

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 002-17945 Rev. ** Revised December 1, 2016

Features

 Best-In-Class SNR performance

 Superior noise-immunity performance against conducted and
radiated external noise

 Ultra-low radiated emissions

 CapSense button support: Overlay thickness of up to 15 mm for glass and 5 mm for
plastic

 SmartSense™ auto-tuning

□ Sets and maintains optimal sensor performance during run time

□ Eliminates manual tuning during development and production

 Advanced user interface features: Water tolerance

□ Shield electrode support for reliable operation in the presence of water droplets

□ Guard sensor to prevent false touches under the water or flowing water

 Support for user-defined combinations of button, linear slider, radial slider, touchpad and
proximity capacitive sensors

 Easy to use Application Programming Interface (API) for fast proto-typing

 Integrated PC-based GUI for tuning in manual tuning mode (See Using the Tuner GUI
section in this datasheet.)

Note This document refers to PSoC 4 devices throughout. References to PSoC 4 should be
interpreted to mean PSoC 4 and PSoC 4 BLE (Bluetooth Low Energy) devices. This component
also supports the PRoC BLE device.

PSoC 4 Capacitive Sensing (CapSense® CSD)
2.60

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 2 of 107 Document Number: 002-17945 Rev. **

General Description

Capacitive sensing using a Delta-Sigma Modulator (CapSense CSD) is a versatile and efficient
way to measure capacitance and detect finger touches in user interface panel applications such
as capacitive touch buttons, sliders, touchpads, touch screens, and proximity sensors.

Read the following documents along with this datasheet. They can be found on the Cypress
Semiconductor web site at www.cypress.com:

 Getting Started with CapSense

 PSoC 4 CapSense Design Guide

When to Use a CapSense Component

Capacitance sensing systems can be used in many applications in place of conventional buttons,
switches, and other controls; even in applications that are exposed to rain or water. Such
applications include automotive, outdoor equipment, ATMs, public access systems, portable
devices such as cell phones and PDAs, and kitchen and bathroom applications.

Component Parameters

Drag a CapSense CSD component onto your design and double-click it to open the Configure
dialog. This dialog has several tabs to guide you through the process of setting up the CapSense
CSD component.

General Tab

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/go/psoc4_capsense_designguide

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 3 of 107

Load Settings/Save Settings

Save Settings is used to save all settings and tuning data configured for a component. This
allows quick duplication in a new project. Load Settings is used to load previously saved
settings.

The stored settings can also be used to import settings and tuning data.

Tuning method

This parameter specifies the tuning method. Tuning consists of selecting optimal parameters for
a given hardware configuration.

There are three options:

 Auto (SmartSense) – This option provides automatic tuning of the CapSense CSD
component in supported range of Parasitic Capacitance (Cp) from 5 pF to 55 pF.

This is the recommended tuning method for all designs. Firmware algorithms determine
the best tuning parameters continuously at run time. Additional RAM and CPU resources
are required in this mode. Use Tuning method “Manual with Run-Time Tuning” or
“Manual” if specific tuning is required (strict control of scan time or if Cp is higher than
55 pF).

Important SmartSense tuning may be used with I2C communication, which is specified on
the Tune Helper tab, to transmit data from the target device to the Tuner GUI.

 Manual with Run-Time Tuning – This option allows you to manually tune the CapSense
CSD component using the Tuner GUI during run-time. Run-time tuning can be done using
the Tuner GUI or using the API to change tuning parameters. Tuning parameters are
stored in RAM.

To launch the Tuner GUI, right-click on the symbol and select Launch Tuner. Refer to
Manual Tuning section in PSoC 4 CapSense Design Guide and Using the Tuner GUI
section in this datasheet for more information. Manual tuning requires I2C communication,
which is specified on the Tune Helper tab, to transmit data between the target device and
the Tuner GUI.

 Manual – This option disables tuning.

Setting to Manual (disabling run-time tuning) does not allow run-time tuning of the
component, and all possible tuning parameters are stored in Flash.

Threshold mode

This parameter specifies the threshold mode when the Tuning method parameter is set to “Auto
(SmartSense).” This parameter is not available when either manual option is selected. In manual
tuning mode all thresholds are set manually.

http://www.cypress.com/go/psoc4_capsense_designguide

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 4 of 107 Document Number: 002-17945 Rev. **

There are two options:

 Automatic (default) – In this mode, the SmartSense algorithm automatically calculates
and sets all sensor threshold values.

 Flexible – The flexible threshold is implemented by the component. In this case, the
component accepts "Finger Threshold" for each widget and sets other threshold
parameters based on the finger threshold:

□ lowBaselineReset = 30

□ hysteresis = 12.5 % of finger threshold

□ Noise Threshold = 50% of finger threshold

□ Negative Noise Threshold = 50% of finger threshold

Raw Data Noise Filter

This parameter selects the raw data filter. Only one filter can be selected and it is applied to all
sensors. You should use a filter to reduce the effect of noise during sensor scans. Details about
the types of filters can be found in the Filters section in this document.

 None – No filter is provided. No filter firmware or SRAM variable overhead is incurred.

 Median – Sorts the last three sensor values in order and returns the middle value.

 Averaging – Returns the simple average of the last three sensor values.

 First Order IIR 1/2 – Returns one-half of the most current sensor value added to one-half
of the previous filter value. IIR filters require the lowest firmware and SRAM overhead of
all of the filter types.

 First Order IIR 1/4 (default) – Returns one-fourth of the most current sensor value added
to three-fourths of the previous filter value.

 First Order IIR 1/8 – Returns one-eighth of the most current sensor value added to
seven-eighths of the previous filter value.

 First Order IIR 1/16 – Returns one-sixteenth of the most current sensor value added to
fifteen-sixteenths of the previous filter value.

 Jitter – If the most current sensor value is greater than the last sensor value, the previous
filter value is incremented by 1; if it is less, the value is decremented.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 5 of 107

Compensation IDAC

This parameter enables the split IDACs mode. This mode provides increasing sensitivity and
SNR. The Compensation IDAC is connected to the amuxbus full time during CapSense
operation and is intended to compensate for the sensor’s parasitic capacitance.

 Disabled (default)

 Enabled

Note The Compensation IDAC parameter is always enabled for the Auto (SmartSense) Tuning
method.

Auto-calibration check box

Enables or disables IDAC auto-calibration for manual Tuning method options. Default: Disabled.

Note The IDAC auto-calibration for the slider or touchpad normalizes IDACs of all slider
elements to be equal to the IDAC of the element with the lowest sensitivity. Normalization works
perfectly when the parasitic capacitances of the slider’s elements are not very different. For
details refer to the PSoC 4 CapSense Design Guide for design rules for sliders and touchpads.

Water proofing and detection

This feature configures the CapSense CSD component to support water proofing (disabled by
default). This feature enables the Shield electrode. This feature sets the following parameters:

 Enables the Shield output terminal in the PSoC Creator Design-Wide Resources Pin
Editor

Note Not recommended to use the shield electrode with SmartSense tuning mode.

 Adds a Guard widget

Note If you do not want the Guard widget with water proofing, you can remove it on the
Advanced tab.

Enable BIST

This parameter enables the Built-In Self Test (BIST) APIs that allow Cp and Cmod measuring.
For SmartSense to operate correctly, the following must hold true:

 Cmod = 2.2 nF

 Sensor Cp < 55 pF

Note If Cp > 55 pF, you can use the Manual Tuning method option and tune the sensors
based on the higher sensor Cp, such that the Sense Clock Frequency meets the 5RC
time constant.

http://www.cypress.com/go/psoc4_capsense_designguide

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 6 of 107 Document Number: 002-17945 Rev. **

Widgets Config Tab

Definitions for various parameters are provided in the Functional Description section.

Toolbar

The toolbar contains the following commands:

 Add widget (hot key - Insert) – Adds the selected type of widget to the tree. The widget
types are:

□ Buttons – A button detects a finger press on a single sensor and provides a single
mechanical button replacement.

□ Linear Sliders – A linear slider provides an integer value based on interpolating
the location of a finger press on a small number of sensors.

□ Radial Sliders – A radial slider is similar to a linear slider except that the sensors
are placed in a circle.

□ Matrix Buttons – A matrix button detects a finger press at the intersection formed
by a row sensor and column sensor. Matrix buttons provide an efficient method of
scanning a large number of buttons.

□ Touchpads – A touchpad returns the X and Y coordinates of a finger press within
the touchpad area. A touchpad is made of multiple row and column sensors.

□ Proximity Sensors – A proximity sensor is optimized to detect the presence of a
finger, hand, or other large object at a large distance from the sensor. This avoids
the need for an actual touch.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 7 of 107

□ Generic Sensors – A generic sensor provides raw data from a single sensor. This
allows you to create unique or advanced sensors not otherwise possible with
processed outputs of the other sensor types.

 Remove (hot key - Delete) – Removes the selected widget from the tree.

 Rename (hot key – F2) – Opens a dialog to change the selected widget name. You can
also double-click a widget to open the dialog.

Buttons

Tuning:

 Finger Threshold – Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the
button is reported as touched. Default value is 100. Valid range of values is [1…255] for 8-
bit widget resolution and [1..65535] for 16-bit widget resolution.

Finger Threshold + Hysteresis cannot be more than 254 for 8-bit widget resolution and
65534 for 16-bit widget resolution.

 Noise Threshold – Defines sensor noise threshold. Count values above this threshold do
not update the baseline. If the noise threshold is too low, sensor and thermal offsets may
not be accounted for. This can result in false or missed touches. If the noise threshold is
too high, a finger touch may be interpreted as noise and artificially increase the baseline
resulting in missed finger touches. Default value is 20. Valid range of values is [1…255]
for 8-bit widget resolution and [1..65535] for 16-bit widget resolution.

 Hysteresis – Adds differential hysteresis for sensor active state transitions. If the sensor
is inactive, the difference count must overcome the finger threshold plus hysteresis. If the
sensor is active, the difference count must go below the finger threshold minus hysteresis.
Hysteresis helps to ensure that low-amplitude sensor noise and small finger moves do not
cause cycling of the button state. Default value is 10. Valid range of values is [1…255] for
8-bit widget resolution and [1..65535] for 16-bit widget resolution. Finger Threshold +
Hysteresis cannot be more than 254 for 8-bit widget resolution and 65534 for 16-bit
widget resolution.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 8 of 107 Document Number: 002-17945 Rev. **

 Debounce – Adds a debounce counter to detect the sensor active state transition. For the
sensor to transition from inactive to active, the difference count value must stay above the
finger threshold plus hysteresis for the number of samples specified. Default value is 5.
Debounce ensures that high-frequency high-amplitude noise does not cause false
detection of a pressed button. Valid range of values is [1…255].

 Scan Resolution – Defines the scanning resolution. This parameter affects the scanning
time of the sensor within the button widget. The maximum raw count for the scanning
resolution for N bits is 2N – 1. Increasing the resolution improves sensitivity and the signal-
to-noise ratio (SNR) of touch detection but increases scan time. Default value is 10 bits.
Valid range of values is [6…16].

Note These parameters (except for Finger Threshold) are not available for SmartSense mode
and are automatically set by the SmartSense algorithm. For Manual mode, the following values
are recommended:

 Finger Threshold = 80% of signal

 Noise Threshold = Negative Noise Threshold = 50% of Finger Threshold (Advanced tab)

 Hysteresis = 12.5% of Finger Threshold

 Debounce = 3

 Low Baseline Reset = 30 (Advanced Tab)

Linear Sliders

General:

 Numbers of Sensor Elements – Defines the number of elements within the slider. A
good ratio of API resolution to sensor elements is 20:1. Increasing the ratio of API
resolution to sensor elements too much can result in increased noise on the calculated
finger position. Valid range of values is [2…32]. Default value is 5 elements.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 9 of 107

 API Resolution – Defines the slider resolution. The position value will be changed within
this range. Valid range of values is [1…255]. Default value is 100.

 Diplexing – Non diplexed (default) or Diplexed. Diplexing allows two slider sensors to
share a single device pin, which reduces the total number of pins required for a given
number of slider sensors. Minimum number of sensor elements for a diplexed slider is 5.

 Position Noise Filter – Selects the type of noise filter to perform on position calculations.
Only one filter can be applied for a selected widget. Details about the types of filters can
be found in the Filters section in this document.

□ None

□ Median

□ Averaging

□ First Order IIR 1/2

□ First Order IIR 1/4 (default

□ Jitter

Tuning:

 Finger Threshold – Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the
button is reported as touched. Default value is 100. Valid range of values is [1…255] for 8-
bit widget resolution and [1..65535] for 16-bit widget resolution.

 Noise Threshold – Defines the sensor noise threshold for slider elements. Count values
above this threshold do not update the baseline. If the noise threshold is too low, sensor
and thermal offsets may not be accounted for. This can result in false or missed touches.
If the noise threshold is too high, a finger touch may be interpreted as noise and artificially
increase the baseline resulting in centroid location calculation errors. Count values below
this threshold are not counted in the calculation of the centroid. Default value is 20. Valid

P
S
o
C

Normal Linear Slider Diplexed Linear Slider

P
S
o
C

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 10 of 107 Document Number: 002-17945 Rev. **

range of values is [1…255] for 8-bit widget resolution and [1..65535] for 16-bit widget
resolution.

 Scan Resolution – Defines the scanning resolution. This parameter affects the scanning
time of all sensors within the linear slider widget. The maximum raw count for scanning
resolution for N bits is 2N – 1. Increasing the resolution improves sensitivity and the SNR
of touch detection but increases scan time. Default value is 10 bits. Valid range of values
is [6…16].

Note The Noise Threshold and Scan Resolution parameters are not available for SmartSense
mode and are automatically set by the SmartSense algorithm.

Radial Slider

General:

 Numbers of Sensor Elements – Defines the number of elements within the slider. A
good ratio of API resolution to sensor elements is 20:1. Increasing the ratio of API
resolution to sensor elements too much can result in increased noise on the resolution
calculation. Valid range of values is [2…32]. Default value is 5 elements.

 API Resolution – Defines the resolution of the slider. The position value will be changed
within this range. Valid range of values is [1…255]. Default value is 100.

 Position Noise Filter – Selects the type of noise filter to perform on position calculations.
Only one filter may be applied for a selected widget. Details about the types of filters can
be found the Filters section of this datasheet.

□ None (default)

□ Median

□ Averaging

□ First Order IIR 1/2

□ First Order IIR 1/4

□ Jitter

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 11 of 107

Tuning:

 Finger Threshold – Defines the sensor active threshold resulting in increased or
decreased sensitivity to touches. When the sensor scan value is greater than this
threshold the button is reported as touched. Default value is 100.

 Noise Threshold – Defines the sensor noise threshold for slider elements. Count values
above this threshold do not update the baseline. If the noise threshold is too low, sensor
and thermal offsets may not be accounted. This can result in false or missed touches. If
the noise threshold is too high, a finger touch may be interpreted as noise and artificially
increase the baseline resulting in centroid location calculation errors. Count values below
this threshold are not counted in the calculation of the centroid. Default value is 20. Valid
range of values is [1…255] for 8-bit widget resolution and [1..65535] for 16-bit widget
resolution.

 Scan Resolution – Defines the scanning resolution. This parameter affects the scanning
time of all sensors within a radial slider widget. The maximum raw count for scanning
resolution for N bits is 2N – 1. Increasing the resolution improves sensitivity and the SNR
of touch detection but increases scan time. Default value is 10 bits. Valid range of values
is [6…16].

Note The Noise Threshold and Scan Resolution parameters are not available for SmartSense
mode and are automatically set by the SmartSense algorithm.

Note Position Noise Averaging and IIR filters are not recommended for the Radial Sliders
because such filters use the previous data for updating the current one. This can cause a false
position calculation when a finger is moving from the last to first slider segment.

Matrix Buttons

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 12 of 107 Document Number: 002-17945 Rev. **

General:

 Number of sensor columns and rows – Defines the number of columns and rows that
form the matrix. Valid range of values is [2…32]. Default value is 5 elements for both
columns and rows.

Tuning:

 Column and Row Finger Threshold – Defines the sensor active threshold for matrix
button columns and rows resulting in increased or decreased sensitivity to touches. When
the sensor scan value is greater than this threshold the button is reported as touched.
Default value is 100. Valid range of values is [1…255] for 8-bit widget resolution and
[1..65535] for 16-bit widget resolution. Finger Threshold + Hysteresis cannot be more
than 254 for 8-bit widget resolution and 65534 for 16-bit widget resolution.

 Column and Row Noise Threshold – Defines the sensor noise threshold for matrix
button columns and rows. Count values above this threshold do not update the baseline.
If the noise threshold is too low, sensor and thermal offsets may not be accounted for.
This can result in false or missed touches. If the noise threshold is too high, a finger touch
may be interpreted as noise and artificially increase the baseline. This can result in
missed finger touches. Default value is 20. Valid range of values is [1…255] for 8-bit
widget resolution and [1..65535] for 16-bit widget resolution.

 Column and Row Hysteresis – Adds differential hysteresis for sensor active state
transitions for matrix button columns and rows. If the sensor is inactive, the difference
count must overcome the finger threshold plus hysteresis. If the sensor is active, the
difference count must go below the finger threshold minus hysteresis. Hysteresis helps to
ensure that low-amplitude sensor noise and small finger moves do not cause cycling of
the button state. Default value is 10. Valid range of values is [1…255] for 8-bit widget
resolution and [1..65535] for 16 bit-widget resolution. Finger Threshold + Hysteresis
cannot be more than 254 for 8-bit widget resolution and 65534 for 16-bit widget resolution.

 Column and Row Debounce – Adds a debounce counter for detection of the sensor
active state transition for matrix buttons column or row. For the sensor to transition from
inactive to active, the difference count value must stay above the finger threshold plus
hysteresis for the number of samples specified. Default value is 5. Debounce ensures that
high-frequency high-amplitude noise does not cause false detection of a pressed button.
Valid range of values is [1…255].

 Column and Row Scan Resolution – Defines the scanning resolution of matrix button
columns and rows. This parameter affects the scanning time of all sensors within a
column or row of a matrix button widget. The maximum raw count for scanning resolution
for N bits is 2N – 1. Increasing the resolution improves sensitivity and the SNR of touch
detection but increases scan time. The column and row scanning resolutions should be

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 13 of 107

the same to get the same sensitivity level. Default value is 10 bits. Valid range of values
is [6…16].

Note The Noise Threshold, Hysteresis, Debounce, and Scan Resolution parameters are not
available for SmartSense mode and are automatically set by the SmartSense algorithm. For
Manual mode, the following values are recommended:

 Finger Threshold = 80% of signal

 Noise Threshold = Negative Noise Threshold = 50% of Finger Threshold(Advanced Tab)

 Hysteresis = 12.5% of Finger Threshold

 Debounce = 3

 Low Baseline Reset = 30 (Advanced Tab)

Touchpads

General:

 Numbers of sensor columns and rows – Defines the number of columns and rows that
form the touchpad. Valid range of values is [2…32]. Default value is 5 elements for both
the column and row.

 Position Noise Filter – Adds noise filter to position calculations. Only one filter may be
applied for a selected widget. Details on the types of filters can be found in the Filters
section in this datasheet.

□ None

□ Median

□ Averaging

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 14 of 107 Document Number: 002-17945 Rev. **

□ First Order IIR 1/2

□ First Order IIR 1/4 (default)

□ Jitter

Tuning:

 Column and Row API Resolution– Defines the resolution of the touchpad columns and
rows. The finger position values are reported within this range. Default value is 100. Valid
range of values is [1…255].

