
PSoC 5 Programming Specifications

CY8C58LP/CY8C56LP/CY8C54LP/CY8C52LP

PSoC® 5LP Device Programming Specifications

Document #: 001-81290 Rev. *F

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
www.cypress.com

http://www.cypress.com
http://www.cypress.com/

2 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2012-2018. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or refer-
enced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as spe-
cifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organi-
zation, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resell-
ers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software
is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without fur-
ther notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weap-
ons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-
RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 3

Contents

1. Introduction 5

1.1 Host Programmer...5
1.2 Hardware Connections ..5

1.2.1 SWD Interface ..5
1.2.2 JTAG Interface..7

Document Revision History ..9

2. PSoC 5LP Programming Interface 11
2.1 Programming Interface Architecture ..11
2.2 Test Controller Block..12
2.3 Programming Interface Registers ..15

2.3.1 Debug Port/Access Port (DP/AP) Access Register ..15
2.3.2 Debug Port (DP)/Access Port (AP) Registers ..16

2.4 SWD Interface..17
2.4.1 Register Access Using SWD Interface ...19

2.5 JTAG Interface...20
2.5.1 Register Access Using JTAG Interface ..21

2.6 Switching between JTAG and SWD Interfaces..22
2.6.1 SWD to JTAG Switching...22
2.6.2 JTAG to SWD Switching...23

3. PSoC 5LP Programming Flow 25
3.1 Step1: Enter Programming Mode...26

3.1.1 SWD Universal Acquisition...26
3.1.2 JTAG Compliant Acquisition ...32

3.2 Step 2: Configure Target Device..33
3.3 Step 3: Verify JTAG ID...34
3.4 Step 4: Erase Flash ...34
3.5 Step 5: Program Device Configuration NVL...35
3.6 Step 6: Program Flash ...36
3.7 Step 7: Verify Flash (Optional) ...38
3.8 Step 8: Program WO NVL (Optional) ...39
3.9 Step 9: Program Flash Protection ...40
3.10 Step 10: Verify Flash Protection (Optional)..40
3.11 Step 11: Checksum Validation...41
3.12 Step 12: Program EEPROM (Optional)..41
3.13 Step 13: Verify EEPROM (Optional) ..42

4. Programming Specifications 43

4.1 SWD Interface Timing and Specifications..43
4.2 JTAG Interface Timing and Specifications...44
4.3 Programming Mode Entry Specifications ...45

4 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Contents

5. SWD and JTAG Vectors for Programming 47

5.1 Step 1: Enter Programming Mode ...47
5.1.1 Method A..47
5.1.2 Method B..48
5.1.3 Method C..49

5.2 Step 2: Configure Target Device ...49
5.3 Step 3: Verify JTAG ID ..49
5.4 Step 4: Erase All (Entire Flash Memory) ...50
5.5 Step 5: Program Device Configuration Nonvolatile Latch..51
5.6 Step 6: Program Flash...54
5.7 Step 7: Verify Flash (Optional)...60
5.8 Step 8: Program Write Once Nonvolatile Latch (Optional) ..63
5.9 Step 9: Program Flash Protection Data ...65
5.10 Step 10: Verify Flash Protection Data (Optional)...68
5.11 Step 11: Verify Checksum ...70
5.12 Step 12: Program EEPROM (Optional) ...72
5.13 Step 13: Verify EEPROM (Optional)..75

A. Appendix 77
A.1 Intel Hex File Format ...77

A.1.1 Organization of Hex File Data ..78
A.2 Nonvolatile Memory Organization in PSoC 5LP ..80

A.2.1 Nonvolatile Memory Programming...80
A.2.2 Commands...80
A.2.3 Command Status..80
A.2.4 Nonvolatile Memory Organization ..81

A.3 Example Schematic ...84

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 5

1. Introduction

PSoC® 5LP device programming refers to the programming of nonvolatile memory in PSoC 5LP using an external host pro-
grammer. In the context of external host programmers, nonvolatile memory includes device configuration nonvolatile latch
(NVL) flash memory, EEPROM, and write once NVL. PSoC 5LP supports programming through the Serial Wire Debug (SWD)
interface or Joint Test Action Group (JTAG) interface. The data to be programmed is stored in a hex file. This programming
specifications document explains the hardware connections, programming protocol, programming vectors, and the timing
information for developing programming solutions for a PSoC 5LP device.

1.1 Host Programmer

The host programmer can be the MiniProg3 Programmer supplied by Cypress, a “third-party programmer”, or a hardware
device such as a microcontroller or an FPGA. The MiniProg3 programmer is used in the prototype stage of application devel-
opment for both programming and debugging PSoC 5LP devices on board. Third-party programmers are used for production
programming of PSoC 5LP in large numbers. They are used when the design is finalized and the application needs to go in
for mass production. Apart from this, custom-developed host programmers such as FPGA or an external microcontroller can
be used to perform in-system programming of the PSoC 5LP device either for complete programming or partial firmware
upgrade.

The host programmer programs the PSoC 5LP device with the program image contained in the <Project_Name>.hex file,
which is generated by the PSoC Creator™ software. See the General PSoC Programming web page for complete information
on PSoC programming-related documents, software, and a list of supported third-party programmers.

1.2 Hardware Connections

This section discusses hardware connections between the host programmer and the PSoC 5LP device for programming
through the SWD and JTAG interfaces. Only programming related connections are discussed. For a complete schematic of
the PSoC 5LP device, including the PSoC 5LP regulator output pins (VCCD and VCCA), see ““Example Schematic” on
page 84”. The PSoC 5LP device datasheet has information on device operating conditions, specifications, and pinouts for the
different PSoC 5LP packages.

1.2.1 SWD Interface

Figure 1-1 on page 6 shows the hardware connections between the host programmer and the target PSoC 5LP device to pro-
gram through the SWD interface.

PSoC 5LP has two pairs of pins that support SWD: P1[0] SWDIO and P1[1] SWDCK, or P15[6] USB D+ (SWDIO) and P15[7]
USB D– (SWDCK) pins. No device configuration setting is required to choose between these two pairs. The internal device
logic chooses between these pins automatically by detecting activity (clock transition on SWDCK lines) after the device
comes out of reset. To reset the PSoC 5LP device for programming, either the XRES pin or power cycle mode must be used.
Power cycle mode programming involves toggling power to the VDDD, VDDA, and VDDIO pins of PSoC 5LP to reset the
device. All SWD interface programmers support programming using the XRES pin, but only some of them support power
cycle mode. If power cycle mode programming is needed, make sure it is supported by the programmer being used.

http://www.cypress.com/?rID=38154
http://www.cypress.com/?rID=2543
http://www.cypress.com/?rID=2543
http://www.cypress.com/?id=2232&rtID=107

6 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Introduction

Figure 1-1. SWD Programming Interface Connections between Host Programmer and PSoC 5LP

Notes for Figure 1-1:

1. The voltage level of the host programmer and the supply voltage for PSoC 5LP I/O pins used in programming should be the same. Port 1 SWD pins and
XRES (XRES_N or P1[2] as XRES) pin in PSoC 5LP are powered by the VDDIO1 pin. USB SWD pins are powered by the VDDD pin.

a. To program using the Port 1 SWD pins (P1[0], P1[1]) and XRES pin (XRES_N or P1[2] as XRES), the host voltage level (VDD_HOST) should be the same
as VDDIO1 pin of PSoC 5LP. The remaining PSoC 5LP power supply pins (VDDD, VDDA, VDDIO0, VDDIO2, and VDDIO3) need not be at the same
voltage level as the host programmer.

b. To program using the USB SWD pins (P15[6], P15[7]) and XRES pin, the host voltage level (VDD_HOST) should be the same as the VDDD and VDDIO1
pins of PSoC 5LP. The remaining PSoC 5LP power supply pins (VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same voltage level as the host
programmer.

2. VDDA must be greater than or equal to all other power supplies (VDDD and VDDIOs) in PSoC 5LP.

3. For power cycle mode programming, the XRES pin is not required. The VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, and VDDIO3 pins of PSoC 5LP should
be tied together to the same power supply; power to these pins should be toggled to reset the device. Ensure that the programmer used supports power
cycle mode. MiniProg3 (rev 7 and later versions) supports power cycle mode.

4. The XRES pin can either be the dedicated XRES pin (XRES_N) or the optional XRES pin (P1[2]). P1[2] is configured as XRES pin by default only for 48-pin
devices (which do not have a dedicated XRES pin). For devices with a dedicated XRES pin (XRES_N), P1[2] is a GPIO pin by default. Use P1[2] as reset pin
only for 48-pin devices, but use the dedicated XRES pin for other devices.

5. USB SWD pins (P15[6], P15[7]) are not present in devices without USB functionality.

Table 1-1 lists the host programmer hardware requirements for PSoC 5LP pins involved in SWD interface programming.

Table 1-1. Host Programmer Requirements for PSoC 5LP Programming

Pin
Host Programmer

Requirement
PSoC 5LP Function Comment

SWDCK
(SWD Clock)

Strong drive (CMOS
drive) digital output

P1[1] SWDCK pin - Digital input
with internal 5.6 k pull-down
resistance
P15[7] SWDCK pin - High-
impedance digital input

The internal 5.6 k pull-down resistor on the P1[1] SWDCK
pin (not on P15[7]) is for internal device Port Acquire logic.
No external resistor is needed on the SWDCK line. SWDCK
should always be in Strong drive (CMOS drive) mode on the
host programmer side.

SWDIO (SWD
Data)

Write operation: Strong
drive (CMOS drive) digi-
tal output
Read operation: High-
impedance digital input

Write operation: Strong drive
(CMOS drive) digital output
Read operation: High-imped-
ance digital input

PSoC 5LP changes between two drive modes for read and
write operations on the SWDIO line using the Turnaround
(TrN) phase of SWD protocol. The host must also change
the drive mode of the SWDIO line during this TrN phase.
When the host writes to SWDIO, PSoC 5LP reads from
SWDIO and vice-versa.

XRES
Strong drive (CMOS
drive) digital output

Digital input with internal 5.6 k
resistive pull-up to VDDIO1

The XRES pin or P1[2] as XRES in PSoC 5LP is active low
input and there is an internal 5.6 k pull-up resistor to
VDDIO1.

