection status. To get the finger touch status of
proximity sensors, use the CapSense_IsProximitySensorActive() function.

Parameters:

widgetId Specifies the ID number of the widget. A macro for the widget ID can
be found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to get its touch
detection status. A macro for the sensor ID within the specified widget
can be found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

Returns:

Returns the touch detection status of the specified sensor / widget:

• Zero if no touch is detected in the specified sensor / widget or a wrong widget ID / sensor ID is specified.

• Non-zero if the specified sensor is active i.e. touch is detected. If the specific sensor belongs to a
proximity widget, the proximity detection status is returned.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_IsProximitySensorActive (uint32 widgetId, uint32 proxId)

This function reports if the specified proximity sensor has detected a touch or not by extracting information from
the wdgtStatus registers (CapSense_SNS_STATUS<WidgetId>_VALUE). This function is used only with
proximity sensor widgets. This function does not process the widget but extracts processed results from the
Data Structure.

Parameters:

widgetId Specifies the ID number of the proximity widget. A macro for the widget
ID can be found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID

proxId Specifies the ID number of the proximity sensor within the proximity
widget to get its touch detection status. A macro for the proximity ID
within a specified widget can be found in the CapSense Configuration
header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID

Returns:

Returns the status of the specified sensor of the proximity widget. Zero indicates that no touch is detected in
the specified sensor / widget or a wrong widgetId / proxId is specified.

• Bits [31..2] are reserved.

• Bit [1] indicates that a touch is detected.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 70 of 160 Document Number: 002-28712 Rev.*B

• Bit [0] indicates that a proximity is detected.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_IsMatrixButtonsActive (uint32 widgetId)

This function reports if the specified matrix widget has detected a touch or not by extracting information from the
wdgtStatus registers (CapSense_WDGT_STATUS<X>_VALUE for the CSD widgets and
CapSense_SNS_STATUS<WidgetId>_VALUE for CSX widget). In addition, the function provides details of the
active sensor including active rows/columns for the CSD widgets. This function is used only with the matrix
button widgets. This function does not process the widget but extracts processed results from the Data
Structure.

Parameters:

widgetId Specifies the ID number of the matrix button widget to check the status
of its sensors. A macro for the widget ID can be found in the CapSense
Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID

Returns:

Returns the touch detection status of the sensors in the specified matrix buttons widget. Zero indicates that
no touch is detected in the specified widget or a wrong widgetId is specified.
1. For the matrix buttons widgets with the CSD sensing mode:

• Bit [31] if set, indicates that one or more sensors in the widget detected a touch.

• Bits [30..24] are reserved

• Bits [23..16] indicate the logical sensor number of the sensor that detected a touch. If more than one
sensor detected a touch for the CSD widget, no status is reported because more than one touch is
invalid for the CSD matrix buttons widgets.

• Bits [15..8] indicate the active row number.

• Bits [7..0] indicate the active column number.
2. For the matrix buttons widgets with the CSX widgets, each bit (31..0) corresponds to the TX/RX

intersection.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_GetCentroidPos (uint32 widgetId)

This function reports the centroid value of a specified radial or linear slider widget by extracting information from
the wdgtStatus registers (CapSense_<WidgetName>_POSITION<X>_VALUE). This function is used only with
radial or linear slider widgets. This function does not process the widget but extracts processed results from the
Data Structure.

Parameters:

widgetId Specifies the ID number of a slider widget to get the centroid of the
detected touch. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID

Returns:

Returns the centroid position of a specified slider widget:

• The centroid position if a touch is detected.

• CapSense_SLIDER_NO_TOUCH - No touch is detected or a wrong widgetId is specified.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_GetXYCoordinates (uint32 widgetId)

This function reports a touch position (X and Y coordinates) value of a specified touchpad widget by extracting
information from the wdgtStatus registers (CapSense_<WidgetName>_POS_Y_VALUE). This function should

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 71 of 160

be used only with the touchpad widgets. This function does not process the widget but extracts processed
results from the Data Structure.

Parameters:

widgetId Specifies the ID number of a touchpad widget to get the X/Y position of
a detected touch. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns the touch position of a specified touchpad widget:
1. If a touch is detected:

• Bits [31..16] indicate the Y coordinate.

• Bits [15..0] indicate the X coordinate.
2. If no touch is detected or a wrong widgetId is specified:

• CapSense_TOUCHPAD_NO_TOUCH.

Go to the top of the CapSense High-Level APIs section.

uint32 CapSense_RunTuner (void)

This function is used to establish synchronized communication between the CapSense Component and Tuner
application (or other host controllers). This function is called periodically in the application program loop to serve
the Tuner application (or host controller) requests and commands. In most cases, the best place to call this
function is after processing and before next scanning.

If this function is absent in the application program, then communication is asynchronous and the following
disadvantages are applicable:

• The raw counts displayed in the tuner may be filtered and/or unfiltered. As a result, noise and SNR
measurements will not be accurate.

• The Tuner tool may read the sensor data such as raw counts from a scan multiple times, as a result, noise
and SNR measurement will not be accurate.

• The Tuner tool and host controller should not change the Component parameters via the tuner interface.
Changing the Component parameters via the tuner interface in the async mode will result in Component
abnormal behavior.

Note that calling this function is not mandatory for the application, but required only to synchronize the
communication with the host controller or tuner application.

Returns:

In some cases, the application program may need to know if the Component was re-initialized. The return
indicates if a restart command was executed or not:

• CapSense_STATUS_RESTART_DONE - Based on a received command, the Component was
restarted.

• CapSense_STATUS_RESTART_NONE - No restart was executed by this function.

Go to the top of the CapSense High-Level APIs section.

CapSense Low-Level APIs

Description

The low-level APIs represent the lower layer of abstraction in support of high-level APIs. These APIs also enable
implementation of special case designs requiring performance optimization and non-typical functionalities.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 72 of 160 Document Number: 002-28712 Rev.*B

The functions which contain abbreviations of sensing methods in the name are specified for that sensing method
appropriately and should be used only with dedicated widgets having that mode. All other functions are general to all
sensing methods, some of the APIs detect the sensing method used by the widget and executes tasks as
appropriate.

Functions

• cystatus CapSense_ProcessWidgetExt(uint32 widgetId, uint32 mode)

Performs customized data processing on the selected widget.

• cystatus CapSense_ProcessSensorExt(uint32 widgetId, uint32 sensorId, uint32 mode)

Performs customized data processing on the selected widget's sensor.

• cystatus CapSense_UpdateAllBaselines(void)

Updates the baseline for all the sensors in all the widgets.

• cystatus CapSense_UpdateWidgetBaseline(uint32 widgetId)

Updates the baselines for all the sensors in a widget specified by the input parameter.

• cystatus CapSense_UpdateSensorBaseline(uint32 widgetId, uint32 sensorId)

Updates the baseline for a sensor in a widget specified by the input parameters.

• void CapSense_InitializeAllBaselines(void)

Initializes (or re-initializes) the baselines of all the sensors of all the widgets.

• void CapSense_InitializeWidgetBaseline(uint32 widgetId)

Initializes (or re-initializes) the baselines of all the sensors in a widget specified by the input parameter.

• void CapSense_InitializeSensorBaseline(uint32 widgetId, uint32 sensorId)

Initializes (or re-initializes) the baseline of a sensor in a widget specified by the input parameters.

• void CapSense_InitializeAllFilters(void)

Initializes (or re-initializes) the raw count filter history of all the sensors of all the widgets.

• void CapSense_InitializeWidgetFilter(uint32 widgetId)

Initializes (or re-initializes) the raw count filter history of all the sensors in a widget specified by the input
parameter.

• uint32 CapSense_CheckGlobalCRC(void)

Checks the stored CRC of the CapSense_RAM_STRUCT data structure.

• uint32 CapSense_CheckWidgetCRC(uint32 widgetId)

Checks the stored CRC of the CapSense_RAM_WD_BASE_STRUCT data structure of the specified widget.

• uint32 CapSense_CheckBaselineDuplication(uint32 widgetId, uint32 sensorId)

Checks that the baseline of the specified widget/sensor is not corrupted by comparing it with a baseline inverse
copy.

• uint32 CapSense_CheckBaselineRawcountRange(uint32 widgetId, uint32 sensorId,
CapSense_BSLN_RAW_RANGE_STRUCT*ranges)

Checks that raw count and baseline of the specified widget/sensor are within the specified range.

• uint32 CapSense_CheckIntegritySensorPins(uint32 widgetId, uint32 sensorId)

Checks the specified widget/sensor for shorts to GND, VDD or other sensors.

• uint32 CapSense_GetSensorCapacitance(uint32 widgetId, uint32 sensorElement,
CapSense_TST_MEASUREMENT_STATUS_ENUM *measurementStatusPtr)

Measures the specified widget/sensor capacitance.

• uint32 CapSense_GetShieldCapacitance(CapSense_TST_MEASUREMENT_STATUS_ENUM
*measurementStatusPtr)

Measures the shield electrode capacitance.

• uint32 CapSense_GetExtCapCapacitance(uint32 extCapId)

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 73 of 160

Measures the capacitance of the specified external capacitor.

• uint16 CapSense_GetVdda(void)

Measures and returns the VDDA voltage.

• void CapSense_SetPinState(uint32 widgetId, uint32 sensorElement, uint32 state)

Sets the state (drive mode and output state) of the port pin used by a sensor. The possible states are GND,
Shield, High-Z, Tx or Rx, Sensor. If the sensor specified in the input parameter is a ganged sensor, then the
state of all pins associated with the ganged sensor is updated.

• cystatus CapSense_SetupWidgetExt(uint32 widgetId, uint32 sensorId)

Performs extended initialization for the specified widget and also performs initialization required for a specific
sensor in the widget. This function requires using the CapSense_ScanExt() function to initiate a scan.

• cystatus CapSense_ScanExt(void)

Starts a conversion on the pre-configured sensor. This function requires using the CapSense_SetupWidgetExt()
function to set up the a widget.

• cystatus CapSense_CalibrateWidget(uint32 widgetId)

Calibrates the IDACs for all the sensors in the specified widget to the default target, this function detects the
sensing method used by the widget prior to calibration.

• cystatus CapSense_CalibrateAllWidgets(void)

Calibrates the IDACs for all the widgets in the Component to the default target, this function detects the sensing
method used by the widgets prior to calibration.

• uint32_t CapSense_SetInactiveElectrodeState(CapSense_OPERATION_MODE_ENUM mode, uint32_t state)

The function updates the RAM data structure with the desired state of inactive electrodes for the specified
operation mode. The state of pins is not changed in scope of this routine.

• void CapSense_CSDSetupWidget(uint32 widgetId)

Performs hardware and firmware initialization required for scanning sensors in a specific widget using the CSD
sensing method. This function requires using the CapSense_CSDScan() function to start scanning.

• void CapSense_CSDSetupWidgetExt(uint32 widgetId, uint32 sensorId)

Performs extended initialization for the CSD widget and also performs initialization required for a specific sensor
in the widget. This function requires using the CapSense_CSDScanExt() function to initiate a scan.

• void CapSense_CSDScan(void)

This function initiates a scan for the sensors of the widget initialized by the CapSense_CSDSetupWidget()
function.

• void CapSense_CSDScanExt(void)

Starts the CSD conversion on the preconfigured sensor. This function requires using the
CapSense_CSDSetupWidgetExt() function to set up the a widget.

• cystatus CapSense_CSDCalibrateWidget(uint32 widgetId, uint32 target)

Executes the IDAC calibration for all the sensors in the widget specified in the input.

• void CapSense_CSDConnectSns (CapSense_FLASH_IO_STRUCTconst *snsAddrPtr)

Connects a port pin used by the sensor to the AMUX bus of the sensing HW block.

• void CapSense_CSDDisconnectSns (CapSense_FLASH_IO_STRUCTconst *snsAddrPtr)

Disconnects a sensor port pin from the sensing HW block and the AMUX bus. Sets the default state of the un-
scanned sensor.

• void CapSense_CSXSetupWidget(uint32 widgetId)

Performs hardware and firmware initialization required for scanning sensors in a specific widget using the CSX
sensing method. This function requires using the CapSense_CSXScan() function to start scanning.

• void CapSense_CSXSetupWidgetExt(uint32 widgetId, uint32 sensorId)

Performs extended initialization for the CSX widget and also performs initialization required for a specific sensor
in the widget. This function requires using the CapSense_CSXScan() function to initiate a scan.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 74 of 160 Document Number: 002-28712 Rev.*B

• void CapSense_CSXScan(void)

This function initiates a scan for the sensors of the widget initialized by the CapSense_CSXSetupWidget()
function.

• void CapSense_CSXScanExt(void)

Starts the CSX conversion on the preconfigured sensor. This function requires using the
CapSense_CSXSetupWidgetExt() function to set up a widget.

• cystatus CapSense_CSXCalibrateWidget(uint32 widgetId, uint16 target)

Calibrates the raw count values of all the sensors/nodes in a CSX widget.

• void CapSense_CSXConnectTx (CapSense_FLASH_IO_STRUCTconst *txPtr)

Connects a Tx electrode to the CSX scanning hardware.

• void CapSense_CSXConnectRx (CapSense_FLASH_IO_STRUCTconst *rxPtr)

Connects an Rx electrode to the CSX scanning hardware.

• void CapSense_CSXDisconnectTx (CapSense_FLASH_IO_STRUCTconst *txPtr)

Disconnects a Tx electrode from the CSX scanning hardware.

• void CapSense_CSXDisconnectRx (CapSense_FLASH_IO_STRUCTconst *rxPtr)

Disconnects an Rx electrode from the CSX scanning hardware.

• cystatus CapSense_GetParam(uint32 paramId, uint32 *value)

Gets the specified parameter value from the Data Structure.

• cystatus CapSense_SetParam(uint32 paramId, uint32 value)

Sets a new value for the specified parameter in the Data Structure.

Function Documentation

cystatus CapSense_ProcessWidgetExt (uint32 widgetId, uint32 mode)

This function performs data processes for the specified widget specified by the mode parameter. The execution
order of the requested operations is from LSB to MSB of the mode parameter. For a different order, this API can
be called multiple times with the required mode parameter.

This function can be used with any of the available scan functions. This function is called only after all the
sensors in the specified widget are scanned. Calling this function multiple times with the same mode without
sensor scanning causes unexpected behavior. This function ignores the value of the wdgtEnable register. The
CapSense_PROCESS_CALC_NOISE and CapSense_PROCESS_THRESHOLDS flags are supported by the
CSD sensing method only when Auto-tuning mode is enabled. The pipeline scan method (i.e. during scanning of
a widget, processing of a previously scanned widget is performed) can be implemented using this function and it
may reduce the total scan/process time, increase the refresh rate and decrease the power consumption.

If the Ballistic multiplier filter is enabled the Timestamp must be updated before calling this function using the
CapSense_IncrementGestureTimestamp() function.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

If the specified widget has enabled ballistic multiplier filter, make sure the timestamp is updated before calling
this function. Use one of the following functions to update the timestamp:

• CapSense_IncrementGestureTimestamp().

• CapSense_SetGestureTimestamp().

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID can be found in the CapSense Configuration header file
defined as CapSense_<WidgetName>_WDGT_ID.

mode Specifies the type of widget processing to be executed for the specified
widget:

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 75 of 160

1. Bits [31..6] - Reserved.
2. Bits [5..0] - CapSense_PROCESS_ALL - Execute all the tasks.
3. Bit [5] - CapSense_PROCESS_STATUS - Update the status

(on/off, centroid position).
4. Bit [4] - CapSense_PROCESS_THRESHOLDS - Update the

thresholds (only in CSD auto-tuning mode).
5. Bit [3] - CapSense_PROCESS_CALC_NOISE - Calculate the

noise (only in CSD auto-tuning mode).
1. Bit [2] - CapSense_PROCESS_DIFFCOUNTS - Update

the difference counts.
6. Bit [1] - CapSense_PROCESS_BASELINE - Update the

baselines.
7. Bit [0] - CapSense_PROCESS_FILTER - Run the firmware

filters.

Returns:

Returns the status of the widget processing operation:

• CYRET_SUCCESS - The processing is successfully performed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The processing is failed.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_ProcessSensorExt (uint32 widgetId, uint32 sensorId, uint32 mode)

This function performs data processes for the specified sensor specified by the mode parameter. The execution
order of the requested operations is from LSB to MSB of the mode parameter. For a different order, this function
can be called multiple times with the required mode parameter.

This function can be used with any of the available scan functions. This function is called only after a specified
sensor in the widget is scanned. Calling this function multiple times with the same mode without sensor
scanning causes unexpected behavior. This function ignores the value of the wdgtEnable register.

The CapSense_PROCESS_CALC_NOISE and CapSense_PROCESS_THRESHOLDS flags are supported by
the CSD sensing method only when Auto-tuning mode is enabled.

The pipeline scan method (i.e. during scanning of a sensor, processing of a previously scanned sensor is
performed) can be implemented using this function and it may reduce the total scan/process time, increase the
refresh rate and decrease the power consumption.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

Parameters:

widgetId Specifies the ID number of the widget to process one of its sensors. A
macro for the widget ID can be found in the CapSense Configuration
header file defined as CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to process it. A
macro for the sensor ID within a specified widget can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

mode Specifies the type of the sensor processing that needs to be executed
for the specified sensor:

1. Bits [31..5] - Reserved.
2. Bits [4..0] - CapSense_PROCESS_ALL - Executes all the

tasks.
3. Bit [4] - CapSense_PROCESS_THRESHOLDS - Updates the

thresholds (only in auto-tuning mode).

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 76 of 160 Document Number: 002-28712 Rev.*B

4. Bit [3] - CapSense_PROCESS_CALC_NOISE - Calculates the
noise (only in auto-tuning mode).
1. Bit [2] - CapSense_PROCESS_DIFFCOUNTS - Updates

the difference count.
5. Bit [1] - CapSense_PROCESS_BASELINE - Updates the

baseline.
6. Bit [0] - CapSense_PROCESS_FILTER - Runs the firmware

filters.

Returns:

Returns the status of the sensor process operation:

• CYRET_SUCCESS - The processing is successfully performed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The processing is failed.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_UpdateAllBaselines (void)

Updates the baseline for all the sensors in all the widgets. Baseline updating is a part of data processing
performed by the process functions. So, no need to call this function except a specific process flow is
implemented.

This function ignores the value of the wdgtEnable register. Multiple calling of this function (or any other function
with a baseline updating task) without scanning leads to unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

Returns:

Returns the status of the update baseline operation of all the widgets:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The baseline processing failed.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_UpdateWidgetBaseline (uint32 widgetId)

This function performs exactly the same tasks as CapSense_UpdateAllBaselines() but only for a specified
widget.

This function ignores the value of the wdgtEnable register. Multiple calling of this function (or any other function
with a baseline updating task) without scanning leads to unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

Parameters:

widgetId Specifies the ID number of the widget to update the baseline of all the
sensors in the widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the specified widget update baseline operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The baseline processing is failed.

Go to the top of the CapSense Low-Level APIs section.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 77 of 160

cystatus CapSense_UpdateSensorBaseline (uint32 widgetId, uint32 sensorId)

This function performs exactly the same tasks as CapSense_UpdateAllBaselines() and
CapSense_UpdateWidgetBaseline() but only for a specified sensor.

This function ignores the value of the wdgtEnable register. Multiple calling of this function (or any other function
with a baseline updating task) without scanning leads to unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
CapSense_CheckBaselineDuplication() for details.

Parameters:

widgetId Specifies the ID number of the widget to update the baseline of the
sensor specified by the sensorId argument. A macro for the widget ID
can be found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to update its
baseline. A macro for the sensor ID within a specified widget can be
found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

Returns:

Returns the status of the specified sensor update baseline operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The baseline processing failed.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_InitializeAllBaselines (void)

Initializes the baseline for all the sensors of all the widgets. Also, this function can be used to re-initialize
baselines. CapSense_Start() calls this API as part of CapSense operation initialization.

If any raw count filter is enabled, make sure the raw count filter history is initialized as well using one of these
functions:

• CapSense_InitializeAllFilters().

• CapSense_InitializeWidgetFilter().

Go to the top of the CapSense Low-Level APIs section.

void CapSense_InitializeWidgetBaseline (uint32 widgetId)

Initializes (or re-initializes) the baseline for all the sensors of the specified widget.

If any raw count filter is enabled, make sure the raw count filter history is initialized as well using one of these
functions:

• CapSense_InitializeAllFilters().

• CapSense_InitializeWidgetFilter().

Parameters:

widgetId Specifies the ID number of a widget to initialize the baseline of all the
sensors in the widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_InitializeSensorBaseline (uint32 widgetId, uint32 sensorId)

Initializes (or re-initializes) the baseline for a specified sensor within a specified widget.

Parameters:

widgetId Specifies the ID number of a widget to initialize the baseline of the

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 78 of 160 Document Number: 002-28712 Rev.*B

sensor in the widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to initialize its
baseline. A macro for the sensor ID within a specified widget can be
found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_InitializeAllFilters (void)

Initializes the raw count filter history for all the sensors of all the widgets. Also, this function can be used to re-
initialize baselines. CapSense_Start() calls this API as part of CapSense operation initialization.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_InitializeWidgetFilter (uint32 widgetId)

Initializes (or re-initializes) the raw count filter history of all the sensors in a widget specified by the input
parameter.