 Column and Row Finger Threshold – Defines the sensor active threshold for touchpad
columns and rows resulting in increased or decreased sensitivity to touches. When the
sensor scan value is greater than this threshold the touchpad reports the touch position.
Default value is 100. Valid range of values is [1…255] for 8-bit widget resolution and
[1..65535] for 16 bit-widget resolution.

 Column and Row Noise Threshold – Defines the sensor noise threshold for touchpad
columns and rows. Count values above this threshold do not update the baseline. Count
values below this threshold are not counted in the calculation of the centroid location. If
the noise threshold is too low sensor and thermal offsets may not be accounted for. This
can result in false or missed touches. If the noise threshold is too high a finger touch may
be interpreted as noise and artificially increase the baseline. This can result in centroid
calculation errors. Default value is 20. Valid range of values is [1…255] for 8-bit widget
resolution and [1..65535] for 16 bit-widget resolution.

 Column and Row Scan Resolution – Defines the scanning resolution of touchpad
columns and rows. This parameter affects the scanning time of all sensors within a
column or row of a touchpad widget. The maximum raw count for scanning resolution for
N bits is 2N – 1. Increasing the resolution improves sensitivity and the SNR of touch
detection but increases scan time. The column and row scanning resolution should be
equal to get the same sensitivity level. Default value is 10 bits. Valid range of values is
[6…16].

Note The Noise Threshold and Scan Resolution parameters are not available for SmartSense
mode and are automatically set by SmartSense algorithm.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 15 of 107

Proximity Sensors

Note All widgets are enabled by default except proximity widgets. Proximity widgets must be
manually enabled in API as their long scan time is incompatible with the fast response required
of other widget types. Use the CapSense_EnableWidget() function to enable proximity widgets.
See How to use the proximity sensors for more information about proximity sensors.

General:

 Number of Dedicated Sensor Elements – Selects the number of dedicated proximity
sensors. These sensor elements are in addition to all of the other sensors used for other
Widgets. Any Widget sensors may be used individually or connected together in parallel
to create proximity sensors.

□ 0 – The proximity sensor only scans one or more existing sensors to determine
proximity. No new sensors are allocated for this widget.

□ 1 (default) – Number of dedicated proximity sensors in the system. All dedicated
sensors form one complex proximity sensor and are scanned with common
parameters.

Tuning:

 Finger Threshold – Defines the sensor active threshold resulting in increased or
decreased sensitivity to the proximity of a touch. When the sensor scan value is greater
than this threshold the proximity sensor is reported as touched. Default value is 100. Valid
range of values is [1…255] for 8-bit widget resolution and [1..65535] for 16 bit-widget
resolution. Finger Threshold + Hysteresis cannot be more than 254 for 8-bit widget
resolution and 65534 for 16-bit widget resolution.

 Noise Threshold – Defines the sensor noise threshold. Count values above this
threshold do not update the baseline. If the noise threshold is too low, sensor and thermal
offsets may not be accounted for. This can result in false or missed proximity touches. If
the noise threshold is too high, a figure touch may be interpreted as noise and artificially
increase the baseline. This can result in missed finger touches. Valid range of values is

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 16 of 107 Document Number: 002-17945 Rev. **

[1…255] for 8-bit widget resolution and [1..65535] for 16-bit widget resolution. Default
value is 20.

 Hysteresis – Adds differential hysteresis for the sensor active state transition. If the
sensor is inactive, the difference count must overcome the finger threshold plus
hysteresis. If the sensor is active, the difference count must go below the finger threshold
minus hysteresis. Hysteresis helps to ensure that low amplitude sensor noise and small
finger or body moves do not cause cycling of the proximity sensor state. Valid range of
values is [1…255] for 8-bit widget resolution and [1..65535] for 16-bit widget resolution.
Default value is 10.

 Debounce – Adds a debounce counter to detect the sensor active state transition. For the
sensor to transition from inactive to active, the difference count value must stay above the
finger threshold plus hysteresis for the number of samples specified. Debounce ensures
that high-frequency high-amplitude noise does not cause false detection of a proximity
event. Valid range of values is [1…255]. Default value is 5.

 Scan Resolution – Defines the scanning resolution. This parameter affects the scanning
time of a proximity widget. The maximum raw count for scanning resolution for N bits is
2N – 1. Increasing the resolution improves sensitivity and the SNR of touch detection but
increases scan time. It is best to use a higher resolution for proximity detection than what
is used for a typical button to increase detection range. Default value is 16 bits. Valid
range of values is [6…16].

Note The Noise Threshold, Hysteresis, Debounce, and Scan Resolution parameters are not
available for SmartSense mode and are automatically set by the SmartSense algorithm. For
Manual mode, the following values are recommended:

 Finger Threshold = 80% of signal

 Noise Threshold = Negative Noise Threshold = 50% of Finger Threshold(Advanced Tab)

 Hysteresis = 12.5% of Finger Threshold

 Debounce = 3

 Low Baseline Reset = 30 (Advanced Tab)

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 17 of 107

Generics

Tuning:

 Scan Resolution – Defines the scanning resolution. This parameter affects the scanning
time of a generic widget. The maximum raw count for scanning resolution for N bits is
2N – 1. Increasing the resolution improves sensitivity and the SNR of touch detection but
increases scan time. Default value is 10 bits.

Only one tuning option is available for a generic widget because all high-level handling is left to
you to support CapSense sensors and algorithms that do not fit into any of the predefined
widgets.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 18 of 107 Document Number: 002-17945 Rev. **

Scan Order Tab

Note Scan order does not affect the performance; the default scan order is good enough for
most applications.

Toolbar

The toolbar contains the following commands:

 Up/Down (hot key - Add/Subtract) – Moves the selected widget up or down in the data
grid. The whole widget is selected if one or more of its elements are selected.

Note You should reassign pins if the scanning order changes.

Note A proximity sensor is excluded from the scanning process by default. Its scan must be
started manually at run time because it is typically not scanned at the same time as the other
sensors.

Additional Hot Keys:

 Ctrl + A – Select all sensors.

 Delete – Remove all sensors from the complex sensor (applies to generic and proximity
widgets).

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 19 of 107

Widget List

Widgets are listed in alternating gray and orange rows in the table. All sensors associated with a
widget share the same color to highlight different widget elements.

Complex sensors

Proximity scan sensors can use dedicated proximity sensors, or they can detect proximity from a
combination of dedicated sensors, other sensors, or both. Such complex sensors form a Sensor
Scan Slot, where all dedicated sensors have the same parameters during scanning.

For example, the board may have a trace that goes all the way around an array of buttons and
the proximity sensor may be made up of the trace and all of the buttons in the array. All of these
sensors are scanned at the same time to detect proximity. A drop-down list is provided on
proximity scan sensors to choose one or more dedicated sensors to scan to detect proximity.
These sensors can be assigned to the complex proximity sensor using check boxes opposite
each sensor in the drop down list.

Like proximity sensors, generic sensors can also consist of multiple sensors. A generic sensor
can get data from a dedicated sensor, any other existing sensor, or from multiple sensors. Select
the sensors with the drop down list provided.

Sense clock divider

This column specifies the Sense clock divider value and determines the precharge switch
output frequency for scan slot. The clock frequency on the sensor pin equals the HFCLK
frequency divided by the Sense Clock divider value. Valid range of values is [2…255] for
PSoC 4100/PSoC 4200/ PSoC 4100M/PSoC 4200M devices and [1…255] for PSoC 4000
devices. Default value is 2.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 20 of 107 Document Number: 002-17945 Rev. **

This column is hidden if the Individual frequency setting is disabled (on the Advanced tab).

The Sense Clock divider is the most critical Hardware parameter for properly tuning a Capsense
design. It depends on the selected HFCLK (IMO), and the Cp of the sensor(s) being scanned.
The following shows the recommended Sense Clock Divider settings based on these
parameters:

Cp, pF
PSoC 4000

PSoC 4100/PSoC 4200/
PSoC 4100M/PSoC 4200M [1]

12 MHz 6 MHz 3 MHz 48 MHz 24 MHz 12 MHz

<15 1 1 [2] 1 [2] 2 2 [2] 2 [2]

16-34 2 1 1 [2] 4 2 2 [2]

35-60 4 2 1 8 4 2

Modulator clock divider

This column specifies the Modulator clock divider value and determines the modulator input
frequency for scan slot. The Modulator Clock frequency equals the HFCLK frequency divided by
the Modulator Clock divider value. Valid range of values is [2…255] for PSoC 4100/PSoC 4200/
PSoC 4100M/PSoC 4200M devices and [1…255] for PSoC 4000 devices. Default value is 2.

This column is hidden if the Individual frequency setting is disabled (on the Advanced tab).

Details of the clock configuration can be found in CapSense Clocking in the Functional
Description section.

Sensor scan time and Total scan time labels

The Sensor scan time label shows hardware scan time for selected sensor:

(2resolution-1) / Modulator Clock

Total scan time is sum of scan time of all sensors.

Note These labels show scan times that do not include processing time.

In Auto (Smartsense) tuning mode, the scan time is not shown. It depends on the resolution,
which is set automatically in Auto (Smartsense) tuning mode. The Sensor Scan Time and
resolution values in Auto (Smartsense) tuning mode are given in the Sensor Scan Time section.

1 In PSoC 4100/PSoC 4200 devices, the Sense Clock also depends on the Modulator Clock Divider because these
dividers are chained. Data is provided for Modulator Clock Divider = 2. For more details, refer to the CapSense
Clocking section

2 This combination of the Sense Clock and Cp is not recommended because the switching frequency will be too low
to give good performance. For this Cp we recommend the HFCLK frequency is increased.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 21 of 107

Modulation IDAC

This field specifies the Modulation IDAC value. Valid range is 0 to 255 (0 to 250 for PSoC
4100/PSoC 4200 devices) for 4x range and 0 to 125 for 8x range. Default value is 80. Details of
the IDACs configuration can be found in CapSense Analog System in the Functional Description
section in this datasheet.

Compensation IDAC

This field specifies the Compensation IDAC value. Valid range is 0 to 127. Default value is 80.

Note The Sense Clock Divider, Modulator Clock Divider, Compensation IDAC, and Modulation
IDAC parameters are not available in SmartSense mode. Refer to PSoC 4 CapSense Design
Guide for additional Tuning details in SmartSense and Manual modes.

Sensitivity

The Sensitivity parameter in SmartSense mode represents the nominal change in Cs (sensor
capacitance) required to activate a sensor. The valid range of values is [1…10], which
corresponds to sensitivity levels: 0.1, 0.2, 0.3, and 1 pF. The default value is 2. The
recommended range is 0.1-0.4 pF. Sensitivity sets the overall sensitivity of the sensors to
account for the different thicknesses of overlay material. Thicker material should use a lower
sensitivity value.

The Sensitivity parameter is available for Auto (Smartsense) tuning mode only:

http://www.cypress.com/go/psoc4_capsense_designguide
http://www.cypress.com/go/psoc4_capsense_designguide

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 22 of 107 Document Number: 002-17945 Rev. **

Advanced Tab

Current Source

The CapSense CSD component requires a precision current source for detecting touch on the
sensors. IDAC Sinking and IDAC Sourcing require the use of IDAC on the PSoC device.

 IDAC Sourcing (default) – The IDAC sources the current into the modulation capacitor
CMOD. The analog switches are configured to alternate between the modulation capacitor
CMOD and GND, providing a sink for the current. IDAC Sourcing is recommended for
most designs because it provides the greatest signal-to-noise ratio.

 IDAC Sinking – The IDAC sinks current from the modulation capacitor CMOD. The analog
switches are configured to alternate between VDD and the modulation capacitor CMOD
providing a source for the current. This works well in most designs, although SNR is
generally not as high as the IDAC Sourcing mode.

IDAC range

This parameter specifies the IDAC range of the Current Source. The lower and higher current
ranges are generally only used with non-touch-capacitive based sensors.

 4x (default)

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 23 of 107

 8x

Analog Switch Drive Source

This parameter specifies the source of the Sense Clock Divider, which determines the rate at
which the sensors are switched to and from the modulation capacitor CMOD.

 Direct (default)

 PRS-8b

 PRS-12b

 PRS-Auto

Note Refer to the PSoC 4 CapSense Design Guideto determine when you could use Direct clock
or PRS.

Individual Frequency Settings

This parameter defines the Sense Clock Divider usage. If enabled, each scan slot uses a
dedicated Sense Clock Divider value (set in Scan Order tab). Otherwise, sensors use only one
Sense Clock Divider value and Modulator Clock Divider value that are set below this
parameter. Individual Frequency Settings are recommended to be enabled if the parasitic
capacitances of the sensors are not similar.

Sense Clock Divider

This parameter specifies the value of the Sense Clock Divider and determines the precharge
switch output frequency. Valid range of values is [2…255] for PSoC 4100/PSoC 4200/
PSoC 4100M/PSoC 4200M devices and [1…255] for PSoC 4000 devices. Default value is 12.

This feature is unavailable if Individual Frequency Settings are enabled.

The sensors are continuously switched to and from the modulation capacitor CMOD at the speed
of the precharge clock. The Sense Clock Divider divides the CapSense CSD clock to generate
the precharge clock. When the divider value is decreased, the sensors are switched faster and
the raw counts increase and vice versa.

Details of the clock configuration can be found in the CapSense Clocking section in this
datasheet.

http://www.cypress.com/go/psoc4_capsense_designguide

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 24 of 107 Document Number: 002-17945 Rev. **

Modulator Clock Divider

This parameter specifies the value of the Modulator Clock Divider and determines the
modulator input frequency. Valid range of values is [2…255] for PSoC 4100/PSoC 4200/
PSoC 4100M/PSoC 4200M devices and [1…255] for PSoC 4000 devices. Default value is 12.

When the divider value is decreased, the scan time is decreased and vice versa.

This feature is unavailable if Individual Frequency Settings are enabled.

Note In PSoC 4100/PSoC 4200 devices, the Modulator Clock Divider should be a multiple of
the Sense Clock Divider since these dividers are chained. For more details, refer to the
CapSense Clocking section.

Sense Clock Divider and Modulator Clock Divider are not available in SmartSense mode.
Refer to PSoC 4 CapSense Design Guide for additional Tuning details in the SmartSense and
Manual modes.

Sensor Auto Reset

This parameter enables auto reset, which causes the baseline to always update regardless of
whether the difference counts are above or below the noise threshold. When auto reset is
disabled, the baseline only updates when difference counts are within the plus/minus noise
threshold (the noise threshold is mirrored). You should leave this parameter Disabled unless
you have problems with sensors permanently turning on when the raw count suddenly rises
without anything touching the sensor.

 Enabled – Auto reset ensures that the baseline is always updated, avoiding missed
button presses and stuck buttons, but limits the maximum length of time a button will
report as pressed. This setting limits the maximum time duration of the sensor (typical
values are 5 to 10 seconds), but it prevents the sensors from permanently turning on
when the raw count suddenly rises without anything touching the sensor. This sudden rise
can be caused by a large power supply voltage fluctuation, a high energy RF noise
source, or a very quick temperature change.

 Disabled (default) – Abnormal system conditions can cause the baseline to stop updating
by continuously exceeding the noise threshold. This can result in missed button presses
or stuck buttons. The benefit is that a button can continue to report its pressed state
indefinitely. You may need to provide an application-dependent method of determining
stuck or unresponsive buttons.

http://www.cypress.com/go/psoc4_capsense_designguide

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 25 of 107

Widget Resolution

This parameter specifies the signal resolution that the widget reports. 8 bits (1 byte) is the default
option and should be used for the vast majority of applications. If widget values exceed the 8-bit
range, the system is too sensitive and should be tuned to move the nominal value to
approximately mid range (~128). Slider and Touchpad widgets that require high accuracy can
benefit from 16-bit resolution. 16-bit resolution increases linearity by avoiding rounding errors
possible with 8 bits but at the expense of additional SRAM usage of two bytes per sensor.

 8-bit (1 byte) – default

 16-bit (2 bytes)

Negative Noise Threshold

This parameter specifies the negative difference between the raw count and baseline levels for
baseline resetting to the raw count level. If raw counts are below this level, the baseline will not
reset unless the Low Baseline Reset parameter limit is reached. In that case, the baseline will
reset. Refer to the following figure, which shows the relationship between the noise thresholds
and baseline reset. A good starting point for Negative Noise Threshold is to use the same value
as Noise Threshold.

Valid range of values is [5…255]. Default value is 20.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 26 of 107 Document Number: 002-17945 Rev. **

Baseline does not update

Positive Noise Threshold

Baseline will update

Baseline

Baseline will update

Negative Noise Threshold
Baseline does not update

unless samples > Low Baseline Reset

Low Baseline Reset

This parameter defines the number of samples with raw counts less than baseline needed to
make the baseline snap down to the raw count level. Valid range of values is [1…255]. Default
value is 5.

Inactive Sensor Connection

This parameter defines the default sensor connection for all sensors not being actively scanned.

 Ground (default) – Use this for the vast majority of applications as it reduces noise on the
actively scanned sensors.

 Hi-Z Analog – Leaves the inactive sensors at Hi-Z.

 Shield – Provides the shield waveform to all unscanned sensors. The amplitude of the
shield signal is equal to the amplitude of the signal on the scanned sensor. Provides
increased water proofing and lower noise when used with the shield electrode. This
feature is unavailable if Shield is disabled.

Note Inactive Sensor Connection changes to Shield when the Shield is set to Enabled.

Shield

This parameter specifies if the shield electrode output, which is used to remove the effects of
water droplets and water films, is enabled or disabled. For more information about shield
electrode usage, see the Shield Electrode section.

 Disabled (default)

 Enabled

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 27 of 107

Shield signal delay

This parameter specifies the number of HFCLK cycles that the CapSense shield is delayed
relative to the signal on the sensor pin.

 None (default)

 1 cycle

 2 cycle

Note For correct shield operation, the shield signal should be in phase with the signal on the
sensor.

Shield tank capacitor enable

This parameter specifies whether pin for the off-chip Ctank capacitor connection, in parallel with
shield capacitance, is enabled. This capacitor is intended to increase the shield capacitance.
Shield tank capacitor helps to reduce phase difference between the shield and sensor clocks in
case the shield Cp is really high. Also Ctank capacitor needs to be enabled when either Cmod
precharge or Csh_tank precharge are configured as “Precharge by IO buffer”.

 Disabled (default)

 Enabled

Guard Sensor

This parameter enables the guard sensor, which helps detect water drops in an application that
requires water proofing. This feature is enabled automatically if Water Proofing and detection
(under the General tab) is selected. For more information about the Guard sensor, see the
Functional Description section of this datasheet.

 Disabled (default)

 Enabled

Csh_tank precharge

This parameter specifies Vref source for driving the shield electrode.

 Precharge by Vref buffer (default)

 Precharge by IO buffer

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 28 of 107 Document Number: 002-17945 Rev. **

Tune Helper Tab

Enable Tune Helper

This parameter adds functions to support easier communication with the Tuner GUI. Select this
feature if you are going to use the Tuner GUI. If this option is not selected, the communication
functions are still provided but do nothing. Therefore, when tuning is complete or the tuning
method is changed you do not need to remove these functions. Disabled by default.

EzI2C component instance name

This parameter defines the instance name for the EZI2C component in your design to be used
for communication with the Tuner GUI.