VDDA, VDDD,
VDDIO

Positive voltage
Digital, analog, and I/O power
supply

For power cycle mode, tie the VDDD, VDDA, and VDDIO
pins of PSoC 5LP to the same power supply. Toggle power
to these pins to reset the device. See the PSoC 5LP device
datasheet for specifications on power pins (VDDD, VDDA,
VDDIOs) and ground pins (VSSD, VSSA).

VSSD, VSSA
Low-resistance ground
connection

Ground for all analog peripherals
(VSSA), digital logic, and I/O
pins (VSSD)

Toggle power to these pins to reset the device. See the
PSoC 5LP device datasheet for specifications on power pins
(VDDD, VDDA, VDDIOs) and ground pins (VSSD, VSSA).

VSSD, VSSA

VDDD, VDDA, VDDIO0,
VDDIO1, VDDIO2, VDDIO3

1, 2, 3

5

SWDIO (P1[0] or P15[6]) 5

XRES_N or P1[2] 3, 4

GND
GND

SWDCK

SWDIO

XRES

Host Programmer PSoC 5 LPVPOWER

VDD_HOST

SWDCK (P1[1] or P15[7])

http://www.cypress.com/?id=2232&rtID=107
http://www.cypress.com/?id=2232&rtID=107
http://www.cypress.com/?id=2232&rtID=107

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 7

Introduction

1.2.2 JTAG Interface

Figure 1-2 shows the hardware connections between the host programmer and PSoC 5LP device to program through the
JTAG interface.

There are fixed port pins to program PSoC 5LP through the JTAG interface: P1[0] (TMS), P1[1] (TCK), P1[3] (TDO), P1[4]
(TDI), P1[5] (nTRST). The nTRST pin is an optional connection for JTAG interface. It is not functional during PSoC 5LP
device programming, but can be enabled for debugging operations by programming the device configuration NVL with a five-
wire JTAG setting (default factory setting is four-wire JTAG).

Figure 1-2. JTAG Programming Interface Connections between Host Programmer and PSoC 5LP

Notes for Figure 1-2:

1. The voltage level of the host programmer and the supply voltage for PSoC 5LP I/O pins involved in programming should be the same. PSoC 5LP JTAG pins
are powered by VDDIO1. The host voltage level (VDD_HOST) should be the same as VDDIO1 pin. The remaining PSoC 5LP power supply pins (VDDD,
VDDA, VDDIO0, VDDIO2, and VDDIO3) need not be at the same voltage level as host programmer.

2. VDDA must be greater than or equal to all other power supplies (VDDD and VDDIOs) in PSoC 5LP.

3. PSoC 5LP programming using third-party JTAG programmers is not possible if the Debug Port Select (DPS) setting in NVL is configured for ‘Debug Port Dis-
abled’ or ‘SWD’. The necessary DPS settings for JTAG interface programming are ‘4-wire JTAG’ or ‘5-wire JTAG’; the default factory setting is ‘4-wire JTAG’.
If the DPS setting is changed to a different state, the JTAG port can reprogram the DPS setting for JTAG using the MiniProg3's SWD interface and XRES pin
(or power cycle mode) as given in Figure 1-1 on page 6. The PSoC 5LP is compliant to IEEE 1149.1 standard if “4-/5- pins wire JTAG” DPS is set in NVL.
Otherwise, it is required to use combined SWD and JTAG interfaces for programming.

4. The nTRST pin is an optional connection for the JTAG interface. It is not functional during PSoC 5LP device programming, but it can be enabled for debug-
ging operations by programming the device configuration NVL with 5-wire JTAG setting.

3

3

GND
GND

TCK

TMS

Host Programmer PSoC 3

TDO 3

TDI TDO (P1[3]) 3

nTRST 4 nTRST (P1[5])
3, 4

1 , 2VDD_HOST

VSSD, VSSA

VPOWER

TDI (P1[4])

TMS (P1[0])

TCK (P1[1])

VDDD, VDDA, VDDIO0,
VDDIO1, VDDIO2, VDDIO3

8 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Introduction

Table 1-2 lists the host programmer hardware requirements for PSoC 5LP pins involved in JTAG interface programming.

Table 1-2. Host Programmer Requirements for PSoC 5LP JTAG Interface Programming

Pin
Host Programmer

Requirement
PSoC 5LP Functionality Comment

JTAG Clock (TCK)
Strong drive (CMOS
drive) digital output

Digital input with internal 5.6 k
pull-down resistance

Pull-down resistor on TCK ensures that no spurious
clock signals are present when the TCK input is not
driven by host.

JTAG TDI (TDI)
High-impedance digital
Input

Digital input with internal 5.6 k
pull-up resistance to VDDIO1

TDI of the host is connected to TDO of PSoC 5LP and
vice-versa. TDI input in PSoC 5LP has a pull-up resistor
so that the pin is in known state (logic high) when not
driven by host.

JTAG TDO (TDO)
Strong drive (CMOS
drive) digital output

Strong drive (CMOS drive) digi-
tal output

TDI of the host is connected to TDO of PSoC 5LP and
vice-versa.

JTAG TMS (TMS)
Strong drive (CMOS
drive) digital output

Digital input with internal 5.6 k
pull-up resistance to VDDIO1

TMS input in PSoC 5LP has a pull-up resistor to ensure
that the pin is in known state (logic high) when not driven
by the host.

JTAG Reset
(nTRST) (Optional)

Strong drive (CMOS
drive) digital output

Digital input with internal 5.6 k
pull-up resistance to VDDIO1

nTRST pin is an optional connection for the JTAG inter-
face. It is not functional during programming of the PSoC
5LP device. Use the TMS and TCK pins to reset the
JTAG TAP controller.

VDDA, VDDD,
VDDIOs

Positive voltage
Digital, analog, I/O power sup-
ply See the PSoC 5LP device datasheet for specifications

on power pins (VDDD, VDDA, VDDIO0, VDDIO1,
VDDIO2, and VDDIO3) and ground pins (VSSD and
VSSA).VSSD, VSSA

Low-resistance ground
connection

Ground for all analog peripher-
als (VSSA), all digital logic, and
I/O pins (VSSD)

http://www.cypress.com/?id=2232&rtID=107

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 9

Introduction

Document Revision History

Document Title: CY8C58LP/CY8C56LP/CY8C54LP/CY8C52LP, PSoC® 5LP Device Programming Specifications

Document Number: 001-81290

Revision Issue Date
Origin of
Change

Description of Change

** 07/17/2012
DISM / ANDI /
VVSK

Initial revision

*A 07/22/2012 VVSK
Updated SWD and JTAG Vectors for Programming chapter on page 47:
Updated code in all instances in the chapter.

*B 11/28/2012 DISM

Updated PSoC 5LP Programming Flow chapter on page 25:
Updated “Step1: Enter Programming Mode” on page 26:
Updated “SWD Universal Acquisition” on page 26:
Updated Figure 3-3.
Updated “SWD Programming using Bit Banging Host Programmers:” on
page 29:
Updated Figure 3-6.
Added “Step 12: Program EEPROM (Optional)” on page 41.
Added “Step 13: Verify EEPROM (Optional)” on page 42.
Updated Programming Specifications chapter on page 43:
Updated “Programming Mode Entry Specifications” on page 45:
Updated Table 4-3.
Updated SWD and JTAG Vectors for Programming chapter on page 47:
Added “Step 12: Program EEPROM (Optional)” on page 72.
Added “Step 13: Verify EEPROM (Optional)” on page 75.
Updated Appendix chapter on page 77:
Updated “Intel Hex File Format” on page 77:
Updated A.1.1 Organization of Hex File Data:
Updated description.
Updated Figure A-2.

*C 12/12/2014 ANDI
Updated SWD and JTAG Vectors for Programming chapter on page 47:
Updated “Step 2: Configure Target Device” on page 49:
Updated code.

*D 06/29/2015 ANDI
No technical updates.
Completing Sunset Review.

*E 04/25/2017 AESATMP8 Updated logo and Copyright.

*F 07/23/2018 STPP
No technical updates.
Completing Sunset Review.

10 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Introduction

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 11

2. PSoC 5LP Programming Interface

This section explains the programming interface in PSoC 5LP and the registers used for programming PSoC 5LP. An over-
view of the SWD and JTAG interface is also provided. See section “Nonvolatile Memory Organization in PSoC 5LP” on
page 80” for details. The section also provides some advanced information about the silicon’s communication interface, which
should help to better understand the programming algorithm in later sections.

2.1 Programming Interface Architecture

This section outlines the silicon’s architecture related to nonvolatile subsystem. It simplifies understanding of the program-
ming algorithm described later. Figure 2-1 shows the necessary blocks involved in programming.

Figure 2-1. Programming Interface Architecture

The abbreviations used on Figure 2-1:

TC - Test Controller.

DAP - Debug Access Port of Cortex-M3 CPU (ARM).

AHB - Advanced High-Performance Bus, def acto standard from ARM.

PHUB - Peripheral Hub, advanced multi spoke bus controller, which allows many different functional blocks to communicate without involving of CPU for setting
up the bus transaction.

DMA - Direct Memory Access controller.

SRAM - Static Random Access Memory.

SPC - System Performance Controller implements R/W interface with nonvolatile memory.

NVL - Nonvolatile Latch.

There are three types of nonvolatile memory in the silicon, which can be programed by users:

 Flash - contains user’s code and data 288 KB (256 KB code + 32 KB user data).

 EEPROM - up to 2K of user data.

 NVLs - nonvolatile latches, which are split into two groups containing 4 bytes each: Custom NVLs and Write Once NVLs.

TC

SWD
IO

JTAG
IO

SWD

JTAG

DAP

Cortex-M3

SRAMAHB AHB

PHUB bus (AHB) PHUB

DMA &
AHB

Bridge

AHB
SPC

NVLs

Flash

EEPROM

Program Cache

AHB

AHB

Program Cache
Program Interface Flash Interface

N
V

 W
rite B

us

PSoC 5LP Programming Interface

12 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

For this specification document, only programming of Flash and NVLs is considered. More information about nonvolatile sub-
system is available in the “Appendix” on page 77.

The only block which physically executes read/write operations with nonvolatile memory is SPC. It is connected to NVL,
EEPROM, and Flash via a dedicated NVL Write Bus. The external programmer configures SPC via SWD/JTAG and then calls
its APIs to access NV memory. Note that CPU is not involved in Flash/NVL/EEPROM programming. This operation is com-
pleted locally by SPC block through the NVL Write Bus. Moreover, the programming algorithm has the advantage of a DMA
controller to increase performance of programming.