Parameters:

widgetId Specifies the ID number of a widget to initialize the filter history of all
the sensors in the widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_CheckGlobalCRC (void)

This function validates the data integrity of the CapSense_RAM_STRUCT data structure by calculating the CRC
and comparing it with the stored CRC value (i.e. CapSense_GLB_CRC_VALUE).

If the stored and calculated CRC values differ, the calculated CRC is stored to the
CapSense_GLB_CRC_CALC_VALUE register and the CapSense_TST_GLOBAL_CRC bit is set in the
CapSense_TEST_RESULT_MASK_VALUE register. The function never clears the
CapSense_TST_GLOBAL_CRC bit.

It is recommended to use the CapSense_SetParam() function to change a value of CapSense_RAM_STRUCT
data structure register/elements as CRC is updated by the CapSense_SetParam() function.

This test also can be initiated by using CapSense_RunSelfTest() function with the
CapSense_TST_GLOBAL_CRC mask input.

Returns:

Returns a status of the executed test:

• CYRET_SUCCESS - The stored CRC matches the calculated CRC

• CapSense_TST_GLOBAL_CRC - The stored CRC is wrong.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_CheckWidgetCRC (uint32 widgetId)

This function validates the data integrity of the CapSense_RAM_WD_BASE_STRUCT data structure of the
specified widget by calculating the CRC and comparing it with the stored CRC value (i.e.
CapSense_<WidgetName>_CRC_VALUE).

If the stored and calculated CRC values differ:

1. The calculated CRC is stored to the CapSense_WDGT_CRC_CALC_VALUE register
2. The widget ID is stored to the CapSense_WDGT_CRC_ID_VALUE register
3. The CapSense_TST_WDGT_CRC bit is set in the CapSense_TEST_RESULT_MASK_VALUE register.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 79 of 160

The function never clears the CapSense_TST_WDGT_CRC bit. If the CapSense_TST_WDGT_CRC bit is set,
the CapSense_WDGT_CRC_CALC_VALUE and CapSense_WDGT_CRC_ID_VALUE registers are not
updated.

It is recommended to use the CapSense_SetParam() function to change a value of
CapSense_RAM_WD_BASE_STRUCT data structure register/elements as the CRC is updated by
CapSense_SetParam() function.

This test can be initiated by CapSense_RunSelfTest() function with the CapSense_TST_WDGT_CRC mask as
an input.

The function updates the wdgtWorking register CapSense_WDGT_WORKING<Number>_VALUE by clearing
the widget-corresponding bit. Those non-working widgets are skipped by the high-level API. Restoring a widget
to its working state should be done by the application level.

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID can be found in the CapSense Configuration header file
defined as CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns a status of the test execution:

• CYRET_SUCCESS - The stored CRC matches the calculated CRC.

• CapSense_TST_WDGT_CRC - The widget CRC is wrong.

• CapSense_TST_BAD_PARAM - The input parameter is invalid.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_CheckBaselineDuplication (uint32 widgetId, uint32 sensorId)

This function validates the integrity of baseline of sensor by comparing the conformity of the baseline and its
inversion.

If the baseline does not match its inverse copy:

1. The widget ID is stored to the CapSense_INV_BSLN_WDGT_ID_VALUE register
2. The sensor ID is stored to the CapSense_INV_BSLN_SNS_ID_VALUE register
3. The CapSense_TST_BSLN_DUPLICATION bit is set in the CapSense_TEST_RESULT_MASK_VALUE

register.

The function never clears the CapSense_TST_BSLN_DUPLICATION bit. If the
CapSense_TST_BSLN_DUPLICATION bit is set, the CapSense_INV_BSLN_WDGT_ID_VALUE and
CapSense_INV_BSLN_SNS_ID_VALUE registers are not updated.

It is possible to execute a test for all the widgets using CapSense_RunSelfTest() function with the
CapSense_TST_BSLN_DUPLICATION mask. In this case, the CapSense_INV_BSLN_WDGT_ID_VALUE and
CapSense_INV_BSLN_SNS_ID_VALUE registers contain the widget and sensor ID of the first detected fail.

The function updates the wdgtWorking register CapSense_WDGT_WORKING<Number>_VALUE by clearing
the widget-corresponding bit. Those non-working widgets are skipped by the high-level API. Restoring a widget
to its working state should be done by the application level.

The test is integrated into the CapSense Component. All CapSense processing functions like
CapSense_ProcessAllWidgets() or CapSense_UpdateSensorBaseline() automatically verify the baseline value
before using it and update its inverse copy after processing. If fail is detected during a baseline update a
CYRET_BAD_DATA result is returned. The baseline initialization functions do not verify the baseline and update
the baseline inverse copy.

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID can be found in the CapSense Configuration header file
defined as CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget. A macro for
the sensor ID within the specified widget can be found in the CapSense

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 80 of 160 Document Number: 002-28712 Rev.*B

Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

Returns:

Returns the status of the test execution:

• CY_RET_SUCCESS - The baseline matches its inverse copy.

• CapSense_TST_BSLN_DUPLICATION - The test failed.

• CapSense_TST_BAD_PARAM - The input parameters are invalid.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_CheckBaselineRawcountRange (uint32 widgetId, uint32 sensorId,
CapSense_BSLN_RAW_RANGE_STRUCT* ranges)

The baseline and raw count shall be within specific range (based on calibration target) for good units. The
function checks whether or not the baseline and raw count are within the limits defined by the user in the ranges
function argument. If baseline or raw count are out of limits this function sets the
CapSense_TST_BSLN_RAW_OUT_RANGE bit in the CapSense_TEST_RESULT_MASK_VALUE register.

Unlike other tests, this test does not update CapSense_WDGT_WORKING<Number>_VALUE register and is
not available in the CapSense_RunSelfTest() function.

Use this function to verify the uniformity of sensors, for example, at mass-production or during an operation
phase.

Parameters:

widgetId Specifies the ID number of the widget. A macro for the widget ID can
be found in the CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget. A macro for
the sensor ID within the specified widget can be found in the CapSense
Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

*ranges Specifies the pointer to the CapSense_BSLN_RAW_RANGE_STRUCT
structure with valid ranges for the raw count and baseline.

Returns:

Returns a status of the test execution:

• CYRET_SUCCESS - The raw count and baseline are within the specified range

• CapSense_TST_BSLN_RAW_OUT_RANGE - The test failed and baseline or raw count or both are out
of the specified limit.

• CapSense_TST_BAD_PARAM - The input parameters are invalid.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_CheckIntegritySensorPins (uint32 widgetId, uint32 sensorId)

This function performs several tests to verify a specified sensor that is not electrically shorted and in good
condition to reliably detect user interactions.

This function performs tests to check if the specified sensor is shorted to:

• GND, VDD

• Other GPIOs used by CapSense (such as sensors, Tx, Rx, shield electrodes, and external capacitors)

• Other non-CapSense GPIOs (only if they are configured in a strong high or low state during the test
execution).

The absolute resistance of an electrical short must be less than 1500 Ohm including all series resistors on the
sensor for the short to be detected to GND, VDD or GPIOs. For example, if a series resistor on a sensor is 560
Ohm (as recommended) and the sensor is shorted with another sensor, the function can detect a short of 380
Ohm or less as there are two 560 ohm resistors between the shorted sensor GPIOs.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 81 of 160

The function executes the following flow to detect a short:

• Configures all the Component controlled GPIOs to strong-drive-low, and the specified sensor GPIO to
resistive Pull up mode.

• A delay of CapSense_SNS_SHORT_TIME_VALUE in microseconds.

• Checks the status of the specified sensor for the expected state (logic high).

• Configures all CapSense controlled GPIOs to strong-drive-high, and the specified sensor GPIO to resistive
Pull down mode.

• A delay of CapSense_SNS_SHORT_TIME_VALUE in microseconds.

• Checks the status of the specified sensor for the expected state (logic low).

• The test result is stored in CapSense Data Structure. A short is reported only when the sensor status check
returns an unexpected state.

Due to the sensor parasitic capacitance and internal pull-up/down resistor, logic high-to-low (and vice versa)
transitions require setting time before checking the sensor status. A 2-us delay is used as the setting time and
can that be changed using the CapSense_SNS_SHORT_TIME_VALUE parameter.

This function updates the following statuses if a short is detected:

• The widget ID is stored to the CapSense_SHORTED_WDGT_ID_VALUE register.

• The sensor ID is stored to the CapSense_SHORTED_SNS_ID_VALUE register.

• The CapSense_TST_SNS_SHORT bit is set in the CapSense_TEST_RESULT_MASK_VALUE register.

• If CapSense_TST_SNS_SHORT is already set due to a previously detected fault on any of the sensor, this
function does not update the CapSense_SHORTED_WDGT_ID_VALUE and
CapSense_SHORTED_SNS_ID_VALUE registers. For this reason, clear CapSense_TST_SNS_SHORT
prior to calling this function.

• The widget is disabled by clearing the correcting bit (CapSense_WDGT_WORKING<Number>_VALUE) in
the wdgtWorking register. The widget is ignored by a high-level function during further scans and data
processing tasks. The application layer can be set to the corresponding bit to restore the widget operation.

• To check all the Component sensor at once, use the CapSense_RunSelfTest() function with the
CapSense_TST_SNS_SHORT mask.

• To detect an electrical short or fault condition with resistance higher than 1500 ohm, the
CapSense_GetSensorCapacitance() function can be used as the fault condition changes the sensor
capacitance, hence it can be detected.

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID is in the CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget. A macro for
the sensor ID within the specified widget is in the CapSense
Configuration header file defined as
CapSense_<WidgetName>_SNS<SensorNumber>_ID.

Returns:

Returns a status of the test execution:

• CYRET_SUCCESS - The sensor does not have a short and is in the working condition.

• CapSense_TST_SNS_SHORT - A short is detected on the specified sensor.

• CapSense_TST_BAD_PARAM - The input parameters are invalid.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_GetSensorCapacitance (uint32 widgetId, uint32 sensorElement,
CapSense_TST_MEASUREMENT_STATUS_ENUM * measurementStatusPtr)

This function measures the capacitance of the specified sensor element in femtofarads.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 82 of 160 Document Number: 002-28712 Rev.*B

For a CSX sensor, measurement is done on either Rx or Tx electrodes. For a CSD sensor, measurement is
done on a sensor (refer to the sensorElement description). If the specified sensor element is a ganged one, the
capacitance is measured for all the electrodes that belong to the sensor.

For the latest measurement, the result is stored in the CapSense_RAM_SNS_CP_STRUCT data structure and
the CapSense_<WidgetName>_PTR2SNS_CP_VALUE register is the pointer to the array with the measured
capacitance of all sensors in the widget.

In addition to the measuring sensor capacitance, this function is used to identify various fault conditions with
sensors such as electrically opened sensors. For example, the PCB track is broken or shorted to other nodes in
the system - in all of these conditions, the sensor capacitance is changed which can be compared against pre
determined capacitance for the sensor to detect a fault condition.

This function must not be called if the Component is in the busy state.

Capacitance is measured independently of sensor scan configuration. To measure sensor capacitance, the
CSD sensing method is used and the capacitance is calculated as follows:

Cs = R * IGain * ICode / ((2^Res - 1) * Vref * SnsClk)

where (default value):

• Cs - the sensor capacitance.

• R - the measured raw count value.

• IGain - idac gain

• ICode - idac code (Compensation IDAC is disabled).

• Res - the scanning resolution.

• Vref - the reference voltage.

• SnsClk - the sensor clock frequency.

The measurement is performed differently for the 3rd and 4th generation CSD HW blocks.

• 3rd generation CSD HW block: The function performs a successive approximation search algorithm to find
appropriate IDAC code for the sensor in the specified widget that provides a raw count to the target of the
85% level of the raw count maximum value. Then Cs is calculated. If the raw count is within +/- 10% of the
desired target the function returns through measurementStatusPtr
CapSense_TST_MEASUREMENT_SUCCESS, otherwise CapSense_TST_MEASUREMENT_LOW_LIMIT
or CapSense_TST_MEASUREMENT_HIGH_LIMIT is returned. The measured Cp range for the 3rd
generation CSD HW block is from 5 pF to 65 pF. The default meaurement parameter values are:

• IGain = 1.2 uA

• Res = 12 bits

• Vref = 1.2 V

• SnsClk = 1.5 MHz

• 4th generation CSD HW block: The function performs up to 4 scans to reach the raw count in a range
between 7.5% and 45% of the maximum value (2^Res - 1). If a raw count is less than 7.5% of the maximum
limit (2^Res - 1), the function returns CapSense_TST_LOW_LIMIT through the measurementStatus pointer.
If a raw count is between 7.5% and 45% of the maximum, the function calculates the sensor capacitance,
updates the register map and returns CapSense_TST_SUCCESS. If a raw count is above 45% of the
maximum, the function measures again with a 4x increased current (I), and repeats the measurement until
the raw count is within 7.5% to 45% of the maximum value or gets 4x bigger. The minimum measurable
input by this function for the 4th generation CSD HW block is 1pF and the maximum is 384pF limited by the
RC time constant (Cs < 1 / (2*5*SnsClk*R), where R is the total sensor series resistance which includes on-
chip GPIO resistance ~500 Ohm and external series resistance). The default meaurement parameter values
are:

• IGain = 1.2 uA

• Res = 12 bits

• Vref = 1.2 V

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 83 of 160

• SnsClk = 375 kHz

•

The measurement accuracy for both generation is about 15%.

By default, sensors that are not being measured are configured to strong-drive-low during the measurement.
This state can be changed to High-Z or Shield using the CapSense_SetInactiveElectrodeState() function. CSD
and CSX sensors have independent parameters to configure inactive electrode states.

A Cmod capacitor is required for the measurement. If a dedicated Cmod is not available (e.g. the design has
CSX widgets only), CintA and CintB capacitors are combined by the Component to form Cmod.

The sensor measurement is done on all the sensors using the CapSense_RunSelfTest() function along with the
CapSense_TST_SNS_CAP mask. The measurement operation requires reconfiguration of the hardware, hence
measurement of all sensors together is recommended to avoid hardware reconfiguration for optimized firmware
execution.

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID is in the CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorEleme
nt

Specifies the ID of the sensor element within the widget to be
measured.

For the CSD widgets, sensorElement is the sensor ID and is in the CapSense Configuration header file defined
as:

• CapSense_<WidgetName>_SNS<SensorNumber>_ID.

For the CSX widgets, sensorElement is defined either as Rx ID or Tx ID. The first Rx in a widget corresponds to
sensorElement = 0, the second Rx in a widget corresponds to sensorElement = 1, and so on. The last Tx in a
widget corresponds to sensorElement = (RxNum + TxNum - 1). Macros for Rx and Tx IDs can be found in the
CapSense Configuration header file defined as:

• CapSense_<WidgetName>_RX<RXNumber>_ID

• CapSense_<WidgetName>_TX<TXNumber>_ID.

Parameters:

measuremen
tStatusPtr

Specifies the pointer to the
CapSense_TST_MEASUREMENT_STATUS_ENUM variable where
the result of the function execution is stored:

• CapSense_TST_MEASUREMENT_SUCCESS - The
measurement completes successfully, the result is valid.

• CapSense_TST_MEASUREMENT_BAD_PARAM - The input
parameter is invalid.

• CapSense_TST_MEASUREMENT_LOW_LIMIT - The
measured capacitance is below the minimum possible value.
The measurement result is invalid. It is possible that the sensor
was shorted to VDD or a sensor PCB track was broken (open
sensor).

• CapSense_TST_MEASUREMENT_HIGH_LIMIT - The
measured capacitance is above the maximum possible value.
The measurement result is invalid. It is possible that the sensor
was shorted to GND.

• CapSense_TST_MEASUREMENT_ERROR - an unexpected
fault occurred during the measurement, the measurement may
need to be repeated.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 84 of 160 Document Number: 002-28712 Rev.*B

Returns:

Returns the capacitance of a sensor element in femtofarads. The status of the measurement is returned
through the measurementStatus pointer. If measurementStatus is not equal to
CapSense_TST_MEASUREMENT_SUCCESS, a fail occurs and the returned capacitance should be
ignored. For more detail, refer to the measurementStatus description.

Go to the top of the CapSense Low-Level APIs section.

uint32 CapSense_GetShieldCapacitance (CapSense_TST_MEASUREMENT_STATUS_ENUM *
measurementStatusPtr)

This function measures the capacitance of the shield electrode and returns a result. If the shield consists of
several electrodes, the total capacitance of all shield electrodes is reported. The measured capacitance is
stored in the CapSense_SHIELD_CAP_VALUE register of the data structure.

This function uses an algorithm identical to the sensor capacitance measurement (for more detail, refer to
CapSense_GetSensorCapacitance()).

In addition to measuring the shield capacitance, this function is used to identify various fault conditions with a
shield electrode such as an electrically open shield electrode, e.g. the PCB track is broken or shorted to other
nodes in the system – in all of these conditions, this function returns elevated capacitance that can be compared
against pre-determined capacitance for the shield electrode to detect a fault condition.

By default, all sensors are configured to Strong-drive-low mode while measuring the shield capacitance. This
state can be changed to High-Z or Shield using the CapSense_SetInactiveElectrodeState() function and repeat
the measurement.

This test can be executed using the CapSense_RunSelfTest() function with the CapSense_TST_SH_CAP
mask.

Parameters:

measuremen
tStatusPtr

Specifies the pointer to the
CapSense_TST_MEASUREMENT_STATUS_ENUM variable where
the result of the function execution is stored:

• CapSense_TST_MEASUREMENT_SUCCESS - The
measurement completes successfully, the result is valid.

• CapSense_TST_MEASUREMENT_BAD_PARAM - The input
parameter is invalid.

• CapSense_TST_MEASUREMENT_LOW_LIMIT - The
measured capacitance is below the minimum possible value.
The measurement result is invalid. It is possible that the sensor
was shorted to VDD or a sensor PCB track was broken (open
sensor).

• CapSense_TST_MEASUREMENT_HIGH_LIMIT - The
measured capacitance is above the maximum possible value.
The measurement result is invalid. It is possible that the sensor
was shorted to GND.

• CapSense_TST_MEASUREMENT_ERROR - an unexpected
fault occurred during the measurement, the measurement may
need to be repeated.

Returns:

Returns the capacitance of a shield in femtofarads. The status of measurement is returned through the
measurementStatus pointer. If measurementStatus is not CapSense_TST_MEASUREMENT_SUCCESS,
the returned value should be ignored. For more details, refer to the measurementStatus description.

Go to the top of the CapSense Low-Level APIs section.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 85 of 160

uint32 CapSense_GetExtCapCapacitance (uint32 extCapId)

The function measures the capacitance of the specified external capacitor such as Cmod and returns the result,
alternatively the result is stored in the CapSense_EXT_CAP<EXT_CAP_ID>_VALUE register in data structure.

The measurable capacitance range using this function is from 200pF to 60,000pF with measurement accuracy
of 10%.

This test can be executed for all the external capacitors at once using the CapSense_RunSelfTest() function
with the CapSense_TST_EXTERNAL_CAP mask.

Parameters:

extCapId Specifies the ID number of the external capacitor to be measured:

• CapSense_TST_CMOD_ID - Cmod capacitor

• CapSense_TST_CSH_ID - Csh capacitor

• CapSense_TST_CINTA_ID - CintA capacitor

• CapSense_TST_CINTB_ID - CintB capacitor

Returns:

Returns a status of the test execution:

• The capacitance (in pF) of the specified external capacitor

• CapSense_TST_BAD_PARAM if the input parameter is invalid.

Go to the top of the CapSense Low-Level APIs section.

uint16 CapSense_GetVdda (void)

This function measures voltage on VDDA terminal of the chip and returns the result, alternatively the result is
stored in the CapSense_VDDA_VOLTAGE_VALUE register of data structure.

Returns:

The VDDA voltage in mV.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_SetPinState (uint32 widgetId, uint32 sensorElement, uint32 state)

This function sets a specified state for a specified sensor element. For the CSD widgets, sensor element is a
sensor ID, for the CSX widgets, it is either an Rx or Tx electrode ID. If the specified sensor is a ganged sensor,
then the specified state is set for all the electrodes belong to the sensor. This function must not be called while
the Component is in the busy state.

This function accepts the CapSense_SHIELD and CapSense_SENSOR states as an input only if there is at
least one CSD widget. Similarly, this function accepts the CapSense_TX_PIN and CapSense_RX_PIN states as
an input only if there is at least one CSX widget in the project.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the custom-specific use cases. Functions that perform a setup and scan of a sensor/widget automatically
set the required pin states. They ignore changes in the design made by the CapSense_SetPinState() function.
This function neither check wdgtIndex nor sensorElement for the correctness.

Parameters:

widgetId Specifies the ID of the widget to change the pin state of the specified
sensor. A macro for the widget ID can be found in the CapSense
Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorEleme
nt

Specifies the ID of the sensor element within the widget to change its
pin state. For the CSD widgets, sensorElement is the sensor ID and
can be found in the CapSense Configuration header file defined as

• CapSense_<WidgetName>_SNS<SensorNumber>_ID. For the
CSX widgets, sensorElement is defined either as Rx ID or Tx

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 86 of 160 Document Number: 002-28712 Rev.*B

ID. The first Rx in a widget corresponds to sensorElement = 0,
the second Rx in a widget corresponds to sensorElement = 1,
and so on. The last Tx in a widget corresponds to
sensorElement = (RxNum + TxNum). Macros for Rx and Tx IDs
can be found in the CapSense Configuration header file
defined as:

• CapSense_<WidgetName>_RX<RXNumber>_ID

• CapSense_<WidgetName>_TX<TXNumber>_ID.

state Specifies the state of the sensor to be set:
1. CapSense_GROUND - The pin is connected to the ground.
2. CapSense_HIGHZ - The drive mode of the pin is set to High-Z

Analog.
3. CapSense_SHIELD - The shield signal is routed to the pin

(available only if CSD sensing method with shield electrode is
enabled).