For more information about how to use Tuner GUI, see the Using the Tuner GUI section in this
datasheet.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 29 of 107

Tuner GUI Description

This section describes the CapSense CSD Tuner user interface for the case where there are no
Trackpad with gestures widgets selected for the component.

General Interface

Work area

The work area consists of the following tabs:

 Tuning – Displays all of the component widgets as configured on a workspace. This
allows you to arrange the widgets similarly to the way they appear on the physical PCB or
enclosure. This tab is used for tuning widget parameters and visualizing widgets data and
states.

 Graphing – Displays detailed individual widget data on charts.

 Validation – Provides validation functionality.

 Debugging – Provides debugging functionality.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 30 of 107 Document Number: 002-17945 Rev. **

Menus

Main menu provides following commands to help control and navigate Tuner:

 File > Settings > Load Settings from File (Ctrl + O) – Imports settings from an XML
tuning file and loads all data into the Tuner.

 File > Apply Changes and Close (Ctrl + F4) – Commits the current values of
parameters to the CapSense component instance and exits the GUI.

 File > Exit (Alt + F4) – Asks to save changes if there were any, and closes the Tuner.

 View > Sensor Properties (Alt + 1) – Shows Sensor Properties tool window.

 View > Graphing Properties (Alt + 2) – Shows Graphing Properties tool window.

 View > Logging Properties (Alt + 3) – Shows Logging Properties tool window.

 View > Reset Widgets Layout (Alt + R) – Duplicates Reset Widgets Layout button from
Tuning Tab.

 Debug > Start (F5) – Starts reading and displaying data from the chip. Also starts
graphing and logging if configured.

 Debug > Stop (F6) - Stops reading and displaying data from the chip.

 Debug > Configuration (F10) - Opens the Communication Configuration dialog;

 Validation > Acquire Validation Data (Alt + V) – Duplicates Acquire Validation Data
button from Validation Tab;

 Validation > Validation Advanced Properties (Ctrl + Alt + V) – Duplicates Advanced
button from Validation Tab;

 Validation > How do I fix this (Ctrl + H) – Duplicates How do I fix this button from
Validation Tab;

 Tools > Enable Logging - Enables logging of data received from the device to a log file.

Toolbar

Contains frequently used buttons that duplicate main menu items:

 Start – Duplicates Debug > Start menu item.

 Stop – Duplicates Debug > Stop menu item.

 Configuration – Duplicates Debug > Configuration menu item.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 31 of 107

 Logging – Enables data logging into a csv file. Data for logging and logging properties
can be selected in the Logging Properties Tool Window.

 Revert Parameters – Resets the parameters to their initial values and sends those
values to the chip. Initial values are what were displayed when the GUI was launched.

Tool Windows

Tool windows are windows that can be shown at any time not depending on tab which is
selected at the moment. Also tool windows can be docked to the right, left, top or bottom side of
the Tuner. Windows can be docked all together by dragging title or separately by dragging
specific page in the bottom of the tool window.

Status Bar

The status bar displays the current state of communication between the Tuner and the device.

Tuning Tab

 Widgets schematic – Contains a graphical representation of all of the configured
widgets. If a widget is composed of more than one sensor the individual sensors may be
selected for detailed analysis. Every widget is movable within the schematic.

 Reset Widgets Layout button – Moves widgets to default positions within the schematic.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 32 of 107 Document Number: 002-17945 Rev. **

 Widget controls context menu (this functionality applies only to the layout of widget
controls in GUI):

□ Send To Back – Sends widget control to the back of the view.

□ Bring To Front – Brings widget control to the front of the view.

□ Rotate Clockwise 90 – Rotates widget control 90 degrees clockwise. (Only for
Linear Sliders).

□ Rotate Counter Clockwise 90 – Rotates widget control 90 degrees counter
clockwise. (Only for Linear Sliders).

□ Flip Sensors – Reverses the order of the sensors. (Only for Linear and Radial
Sliders).

□ Flip Columns Sensors – Reverses the order of the Columns sensors. (Only for
Touchpads and Matrix Buttons).

□ Flip Row Sensors – Reverses the order of the Row sensors. (Only for Touchpads
and Matrix Buttons).

□ Exchange Columns and Rows – Columns sensors become rows and rows
sensors become columns. (Only for Touchpads and Matrix Buttons).

Sensor Properties Tool Window

Sensor Properties tool window displays properties of the sensor selected on Tuning tab and its
signal values.

 Active sensor – drop-down list located at the top side of the tool window and displays the
name of the selected sensor. Active sensor can be selected at any time not depending on
currently selected tab.

 Bar graph – Displays signal values for the selected sensor:

□ The maximum scale of the detailed view bar graph can be adjusted by double-
clicking on Max Value label. Valid range for 8 bit Widget Resolution is between 1
and 255, default is 255. Valid range for 16 bit Widget Resolution is between 1 and
32767, default is 32767.

□ The current finger turn on threshold is displayed as a green line across the bar
graph.

□ The current finger turn off threshold is displayed as a red line across the bar
graph.

□ The current noise threshold is displayed as a yellow line across the bar graph.

□ Thresholds and hysteresis can be set by moving lines up and down with a mouse.

 SNR – The signal-to-noise ratio is computed in real time for the selected sensor. SNR
values below 5 are poor and colored red, 5 to 10 are marginal and yellow, and greater

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 33 of 107

than 10 is good and colored green. SNR value is calculated based on previously received
data.

 Sensor properties (property grid located below bar graph) – Displays the properties for
the selected sensor based on the widget type. It is located on the right side panel.

 General CapSense properties (property grid located below sensor properties grid, it is
read only) – Displays global properties for the CapSense CSD component that cannot be
changed at run time. These are for reference only. This information is located on the
bottom of the right-side panel.

Graphing Tab

Chart area

Displays charts for selected items from the tree view. If you right-click the menu item Export to
.jpg, you can generate a screenshot of the chart area that is saved as a .jpg file.

Graphing Properties Tool Window

Graphing Properties tool window allows selecting sensors and type of series which should be
displayed on chart.

 Tree view – Gives all combinations of data for widgets and sensors which can be shown
on the chart.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 34 of 107 Document Number: 002-17945 Rev. **

Logging Properties Tool Window

Logging Properties tool window allows selecting sensors and type of series which should be
logged into a file.

 Tree view – Gives all combinations of data for widgets and sensors which can be logged
to a file if the logging feature is enabled. The On/Off Status data value can only be logged,
it cannot be shown on a chart

 Append new data to existing file – If selected, new data is appended to an existing file.
If not selected, old data is erased from the file and replaced with the new data

 Log duration – Defines log duration in minutes. Default value is 10

 Log file name – Defines log file path (file extension is .csv)

Validation Tab

The Validation tab is for diagnostics only. The tab contains the widget layout view, but without
the ability to edit the layout. This layout portion is used as a display only.

Top panel controls:

 Validation Status label – Shows validation status. It has following messages:

□ VALIDATION NOT STARTED – The validation process has not been run since the
last time the design was changed.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 35 of 107

□ PASS – The full validation process has been completed without failures.

□ FAIL – The validation process has uncovered failures; a validation report will be
displayed.

 Acquire validation data (or menu item Validation > Acquire Validation Data) – Starts
the validation process. This process guides you through a sequence of operations in
which you are prompted to apply your finger to each sensor in sequence.

 How do I fix this – Opens a report with a list of suggested fixes for sensors that have not
pass validation. This button is available only if the validation process was previously
completed and design errors were found.

 Advanced (or menu item Validation > Validation Advanced properties) – Opens the
properties window for validation properties (for more information, see Validation Advanced
Properties).

 SNRs – In the widget schematic, turns the SNR display on or off (for more information,
see Validation Displays).

 Cross-talks – In the widget schematic turns the cross-talk display on or off (for more
information, see Validation Displays).

Validation Advanced Properties

 Optimal SNR value – Defines optimal SNR value. Valid range is between 0 and 100;
default is 7.

 Sufficient SNR value – Defines sufficient SNR value. Valid range is between 0 and 100;
default is 5.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 36 of 107 Document Number: 002-17945 Rev. **

 Crosstalk threshold (%)– Defines crosstalk threshold value as a percentage of the finger
threshold for each sensor. Valid range is between 0 and 100 percent; default is 20.

 Worst case crosstalk threshold (%) – Defines worst case crosstalk threshold value as a
percentage of worst case crosstalk. Valid range is between 0 and 100 percent; default is
30.

 Worst case crosstalk censor count – Defines the number of sensors used to compute
worst case crosstalk; valid range is between 0 and 100; default is 2.

 Enable validation logging – Enables logging of validation data.

 Path – Defines log file path for validation data (file name extension is .csv).

 Auto append measurement number – If selected, after each start of the validation
process, the log file name will be incremented (for example “validation001.csv”) and data
will be saved in a new file.

Debugging Tab

This functionality exists only for debugging purposes. It helps you investigate Tuner
communication errors.

 Debugging log window – Displays communication commands that the Tuner executes.
All communication errors are logged here. If the Tuner was successfully started, only the
first few communication commands are logged.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 37 of 107

 Connect – Connects to the PSoC device;

 Disconnect – Disconnects from the PSoC device;

 Address – Specifies the PSoC device address;

 Read – Reads data from the PSoC device. The address field defines the address in the
buffer. The data field defines number of bytes to read;

 Write – Writes data to the PSoC device. The address field defines the address in the
buffer. The data field defines the data to write.

Save/Load Settings Feature

The Tuner GUI can also be opened as standalone application. In this case you must use the
Save settings and Load settings features of the CapSense component.

1. Click the Save settings button on the Configure dialog.

2. In the Save File dialog box, specify name of the file and location where it will be saved.

3. Open the Tuner GUI and click File > Settings > Load Settings from File.

4. In the File Open dialog box, point to the previously saved file with the component
settings. Settings will automatically load into the Tuner.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 38 of 107 Document Number: 002-17945 Rev. **

Using the Tuner GUI

The CaSense Tuner assists in tuning CapSense parameters and monitoring sensor data such as
raw count, baseline, and difference count when using the “Manual with run-time tuning” Tuning
method. The tuner can also display the tuning values (read only) and performance when using
the SmartSense Tuning method. No tuning is supported when the component is set to “Manual”
as all parameters are stored in flash and are read only for minimum SRAM usage.

Following is the typical process for using and tuning a CapSense component:

Create a Design in PSoC Creator

Refer to the PSoC Creator Help as needed. You may also open a tuner example project by
clicking on “Find Code Example …” in the Start Page of PSoC Creator, and then searching for
“CapSense_CSD_P4_Example_WithTuner”

Place and configure the CapSense component.

1. Drag a CapSense CSD component onto your design.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 39 of 107

2. Double-click on the component to open the Configure dialog.

3. Change the parameters as required for your application. Select Tuning method as
Manual with run-time tuning or Auto (SmartSense).

4. Add widgets on the Widgets Config tab and configure them.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 40 of 107 Document Number: 002-17945 Rev. **

5. On the Tune Helper tab: Select the Enable Tune Helper check box and click OK.

Place and Configure an “EZI2C Slave” Component

1. Drag an “EZI2C Slave” component from the component catalog onto your design.

2. Double-click it to open the Configure ‘SCB_P4’ dialog box and change the parameters as
mentioned below:

a. Change the instance name to match the name used in the CapSense Configure
dialog box, under the Tuner Helper tab, as indicated in step 5 in Place and
configure the CapSense component.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 41 of 107

b. In the EZI2C Basic tab, set the Sub-address size (bits) to 16.

Select Pins

1. Double-click and open the .cydwr file of your project in the workspace explorer.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 42 of 107 Document Number: 002-17945 Rev. **

2. Select the Pins tab, and use the drop-down menu to select the requisite port pins for I2C
SCL and SDA lines, CapSense sensors and Cmod etc.

Add Code

Add Tuner initialization and communication code to the project’s main.c file. The example main.c
file is as follows:

int main()

{

 CyGlobalIntEnable; /* Enable global interrupts. */

 CapSense_1_TunerStart();

 /* All widgets are enabled by default except proximity widgets.

 * Proximity widgets must be manually enabled by calling

 * CapSense_1_EnableWidget() API, as their long scan time is

 * incompatible with the fast response required of other widget

 * types.

 */

 while(1)

 {

 CapSense_1_TunerComm();

 }

}

Build the Design and Program your PSoC Device

Refer to PSoC Creator Help as needed.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 43 of 107

Ensure I2C pin Connections on Hardware

Connect the I2C pins of your PSoC 4 or PSoC4 BLE or PRoC BLE device to the I2C pins of a
KitProg or MiniProg3. If you are using a Cypress kit, refer to your Hardware Kit’s User Guide for
details on I2C pins connections.

Launch and Configure the Tuner Application

1. Right-click the CapSense component icon and select Launch Tuner from the context
menu to launch the Tuner application.

2. Click Configuration to open the Tuner Communication dialog box.

3. Set the communication parameters as above figure shows and click OK.

Important The fields I2C address and Sub-address in the Tuner Communication Setup
Dialog Box must be identical to the fields Primary slave address and Sub-address size
(bits) respectively in the Configure_SCB_P4 Dialog Box. In addition, Sub-address must
be set to 2-Bytes and I2C Speed in the Tuner Communication Setup Dialog Box must be
less than or equal to Data Rate in the Configure_SCB_P4 Dialog Box.

http://www.cypress.com/file/193106/download
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-002-psoc-miniprog3-program-and-debug-kit?source=search&keywords=miniprog3

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 44 of 107 Document Number: 002-17945 Rev. **

Start Tuning

1. Click Start on the tuner GUI. All of the CapSense parameters start to show their values in
the sensor properties tab.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 45 of 107

2. View the the raw counts (data), baseline, and signal of sensors in the Graphing tab by
selecting the requisite in the Graphing properties window.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 46 of 107 Document Number: 002-17945 Rev. **

3. Edit CapSense Parameter Values as required, in the sensor properties window. When you
edit a parameter value for one of the elements, it is automatically applied after you press
the [Enter] key or move to another option. The GUI continues to show the scanning data,
but it is now altered based on the application of the updated parameter.

Note that the elements in the scanning properties tab can only be edited if the tuning
method is selected as “Manual with run-time tuning” in the general tab of Configure
CapSense_CSD_P4 Dialog Box. These are displayed as read-only elements if the tuning
method is selected as “Auto (SmartSense)”

4. Repeat the steps as needed until tuning is complete and the CapSense component gives
reliable touch sensor results. Refer to CapSense Performance Tuning Chapter in the PSoC
4 CapSense Design Guide for details on how to find the right CapSense parameters to
properly tune the CapSense component.

5. Click File >Apply Changes and Close to close the tuner application. This writes back the
tuning parameters to the CapSense CSD/Gesture component and the Tuner application
dialog closes.

http://www.cypress.com/go/psoc4_capsense_designguide
http://www.cypress.com/go/psoc4_capsense_designguide

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 47 of 107

Validating CapSense with the Tuner GUI

The validation mechanism determines whether the board has been sufficiently tuned. The typical
process for using the Tuner Validation feature to validate a CapSense design follows.

Start Validation

The Tuner and hardware must be ready before you start the scanning process. See Using the
Tuner GUI to prepare the system for scanning.

On the Validation tab, click “Acquire validation data.” Values will begin to appear for all
CapSense elements.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 48 of 107 Document Number: 002-17945 Rev. **

Stimulation Sensors

You will be prompted to apply a finger on each sensor.

Each time you are prompted to press a CapSense element, a flashing red arrow pointing to the
target appears on the layout, with the text PRESS HERE. Text appears beneath the Tuner that
will guide you through the validation process.

To start scanning for the current sensor, press any key on the keyboard.

It is recommended that you use a calibrated metal finger instead of a finger press to stimulate
the sensors.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 49 of 107

Validation Displays

SNR warnings appear as follows:

 Flashing red highlights surround any CapSense sensor that has an SNR less than the
Sufficient Value [3].

 Flashing yellow highlights surround any CapSense sensor that has an SNR between the
Sufficient [2] and Optimal Values [2].

 Solid green highlights surround any CapSense sensor that has an SNR above the
Optimal Value.

Crosstalk effects warnings appear as follows:

 Individual Crosstalk Check. During the validation process, the software monitors all
elements other than the one you have been told to stimulate. If an element exhibits
difference counts that exceed the Crosstalk Threshold Percentage (when not directly
stimulated), a crosstalk warning is generated. This is displayed by a flashing line between
the element that exhibits the unwanted counts and the element that was stimulated.

3 Sufficient and Optimal Values can be defined using the Validation menu item Validation Advanced Properties
(Ctrl + Alt + V).

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 50 of 107 Document Number: 002-17945 Rev. **

 Worst Case Crosstalk Check. As each of the individual crosstalk checks are made, the
software keeps a record of each difference count measurement. At the completion of the
process, worst-case crosstalk estimates are made.

For each sensor, a sum appears that is the number of the crosstalk effects equal to the Worst
Case Crosstalk Sensor Count. The largest crosstalk value is the first element in the sum, the
second largest is the second, and so on. For example: if you have the following crosstalk counts
(1,5,3,2,4,1,1,0) and the Worst Case Crosstalk Sensor Count is 2, then the Worst Case
Crosstalk computation will be (5 + 4 = 9).

If this value exceeds the Worst Case Crosstalk Threshold, it is flagged with a flashing “C”
character in the middle of the sensor display.

Validation Results

If the validation process uncovers failures, a Validation Report will be displayed. This report
contains the following information:

 Any SNR values less than the Optimal Value

 Any SNR values less than Sufficient Value

 Any signals with a worst-case crosstalk failure, and, if so, the crosstalk number

You can also open the Validation Report by clicking the How do I fix this button on the
Validation tab.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table provides an overview of each function. The subsequent sections
cover each function in more detail.

Component can be used in IDEs that support the following compilers:

 ARM GCC compiler

 ARM MDK compiler

 IAR C/C++ compiler

Note If using the IAR Embedded Workbench, set the path to the static library. This library is
located in the following PSoC Creator installation directory:

PSoC Creator\psoc\content\CyComponentLibrary\CyComponentLibrary.cylib\CortexM0\IAR

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 51 of 107

By default, PSoC Creator assigns the instance name “CapSense_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“CapSense.”

General APIs

These are the general CapSense API functions that place the component into operation or halt
operation:

Function Description

CapSense_Start() Preferred method to start the component. Initializes registers and enables active mode
power template bits of the subcomponents used within CapSense. In Smartsense tuning
mode the API adjusts the parameters such as Sense Clock Divider, IDACs and resolution
based on the calculated parasitic capacitances.

CapSense_Stop() Disables component interrupts, and calls CapSense_ClearSensors() to reset all sensors to
an inactive state.

CapSense_Sleep() Prepares the component for the device entering a low-power mode. Disables Active mode
power template bits of the sub components used within CapSense, saves non-retention
registers, and resets all sensors to an inactive state.

CapSense_Wakeup() Restores CapSense configuration and non-retention register values after the device wake
from a low power mode sleep mode.

CapSense_Init() Initializes the default CapSense configuration provided with the customizer.

CapSense_Enable() Enables the Active mode power template bits of the subcomponents used within CapSense.

CapSense_SaveConfig() Saves the configuration of CapSense.

CapSense_RestoreConfig() Restores CapSense configuration.

void CapSense_Start(void)

Description: This is the preferred method to begin component operation. CapSense_Start() calls the
CapSense_Init() function, and then calls the CapSense_Enable() function. Initializes registers and
starts the CSD method of the CapSense component. Resets all sensors to an inactive state. Enables
interrupts for sensors scanning. When SmartSense tuning mode is selected, the tuning procedure is
applied for all sensors. In Smartsense tuning mode the API adjusts the parameters such as Sense
Clock Divider, IDACs and resolution based on the calculated parasitic capacitances. The
CapSense_Start() routine must be called before any other API routines.