The external host puts data into SRAM, then configures DMA to transfer parameters from SRAM to SPC. It then triggers the
DMA transfer. While this transfer is in progress (which programs even flash row), the host puts programming parameters in
SRAM for the odd flash row. When programming of even row is completed, DMA transfer for odd row is triggered. So, pro-
gramming of flash and transferring on SWD/JTAG bus are run in parallel.

The access to PSoC 5LP’s resources by the external programmer is controlled via the Test Controller block. It is the gateway
to the Debug Access Port of the CPU (Cortex-M3). DAP manages all requests to the silicon’s resources without use of the
CPU’s time. PSoC 5LP incorporates standard ARM’s Cortex-M3 CPU along with its debug subsystem (DAP).

The Test Controller is Cypress’s proprietary block, which grants access to DAP. It is indispensable for the programmer to
know how to communicate with DAP via the Test Controller.

2.2 Test Controller Block

The Test Controller (TC) interfaces any external devices used to program, configure, or debug the chip. Its purpose is to
implement communication logic between the Cortex-M3 DAP and the Programmer, considering some external and internal
conditions.

TC’s functionality depends on the following chip settings:

 “Debug Port Settings” (DPS) in Custom NVLs (see “Device Configuration NVLs” on page 82). This initializes the Debug
port to SWD, JTAG, or GPIO upon reset or power on. For JTAG compliant programming, the DPS can only be 4-wire
JTAG or 5-wire JTAG.

 “Debug_Enable” setting in Custom NVL. If it is ON, then DAP is connected to the debug pins upon reset (or power on).
This means that the external programmer can have access to debug the subsystem any time, if DPS = SWD/JTAG. This
access is described in detail in “Step 1: Enter Programming Mode” on page 47. If the “Debug_Enable” option is OFF, then
the programmer must write a special acquire key in TC to enable access to DAP. For JTAG compliant programming, the
“Debug_Enable” should be ON.

 “Write Once NVL” content. It disables access to DAP permanently, if the correct key is written during the last programming
cycle. This is a special security mechanism, which disables SWD/JTAG interface in the silicon permanently. It is an irre-
versible change, which leaves the silicon without any way of failure analysis or reprogramming. This programming step is
described later.

TC also selects an active SWD pair (on USB pins P15[6]/P15[7] or Port 1 pins P1[0]/P1[0]) depending on the activity on these
pins upon reset or power on. The pair on which the correct acquire key is detected during boot window becomes active. This
behavior is independent of current DPS setting (SWD, JTAG, or GPIO). If the current DPS setting is SWD, and no correct key
provided during boot time, then the SWD pins default to Port 1. Therefore, there is a very short (400 microsecond) window
when USB pins can be acquired for SWD programming.

Figure 2-2 on page 13 shows internal details of the TC block and its bridging interface between the debug pins and CPU
(DAP).

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 13

PSoC 5LP Programming Interface

Figure 2-2. Programming Interface Architecture

Figure 2-2 shows details of the communication logic of the TC; it clarifies how the TC controls access to debug the subsystem
of CPU (DAP). The TC has its own JTAG TAP and SWD FSM, through which the external programmer configures connection
logic. The external programmer must have access to the DAP for successful programming. To do this:

 SWD or JTAG debug port (pins) must be enabled either by DPS setting or during the acquire window. The acquire window
is necessary if DPS is set to GPIO.

 “Security Key” must be closed, so SWDI/SWDCLK (TMS/TCK) signals are routed to the DAP.

 WOL must not be locked.

Three muxes and one key on Figure 2-2 configure different working modes of the TC. The TC is configured automatically if
instructions from “Step 1: Enter Programming Mode” on page 47 are executed. This is a transparent process for the program-
mer.

During programming only two configurations of the TC are really used: for SWD and for JTAG access. Figure 2-3 and
Figure 2-4 on page 14 show the schematic of these TC configurations.

Figure 2-3. SWD Configuration During Programming

P
o

rt
 lo

gi
c

&
 IO

MUX1

Key

DAP Cortex-M3

SWD FSM

JTAG FSM

JTAG TAP

SWD FSM

Registers
(TST_KEY)

&
Test LogicMUX2

SWD Port
ACQ Logic

MUX3

Port1

USB

SWDIO/SWDCLK (TMS/TCK)

SWDIO/SWDCLK

TDI

TDO

SWDI/SWDCLK
SWDI/SWDCLK

TMS/TCK

DAP_TDI

SWDI/SWDCLK (TMS/TCK)

TC_TDOTMS/TCK

TDI

SWDO

TDO

TC_SWDO

DAP_SWDO

TC_TDO

DAP_TDO

Test Controller

Debug_En DPS

Custom NVLs

WOL

WO NVL

Security Key

nTRST

SWD FSM

DAP

SWD FSM

TC

SWD

14 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Interface

Figure 2-4. JTAG Configuration During Programming

First, the programmer configures the TC to get access to the DAP. For SWD access (Figure 2-3 on page 13), the DAP’s and
TC’s FSMs are connected in parallel. All transactions are executed by the DAP, but the TC always monitors the SWD signals.
TC only accepts transactions addressed to its registers space. The parallel connection of SWD FSM is possible because TC’s
and DAP’s address spaces do not intersect. Programmer writes to the TC’s register (for example, TST_KEY) to enable
access to the DAP; it writes to the DAP’s registers (PSoC 5LP resources) for programming.

For JTAG access (Figure 2-4) two TAPs are connected in series. The DAP’s TAP can be disabled after power on/reset (by
Debug_En bit in Custom NVLs). In this case, the programmer must enable it by writing the correct key in the TST_KEY regis-
ter via the TC’s TAP. During programming, the TC’s TAP must be set to BYPASS mode.

More details about JTAG and SWD programming protocols are explained in next four chapters.

For an advanced understanding of the configuration schemes on Figure 2-2 on page 13, the details of forming MUX1, KEY,
MUX2 and MUX3 signals are provided:

Note that if DPS = PI, then “Port Logic and IO” block on Figure 2-2 on page 13 configures the debug pins to GPIO after the
boot window is completed (400 microseconds elapsed after reset or power-up). So, the external programmer cannot access
TC or DAP via SWD/JTAG after that time window. In this case, the specific timing requirements must be met by the Program-
mer to get SWD access to the TC (see section “Step 1: Enter Programming Mode” on page 47). The TC’s design allows for
the silicon to be acquired following a reset regardless of the DPS settings via SWD interface. In such a scenario, the external
programmer can also switch from SWD to JTAG interface by sending a SWD to JTAG switching sequence.

JTAG TAP

DAP

JTAG TAP

TC
TC_TDO

TMS

TCK

DAP_TDI
DAP_TDO

TDI

TDO

JTAG
nTRST

1. MUX1 =
Port1 (SWD/JTAG), if (DPS == SWD) || (DPS == JTAG) || (SWD activities detected during boot on P1[0]/[1]);

USB (SWD), if (SWD activity detected on P15[6]/[7] during boot window);

2. KEY = (DEBUG_EN) || (TST_KEY written during boot) && (WOL not Locked);

3. MUX2 =
SWD, if (DPS == SWD) || (JTAG_2_SWD sequence detected) || (boot time);

JTAG, if (DPS == JTAG) || (SWD_2_JTAG sequence detected);

4. MUX3 =

tc_swdo, (boot window) || ([address in TC’s space] && [SWD mode]);

tc_tdo, (KEY is open) && (JTAG mode);

dap_swdo, (KEY is closed) && ([address in DAP’s space] && [SWD mode]);

dap_tdo, (KEY is closed) && (JTAG mode);

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 15

PSoC 5LP Programming Interface

2.3 Programming Interface Registers

2.3.1 Debug Port/Access Port (DP/AP) Access Register

The PSoC 5LP TC has a DP/AP access register that is 35 bits wide. This register, which is part of both the TC and DAP inter-
faces, transfers data between JTAG/SWD bus and the Debug Port/Access Port registers. You can treat this register as the
buffer through which all IN/OUT traffic is moving. The SWD interface enables direct reads and writes of the DP/AP Access
register. The JTAG interface uses the APACC and DPACC instructions. The Access Port (AP) registers are used to read data
from the specific or write data to the specific address. The Debug Port (DP) registers contain the Debug Port configuration
such as byte size of AP register memory access and device JTAG ID. Figure 2-5 depicts access architecture:

Figure 2-5. PSoC 5LP Programming Interface

During programming all commands are directed to the DAP, only during chip acquiring stage is the TC’s interface used. When
the chip is acquired, the traffic is commutated to the DAP. All this happens automatically in the silicon during programming
process.

2.3.1.1 Writing to the DP/AP Access Register

Figure 2-6 shows the structure when writing to the DP/AP Access register from the SWD or JTAG interfaces. For the JTAG,
this register is written during Update_DR state of FSM.

Figure 2-6. Writing to the DP/AP Access Register

 Bits 34 to 3: (32 bits of data). If the register is less than 32-bits wide, zero-padding must be done for the remaining bits that
are sent to PSoC 5LP

 Bits 2 to 1: 2-bit address for selecting DP or AP registers. These address bits are listed in Table 2-2 on page 16

 Bit 0: RnW – 1 = read (from PSoC 5LP to host programmer); 0 = write (to device from debug host)

JTAG
Debug
Port

SWD
Debug
Port

DP/AP Access Register

AP TRNS_ADDR,
AP DATA_RW

Access Port (AP)
Registers

READ_BUFFER

Debug Port (DP)
Registers

TC

JTAG
Debug
Port

SWD
Debug
Port

DP/AP Access Register

AP TRNS_ADDR,
AP DATA_RW,
AP CTRL/STAT

Access Port (AP)
Registers

ID CODE,
DP CTRL/STAT,
SELECT

Debug Port (DP)
Registers

DAP

JTAG

SWD

Silicon’s Resources
(SRAM, Flash, NVLs, SPC)

AHB

16 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Interface

2.3.1.2 Reading from the DP/AP Access Register

Figure 2-7 shows the structure of the 35-bit data register when reading the DP/AP Access register from the SWD or JTAG
interfaces. For JTAG, this is data shifted out to TDO line during Update_DR state of FSM.