4. CapSense_SENSOR - The pin is connected to the scanning
bus (available only if CSD sensing method is enabled).

5. CapSense_TX_PIN - The Tx or Lx signal is routed to the
sensor (available only if CSX or ISX sensing method is
enabled).

6. CapSense_RX_PIN - The pin is connected to the scanning bus
(available only if CSX or ISX sensing method is enabled).

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_SetupWidgetExt (uint32 widgetId, uint32 sensorId)

This function does the same as CapSense_SetupWidget() and also does the following tasks:

1. Connects the first sensor of the widget.
2. Configures the CSD HW block to perform a scan of the specified sensor.

Once this function is called to initialize a widget and a sensor, the CapSense_ScanExt() function is called to
scan the sensor.

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and
firmware initialization required for scanning the specific sensor in the
specific widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to perform
hardware and firmware initialization required for scanning a specific
sensor in a specific widget. A macro for the sensor ID within a specified
widget can be found in the CapSense Configuration header file defined
as CapSense_<WidgetName>_SNS<SensorNumber>_ID

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The widget is invalid or if the specified widget is disabled

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 87 of 160

• CYRET_UNKNOWN - An unknown sensing method is used by the widget or any other spurious error
occurred.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_ScanExt (void)

This function performs single scanning of one sensor in the widget configured by the
CapSense_SetupWidgetExt() function.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example). This function is
called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

The sensor must be preconfigured by using the CapSense_SetupWidgetExt() API prior to calling this function.
The sensor remains ready for a next scan if a previous scan was triggered by using the CapSense_ScanExt()
function. In this case, calling CapSense_SetupWidgetExt() is not required every time before the
CapSense_ScanExt() function. If a previous scan was triggered in any other way - CapSense_Scan(),
CapSense_ScanAllWidgets() or CapSense_RunTuner() - (see the CapSense_RunTuner() function description
for more details), the sensor must be preconfigured again by using the CapSense_SetupWidgetExt() API prior
to calling the CapSense_ScanExt() function.

If disconnection of the sensors is required after calling CapSense_ScanExt(), the
CapSense_CSDDisconnectSns() or CapSense_CSXDisconnectTx() or CapSense_CSXDisconnectRx()
functions can be used.

Returns:

Returns the status of the scan initiation operation:

• CYRET_SUCCESS - Scanning is successfully started.

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

• CYRET_UNKNOWN - An unknown sensing method is used by the widget.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_CalibrateWidget (uint32 widgetId)

This function performs exactly the same tasks as CapSense_CalibrateAllWidgets, but only for a specified
widget. This function detects the sensing method used by the widgets and uses the Enable compensation IDAC
parameter.

This function is available when the CSD and/or CSX Enable IDAC auto-calibration parameter is enabled.

Parameters:

widgetId Specifies the ID number of the widget to calibrate its raw count. A
macro for the widget ID can be found in the CapSense Configuration
header file defined as CapSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the specified widget calibration:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The calibration failed and the Component may not operate as expected.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_CalibrateAllWidgets (void)

Calibrates the IDACs for all the widgets in the Component to the default target value. This function detects the
sensing method used by the widgets and regards the Enable compensation IDAC parameter.

This function is available when the CSD and/or CSX Enable IDAC auto-calibration parameter is enabled.

Returns:

Returns the status of the calibration process:

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 88 of 160 Document Number: 002-28712 Rev.*B

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The calibration failed and the Component may not operate as expected.

Go to the top of the CapSense Low-Level APIs section.

uint32_t CapSense_SetInactiveElectrodeState (CapSense_OPERATION_MODE_ENUM mode, uint32_t
state)

The function updates the following registers of RAM data structure:

• CapSense_SCAN_CSD_ISC_VALUE - Connection of inactive CSD and CSX electrodes during the regular
CSD scan. By default, this register is initialized with the value of Inactive Sensor Connection combobox on
the CSD Settings tab. The CapSense_SCAN_CSD_E value should be used as the Mode parameter to
update this register.

• CapSense_SCAN_CSX_ISC_VALUE - Connection of inactive CSD, CSX and the dedicated Shield
electrodes during the regular CSX scan. By default, this register is initialized with the value of Inactive
Sensor Connection combobox on the CSX Settings tab. The CapSense_SCAN_CSX_E value should be
used as the Mode parameter to update this register.

• CapSense_BIST_CSD_SNS_CAP_ISC_VALUE - Connection of inactive CSD and CSX electrodes during
measurement of CSD electrodes capacitance. This register is initialized with the
CapSense_SNS_CONNECTION_GROUND value by default. The CapSense_BIST_CSD_SNS_CAP_E
value should be used as the Mode parameter to update this register.

• CapSense_BIST_CSX_SNS_CAP_ISC_VALUE - Connection of inactive CSD, CSX and the dedicated
Shield electrodes during measurement of CSX electrodes (Tx and Rx) capacitance. This register is
initialized with the CapSense_SNS_CONNECTION_GROUND value by default. The
CapSense_BIST_CSX_SNS_CAP_E value should be used as the Mode parameter to update this register.

• CapSense_BIST_CSD_SH_CAP_ISC_VALUE - Connection of inactive CSD and CSX electrodes
measurement of dedicated Shield electrodes capacitance. This register is initialized with the
CapSense_SNS_CONNECTION_GROUND value by default. The CapSense_BIST_CSD_SH_CAP_E
value should be used as the Mode parameter to update this register.

Parameters:

mode Operation mode, the state of inactive sensors should be configured for.
This parameter can take the following values:

• CapSense_SCAN_CSD_E - Regular CSD scan.

• CapSense_SCAN_CSX_E - Regular CSX scan.

• CapSense_BIST_CSD_SNS_CAP_E - Measurement of the
CSD sensor capacitance.

• CapSense_BIST_CSX_SNS_CAP_E - Measurement of the
CSX electrode capacitance.

• CapSense_BIST_CSD_SH_CAP_E - Measurement of the
dedicated CSD Shield electrode capacitance.

state The desired state of inactive sensors. This parameter can take the
following values:

• CapSense_SNS_CONNECTION_GROUND - Inactive sensors
are connected to the ground.

• CapSense_SNS_CONNECTION_HIGHZ - Inactive sensors are
floating (not connected to GND or Shield).

• CapSense_SNS_CONNECTION_SHIELD - Inactive sensors
are connected to the shield. This option is available only if the
Enable shield electrode check box is set. At least one
dedicated shield electrode is required to use the
CapSense_SNS_CONNECTION_SHIELD option for the
CapSense_BIST_CSD_SH_CAP_E operation mode.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 89 of 160

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - The operation was successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSDSetupWidget (uint32 widgetId)

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_SetupWidget() function
should be used instead.

This function initializes the specific widget common parameters to perform the CSD scanning. The initialization
includes setting up a Modulator and Sense clock frequency and scanning resolution.

This function does not connect any specific sensors to the scanning hardware, neither does it start a scanning
process. The CapSense_CSDScan() API must be called after initializing the widget to start scanning.

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

This function is called by the CapSense_SetupWidget() API if the given widget uses the CSD sensing method.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and
firmware initialization required for scanning sensors in the specific
widget. A macro for the widget ID can be found in the CapSense
Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSDSetupWidgetExt (uint32 widgetId, uint32 sensorId)

Performs extended initialization for the CSD widget and also performs initialization required for a specific sensor
in the widget. This function requires using the CapSense_CSDScanExt() function to initiate a scan.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_SetupWidgetExt()
function should be used instead.

This function does the same as CapSense_CSDSetupWidget() and also does the following tasks:

1. Connects the first sensor of the widget.
2. Configures the IDAC value.
3. Initializes an interrupt callback function to initialize a scan of the next sensors in a widget.

Once this function is called to initialize a widget and a sensor, the CapSense_CSDScanExt() function is called to
scan the sensor.

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and
firmware initialization required for scanning the specific sensor in the
specific widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 90 of 160 Document Number: 002-28712 Rev.*B

CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to perform
hardware and firmware initialization required for scanning a specific
sensor in a specific widget. A macro for the sensor ID within a specified
widget can be found in the CapSense Configuration header file defined
as CapSense_<WidgetName>_SNS<SensorNumber>_ID

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSDScan (void)

This function initiates a scan for the sensors of the widget initialized by the CapSense_CSDSetupWidget()
function.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_Scan() function should be
used instead.

This function performs scanning of all the sensors in the widget configured by the
CapSense_CSDSetupWidget() function. It does the following tasks:

1. Connects the first sensor of the widget.
2. Configures the IDAC value.
3. Initializes the interrupt callback function to initialize a scan of the next sensors in a widget.
4. Starts scanning for the first sensor in the widget.

This function is called by the CapSense_Scan() API if the given widget uses the CSD sensing method.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status. The
widget must be preconfigured by the CapSense_CSDSetupWidget() function if any other widget was previously
scanned or any other type of the scan functions was used.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSDScanExt (void)

Starts the CSD conversion on the preconfigured sensor. This function requires using the
CapSense_CSDSetupWidgetExt() function to set up the a widget.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_ScanExt() function
should be used instead.

This function performs single scanning of one sensor in the widget configured by the
CapSense_CSDSetupWidgetExt() function. It does the following tasks:

1. Sets the busy flag in the CapSense_dsRam structure.
2. Performs the clock-phase alignment of the sense and modulator clocks.
3. Performs the Cmod pre-charging.
4. Starts single scanning.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example). This function is
called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

The sensor must be preconfigured by using the CapSense_CSDSetupWidgetExt() API prior to calling this
function. The sensor remains ready for a next scan if a previous scan was triggered by using the
CapSense_CSDScanExt() function. In this case, calling CapSense_CSDSetupWidgetExt() is not required every
time before the CapSense_CSDScanExt() function. If a previous scan was triggered in any other way -
CapSense_Scan(), CapSense_ScanAllWidgets() or CapSense_RunTuner() - (see the CapSense_RunTuner()
function description for more details), the sensor must be preconfigured again by using the
CapSense_CSDSetupWidgetExt() API prior to calling the CapSense_CSDScanExt() function.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 91 of 160

If disconnection of the sensors is required after calling CapSense_CSDScanExt(), the
CapSense_CSDDisconnectSns() function can be used.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_CSDCalibrateWidget (uint32 widgetId, uint32 target)

Executes the IDAC calibration for all the sensors in the widget specified in the input.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_CalibrateWidget()
function should be used instead.

Performs a successive approximation search algorithm to find appropriate IDAC values for sensors in the
specified widget that provides the raw count to the level specified by the target parameter.

Calibration fails if the achieved raw count is outside of the range specified by the target and acceptable
calibration deviation.

This function is available when the CSD Enable IDAC auto-calibration parameter is enabled or the SmartSense
auto-tuning mode is configured.

Parameters:

widgetId Specifies the ID number of the CSD widget to calibrate its raw count. A
macro for the widget ID can be found in the CapSense Configuration
header file defined as CapSense_<WidgetName>_WDGT_ID.

target Specifies the calibration target in percentages of the maximum raw
count.

Returns:

Returns the status of the specified widget calibration:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The calibration failed and the Component may not operate as expected.

• CYRET_TIMEOUT - The calibration failed due to timeout.

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSDConnectSns (CapSense_FLASH_IO_STRUCTconst * snsAddrPtr)

Connects a port pin used by the sensor to the AMUX bus of the sensing HW block while a sensor is being
scanned. The function ignores the fact if the sensor is a ganged sensor and connects only a specified pin.

Scanning should be completed before calling this API.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases. Functions that perform a setup and scan of a sensor/widget, automatically set
the required pin states and perform the sensor connection. They do not take into account changes in the design
made by the CapSense_CSDConnectSns() function.

Parameters:

snsAddrPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a
sensor which to be connected to the sensing HW block.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSDDisconnectSns (CapSense_FLASH_IO_STRUCTconst * snsAddrPtr)

This function works identically to CapSense_CSDConnectSns() except it disconnects the specified port-pin used
by the sensor.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases. Functions that perform a setup and scan of sensor/widget automatically set

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 92 of 160 Document Number: 002-28712 Rev.*B

the required pin states and perform the sensor connection. They ignore changes in the design made by the
CapSense_CSDDisconnectSns() function.

Parameters:

snsAddrPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a
sensor which should be disconnected from the sensing HW block.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXSetupWidget (uint32 widgetId)

Performs hardware and firmware initialization required for scanning sensors in a specific widget using the CSX
sensing method. This function requires using the CapSense_CSXScan() function to start scanning.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_SetupWidget() function
should be used instead.

This function initializes the widgets specific common parameters to perform the CSX scanning. The initialization
includes the following:

1. The CSD_CONFIG register.
2. The IDAC register.
3. The Sense clock frequency
4. The phase alignment of the sense and modulator clocks.

This function does not connect any specific sensors to the scanning hardware and neither does it start a
scanning process. The CapSense_CSXScan() function must be called after initializing the widget to start
scanning.

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

This function is called by the CapSense_SetupWidget() API if the given widget uses the CSX sensing method.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and
firmware initialization required for scanning sensors in the specific
widget. A macro for the widget ID can be found in the CapSense
Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXSetupWidgetExt (uint32 widgetId, uint32 sensorId)

Performs extended initialization for the CSX widget and also performs initialization required for a specific sensor
in the widget. This function requires using the CapSense_CSXScan() function to initiate a scan.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_SetupWidgetExt()
function should be used instead.

This function does the same tasks as CapSense_CSXSetupWidget() and also connects a sensor in the widget
for scanning. Once this function is called to initialize a widget and a sensor, the CapSense_CSXScanExt()
function must be called to scan the sensor.

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and
firmware initialization required for scanning a specific sensor in a

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 93 of 160

specific widget. A macro for the widget ID can be found in the
CapSense Configuration header file defined as
CapSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to perform
hardware and firmware initialization required for scanning a specific
sensor in a specific widget. A macro for the sensor ID within a specified
widget can be found in the CapSense Configuration header file defined
as CapSense_<WidgetName>_SNS<SensorNumber>_ID.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXScan (void)

This function initiates a scan for the sensors of the widget initialized by the CapSense_CSXSetupWidget()
function.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_Scan() function should be
used instead.

This function performs scanning of all the sensors in the widget configured by the
CapSense_CSXSetupWidget() function. It does the following tasks:

1. Connects the first sensor of the widget.
2. Initializes an interrupt callback function to initialize a scan of the next sensors in a widget.
3. Starts scanning for the first sensor in the widget.

This function is called by the CapSense_Scan() API if the given widget uses the CSX sensing method.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example).

This function is called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status. The
widget must be preconfigured by the CapSense_CSXSetupWidget() function if any other widget was previously
scanned or any other type of scan functions were used.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXScanExt (void)

Starts the CSX conversion on the preconfigured sensor. This function requires using the
CapSense_CSXSetupWidgetExt() function to set up a widget.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_ScanExt() function
should be used instead.

This function performs single scanning of one sensor in the widget configured by the
CapSense_CSXSetupWidgetExt() function. It does the following tasks:

1. Sets a busy flag in the CapSense_dsRam structure.
2. Configures the Tx clock frequency.
3. Configures the Modulator clock frequency.
4. Configures the IDAC value.
5. Starts single scanning.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time or pipeline scanning for example). This function is
called when no scanning is in progress. I.e. CapSense_IsBusy() returns a non-busy status.

The sensor must be preconfigured by using the CapSense_CSXSetupWidgetExt() API prior to calling this
function. The sensor remains ready for the next scan if a previous scan was triggered by using the
CapSense_CSXScanExt() function. In this case, calling CapSense_CSXSetupWidgetExt() is not required every
time before the CapSense_CSXScanExt() function. If a previous scan was triggered in any other way -
CapSense_Scan(), CapSense_ScanAllWidgets() or CapSense_RunTuner() - (see the CapSense_RunTuner()

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 94 of 160 Document Number: 002-28712 Rev.*B

function description for more details), the sensor must be preconfigured again by using the
CapSense_CSXSetupWidgetExt() API prior to calling the CapSense_CSXScanExt() function.

If disconnection of the sensors is required after calling CapSense_CSXScanExt(), the
CapSense_CSXDisconnectTx() and CapSense_CSXDisconnectRx() APIs can be used.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_CSXCalibrateWidget (uint32 widgetId, uint16 target)

Calibrates the raw count values of all the sensors/nodes in a CSX widget.

Note:

This function is obsolete and kept for backward compatibility only. The CapSense_CalibrateWidget()
function should be used instead.

Performs a successive approximation search algorithm to find appropriate IDAC values for sensors in the
specified widget that provides a raw count to the level specified by the target parameter.

This function is available when the CSX Enable IDAC auto-calibration parameter is enabled.

Parameters:

widgetId Specifies the ID number of the CSX widget to calibrate its raw count. A
macro for the widget ID can be found in the CapSense Configuration
header file defined as CapSense_<WidgetName>_WDGT_ID.

target Specifies the calibration target in percentages of the maximum raw
count.

Returns:

Returns the status of the operation:

• Zero - All the sensors in the widget are calibrated successfully.

• Non-Zero - Calibration failed for any sensor in the widget.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXConnectTx (CapSense_FLASH_IO_STRUCTconst * txPtr)

This function connects a port pin (Tx electrode) to the CSD_SENSE signal. It is assumed that drive mode of the
port pin is already set to STRONG in the HSIOM_PORT_SELx register.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time when there is only one port pin for an electrode for
example).

Parameters:

txPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a
sensor to be connected to the sensing HW block as a Tx pin.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXConnectRx (CapSense_FLASH_IO_STRUCTconst * rxPtr)

This function connects a port pin (Rx electrode) to AMUXBUS-A and sets drive mode of the port pin to High-Z in
the GPIO_PRT_PCx register.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time when there is only one port pin for an electrode for
example).

Parameters:

rxPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a
sensor to be connected to the sensing HW block as an Rx pin.

Go to the top of the CapSense Low-Level APIs section.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 95 of 160

void CapSense_CSXDisconnectTx (CapSense_FLASH_IO_STRUCTconst * txPtr)

This function disconnects a port pin (Tx electrode) from the CSD_SENSE signal and configures the port pin to
the strong drive mode. It is assumed that the data register (GPIO_PRTx_DR) of the port pin is already 0.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time when there is only one port pin for an electrode for
example).

Parameters:

txPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a
Tx pin sensor to be disconnected from the sensing HW block.

Go to the top of the CapSense Low-Level APIs section.

void CapSense_CSXDisconnectRx (CapSense_FLASH_IO_STRUCTconst * rxPtr)

This function disconnects a port pin (Rx electrode) from AMUXBUS_A and configures the port pin to the strong
drive mode. It is assumed that the data register (GPIO_PRTx_DR) of the port pin is already 0.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases (for faster execution time when there is only one port pin for an electrode for
example).

Parameters:

rxPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to an
Rx pin sensor to be disconnected from the sensing HW block.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_GetParam (uint32 paramId, uint32 * value)

This function gets the value of the specified parameter by the paramId argument. The paramId for each register
is available in the CapSense RegisterMap header file as CapSense_<ParameterName>_PARAM_ID. The
paramId is a special enumerated value generated by the customizer. The format of paramId is as follows:

1. [byte 3 byte 2 byte 1 byte 0]
2. [TTWFCCCC UIIIIIII MMMMMMMM LLLLLLLL]
3. T - encodes the parameter type:

• 01b: uint8

• 10b: uint16

• 11b: uint32
4. W - indicates whether the parameter is writable:

• 0: ReadOnly

• 1: Read/Write
5. C - 4 bit CRC (X^3 + 1) of the whole paramId word, the C bits are filled with 0s when the CRC is calculated.
6. U - indicates if the parameter affects the RAM Widget Object CRC.
7. I - specifies that the widgetId parameter belongs to
8. M,L - the parameter offset MSB and LSB accordingly in:

• Flash Data Structure if W bit is 0.

• RAM Data Structure if W bit is 1.

Refer to the Data Structure section for details of the data structure organization and examples of its register
access.

Parameters:

paramId Specifies the ID of parameter to get its value. A macro for the
parameter ID can be found in the CapSense RegisterMap header file
defined as CapSense_<ParameterName>_PARAM_ID.

value The pointer to a variable to be updated with the obtained value.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 96 of 160 Document Number: 002-28712 Rev.*B

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

Go to the top of the CapSense Low-Level APIs section.

cystatus CapSense_SetParam (uint32 paramId, uint32 value)

This function sets the value of the specified parameter by the paramId argument. The paramId for each register
is available in the CapSense RegisterMap header file as CapSense_<ParameterName>_PARAM_ID. The
paramId is a special enumerated value generated by the customizer. The format of paramId is as follows:

1. [byte 3 byte 2 byte 1 byte 0]
2. [TTWFCCCC UIIIIIII MMMMMMMM LLLLLLLL]
3. T - encodes the parameter type:

• 01b: uint8

• 10b: uint16

• 11b: uint32
4. W - indicates whether the parameter is writable:

• 0: ReadOnly

• 1: Read/Write
5. C - 4 bit CRC (X^3 + 1) of the whole paramId word, the C bits are filled with 0s when the CRC is calculated.
6. U - indicates if the parameter affects the RAM Widget Object CRC.
7. I - specifies that the widgetId parameter belongs to
8. M,L - the parameter offset MSB and LSB accordingly in:

• Flash Data Structure if W bit is 0.