Parameters: None

Return Value: None

Side Effects: Global interrupts (CyGlobalIntEnable;) must be enabled before CapSense_Start() if the Auto
(Smartsense) Tuning method or Auto-calibration is selected.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 52 of 107 Document Number: 002-17945 Rev. **

void CapSense_Stop(void)

Description: Stops the sensor scanning, disables component interrupts, and resets all sensors to an inactive state.
Disables Active mode power template bits for the subcomponents used within CapSense.

Parameters: None

Return Value: None

Side Effects: This function should be called after all scanning is completed.

void CapSense_Sleep(void)

Description: This is the preferred method to prepare the component for device low-power modes. Disables Active
mode power template bits for the subcomponents used within CapSense. Calls
CapSense_SaveConfig() function to save customer configuration of CapSense and resets all sensors
to an inactive state.

Parameters: None

Return Value: None

Side Effects: This function should be called after scans are completed.

This function does not put pins used by CapSense component into lowest power consumption state.

void CapSense_Wakeup(void)

Description: Restores the CapSense configuration. Restores the enabled state of the component by setting Active
mode power template bits for the subcomponents used within CapSense.

Parameters: None

Return Value: None

Side Effects: This function does not restore pins used by the CapSense component to the state they were before.

void CapSense_Init(void)

Description: Initializes the default CapSense configuration provided by the customizer that defines component
operation. Resets all sensors to an inactive state.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 53 of 107

void CapSense_Enable(void)

Description: Enables Active mode power template bits for the subcomponents used within CapSense.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_SaveConfig(void)

Description: Saves the configuration of CapSense. Resets all sensors to an inactive state.

Parameters: None

Return Value: None

Side Effects: This function should be called after scanning is complete.

This function does not put pins used by CapSense component into lowest power consumption state.

void CapSense_RestoreConfig(void)

Description: Restores CapSense configuration.

Parameters: None

Return Value: None

Side Effects: This function should be called after scanning is complete.

This function does not restore pins used by the CapSense component to the state they were in
before.

Scanning Specific APIs

These API functions are used to implement CapSense sensor scanning.

Function Description

CapSense_ScanSensor() Sets scan settings and starts scanning a sensor or group of combined
sensors.

CapSense_ScanWidget() Sets scan settings and starts scanning a widget.

CapSense_ScanEnabledWidgets() The preferred scanning method. Scans all of the enabled widgets.

CapSense_IsBusy() Returns the status of sensor scanning.

CapSense_SetScanSlotSettings() Sets the scan settings of the selected scan slot (sensor).

CapSense_ClearSensors() Resets all sensors to the nonsampling state.

CapSense_EnableSensor() Configures the selected sensor to be scanned during the next scanning
cycle.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 54 of 107 Document Number: 002-17945 Rev. **

Function Description

CapSense_DisableSensor() Disables the selected sensor so it is not scanned in the next scanning
cycle.

CapSense_ReadSensorRaw() Returns sensor raw data from the CapSense_SensorResult[] array.

CapSense_ReadCurrentScanningSensor() Returns scanning sensor number when sensor scan is in progress.

void CapSense_ScanSensor(uint32 sensor)

Description: Sets scan settings and starts scanning a sensor. After scanning is complete, the ISR copies the
measured sensor raw data to the global raw sensor array. Use of the ISR ensures this function is non-
blocking. Each sensor has a unique number within the sensor array. This number is assigned by the
CapSense customizer in sequence.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: None

Side Effects: None

void CapSense_ScanWidget (uint32 widget)

Description: Sets scan settings and starts scanning a widget.

Parameters: uint32 widget: Widget number. For every widget there are defines in this format:

#define CapSense_"widget_name"__"widget type" "Widget number"

Example:

#define CapSense_TOUCHPAD0__TP 5

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: None

Side Effects: None

void CapSense_ScanEnabledWidgets(void)

Description: This is the preferred method to scan all of the enabled widgets. Starts scanning a sensor within the
enabled widgets. The ISR continues scanning sensors until all enabled widgets are scanned. Use of
the ISR ensures this function is non-blocking.

All widgets are enabled by default except proximity widgets. Proximity widgets must be manually
enabled as their long scan time is incompatible with the fast response required of other widget types.

Parameters: None

Return Value: None

Side Effects: If no widgets are enabled the function call has no effect.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 55 of 107

uint32 CapSense_IsBusy (void)

Description: Returns the status of sensor scanning.

Parameters: None

Return Value: uint32: Returns the state of scanning. ‘1’ – scanning in progress, ‘0’ – scanning completed.

Side Effects: None

void CapSense_SetScanSlotSettings(uint32 slot)

Description: Sets the scan settings provided in the customizer or wizard of the selected scan slot (sensor). The scan
settings provide an IDAC value for every sensor, as well as resolution. The resolution is the same for
all sensors within a widget.

Parameters: uint32 slot: Scan slot number

Return Value: None

Side Effects: None

void CapSense_ClearSensors(void)

Description: Resets all sensors to the nonsampling state by sequentially disconnecting all sensors from the Analog
MUX Bus and connecting them to the inactive state.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_EnableSensor(uint32 sensor)

Description: Configures the selected sensor to be scanned during the next measurement cycle. The corresponding
pins are set to Analog HI-Z mode and connected to the Analog Mux Bus. This also affects the
comparator output.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: None

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 56 of 107 Document Number: 002-17945 Rev. **

void CapSense_DisableSensor(uint32 sensor)

Description: Disables the selected sensor. The corresponding pins are disconnected from the Analog Mux Bus and
put into the inactive state.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the

Sensor Constants section for details.

Return Value: None

Side Effects: None

uint16 CapSense_ReadSensorRaw(uint32 sensor)

Description: Returns sensor raw data from the global CapSense_SensorResult[] array. Each scan sensor has a
unique number within the sensor array. This number is assigned by the CapSense customizer in
sequence. Raw data can be used to perform calculations outside of the CapSense provided
framework.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint16: Current raw data value

Side Effects: None

uint32 CapSense_ReadCurrentScanningSensor(void)

Description: This API returns the sensor ID of the sensor which is being scanned currently. The API returns
0xFFFFFFFF when no sensor is being scanned.

Parameters: None

Return Value: uint32: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the Sensor
Constants section for details.

Side Effects: None

High-Level APIs

These API functions are used to work with raw data for sensor widgets. The raw data is retrieved
from scanned sensors and converted to on/off for buttons, position for sliders, or X and Y
coordinates for touchpads.

Function Description

CapSense_InitializeSensorBaseline() Loads the CapSense_sensorBaseline[sensor] array element with an initial
value by scanning the selected sensor.

CapSense_InitializeEnabledBaselines() Loads the CapSense_sensorBaseline[] array with initial values by scanning
enabled sensors only.

This function is available only for two-channel designs.

CapSense_InitializeAllBaselines() Loads the CapSense_sensorBaseline[] array with initial values by scanning
all sensors.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 57 of 107

Function Description

CapSense_UpdateSensorBaseline() The historical count value, calculated independently for each sensor, is
called the sensor's baseline. This baseline updated uses a low-pass filter
with k = 256.

CapSense_UpdateEnabledBaselines() Checks the CapSense_sensorEnableMask[] array and calls the
CapSense_UpdateSensorBaseline() function to update the baselines for
enabled sensors.

CapSense_EnableWidget() Enables all sensor elements in a widget for the scanning process.

CapSense_DisableWidget() Disables all sensor elements in a widget from the scanning process.

CapSense_CheckIsWidgetActive() Compares the selected of widget to the CapSense_Signal[] array to
determine if it has a finger press.

CapSense_CheckIsAnyWidgetActive() Uses the CapSense_CheckIsWidgetActive() function to find if any widget of
the CapSense CSD component is in active state.

CapSense_GetCentroidPos() Checks the CapSense_sensorSignal[] array for a finger press in a linear
slider and returns the position.

CapSense_GetRadialCentroidPos() Checks the CapSense_sensorSignal[] array for a finger press in a radial
slider widget and returns the position.

CapSense_GetTouchCentroidPos() If a finger is present, this function calculates the X and Y position of the
finger by calculating the centroids within the touchpad.

CapSense_GetMatrixButtonPos() If a finger is present, this function calculates the row and column position of
the finger on the matrix buttons.

CapSense_CheckIsSensorActive() Returns true if sensor is active.

CapSense_GetBaselineData() Reads sensor baseline.

CapSense_GetDiffCountData() Returns difference count data.

CapSense_GetNormalizedDiffCountData() Returns normalized difference count data.

CapSense_GetNoiseThreshold() Returns the noise threshold value.

CapSense_GetNegativeNoiseThreshold() Returns the negative noise threshold value.

CapSense_GetNoiseEnvelope() Returns the measured noise envelope value.

CapSense_GetFingerThreshold() Returns finger threshold value.

CapSense_GetFingerHysteresis() Returns Hysteresis value.

CapSense_WriteSensorRaw() Writes the raw count value.

CapSense_SetBaselineData() Writes the baseline value.

CapSense_SetSensitivity() Sets the sensitivity value.

CapSense_GetSensitivityCoefficient() Returns the K coefficient.

Capsense_SetDebounce() Sets the debounce value.

Capsense_GetDebounce() Returns the debounce value.

CapSense_SetFingerHysteresis() Sets the hysteresis value sensors.

CapSense_SetNoiseThreshold() Sets the Noise Threshold value.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 58 of 107 Document Number: 002-17945 Rev. **

Function Description

CapSense_SetNegativeNoiseThreshold() Sets the Negative Noise Threshold value.

CapSense_SetLowBaselineReset() Sets the low baseline reset threshold value.

CapSense_GetLowBaselineReset() Returns the low baseline reset threshold value.

CapSense_SetFingerThreshold() Sets the finger threshold value.

CapSense_SetDiffCountData() Sets difference counts data.

CapSense_GetWidgetNumber() Returns the widget number for the sensor.

CapSense_UpdateThresholds() Updates the Thresholds.

CapSense_UpdateBaselineNoThreshold() Updates sensor Baseline without updating the Thresholds.

CapSense_SetIDACRange() Sets the IDAC range.

CapSense_GetIDACRange() Returns the IDAC range.

CapSense_SetModulationIDAC() Sets value for modulation IDAC.

CapSense_GetModulationIDAC() Returns value for modulation IDAC.

CapSense_SetCompensationIDAC() Sets value of compensation IDAC.

CapSense_GetCompensationIDAC() Returns value of compensation IDAC.

CapSense_SetSenseClkDivider() Sets value of sense clock divider.

CapSense_GetSenseClkDivider() Returns value of sense clock divider.

CapSense_SetModulatorClkDivider() Sets value of modulator sample clock divider.

CapSense_GetModulatorClkDivider() Returns value of modulator sample clock divider.

CapSense_SetScanResolution() Sets value of sensor scan resolution.

CapSense_GetScanResolution() Returns value of sensor scan resolution.

CapSense_SetDriveModeAllPins() Sets the drive mode of port pins.

CapSense_RestoreDriveModeAllPins() Restore the drive for all CapSense port pins to original state.

CapSense_SetUnscannedSensorState() Sets the state for un-scanned sensors.

CapSense_UpdateWidgetBaseline() Updates the baselines for enabled sensors that belong to a widget.

CapSense_EnableRawDataFilters() Enables the rawdata filters for the sensor signals.

CapSense_DisableRawDataFilters() Disables the rawdata filters for the sensor signals.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 59 of 107

void CapSense_InitializeSensorBaseline(uint32 sensor)

Description: Loads the CapSense_sensorBaseline[sensor] array element with an initial value by scanning the
selected sensor. The raw count value is copied into the baseline array for each sensor. The raw data
filters are initialized if enabled.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: None

Side Effects: None

void CapSense_InitializeEnabledBaselines(void)

Description: Scans all enabled widgets. The raw count values are copied into the CapSense_sensorBaseline[]
array for all sensors enabled in scanning process. Initializes CapSense_sensorBaseline[] with zero
values for sensors disabled from the scanning process. The raw data filters are initialized if enabled.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_InitializeAllBaselines(void)

Description: Uses the CapSense_InitializeSensorBaseline() function to load the CapSense_sensorBaseline[] array
with initial values by scanning all sensors. The raw count values are copied into the baseline array for
all sensors. The raw data filters are initialized if enabled.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_UpdateSensorBaseline(uint32 sensor)

Description: The sensor's baseline is a historical count value, calculated independently for each sensor. Updates
the CapSense_sensorBaseline[sensor] array element using a low-pass filter with k = 256. The function
calculates the difference count by subtracting the previous baseline from the current raw count value
and stores it in CapSense_sensorSignal[sensor].

If the auto reset option is enabled, the baseline updates independent of the noise threshold.

If the auto reset option is disabled, the baseline stops updating if the signal is greater than the noise
threshold and resets the baseline when the signal is less than the minus noise threshold.

Raw data filters are applied to the values if enabled before baseline calculation.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: None

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 60 of 107 Document Number: 002-17945 Rev. **

void CapSense_UpdateEnabledBaselines(void)

Description: Checks the CapSense_sensorEnableMask [] array and calls the CapSense_UpdateSensorBaseline()
function to update the baselines for all enabled sensors.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_EnableWidget(uint32 widget)

Description: Enables the selected widget sensors to be part of the scanning process.

Parameters: uint32 widget: Widget number. For every widget there are defines in this format:

#define CapSense_"widget_name"__"widget type" 5

Example:

#define CapSense_MY_VOLUME1__LS 5

#define CapSense_MY_UP__BNT 6

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

Return Value: None

Side Effects: None

void CapSense_DisableWidget(uint32 widget)

Description: Disables the selected widget sensors from the scanning process.

Parameters: uint32 widget: Widget number. For every widget there are defines in this format:

#define CapSense_"widget_name"__"widget type" 5

Example:

#define CapSense_MY_VOLUME1__RS 5

#define CapSense_MY_UP__MB 6

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 61 of 107

uint32 CapSense_CheckIsWidgetActive(uint32 widget)

Description: Compares the selected sensor CapSense_Signal[] array value to its finger threshold. Hysteresis and
debounce are considered. If the sensor is active, the threshold is lowered by the hysteresis amount. If it
is inactive, the threshold is increased by the hysteresis amount. If the active threshold is met, the
debounce counter increments by one until reaching the sensor active transition, at which point this API
sets the widget as active. This function also updates the sensor's bit in the CapSense_sensorOnMask[
] array.

The touchpad and matrix buttons widgets need to have active sensor within column and row to return
widget active status.

Parameters: uint32 widget: Widget number. For every widget there are defines in this format:

#define CapSense_"widget_name"__"widget type" 5

Example:

#define CapSense_MY_VOLUME1__LS 5

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

Return Value: uint32: Widget sensor state. 1 if one or more sensors within the widget are active, 0 if all sensors within
the widget are inactive.

Side Effects: This function also updates values in CapSense_sensorOnMask[] for all sensors belonging to the
widget. The debounce counter is also modified on every call when there is a transition to the active
state.

uint32 CapSense_CheckIsAnyWidgetActive(void)

Description: Compares all sensors of the CapSense_Signal[] array to their finger threshold. Calls
Сapsense_CheckIsWidgetActive() for each widget so that the CapSense_sensorOnMask[] array is up
to date after calling this function.

Parameters: None

Return Value: uint32: 1 if any widget is active, 0 no widgets are active.

Side Effects: Has the same side effects as the CapSense_CheckIsWidgetActive() function but for all sensors.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 62 of 107 Document Number: 002-17945 Rev. **

uint16 CapSense_GetCentroidPos(uint32 widget)

Description: Checks the CapSense_Signal[] array for a finger press within a linear slider. The finger position is
calculated to the API resolution specified in the CapSense customizer. A position filter is applied to the
result if enabled. This function is available only if a linear slider widget is defined by the CapSense
customizer.

Parameters: uint32 widget: Widget number. For every linear slider widget there are defines in this format:

#define CapSense_"widget_name"__LS 5

Example:

#define CapSense_MY_VOLUME1__LS 5

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

Return Value: uint16: Position value of the linear slider

Side Effects: If any sensors within the slider widget are active, the function returns values from zero to the API
resolution value set in the CapSense customizer. If no sensors are active, the function returns 0xFFFF.
If an error occurs during execution of the centroid/diplexing algorithm, the function returns 0xFFFF.

There are no checks of widget argument provided to this function. An incorrect widget value causes
unexpected position calculations.

Note If noise counts on the slider segments are greater than the noise threshold, this subroutine may

generate a false finger press result. The noise threshold should be set carefully (high enough above
the noise level) so that noise will not generate a false finger press.

uint16 CapSense_GetRadialCentroidPos(uint32 widget)

Description: Checks the CapSense_Signal[] array for a finger press within a radial slider. The finger position is
calculated to the API resolution specified in the CapSense customizer. A position filter is applied to the
result if enabled. This function is available only if a radial slider widget is defined by the CapSense
customizer.

Parameters: uint32 widget: Widget number. For every radial slider widget there are defines in this format:

#define CapSense_"widget_name"__RS 5

Example:

#define CapSense_MY_VOLUME2__RS 5

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint16: Position value of the radial slider.

Side Effects: If any sensors within the slider widget are active, the function returns values from zero to the API
resolution value set in the CapSense customizer. If no sensors are active, the function returns 0xFFFF.

There are no checks of widget type argument provided to this function. An incorrect widget value
causes unexpected position calculations.

Note If noise counts on the slider segments are greater than the noise threshold, this subroutine may

generate a false finger press result. The noise threshold should be set carefully (high enough above
the noise level) so that noise will not generate a false finger press.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 63 of 107

uint32 CapSense_GetTouchCentroidPos(uint32 widget, uint16* pos)

Description: If a finger is present on touchpad, this function calculates the X and Y position of the finger by
calculating the centroids within the touchpad sensors. The X and Y positions are calculated to the API
resolutions set in the CapSense customizer. Returns a ‘1’ if a finger is on the touchpad. A position filter
is applied to the result if enabled. This function is available only if a touchpad is defined by the
CapSense customizer.

Parameters: uint32 widget: Widget number. For every touchpad widget there are defines in this format:

#define CapSense_"widget_name"__TP 5

Example:

#define CapSense_MY_TOUCH1__TP 5

All widget names are upper case.

 (uint16* pos): pointer to an array of two uint16, where touch postion will be stored:

 pos[0] - X position;

 pos[1] - Y position.

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint32: 1 if finger is on the touchpad, 0 if not.

Side Effects: None

uint32 CapSense_GetMatrixButtonPos(uint32 widget, uint8* pos)

Description: If a finger is present on matrix buttons, this function calculates the row and column position of the
finger. Returns a ‘1’ if a finger is on the matrix buttons. This function is available only if a matrix buttons
are defined by the CapSense customizer.

Parameters: uint32 widget: Widget number. For every matrix buttons widget there are defines in this format:

#define CapSense_"widget_name"__MB 5

Example:

#define CapSense_MY_TOUCH1__MB 5

All widget names are upper case.

(uint8* pos): pointer to an array of two uint8, where touch postion will be stored:

 pos[0] - column position;

 pos[1] - row position.

All widget names are upper case. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint32: 1 if finger is on the touchpad, 0 if not.