Figure 2-7. Reading from the DP/AP Access Register

 Bits 34 to 3: (32 bits of data): If the register is less than 32-bit wide (N-bit), it is still required to read the entire 32 bits to
complete the transaction. Only the least N-bit data should be considered of the 32-bits read from device.

 Bits 2 to 0: (ACK response code): Depending on the interface, the ACK response is as indicated in Table 2-1. This ACK
response is for the previous SWD transfer; if there is an error, it indicates that the previous transfer must be done again.

Table 2-1. ACK Response for SWD Transfers

2.3.2 Debug Port (DP)/Access Port (AP) Registers

The DP and AP registers listed in Table 2-2 are part of the ARM Cortex-M3 Debug Access Port (DAP). All the DP/AP registers
are 32-bit registers. In the PSoC 5LP Cortex-M3, the DAP consists of the SWD Debug Port (SW-DP) and the AHB Access
Port (AHB-AP). Note that Table 2-2 does not list all the DP/AP registers; it lists only those DP/AP registers that are required to
program PSoC 5LP. For more information on these ports and their registers, see the ARM Debug Interface Architecture Spec-
ification (for SW-DP) and ARM Cortex-M3 Technical Reference Manual (for AHB-AP), available at http://www.arm.com.

Note that the TC also implements several AP/DP registers, which are used during the first step of programming (see
Figure 2-5 on page 15). This is Cypress’s implementation of the DP/AP access port; its main goal is to connect the external
programmer to the DAP.

Table 2-2. Debug Port and Access Port Registers (PSoC 5LP)

ACK[2:0] SWD

OK 001

WAIT 010

FAULT 100

Register Name
Register

Type
Address (A[3:2]) Function

IDCODE DP 00 32-bit Device IDCODE register.

DP CTRL/STAT DP 01
Debug port control/status register. CTRLSEL bit in the SELECT register
should be ‘0’ to access this register.

SELECT DP 10
Access port select – The MS byte of the SELECT register selects which
Access Port (AP) is used on AP accesses. Bits [7:4] select which register in
the AHB-AP is accessed.

READBUFF DP 11
Port Acquire key is written to this 32-bit register to acquire port through
SWD interface. Used in TC only.

AP Control Status
(AP CTRL/STAT)

AP 00 (SELECT[7:4] = 0) AHB-AP control/status register.

AP Transfer Address AP 01 (SELECT[7:4] = 0)
AHB-AP transfer address register. This register holds the 32-bit address
that is used for device register access. Also used in TC.

AP Data Read/Write AP 11 (SELECT[7:4] = 0)
AHB-AP data read/write register. This 32-bit register holds the data to be
read from/written to the address specified by the AP Transfer Address reg-
ister. Also used in TC.

http://www.arm.com/

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 17

PSoC 5LP Programming Interface

2.4 SWD Interface

PSoC 5LP supports programming through the serial wire debug (SWD) interface. There are two signals in the SWD interface:
data signal (SWDIO) and a clock for data signal (SWDCK). The host programmer always drives the clock line, whereas either
the programmer or the PSoC 5LP device drives the data line. The timing diagram for the SWD protocol is given in “Program-
ming Specifications chapter on page 43. The host programmer and PSoC 5LP device communicate in packet format through
the SWD interface. ‘Write packet’ refers to the SWD packet transaction in which the host writes data to PSoC 5LP. ‘Read
packet’ refers to the SWD packet transaction in which the host reads data from PSoC 5LP. The format of the write packet and
read packet are illustrated in Figure 2-6 and Figure 2-7, respectively.

Figure 2-8. SWD “Write Packet” Timing Diagram

Figure 2-9. SWD “Read Packet” Timing Diagram

A complete data transfer requires 46 clocks (not including the optional three dummy clock cycles in Figure 2-8 and
Figure 2-9). Each data transfer consists of three phases:

 Packet request – External host programmer issues a request to the PSoC 5LP device.

 Acknowledge response – PSoC 5LP sends an acknowledgement to the host.

 Data – Data is valid only when a packet request is followed by a valid (OK) acknowledge response.

S
ta

rt

 (
1

)

A
P

nD
P

R
nW

 (
0)

A[2:3]

P
ar

ity

S
to

p
 (

0
)

P
a

rk

(1
)

T
rN 1 0 0

ACK[0:2]

w
d

at
a[

0]

w
da

ta
[1

]

w
da

ta
[3

1
]

P
ar

ity

0 0 0
Dummy Phase (3'b000)

SWDIO driven by: Host PSoC 5 Host

SWDCK
(Driven by Host)

SWDIO
(Bidirectional)

T
rN

a.) Host Write Operation: Host sends data on the SWDIO line on falling edge of SWDCK and PSoC 5 reads that data on the next SWDCK
 rising edge (for example, 8-bit header data, Write data(wdata[31:0]), Dummy phase (3'b000))

 b.) Host Read Operation: PSoC 5 sends data on the SWDIO line on the rising edge of SWDCK and the host should read that data on the
 next SWDCK falling edge (Ex: ACK data (ACK[2:0])

zz

c.) The host should not drive the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, PSoC 5 starts driving the ACK
 data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent falling edge of SWDCK.
 The second TrN phase is 1.5 SWDCK clock cycles. Both PSoC 5 and the Host will not drive the line during the entire second TrN phase
 (indicated as ‘z’). Host should start sending the Write data (wdata) on the next falling edge of SWDCK after second TrN phase.

d.) “DUMMY” phase is three SWD clock cycles with SWDIO line low. This DUMMY phase is not part of SWD protocol. The three extra clocks with
 SWDIO low are required for the Test Controller in PSoC 5 to complete the Read/Write operation when the SWDCK clock is not free-running.
 For a reliable implementation, include three IDLE clock cycles with SWDIO low for each packet. According to the SWD protocol, the host can
 generate any number of SWD clock cycles between two packets with SWDIO low.

S
ta

rt

 (
1)

A
P

nD
P

R
nW

 (
1)

A[2:3]

P
ar

ity

S
to

p
 (

0)

P
a

rk

(1
)

T
rN 1 0 0

ACK[0:2]

rd
at

a
[0

]

rd
at

a
[1

]

rd
at

a[
30

]

rd
at

a[
31

]

P
ar

ity

T
rN 0 0 0

Dummy Phase (3'b000)

SWDIO driven by: Host
PSoC 5 Host

SWDCK
(Driven by Host)

SWDIO
(Bidirectional)

a.) Host Write Operation: Host sends data on the SWDIO line on falling edge of SWDCK and PSoC 5 reads that data on the next SWDCK
 rising edge (for example, 8-bit header data, dummy phase (3'b000))

 b.) Host Read Operation: PSoC 5 sends data on the SWDIO line on rising edge of SWDCK and the host should read that data on the
 next SWDCK falling edge (for example, ACK data (ACK[2:0], Read data (rdata[31:0]))

c.) The host should not drive the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, PSoC 5 starts driving the ACK
 data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent falling edge of SWDCK.
 The second TrN phase is 1.5 SWDCK clock cycles. Both PSoC 5 and the host will not drive the line during the entire second TrN phase
 (indicated as ‘z’). Host should start sending the Dummy phase (3'b000) on the next falling edge of SWDCK after second TrN phase.

d.) “DUMMY” phase is three SWD clock cycles with SWDIO line low. This phase is not part of the SWD protocol. The three extra clocks with
 SWDIO low are required for the Test Controller in PSoC 5 to complete the Read/Write operation when the SWDCK clock is not free-running.
 For a reliable implementation, include three IDLE clock cycles with SWDIO low for each packet. According to the SWD protocol, the host can
 generate any number of SWD clock cycles between two packets with SWDIO low.

18 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Interface

The data transfer is either:

 PSoC 5LP to host, following a read request – RDATA

 Host to PSoC 5LP, following a write request – WDATA

In Figure 2-8 and Figure 2-9, the following sequence occurs:

1. The start bit initiates a transfer; it is always logic ‘1’.

2. The APnDP bit determines whether the transfer is an AP access, ‘1’, or a DP access, ‘0’.

3. The next bit is RnW, which is ‘1’ for a read from the PSoC 5LP device or ‘0’ for a write to the PSoC 5LP device.

4. The ADDR bits (A[3:2]) are register select bits for the access port or debug port. See Table 2-2 on page 16 for address bit
definitions.

5. The parity bit has the parity of APnDP, RnW, and ADDR. This is an even parity bit. If the number of logical 1s in these bits
is odd, then parity must be ‘1’, otherwise it is ‘0’.

If the parity bit is not correct, the header is ignored by the target device; there is no ACK response. For the host implemen-
tation, the programming operation should be stopped and tried again by doing a device reset.

6. The stop bit is always logic ‘0’.

7. The park bit is always logic ‘1’ and should be driven high by the host.

8. The ACK bits are the device-to-host response.

Possible values are shown in Table 2-1 on page 16. Note that the ACK in the current SWD transfer reflects the status of
the previous transfer. OK ACK means the previous packet is successful. WAIT response indicates that the previous
packet transaction is not yet complete. For a Fault operation, the programming operation should be aborted immediately.

a. For a WAIT response, if it is a read transaction, the host should ignore the data read in the data phase. PSoC 5LP
does not drive the line and the host must not check the parity bit.

b. For a WAIT response, if it is a write transaction, the data phase is ignored by the PSoC 5LP device. But the host must
still send the data to be written from an implementation standpoint. The parity data corresponding to the data should
also be sent by the host.

c. For a WAIT response, it means that the PSoC 5LP device is processing the previous transaction. The host can try for
a maximum of four continuous WAIT responses to see if an OK response is received, failing which, it can abort the
programming operation and try again.

d. For a FAULT response, the programming operation should be aborted and retried by doing a device reset.

9. The data phase includes a parity bit (even parity, similar to the packet request phase).

a. For a read data packet, if the host detects a parity error, then it must abort the programming operation and restart.

b. For a write data packet, if the PSoC 5LP detects a parity error in the data packet sent by the host, it generates a
FAULT ACK response in the next packet.