• RAM Data Structure if W bit is 1.

Refer to the Data Structure section for details of the data structure organization and examples of its register
access.

This function writes specified value into the desired register without other registers update. It is application layer
responsibility to keep all the data structure registers aligned. Repeated call of CapSense_Start() function helps
aligning dependent register values.

Parameters:

paramId Specifies the ID of parameter to set its value. A macro for the
parameter ID can be found in the CapSense RegisterMap header file
defined as CapSense_<ParameterName>_PARAM_ID.

value Specifies the new parameter's value.

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

Go to the top of the CapSense Low-Level APIs section.

Interrupt Service Routine

Description

The CapSense component uses an interrupt that triggers after the end of each sensor scan.

After scanning is complete, the ISR copies the measured sensor raw data to the Data Structure. If the scanning
queue is not empty, the ISR starts the next sensor scanning.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 97 of 160

The Component implementation avoids using critical sections in the code. In an unavoidable situation, the critical
section is used and the code is optimized for the shortest execution time.

The CapSense component does not alter or affect the priority of other interrupts in the system.

These API should not be used in the application layer.

Functions

• CY_ISR(CapSense_CSDPostSingleScan)

This is an internal ISR function for the single-sensor scanning implementation.

• CY_ISR(CapSense_CSDPostMultiScan)

This is an internal ISR function for the multiple-sensor scanning implementation.

• CY_ISR(CapSense_CSDPostMultiScanGanged)

This is an internal ISR function for the multiple-sensor scanning implementation for ganged sensors.

• CY_ISR(CapSense_CSXScanISR)

This is an internal ISR function to handle the CSX sensing method operation.

Function Documentation

CY_ISR (CapSense_CSDPostSingleScan)

This ISR handler is triggered when the user calls the CapSense_CSDScanExt() function.

The following tasks are performed for Third-generation HW block:

1. Disable the CSD interrupt.
2. Read the Counter register and update the data structure with raw data.
3. Connect the Vref buffer to the AMUX bus.
4. Update the Scan Counter.
5. Reset the BUSY flag.
6. Enable the CSD interrupt.

The following tasks are performed for Fourth-generation HW block:

1. Check if the raw data is not noisy.
2. Read the Counter register and update the data structure with raw data.
3. Configure and start the scan for the next frequency if the multi-frequency is enabled.
4. Update the Scan Counter.
5. Reset the BUSY flag.
6. Enable the CSD interrupt.

The ISR handler changes the IMO and initializes scanning for the next frequency channels when multi-
frequency scanning is enabled.

This function has two Macro Callbacks that allow calling the user code from macros specified in Component's
generated code. Refer to the Macro Callbacks section of the PSoC Creator User Guide for details.

Go to the top of the Interrupt Service Routine section.

CY_ISR (CapSense_CSDPostMultiScan)

This ISR handler is triggered when the user calls the CapSense_Scan() or CapSense_ScanAllWidgets() APIs.

The following tasks are performed:

1. Disable the CSD interrupt.
2. Read the Counter register and update the data structure with raw data.
3. Connect the Vref buffer to the AMUX bus.
4. Disable the CSD block (after the widget has been scanned).
5. Update the Scan Counter.
6. Reset the BUSY flag.
7. Enable the CSD interrupt.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 98 of 160 Document Number: 002-28712 Rev.*B

The ISR handler initializes scanning for the previous sensor when the widget has more than one sensor. The
ISR handler initializes scanning for the next widget when the CapSense_ScanAllWidgets() APIs are called and
the project has more than one widget. The ISR handler changes the IMO and initializes scanning for the next
frequency channels when multi-frequency scanning is enabled.

This function has two Macro Callbacks that allow calling the user code from macros specified in Component's
generated code. Refer to the Macro Callbacks section of the PSoC Creator User Guide for details.

Go to the top of the Interrupt Service Routine section.

CY_ISR (CapSense_CSDPostMultiScanGanged)

This ISR handler is triggered when the user calls the CapSense_Scan() API for a ganged sensor or the
CapSense_ScanAllWidgets() API in the project with ganged sensors.

The following tasks are performed:

1. Disable the CSD interrupt.
2. Read the Counter register and update the data structure with raw data.
3. Connect the Vref buffer to the AMUX bus.
4. Disable the CSD block (after the widget has been scanned).
5. Update the Scan Counter.
6. Reset the BUSY flag.
7. Enable the CSD interrupt.

The ISR handler initializes scanning for the previous sensor when the widget has more than one sensor. The
ISR handler initializes scanning for the next widget when the CapSense_ScanAllWidgets() APIs are called and
the project has more than one widget. The ISR handler changes the IMO and initializes scanning for the next
frequency channels when multi-frequency scanning is enabled.

This function has two Macro Callbacks that allow calling the user code from macros specified in Component's
generated code. Refer to the Macro Callbacks section of the PSoC Creator User Guide for details.

Go to the top of the Interrupt Service Routine section.

CY_ISR (CapSense_CSXScanISR)

This handler covers the following functionality:

• Read the result of the measurement and store it into the corresponding register of the data structure.

• If the Noise Metric functionality is enabled, then check the number of bad conversions and repeat the scan
of the current sensor of the number of bad conversions is greater than the Noise Metric Threshold.

• Initiate the scan of the next sensor for multiple sensor scanning mode.

• Update the Status register in the data structure.

• Switch the HW block to the default state if scanning of all the sensors is completed.

Go to the top of the Interrupt Service Routine section.

Macro Callbacks
Macro callbacks allow the user to execute the code from the API files automatically generated by PSoC Creator.
Refer to the PSoC Creator Help and Component Author Guide for more details.

In order to add the code to the macro callback present in the component’s generated source files, perform the
following:

• Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will “uncomment” the function call
from the component’s source code.

• Write the function declaration (in cyapicallbacks.h) using the name provided in the table. This will make this
function visible to all the project files.

• Write the function implementation (in any user file).

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 99 of 160

CapSense Macro Callbacks

Macro Callback
Function Name

Associated Macro Description

CapSense_EntryCall
back

CapSense_ENTRY_CALLBA
CK

Used at the beginning of the
CapSense interrupt handler to
perform additional application-
specific actions

CapSense_ExitCallb
ack

CapSense_EXIT_CALLBACK Used at the end of the
CapSense interrupt handler to
perform additional application-
specific actions

CapSense_StartSam
pleCallback(uint8
CapSense_widgetId,
uint8
CapSense_sensorId)

CapSense_START_SAMPLE
_CALLBACK

Used before each sensor
scan triggering and deliver the
current widget / sensor Id

Global Variables

Description

The section documents the CapSense component related global Variables.

The CapSense component stores the component configuration and scanning data in the data structure. Refer to the
Data Structure section for details of organization of the data structure.

Variables

• CapSense_RAM_STRUCT CapSense_dsRam

Variable Documentation

CapSense_RAM_STRUCTCapSense_dsRam

The variable that contains the CapSense configuration, settings and scanning results. CapSense_dsRam
represents RAM Data Structure.

API Constants

Description

The section documents the CapSense component related API Constants.

Variables

• const CapSense_FLASH_STRUCT CapSense_dsFlash

• const CapSense_FLASH_IO_STRUCT CapSense_ioList[CapSense_TOTAL_ELECTRODES]

• const CapSense_SHIELD_IO_STRUCT CapSense_shieldIoList[CapSense_CSD_TOTAL_SHIELD_COUNT]

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 100 of 160 Document Number: 002-28712 Rev.*B

Variable Documentation

const CapSense_FLASH_STRUCTCapSense_dsFlash

Constant for the FLASH Data Structure

const CapSense_FLASH_IO_STRUCTCapSense_ioList[CapSense_TOTAL_ELECTRODES]

The array of the pointers to the electrode specific register.

const CapSense_SHIELD_IO_STRUCTCapSense_shieldIoList[CapSense_CSD_TOTAL_SHIELD_COUNT]

The array of the pointers to the shield electrode specific register.

Data Structure

Description

This section provides the list of structures/registers available in the component.

The key responsibilities of Data Structure are as follows:

• The Data Structure is the only data container in the component.

• It serves as storage for the configuration and the output data.

• All other component FW part as well as an application layer and Tuner SW use the data structure for the
communication and data exchange.

The CapSense Data Structure organizes configuration parameters, input and output data shared among different
FW IP modules within the component. It also organizes input and output data presented at the Tuner interface (the
tuner register map) into a globally accessible data structure. CapSense Data Structure is only a data container.

The Data Structure is a composite of several smaller structures (for global data, widget data, sensor data, and pin
data). Furthermore, the data is split between RAM and Flash to achieve a reasonable balance between resources
consumption and configuration / tuning flexibility at runtime and compile time. A graphical representation of
CapSense Data Structure is shown below:

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 101 of 160

Note that figure above shows a sample representation and documents the high-level design of the data structure, it
may not include all the parameters and elements in each object.

CapSense Data Structure does not perform error checking on the data written to CapSense Data Structure. It is the
responsibility of application layer to ensure register map rule are not violated while modifying the value of data field
in CapSense Data Structure.

The CapSense Data Structure parameter fields and their offset address is specific to an application, and it is based
on component configuration used for the project. A user readable representation of the Data Structure specific to the
component configuration is the component register map. The Register map file available from the Customizer GUI
and it describes offsets and data/bit fields for each static (Flash) and dynamic (RAM) parameters of the component.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 102 of 160 Document Number: 002-28712 Rev.*B

The embedded CapSense_RegisterMap header file list all registers of data structure with the following:

#define CapSense_<RegisterName>_VALUE (<Direct Register Access Macro>)
#define CapSense_<RegisterName>_OFFSET (<Register Offset Within Data Structure (RAM or Flash)>)
#define CapSense_<RegisterName>_SIZE (<Register Size in Bytes>)
#define CapSense_<RegisterName>_PARAM_ID (<ParamId for Getter/Setter functions>)

To access CapSense Data Structure registers you have the following options:

1. Direct Access
The access to registers is performed through the Data Structure variable CapSense_dsRam and constants

CapSense_dsFlash from application program.
Example of access to the Raw Count register of third sensor of Button0 widget:

rawCount = CapSense_dsRam.snsList.button0[CapSense_BUTTON0_SNS2_ID].raw[0];

Corresponding macro to access register value is defined in the CapSense_RegisterMap header file:

rawCount = CapSense_BUTTON0_SNS2_RAW0_VALUE;

2. Getter/Setter Access
The access to registers from application program is performed by using two functions:

cystatus CapSense_GetParam(uint32 paramId, uint32 *value)
cystatus CapSense_SetParam(uint32 paramId, uint32 value)

The value of paramId argument for each register can be found in CapSense_RegisterMap header file.
Example of access to the Raw Count register of third sensor of Button0 widget:

CapSense_GetParam(CapSense_BUTTON0_SNS2_RAW0_PARAM_ID, &rawCount);

You can also write to a register if it is writable (writing new finger threshold value to Button0 widget):

CapSense_SetParam(CapSense_BUTTON0_FINGER_TH_PARAM_ID, fingerThreshold);

3. Offset Access
The access to registers is performed by host through the I2C communication by reading / writing registers based on

their offset.
Example of access to the Raw Count register of third sensor of Button0 widget: Setting up communication data

buffer to CapSense data structure to be exposed to I2C master at primary slave address request once at
initialization an application program:
EZI2C_Start();
EZI2C_EzI2CSetBuffer1(sizeof(CapSense_dsRam), sizeof(CapSense_dsRam),
 (uint8 *)&CapSense_dsRam);

Now host can read (write) the whole CapSense Data Structure and get the specified register value by register offset

macro available in CapSense_RegisterMap header file:
rawCount = *(uint16 *)(I2C_buffer1Ptr + CapSense_BUTTON0_SNS2_RAW0_OFFSET);

The current example is applicable to 2-byte registers only. Depends on register size defined

CapSense_RegisterMap header file by corresponding macros (CapSense_BUTTON0_SNS2_RAW0_SIZE)
specific logic should be added to read 4-byte, 2-byte and 1-byte registers.

Data Structures

• struct ADAPTIVE_FILTER_CONFIG_STRUCT

Declares Adaptive Filter configuration parameters.

• struct ADVANCED_CENTROID_POSITION_STRUCT

Declares Advanced Centroid position structure.

• struct ADVANCED_CENTROID_TOUCH_STRUCT

Declares Advanced Centroid touch structure.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 103 of 160

• struct SMARTSENSE_CSD_NOISE_ENVELOPE_STRUCT

Declares Noise envelope data structure for CSD widgets when SmartSense is enabled.

• struct CapSense_RAM_WD_BASE_STRUCT

Declares common widget RAM parameters.

• struct CapSense_RAM_WD_BUTTON_STRUCT

Declares RAM parameters for the CSD Button.

• struct CapSense_RAM_WD_SLIDER_STRUCT

Declares RAM parameters for the Slider.

• struct CapSense_RAM_WD_CSD_MATRIX_STRUCT

Declares RAM parameters for the CSD Matrix Buttons.

• struct CapSense_RAM_WD_CSD_TOUCHPAD_STRUCT

Declares RAM parameters for the CSD Touchpad.

• struct CapSense_RAM_WD_PROXIMITY_STRUCT

Declares RAM parameters for the CSD Proximity.

• struct CapSense_RAM_WD_CSX_MATRIX_STRUCT

Declares RAM parameters for the CSX Matrix Buttons.

• struct CapSense_RAM_WD_LIST_STRUCT

Declares RAM structure with all defined widgets.

• struct CapSense_RAM_SNS_STRUCT

Declares RAM structure for sensors.

• struct CapSense_RAM_SNS_LIST_STRUCT

Declares RAM structure with all defined sensors.

• struct CapSense_RAM_SELF_TEST_STRUCT

Declares self test data structure.

• struct CapSense_RAM_SNS_CP_STRUCT

Declares sensor Cp data structure.

• struct CapSense_RAM_TST_CONFIG_STRUCT

Declares self test configuration structure.

• struct CapSense_RAM_STRUCT

Declares the top-level RAM Data Structure.

• struct CapSense_FLASH_IO_STRUCT

Declares the Flash IO object.

• struct CapSense_FLASH_SNS_STRUCT

Declares the Flash Electrode object.

• struct CapSense_FLASH_SNS_LIST_STRUCT

Declares the structure with all Flash electrode objects.

• struct CapSense_FLASH_WD_STRUCT

Declares Flash widget object.

• struct CapSense_FLASH_STRUCT

Declares top-level Flash Data Structure.

• struct CapSense_SHIELD_IO_STRUCT

Declares the Flash IO structure for Shield electrodes.

• struct CapSense_BSLN_RAW_RANGE_STRUCT

Defines the structure for test of baseline and raw count limits which will be determined by user for every sensor
grounding on the manufacturing specific data.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 104 of 160 Document Number: 002-28712 Rev.*B

• struct CapSense_TMG_CONFIG_STRUCT

Gesture configuration structure.

• struct CapSense_TMG_BALLISTIC_MULT

Ballistic multiplier configuration structure.

Data Structure Documentation

struct ADAPTIVE_FILTER_CONFIG_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint8 maxK Maximum filter coefficient

uint8 minK Minimum filter coefficient

uint8 noMovTh No-movement threshold

uint8 littleMovTh Little movement threshold

uint8 largeMovTh Large movement threshold

uint8 divVal Divisor value

struct ADVANCED_CENTROID_POSITION_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 x X position

uint16 y Y position

uint16 zX Z value of X axis

uint16 zY Z value of Y axis

struct ADVANCED_CENTROID_TOUCH_STRUCT

Go to the top of the Data Structures section.

Data Fields:

ADVANCED
_CENTROID
POSITION

STRUCT

pos[ADVANCED_CE
NTROID_MAX_TOU
CHES]

Array of position structure

uint8 touchNum Number of touches

struct SMARTSENSE_CSD_NOISE_ENVELOPE_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 param0 Parameter 0 configuration

uint16 param1 Parameter 1 configuration

uint16 param2 Parameter 2 configuration

uint16 param3 Parameter 3 configuration

uint16 param4 Parameter 4 configuration

uint8 param5 Parameter 5 configuration

uint8 param6 Parameter 6 configuration

struct CapSense_RAM_WD_BASE_STRUCT

Go to the top of the Data Structures section.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 105 of 160

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS
]

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix
Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and
Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll
gesture.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 106 of 160 Document Number: 002-28712 Rev.*B

displacement between current and previous
touch.

struct CapSense_RAM_WD_BUTTON_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS
]

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix
Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and
Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 107 of 160

gesture.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-
displacement between current and previous
touch.

struct CapSense_RAM_WD_SLIDER_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS
]

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix
Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and
Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 108 of 160 Document Number: 002-28712 Rev.*B

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll
gesture.

uint16 position[CapSense_N
UM_CENTROIDS]

Reports the widget position.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-
displacement between current and previous
touch.

ADAPTIVE_
FILTER_CO
NFIG_STRU

CT

aiirConfig Keeps the configuration of position adaptive
filter.

struct CapSense_RAM_WD_CSD_MATRIX_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS
]

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix
Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 109 of 160

Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll
gesture.

uint8 posCol The active column sensor. From 0 to
ColNumber - 1.

uint8 posRow The active row sensor. From 0 to RowNumber
- 1.

uint8 posSnsId The active button ID. From 0 to
RowNumber*ColNumber - 1.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-
displacement between current and previous
touch.

struct CapSense_RAM_WD_CSD_TOUCHPAD_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 110 of 160 Document Number: 002-28712 Rev.*B

] Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and
Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll
gesture.

uint16 posX The X coordinate.

uint16 posY The Y coordinate.

ADVANCED
_CENTROID
_TOUCH_S

TRUCT

position The touch information about detected fingers.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-
displacement between current and previous
touch.

uint16 edgeVirtualSensorTh The virtual sensor parameter that defines its
signal calculation.

uint16 edgePenultimateTh The threshold for determining when virtual
sensor signal is calculated.

uint8 crossCouplingPosTh The sensors cross coupling threshold

ADAPTIVE_
FILTER_CO
NFIG_STRU

CT

aiirConfig Keeps the configuration of position adaptive
filter.

struct CapSense_RAM_WD_PROXIMITY_STRUCT

Go to the top of the Data Structures section.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 111 of 160

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS
]

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix
Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and
Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll
gesture.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 112 of 160 Document Number: 002-28712 Rev.*B

displacement between current and previous
touch.

CapSense_T
HRESHOLD

_TYPE

proxTouchTh The proximity touch threshold.

struct CapSense_RAM_WD_CSX_MATRIX_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 crc CRC for the whole Widget Object in RAM (not
only the common part)

uint16 resolution Provides scan resolution or number of sub-
conversions.

CapSense_T
HRESHOLD

_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing
finger or touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the
finger or touch/proximity threshold. OFF to ON.

CapSense_L
OW_BSLN_
RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies
the number of samples the sensor has to be
below the Negative Noise Threshold to trigger
a baseline reset.

uint8 idacMod[CapSense_
NUM_SCAN_FREQS
]

Sets the current of the modulation IDAC for the
widgets. For the CSD Touchpad and Matrix
Button widgets, sets the current of the
modulation IDAC for the column sensors.

uint8 rowIdacMod[CapSens
e_NUM_SCAN_FRE
QS]

Sets the current of the modulation IDAC for the
row sensors for the CSD Touchpad and Matrix
Button widgets. Not used for the CSX/ISX
widgets.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the widgets.

uint16 snsClk Specifies the sense clock divider. Present only
if individual clock dividers are enabled.
Specifies the sense clock divider for the
Column sensors for the Matrix Buttons and
Touchpad widgets. Sets Tx clock divider for
CSX Widgets.

uint16 rowSnsClk For the Matrix Buttons and Touchpad widgets
specifies the sense clock divider for the row
sensors. Present only if individual clock
dividers are enabled.

uint8 snsClkSource Register for internal use

uint8 rowSnsClkSource Register for internal use

uint16 fingerCap Widget Finger capacitance parameter.
Available only if the SmartSense is enabled.
Not used for the CSX/ISX Widgets.

uint16 sigPFC The 75% of signal per user-defined finger
capacitance

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 113 of 160

uint8 gestureId Keeps either current gesture detection status
or detected gesture code.

uint8 scrollCnt The scroll count of the last detected scroll
gesture.

int16 posXDelta The filtered by Ballistic Multiplier X-
displacement between current and previous
touch.

int16 posYDelta The filtered by Ballistic Multiplier Y-
displacement between current and previous
touch.

struct CapSense_RAM_WD_LIST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

CapSense_
RAM_WD_B
UTTON_ST

RUCT

button0 Button0 widget RAM structure

CapSense_
RAM_WD_S
LIDER_STR

UCT

linearslider0 LinearSlider0 widget RAM structure

CapSense_
RAM_WD_S
LIDER_STR

UCT

radialslider0 RadialSlider0 widget RAM structure

CapSense_
RAM_WD_C
SD_MATRIX

_STRUCT

matrixbuttons0 MatrixButtons0 widget RAM structure

CapSense_
RAM_WD_C
SD_TOUCH
PAD_STRU

CT

touchpad0 Touchpad0 widget RAM structure

CapSense_
RAM_WD_P
ROXIMITY_

STRUCT

proximity0 Proximity0 widget RAM structure

CapSense_
RAM_WD_B
UTTON_ST

RUCT

button1 Button1 widget RAM structure

CapSense_
RAM_WD_C
SX_MATRIX

_STRUCT

matrixbuttons1 MatrixButtons1 widget RAM structure

struct CapSense_RAM_SNS_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 raw[CapSense_NUM The sensor raw counts.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 114 of 160 Document Number: 002-28712 Rev.*B

_SCAN_FREQS]

uint16 bsln[CapSense_NUM
_SCAN_FREQS]

The sensor baseline.

uint16 bslnInv[CapSense_N
UM_SCAN_FREQS]

The bit inverted baseline

uint8 bslnExt[CapSense_N
UM_SCAN_FREQS]

For the bucket baseline algorithm holds the
bucket state, For the IIR baseline keeps LSB
of the baseline value.