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 64 of 107 Document Number: 002-17945 Rev. **

uint32 CapSense_CheckIsSensorActive(uint32 sensor)

Description: Compares the selected Sensor of the CapSense_sensorSignal[] array to its finger threshold.
Hysteresis and Debounce are taken into account. The Hysteresis value is added or subtracted from the
finger threshold based on whether the Sensor is currently active. If the Sensor is active, the threshold is
lowered by the hysteresis amount. If it is inactive, the threshold is raised by the hysteresis amount. The
Debounce counter added to the Sensor active transition. This function also updates the Sensor's bit in
the CapSense_sensorOnMask[] array.

Parameters: uint32 – sensor: Scan Sensor Number. The Capsense.h file contains defines for the sensor numbers.

See the Sensor Constants section for details.

Return Value: uint32: Scan Sensor state 1 if active, 0 if inactive

Side Effects: Updates the Sensor's bit in the CapSense_sensorOnMask[] array

uint16 CapSense_GetBaselineData(uint32 sensor)

Description: This is a function to read sensor baseline from component.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint16: This API returns baseline value of the sensor indicated by argument.

Side Effects: None

uint16 CapSense_GetDiffCountData(uint32 sensor)

Description: This API returns difference count data.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: unit16 : This API returns difference count value of the sensor indicated by argument.

Side Effects: None

uint16 CapSense_GetNormalizedDiffCountData(uint32 sensor)

Description: This API returns normalized difference count data.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: unit16: This API returns normalized difference count value of the sensor indicated by argument.

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 65 of 107

uint8 CapSense_GetNoiseThreshold(uint32 widget)

Description: This API returns the noise threshold value.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint8: This API returns the noise threshold of the widget indicated by argument.

Side Effects: None

uint8 CapSense_GetNegativeNoiseThreshold(uint32 widget)

Description: This API returns the negative noise threshold value.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint8: This API returns the negative noise threshold of the widget indicated by argument.

Side Effects: None

uint16 CapSense_GetNoiseEnvelope(uint32 sensor)

Description: This API returns the measured noise envelope value. The min value for this API is 1 and it never
returns 0 as noise.

This API is available only when SmartSense (Auto-tune) is enabled.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint16: This API shall return the noise envelope value of the sensor indicated by argument.

Side Effects: None

uint8/uint16 CapSense_GetFingerThreshold(uint32 widget)

Description: This API returns finger threshold value.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

Return Value: uint8/uint16: This API returns the finger threshold of the widget indicated by argument.

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 66 of 107 Document Number: 002-17945 Rev. **

uint8 CapSense_GetFingerHysteresis(uint32 widget)

Description: This API returns Hysteresis value.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint8: This API returns the Hysteresis of the widget indicated by argument.

Side Effects: None

void CapSense_WriteSensorRaw(uint32 sensor, uint16 data)

Description: This API has two arguments, sensor number and raw count value. This API writes the raw count value
passed as argument to the sensor raw count array.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

 uint16 data: Sensor raw count.

Return Value: None

Side Effects: None

void CapSense_SetBaselineData(uint32 sensor, uint16 data)

Description: This API has two arguments, sensor number and baseline value.

This API writes the data value passed as argument to the sensor baseline array.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the

Sensor Constants section for details.

uint16 data: Sensor baseline.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 67 of 107

void CapSense_SetSensitivity(uint32 sensor, uint32 data)

Description: This API sets the sensitivity value for the sensor. The sensitivity value is used during the auto-tuning
algorithm executed as part of CapSense_Start API.

This API is called by application layer prior to calling CapSense_Start API. Calling this API after
execution of CapSense_Start API has no effect.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

uint32 data: Sensitivity of the sensor. Possible values include:

1 – 0.1pF sensitivity

2 – 0.2pF sensitivity

3 – 0.3pFsensitivity

4 – 0.4pF sensitivity

5 – 0.5pF sensitivity

6 – 0.6pF sensitivity

7 – 0.7pFsensitivity

8 – 0.8pF sensitivity

9 – 0.9pF sensitivity

10 – 1.0pF sensitivity

All other values, set sensitivity to 1.0pF.

Return Value: None

Side Effects: None

uint32 CapSense_GetSensitivityCoefficient(uint32 sensor)

Description: This API returns the K coefficient for the appropriate sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint32: K value for the appropriate sensor

Side Effects: None

void Capsense_SetDebounce(uint32 widget, uint8 value)

Description: This API sets the debounce value. This API affects all the sensors in the widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

uint8 value: Debounce value.

Return Value: None

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 68 of 107 Document Number: 002-17945 Rev. **

uint8 Capsense_GetDebounce(uint32 widget)

Description: This API returns the debounce value.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint8: returns the debounce value.

Side Effects: None

void CapSense_SetFingerHysteresis(uint32 widget, uint8 value)

Description: This API sets the hysteresis value sensors. This API affects all the sensors in the widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

uint8 value: hysteresis value.

Return Value: None

Side Effects: None

void CapSense_SetNoiseThreshold(uint32 widget, uint8 value)

Description: This API sets the Noise Threshold value for all sensors in the widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

uint8 value: Noise Threshold value.

Return Value: None

Side Effects: None

void CapSense_SetNegativeNoiseThreshold(uint32 widget, uint8 value)

Description: This API sets the Negative Noise Threshold value for a widget. This API affects all the sensors in the
widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

uint8 value: Negative Noise Threshold value.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 69 of 107

void CapSense_SetLowBaselineReset(uint32 sensor, uint8 value)

Description: This API sets the low baseline reset threshold value a sensor.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

uint8 value: low baseline reset threshold value.

Return Value: None

Side Effects: None

uint8 CapSense_GetLowBaselineReset(uint32 sensor)

Description: This API returns the low baseline reset threshold value a sensor.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

Return Value: uint8: return low baseline reset threshold value.

Side Effects: None

void CapSense_SetFingerThreshold(uint32 widget, uint8/16 value)

Description: This API sets the finger threshold value for a Widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.

See the Widget Constants section for details.

uint8/16 value: Finger threshold value for the Widget.

Return Value: None

Side Effects: None

void CapSense_SetDiffCountData(uint32 sensor, uint16/uint8 value)

Description: This API sets difference counts data for each sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

uint16/uint8 value: difference counts data.

Return Value: None

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 70 of 107 Document Number: 002-17945 Rev. **

uint32 CapSense_GetWidgetNumber(uint32 sensor)

Description: This API returns the widget number for the sensor.

Parameters: uint32 sensor: Sensor number. The value of Sensor number can be from 0 to N. The value N can be 0
to total number of sensor-1. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint32: returns the widget number of sensor. The Capsense_CSHL.h file contains defines for the
widget numbers. See the Widget Constants section for details.

Side Effects: None

void CapSense_UpdateThresholds(uint32 sensor)

Description: This API calculates the threshold parameters for the given sensor and updates the parameter to the
respective arrays/variables that store threshold parameter for each sensor when SmartSense is
enabled. There are two possible methods to calculate the threshold values as mentioned below

When automatic threshold is enabled, this API shall calculate the threshold parameters based on
measured noise envelope of the sensor. In this mode, API shall calculate finger threshold for the given
sensor along with other thresholds.

When automatic threshold is disabled, this API shall not calculate the finger threshold. The finger
threshold shall be set by the application firmware. All other thresholds shall be calculated by this API
based on the finger threshold value set by the caller. In this mode, the API expects caller to set
appropriate finger threshold values prior to calling this API.

This API is applicable for all types of sensors.

Parameters: uint32 sensor: Sensor number. The value of Sensor number can be from 0 to N. The value N can be 0
to total number of sensor-1. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: None

Side Effects: None

void CapSense_UpdateBaselineNoThreshold(uint32 sensor)

Description: This API updates the baseline of the given sensor. This API does not calculate or modify the threshold
parameter associated with given sensor.

Parameters: uint32 sensor: Sensor number. The value of Sensor number can be from 0 to N. The value N can be 0
to total number of sensor-1. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: None

Side Effects: Sensor baseline variable is updated.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 71 of 107

void CapSense_SetIDACRange(uint32 iDacRange)

Description: Sets the IDAC range to 4x (1.2uA/bit) or 8x (2.4uA/bit) mode. The IDAC range is common for all
sensors and common for modulation and compensation IDACs.

Parameters: uint32 iDacRange: represents value for IDAC range

0 - IDAC range set to 4x (1.2uA/bit)

1 or >1 - IDAC range set to 8x (2.4uA/bit)

Return Value: None

Side Effects: None

uint32 CapSense_GetIDACRange(void)

Description: Returns value that indicates the IDAC range used by the component to scan sensors. The IDAC range
is common for all sensors.

Parameters: None

Return Value: uint32 iDacRange: represents value for IDAC range

0 - IDAC range set to 4x (1.2uA/bit)

1 or >1 - IDAC range set to 8x (2.4uA/bit)

Side Effects: None

void CapSense_SetModulationIDAC(uint32 sensor, uint32 modIdacValue)

Description: Sets value for modulation IDAC for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

uint32 modIdacValue: represents the modulation IDAC data register value.

Return Value: None

Side Effects: None

uint32 CapSense_GetModulationIDAC(uint32 sensor)

Description: Returns value of modulation IDAC for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the

Sensor Constants section for details.

Return Value: uint32 returns the modulation IDAC data register value.

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 72 of 107 Document Number: 002-17945 Rev. **

void CapSense_SetCompensationIDAC(uint32 sensor, uint32 compIdacValue)

Description: Sets value of compensation IDAC for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

uint32 compIdacValue: represents the compensation IDAC data register value.

Return Value: None

Side Effects: None

uint32 CapSense_GetCompensationIDAC(uint32 sensor)

Description: Returns value of compensation IDAC for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the

Sensor Constants section for details.

Return Value: uint32: returns the compensation IDAC data register value.

Side Effects: None

void CapSense_SetSenseClkDivider(uint32 sensor, uint32 senseClk)

Description: Sets value of sense clock divider for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the

Sensor Constants section for details.

uint32 senseClk: represents the sense clock value.

Note In PSoC 4100/PSoC 4200 devices, the Sense Clock also depends on the Modulator Clock divider

because these dividers are chained. This means that the Sense Clock divider input connects to the
Modulator Clock output. The Sense Clock divider value should take into account the Modulator Clock
Divider value. The customizer adjusts the Sense Clock value automatically to take into account the
modulator output clock. For example, if you set the Modulator Clock divider to 8 and the Sense Clock
divider to 8, the CapSense_GetSenseClkDivider API returns 1. Refer to the CapSense Clocking
section for chained clocks' details.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 73 of 107

uint32 CapSense_GetSenseClkDivider(uint32 sensor)

Description: Returns value of sense clock divider for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint32: returns sense clock divider for a sensor.

Note In PSoC 4100/PSoC 4200 devices, the Sense Clock also depends on the Modulator Clock divider

because these dividers are chained. This means that the Sense Clock divider input connects to the
Modulator Clock output. The Sense Clock divider value should take into account the Modulator Clock
Divider value. The customizer adjusts the Sense Clock value automatically to take into account the
modulator output clock. For example, if you set the Modulator Clock divider to 8 and the Sense Clock
divider to 8, the CapSense_GetSenseClkDivider API returns 1. Refer to the CapSense Clocking
section for chained clocks' details.

Side Effects: None

void CapSense_SetModulatorClkDivider(uint32 sensor, uint32 modulatorClk)

Description: Sets value of modulator sample clock divider for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

uint32 – modulatorClk: represents the modulator sample clock value.

Return Value: None

Side Effects: None

uint32 CapSense_GetModulatorClkDivider(uint32 sensor)

Description: Returns value of modulator sample clock divider for a sensor.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint32: returns modulator sample clock divider for a sensor.

Side Effects: None

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 74 of 107 Document Number: 002-17945 Rev. **

void CapSense_SetScanResolution(uint32 widget, uint32 resolution)

Description: Sets value of sensor scan resolution for a widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

 uint32 resolution: represents the resolution value. The following defines available in the CapSense.h

file should be used:

CapSense_RESOLUTION_6_BITS

CapSense_RESOLUTION_7_BITS

CapSense_RESOLUTION_8_BITS

CapSense_RESOLUTION_9_BITS

CapSense_RESOLUTION_10_BITS

CapSense_RESOLUTION_11_BITS

CapSense_RESOLUTION_12_BITS

CapSense_RESOLUTION_13_BITS

CapSense_RESOLUTION_14_BITS

CapSense_RESOLUTION_15_BITS

CapSense_RESOLUTION_16_BITS

Return Value: None

Side Effects: None

uint32 CapSense_GetScanResolution(uint32 widget)

Description: Return value of resolution for a widget.

Parameters: uint32 widget: Widget number. The Capsense_CSHL.h file contains defines for the widget numbers.
See the Widget Constants section for details.

Return Value: uint32: returns resolution for a widget. The return value corresponds to the defines available in the
CapSense.h file:

CapSense_RESOLUTION_6_BITS

CapSense_RESOLUTION_7_BITS

CapSense_RESOLUTION_8_BITS

CapSense_RESOLUTION_9_BITS

CapSense_RESOLUTION_10_BITS

CapSense_RESOLUTION_11_BITS

CapSense_RESOLUTION_12_BITS

CapSense_RESOLUTION_13_BITS

CapSense_RESOLUTION_14_BITS

CapSense_RESOLUTION_15_BITS

CapSense_RESOLUTION_16_BITS

Side Effects: None

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 75 of 107

void CapSense_SetDriveModeAllPins(uint32 driveMode)

Description: This API sets the drive mode of port pins used by CapSense component (sensors, guard, shield, shield
tank and Cmod) to drive mode specified by the argument.

Parameters: uint32 driveMode: parameter that indicates the drive mode.

Values:

CY_SYS_PINS_DM_ALG_HIZ - High Impedance Analog

CY_SYS_PINS_DM_DIG_HIZ - High Impedance Digital

CY_SYS_PINS_DM_RES_UP - Resistive Pull Up

CY_SYS_PINS_DM_RES_DWN - Resistive Pull Down

CY_SYS_PINS_DM_OD_LO - Open Drain, Drives Low

CY_SYS_PINS_DM_OD_HI - Open Drain, Drives High

CY_SYS_PINS_DM_STRONG - Strong Drive

CY_SYS_PINS_DM_RES_UPDWN - Resistive Pull Up/Down

Return Value: None

Side Effects: This API shall be called only after CapSense component is stopped.

void CapSense_RestoreDriveModeAllPins(void)

Description: This API restores the drive for all CapSense port pins to original state. This APIs is compliment of
CapSense_SetDriveModeAllPins API.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_SetUnscannedSensorState(uint32 sensor, uint32 sensorState)

Description: This API sets the state for un-scanned sensors. It is possible to set state to Ground, High-Z or shield
electrode. The un-scanned sensor can be connected to shield electrode only if shield is enabled. If
case of shield is disabled and this API is called with parameter indicating shield state, the un-scanned
sensor shall be connected to Ground.

Parameters: uint32 sensor: this parameter indicates the Sensor ID. The Capsense.h file contains defines for the
sensor numbers. See the Sensor Constants section for details.

uint32 sensorState: this parameter indicates un-scanned sensor state.

Return Value: None

Side Effects: This API shall be called only after CapSense component is stopped.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 76 of 107 Document Number: 002-17945 Rev. **

void CapSense_UpdateWidgetBaseline (uint32 widget)

Description: The sensor's baseline is a historical count value, calculated independently for each sensor in the
widget. It updates the CapSense_sensorBaseline[sensor] array element using a low-pass filter with k =
256. The function calculates the difference count by subtracting the previous baseline from the current
raw count value and stores it in CapSense_sensorSignal[sensor] for sensor numbers that belong to the
widget.

If the auto reset option is enabled, the baseline updates independent of the noise threshold.

If the auto reset option is disabled, the baseline stops updating if the signal is greater than the noise
threshold and resets the baseline when the signal is less than the minus noise threshold.

Parameters: uint32 widget: widget number

Return Value: None

Side Effects: Updates the CapSense_sensorBaseline[] array.

void CapSense_EnableRawDataFilters(void)

Description: This API enables the rawdata filters for the sensor signals.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_DisableRawDataFilters(void)

Description: This API disables the rawdata filters for the sensor signals.

Parameters: None

Return Value: None

Side Effects: None

Tuner Helper APIs

These API functions are used to work with the Tuner GUI.

Function Description

CapSense_TunerStart() Initializes CapSense CSD and internal communication components, initializes
baselines and starts the sensor scanning loop.

CapSense_TunerComm() Execute communication between the Tuner GUI.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 77 of 107

void CapSense_TunerStart(void)

Description: Initializes CapSense CSD and internal communication components.

All widgets are enabled by default except proximity widgets. Proximity widgets must be manually
enabled as their long scan time is incompatible with the fast response required of other widget types.

Parameters: None

Return Value: None

Side Effects: Global interrupts (CyGlobalIntEnable;) must be enabled before CapSense_TunerStart() if the Auto
(Smartsense) Tuning method or Auto-calibration is selected.

void CapSense_TunerComm(void)

Description: Executes communication functions with Tuner GUI.

 Manual mode: Transfers sensor scanning and widget processing results to the Tuner GUI from
the CapSense CSD component. Reads new parameters from Tuner GUI and apply them to the
CapSense CSD component.

 Auto (SmartSense): Executes communication functions with Tuner GUI. Transfer sensor
scanning and widget processing results to Tuner GUI. The auto tuning parameters also transfer
to Tuner GUI. Tuner GUI parameters are not transferred back to the CapSense CSD component.

This function is blocking and waits while the Tuner GUI modifies CapSense CSD component buffers to
allow new data.

Parameters: None

Return Value: None

Side Effects: This API does not allow the code to proceed and will not return until a successful connection has been
made with the Tuner GUI.

Built-in Self Test APIs

These API functions are used to check the correct Hardware Setup such as Cmod, parasitic
capacitance, shield electrode and external shield tank capacitor capacitance.

Function Description

CapSense_GetSensorCp() Returns the parasitic capacitance of sensor.

CapSense_MeasureCmod() Measures the CMOD external capacitor value in pF.

CapSense_MeasureCShield() Measures the capacitance value of shield electrode.

CapSense_MeasureCShieldTank() Measures the capacitance value of external shield tank capacitor.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 78 of 107 Document Number: 002-17945 Rev. **

uint32 CapSense_GetSensorCp(uint32 sensor)

Description: This API returns the Cp (parasitic capacitance) of sensor in pF (pico farads).

The supported range is 5-100 pF. The precision of API is +/-10%.

Note This API can be used to measure a capacitance of the external capacitors. In this case the

parasitic capacitance should be subtracted from the total result.

Parameters: uint32 sensor: Sensor number. The Capsense.h file contains defines for the sensor numbers. See the
Sensor Constants section for details.

Return Value: uint32: This API returns Sensor parasitic capacitance (Cp) of the sensor indicated as argument. The
unit of sensor Cp value is pico-farads.

Side Effects: Sensor scan should be complete before using this API.

uint32 CapSense_MeasureCmod(void)

Description: This API measures the CMOD external capacitor value in pF.

Parameters: None

Return Value: uint32: returns measured CMOD in pico-farads.

Side Effects: Component should be stopped before calling this API.

uint32 CapSense_MeasureCShield(void)

Description: This API implements method to measure the capacitance value of shield electrode. When this APIs is
called, it returns the shield electrode capacitance in pico-farads.

Parameters: None

Return Value: uint32: returns measured capacitance of shield electrode in pico-farads.