10. Turnaround (TrN) phase: According to the SWD protocol, the TrN phase is used both by the host and the PSoC 5LP
device to change the Drive modes on their respective SWDIO line. There are two TrN phases in each SWD packet. During
the first TrN phase after packet request, PSoC 5LP drives the ACK data on the SWDIO line on the rising edge of SWDCK
in TrN phase. This ensures that the host can read the ACK data on the next falling edge. Thus, the first TrN cycle is only
for half cycle duration, as shown in Figure 2-8 and Figure 2-9. The location of the second TrN phase is different for read
and write packets. The second TrN phase of the SWD packet is one-and-a-half cycle long. Neither the host nor PSoC 5LP
should drive SWDIO line during both the TrN phases as indicated by ‘z’ in Figure 2-8 and Figure 2-9.

11. The address, ACK, and read and write data are always transmitted least significant bit (lsb) first.

12. At the end of each SWD packet in Figure 2-8 and Figure 2-9, there is a “DUMMY” phase, which is three SWD clock cycles
with SWDIO line held low. This DUMMY phase is not part of the SWD protocol. The three extra clocks with SWDIO low
are required for the Test Controller in PSoC 5LP to complete the read/write operation when the SWDCK clock is not free-
running. For a reliable implementation, include three IDLE clock cycles with SWDIO low for each packet. According to the
SWD protocol, the host can generate any number of SWD clock cycles between two packets with SWDIO low.

Note The SWD interface can be reset anytime during programming by clocking 51 or more cycles with SWDIO high. To return
to the idle state, SWDIO must be clocked low for three or more cycles. The host programmer can begin a new SWD packet
transaction from the idle state.

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 19

PSoC 5LP Programming Interface

2.4.1 Register Access Using SWD Interface

To access the registers using the SWD interface, in the 8-bit transfer request packet, set the APnDP bit and select the corre-
sponding ADDR bits, as shown in Table 2-2 on page 16. Table 2-3 shows the 8-bit transfer request packet to access the DP
and AP registers for read or write operation. The 8-bit transfer request data in Table 2-3 is transmitted least significant bit first.
The ‘Start’ bit is the least significant bit (LSb) and the ‘Park’ bit is the most significant bit (MSb) in Table 2-3. Use Table 2-3
and vectors given in the section “SWD and JTAG Vectors for Programming chapter on page 47” to implement PSoC 5LP pro-
gramming.

Table 2-3. SWD Transfer Request Data Packet for DPACC and APACC Register Access in DAP and TC

The ‘AP Transfer Address’ register holds the PSoC 5LP memory address that needs to be accessed. To read or write
PSoC 5LP’s internal registers or SRAM, first write the address to the ‘AP Transfer Address’ register (Pseudo Code – APACC
ADDR Write). For a write operation, write data to the ‘AP Data Read/Write’ register (Pseudo Code – APACC DATA Write). If it
is a read operation, read the ‘AP Data Read/Write’ register twice (Pseudo Code – APACC DATA Read); the test controller
(TC) reads out data through the data line.

For example, to write 32’hB6 to the target device internal register at address 32’h40004720, the following SWD transfers are
necessary:

APACC ADDR WRITE [0x40004720]

APACC DATA WRITE [0x000000B6]

The binary data for the two SWD packets, with the bit pattern being least significant bit to most significant bit (from left to
right), are as follows.

11010001 (ACK) 00000100111000100000000000000010(0)

11011101 (ACK) 01101101000000000000000000000000(1)

‘(ACK)’ indicates waiting for ACK from the target device. This ‘(ACK)’ is for the previous SWD transfer as explained earlier.
The last bit in data phase (enclosed in brackets above) is the parity bit for the 32-bit data.

SWD register read is similar to SWD write operation, except that the read operation should be done twice to get the correct
data. First, host should write the address to the APACC ADDR register address. Then, it should read the DATA_RW register
twice. The first read initiates the command to the DAP interface and the second read returns the requested value.

For example, to read from address 32’h40004720, the following transfers need to be done:

APACC ADDR Write [0x40004720]

Dummy_data = APACC DATA Read //dummy SWD read

Data = APACC DATA Read //returns actual data

Note The previous two examples do not consider the three dummy clocks cycles required at the end of each SWD packet.
They should be appended, as shown in Figure 2-8 and Figure 2-9, if the SWDCK clock is not free running.

Pseudo Code Register Name
Type of

Operation

SWD Transfer Request Data (LSB sent first)

Binary Hex

DPACC IDCODE Read IDCODE Read 8’b10100101 8’hA5

DPACC DP CTRLSTAT Write DP CTRL/STAT Write 8’b 10101001 8’hA9

DPACC DP SELECT Write SELECT Write 8’b10110001 8’hB1

DPACC READBUFF Write READBUFF Write 8’b10011001 8’h99

APACC AP CTRLSTAT Write AP CTRL/STAT Write 8’b10100011 8’hA3

APACC ADDR Write AP Transfer Address Write 8’b10001011 8’h8B

APACC DATA Read AP Data Read/Write Read 8’b10011111 8’h9F

APACC DATA Write AP Data Read/Write Write 8’b10111011 8’hBB

20 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Interface

To simplify the process, the programmer can have a SWD command interpreter that implements Table 2-3 on page 19 and
outputs data in binary format. An example follows. The SWD_packet function recognizes the SWD transfer that is given and
puts the corresponding binary data into the outgoing data buffer for transmission.

SWD_packet (APACC_ADDR, 32’h40004720)

SWD_packet (APACC_DATA_WRITE, 32’hB6)

Data = SWD_packet (APACC_DATA_READ)

2.5 JTAG Interface

The PSoC 5LP JTAG interface complies with the IEEE 1149.1-2001 specification and provides additional instructions. There
are two TAPs in the silicon. One is in the TC and the other is in the Cortex-M3’s DAP, which is used for device debug and pro-
gramming. The two TAPs are connected in series, where the TDO of the TC TAP is connected to the TDI of the DAP TAP.
This is illustrated in Figure 2-10.

Figure 2-10. TC/DAP TAP Connection

Each TAP consists of a 35-bit data register (called DP/AP access register) and a 4-bit instruction register. Refer to the “Test
Controller” chapter of the “PSoC 5LP Architecture TRM” for details on the instructions supported by the JTAG interface and an
explanation of the JTAG TAP controller state machine. The important instructions to program the device through JTAG are
listed in Table 2-4. The timing diagrams are in the section Programming Specifications chapter on page 43.

Table 2-4. PSoC 5LP JTAG Instructions

The 35-bit data register (DP/AP access register) is used for DPACC and APACC instructions. The 35-bit data register struc-
ture for JTAG write and read operations are as shown in Figure 2-6 and Figure 2-7, respectively.

Table 2-4 also lists which instructions are applicable for each TAP. If an instruction that is not applicable is shifted into a TAP,
the TAP goes into bypass mode. In by_pass mode, the data register is only 1 bit long with the contents of 0. The bypass mode
is used to isolate the target TAP. For example, if targeting the TC TAP, the DAP TAP is put in bypass mode by shifting in the
BYPASS instruction into its instruction register and if targeting the DAP TAP, the TC TAP will be placed in bypass mode. See
the examples of TAPs configuration in Figure 2-11.

Bit Code
[3:0]

Instruction PSoC 5LP Function

1110 IDCODE Connects TDI and TDO to the device 32-bit JTAG ID code.

1010 DPACC Connects TDI and TDO to the DP/AP access register (35-bit), for access to the Debug Port registers.

1011 APACC Connects TDI and TDO to the DP/AP access register (35-bit), for access to the Access Port registers.

1111 BYPASS Bypasses the device, by providing 1-bit latch (bypass register) connected between TDI and TDO.

TDI

[3:0]

Instruction Reg

[34:0]

Data Reg

TC TAP

TDI

[3:0]

Instruction Reg

[34:0]

Data Reg

CM3 DAP TAP

TDO TDO

http://www.cypress.com/?id=2232&rtID=117

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 21

PSoC 5LP Programming Interface

Figure 2-11. TC/DAP TAP Configuration Examples

a) Instructions registers combined. 8 bits total.

b) Access the DAP’s APACC registers for device debug and programming. TC TAP in bypass mode.

c) Access the TC’s APACC registers for enabling test modes. DAP TAP in bypass mode.

2.5.1 Register Access Using JTAG Interface

The following steps show how to access an address using the JTAG interface. Note that DAP must be configured before the
first three commands from “Step 2: Configure Target Device” on page 49 are executed.

1. Put TC’s TAP into BYPASS mode.

2. Assume that the address value is 0x40007014 and data '0xDA' needs to be written to this register.

a. Shift the APACC instruction into the instruction register.

b. Shift a '0' (write) followed by '01' (selecting TRNS_ADDR register) followed by '0x40007014' (32-bit address), into the
35-bit data register. For each element, the LS bit is shifted out first.

c. Shift a '0' (write) followed by '11' (selecting DATA_RW register) followed by a '0x000000DA' (8-bit data) into the 35-bit
data register. For each element, the LSB is shifted first.

d. The DAP initiates a write transfer request to the PSoC 5LP’s memory.

3. Assume that the data to be read from the register has an address value 0x40007014.

a. Shift the APACC instruction into the instruction register.

b. Shift a '0' (write) followed by '01' (selecting TRNS_ADDR register) followed by '0x40007014' (32-bit address), into the
35-bit data register. For each element, the LSB is shifted first.

c. Shift a '1' (read) followed by '11' (selecting DATA_RW register) into the 35-bit data register. For each element, the LSB
is shifted first. Note that for read operation, the 32-bit data written is not used.

d. The TC or DAP (depending on configuration) initiates a read transfer request to the PSoC 5LP’s memory; the data
read from DATA_RW is invalid in this cycle.

e. Wait at least five TCK clock cycles to avoid a WAIT response.

4. Read the DATA_RW register again. The data is now valid.

TDI

Instruction Regs.

TC DAP

TDI 0

Data Regs. {bypass, apacc}, read_data = data_reg[34:3]

35-bits
TC DAP

TDO

TDO

TDI 0

Data Regs. {apacc, bypass}, read_data = data_reg[35:4]

35-bits
DAPTC

TDO

a.

b.

c.

22 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Interface

2.6 Switching between JTAG and SWD Interfaces

PSoC 5LP supports programming through both the SWD and JTAG interfaces. It is also possible to switch from the SWD to
JTAG protocol or vice-versa at any time. This switching is done by sending a specific key sequence on the SWDIO/TMS
shared pin (referred to as SWDIOTMS) with the clock on the TCK/SWDCK shared pin (referred to as SWCLKTCK). This may
be needed for JTAG interface programming.