CapSense_T
HRESHOLD

_TYPE

diff Sensor differences.

CapSense_L
OW_BSLN_
RST_TYPE

negBslnRstCnt[CapS
ense_NUM_SCAN_F
REQS]

The baseline reset counter for the low baseline
reset function.

uint8 idacComp[CapSense
_NUM_SCAN_FREQ
S]

The compensation IDAC value or the
balancing IDAC value.

struct CapSense_RAM_SNS_LIST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

CapSense_
RAM_SNS_

STRUCT

button0[CapSense_B
UTTON0_NUM_SEN
SORS]

Button0 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

linearslider0[CapSens
e_LINEARSLIDER0_
NUM_SENSORS]

LinearSlider0 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

radialslider0[CapSens
e_RADIALSLIDER0_
NUM_SENSORS]

RadialSlider0 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

matrixbuttons0[CapS
ense_MATRIXBUTT
ONS0_NUM_COLS+
CapSense_MATRIXB
UTTONS0_NUM_RO
WS]

MatrixButtons0 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

touchpad0[CapSense
_TOUCHPAD0_NUM
_COLS+CapSense_T
OUCHPAD0_NUM_R
OWS]

Touchpad0 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

proximity0[CapSense
_PROXIMITY0_NUM
_SENSORS]

Proximity0 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

button1[CapSense_B
UTTON1_NUM_SEN
SORS]

Button1 sensors RAM structures array

CapSense_
RAM_SNS_

STRUCT

matrixbuttons1[(CapS
ense_MATRIXBUTT
ONS1_NUM_RX)*(Ca
pSense_MATRIXBUT
TONS1_NUM_TX)]

MatrixButtons1 sensors RAM structures array

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 115 of 160

struct CapSense_RAM_SELF_TEST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint32 testResultMask Bit mask of test results (PASS/FAIL)

uint16 extCap[CapSense_T
ST_EXT_CAPS_NU
M]

The capacitance of an external capacitor

uint16 vddaVoltage The result of Vdda measurement (mV)

uint32 shieldCap The shield capacitance

uint16 glbCrcCalc A calculated CRC for global Component Data

uint16 wdgtCrcCalc The widget data structure calculated CRC if
the correspondent test result bit is set

uint8 wdgtCrcId The global data structure calculated CRC if the
correspondent test result bit is set

uint8 invBslnWdgtId The first widget ID with mismatched baseline

uint8 invBslnSnsId The first sensor ID with mismatched baseline

uint8 shortedWdgtId The first shorted widget ID

uint8 shortedSnsId The first shorted sensor ID.

uint8 idacGainIndex The index of the IDAC gain in the IDAC gain
table structure for the self-tests.

uint16 snsClk The CSD HW block sense clock frequency
divider for the self-tests.

struct CapSense_RAM_SNS_CP_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint32 button0[CapSense_B
UTTON0_NUM_SEN
SORS]

Sensor Cp data for Button0 widget

uint32 linearslider0[CapSens
e_LINEARSLIDER0_
NUM_SENSORS]

Sensor Cp data for LinearSlider0 widget

uint32 radialslider0[CapSens
e_RADIALSLIDER0_
NUM_SENSORS]

Sensor Cp data for RadialSlider0 widget

uint32 matrixbuttons0[CapS
ense_MATRIXBUTT
ONS0_NUM_COLS+
CapSense_MATRIXB
UTTONS0_NUM_RO
WS]

Sensor Cp data for MatrixButtons0 widget

uint32 touchpad0[CapSense
_TOUCHPAD0_NUM
_COLS+CapSense_T
OUCHPAD0_NUM_R
OWS]

Sensor Cp data for Touchpad0 widget

uint32 proximity0[CapSense
_PROXIMITY0_NUM
_SENSORS]

Sensor Cp data for Proximity0 widget

uint32 button1[CapSense_B
UTTON1_NUM_SEN
SORS+1u]

Sensor Cp data for Button1 widget

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 116 of 160 Document Number: 002-28712 Rev.*B

uint32 matrixbuttons1[CapS
ense_MATRIXBUTT
ONS1_NUM_RX+Ca
pSense_MATRIXBUT
TONS1_NUM_TX]

Sensor Cp data for MatrixButtons1 widget

struct CapSense_RAM_TST_CONFIG_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint32 snsCapSnsClkHz The CSD HW block sense clock frequency for
sensor capacitance measurements (Hz)

uint16 snsCapSnsClkDivider The CSD HW block sense clock frequency
divider for sensor capacitance measurements

uint16 snsCapModClkKHz The CSD HW block modulation clock
frequency for sensor capacitance
measurements (kHz)

uint16 snsCapModClkDivide
r

The CSD HW block modulation frequency
divider for sensor capacitance measurements

uint16 snsCapVrefVoltage The Vref voltage for sensor capacitance
measurements (mV)

uint16 vddaVrefVoltage The Vref voltage for Vdda measurements (mV)

uint16 extCapVrefVoltage The Vref voltage for external capacitor
capacitance measurements (mV)

uint8 vddaModClkDivider The CSD HW block modulation frequency
divider for Vdda measurements

uint8 vddaVrefGain The Vref gain for Vdda measurements

uint8 vddaResolution The resolution for Vdda measurements

uint8 vddaIdacDefault The IDAC default code for Vdda
measurements

uint8 snsCapResolution The resolution for Cp measurements

uint8 snsCapVrefGain The Vref gain for sensor capacitance
measurements

uint8 bistCsdSnsCapISC The inactive sensor state for CSD sensor
capacitance measurements

uint8 bistCsxSnsCapISC The inactive sensor state for CSX sensor
capacitance measurements

uint8 bistCsdShCapISC The test inactive shield state

uint8 extCapVrefGain The Vref gain for external capacitor
capacitance measurements

uint8 startupDelay The CSD HW block startup delay

uint8 fineInitTime The fine init cycles number

uint8 snsShortTimeUs The sensor short check time

struct CapSense_RAM_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 configId 16-bit CRC calculated by the customizer for
the component configuration. Used by the
Tuner application to identify if the FW
corresponds to the specific user configuration.

uint16 deviceId Used by the Tuner application to identify
device-specific configuration.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 117 of 160

uint16 hwClock Used by the Tuner application to identify the
system clock frequency.

uint16 tunerCmd Tuner Command Register. Used for the
communication between the Tuner GUI and
the component.

uint16 scanCounter This counter gets incremented after each
scan.

volatile
uint32

status Status information: Current Widget, Scan
active, Error code.

uint32 wdgtEnable[CapSens
e_WDGT_STATUS_
WORDS]

The bitmask that sets which Widgets are
enabled and scanned, each bit corresponds to
one widget.

uint32 wdgtWorking[CapSen
se_WDGT_STATUS_
WORDS]

The bitmask that reports the self-test status of
all Widgets, each bit corresponds to one
widget.

uint32 wdgtStatus[CapSens
e_WDGT_STATUS_
WORDS]

The bitmask that reports activated Widgets
(widgets that detect a touch signal above the
threshold), each bit corresponds to one
widget.

CapSense_S
NS_STS_TY

PE

snsStatus[CapSense
_TOTAL_WIDGETS]

For Buttons, Sliders, Matrix Buttons and CSD
Touchpad each bit reports status of the
individual sensor of the widget: 1 - active
(above the finger threshold); 0 - inactive; For
the CSD Touchpad and CSD Matrix Buttons,
the column sensors occupy the least
significant bits. For the Proximity widget, each
sensor uses two bits with the following
meaning: 00 - Not active; 01 - Proximity
detected (signal above finger threshold); 11 -
A finger touch detected (signal above the
touch threshold); For the CSX Touchpad
Widget, this register provides a number of the
detected touches. The array size is equal to
the total number of widgets. The size of the
array element depends on the max number of
sensors per widget used in the current design.
It could be 1, 2 or 4 bytes.

uint16 csd0Config The configuration register for global
parameters of the SENSE_HW0 block.

uint8 modCsdClk The modulator clock divider for the CSD
widgets.

uint8 modCsxClk The modulator clock divider for the CSX
widgets.

uint8 modIsxClk The modulator clock divider for the ISX
widgets.

uint16 snsCsdClk The global sense clock divider for the CSD
widgets.

uint16 snsCsxClk Global sense clock divider for the CSX
widgets.

uint16 glbCrc CRC for global data.

CapSense_
RAM_WD_LI
ST_STRUCT

wdgtList RAM Widget Objects.

CapSense_ snsList RAM Sensor Objects.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 118 of 160 Document Number: 002-28712 Rev.*B

RAM_SNS_
LIST_STRU

CT

CapSense_T
MG_CONFI
G_STRUCT

gestures The configuration data for gestures detection.

CapSense_T
MG_BALLIS

TIC_MULT

ballisticConfig The configuration data for position ballistic
filter.

uint32 timestampInterval The timestamp interval used at increasing the
timestamp.

uint32 timestamp The current timestamp.

CapSense_
RAM_SELF_
TEST_STRU

CT

selfTest The self-test data structure.

CapSense_
RAM_TST_

CONFIG_ST
RUCT

selfTestConfig The self-test configuration structure.

CapSense_
RAM_SNS_
CP_STRUC

T

snsCp The sensor Cp Measurement data structures.

uint8 snrTestWidgetId The selected widget ID.

uint8 snrTestSensorId The selected sensor ID.

uint16 snrTestScanCounter The scan counter.

uint16 snrTestRawCount[Ca
pSense_NUM_SCAN
_FREQS]

The sensor raw counts.

uint8 scanCsdISC The inactive sensor connection state for the
CSD sensors.

uint8 scanCsxISC The inactive sensor connection state for the
CSX sensors.

uint8 scanCurrentISC The current inactive sensor connection state
for the sensors.

struct CapSense_FLASH_IO_STRUCT

Go to the top of the Data Structures section.

Data Fields:

reg32 * hsiomPtr Pointer to the HSIOM configuration register of
the IO.

reg32 * pcPtr Pointer to the port configuration register of the
IO.

reg32 * pc2Ptr The pointer to the port configuration register of
the IO.

reg32 * drPtr Pointer to the port data register of the IO.

reg32 * psPtr Pointer to the pin state data register of the IO.

uint32 hsiomMask IO mask in the HSIOM configuration register.

uint32 mask IO mask in the DR and PS registers.

uint8 hsiomShift Position of the IO configuration bits in the
HSIOM register.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 119 of 160

uint8 drShift Position of the IO configuration bits in the DR
and PS registers.

uint8 shift Position of the IO configuration bits in the PC
register.

struct CapSense_FLASH_SNS_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 firstPinId Index of the first IO in the Flash IO Object
Array.

uint8 numPins Total number of IOs in this sensor.

uint8 type Sensor type:

struct CapSense_FLASH_SNS_LIST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

CapSense_F
LASH_SNS_

STRUCT

proximity0[CapSense
_PROXIMITY0_NUM
_SENSORS]

Proximity0 FLASH electrodes array

struct CapSense_FLASH_WD_STRUCT

Go to the top of the Data Structures section.

Data Fields:

void const * ptr2SnsFlash Points to the array of the FLASH Sensor
Objects or FLASH IO Objects that belong to
this widget. Sensing block uses this pointer to
access and configure IOs for the scanning. Bit
#2 in WD_STATIC_CONFIG field indicates the
type of array: 1 - Sensor Object; 0 - IO Object.

void * ptr2WdgtRam Points to the Widget Object in RAM. Sensing
block uses it to access scan parameters.
Processing uses it to access threshold and
widget specific data.

CapSense_
RAM_SNS_

STRUCT*

ptr2SnsRam Points to the array of Sensor Objects in RAM.
The sensing and processing blocks use it to
access the scan data.

void * ptr2FltrHistory Points to the array of the Filter History Objects
in RAM that belongs to this widget.

uint8 * ptr2DebounceArr Points to the array of the debounce counters.
The size of the debounce counter is 8 bits.
These arrays are not part of the data structure.

uint32 staticConfig Miscellaneous configuration flags.

uint16 totalNumSns The total number of sensors. For CSD
widgets: WD_NUM_ROWS +
WD_NUM_COLS. For CSX widgets:
WD_NUM_ROWS * WD_NUM_COLS.

uint8 wdgtType Specifies one of the following widget types:
WD_BUTTON_E, WD_LINEAR_SLIDER_E,
WD_RADIAL_SLIDER_E,
WD_MATRIX_BUTTON_E,
WD_TOUCHPAD_E, WD_PROXIMITY_E

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 120 of 160 Document Number: 002-28712 Rev.*B

uint8 senseMethod Specifies the widget sensing method that
could be either WD_CSD_SENSE_METHOD
or WD_CSX_SENSE_METHOD

uint8 numCols For CSD Button and Proximity Widgets, the
number of sensors. For CSD Slider Widget,
the number of segments. For CSD Touchpad
and Matrix Button, the number of the column
sensors. For CSX Button, Touchpad and
Matrix Button, the number of the Rx
electrodes.

uint8 numRows For CSD Touchpad and Matrix Buttons, the
number of the row sensors. For the CSX
Button, the number of the Tx electrodes
(constant 1u). For CSX Touchpad and Matrix
Button, the number of the Tx electrodes.

uint16 xResolution Sliders: The Linear/Angular resolution.
Touchpad: The X-Axis resolution.

uint16 yResolution Touchpad: The Y-Axis resolution.

uint32 xCentroidMultiplier The pre-calculated X resolution centroid
multiplier used for the X-axis position
calculation. Calculated as follows: RADIAL:
(WD_X_RESOLUTION * 256) /
WD_NUM_COLS; LINEAR and TOUCHPAD:
(WD_X_RESOLUTION * 256) /
(WD_NUM_COLS - CONFIG); where CONFIG
is 0 or 1 depends on CentroidMultiplerMethod
parameter

uint32 yCentroidMultiplier The pre-calculated Y resolution centroid
multiplier used for the Y-axis position
calculation. Calculated as follows:
(WD_Y_RESOLUTION * 256) /
(WD_NUM_ROWS - CONFIG); where
CONFIG is 0 or 1 depends on
CentroidMultiplerMethod parameter

uint32 * ptr2SnsCpArr The pointer to the array with the electrode
capacitance value in pF.

SMARTSEN
SE_CSD_N

OISE_ENVE
LOPE_STR

UCT*

ptr2NoiseEnvlp The pointer to the array with the sensor noise
envelope data. Set to the valid value only for
the CSD widgets. For the CSX widgets this
pointer is set to NULL. The pointed array is not
part of the data structure.

void * ptr2PosHistory The pointer to the RAM position history object.
This parameter is used for the Sliders and
CSD touchpads that have enabled the median
position filter.

uint8 iirFilterCoeff The position IIR filter coefficient.

struct CapSense_FLASH_STRUCT

Go to the top of the Data Structures section.

Data Fields:

CapSense_F
LASH_WD_

STRUCT

wdgtArray[CapSense
_TOTAL_WIDGETS]

Array of flash widget objects

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 121 of 160

CapSense_F
LASH_SNS_
LIST_STRU

CT

eltdList Structure with all Ganged Flash electrode
objects

struct CapSense_SHIELD_IO_STRUCT

Go to the top of the Data Structures section.

Data Fields:

reg32 * hsiomPtr The pointer to the HSIOM configuration
register of the IO.

reg32 * pcPtr The pointer to the port configuration register of
the IO.

reg32 * pc2Ptr The pointer to the port configuration register of
the IO.

reg32 * drPtr The pointer to the port data register of the IO.

uint32 hsiomMask The IO mask in the HSIOM configuration
register.

uint8 hsiomShift The position of the IO configuration bits in the
HSIOM register.

uint8 drShift The position of the IO configuration bits in the
DR and PS registers.

uint8 shift The position of the IO configuration bits in the
PC register.

struct CapSense_BSLN_RAW_RANGE_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 bslnHiLim Upper limit of a sensor baseline.

uint16 bslnLoLim Lower limit of a sensor baseline.

uint16 rawHiLim Upper limit of a sensor raw count.

uint16 rawLoLim Lower limit of a sensor raw count.

struct CapSense_TMG_CONFIG_STRUCT

Go to the top of the Data Structures section.

Data Fields:

volatile uint8_t size The size of the CapSense_TMG_CONFIG_STRUCT in
bytes.

volatile uint8_t panActiveDistanceX Sets the minimum active step distance in the X
dimension that has to be exceeded before a motion is
considered active. The distance is measured in the
resolution units. The range is 1 to 255.

volatile uint8_t panActiveDistanceY Sets the minimum active step distance in the Y
dimension that has to be exceeded before a motion is
considered active

volatile uint8_t zoomActiveDistanceX This parameter sets the minimum active step distance
in the X dimension that has to be exceeded before a
motion is considered an active Zoom (in or out)

volatile uint8_t zoomActiveDistanceY This parameter sets the minimum active step distance
in the Y dimension that has to be exceeded before a
motion is considered an active Zoom (in or out)

volatile uint8_t flickActiveDistanceX This parameter sets the minimum active step distance

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 122 of 160 Document Number: 002-28712 Rev.*B

in the X dimension that has to be exceeded before a
motion is considered Flick gesture

volatile uint8_t flickActiveDistanceY This parameter sets the minimum active step distance
in the Y dimension that has to be exceeded before a
motion is considered Flick gesture

volatile uint8_t stScrollThreshold1X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollThreshold2X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate 1-finger
scroll gesture

volatile uint8_t stScrollThreshold3X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollThreshold4X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollThreshold1Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollThreshold2Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollThreshold3Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollThreshold4Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate One-
finger Scroll gesture

volatile uint8_t stScrollStep1 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (stScrollThreshold1X <= distance <
stScrollThreshold2X) - for X-axis;

• (stScrollThreshold1Y <= distance <
stScrollThreshold2Y) - for Y-axis;

volatile uint8_t stScrollStep2 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (stScrollThreshold2X <= distance <
stScrollThreshold3X) - for X-axis;

• (stScrollThreshold2Y <= distance <
stScrollThreshold3Y) - for Y-axis;

volatile uint8_t stScrollStep3 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (stScrollThreshold3X <= distance <
stScrollThreshold4X) - for X-axis;

• (stScrollThreshold3Y <= distance <

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 123 of 160

stScrollThreshold4Y) - for Y-axis;

volatile uint8_t stScrollStep4 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (stScrollThreshold4X <= distance) - for X-axis;

• (stScrollThreshold4Y <= distance) - for Y-axis;

volatile uint8_t stScrollDebounce This parameter sets the number of similar, sequential
One-finger Scroll gestures that should be performed
before the One-finger Scroll gesture is considered valid.
This parameter is for the One-finger Scroll gestures.

volatile uint8_t dtScrollThreshold1X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep1.

volatile uint8_t dtScrollThreshold2X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep2.

volatile uint8_t dtScrollThreshold3X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep3.

volatile uint8_t dtScrollThreshold4X This is a distance in the X-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep4.

volatile uint8_t dtScrollThreshold1Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep1.

volatile uint8_t dtScrollThreshold2Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep2.

volatile uint8_t dtScrollThreshold3Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep3.

volatile uint8_t dtScrollThreshold4Y This is a distance in the Y-axis that finger(s) should
pass between 2 consecutive scans to activate Two-
finger Scroll gesture. The following number of scrolls will
be reported in this case: dtScrollStep4.

volatile uint8_t dtScrollStep1 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (dtScrollThreshold1X <= distance <
dtScrollThreshold2X) - for X-axis;

• (dtScrollThreshold1Y <= distance <
dtScrollThreshold2Y) - for Y-axis;

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 124 of 160 Document Number: 002-28712 Rev.*B

volatile uint8_t dtScrollStep2 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (dtScrollThreshold2X <= distance <
dtScrollThreshold3X) - for X-axis;

• (dtScrollThreshold2Y <= distance <
dtScrollThreshold3Y) - for Y-axis;

volatile uint8_t dtScrollStep3 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (dtScrollThreshold3X <= distance <
dtScrollThreshold4X) - for X-axis;

• (dtScrollThreshold3Y <= distance <
dtScrollThreshold4Y) - for Y-axis;

volatile uint8_t dtScrollStep4 This is a number of scrolls that is reported if Scroll
gesture is detected and the distance passed between 2
consecutive scans is:

• (dtScrollThreshold4X <= distance) - for X-axis;

• (dtScrollThreshold4Y <= distance) - for Y-axis;

volatile uint8_t dtScrollDebounce This parameter sets the number of similar, sequential
Two-finger Scroll gestures that should be performed
before the Two-finger Scroll gesture is considered valid.
This parameter is for the Two-finger Scroll gestures.

volatile uint8_t dtScrollToZoomDebounce This parameter sets the number of Zoom gestures that
will be ignored after a Two-finger Scroll gesture is
observed. This is used to filter out Zoom gestures that
inevitably occur during a transition from the Two-finger
Scroll.