Side Effects: None.

uint32 CapSense_MeasureCShieldTank(void)

Description: This API implements method to measure the capacitance value of external shield tank capacitor. When
this APIs is called, it returns the shield tank capacitance in pico-farads.

Parameters: None

Return Value: uint32: returns measured capacitance of shield tank capacitor in pico-farads.

Side Effects: Component should be stopped before calling this API.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 79 of 107

Data Structures

The API functions use several global arrays for processing sensor and widget data. You should
not alter these arrays manually. These values can be viewed for debugging and tuning purposes.
For example, you can use a charting tool to display the contents of the arrays. The global arrays
are:

Array Description

CapSense_sensorRaw[]

This array contains the raw data for each sensor. The array size is equal to the total
number of sensors (CapSense_TOTAL_SENSOR_COUNT). The
CapSense_sensorRaw [] data is updated by these functions:

 CapSense_ScanSensor()

 CapSense_ScanEnabledWidgets()

 CapSense_InitializeSensorBaseline()

 CapSense_InitializeAllBaselines()

 CapSense_UpdateEnabledBaselines()

CapSense_sensorEnableMask[]

This is a byte array that holds the sensor scanning state
CapSense_sensorEnableMask [0] contains the masked bits for sensors 0 through 7
(sensor 0 is bit 0, sensor 1 is bit 1). CapSense_sensorEnableMask[1] contains the
masked bits for sensors 8 through 15 (if needed), and so on. This byte array holds as
many elements as are necessary to contain the total number of sensors. The value of
a bit specifies if a sensor is scanned by the CapSense_ScanEnabledWidgets()
function call: 1 – sensor is scanned , 0 – sensor is not scanned. The
CapSense_sensorEnableMask[] data is changed by functions:

 CapSense_EnabledWidget()

 CapSense_DisableWidget()

 The CapSense_sensorEnableMask[] data is used by function:

 CapSense_ScanEnabledWidgets()

CapSense_portTable[] and
CapSense_maskTable[]

These arrays contain port and pin masks for every sensor to specify what pin the
sensor is connected to.

 Port – Defines the port number that pin belongs to.

 Mask – Defines pin number within the port.

CapSense_sensorBaselineLow[]

This array holds the fractional byte of baseline data of each sensor used in the low
pass filter for baseline update. The array’s size is equal to the total number of
sensors. The CapSense_sensorBaselineLow[] array is updated by these functions:

 CapSense_InitializeSensorBaseline()

 CapSense_InitializeAllBaselines()

 CapSense_UpdateSensorBaseline()

 CapSense_UpdateEnabledBaselines()

CapSense_sensorBaseline[]

This array holds the baseline data of each sensor. The array’s size is equal to the total
number of sensors. The CapSense_sensorBaseline[] array is updated by these
functions:

 CapSense_InitializeSensorBaseline()

 CapSense_InitializeAllBaselines()

 CapSense_UpdateSensorBaseline()

 CapSense_UpdateEnabledBaselines().

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 80 of 107 Document Number: 002-17945 Rev. **

Array Description

CapSense_sensorSignal[]

This array holds the sensor signal count computed by subtracting the previous
baseline from the current raw count of each sensor. The array size is equal to the total
number of sensors. The Widget Resolution parameter defines the resolution of this
array as 1 byte or 2 bytes. The CapSense_sensorSignal[] array is updated by these
functions:

 CapSense_InitializeSensorBaseline()

 CapSense_InitializeAllBaselines()

 CapSense_UpdateSensorBaseline()

 CapSense_UpdateEnabledBaselines().

CapSense_sensorOnMask[]

This is a uint8 array that holds the sensor 'on' or 'off' state (for buttons, matrix buttons
or sliders). CapSense_sensorOnMask[0] contains the masked bits for sensor 0
through 7 (sensor 0 is bit 0, sensor1 is bit 1). CapSense_sensorOnMask[1] contains
the masked bits for sensor 8 through 15 (if they are needed), and so on. This uint8
array contains as many elements as are necessary to contain all placed sensor. The
value of a bit is 1 if the sensor is on and 0 if the sensor is off.

CapSense_ModulatorIDAC[]
This array contains an 8-bit IDAC value for every sensor. The array size is equal to
the total number of sensors.

CapSense_CompensationIDAC[]
This array contains a 7-bit IDAC value for every sensor. The array size is equal to the
total number of sensors.

CapSense_senseClkDividerVal[]
This array contains the Sense Clock dividers for every sensor. An array is generated
only if the Individual frequency settings are enabled in the Customizer.

CapSense_sampleClkDividerVal[]
This array contains the Modulator Clock dividers for every sensor. An array is
generated only if the Individual frequency settings are enabled in the Customizer.

CapSense_rawFilterData1[]

This array is used to store previous samples of any enabled raw data filter.

The CapSense_rawFilterData1[] data is updated by this function:

 CapSense_UpdateSensorBaseline()

CapSense_rawFilterData2[]

This array is used to store previous samples of enabled raw data filter. It is required
only for median or average filters (these filters also use CapSense_rawFilterData1
array to store previous samples).

The CapSense_rawFilterData2[] data is updated by this function:

 CapSense_UpdateSensorBaseline()

CapSense_lowBaselineResetCnt[]

The elements of this array are used as the counter to decide if baseline reset should
be done for each of the scanned sensors. The counter increments if the difference
signal is negative and above the CapSense_NEGATIVE_NOISE_THRESHOLD.
When the counter reaches the CapSense_LOW_BASELINE_RESET value, the
baseline for that sensor will be re-initialized and counter set to zero. The
CapSense_lowBaselineResetCnt[] data is updated by this function:

 CapSense_UpdateSensorBaseline()

CapSense_fingerThreshold[]
This array contains the level of signal for each sensor that determines if a finger is
present on the sensor.

CapSense_noiseThreshold[]
This array contains the level of signal for each sensor that determines the level of
noise in the capacitive scan. Noise below the threshold is used to update the sensors
baseline. Noise above the threshold is not used to update the baseline.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 81 of 107

Array Description

CapSense_hysteresis[]

This array contains hysteresis values for each widget.

The CapSense_debounceCounter[] data is updated by this function:

 CapSense_CalculateThresholds()

CapSense_debounce[]

This array holds the debounce value for each Widget’s debounce feature. The value is
set for widgets that have this parameter. These widgets are buttons, matrix buttons,
proximity, and guard sensor. All other widgets do not have a debounce parameter and
use the last element of this array with value 0 (0 means no debounce). The
CapSense_debounce[] array is used for initialization of the
CapSense_debounceCounter[] array.

CapSense_debounceCounter[]

This array holds the current debounce counter of a sensor. The counter is
decremented if the sensor is active (sensor signal is above the finger threshold plus
hysteresis). When it reaches 1, the sensor ON mask (CapSense_sensorOnMask) will
be set and the counter value reset to the default value from CapSense_debounce[]
array. The same occurs when the sensor goes inactive (touch release) and the sensor
signal is below the finger threshold minus hysteresis. This functionality is implemented
in CapSense_CheckIsSensorActive() function.

The CapSense_debounceCounter[] data is updated by these functions:

 CapSense_BaseInit()

 CapSense_CheckIsSensorActive()

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the component’s generated source files,
perform the following:

 Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the component’s source code.

 Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

 Write the function implementation (in any user file).

Macro Callback [4] Associated Macro Description

CapSense_ISR_EntryCallback CapSense_ISR_ENTRY_CALLBACK Used at the beginning of the _ISR() interrupt
handler to perform additional application-
specific actions.

4 The macro callback name is formed by component function name optionally appended by short explanation and
“Callback” suffix.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 82 of 107 Document Number: 002-17945 Rev. **

Macro Callback [4] Associated Macro Description

CapSense_ISR_ExitCallback CapSense_ISR_EXIT_CALLBACK Used at the end of the _ISR() interrupt
handler to perform additional application-
specific actions.

CapSense_PreScan_PreSettlingD
elay_Debug_Callback

CapSense_PRE_SCAN_PRE_SETTLIN
G_DELAY_DEBUG_CALLBACK

Used in the _PreScan() function to perform
additional application-specific actions.

CapSense_PreScan_Debug_Callb
ack

CapSense_PRE_SCAN_DEBUG_CALLB
ACK

Used in the _PreScan() function to perform
additional application-specific actions.

CapSense_PostScan_Debug_Call
back

CapSense_POST_SCAN_DEBUG_CALL
BACK

Used in the _PostScan() function to perform
additional application-specific actions.

CapSense_ReadMessage_MBX_
READ_MSG_Callback

CapSense_READ_MESSAGE_MBX_RE
AD_MSG_CALLBACK

Used in the _ReadMessage() function to
perform additional application-specific
actions.

CapSense_ProcessAllWidgets_Ca
llback

CapSense_PROCESS_ALL_WIDGETS_
CALLBACK

Used in the _ProcessAllWidgets() function to
perform additional application-specific
actions.

Constants

The following constants are defined. Some of the constants are defined conditionally and will
only be present if needed for the current configuration.

 CapSense_TOTAL_SENSOR_COUNT – Defines the total number of sensors within the
CapSense CSD component.

Sensor Constants

A constant is provided for each sensor. Any function that takes sensor as an argument can use
the constants. For example, these APIs take sensor as an argument:

ScanSensor(), ReadSensorRaw(), CheckIsSensorActive(), InitializeSensorBaseline(),
UpdateSensorBaseline(), GetBaselineData(), GetDiffCountData(),
GetNormalizedDiffCountData(), GetNoiseEnvelope(), WriteSensorRaw(), SetBaselineData(),
SetSensitivity(), GetSensitivityCoefficient(), SetLowBaselineReset(), GetLowBaselineReset().

The constant names consist of:

Instance name + "_SENSOR" + Widget Name + element + "#element number" + "__" +
Widget Type

These constants are contained in the generated code (Capsense.h). The names are forced to
upper case.

For example:

/* Define Sensors */

#define CapSense_SENSOR_TP1_ROW0__TP 0

#define CapSense_SENSOR_TP1_ROW1__TP 1

#define CapSense_SENSOR_TP1_COL0__TP 2

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 83 of 107

#define CapSense_SENSOR_TP1_COL0__TP 3

#define CapSense_SENSOR_LS0_E0__LS 5

#define CapSense_SENSOR_LS0_E1__LS 6

#define CapSense_SENSOR_PROX1__PROX 7

 Widget Name – The user-defined name of the widget (must be a valid C style identifier).
The widget name must be unique within the CapSense CSD component. All Widget
Names are upper case.

 Element Number – The element number only exists for widgets that have multiple
elements, such as radial sliders. For touchpads and matrix buttons, the element number
consists of the word ‘Col’ or ‘Row’ and its number (for example: Col0, Col1, Row0, Row1).
For linear and radial sliders, the element number consists of the character ‘e’ and its
number (for example: e0, e1, e2, e3).

 Widget Type – There are several widget types:

Alias Description

BTN Buttons

LS Linear Sliders

RS Radial Sliders

TP Touchpads and Trackpad

MB Matrix Buttons

PROX Proximity Sensors

GEN Generic Sensors

GRD Guard Sensor

Widget Constants

A constant is provided for each widget. Any function that takes widget as an argument can use
the constants. For example, these APIs take widget as an argument:

CapSense_CheckIsWidgetActive(), CapSense_EnableWidget(), CapSense_DisableWidget(),
CapSense_GetCentroidPos(), CapSense_GetRadialCentroidPos(),
CapSense_GetTouchCentroidPos(), ScanWidget(), GetMatrixButtonPos(),
GetNoiseThreshold(), GetNegativeNoiseThreshold(), GetFingerThreshold(),
GetFingerHysteresis(), SetDebounce(), GetDebounce(), SetFingerHysteresis(),
SetNoiseThreshold(), SetNegativeNoiseThreshold(), SetFingerThreshold().

The constants consist of:

Instance name + Widget Name + Widget Type

These constants are contained in the generated code (Capsense_CSHL.h). The names are
forced to upper case.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 84 of 107 Document Number: 002-17945 Rev. **

For example:

/* Widgets constants definition */

#define CapSense_UP__BTN 0

#define CapSense_DOWN__BTN 1

#define CapSense_VOLUME__SL 2

#define CapSense_TOUCHPAD__TP 3

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog (File > Example Project…). For component-specific
examples, open the dialog from the Component Catalog or an instance of the component in a
schematic. For general examples, open the dialog from the Start Page or File menu. As needed,
use the Filter Options in the dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The CapSense CSD component has the following specific deviation:

MISRA-
C:2004 Rule

Rule Class
(Required/
Advisory) Rule Description Justification of Violation(s)

8.8 R
An external object or function shall
be declared in one and only one file.

Some arrays are generated based on the component
configuration and these arrays are declared locally in
the .c source files where they are used instead of in .h
include files.

11.4 A
A cast should not be performed
between a pointer to object type and
a different pointer to object type.

In the component tuner helper, pointers to component
structures are cast to 8-bit data pointers and then
passed to an I2C API for transmission. The I2C
component only transmits streams of bytes, so this
cast is required.

17.4 R
Array indexing shall be the only
allowed form of pointer arithmetic.

The component has several functions that take pointer
arguments. The arguments are intended to be passed
arrays of data and they are accessed using array
indexing.

19.7 A
A function should be used in
preference to a function-like macro.

Function-like macros are used to improve
performance.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 85 of 107

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used, and component configuration. This table shows the memory use for all APIs
available in the given component configuration.

The measurements were done with an associated compiler configured in release mode with
optimization set for size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.

Configuration

PSoC 4000
PSoC 4100/

PSoC 4200

PSoC 4100M/

PSoC 4200M

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Widgets: 5-buttons

Tuning method: Manual

Compensation IDAC: Enabled

Auto Calibration: Enabled

Raw data filter: First Order IIR ¼

BIST: Enabled

Precharging mode: PRS_Auto

Individual frequency settings: Enabled

Widget Resolution: 8-bit

3980 107 3944 107 4036 107

Widgets: 5-segment linear slider

Tuning method: Manual

Compensation IDAC: Enabled

Auto Calibration: Enabled

Raw data filter: First Order IIR ¼

Position noise filter: First Order IIR ¼

BIST: Enabled

Precharging mode: PRS_Auto

Individual frequency settings: Enabled

Widget Resolution: 8-bit

4082 108 3982 108 4134 108

Widgets: 5-buttons, 5-segment linear slider

Tuning method: Manual

Compensation IDAC: Enabled

Auto Calibration: Enabled

Raw data filter: First Order IIR ¼

Position noise filter: Jitter

BIST: Enabled

Precharging mode: PRS_Auto

Individual frequency settings: Enabled

Widget Resolution: 8-bit

4568 201 4442 201 4637 201

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 86 of 107 Document Number: 002-17945 Rev. **

Configuration

PSoC 4000
PSoC 4100/

PSoC 4200

PSoC 4100M/

PSoC 4200M

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Widgets: 4x4 Matrix Button

Tuning method: Manual

Compensation IDAC: Enabled

Auto Calibration: Enabled

Raw data filter: First Order IIR ¼

BIST: Enabled

Precharging mode: PRS_Auto

Individual frequency settings: Enabled

Widget Resolution: 8-bit

4012 164 3952 164 4068 164

Widgets: 8x8 Touchpad

Tuning method: Manual

Compensation IDAC: Enabled

Auto Calibration: Enabled

Raw data filter: First Order IIR ¼

Position noise filter: First Order IIR ¼

BIST: Enabled

Precharging mode: PRS_Auto

Individual frequency settings: Enabled

Widget Resolution: 8-bit

4622 299 4490 299 4682 299

Pin Assignments

The CapSense customizer generates a pin alias name for each of the CapSense sensors and
support signals. These aliases are used to assign sensors and signals to physical pins on the
device. Assign CapSense CSD component sensors and signals to pins in the Pin Editor tab of
the Design Wide Resources file view.

Sensor Pins

Aliases are provided to associate sensor names with widget types and widget names in the
CapSense customizer.

The aliases for sensors are:

Widget Name + Element Number + "__" + Widget Type

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 87 of 107

Cmod Pin

One side of the external modulator capacitor (CMOD) should be connected to a physical pin and
the other to GND. In PSoC 4100/PSoC 4200 devices, the CMOD can be connected to P4[2] pin. In
PSoC 4000 devices, the CMOD can be connected to P0[4] pin. In PSoC 4100M/PSoC 4200M
devices, the CMOD can be connected to P4[2] or P5[0] pin.

Recommended CMOD value is 2.2 nF.

Shield Pin

Shield alias can be assigned to any available pin.

Cshield_tank Pin

In PSoC 4100/PSoC 4200 devices, the Cshield_tank can be connected to P4[3] pin. In
PSoC 4000 devices, the Cshield_tank can be connected to P0[2] pin. In PSoC 4100M/
PSoC 4200M devices, the Cshield_tank can be connected to 4[3] or 5[1] pin.

Functional Description

Definitions

Sensor

A sensor is a conductive element on a substrate whose capacitance increase with a touch; the
conductive element is connected to one pin of PSoC.

Examples of sensors include: Copper pad on PCB connected to PSoC, Copper or silver on Flex
PCB connected to PSoC, Silver ink on PET connected to PSoC, ITO on glass connected to
PSoC.

CapSense Widget

A CapSense widget is one sensor or group of sensors which has similar properties used to
construct functionality.

Some examples of CapSense Widgets include button widget or proximity widgets which usually
has only one sensor to detect touch or no-touch status. Linear slider, radial slider, touchpads and
matrix buttons widgets are examples for widget constructed by group of sensors which has
similar properties.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 88 of 107 Document Number: 002-17945 Rev. **

Scan Time

Scan time is a period of time that the CapSense component is scanning one capacitive sensor.

In Manual Mode, the Sensor Scan Time depends on resolution and modulator clock:

Scan Time (ms) = (2N-1)*ModDiv / clockInKHz,

where:

 N – resolution

 ModDiv – Modulator Clock Divider

 clockInKHz – HFCLK clock in KHz

Note Values shown here may differ from those estimated by the customizer scan time because
of the approximation of the setup and preprocessing time made by the customizer.

In Auto (Smartsense) Tuning Mode, the Sensor Scan Time depends on Parasitic Capacitance
(Cp) and Sensitivity.

The following table shows Scanning Time in µs versus Sensitivity and Parasitic Capacitance for
HFCLK = 24 MHz.

Parasitic
Capacitance, pF

Sensitivity

1 2 3 4

10 410 237 237 153

15 750 410 237 237

20 750 410 410 237

25 2800 1440 750 750

30 2800 1440 750 750

35 2800 1440 750 750

40 2800 1440 1440 750

45 2800 1440 1440 750

50 5600 2800 1440 1440

The following table shows Resolution versus Sensitivity and Parasitic Capacitance for HFCLK =
24 MHz.

Parasitic
Capacitance, pF

Sensitivity

1 2 3 4

10 12 11 11 10

15 13 12 11 11

20 13 12 12 11

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 89 of 107

Parasitic
Capacitance, pF

Sensitivity

1 2 3 4

25 14 13 12 12

30 14 13 12 12

35 14 13 12 12

40 14 13 13 12

45 14 13 13 12

50 15 14 13 13

Note Scan time is an estimate based on the following settings: CPU Clock = 24 MHz, number of
channels = 1. The Scanning time was measured as the time interval of one sensor scan. This
time includes sensor setup time, sample conversion interval, and data processing time. These
values can be used to estimate scanning speed for other clock rates and additional sensors by
scaling the provided values linearly.

Scan Resolution

This parameter defines maximum raw count (full scale range) for scanning which equals to 2N-1,
where N - scanning resolution. Raising the resolution raises sensitivity, SNR, and noise immunity
at the expense of scan time.