It is not recommended to use combined protocols to program a chip. This is useful only for specific cases of the JTAG chain.
If there are several devices in the chain, and some of them configure debug pins to SWD, then the master must switch them
all to the JTAG interface. In other cases, some of them configure debug pins to GPIO. In this case, the master must acquire
all chips together by the SWD, and only then switch them to the JTAG mode. Normally this does not happen. For the multi-
device JTAG chain, all devices must configure debug pins to the JTAG mode.

2.6.1 SWD to JTAG Switching

To switch programming interface from SWD to JTAG (4- wire) operation, use the following steps:
1. Send 51or more SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in its reset state.

The serial wire interface detects the 16-bit SWD-to-JTAG sequence only when it is in the reset state.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS. The 16-bit SWD-to-JTAG select sequence is
0b0011_1100_1110_0111, MSB first. This can be represented as either:

a. 0x3CE7 transmitted MSB first.

b. 0xE73C transmitted LSB first.

Figure 2-12. SWD to JTAG Switching Sequence

3. Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if the programming interface is already in
JTAG operation before sending the select sequence, the JTAG TAP enters the Test-Logic-Reset state.

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 23

PSoC 5LP Programming Interface

2.6.2 JTAG to SWD Switching

To switch DAP from JTAG to SWD operation, use the following steps:

1. Send 51 or more SWDCK cycles with SWDIO HIGH. This ensures that the current interface is in its reset state. The JTAG
interface only detects the 16-bit JTAG-to-SWD sequence starting from the Test-Logic-Reset state.

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIO. The 16-bit JTAG-to-SWD select sequence is
0b0111_1001_1110_0111, most-significant bit (MSB) first. This can be represented as either:

a. 0x79E7 transmitted most-significant bit (MSb) first

b. 0xE79E transmitted least-significant bit (LSb) first.

Figure 2-13. First Three Steps of JTAG to SWD Switching

3. Send 51 or more SWDCK cycles with SWDIO HIGH. This ensures that if DAP is already in SWD operation before sending
the select sequence, the SWD interface enters line reset state.

4. Send three or more SWDCK cycles with SWDIO low. This ensures that the SWD line is in the idle state before starting a
new SWD packet transaction.

5. Send the DPACC IDCODE READ SWD read packet as given in Table 2-3 on page 19. It is not necessary to process the
Device ID returned by the PSoC 5LP device for this read packet. Ignore the Device ID returned by PSoC 5LP in this step.

24 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Interface

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 25

3. PSoC 5LP Programming Flow

Figure 3-1 shows the sequence of steps involved in programming a PSoC 5LP device. Each step is discussed in detail in later
sections. All steps in Figure 3-1 must be completed successfully for a successful programming operation. The programming
operation should be stopped if there is a failure in any of the steps. The SWD and JTAG packets for each step are provided in
SWD and JTAG Vectors for Programming chapter on page 47.

Figure 3-1. PSoC 5LP Programming Flow

Enter Programming (Test) Mode

Erase All (Entire Flash memory)

Program Flash

Program Flash Protection data

Verify Checksum

Verify Flash (Optional)

Verify Flash Protection data (Optional)

Configure Target Device

Verify Device ID

 Program Write Once Nonvolatile Latch
 (Optional 1)

Verify EEPROM (Optional)

Program EEPROM (Optional)

26 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

3.1 Step1: Enter Programming Mode

The first step in PSoC 5LP device programming is to enter the Programming mode, also called the Test mode. The host pro-
grammer must complete this step successfully for the remaining programming steps to be successful.

The procedure to enter the programming mode depends on the method used to reset the PSoC 5LP device. The two methods
to reset PSoC 5LP are as follows:

 Using the device reset (XRES) pin: In this method, the host programmer drives the XRES pin of PSoC 5LP low to do a
device reset.

 Power cycle mode: In this method, the host programmer toggles power to PSoC 5LP's power supply pins (Vddd, Vdda,
and Vddios) to do a device reset.

There are several initial conditions on how the part can come out of reset and some of these scenarios require different initial-
ization steps. These conditions depends on Debug_En and Debug Port Settings fields in Custom NVL memory (see Appen-
dix).

In some scenarios, access to Cortex-M3 DAP is available and the programmer can start working with the nonvolatile memory
right away (when DPS = SWD/JTAG and Debug_En = On). But in other cases, the programmer must execute special acquire
sequence to get access to Cortex-M3 DAP (for example, when DPS = GPIO and Debug_En = OFF). In such cases, the pro-
grammer must reset a part and then send an acquire key during the 400 uS boot window to enable the SWD port and connect
to DAP. This specification will consider two methods of entering into programming mode:

 SWD universal acquisition. This method can be used independently on current DPS or Debug_En settings. This method
must be implemented by a third-party programmer to be 100 percent compatible with the PSoC 5LP device.

 JTAG compliant acquisition. This method is in field compliance with IEEE 1149.1 standard and requires only four JTAG
wires (no XRES). This method is only available if DPS = JTAG and Debug_En = ON.

Both these methods are described in detail here.

3.1.1 SWD Universal Acquisition

Figure 3-2 on page 27 shows the sequence of steps to enter the programming mode (or test mode) of the PSoC 5LP using
SWD interface; Figure 3-3 on page 27 shows the corresponding timing diagram. See Table 4-3 on page 45 for specifications
of the timing parameters mentioned in Figure 3-2 on page 27 and Figure 3-3 on page 27. Figure 3-3 on page 27 shows both
the XRES method and power cycle mode of programming. Each of these methods are explained in separate sections

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 27

PSoC 5LP Programming Flow

Figure 3-2. Entering Programming (Test) Mode through SWD Interface

Figure 3-3. Timing Diagram to Enter Test Mode through SWD Interface

 Entering test mode
through SWD interface

Reset the PSoC 5 Device
using XRES pin or Power cycle mode

 Send Port Acquire key SWD packet with
 SWDCK at frequency of fSWDCK_ACQUIRE.

DPACC READBUFF Write [0x7B0C 06DB]

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

No

Time, t = 0

Time, t < TTESTMODE ?
Yes

No

Fail and Exit
(Test mode timing window elapsed)

 Send Address of Test mode key register
APACC ADDR Write [0x4005 0210]

 Send 32-bit Test mode key
APACC DATA Write [0xEA7E 30A9]

Next Step

ACK = OK (3'b001)

Yes

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

YesNo

Time, t <= TSTART_SWDCK

Fail and Exit
(Test mode timing window elapsed)

Step i

Step ii

Step iii

Host programmer must start sending the Port
Acquire key within time TSTART_SWDCK of releasing
XRES pin (for XRES mode), or Vddd/Vdda voltages
crossing VPOR voltage level (for Power cycle mode)

Wait >= 15 uSec

Send JTAG to SWD sequence

YesNo

SWD_ID == 0x2BA01477?

SWD_ID = DPACC Read ID

Fail and Exit

Step iv

XRES method
(XRES_N pin)

Time (Not to scale)

Host sends Port
Acquire Key till OK

ACK is received

Host sends
Test mode
Address

SWDCK
(P1[1] or P15[7])

SWDIO
(P1[0] or P15[6])

TRESET

TTESTMODE

FSWDCK_ACQUIRE is clock frequency on SWDCK line till entering Test mode

Host sends
Test Mode

Key

Toggling of SWDCK should start within time TSTART_SWDCK after releasing reset. For Power cycle mode, the time when
 Vddd/Vdda voltages go above VPOR level is considered as release of reset.

Vddd, Vdda are above VPOR voltage level
Power Cycle method

(Vddd, Vdda, Vddio’s of
PSoC 5 are tied together)

TSTART_SWDCK

Host sends Port
Acquire Key till OK

ACK is received

OK ACK from PSoC 5

Test mode entered
within time TTESTMODE

TRAMP

28 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

3.1.1.1 SWD Programming using XRES Pin

The sequence in Figure 3-3 on page 27 is using the SWD
interface and XRES pin as follows.

1. The host programmer drives the XRES pin of PSoC 5LP
low to cause a device reset. The reset signal is active
low, and the reset pulse width is specified by the TRESET

timing parameter.

2. Within time TSTART_SWDCK of releasing XRES signal, the
host must start sending the Port Acquire key on SWDIO
and SWDCK lines. The host must send this Port Acquire
key continuously until an OK ACK is received from PSoC
5LP. The pseudo code is given here.
do
{
/* Write Port Acquire key, Use SWD ADDR =

2’b11*/
 DPACC READBUFF Write [0x7B0C 06DB]
//Check port acquire retry time and

whether OK ACK is received
} while (ACK != "OK" AND time_elapsed <

TTESTMODE)

// Exit on timeout
if (ACK != “OK” OR time_elapsed >

 TTESTMODE) then FAIL_EXIT

If the debug port is disabled, PSoC 5LP ignores the first
Port Acquire SWD packet sent after releasing reset. It
does not return an OK ACK for the first packet.
PSoC 5LP sends an OK ACK only during the second try
of the Port Acquire SWD packet. Therefore, the port
acquire sequence must be sent continuously on the
SWD interface until an OK ACK is received. The timeout
window for this loop is TTESTMODE, the programming

(test) mode entry window duration.

Significance of SWDCK frequency fSWDCK_ACQUIRE:

In Figure 3-2 on page 27 and Figure 3-3 on page 27, the
SWDCK frequency during test mode entry is
fSWDCK_ACQUIRE. The host programmer must meet this

frequency specification to successfully enter PSoC 5LP
programming mode. After device reset is released, the
internal test controller logic in PSoC 5LP looks for the
clock transitions on the SWDCK line. If the test controller
logic notices eight SWDCK clock cycles within a time
window of TACQUIRE, it extends the time to enter pro-
gramming mode to TTESTMODE. This time window can be

anywhere within duration TBOOT (68 µs) after device

reset. TBOOT is the time for PSoC 5LP boot to complete

after device reset is released. By ensuring that the
SWDCK line is always clocked at a frequency of
fSWDCK_ACQUIRE, the host programmer can meet PSoC
5LP test mode entry timing requirements. Note that for
bit banging host programmers, which cannot generate a
constant clock frequency of fSWDCK_ACQUIRE on the

SWDCK line for entire SWDCK packet duration, an alter-
nate acquire method is explained in a later section.