volatile uint8_t stInScrActiveDistanceX This parameter sets the number of pixels in X direction
that has to be exceeded before a Lift Off event to trigger
the Two-finger Inertial Scroll. A high value indicates that
a bigger distance should be passed to activate a Two-
finger Inertial Scroll gesture.

volatile uint8_t stInScrActiveDistanceY This parameter sets the number of pixels in Y direction
that has to be exceeded before a Lift Off event to trigger
the Two-finger Inertial Scroll. A high value indicates that
a bigger distance should be passed to activate a Two-
finger Inertial Scroll gesture.

volatile uint8_t stInScrCountLevel This use can select Low or High levels of the One-finger
Inertial count. The decayCount decays through a 64-
byte array or a 32-byte array. A low Inertial Scroll count
level selects a 32-byte array and sends a few Inertial
scrolls. High = 1. Low = 0.

volatile uint8_t dtInScrActiveDistanceX This parameter sets the number of pixels in X direction
that has to be exceeded before a Lift Off event to trigger
the Two-finger Inertial Scroll. A high value indicates that
a bigger distance should be passed to activate a Two-

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 125 of 160

finger Inertial Scroll gesture.

volatile uint8_t dtInScrActiveDistanceY This parameter sets the number of pixels in Y direction
that has to be exceeded before a Lift Off event to trigger
the Two-finger Inertial Scroll. A high value indicates that
a bigger distance should be passed to activate a Two-
finger Inertial Scroll gesture.

volatile uint8_t dtInScrCountLevel This use can select Low or High levels of the Two-finger
Inertial count. The decayCount decays through a 64-
byte array or a 32-byte array. A low Two-finger Inertial
Scroll count level selects a 32-byte array and sends a
few Inertial scrolls. High = 1; Low = 0;

volatile uint8_t edgeSwipeActiveDistance This parameter sets the minimum active step distance
(in pixels) from the point of a Touchdown, near the
edge, that has to be exceeded before the gesture is
triggered. The path covered by the finger should not
exceed the top angle threshold (topAngleThreshold)
and the bottom angle threshold
(bottomAngleThreshold).

volatile uint8_t topAngleThreshold This parameter defines the maximum angle (in degrees)
that the path of a finger can subtend on the point of a
Touch Down, near the edge. A 1 degree angle means
that the user can do gestures only on a single line.

volatile uint8_t bottomAngleThreshold This parameter defines the maximum angle (in degrees)
that the path of a finger can subtend on the point of a
Touchdown, near the edge. A 1 degree angle means
that the user can do gestures only on a single line.

volatile uint8_t widthOfDisambiguation This parameter sets the edge area for the Edge Swipe
gestures. A valid Edge Swipe gesture should start within
the width of the disambiguation region. Increasing this
parameter makes it easier for the user to find the edge,
but it reduces the useful area of the trackpad.

volatile uint8_t STPanDebounce This parameter sets the number of similar, sequential
pan gestures that should be performed before the pan
motion is considered valid. This parameter is for the
One-finger Pan motions.

volatile uint8_t DTPanDebounce This parameter sets the number of similar, sequential
pan gestures that should be performed before the pan
motion is considered valid. This parameter is for the
Two-finger Pan motions.

volatile uint8_t DTZoomDebounce This parameter sets the number of sequential Zoom
gestures in a particular direction (in or out) that has to
be observed before the Zoom gesture is deemed valid.
The default is 2. For example, for a Zoom in action,
three Zoom in gestures must be observed in sequence
before reporting the action to the caller.

volatile uint8_t DTPanToZoomDebounce This parameter sets the number of Zoom gestures that
will be ignored after a Two-finger Pan gesture is
observed. This is used to filter out Zoom gestures that
inevitably occur during a transition from the Two-finger
Pan. If you set this parameter to 0 you will observe
debounced Zoom gestures right after Two-finger Pan
gestures.

volatile uint8_t rotateDebounce This parameter sets the number of sequential Pan
gestures in a particular direction that have to be

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 126 of 160 Document Number: 002-28712 Rev.*B

observed before the Rotate gesture is deemed invalid.
For example, if this parameter is set to 20 and you are
performing a Rotate action, then the touch cannot
continue in the same direction for 20 Pan counts and
still have a valid Rotate gesture. After this threshold is
reached, the reported gesture causes to be a Rotate
and the corresponding Pan gesture is reported.

volatile uint8_t completedDebounce Determines the number of motion gestures that must be
detected before a subsequent gesture is considered as
a completed gesture; for example, a debounce of 2
requires three consecutive gestures.

volatile uint8_t doubleClickRadius This parameter sets the maximum radius in resolution
units that the second Click in a Double Click sequence
can extend. If the second Click occurs outside this
radius, the Double Click sequence is discarded.

volatile uint8_t clickRadiusX These parameters set the maximum X-axis
displacement for Click gestures (One-finger Click, Two-
finger Click and constituents of One-finger Double
Click).

volatile uint8_t clickRadiusY These parameters set the maximum Y-axis
displacement for Click gestures (One-finger Click, Two-
finger Click and constituents of One-finger Double
Click).

volatile uint16_t settlingTimeout This parameter sets the minimum duration of how long
to wait prior to decoding when touches switch from a
single-touch to dual-touch or vice versa. The time is
measured in milliseconds.

volatile uint16_t resolutionX Resolution X axis.

volatile uint16_t resolutionY Resolution Y axis.

volatile uint16_t flickSampleTime This is the maximum time window that will be searched
for the flick (in milliseconds).

volatile uint16_t edgeSwipeTimeout This is the maximum time window that will be searched
for the flick (in milliseconds).

volatile uint16_t DTClickTimeoutMax This parameter sets the maximum time during which
two touches can be on the panel before being
disqualified as a Two-finger Click event. The time is
measured in milliseconds.

volatile uint16_t DTClickTimeoutMin This parameter sets the minimum duration that two
touches need to be on the panel before a Two-finger
Click event is registered. This filters very rapid dual-
touch clicks. This helps applications define very
deliberate dual-touch click events. This parameter
should be set lower than the dual-touch maximum click
timeout parameter.

volatile uint16_t STClickTimeoutMax This parameter sets the maximum duration that a touch
has to be on the panel to consider this gesture as a
One-finger Single Click. If the touch is placed on the
panel for longer than this value,
CapSense_TMG_NO_GESTURE event is sent.

volatile uint16_t STClickTimeoutMin This parameter sets the minimum duration that a Click
can stay on the panel to qualify as a One-finger Click.
This can be used by applications to set how deliberately
a Single Click operation must be performed. This helps
filter out noisy events or very rapid clicks which are

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 127 of 160

usually performed inadvertently. This parameter should
be set lower than the One-finger max click timeout
parameter.

volatile uint16_t STDoubleClickTimeoutMa
x

This parameter is the maximum allowable time between
the release times of two sequential clicks in order the
motion is be considered a Double Click.

volatile uint16_t STDoubleClickTimeoutMin This parameter sets the minimum duration between the
release times of two sequential clicks in order the
motion is considered a Double Click.

volatile uint8_t groupMask This parameter keeps masks for the 4 gesture groups.
The four most significant bits are used. Each bit
represents a group. The most significant bit is
associated with 4-th group. This parameter is used to
enable/disable reporting for groups. When a mask is set
to 0, reporting is disabled for the corresponding group.

volatile uint8_t group1Start Gesture mask group internal parameter

volatile uint8_t group1End Gesture mask group internal parameter

volatile uint8_t group2Start Gesture mask group internal parameter

volatile uint8_t group2End Gesture mask group internal parameter

volatile uint8_t group3Start Gesture mask group internal parameter

volatile uint8_t group3End Gesture mask group internal parameter

volatile uint8_t group4Start Gesture mask group internal parameter

volatile uint8_t group4End Gesture mask group internal parameter

struct CapSense_TMG_BALLISTIC_MULT

Go to the top of the Data Structures section.

Data Fields:

uint8_t touchNumber Number of detected fingers (0, 1 or 2)

uint8_t accelCoeff Acceleration Coefficient

uint8_t speedCoeff Speed Coefficient

uint8_t divisorValue Divisor Value

uint8_t speedThresholdX Speed Threshold X

uint8_t speedThresholdY Speed Threshold Y

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 128 of 160 Document Number: 002-28712 Rev.*B

Memory Usage

The Component Flash and RAM memory usage varies significantly depending on the compiler,
device, number of APIs called by the application program and Component configuration. The
table below provides the total memory usage of firmware for a given Component configuration.

The measurements were done with an associated compiler configured in the Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.

PSoC 4 (GCC)

The following Component configuration is used to represent the memory usage:

Configuration Memory Consumption

Flash SRAM

Configuration #1: CSX Matrix Button – One widget with 4 Rx and 8 Tx.

Configuration #1 < 5300 < 500

Configuration #1 + Enable multi-frequency scan is enabled < 5700 < 1000

Configuration #2: CSX Touchpad – One widget with 9 Rx and 4 Tx.

Configuration #2 < 7500 < 800

Configuration #2 + Enable multi-frequency scan is enabled < 7900 < 1350

Configuration #3: CSD Buttons – Three widgets with 4, 3 and 3 sensors in each widget, and Manual tuning mode
is selected.

Configuration #3 < 5800 < 300

Configuration #3 + Enable multi-frequency scan is enabled < 6300 < 450

Configuration #3 + Enable self-test library is enabled < 10900 < 400

Configuration #3 + SmartSense (Full Auto-Tune) mode is selected < 6600 < 400

Configuration #3 + All firmware raw count filters enabled. The following
parameters are used to enable filters: Enable IIR filter (First order),
Enable average filter (4-sample) and Enable median filter (3-sample).

< 6200 < 400

Note The configurations consist of the default customizer configuration except where noted. The
default customizer configuration includes:

▪ All filters disabled. The Enable IIR filter (First order), Enable average filter (4-sample) and
Enable median filter (3-sample) parameters are disabled.

▪ The Enable compensation IDAC parameter is enabled.

▪ The Enable IDAC auto-calibration parameter is enabled.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 129 of 160

CapSense Tuner

The CapSense Component provides a graphical-based Tuner application for debugging and
tuning the CapSense system.

To make the Tuner application work, a communication Component is added to the project and
then the Component register map is exposed to the Tuner application. The CapSense Tuner
application works with the EZI2C and UART Communication Components.

To edit the parameters, use the Tuner application and apply the new settings to the device using
the To Device button. You can do this when using Manual or SmartSense (Hardware
parameters only) modes for tuning.

▪ To edit the threshold parameters, use SmartSense (Hardware parameters only) mode.

▪ To edit all the parameters, use Manual mode.

▪ When SmartSense (Full Auto-Tune) is selected for CSD tuning mode, the user has the
Read only access parameters (except the Finger capacitance parameter).

The To Device button is available when the Synchronized control in the Graph Setup Pane is
enabled and any parameter in the Tuner is changed. The Synchronized control can be enabled
when the FW flow regularly calls the CapSense_RunTuner() function. If this function is not
present in the application code, then Synchronized communication mode is disabled.

This section describes the parameters used in the Tuner UI interface. For details of the tuning
and system design guidelines, refer to the Getting Started with CapSense® document and the
product-specific CapSense design guide.

Tuning Quick Start with EzI2C

Refer to the Quick Start section for tuning with the EzI2C interface.

Tuning Quick Start with UART

The following steps to show how to set up CapSense tuning across a UART communication
channel.

Step 1: Place and Configure UART (SCB) Component

1. Drag a UART (SCB) Component from the Component Catalog onto the schematic to add a
UART communication interface to the project. This UART interface is required for the Tuner
GUI to monitor the Component parameters in real time.

2. Double-click the UART (SCB) Component.

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/an85951

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 130 of 160 Document Number: 002-28712 Rev.*B

3. In the UART Basic tab, set the parameters as shown:

□ Type the desired Component name (in this case: Tx8).

□ Set Direction to TX only. The CapSense Tuner allows only monitoring data
received from a device and does not support Synchronized Communication mode.

□ Set the Data Rate (bps) to 115200.

□ Set the Data Width to 8 bits.

4. Click OK to close the GUI and save changes.

Step 2: Assign Tx Pin in Pin Editor

Open the Pin Editor and assign a physical pin to \Tx8:tx\.

If you are using a Cypress kit, refer to the kit user guide for the pin selections. This bridge
firmware enables the UART communication between the PSoC and the Tuner application across
the USB. You can also use a MiniProg4 debugger/programmer kit as the USB-UART Bridge.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 131 of 160

Step 3: Modify Application Code

Replace your main.c file from Step 4 in the Quick Start section with the following code:

#include "project.h"

uint8 header[] = {0x0Du, 0x0Au};

uint8 tail[] = {0x00u, 0xFFu, 0xFFu};

int main()

{

 __enable_irq(); /* Enable global interrupts. */

 Tx8_Start(); /* Start UART SCB Component */

 CapSense_Start(); /* Initialize Component */

 CapSense_ScanAllWidgets(); /* Scan all widgets */

 for(;;)

 {

 /* Do this only when a scan is done */

 if(CapSense_NOT_BUSY == CapSense_IsBusy())

 {

 CapSense_ProcessAllWidgets(); /* Process all widgets */

 /* Send packet header */

 Tx8_SpiUartPutArray((uint8 *)(&header), sizeof(header));

 /* Send packet with CapSense data */

 Tx8_SpiUartPutArray((uint8 *)(&CapSense_dsRam), sizeof(CapSense_dsRam));

 /* Send packet tail */

 Tx8_SpiUartPutArray((uint8 *)(&tail), sizeof(tail));

 if (CapSense_IsAnyWidgetActive()) /* Scan result verification */

 {

 /* add custom tasks to execute when touch detected */

 }

 CapSense_ScanAllWidgets(); /* Start next scan */

 }

 }

}

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 132 of 160 Document Number: 002-28712 Rev.*B

Step 4: Launch Tuner Application

Right-click the CapSense Component in the schematic and select Launch Tuner from the
context menu.

The CapSense Tuner application opens as shown. Note that the 5-element slider, called
LinearSlider0, appears in the Widget View panel automatically.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 133 of 160

Step 5: Configure Communication Parameters

To establish communication between the Tuner and a target device, configure the Tuner
communication parameters to match those of the UART SCB Component.

1. Open the Tuner Communication Setup dialog from PSoC Creator by selecting Tools > Tuner
Communication Setup…

2. Select the appropriate UART communication device and set the following parameters:

□ Baud: 115200

□ Data Bits: 8

□ Stop Bits: 1

□ Parity: None

Note The parameters in the Tuner Communication Setup must be identical to the parameters
in the UART SCB Component Configure dialog (see Tuning Quick Start with UART).

Note MiniProg3 does not support UART communication. You can use KitProg, MiniProg3 or
MiniProg4 debugger/programmer kit as the USB-I2C Bridge.

Step 6: Start Communication

Click Connect to establish connection and then Starts to extract data.

The Synchronized control in the Graph Setup Pane is grayed out and is not available with the
UART communication. The Tuner is not able to write any data into a device. Refer to Graph
Setup Pane for details of the synchronized operation.

The Status Bar shows a communication bridge connection status and communication refresh
rate. The status of the LinearSlider0 widget appears in the Widget View and signals for each of

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 134 of 160 Document Number: 002-28712 Rev.*B

the five sensors – in the Graph View. Touch the sensors on the kit to observe the CapSense
operation.

General Interface

The application consists of the following tabs:

▪ Widget View – Displays the widgets, their touch status and the touch signal bar graph.

▪ Graph View – Displays the sensor data charts.

▪ SNR Measurement – Provides the SNR measurement functionality.

▪ Touchpad View – Displays the touchpad heatmap.

▪ Gesture View – Displays the Gesture operation.

Menus

The main menu commands to control and navigate the Tuner:

▪ File > Apply to Device (Ctrl + D) – Commits the current values of the widget/sensor
parameters to the device. This item becomes active if a value of any configuration
parameter from the Tuner application is changed (i.e. if the parameter values in the Tuner

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 135 of 160

and the device are different). This is an indication that the changed parameter values
need to be applied to the device.

▪ File > Apply to Project (Ctrl + S) – Commits the current values of widget / sensor
parameters to the CapSense Component instance. The changes are applied after the
Tuner is closed and the Customizer is opened. Refer to the Procedure to Save Tuner
Parameters section for details of merging parameters to a project.

▪ File > Save Graph… (Ctrl + Shift + S) – Opens the dialog to save the current graph as a
PNG image. The saved graph depends on the currently selected view: it is Touch Signal
Graph for Widget View (only when shown), a combined graph with Sensor Data, Sensor
Signal and Status for Graph View, and SNR Raw counts graph for the SNR Measurement
View.

▪ File > Exit (Alt+F4) – Asks to save changes if there are any and closes the Tuner.
Changes are saved to the PSoC Creator project (merged back by the customizer).

▪ Communication > Connect (F4) – Connects to the device via a communication channel
selected in the Tuner Communication Setup dialog. When the channel was not previously
selected, the Tuner Communication dialog will open.

▪ Communication > Disconnect (Shift+F4) – Closes the communication channel with the
connected device.

▪ Communication > Start (F5) – Starts reading data from the device.

If communication does not start and the dialog “Checksum mismatch for the data
stored…” or “There was an error reading data…” appears the following reasons are
possible:

□ The invalid configuration of the communication channel (Slave address / Data rate /
Sub-address size)

□ The invalid data buffer exposed via the communication protocol (not
CapSense_dsRam / wrong header-tail of packet at UART communication)

□ The latest customizer parameters modification was not programmed into the
device.

□ Edits performed in the customizer during a tuning session: the Tuner must be
closed and opened again after the customizer update.

□ The Tuner is opened for the wrong project.

▪ Communication > Stop (Shift+F5) – Stops reading data from the device.

▪ Tools > Tuner Communication Setup… (F10) – Opens the configuration dialog to set
up a communication channel with the device.

▪ Tools > Options – Opens the configuration dialog to set up different Tuner preferences.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 136 of 160 Document Number: 002-28712 Rev.*B

▪ Help > Help Contents (F1) – Opens the CapSense Component datasheet.

Toolbar

Contains frequently used buttons that duplicate the main menu items:

▪ – Duplicates the Tools > Tuner Communication Setup menu item

▪ – Duplicates the Communication > Connect menu item

▪ – Duplicates the Communication > Disconnect menu item

▪ – Duplicates the Communication > Start menu item

▪ – Duplicates the Communication > Stop menu item

▪ – Duplicates the File > Apply to Device menu item

▪ – Duplicates the File > Apply to Project menu item

▪ – Starts data logging into a specified file

▪ – Stops data logging

▪ – Clears the Tuner graphs.

Status Bar

The status bar displays information related to the communication state between the Tuner and
the device:

▪ Current operation mode of Tuner – Either Reading (when Tuner is reading from the
device), Writing (when the Write operation is in progress), or empty (idle – no operation
performed).

▪ Refresh rate – A count of read samples performed per second. The count depends on
multiple factors: the selected communication channel, communication speed, and amount
of time needed to perform a single scan.

▪ Bridge status – Either Connected, when the communication channel is active, or
Disconnected otherwise.

▪ Slave address [I2C specific] – The address of the I2C slave configured for the current
communication channel.

▪ I2C clock [I2C specific] – The data rate used by the I2C communication channel.

▪ Supply voltage – The supply voltage.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 137 of 160

▪ Logging – Either ON (when the data logging to a file in progress) or OFF otherwise.

Widget Explorer Pane

The Widget explorer pane contains a tree of widgets and sensors used in the CapSense project.
The Widget nodes can be expanded/collapsed to show/hide widget’s sensor nodes. It is possible
to check/uncheck individual widgets and sensors. The Widget checked status affects its visibility
in the Widget View, while the sensor checked status is controlling the visibility of the sensor raw
count / baseline / signal / status graph series in the Graph View and signals in the Touch Signal
Graph on the Widget View.

Selection of a widget or sensor in the Widget Explorer Pane updates the selection in the
Widget/Sensor Parameters Pane. Selecting multiple widget or sensor nodes allows editing
multiple parameters simultaneously. For example, you can edit the Finger Threshold parameter
for all widgets simultaneously.

Note For the CSX widgets, the sensor tree displays individual nodes (Rx0_Tx0, Rx0_Tx1 …),
contrary to the customizer where the CSX electrodes are displayed (Rx0, Rx1 … Tx0, Tx1 ...).

The toolbar at the top of the widget explorer provides easy access to commonly used functions:

buttons can be used to expand/collapse all sensor nodes simultaneously, and to
check/uncheck all widgets and sensors.

Widget/Sensor Parameters Pane

The Widget/Sensor parameters pane displays the parameters of the widget or sensor selected in
the Widget Explorer tree. The grid is similar to the grid on the Widget Details tab in the
CapSense customizer. The main difference is that some parameters are available for
modification in the customizer, but not in the Tuner. This pane includes the following parameters:

▪ Widget General Parameters – Cannot be modified from the Tuner because
corresponding parameter values reside in the Flash widget structures that cannot be
modified at runtime.

▪ Widget Hardware Parameters – Cannot be modified for the CSD widgets when CSD
tuning mode is set to SmartSense (Full Auto-Tune) or SmartSense Hardware in the
CapSense Configure dialog. In Manual tuning mode (for both CSD and CSX widgets), any
change to Widget Hardware Parameters requires hardware re-initialization. This can be
performed only if the Tuner communicates with the device in Synchronizedmode.