Table below provides recommended Scan Resolution settings based on Cp and the finger
capacitance Cf. Cf is the change in capacitance of a sensor when a finger is placed on the
sensor. Cf depends on overlay thickness, sensor size, and proximity of the sensor to other large
conductors.

Cp (pF) Cf = 0.1pF Cf = 0.2pF Cf = 0.4pF Cf = 0.8pF

<6 12 11 10 9

7-12 13 12 11 10

13-24 14 13 12 11

25-48 15 14 13 12

>49 16 15 14 13

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 90 of 107 Document Number: 002-17945 Rev. **

The following figure provides Cf values as a function of overlay thickness and circular sensor
diameter.

Sensor Scan Slot

A sensor scan slot is a period of time that the CapSense module is scanning one or more
combined capacitive sensors. Multiple sensors can be combined in a given scan slot to enable
features such as ganged proximity sensing. This means that a proximity sensor can be a
complex sensor that can be configured in the Scan Order tab by selecting certain other sensors.
These sensors will be a part of the complex proximity sensor and will have the common
parameters when this complex sensor is being scanned.

To reduce term confusion, a sensor scan slot only refers to the period of time a sensor is
scanned, not to the sensor itself.

The Complex sensors section describes how to configure the complex sensor.

Raw Count

The CapSense component measures the capacitance of the sensor and provides the result in a
digital form called Raw Count. The value of Raw Count increases as sensor capacitance
increases.

Baseline

The raw count values of a sensor vary gradually due to changes in the environment such as
temperature and humidity. These gradual variations are compensated for with the baseline
values. The baseline keeps track of gradual changes in raw count using a software algorithm. It
is a low-pass filter that is less sensitive to sudden changes in the raw count. The baseline values
provide the reference level for computing the difference counts.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 91 of 107

Difference Count

The difference count is the difference between the raw count and the baseline of the sensor.
Usually, the difference count is zero when the sensor is untouched. When the sensor is touched,
it causes the raw count to increase, and results in a difference count value.

Sensor State

The state of a sensor is represented as 1 if the button is ON (touched) and 0 if the button is OFF
(untouched). The ON state is a.k.a active state and OFF state is a.k.a inactive state.

Finger Threshold

This value is used to determine if a finger is present on the sensor. The CapSense component
uses the Finger Threshold parameter to judge the active/inactive state of a sensor. If the
Difference Count value of a sensor is greater than the Finger Threshold value, the sensor is
judged as active.

Note This definition assumes that the hysteresis level is set to 0 and Debounce is set to 1.

Hysteresis

The Hysteresis parameter is used in conjunction with the finger threshold to determine sensor
state. The touch state turns ON once the difference count is higher than the Finger threshold +
Hysteresis. The touch state stays on until the difference counts is reduces below Finger
threshold - Hysteresis.

This prevents the touch / no touch state machine from reporting ON and OFF due to noise when
the difference counts very close to Finger Thershold.

Debounce

Debounce parameter adds a counter to the sensor transition from OFF to ON. For the sensor to
transition from OFF to ON, the difference count value must stay above the finger threshold +
hysteresis level for the number of samples specified as Debounce.

Noise Threshold

For individual sensors, the Noise Threshold parameter sets the upper raw count limit for
updating the baseline value. For slider sensors, it sets the lower limit for difference count to be
considered for centroid calculation.

Negative Noise Threshold

The Negative Noise Threshold parameter acts as a negative difference count threshold. If the
raw count is below the baseline minus the negative noise threshold for the number of samples
specified by the Low Baseline Reset parameter, the baseline is reset to the current raw count
value.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 92 of 107 Document Number: 002-17945 Rev. **

Low Baseline Reset

The Low Baseline Reset parameter works together with the Negative Noise Threshold
parameter. It counts the number of abnormally low samples required to reset the baseline. It is
used to correct the finger-on-at-startup condition.

Sensors Autoreset

This parameter determines whether the baseline is updated at all times, or only when the
difference counts are below the noise threshold.

When Sensors Autoreset is enabled, the baseline is updated all the times. These limits the
maximum time duration of the sensor can report an ON state when sensor is touched
continuously for long time (typical values are 5 to 10 seconds), but prevents the sensors from
permanently reporting ON state when the raw count accidentally rises without anything touching
the sensor. This sudden rise can be caused by an electrical damage in the system, unacceptable
operation like metal object accidently falled on front panel etc.

When Sensors Autoreset is disabled, the baseline is updated only when the difference counts
are below the noise. This makes sensor to report ON state as long as sensor is touched.

Parasitic Capacitance (Cp)

The parasitic capacitance is the residual capacitance of sensor. It is the capacitance of sensor
measured without a finger touch on the sensor

The parasitic capacitance of a sensor influenced by various things such as: PCB layout,
dielectric constand of PCB material, PCB thickness, overlay material and overlay thickness etc.
Environmental conditions such as temperature may also impact dielectric constant of PCB
material which will indirectly affect the sensor parasitic capacitance.

Finger Capacitance (Cf)

The finger capacitance is the capacitance attributed to the addition of the finger to the sensor.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 93 of 107

CapSense Clocking

PSoC 4100/PSoC 4200

Clocks for PSoC 4100/PSoC 4200 devices are chained. The following figure shows the
CapSense clocking tree for PSoC 4100/PSoC 4200.

HFCLK

(IMO or external

clock)

Clocks for Direct Clock Mode in PSoC 4100/PSoC 4200:

Modulator

Divider (MD)

Reg

IMO Clock Analog Switch

Divider (ASD)

Reg

Trigger:

F/2

Sense Clock

(SenseClk)

Modulator

Clock

(SampleClk)

Modulator Clock = HFCLK/MD

Sense Clock = HFCLK/MD/ASD/2

HFCLK

(IMO or external

clock)

Clocks for PRS Clock Mode in PSoC 4100/PSoC 4200:

Modulator Divider

(MD) Reg

IMO Clock Analog Switch

Divider (ASD) Reg
PRS

Sense Clock

(SenseClk)

Modulator Clock

(SampleClk)

Modulator Clock = HFCLK/MD

PRS Maximum Sense Clock = HFCLK/MD/ASD/2

PRS Average Sense Clock = HFCLK/MD/ASD/4

The Modulator clock is formed by dividing the HFCLK Clock by the Modulator Clock Divider. The
Sense Clock is formed by dividing the Modulator Clock by the Sense Clock Divider. For example,
if you configure the Sense Clock Divider value to 8 and the Modulator Clock Divider value to 4,
then the Modulator Clock Divider Reg will be configured to dividing by 4 and the Sense Clock
Divider Reg will configured to dividing by 2.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 94 of 107 Document Number: 002-17945 Rev. **

PSoC 4000/PSoC 4100M/PSoC 4200M

Clocks for PSoC 4000/PSoC 4100M/PSoC 4200M devices are not chained. The following figure
shows the CapSense clocking tree for PSoC 4000/PSoC 4100M/PSoC 4200M.

HFCLK (12 MHz)

Clocks for Direct Clock Mode in PSoC 4000/PSoC 4100M/PSoC 4200M:

Modulator Divider

(MD) Reg

HFCLK Clock Analog Switch

Divider (ASD) Reg

Trigger:

F/2

Sense Clock

(SenseClk)

Modulator Clock

(SampleClk)

Modulator Clock = HFCLK/MD

Sense Clock = HFCLK/ASD/2

HFCLK (12 MHz)

Clocks for PRS Clock Mode in PSoC 4000/PSoC 4100M/PSoC 4200M:

Modulator Divider

(MD) Reg

HFCLK Clock

Analog Switch

Divider (ASD) Reg
PRS

Sense Clock

(SenseClk)

Modulator Clock

(SampleClk)

Modulator Clock = HFCLK/MD

PRS Maximum Sense Clock = HFCLK/ASD/2

PRS Average Sense Clock = HFCLK/ASD/4

CapSense Analog System

CapSense Analog System consists on Sigma Delta Modulator, Analog MUX bus, Modulation
IDAC (IDAC1 – 8 bit, Main IDAC) and Compensation IDAC (IDAC2 – 7 bit, Second IDAC).

In Single IDAC mode (Compensation IDAC is disabled on the general tab of Customizer) and the
component uses only Main IDAC (IDAC1 – 8 bit). In this case Main IDAC is configured as
variable (controlled by modulator output).

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 95 of 107

In Split IDAC mode (Compensation IDAC is enabled on general tab of Customizer) the
component uses both IDACs (8-bit Main IDAC and 7-bit Second IDAC).

In this case Main IDAC (8-bit) is called Modulation IDAC because it is configured as Variable
IDAC and Second IDAC (7-bit) is called Compensation because it is configured as fixed IDAC.

Sigma-Delta

Modulator

Vref = 1.2 V

Cmod

A
M

U
X

B
U

S

Cs

SW1

SW3

Modulation IDAC

(IDAC1 – 8bit)

A
n

a
lo

g
 S

w
it
c
h

C
lo

c
k

P4 Capsense

CapSense Analog System in Single IDAC mode

Sigma-Delta

Modulator

Vref = 1.2 V

Cmod

A
M

U
X

B
U

S

Cs

SW1

SW3

Compensation

IDAC

(IDAC2 – 7 bit)

A
n

a
lo

g
 S

w
it
c
h

C
lo

c
k

P4 Capsense

CapSense Analog System in Split IDAC mode

Modulation IDAC

(IDAC1 – 8 bit)

API Resolution – Interpolation and Scaling

With slider sensors and touchpads, it is often necessary to determine finger (or other capacitive
object) position to more resolution than the native pitch of the individual sensors. The contact
area of a finger on a sliding sensor or a touchpad is often larger than any single sensor.

In order to calculate the interpolated position using a centroid calculation, the array is first
scanned to verify that a given sensor location is valid. The requirement is for some number of
adjacent sensor signals to be above the noise threshold. When the strongest signal is found, that
signal and adjacent contiguous signals larger than the noise threshold are used to compute a
centroid. As few as two and as many as eight sensors are used to calculate the centroid.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 96 of 107 Document Number: 002-17945 Rev. **

CapSense_GetCentroid (CapSense_CalcCentroid)

function in the PSoC4 (for Linear Slider)

Resolution – API Resolution set in the Customiser,

n – Number of sensor elements in the Customiser.

maximum: Index of maximum element within centroid.

0 1 2 3 4

Si – different counts (with subtracted Noise Threshold

value) near by the maximum position:

maximum

Sx+1
Sx-1

Sx0

Example 1:

We have linear centroid of 5 elements with resolution = 100. Noise

threshold = 2.

CapSense_sensorSignal= [0, 0, 100, 200, 100].

maximum = 3;

Then position = ((98-98)/(98+108+98) + 3)*100/(5-1) = 75.

Example 2:

We have linear centroid of 5 elements with resolution = 100. Noise

threshold = 20.

CapSense_sensorSignal= [0, 10, 100, 210, 180].

maximum = 3;

Then position = ((160-80)/(80+190+160) + 3)*100/(5-1) = 79.65 = 80

Rounded

Note1 for Radial Slider:

Sx+1 - Sx-1
position = (

Sx-1 + Sx0 + Sx+1
+ maximum) * (Resolution / (n-1))

Sx+1 - Sx-1
position = (

Sx-1 + Sx0 + Sx+1
+ maximum) * (Resolution / n)

Note2 for Radial Slider:

For Radial Slider the algorithm takes to the account the first and last slider

segments.

For example if CapSense_sensorSignal= [30, 0, 0, 40, 180] the position in

the Radial Slider is calculated for x0; x3 and x4 elements. But in the Linear

Slider the position is calculated for x3 and x4 elements only.

if position < 0 then

Sx+1 - Sx-1
position = (

Sx-1 + Sx0 + Sx+1
+ maximum + n) * (Resolution / n)

position

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 97 of 107

The calculated value is typically fractional. In order to report the centroid to a specific resolution,
for example a range of 0 to 100 for 12 sensors, the centroid value is multiplied by a scalar. It is
more efficient to combine the interpolation and scaling operations into a single calculation and
report this result directly in the desired scale. This is handled in the high-level APIs. Slider sensor
count and resolution are set in the CapSense CSD customizer.

Diplexing

In a diplexed slider, each PSoC sensor connection in the slider is mapped to two physical
locations in the array of slider sensors. The first (or numerically lower) half of the physical
locations is mapped sequentially to the base assigned sensors, with you assigning the port pin
using the CapSense customizer. The second (or upper) half of the physical sensor locations is
automatically mapped by an algorithm in the customizer and listed in an include file. The order is
established so that adjacent sensor actuation in one half does not result in adjacent sensor
actuation in the other half. Be careful to determine this order and map it onto the printed circuit
board.

Figure 1. Diplexing

You should balance sensor capacitance in the slider. Depending on sensor or PCB layouts,
there may be longer routes for some of the sensor pairs. The diplex Sensor number table is
automatically generated by the CapSense customizer when you select diplexing and is included
in the following table for your reference.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 98 of 107 Document Number: 002-17945 Rev. **

Table 1. Diplexing Sequence for Different Slider Segment Counts

Total Slider
Segment

Count Segment Sequence

10 0,1,2,3,4,0,3,1,4,2

12 0,1,2,3,4,5,0,3,1,4,2,5

14 0,1,2,3,4,5,6,0,3,6,1,4,2,5

16 0,1,2,3,4,5,6,7,0,3,6,1,4,7,2,5

18 0,1,2,3,4,5,6,7,8,0,3,6,1,4,7,2,5,8

20 0,1,2,3,4,5,6,7,8,9,0,3,6,9,1,4,7,2,5,8

22 0,1,2,3,4,5,6,7,8,9,10,0,3,6,9,1,4,7,10,2,5,8

24 0,1,2,3,4,5,6,7,8,9,10,11,0,3,6,9,1,4,7,10,2,5,8,11

26 0,1,2,3,4,5,6,7,8,9,10,11,12,0,3,6,9,12,1,4,7,10,2,5,8,11

28 0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,3,6,9,12,1,4,7,10,13,2,5,8,11

30 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,3,6,9,12,1,4,7,10,13,2,5,8,11,14

32 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14

34 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14

36 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14,17

38 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,0,3,6,9,12,15,18,1,4,7,10,13,16,2,5,8,11,14,17

40 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,17

42 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,17,20

44 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,2,5,8,11,14,17,2
0

46 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,22,2,5,8,11,1
4,17,20

48 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,22,2,5,8,1
1,14,17,20,23

50 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,0,3,6,9,12,15,18,21,24,1,4,7,10,13,16,19,22,2
,5,8,11,14,17,20,23

52 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,0,3,6,9,12,15,18,21,24,1,4,7,10,13,16,19,2
2,25,2,5,8,11,14,17,20,23

54 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,0,3,6,9,12,15,18,21,24,1,4,7,10,13,16,1
9,22,25,2,5,8,11,14,17,20,23,26

56 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,0,3,6,9,12,15,18,21,24,27,1,4,7,10,1
3,16,19,22,25,2,5,8,11,14,17,20,23,26

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 99 of 107

Interrupt Service Routines

The CapSense component uses an interrupt that triggers after the end of each sensor scan. Sub
routine is provided where you can add your own code if required. The stub routine is generated
in the CapSense_INT.c file the first time the project is built. Your code must be added between
the provided comment tags in order to be preserved between builds.

Filters

Several filters are provided in the CapSense component: median, averaging, first order IIR and
jitter. The filters can be used with both raw sensor data to reduce sensor noise and with position
data of sliders and touchpad to reduce position noise.

Median Filter

The median filter looks at the three most recent samples and reports the median value. The
median is calculated by sorting the three samples and taking the middle value. This filter is used
to remove short noise spikes and generates a delay of one sample. This filter is generally not
recommended because of the delay and RAM use. Enabling this filter consumes 4 bytes of RAM
for each sensor(raw) and Widget(position). It is disabled by default.

Averaging Filter

The averaging filter looks at the three most recent samples of position and reports the simple
average value. It is used to remove short noise spikes and generates a delay of one sample.
This filter is generally not recommended because of the delay and RAM use. Enabling this filter
consumes 4 bytes of RAM for each sensor(raw) and Widget(position). It is disabled by default.

First Order IIR Filter

The first order IIR filter is the recommended filter for both raw and sensor filters because it
requires the smallest amount of SRAM and provides a fast response. The IIR filter scales the
most recent sensor or position data and adds it to a scaled version of the previous filter output.
Enabling this filter consumes and 2 bytes of RAM for each sensor(raw) and Widget(position).
The IIR1/4 is enabled by default for both raw and position filters.

1st-Order IIR filters:

current21previous2121IIR

current41previous4341IIR

current81previous8781IIR

current161previous1615161IIR

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 100 of 107 Document Number: 002-17945 Rev. **

Jitter Filter

This filter eliminates noise in the raw sensor or position data that toggles between two values
(jitter). If the most current sensor value is greater than the last sensor value, the previous filter
value is incremented by 1; if it is less, it is decremented. This is most effective when applied to
data that contains noise of four LSBs peak-to-peak or less and when a slow response is
acceptable, which is useful for some position sensors. Enabling this filter consumes two bytes of
RAM for each sensor(raw) and Widget(position). It is disabled by default.

Water Influence on CapSense System

The water drop and finger influence on CapSense are similar. However, water drop influence on
the whole surface of the sensing area differs from a finger influence.

There are several variants of water influence on the CapSense surface:

 Forming of thin stripes or streams of water on the device surface.

 Separate drops of water.

 Stream of water covering all or a large portion of the device surface, when the device is
being washed or dipped.

Salts or minerals that the water contains make it conductive. Moreover, the greater their
concentration, the more conductive the water is. Soapy water, sea water, and mineral water are
liquids that influence the CapSense unfavorably. These liquids emulate a finger touch on the
device surface, which can cause faulty device performance.

Waterproofing and Detection

This feature configures the CapSense CSD component to suppress water influence on the
CapSense system. This feature sets the following parameters:

 Enables a Shield electrode to be used to compensate for the water drops’ influence on the
sensor at the hardware level.

Shield Electrode

Some applications require reliable operation in the presence of water film or droplets. White
goods, automotive applications, various industrial applications, and others need capacitive
sensors that do not provide false triggering because of water, ice, and humidity changes that
cause condensation. In this case, a separate shielding electrode can be used. This electrode is
located behind or around the sensing electrodes. When water film is present on the device
overlay surface, the coupling between the shield and sensing electrodes is increased. The shield
electrode allows you to reduce the influence of parasitic capacitance, which gives you more
dynamic range for processing sense capacitance changes.

In some applications it is useful to select the shield electrode signal and its placement relative to
the sensing electrodes such that increasing the coupling between these electrodes caused by

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 101 of 107

moisture causes a negative touch change of the sensing electrode capacitance measurement.
This simplifies the high-level software API work by suppressing false touches caused by
moisture. The CapSense CSD component supports separate outputs for the shield electrode to
simplify PCB routing.

Figure 2. Possible Shield Electrode PCB Layout

Figure 2 illustrates one possible layout configuration for the button’s shield electrode. The shield
electrode is especially useful for transparent ITO touchpad devices, where it blocks the LCD
drive electrode’s noise and reduces stray capacitance at the same time.

In this example, the button is surrounded by a shielding electrode plane. As an alternative, the
shielding electrode can be located on the opposite PCB layer, including the plane under the
button. A hatch pattern is recommended in this case, with a fill ratio of about 30 to 40 percent.
No additional ground plane is required in this case.