3. After the host programmer receives an OK ACK for the
port acquire sequence, it must write the test mode key to
the Test Mode Key register to enter PSoC 5LP program-
ming mode. This key must be written within time TTEST-

MODE, as shown in Figure 3-2 on page 27 and Figure 3-3

on page 27. By ensuring that SWDCK is clocked at a fre-
quency of fSWDCK_ACQUIRE during this step, the host pro-

grammer can enter PSoC 5LP programming mode
within time TTESTMODE. The pseudo code for this step is

given here.
APACC ADDR Write [0x4005 0210] // Address of
the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-
bit test mode key

/* Exit on timeout or reception of FAULT
response means the device did not enter
Programming mode within time TTESTMODE. Retry

again by doing reset and restarting.*/

if (ACK != "OK" OR time_elapsed > TTESTMODE
usec) then FAIL_EXIT

3.1.1.2 SWD Programming using Power
Cycle Mode:

Power cycle mode programming is identical to XRES
method from a programming algorithm standpoint, as shown
in Figure 3-2 on page 27 and Figure 3-3 on page 27. The
only difference is that, instead of driving the XRES pin, the
host programmer toggles power to the PSoC 5LP power
supply pins (Vddd, Vdda, Vddio0, Vddio1, Vddio2, and
Vddio3) to cause a device reset.

The power cycle method is complex to implement compared
to the XRES method because it requires special hardware
design considerations for power toggling. The power cycle
mode programming also requires that the Vdda, Vddd, and
Vddio power supply pins in PSoC 5LP are tied to the same
power supply and toggled at the same time, as shown in
Figure 3-2 on page 27. It is recommended to implement the
XRES method of programming because it is easier to imple-
ment. Power cycle mode programming is required in two
case:

 When the optional XRES pin (P1[2]) in 68-pin SSOP
parts is configured as a GPIO pin, the only way for the
host programmer to do a device reset is to toggle power
to PSoC 5LP. This is because there is no dedicated
XRES pin in 68-pin parts unlike the other pin count pack-
ages. Note that this condition of disabling P1[2] as XRES
for 68-pin parts is done only by the user and not by
Cypress. The 68-pin parts coming from factory have the
P1[2] pin configured as XRES by default. But if the user

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 29

PSoC 5LP Programming Flow

programs a hex file that disables P1[2] as XRES, then
XRES method is not available for subsequent tries of
programming. The power cycle method must be used in
such a case.

 If it is required to program PSoC 5LP using the SWD
interface's USB pins (P15[6], P15[7]), then the host pro-
grammer can toggle power to USB interface's VBUS pin
to cause a device reset and program using the USB
SWD pins. In this case, the VBUS power pin in the USB
interface powers the Vddd, Vdda, and Vddio power sup-
ply pins in PSoC 5LP.

Ramp Rate Requirements for Power Cycle Mode Pro-
gramming

The maximum power supply ramp rate is specified in the
PSoC 5LP device datasheet as parameter Svdd. There is
no minimum ramp rate requirement specified for power
cycle mode. A slower ramp rate requires special hardware
considerations as follows:

 When the power supply ramp duration (TRAMP) from
VPOR to final value is less than TSTART_SWDCK.

Figure 3-3 on page 27 shows that the host programmer
must start sending the Port Acquire sequence within

time duration TSTART_SWDCK of Vddd and Vdda voltage

levels crossing VPOR voltage level specification. If the
time (TRAMP) for power supplies to ramp from VPOR to

final supply voltage is less than TSTART_SWDCK, then the

host programmer can start sending the Port Acquire
sequence after Vddd, Vdda, and Vddio pins have
reached final voltage value.

 When power supply ramp duration from VPOR to final
value (TRAMP) is more than TSTART_SWDCK

In this case, the host programmer cannot wait for power
supplies to ramp to the final voltage value before send-
ing the Port Acquire sequence. Otherwise, the host pro-
grammer cannot meet the timing requirements to enter
PSoC 5LP programming mode. The host programmer
should implement the power cycle mode shown in
Figure 3-4. It should start sending the Port Acquire
sequence even as the power supplies (Vddd, Vdda,
Vddio) ramp up. Adjust the voltage levels of the SWDCK
and SWDIO lines to match the instant value of the power
supply pins. This method is implemented in Cypress's
MiniProg3 programmer in which the ramp rate duration
(TRAMP) is greater than TSTART_SWDCK. This implemen-

tation ensures that the PSoC 5LP's test controller is able
to detect data (logic levels) on the SWDIO and SWDCK
lines even when the power supply is ramping.

Figure 3-4. Power Cycle Mode Implementation for TRAMP > TSTART_SWDCK

3.1.1.3 SWD Programming using Bit
Banging Host Programmers:

Some host programmers implement the SWD interface as a
bit banging implementation. Examples of such host pro-
grammers are microcontrollers in which the SWDIO and
SWDCK signals are generated by writing to specific port
registers of the microcontroller.

It is not possible for some of the bit banging programmers to
generate the SWDCK clock signal at a constant frequency

of fSWDCK_ACQUIRE for the entire SWD packet, as shown in
Figure 3-2 on page 27 and Figure 3-3 on page 27. A modi-
fied method of entering PSoC 5LP programming mode is
given for these programmers. This method is applicable only
for programmers that use the XRES pin. It is not applicable
for power cycle mode programming due to the constraints it
imposes on power supply ramp rates.

Figure 3-5 on page 31 shows the modified steps to enter
test mode of PSoC 5LP; Figure 3-6 on page 31 shows the
corresponding timing diagram. See Table 4-3 on page 45 for

Vddd,
Vdda,

Vddio’s

TRAMP

 VPOR

SWDCK,
SWDIO

 VFINAL
TSTART_SWDCK

TRAMP > TSTART_SWDCK

30 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

specifications of timing parameters. The primary need for
SWDCK clocking at frequency of fSWDCK_ACQUIRE is to meet
the condition of "8 SWDCK clock cycles in the time window
TACQUIRE". On detection of these eight clocks, the time to
enter test mode is extended to TTESTMODE. The time win-
dow TACQUIRE can occur anywhere during time TBOOT. To
simplify the implementation for bit banging programmers,
the method in Figure 3-5 on page 31 requires the program-
mer to toggle SWDCK alone at a frequency of
fSWDCK_ACQUIRE with SWDIO held low. This ensures that
the host programmer meets the initial test mode timing
requirements. An example C code that implements
Figure 3-5 on page 31 is given here.
/* Set LOOP_COUNT value based on number of
loop cycles needed to execute the “Initial
Port Acquire window” loop below for time
TBOOT */
#define LOOP_COUNT 240

uint16 j = 0; /* Variable to keep track of

no. of times to generate SWDCK clock
*/

XRES_LOW; /* Generate active reset on XRES
line for at least for time TRESET */

XRES_HIGH; /* Release XRES */

SWDIO_LOW; /* Hold the SWDIO line low during
TBOOT */

/*---------------Initial Port Acquire win-
dow, TBOOT---------------------*/
do
{
/* Ensure that SWDCK frequency is greater
than fSWDCK_ACQUIRE */

SWD_CLOCK_LOW;
SWD_CLOCK_HIGH;
j++;

}while(j < LOOP_COUNT);
/*---------------End of Initial Port Acquire

window---------------*/

/*Send Port Acquire key, Test mode address,
Test mode key SWD packets at frequency of
fSWDCK_BITBANG to complete all steps within
time TTESTMODE*/

After time TBOOT, the programmer must send the port
acquire, test mode key SWD packets. These SWD packets
should be sent within time TTESTMODE.

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 31

PSoC 5LP Programming Flow

Figure 3-5. Enter Test Mode through SWD Interface (for bit banging programmers)

Figure 3-6. Timing Diagram to Enter Test Mode through SWD Interface (for bit banging programmers)

 Entering test mode
through SWD interface

Reset the PSoC 5 Device
using XRES pin or Power cycle mode

 Send Port Acquire key SWD packet with
 SWDCK at frequency of fSWDCK_BITBANG for rest of SWD packets

DPACC READBUFF Write [0x7B0C 06DB]

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

No

Time, t = 0

Time, t < TTESTMODE ?
Yes

No

Fail and Exit
(Test mode timing window elapsed)

 Send Address of Test mode key register
APACC ADDR Write [0x4005 0210]

 Send 32-bit Test mode key
APACC DATA Write [0xEA7E 30A9]

ACK = OK (3'b001)

Yes

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

YesNo

Time, t >= TBOOT

Fail and Exit
(Test mode timing window elapsed)

Step i

Step iii

Step iv

Host programmer must start clocking SWDCK within
time TSTART_SWDCK of releasing XRES.

Clock SWDCK at frequency of fSWDCK_ACQUIRE
with SWDIO held low for duration TBOOT

Time, t <= TSTART_SWDCK

Step ii

Initialize SWD port
(same sequence as in Figure 3-2)

Step v

Next Step

YesNo

SWD_ID == 0x2BA01477?

Fail and Exit

XRES method
(XRES_N pin)

Time (Not to scale)

Host sends Port
Acquire Key till OK

ACK is received

Host sends
Test mode
Address

SWDCK
(P1[1] or P15[7])

SWDIO
(P1[0] or P15[6])

TRESET

TTESTMODE

FSWDCK_ACQUIRE is SWDCK
frequency during TBOOT

Host sends
Test Mode

Key

Toggling of SWDCK should start within time
 TSTART_SWDCK after releasing reset.

TSTART_SWDCK

Host sends Port
Acquire Key till OK

ACK is received

OK ACK from PSoC 5

Test mode entered
within time TTESTMODE

TBOOT

FSWDCK_BITBANG is SWDCK
frequency after TBOOT till

entering test mode

Host must drive the SWDIO
line low during time TBOOT

32 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

3.1.1.4 Determine fSWDCK_BITBANG:

In Figure 3-5 on page 31, the programmer must send the
SWD packets after time TBOOT at a frequency of
fSWDCK_BITBANG. This frequency requirement is to meet the
TTESTMODE timing requirement. The value of
fSWDCK_BITBANG depends on bit banging programmer imple-
mentation. An example calculation for fSWDCK_BITBANG that
assumes no overhead in sending SWD packets is given
here.