▪ Widget Threshold Parameters – Cannot be modified for the CSD widgets when CSD
tuning mode is set to SmartSense (Full Auto-Tune) in the customizer. In Manual tuning
mode (for both CSD and CSX widgets), the threshold parameters are always writable
(Synchronized mode is not required). The exception is the ON debounce parameter that
also requires a Component restart (in the same way as the hardware parameters).

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 138 of 160 Document Number: 002-28712 Rev.*B

▪ Sensor Parameters – Sensor-specific parameters. The Tuner application displays only
IDAC Values or/and Compensation IDAC value. The parameter is not present for the CSD
widget when Enable compensation IDAC is disabled on the customizer CSD Settings tab.
When CSD Enable IDAC auto-calibration or/and CSX Enable IDAC auto-calibration is
enabled, the parameter is Read-only and displays the IDAC value as calibrated by the
Component firmware. When auto-calibration is disabled, the IDAC value entered in the
Configure dialog is shown. If the Tuner is in Synchronized mode, you can edit the value
and apply it to the device.

▪ Filter Parameters and Centroid Parameters – Cannot be modified at run-time from the
Tuner, because unlike the other parameters, these parameter values reside in the Flash
widget structures that cannot be modified at run-time.

▪ Gesture Parameters – Synchronized communication mode must be selected to update
the Gesture parameters during run-time from the Tuner application.

Graph Setup Pane

The Graph Setup pane provides quick access to different Tuner configuration options that affect
the Tuner graphs display.

▪ Number of samples – Defines the total amount of data samples shown on a single
graph.

▪ Show legend – Displays the sensor series descriptions (with names and colors) in graphs
when checked (Sensor Data/Sensor Signal/Status graphs in the Graph View and a Touch
Signal Graph in the Widget View).

▪ Show marks – When checked, the sensor names appear as marks over the signal bars
in the Touch Signal Graph.

▪ Show Touch Signal graph – When checked, a Touch Signal Graph appears.

▪ Thresholds – A drop-down menu with checkboxes to enable the threshold visualization in
the Touch Signal Graph and a Sensor Signal graph in the Graph View tab.

▪ Communication mode – Selects Tuner communication mode with a device. Two options
are available (when the EZI2C Component is used):

□ Synchronized – This communication mode is available when a FW loop
periodically calls a corresponding Tuner function: CapSense_RunTuner(). When
Synchronized Communication mode is selected, the CapSense Tuner manages an
execution flow by suspending scanning during the Read operation. Before starting
data reading, the Tuner sends a OneScan command to the device. The device
performs one cycle of scanning and the second call of CapSense_RunTuner()
hangs the FW flow until a new command is received. The Tuner reads all the
needed data and sends a OneScan command again.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 139 of 160

□ Asynchronized – When selected, the Tuner reads data asynchronously to sensor
scanning. Because reading data by the CapSense Tuner and data processing
happen asynchronously, the CapSense Tuner may read the updated data only
partially. For example, the device updates only the first sensor data and the second
sensor is not updated yet. At this moment, the CapSense Tuner is reading the
data. As a result, the second sensor data is not processed.

Widget View

Provides a visual representation of all widgets selected in the Widget Explorer Pane. If a widget
consists of more than one sensor, individual sensors may be selected to be highlighted in the
Widget Explorer Pane and Widget/Sensor Parameters Pane.

The Widget sensors are highlighted red when the device reports their touch status as active.

Some additional features are available depending on the widget type:

Touch Signal Graph

The Widget view also displays Touch Signal Graph when the “Display Touch Signal graph”
checkbox is checked in the Graph Setup Pane. This graph contains a touch signal level for each
sensor selected in the Widget Explorer Pane.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 140 of 160 Document Number: 002-28712 Rev.*B

Graph View

Displays graphs for selected sensors in the Widget Explorer Pane. The following charts are
available:

▪ Sensor Data graph – Displays raw counts and baseline. Use the checkboxes on the right
to select the series to be displayed:

□ Raw counts and baseline

□ Raw counts

□ Baseline

▪ Sensor Signal graph – Displays a signal difference.

▪ Status graph – Displays the sensor status (Touch/No Touch). For proximity sensors, it
also shows the proximity status (at 50% of the status axis) along with the touch status (at
100% of the axis).

▪ Position graph – Displays touch positions for the Linear Slider, Radial Slider and
Touchpad widgets.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 141 of 160

SNR Measurement

The SNR Measurement tab allows measuring a SNR (Signal-to-Noise Ratio) for individual
sensors.

The tab provides UI to acquire noise and signal samples separately and then calculates a SNR
basing on the captured data. The obtained value is then validated by a comparison with the
required minimum (5 by default, can be configured in the Tuner Configuration Options).

Typical Flow of SNR Measurement

1. Connect to the device and start communication (by pressing Connect, then Start on the
toolbar).

2. Switch to the SNR Measurement tab.

3. Select a sensor in the Widget Explorer Pane located on the left of the SNR Measurement
tab.

4. Make sure no touch is present on the selected sensor.

5. Press Acquire Noise, and wait for the required count of noise samples to be collected.

6. Observe the Noise label is updated with the calculated noise average value.

7. Put a finger on the selected sensor.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 142 of 160 Document Number: 002-28712 Rev.*B

8. Press Acquire Signal, and wait for the required count of signal samples to be collected.

9. Observe the Signal label is updated with the calculated signal average value

10. Observe the SNR label is updated with the SNR (signal-to-noise ratio).

Description of SNR Measurement GUI

At the top of the SNR measurement tab, there is a bar with the status labels. Each label status
is defined by its background color:

▪ Select sensor – Green when there is a sensor selected; gray otherwise.

▪ Acquire noise – Green when noise samples are already collected for the selected
sensor; gray otherwise.

▪ Acquire signal – Green when signal samples are already collected for the selected
sensor; gray otherwise.

▪ Validate SNR – Green when both noise and signal samples are collected, and the SNR is
above the valid limit; red when the SNR is below the valid limit, and gray when either
noise or signal are not yet collected.

Below the top status labels bar, there are the following controls:

▪ Sensor name – The label selected in the Widget Explorer Pane or None (if no sensor
selected).

▪ Acquire Noise – This button is disabled when the sensor is not selected or
communication is not started. When acquiring noise is in progress, the button can be used
to abort the operation.

▪ Acquire Signal – This button is disabled when the sensor is not selected, communication
is not started, or noise samples are not yet collected for the selected sensor. When
acquiring signal is in progress, the button can be used to abort the operation.

▪ Result – This label shows either N/A (when the SNR cannot be calculated due to
noise/signal samples not collected yet), PASS (when the SNR is above the required limit),
or FAIL (when the SNR is below the required limit).

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 143 of 160

Below the controls, there is the status label that displays the current status message and the
progress bar that displays the progress of the current operation.

Below the status label, there are the following controls:

▪ Noise – The label that shows the noise average value calculated during the last noise
measurement for the selected sensor, or N/A if no noise measurement is performed yet.

▪ Signal – The label that shows the signal average value calculated during the last signal
measurement for the selected sensor, or N/A if no signal measurement is performed yet.

▪ SNR – The label that shows the calculated SNR value. This is the result of the
Signal/Noise division rounded up to 2 decimal points. When a SNR cannot be calculated,
N/A is displayed instead.

Pressing Clear on the Toolbar clears the graph and collected data to calculate a SNR.

Touchpad View

This tab provides a visual representation of signals and positions of a selected touchpad widget
in the heatmap form. Only one CSD and one CSX touchpad can be displayed at a time.

The following options are available:

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 144 of 160 Document Number: 002-28712 Rev.*B

Widget Selection

Consists of the configuration options for mapping the customer touchpad configuration to the
identical representation in the heatmap:

▪ CSD combo box – Selects any CSD touchpad displayed in the heatmap. The CSD
combo box is grayed out if the CSD touchpad does not exist in the user design.

▪ CSX combo box – Selects any CSX touchpad displayed in the heatmap. The CSX
combo box is grayed out if the CSX touchpad does not exist in the user design.

▪ Flip X-axis – Flips the displayed X-axis correspondingly to the CSD or/and CSX
touchpad.

▪ Flip Y-axis – Flips the displayed Y-axis correspondingly to the CSD or/and CSX
touchpad.

▪ Swap XY-axes – Swaps the X- and Y-axes for the desired touchpad.

Display settings

Manages heatmap data that to be displayed. These options are available for a CSX touchpad
only.

▪ Display mode – The drop-down menu with 3 options for the display format:

□ Touch reporting – Shows the current detected touches only.

□ Line drawing – Joins the previous and current touches in a continuous line.

□ Touch Traces – Plots all the reported touches as dots.

▪ Data type – The drop-down menu to select the signal type to be displayed: Diff count,
Raw count, Baseline.

▪ Value type – The drop-down menu to select the type of a value to be displayed: Current,
Max hold, Min hold, Max-Min and Average.

▪ Number of samples – Defines a length of history of data for the Line Drawing, Touch
Traces, Max hold, Min hold, Max-Min and Average options.

Show signal

Enables displaying data for each sensor if selected. Otherwise, it displays only touches. This
option is applicable for the CSX touchpad only.

▪ Display touch position – Defines positions from which the touchpad is displayed. The
three options:

□ Display only CSX

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 145 of 160

□ Display only CSD

□ Display both

▪ Multicolor – When the checked heatmap uses the rainbow color palette to display sensor
signals. Otherwise, a monochrome color is used.

▪ Color range – Defines a range of sensor signals within which the color gradient is
applied. If a sensor signal is outside of the range, then a sensor color is either minimum or
maximum out of the available color palette.

Touch report

▪ CSD touches table – Displays the current X and Y touch position of the CSD touchpad
configured in CSD combo box. If the CSD touchpad is neither configured nor touch-
detected, the touch table is empty. When Two finger detection is enabled for a CSD
touchpad, then two touch positions are reported.

▪ CSX touches table – Displays the X, Y, Z values of the detected touches of the CSX
touchpad configured in CSX combo box. If the CSX touchpad is neither configured nor
touch-detected, the touch table is empty. The Component supports simultaneous
detection up to three touches for a CSX touchpad touch, so the touch table displays all
the detected touches.

Detected gesture

If the selected touchpad in CSD combo box or CSX combo box has enabled gestures, then this
pane displays an image of a detected gesture.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 146 of 160 Document Number: 002-28712 Rev.*B

Gesture View

This tab provides a visual representation of gestures. This tab can display gestures from one
widget at a time.

Note Use of Synchronized communication mode or UART communication is recommended for
Gesture validation, to make sure no gesture events such as a touchdown or lift off is missed
during communication.

Widget Selection

Allows selecting a widget and controls that the display in the Tuner matches the hardware
orientation.

▪ Combo box – Selects the widget with Gesture enabled to display the Gesture from the
selected widget on this pane.

▪ Flip X-axis – Flips the direction of the X-axis.

▪ Flip Y-axis – Flips the direction of the Y-axis.

▪ Swap XY-axes – Swaps the X- and Y-axes for the selected widget.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 147 of 160

Detected Gesture

Provides visual indication for a detected Gesture.

If the delay check box is enabled, a Gesture picture is displayed for the specified time-interval. If
disabled, the last reported gesture picture is displayed until a new Gesture is reported.

If a spurious condition or Gesture is reported, the following image is displayed.

Procedure to Save Tuner Parameters

Changes to widget / sensor parameters made in the Tuner GUI are not automatically updated to
the PSoC Creator project, unless specifically saved. Use the following steps to save the updated
tuning parameters to project:

1. If any parameter is changed during the tuning process in the Tuner GUI, the Apply to
Project button is active. Click this button to apply the new parameters to the project and
follow the instructions.

2. Close the Tuner GUI.

3. Open the Component Configure dialog.

The following dialog asks to merge the Tuner configuration updates back to the customizer:

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 148 of 160 Document Number: 002-28712 Rev.*B

4. Click the Merge all or Merge selected buttons to apply the Tuner’s changed parameters to
the project. Click Cancel to leave the Component parameters unchanged.

Note Some parameters can be changed by the device at run-time when one of the following
features is enabled:

□ SmartSense Auto-tuning

□ CSD Enable IDAC auto-calibration

□ CSX Enable IDAC auto-calibration

The Tuner automatically picks up the changed parameters from a device. Clicking To Project
merges these parameters to the Component and later they can be used as a starting point for
manual calibration or tuning.

5. Save the new Component settings and build the project.

Tuner Configuration Options

The Tuner application allows setting different configuration options with the Options dialog.
Settings are applied on per-project basis and divided into groups:

SNR Options

▪ Noise sample count – The count of samples to acquire during the noise measurement
operation.

▪ Signal sample count – The count of samples to acquire during the signal measurement
operation.

▪ SNR pass value – The minimal acceptable value of the SNR.

▪ Ignore spike limit – Ignores a specified number of the highest and the lowest spikes at
noise / signal calculation. That is, if you specify number 3, then three upper and lower

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 149 of 160

three raw counts are ignored separately for the noise calculation and for the signal
calculation.

▪ Noise calculation method – Allows selecting the method to calculate the noise average.
The following methods are available for selection:

□ Peak-to-peak (by default) – Calculates noise as a difference between the
maximum and minimum value collected during the noise measurement.

□ RMS – Calculates noise as a root mean-square of all samples collected during the
noise measurement.

Graph options

▪ Series thickness – Allows specifying the thickness of lines drawn on the graphs.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 150 of 160 Document Number: 002-28712 Rev.*B

Data Log Options

▪ Log File – Selects the file for information to be stored and its location.

▪ Append log to an existing file – When checked, the selected file is never over-written
and defined file is expanded with new data, otherwise it is overwritten.

▪ Number of samples – Defines a log session duration in samples.

▪ Data configuration checkbox table – Defines data that to be collected into a log file.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 151 of 160

MISRA Compliance Report

This section describes the MISRA-C: 2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – applicable for all PSoC Creator Components

▪ specific deviations – applicable only for this Component

This section provides information on Component-specific deviations. The project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The CapSense_P4 Component has the following specific deviations:

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory)

Rule Description Description of Deviation(s)

8.8 R An external object or function
shall be declared in only one
file.

Some arrays are generated based on the Component
configuration and these arrays are declared locally in the
.c source files where they are used instead of in .h
include files.

11.4 A A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

Pointers are used to allow many types of widgets and
sensors. The architecture is designed to allow indexing a
specific pointer.

12.13 A The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression.

These violations are reported for the GCC ARM
optimized form of the “for” loop that have the following
syntax:

for(index = COUNT; index --> 0u;)

It is used to improve performance.

13.7 R The result of this logical
operation is always 'true' (1)

This violation exists in the Gestures module only. It
allows you to enable different sets of gestures. Since
some of the gestures are interconnected, in some
configurations, the result of the IF statement is always
true.

14.2 R All non-null statements shall
either have at least one side
effect however executed, or
cause the control flow to
change.

These violations are caused by expressions suppressing
the C-compiler warnings about the unused function
parameters. The CapSense Component has many
different configurations. Some of them do not use
specific function parameters. To avoid the complier's
warning, the following code is used: (void)paramName.

16.7 A A pointer parameter in a
function prototype should be
declared as the pointer to
const if the pointer is not used
to modify the addressed
object.

Mostly all data processing for variety configuration,
widgets and data types is required to pass the pointers
as an argument. The architecture and design are
intended for this casting.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 152 of 160 Document Number: 002-28712 Rev.*B

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory)

Rule Description Description of Deviation(s)

17.4 R Array indexing shall be the
only allowed form of pointer
arithmetic.

Pointers are used to allow many types of widgets and
sensors. The architecture is designed to allow indexing a
specific pointer.

18.4 R Unions shall not be used. There are two general cases in the code where this rule
is violated.

1. <INSTANCE_NAME>_PTR_FILTER_VARIANT
definition and usage. This union is used to simplify
the pointer arithmetic with the Filter History Objects.
Widgets may have two kinds of Filter History:
Regular History Object and Proximity History
Object. The mentioned union defines three different
pointers: void, RegularObjPtr, and ProximityObjPtr.

2. APIs use unions to simplify operation with pointers
on the parameters. The union defines four pointers:
void*, uint8*, uint16*, and uint32*.

In all cases, the pointers are verified for proper alignment
before usage.

19.7 A A function should be used in
preference to a function-like
macro.

Simple function-like macros are used to decrease
execution time in time critical functions.

This Component has the following embedded Components: PSoC 4 Current Digital to Analog
Converter (IDAC_P4).

Refer to the corresponding Component datasheet for information on their MISRA compliance
and specific deviations.

Component Debug Window

PSoC Creator allows you to view debug information about Components in your design. Each
Component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device technical reference manual.

Note Component debug window is available for Fourth-generation CapSense only.

To open the Component Debug window:

1. Make sure the debugger is running or in the break mode.

2. Choose Windows > Components… from the Debug menu.

3. In the Component Window Selector dialog, select the Component instances to view and
click OK.

The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.

http://www.cypress.com/?rID=78752

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 153 of 160

Resources

The CapSense Component consumes one CSD (CapSense Sigma-Delta) block, two Analog
Mux buses, two IDACs and one port pin for each ADC channel, sensors, Tx and Rx electrodes
configured to use a dedicated pin in the Widget Details tab.

Note If a design contains several components, which requires some resources (analog mux
bus), and the resource utilization triggers a conflict, PSoC Creator generates a build error:

Unable to find a solution for the analog routing.

One IDAC and one analog mux bus are not consumed (and available for general purpose use)
when:

▪ Only the ADC is configured and both CSD and CSX sensing methods are disabled.

▪ The Enable compensation IDAC is unselected in the CSD Settings tab, Shield is disabled,
and ADC is disabled.

Additionally, the following may be consumed:

▪ UDB resources (1 macro cell) are consumed with the PSoC 4200, PSoC 4200M,
PSoC 4200L and PSoC 4200 BLE device families.

▪ UDB resources (6 macro cell, 2 status cells and 1 control cell) are consumed only when
CSX sensing method is used in the Basic Tab along with PSoC 4200 devices.

▪ An additional analog mux bus is consumed with a shield electrode enabled in the CSD
Settings tab.

▪ One 7-bit IDAC in the CSD block is not consumed (and available for general purpose use)
when the Enable compensation IDAC is unselected in the CSD Settings tab.

References

General References

▪ Cypress Semiconductor web site

▪ PSoC 4 Device datasheets

http://www.cypress.com/
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 154 of 160 Document Number: 002-28712 Rev.*B

Application Notes

Cypress provides a number of application notes describing how PSoC can be integrated into
your design. You can access them at the Cypress Application Notes web page. Examples that
relate to CapSense include:

▪ AN64846 – Getting Started with CapSense®

▪ AN72362 – Reducing Radiated Emissions in Automotive CapSense® Applications

▪ AN85951 – PSoC® 4 CapSense® Design Guide

▪ AN92239 – Proximity Sensing with CapSense®

Code Examples

PSoC Creator provides access to code examples in the Find Code Example dialog. For
Component-specific examples, open the dialog from the Component Catalog or an instance of
the Component in a schematic. For general examples, open the dialog from the Start Page or
File menu. As needed, use the Filter Options in the dialog to narrow the list of projects available
to select.

Refer to the "Find Code Example" topic in the PSoC Creator Help for more information.

There are also numerous code examples that include schematics and code examples available
online at the Cypress Code Examples web page. The examples that use this Component
include:

▪ CE210289 - PSoC®4 CapSense® Linear Slider

▪ CE210291 - PSoC® 4 CapSense® One Button

▪ CE210290 - PSoC® 4 CapSense® Low-Power Ganged Sensor

▪ CE210311 - CapSense® ADC Sequential

Development Kit Boards

Cypress provides a number of development kits. You can access them at the Cypress
Development Kit web page. Mentioned Code Examples uses the following development kits:

▪ CY8CKIT-040 PSoC® 4000 Pioneer Kit

▪ CY8CKIT-042-BLE Bluetooth® Low Energy Pioneer Kit

▪ CY8CKIT-042 PSoC® 4 Pioneer Kit

▪ CY8CKIT-044 PSoC® 4 M-Series Pioneer Kit

▪ CY8CKIT-046 PSoC® 4 L-Series Pioneer Kit

http://www.cypress.com/documentation/application-notes/
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an72362-reducing-radiated-emissions-automotive-capsense-applications
http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/go/ce_p3-4-5lp
http://www.cypress.com/documentation/code-examples/ce210289-psoc-4-capsense-linear-slider?source=search&keywords=CE210289
http://www.cypress.com/documentation/code-examples/ce210291-psoc-4-capsense-one-button?source=search&keywords=CE210291
http://www.cypress.com/documentation/code-examples/ce210290-psoc-4-capsense-low-power-ganged-sensor?source=search&keywords=CE210290
http://www.cypress.com/documentation/code-examples/ce210311-capsense-adc-sequential?source=search&keywords=CE210311
http://www.cypress.com/documentation/development-kitsboards
http://www.cypress.com/documentation/development-kitsboards
http://www.cypress.com/CY8CKIT-040
http://www.cypress.com/?rID=102636&source=psoc4ble
http://www.cypress.com/CY8CKIT-042
http://www.cypress.com/CY8CKIT-044
http://www.cypress.com/CY8CKIT-046

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 155 of 160

▪ CY8CKIT-041 PSoC® 4 S-Series Pioneer Kit

Electrical Characteristics

Specifications are valid for +25° C, VDD 3.3 V, Cmod = 2.2 nF, Csh = 10 nF, and CintA = CintB
= 470 pF except where noted.