When water drops are located between the shield and sensing electrodes, the parasitic
capacitance (CPAR) is increased and modulator current can be reduced.

The shield electrode can be connected to any pins. Set the drive mode to Strong Slow to reduce
ground noise and radiated emissions. Also, a slew limiting resistor can be connected between
the PSoC device and the shielding electrode.

How to use the proximity sensors

Proximity sensors detect the presence of a hand in the three-dimensional space around the
sensor. However, the actual output of the proximity sensor is an ON/OFF state similar to a
CapSense button. The ON/OFF state of the proximity sensor can be detected using the
CapSense_CheckIsSensorActive() or CapSense_CheckIsWidgetActive() API.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 102 of 107 Document Number: 002-17945 Rev. **

Proximity sensing can detect a hand at a distance of several centimeters to tens of centimeters
depending on the sensor construction. To increase the detected distance, the diameter of the
proximity sensor loop should be increased also. In practice, a well-configured proximity sensor
has a scan resolution of 16 bits and it requires a scan time much more than one for the normal
sensors. Because of the long scan time, the proximity widgets are excluded from the scanning
process by default. Use the CapSense_EnableWidget() function to enable the proximity widgets.

The CapSense_GetDiffCountData() API can be used to read the sensor signal level on the
proximity sensor. The Customizer provides the #defines for the proximity widget/sensor numbers
that are contained in the Capsense_CSHL.h and Capsense.h files. See the Widget Constants
and Sensor Constants sections for details.

You can also implement a proximity sensor by ganging other sensors together. This is
accomplished by combining multiple sensor pads into one large sensor using firmware. The
disadvantage of this method is high parasitic capacitance. See the Complex sensors section of
this document for details.

Resources

Digital Resources

Configuration Resource Type

CSD Fixed Blocks Interrupts

All Configurations 1 1

Analog Resources

Configuration Resource Type

8-bit CapSense IDACs 7-bit CapSense IDACs

Compensation IDAC disabled 1 0

Compensation IDAC enabled 1 1

SmartSense 1 1

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 103 of 107

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Specifications

Parameter Description Min Typ Max Units Conditions

VCSD Voltage range of operation 1.71 – 5.5 V

AC Specifications

Parameter Description Min Typ Max Units Conditions

SNR
Ratio of counts of finger to
noise

5 – – Ratio

1) Capacitance range of 9 to 35 pF,
0.1 pF sensitivity.

2) Capacitance range of 9 to 45 pF,
0.2 pF sensitivity.

IDAC1 DNL for 8-bit resolution -1 – 1 LSB

IDAC1 INL for 8-bit resolution -3 – 3 LSB

IDAC2 DNL for 7-bit resolution -1 – 1 LSB

IDAC2 INL for 7-bit resolution -3 – 3 LSB

IDAC1_CRT1
Output current of Idac1 (8-
bits) in High range

– 612 – µA

IDAC1_CRT2
Output current of Idac1(8-bits)
in Low range

– 306 – µA

IDAC2_CRT1
Output current of Idac2 (7-
bits) in High range

– 305 – µA

IDAC2_CRT2
Output current of Idac2 (7-
bits) in Low range

– 153 – µA

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 104 of 107 Document Number: 002-17945 Rev. **

Component Errata

This section lists known problems with the CapSense CSD component.

Cypress
ID

Version Problem Workaround

242894 2.40,
2.50,
2.60

When the Inactive sensor connection

parameter is set to “shield,” all sensors not
being scanned should be driven by the shield
signal. However, when all of the following
conditions are met, the sensors located on the
opposite segment of the AMUX bus to the HW
CSD Block are not driven by the shield:

 Shield is enabled

 Inactive sensor connection

parameter is set to “shield”

 Device contains segmented AMUX
bus (PSoC 4100M, PSoC 4200M,
PSoC 4200L, PSoC 4100 BLE, PSoC
4200 BLE, PRoC BLE, PSoC 4100S,
and PSoC Analog Coprocessor)

 Shield electrode and HW CSD Block
located on one segment of the AMUX
bus, and at least one sensor is on the
other segment of the AMUX bus

Using the
CapSense_SetUnscannedSensorState()
function with sensorState = SHIELD has no
effect on sensors located on the opposite
segment unless a workaround is applied.

Use one of the following workarounds:

1. Use specific configurations of the shield. Assign the
shield electrode to the opposite segment of the
AMUX bus if at least one sensor is located there.

2. Use specific configurations of the sensors. Assign
all sensors to the same segment of AMUX bus as
HW CSD block.

3. SW workaround. Add the following line before
CapSense_Start() function call to connect both
segments of the AMUX bus together:

 PSoC 4100M, PSoC 4200M:

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL1,0x33uL);

 PSoC 4100 BLE, PSoC 4200 BLE, PRoC BLE:

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL2,0x33uL);

 PSoC 4100S:

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL0,0x33uL);

 PSoC Analog Coprocessor:

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL1,0x33uL);

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL2,0x33uL);

 PSoC 4200L (CSD0 HW Block used):

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL2,0x33uL);

 PSoC 4200L (CSD1 HW Block used):

CY_SET_XTND_REG32(CYREG_HSIOM_AMUX_

SPLIT_CTL0,0x33uL);

Do not use the opposite segment of the AMUXB bus for
another purpose other than as CapSense.

248295 All For the PSoC 4000 device family, the first
scan after waking up from deep sleep could
produce lower raw count than all the following
scans.

Execute a dummy scan after waking up from deep
sleep.

258169 All Shield signal disappeares on shield electrode
after calling the CapSense_MeasureCShield()
BIST API.

To restore shield operation, use the following code:

CapSense_MeasureCShield();

CapSense_EnableShieldElectrode(

(uint32)CapSense_SHIELD_PIN_NUMBER,

(uint32)CapSense_SHIELD_PORT_NUMBER);

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 105 of 107

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.60 Updated component version to match the related CapSense
Gestures component.

Edited datasheet Added errata item 258169.

2.50 Disabled Position Noise Filter by default for the radial slider
widgets.

Updated datasheet.

It is not recommended to use the IIR filter or
average filter in case of the radial slider.

Added errata item 248295 to document deep
sleep scan issue.

2.40.b Edited datasheet Added errata item 242894 to document shield
signal issue.

2.40.a Edited Datasheet. Added Tuner UI description, usage, and validation
sections.

Removed link to obsolete PSoC 4 CapSense
Tuning Guide.

2.40 Added support for PSoC 4200L devices. New devices.

Removed the Errata section. Fixed the interference of the
Guard sensor with the operation of other sensors. The Guard
sensor placed along with the buttons in the list of widgets,
instead of the end of list.

The interference of the Guard sensor operation
with the operation of other sensors has been
fixed.

Added normalization to the calibration routine that improves
the slider and touchpad linearity.

Normalization makes IDACs of all slider elements
to be equal to the IDAC of the element with the
lowest sensitivity. This change has a large impact
in the case of the slider design rules violation or
when the component is not tuned well (the
parasitic capacitances of slider’s elements are
very different or the sense clock is too high).

2.30 User sections are replaced by callbacks. Added the callback mechanism to execute user
provided code from component API functions.

Removed support of the RVDS compiler. The RVDS compiler support has been removed
from PSoC Creator tool.

Fixed behavior of the shield configuration controls on the
“Advanced” tab to prevent the possibility of a wrong
configuration when the Ctank capacitor is disabled and IO
buffer is used to precharge it:

 The “Shield tank capacitor” option on the
“Precharge settings” panel will be grayed out and
set to “Precharge by Vref buffer” mode in the
case when the “Shield tank capacitor” option is
set to the “Disabled” state.

 Added an error message about the wrong
configuration if component version 2.20 was
configured incorrectly and then updated to
version 2.30.

This corrects a defect where the user was not
protected from the wrong shield precharge
configuration.

PSoC 4 Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Page 106 of 107 Document Number: 002-17945 Rev. **

Version Description of Changes Reason for Changes / Impact

Updated datasheet to add Component Errata section. To document an issue and workaround with the
“GuardSensor” widget.

2.20 Added support for PSoC 4100M/PSoC 4200M devices.

Removed the Cmod precharge in Advanced Tab. Precharge

by Vref buffer is set to default.

New devices and features.

2.10.a Datasheet edits. Added default values for some parameters and
clarified device support.

Clarified that CapSense_TunerComm() API is a
blocking call.

Added new parameters to AC Specifications

Added CapSense_EnableRawDataFilters and
CapSense_DisableRawDataFilters APIs.

2.10 The "Shield tank capacitor" field in the Customizer is set to the
"Disabled" state when shield is disabled.

The "Shield signal delay" is set to "None (default)" and greyed
out in the Customizer when shield is disabled.

The "Shield Tank capacitor enable" is set to "Disabled
(default)" and greyed out in the Customizer when shield is
disabled.

The Precharge setting of Shield tank capacitor is greyed out in
the Customizer.

Additional explanation of how to use proximity is added to the
datasheet.

Scan time values and resolutions are provided in the
datasheet.

Build Error when CSD is configured for Generic Widget only is
fixed.

Tuner is updated to show the actual IDAC values in the
Manual tuning mode when Auto Calibration option is enabled.

Sensitivity parameter on the Scan Order tab is greyed out in
the Customizer for Manual Tuning.

New devices and features.

PSoC® Creator™ Component Datasheet PSoC 4 Capacitive Sensing (CapSense® CSD)

Document Number: 002-17945 Rev. ** Page 107 of 107

Version Description of Changes Reason for Changes / Impact

2.0 Added support for PSoC 4000 devices.

Tuning and scanning algorithms were updated.

Changed names for Tuning Modes and IDACs in the dialog:

Baselining IDAC was renamed into Modulation IDAC and it is
always 8 bit;

Compensating IDAC was renamed into Compensation IDAC
and it is 7 bit;

None Tuning Method was renamed into Manual one;

Manual Tuning Method was renamed into Manual with run-
time tuning;

CapSense_idac1Settings array was renamed into
CapSense_modulationIDAC one;

CapSense_idac2Settings array was renamed into
CapSense_compensationIDAC one;

Added new APIs for parameters setting/reading.

Added BIST support.

Added Autocalibration support for manual mode.

New devices.

Better performance.

Improved usability.

1.11 Several global array names and descriptions were changed
and a few non-descript global arrays were added.

Added MISRA Compliance section. This component was not verified for MISRA-
C:2004 coding guidelines compliance.

1.10 The scan time was optimized.

1.0.a Updated link to PSoC 4 CapSense Design Guide, and various
edits to the datasheet

1.0 Initial version.

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a CapSense Component

	Component Parameters
	General Tab
	Load Settings/Save Settings
	Tuning method
	Threshold mode
	Raw Data Noise Filter
	Compensation IDAC
	Auto-calibration check box
	Water proofing and detection
	Enable BIST

	Widgets Config Tab
	Toolbar
	Buttons
	Tuning:

	Linear Sliders
	General:
	Tuning:

	Radial Slider
	General:
	Tuning:

	Matrix Buttons
	General:
	Tuning:

	Touchpads
	General:
	Tuning:

	Proximity Sensors
	General:
	Tuning:

	Generics
	Tuning:

	Scan Order Tab
	Toolbar
	Additional Hot Keys:

	Widget List
	Complex sensors
	Sense clock divider
	Modulator clock divider
	Sensor scan time and Total scan time labels
	Modulation IDAC
	Compensation IDAC
	Sensitivity

	Advanced Tab
	Current Source
	IDAC range
	Analog Switch Drive Source
	Individual Frequency Settings
	Sense Clock Divider
	Modulator Clock Divider
	Sensor Auto Reset
	Widget Resolution
	Negative Noise Threshold
	Low Baseline Reset
	Inactive Sensor Connection
	Shield
	Shield signal delay
	Shield tank capacitor enable
	Guard Sensor
	Csh_tank precharge

	Tune Helper Tab
	Enable Tune Helper
	EzI2C component instance name

	Tuner GUI Description
	General Interface
	Work area
	Menus
	Toolbar
	Tool Windows
	Status Bar

	Tuning Tab
	Sensor Properties Tool Window

	Graphing Tab
	Chart area
	Graphing Properties Tool Window
	Logging Properties Tool Window

	Validation Tab
	Top panel controls:
	Validation Advanced Properties

	Debugging Tab
	Save/Load Settings Feature

	Using the Tuner GUI
	Create a Design in PSoC Creator
	Place and configure the CapSense component.
	Place and Configure an “EZI2C Slave” Component
	Select Pins
	Add Code
	Build the Design and Program your PSoC Device
	Ensure I2C pin Connections on Hardware
	Launch and Configure the Tuner Application
	Start Tuning

	Validating CapSense with the Tuner GUI
	Start Validation
	Stimulation Sensors
	Validation Displays

	Validation Results

	Application Programming Interface
	General APIs
	void CapSense_Start(void)
	void CapSense_Stop(void)
	void CapSense_Sleep(void)
	void CapSense_Wakeup(void)
	void CapSense_Init(void)
	void CapSense_Enable(void)
	void CapSense_SaveConfig(void)
	void CapSense_RestoreConfig(void)

	Scanning Specific APIs
	void CapSense_ScanSensor(uint32 sensor)
	void CapSense_ScanWidget (uint32 widget)
	void CapSense_ScanEnabledWidgets(void)
	uint32 CapSense_IsBusy (void)
	void CapSense_SetScanSlotSettings(uint32 slot)
	void CapSense_ClearSensors(void)
	void CapSense_EnableSensor(uint32 sensor)
	void CapSense_DisableSensor(uint32 sensor)
	uint16 CapSense_ReadSensorRaw(uint32 sensor)
	uint32 CapSense_ReadCurrentScanningSensor(void)

	High-Level APIs
	void CapSense_InitializeSensorBaseline(uint32 sensor)
	void CapSense_InitializeEnabledBaselines(void)
	void CapSense_InitializeAllBaselines(void)
	void CapSense_UpdateSensorBaseline(uint32 sensor)
	void CapSense_UpdateEnabledBaselines(void)
	void CapSense_EnableWidget(uint32 widget)
	void CapSense_DisableWidget(uint32 widget)
	uint32 CapSense_CheckIsWidgetActive(uint32 widget)
	uint32 CapSense_CheckIsAnyWidgetActive(void)
	uint16 CapSense_GetCentroidPos(uint32 widget)
	uint16 CapSense_GetRadialCentroidPos(uint32 widget)
	uint32 CapSense_GetTouchCentroidPos(uint32 widget, uint16* pos)
	uint32 CapSense_GetMatrixButtonPos(uint32 widget, uint8* pos)
	uint32 CapSense_CheckIsSensorActive(uint32 sensor)
	uint16 CapSense_GetBaselineData(uint32 sensor)
	uint16 CapSense_GetDiffCountData(uint32 sensor)
	uint16 CapSense_GetNormalizedDiffCountData(uint32 sensor)
	uint8 CapSense_GetNoiseThreshold(uint32 widget)
	uint8 CapSense_GetNegativeNoiseThreshold(uint32 widget)
	uint16 CapSense_GetNoiseEnvelope(uint32 sensor)
	uint8/uint16 CapSense_GetFingerThreshold(uint32 widget)
	uint8 CapSense_GetFingerHysteresis(uint32 widget)
	void CapSense_WriteSensorRaw(uint32 sensor, uint16 data)
	void CapSense_SetBaselineData(uint32 sensor, uint16 data)
	void CapSense_SetSensitivity(uint32 sensor, uint32 data)
	uint32 CapSense_GetSensitivityCoefficient(uint32 sensor)
	void Capsense_SetDebounce(uint32 widget, uint8 value)
	uint8 Capsense_GetDebounce(uint32 widget)
	void CapSense_SetFingerHysteresis(uint32 widget, uint8 value)
	void CapSense_SetNoiseThreshold(uint32 widget, uint8 value)
	void CapSense_SetNegativeNoiseThreshold(uint32 widget, uint8 value)
	void CapSense_SetLowBaselineReset(uint32 sensor, uint8 value)
	uint8 CapSense_GetLowBaselineReset(uint32 sensor)
	void CapSense_SetFingerThreshold(uint32 widget, uint8/16 value)
	void CapSense_SetDiffCountData(uint32 sensor, uint16/uint8 value)
	uint32 CapSense_GetWidgetNumber(uint32 sensor)
	void CapSense_UpdateThresholds(uint32 sensor)
	void CapSense_UpdateBaselineNoThreshold(uint32 sensor)
	void CapSense_SetIDACRange(uint32 iDacRange)
	uint32 CapSense_GetIDACRange(void)
	void CapSense_SetModulationIDAC(uint32 sensor, uint32 modIdacValue)
	uint32 CapSense_GetModulationIDAC(uint32 sensor)
	void CapSense_SetCompensationIDAC(uint32 sensor, uint32 compIdacValue)
	uint32 CapSense_GetCompensationIDAC(uint32 sensor)
	void CapSense_SetSenseClkDivider(uint32 sensor, uint32 senseClk)
	uint32 CapSense_GetSenseClkDivider(uint32 sensor)
	void CapSense_SetModulatorClkDivider(uint32 sensor, uint32 modulatorClk)
	uint32 CapSense_GetModulatorClkDivider(uint32 sensor)
	void CapSense_SetScanResolution(uint32 widget, uint32 resolution)
	uint32 CapSense_GetScanResolution(uint32 widget)
	void CapSense_SetDriveModeAllPins(uint32 driveMode)
	void CapSense_RestoreDriveModeAllPins(void)
	void CapSense_SetUnscannedSensorState(uint32 sensor, uint32 sensorState)
	void CapSense_UpdateWidgetBaseline (uint32 widget)
	void CapSense_EnableRawDataFilters(void)
	void CapSense_DisableRawDataFilters(void)

	Tuner Helper APIs
	void CapSense_TunerStart(void)
	void CapSense_TunerComm(void)

	Built-in Self Test APIs
	uint32 CapSense_GetSensorCp(uint32 sensor)
	uint32 CapSense_MeasureCmod(void)
	uint32 CapSense_MeasureCShield(void)
	uint32 CapSense_MeasureCShieldTank(void)

	Data Structures
	Macro Callbacks
	Constants
	Sensor Constants
	Widget Constants
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Pin Assignments
	Sensor Pins
	Cmod Pin
	Shield Pin
	Cshield_tank Pin

	Functional Description
	Definitions
	Sensor
	A sensor is a conductive element on a substrate whose capacitance increase with a touch; the conductive element is connected to one pin of PSoC.
	CapSense Widget
	A CapSense widget is one sensor or group of sensors which has similar properties used to construct functionality.
	Scan Time
	Scan Resolution
	Sensor Scan Slot
	Raw Count
	Baseline
	Difference Count
	Sensor State
	Finger Threshold
	Hysteresis
	Debounce
	Noise Threshold
	Negative Noise Threshold
	Low Baseline Reset
	Sensors Autoreset
	Parasitic Capacitance (Cp)
	Finger Capacitance (Cf)
	CapSense Clocking
	PSoC 4100/PSoC 4200
	PSoC 4000/PSoC 4100M/PSoC 4200M

	CapSense Analog System
	API Resolution – Interpolation and Scaling
	Diplexing

	Interrupt Service Routines
	Filters
	Median Filter
	Averaging Filter
	First Order IIR Filter
	Jitter Filter

	Water Influence on CapSense System
	Waterproofing and Detection

	Shield Electrode
	How to use the proximity sensors

	Resources
	Digital Resources
	Analog Resources

	DC and AC Electrical Characteristics
	DC Specifications
	AC Specifications

	Component Errata
	Component Changes