Performance Characteristics

Parameter Condition Typical Units

Sensor Calibration level

(Applicable for sensor with highest Cp
within a Widget)

Cp = 5 to 45 pF (Single IDAC mode) 85% of full scale ±5 % -

Cp = 5 to 45 pF (Dual IDAC mode) 85% of full scale ±10 % -

Touch signal accuracy

The touch signal is the difference
between measured raw counts with
and without a finger present on a
sensor (difference count).

 Not less than 10% of
sensor sensitivity.

-

Supported Sensor Cp range Min: 5. Max: 45 pF

SNR (Noise Floor)

The simple ratio of (Signal/Noise) is
called the CapSense SNR. It is usually
simplified to [(Finger Signal/Noise): 1]

Cp < 35 pF

Single IDAC: Finger capacitance >=
0.2 pF

Dual IDAC: Finger capacitance >= 0.1
pF

> 5:1 -

Cp < 45 pF

Single IDAC: Finger capacitance >=
0.2 pF

Dual IDAC: Finger capacitance >= 0.1
pF

> 4:1 -

Supply (VDD) ripple VDD > 3.3 V, Finger capacitance =
0.1 pF, VDD ripple +/-50 mV

< 30% of noise

VDD < 2 V, internally regulated mode.
Finger capacitance = 0.4 pF,
VDD ripple +/-50 mV

< 30% of noise

VDD < 2 V, externally regulated
mode. Finger capacitance = 0.4 pF,
VDD ripple +/-25 mV

< 30% of noise

http://www.cypress.com/documentation/development-kitsboards/cy8ckit-041-psoc-4-s-series-pioneer-kit?source=search&keywords=CY8CKIT-041

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 156 of 160 Document Number: 002-28712 Rev.*B

Parameter Condition Typical Units

GPIO Sink Current 10 mA per GPIO on multiple pin to
sink max current.

Device max = 40 mA for Third-
generation CapSense devices.

Device max = 80 mA for PSoC 4000.

Device max = 25 mA for Fourth-
generation CapSense devices.

< 30% of noise

Tx Output Voltage Logic High > Vddd-0.6 V

Logic Low < 0.6 V

Voltage Reference (Vref)

(for Third-generation CapSense
devices, CSD sensing method, CSX
sensing method)

 1.2 V

Voltage Reference (Vref)

(for Fourth-generation CapSense
devices, CSD sensing method)

VDDA < 2.6V 1.2 V

2.6V <= VDDA < 3.2V 1.477 V

3.2V <= VDDA < 4.7V 2.021 V

4.7V <= VDDA 2.743 V

Voltage Reference (Vref)

(for Fourth-generation CapSense
devices, CSX sensing method)

 1.2 V

Finger-Conducted AC Noise

Finger-Conducted AC Noise is the
change in the sensor raw count when
AC noise is applied on the sensor
(injected into the system)

50/60 Hz, noise Vpp = 20 V < 30% -

10 kHz to 1 MHz, noise Vpp = 20 V,
Cp < 10 pF

< 30% -

Interrupt immunity

Excessive raw counts noise at
asynchronous interrupts used.

 < 30% -

Current Consumption 1 CSD Button Widget (Ganged
Sensor, 4 electrodes).

Resolution = 9 bits.

Each electrode Cp < 10 pF.

Shield Electrode = Disabled.

SYSCLK = 16 MHz.

No I2C traffic (I2C block ON).

Report Rate >= 8 Hz.

Chip state = DeepSleep (LFT).

< 6

(PSoC 4000)

µA

< 7

(PSoC 4000S)

µA

1 CSD Button Widget, 8 Sensors.

Resolution = 9 bits.

< 18

(PSoC 4000)

µA

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 157 of 160

Parameter Condition Typical Units

Each electrode Cp < 10 pF.

Shield Electrode = Disabled.

SYSCLK = 16 MHz.

No I2C traffic (I2C block ON).

Report Rate >= 8 Hz

Chip state = DeepSleep (LFT).

< 22

(PSoC 4000S)

µA

1 CSX Button Widget (1 x 1
electrodes).

Num of sub-conversions = 25.

SYSCLK = 16 MHz.

Overlay >= 1 mm plastic.

Button Size <= 10 mm.

No I2C traffic (I2C block ON).

Report Rate >= 8 Hz.

Chip state = DeepSleep (LFT).

< 6

(PSoC 4000)

µA

< 6

(PSoC 4000S)

µA

1 CSX Touchpad Widget 32 nodes (9
x 4 electrodes).

Num of sub-conversions = 25.

SYSCLK = 16 MHz.

Overlay => 1 mm plastic.

4.8 x 4.8 mm diamond sensors.

9 mm metal finger.

1 Touch only.

Report Rate >= 8 Hz.

Chip state = DeepSleep (LFT).

< 150

(PSoC 4000)

µA

< 200

(PSoC 4000S)

µA

IDAC Characteristic

PSoC 4000S, PSoC 4100S, PSoC 4100S Plus:

Parameter Description Min Typ Max Units Conditions

IDAC1DNL DNL -1 – 1 LSB

IDAC1INL INL -2 – 2 LSB INL is ±5.5 LSB for VDDA < 2 V

IDAC2DNL DNL -1 – 1 LSB

IDAC2INL INL -2 – 2 LSB INL is ±5.5 LSB for VDDA < 2 V

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 158 of 160 Document Number: 002-28712 Rev.*B

PSoC Analog Coprocessor:

Parameter Description Min Typ Max Units Conditions

IDAC1DNL DNL -1 – 1 LSB

IDAC1INL INL -3 – 3 LSB

IDAC2DNL DNL -1 – 1 LSB

IDAC2INL INL -3 – 3 LSB

Third-generation CapSense devices:

Parameter Description Min Typ Max Units Conditions

IDAC1DNL DNL for 8-bit
resolution

-1 – 1 LSB

IDAC1INL INL for 8-bit
resolution

-3 – 3 LSB

IDAC2DNL DNL for 7-bit
resolution

-1 – 1 LSB

IDAC2INL INL for 7-bit
resolution

-3 – 3 LSB

DC/AC Specifications

Refer to device-specific datasheet PSoC 4 Device datasheets for more details.

Component Errata

This section lists the problems known with the CapSense P4 Component.

Cypress
ID

Component
Version

Problem Workaround

248295 3.0 to 5.10 For PSoC 4000 device family the
first scan after waking up from deep
sleep could produce lower raw count
then all the next scans.

Execute a dummy scan after waking up from the
deep sleep.

215127 3.0 to 5.10 The Tuner GUI fails to work with two
instances of the CapSense
Component simultaneously.

Perform tuning of each instance separately.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense®)

Document Number: 002-28712 Rev.*B Page 159 of 160

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

7.0.b Updated datasheet to add description for CSX
inactive electrode connection.

Description was missing.

7.0.a Minor datasheet edits.

7.0 Added new parameter: IDAC Gain.

Added new parameter: CSX inactive sensor
connection.

Changed state of CSX inactive sensors during
CSD sensor scanning.

Improved the IDAC auto-calibration algorithm
which includes the automatic IDAC gain
selection.

Unified IDAC auto-calibration algorithm by for
regular and SmartSense.

Improved sensor / shield capacitance
measurement algorithm in BIST library.

Improved sensor short detection in BIST library
and combined “Sensor Short” and “Sensor to
Sensor” into single test.

Fixed defects in external capacitor
measurement function (BIST).

Removed the Migration Guide section.

General enhancements, defect fixes and new
feature addition.

This version is not backward compatible with the
previous version. We tried to keep the established
API, but your design may need to be updated to
operate with v7.0.

6.0 Updated underlying primitive Component. Affects other Components and there is no effect on
this Component.

5.20 Updated underlying primitive Component. Affects other Components and there is no effect on
this Component.

5.10 Updated underlying primitive Component. Affects other Components and there is no effect on
this Component.

5.0 Added Gesture, Advanced centroid, VDDA
measurement to Built-in Self-test (BIST).

Expanded Component functionality.

4.10 New Component version. Fixed the errata item 287117 for the
GetExtCapCapacitance() function.

4.0.a Edited datasheet. Added errata item 287117 to document issue with
GetExtCapCapacitance() function.

4.0 Added support for PSoC 4100S Plus device
family.

Renamed ExitCallBack () to ExitCallback ().

Improved the Component.

Fixed issues documented in the following errata
items: 242894, 253147, 260781, 232921, and
259648, and removed them from the errata section.

PSoC 4 Capacitive Sensing (CapSense®) PSoC® Creator™ Component Datasheet

Page 160 of 160 Document Number: 002-28712 Rev.*B

Version Description of Changes Reason for Changes / Impact

3.10.b Edited datasheet. Added several errata items to document the
following issues: 215127 260781 232921 259648

3.10.a Fixed Number of Subconversions equation. Equation was incorrect.

3.10 Added the following features:

▪ CSX Touchpad support

▪ Self-test library

▪ Multi-frequency scan feature

▪ IDAC sinking mode in Fourth generation
CapSense

Expanded functionality.

Fixed potential issue with Auto mode.

Documented potential issue with Inactive sensor
connection to shield.

3.0.b Edited datasheet. Added Component Errata section to document
potential issue with Auto mode.

3.0.a Removed empty CapSense_SaveConfig() and
CapSense_RestoreConfig() APIs

No usage of these API is expected in future.

Renamed CapSense_IsProximityTouchActive()
to CapSense_IsProximitySensorActive() without
functionality change

Providing a meaningful name and being consistent
with other APIs

Changed Sensitivity parameter to Finger
Capacitance

Providing a meaningful parameter with intuitive
usage

Added IDAC sensing configuration parameter
with IDAC sinking mode

Expanded functionality

Edited datasheet. Final characterization data for PSoC 4000S, PSoC
4100S and PSoC Analog Coprocessor devices is
not available at this time. Once the data is available,
the Component datasheet will be updated on the
Cypress web site.

3.0 The initial version of new Component
implementation. This version is not backward
compatible with the previous versions. See
Migration Guide for more information.

Improved implementation of the CapSense
Component with PSoC 4 devices.

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a CapSense Component
	Limitations

	Quick Start
	Step 1: Create Design in PSoC Creator
	Step 2: Place and Configure CapSense Component
	Basic Tab
	Advanced Tab

	Step 3: Place and Configure EZI2C Component
	Step 4: Write Application Code
	Step 5: Assign Pins in Pin Editor
	Step 6: Build Design and Program PSoC Device
	Step 7: Launch Tuner Application
	Step 8: Configure Communication Parameters
	Step 9: Start Communication

	Input / Output Connections
	Component Configuration Parameters
	Common Controls
	Basic Tab
	Advanced Tab
	General Sub-Tab
	Regular widget raw count filter type
	Proximity widget raw count filter type
	Baseline filter settings
	General settings

	CSD Settings Sub-Tab
	CSX Settings Sub-tab
	Widget Details Sub-tab
	Scan Order Sub-Tab

	Gestures Tab
	General Gesture Parameters
	Click Group
	One-finger Scroll Group
	Two-finger Scroll Group
	One-finger Flick Group
	One-finger Edge Swipe Group
	Two-finger Zoom Group
	One-finger Rotate Group

	Application Programming Interface
	CapSense High-Level APIs
	Description
	Functions
	Function Documentation
	cystatus CapSense_Start (void)
	Returns:

	cystatus CapSense_Stop (void)
	Returns:

	cystatus CapSense_Resume (void)
	Returns:

	cystatus CapSense_ProcessAllWidgets (void)
	Returns:

	cystatus CapSense_ProcessWidget (uint32 widgetId)
	Parameters:
	Returns:

	void CapSense_Sleep (void)
	void CapSense_Wakeup (void)
	uint32 CapSense_DecodeWidgetGestures (uint32 widgetId)
	Parameters:
	Returns:

	void CapSense_IncrementGestureTimestamp (void)
	void CapSense_SetGestureTimestamp (uint32 timestampValue)
	Parameters:

	uint32 CapSense_RunSelfTest (uint32 testEnMask)
	Parameters:
	Returns:

	cystatus CapSense_SetupWidget (uint32 widgetId)
	Parameters:
	Returns:

	cystatus CapSense_Scan (void)
	Returns:

	cystatus CapSense_ScanAllWidgets (void)
	Returns:

	uint32 CapSense_IsBusy (void)
	Returns:

	uint32 CapSense_IsAnyWidgetActive (void)
	Returns:

	uint32 CapSense_IsWidgetActive (uint32 widgetId)
	Parameters:
	Returns:

	uint32 CapSense_IsSensorActive (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	uint32 CapSense_IsProximitySensorActive (uint32 widgetId, uint32 proxId)
	Parameters:
	Returns:

	uint32 CapSense_IsMatrixButtonsActive (uint32 widgetId)
	Parameters:
	Returns:

	uint32 CapSense_GetCentroidPos (uint32 widgetId)
	Parameters:
	Returns:

	uint32 CapSense_GetXYCoordinates (uint32 widgetId)
	Parameters:
	Returns:

	uint32 CapSense_RunTuner (void)
	Returns:

	CapSense Low-Level APIs
	Description
	Functions
	Function Documentation
	cystatus CapSense_ProcessWidgetExt (uint32 widgetId, uint32 mode)
	Parameters:
	Returns:

	cystatus CapSense_ProcessSensorExt (uint32 widgetId, uint32 sensorId, uint32 mode)
	Parameters:
	Returns:

	cystatus CapSense_UpdateAllBaselines (void)
	Returns:

	cystatus CapSense_UpdateWidgetBaseline (uint32 widgetId)
	Parameters:
	Returns:

	cystatus CapSense_UpdateSensorBaseline (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	void CapSense_InitializeAllBaselines (void)
	void CapSense_InitializeWidgetBaseline (uint32 widgetId)
	Parameters:

	void CapSense_InitializeSensorBaseline (uint32 widgetId, uint32 sensorId)
	Parameters:

	void CapSense_InitializeAllFilters (void)
	void CapSense_InitializeWidgetFilter (uint32 widgetId)
	Parameters:

	uint32 CapSense_CheckGlobalCRC (void)
	Returns:

	uint32 CapSense_CheckWidgetCRC (uint32 widgetId)
	Parameters:
	Returns:

	uint32 CapSense_CheckBaselineDuplication (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	uint32 CapSense_CheckBaselineRawcountRange (uint32 widgetId, uint32 sensorId, CapSense_BSLN_RAW_RANGE_STRUCT* ranges)
	Parameters:
	Returns:

	uint32 CapSense_CheckIntegritySensorPins (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	uint32 CapSense_GetSensorCapacitance (uint32 widgetId, uint32 sensorElement, CapSense_TST_MEASUREMENT_STATUS_ENUM * measurementStatusPtr)
	Parameters:
	Parameters:
	Returns:

	uint32 CapSense_GetShieldCapacitance (CapSense_TST_MEASUREMENT_STATUS_ENUM * measurementStatusPtr)
	Parameters:
	Returns:

	uint32 CapSense_GetExtCapCapacitance (uint32 extCapId)
	Parameters:
	Returns:

	uint16 CapSense_GetVdda (void)
	Returns:

	void CapSense_SetPinState (uint32 widgetId, uint32 sensorElement, uint32 state)
	Parameters:

	cystatus CapSense_SetupWidgetExt (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	cystatus CapSense_ScanExt (void)
	Returns:

	cystatus CapSense_CalibrateWidget (uint32 widgetId)
	Parameters:
	Returns:

	cystatus CapSense_CalibrateAllWidgets (void)
	Returns:

	uint32_t CapSense_SetInactiveElectrodeState (CapSense_OPERATION_MODE_ENUM mode, uint32_t state)
	Parameters:
	Returns:

	void CapSense_CSDSetupWidget (uint32 widgetId)
	Note:
	Parameters:

	void CapSense_CSDSetupWidgetExt (uint32 widgetId, uint32 sensorId)
	Note:
	Parameters:

	void CapSense_CSDScan (void)
	Note:

	void CapSense_CSDScanExt (void)
	Note:

	cystatus CapSense_CSDCalibrateWidget (uint32 widgetId, uint32 target)
	Note:
	Parameters:
	Returns:

	void CapSense_CSDConnectSns (CapSense_FLASH_IO_STRUCTconst * snsAddrPtr)
	Parameters:

	void CapSense_CSDDisconnectSns (CapSense_FLASH_IO_STRUCTconst * snsAddrPtr)
	Parameters:

	void CapSense_CSXSetupWidget (uint32 widgetId)
	Note:
	Parameters:

	void CapSense_CSXSetupWidgetExt (uint32 widgetId, uint32 sensorId)
	Note:
	Parameters:

	void CapSense_CSXScan (void)
	Note:

	void CapSense_CSXScanExt (void)
	Note:

	cystatus CapSense_CSXCalibrateWidget (uint32 widgetId, uint16 target)
	Note:
	Parameters:
	Returns:

	void CapSense_CSXConnectTx (CapSense_FLASH_IO_STRUCTconst * txPtr)
	Parameters:

	void CapSense_CSXConnectRx (CapSense_FLASH_IO_STRUCTconst * rxPtr)
	Parameters:

	void CapSense_CSXDisconnectTx (CapSense_FLASH_IO_STRUCTconst * txPtr)
	Parameters:

	void CapSense_CSXDisconnectRx (CapSense_FLASH_IO_STRUCTconst * rxPtr)
	Parameters:

	cystatus CapSense_GetParam (uint32 paramId, uint32 * value)
	Parameters:
	Returns:

	cystatus CapSense_SetParam (uint32 paramId, uint32 value)
	Parameters:
	Returns:

	Interrupt Service Routine
	Description
	Functions
	Function Documentation
	CY_ISR (CapSense_CSDPostSingleScan)
	CY_ISR (CapSense_CSDPostMultiScan)
	CY_ISR (CapSense_CSDPostMultiScanGanged)
	CY_ISR (CapSense_CSXScanISR)

	Macro Callbacks
	Global Variables
	Description
	Variables
	Variable Documentation
	CapSense_RAM_STRUCTCapSense_dsRam

	API Constants
	Description
	Variables
	Variable Documentation
	const CapSense_FLASH_STRUCTCapSense_dsFlash
	const CapSense_FLASH_IO_STRUCTCapSense_ioList[CapSense_TOTAL_ELECTRODES]
	const CapSense_SHIELD_IO_STRUCTCapSense_shieldIoList[CapSense_CSD_TOTAL_SHIELD_COUNT]

	Data Structure
	Description
	Data Structures
	Data Structure Documentation
	struct ADAPTIVE_FILTER_CONFIG_STRUCT
	Data Fields:

	struct ADVANCED_CENTROID_POSITION_STRUCT
	Data Fields:

	struct ADVANCED_CENTROID_TOUCH_STRUCT
	Data Fields:

	struct SMARTSENSE_CSD_NOISE_ENVELOPE_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_BASE_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_BUTTON_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_SLIDER_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_CSD_MATRIX_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_CSD_TOUCHPAD_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_PROXIMITY_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_CSX_MATRIX_STRUCT
	Data Fields:

	struct CapSense_RAM_WD_LIST_STRUCT
	Data Fields:

	struct CapSense_RAM_SNS_STRUCT
	Data Fields:

	struct CapSense_RAM_SNS_LIST_STRUCT
	Data Fields:

	struct CapSense_RAM_SELF_TEST_STRUCT
	Data Fields:

	struct CapSense_RAM_SNS_CP_STRUCT
	Data Fields:

	struct CapSense_RAM_TST_CONFIG_STRUCT
	Data Fields:

	struct CapSense_RAM_STRUCT
	Data Fields:

	struct CapSense_FLASH_IO_STRUCT
	Data Fields:

	struct CapSense_FLASH_SNS_STRUCT
	Data Fields:

	struct CapSense_FLASH_SNS_LIST_STRUCT
	Data Fields:

	struct CapSense_FLASH_WD_STRUCT
	Data Fields:

	struct CapSense_FLASH_STRUCT
	Data Fields:

	struct CapSense_SHIELD_IO_STRUCT
	Data Fields:

	struct CapSense_BSLN_RAW_RANGE_STRUCT
	Data Fields:

	struct CapSense_TMG_CONFIG_STRUCT
	Data Fields:

	struct CapSense_TMG_BALLISTIC_MULT
	Data Fields:

	Memory Usage
	PSoC 4 (GCC)

	CapSense Tuner
	Tuning Quick Start with EzI2C
	Tuning Quick Start with UART
	Step 1: Place and Configure UART (SCB) Component
	Step 2: Assign Tx Pin in Pin Editor
	Step 3: Modify Application Code
	Step 4: Launch Tuner Application
	Step 5: Configure Communication Parameters
	Step 6: Start Communication

	General Interface
	Menus
	Toolbar
	Status Bar
	Widget Explorer Pane
	Widget/Sensor Parameters Pane
	Graph Setup Pane

	Widget View
	Touch Signal Graph

	Graph View
	SNR Measurement
	Typical Flow of SNR Measurement
	Description of SNR Measurement GUI

	Touchpad View
	Widget Selection
	Display settings
	Show signal
	Touch report
	Detected gesture

	Gesture View
	Widget Selection
	Detected Gesture

	Procedure to Save Tuner Parameters
	Tuner Configuration Options
	SNR Options
	Graph options
	Data Log Options

	MISRA Compliance Report
	Component Debug Window
	Resources
	References
	General References
	Application Notes
	Code Examples
	Development Kit Boards

	Electrical Characteristics
	Performance Characteristics
	IDAC Characteristic
	PSoC 4000S, PSoC 4100S, PSoC 4100S Plus:
	PSoC Analog Coprocessor:
	Third-generation CapSense devices:

	DC/AC Specifications

	Component Errata
	Component Changes