In PSoC 5LP, a maximum of two Port Acquire SWD packet
tries are required to get OK ACK. The test mode address
and test mode key require another two SWD packets. A
maximum of four SWD packets must be sent by the pro-
grammer within time (TTESTMODE - TBOOT). The minimum
value of TTESTMODE from Table 4-3 on page 45 is 395 µs,
and TBOOT is 68 µs; the difference factor is 327 µs. Each
SWD packet requires 49 SWDCK clock cycles (including the
three dummy clock cycles at end of each SWD packet); ,
hence, 196 SWDCK clock cycles are required for four SWD
packets.

TSWDCK_BITBANG(no overhead) (327 µs/196)  1.6 µs

fSWDCK_BITBANG(no overhead) (1/1.6 µs)  0.7 MHz

This example calculation assumes no overhead in sending
the SWD packets on the host programmer side. The mini-
mum frequency requirement increases with other additional
overhead; this is specific to host programmer architecture.

The frequency parameter fSWDCK_BITBANG refers to the
average frequency of the SWDCK clock generated by host
programmer. Bit banging programmers cannot generate
constant frequency on the SWDCK line during the entire
SWDCK packet. But the average SWDCK frequency must
be greater than the minimum value of fSWDCK_BITBANG so
that the programming mode is entered within time TTEST-

MODE.

3.1.2 JTAG Compliant Acquisition

The PSoC 5LP silicon can be programmed in full compli-
ance with IEEE 1149.1 standard. For example, SVF or
STAPL scripts for JTAG programming can be generated
from the hex file and executed in the third-party JTAG tools.
To be compatible with the JTAG standard, the default device
factory settings for DPS is “4-wire JTAG” and for Debug_En
is “Enabled”. It means that access to Cortex-M3 DAP is
always available (during firmware execution) and the JTAG
master can start communication with DAP any time.
Figure 3-7 shows the steps to enter programming mode (or
test mode) of PSoC 5LP in compliance with IEEE 1149.1
standard.

Figure 3-7. Enter Programming (Test) Mode through JTAG

Move JTAG’s FSM into Reset State

Put TC’s TAP in APACC mode and DAP’s TAP in BYPASS mode

Generate Software Reset by writing into TC’s register:
APACC Write 0x40050214, 0x40

Wait >= 68 uSec

Move JTAG’s FSM into Reset state

Read ID code of Cortex-M3 DAP (32 bit)

Yes

No

DAP’s ID == 0x4BA00477?

Fail and Exit

Put TC’s TAP in BYPASS mode and DAP’s TAP in APACC mode

Next Step

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 33

PSoC 5LP Programming Flow

Following are the details of Figure 3-7:

1. Device Reset - If reset mode is used to start program-
ming, then it is recommended to reset the device before
starting to program. Because the JTAG standard does not
specify the XRES pin, this step can be considered optional.
You should be able to start programming at any time of firm-
ware execution. However, PSoC 5LP supports program-
matic reset by setting a gen_tcr (0x40) bit of TC_PM_CTRL
(0x40050214) register in the Test Controller block. The chip
has the ability of software reset and should be used as a
synchronization mechanism for the programmer and target.

2. Wait for >= 68 uSec - This is a necessary step to ensure
that at least 68 uS are elapsed from the last device reset. It
is recommended to have this delay in the milliseconds range
(for example, 1 mS).

3. Reset JTAG FSM - This is needed to synchronize FSMs
of all the JTAG devices on the chain, which can be in the
unknown state at the start of programming.

4. Reading/Checking ID - This step reads ID of Cortex-M3
DAP’s TAP. First, set TC’s TAP in BYPASS mode and set ID
CODE in DAP’s IR. The DAP returns the ARM’s ID of Cor-
tex-M3 CPU. It is the same for all PSoC 5LP packages. The
verification of the ID ensures that a proper connection with
PSoC 5LP silicon is established and that it is correct to
goon. The ID is returned in a single 32-bit word.

5. Initialize IRs - PSoC 5LP contains two TAPs and the pro-
grammer must initialize them correctly (see “Test Controller
Block” on page 12 section). During programming only DAP’s
TAP is used, so the Test Controller’s TAP must be put in
BYPASS mode (see “JTAG Interface” on page 20 section).
The IR’s size for each TAP is four bits, and the DR’s size is
35 bits. After IR is configured, the TC’s DR will be 1 bit long
(bypass latch), and the DAP’s DR will be 35 bits long. Exter-
nally, PSoC 5LP will appear as one JTAG device with an 8-
bit IR and a 36 bit DR.

Note that the JTAG compliant programming shown in
Figure 3-7 is only available with certain settings of DPS and
Debug_En fields in Custom NVLs. The third-party program-
mer must ensure that DPS and Debug_En are never pro-
grammed with other settings. The locations of these settings
in the hex file is described in the Appendix chapter on
page 77. The programmer software can throw an error mes-
sage and abort operation if a hex file with different settings
attempts to program PSoC 5LP. The default device factory
settings for DPS = “4-wire JTAG” and for Debug_En =
“Enable”. They must not be changed to ensure the device is
compliant with IEEE 1149.1 standard.

3.2 Step 2: Configure Target
Device

Figure 3-8 shows the sequence to configure the target
PSoC 5LP device before programming the device.

Figure 3-8. Configuring Target PSoC 5LP Device

After entering Programming mode, the host programmer
must do certain register writes to configure the target device.
These are required to configure the PSoC 5LP Debug and
Access Port (DAP), halt the CPU, activate debug mode,
enable different sub-systems (IMO, bus clock, CPU), and
configure clocks (IMO).

 Configure PSoC 5 Debug and Access Port (DAP)

Enable individual sub-systems
(CPU, IMO, SPC, Interrupt Controller, Bus clock)

 Halt CPU, Release ARM Cortex M3 reset

Next Step

Set IMO frequency to 24 MHz

34 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

3.3 Step 3: Verify JTAG ID

To ensure that the target device corresponds to the device
for which the hex file is meant, the device ID of the target
device must be compared against the Device ID information
in the hex file. This ensures that the hex file is completely
compatible with the Device under Test (DUT). If there is a
mismatch in the device IDs, the programming operation
should be stopped. See “Intel Hex File Format” on page 77
for information on the location of the device ID in the hex file.

The PSoC 5LP JTAG ID is located in the special register of
the CPU address space. The register address is
0x4008001C. The flow chart of this step is shown in
Figure 3-9.

Figure 3-9. Verify Device ID of Target Device

3.4 Step 4: Erase Flash

Figure 3-10 demonstrates the Erase Flash process, which
erases all flash data and configuration bytes, and all flash
protection rows.

Figure 3-10. Erase Flash Sequence

All the nonvolatile memory (flash, EEPROM, NVL) erase
and program operations are done through a simple com-
mand and status register interface. The Test Controller (TC)
accesses programming operations by writing to the com-
mand data register (SPC_CPU_DATA) at the address
32’h40004720. After providing a valid command, the host
should wait until the command is executed. When a com-
mand is completed, the status is available in the status reg-
ister (SPC_SR). The status register can be polled to see if
the command is executed successfully.

These details are explained in ““Nonvolatile Memory Pro-
gramming” on page 80”. For more information on nonvolatile
memory programming, refer to the “PSoC 5LP Architecture
TRM”.

A single command requires several SWD writes to the com-
mand data register. The ERASE_ALL command has three
parameters, and they should be written to the command
data register. After calling ERASE_ALL, the target device
starts erasing the entire flash. The ERASE_ALL command
should not take longer than 1 second, otherwise an overtime
error occurs.

Device ID matches
with that in hex file ?

Yes No

Read JTAG ID from the specific
register by Address 0x4008001C

Next Step Fail and Exit

Call ERASE_ALL

Check SPC Status Register

Next StepFail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

http://www.cypress.com/?id=2233&rtID=117
http://www.cypress.com/?id=2233&rtID=117

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 35

PSoC 5LP Programming Flow

3.5 Step 5: Program Device
Configuration NVL

Figure 3-11 on page 35 shows the Program Device Configu-
ration Nonvolatile Latch (NVL) setup flow. This step writes
the 4-byte Device Configuration NVL (Custom NVLs). The
data to be written to the NVL is located in address
32'h90000000 of the hex file. The LOAD_BYTE and
WRITE_USER_NVL commands are used in this step. The
LOAD_BYTE command loads the data one byte at a time to
a 4-byte latch. The WRITE_USER_NVL command writes
the four bytes of loaded data in the latch to NVL. Therefore,
the LOAD_BYTE command needs to be called four times,
followed by one WRITE_USER_NVL command. The SPC
status register needs to be polled to check when the com-
mand finishes the write operation. The WRITE_USER_NVL
command should not take longer than 1 second, otherwise
an overtime error occurs.

Before writing the device configuration data, the P1[2] pin
should be configured for resistive pull-up drive mode in spe-
cial scenario (P1[2] can be either GPIO or XRES pin). This
configuration of pins is needed because P1[2] is shared with
XRES pin, which can be set during NVLs write. Due to sili-
con design the reset pulse is generated on P1[2] when
XRES gets enable in NVLs. Having pull up enabled on this
pin disables this pulse to penetrate into device. So, the pro-
grammer must enable pull up on P1[2] if NVL write is going
to set XRES mode on this GPIO pin.

Figure 3-11. Program Device Configuration NVL

The NV latches in PSoC 5LP have a much lesser endurance
compared to flash and EEPROM memory. Due to this, the
user NVL is written only if new data needs to be pro-
grammed into the latch. This ensures that the latches are
programmed only when there is change in the configuration
data in the hex file, which in turn maximizes the endurance
time.

Next Step
No

Load Device Config NVL
with data from hex file

Call “WRITE_USER_NVL”
with Device Config NVL Array ID

Next Step

Did “ECC_Enable”
bit in NVL change

from previous
value?

No Yes

 Read Device Configuration NVL bytes from PSoC5 using
 READ_BYTE command, and Device Config NVL Array ID

Compare the NVL bytes read from PSoC5 with those in hex file
(Device Config NVL bytes in region 0x90000000 of hex file)

Byte mismatch ?

Yes

Check SPC Status Register

Fail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

 Re-enter Test mode (Step 1),
Configure Target Device(Step 2)

Next Step

Configure P1[2] pin in Resistive pull-up drive mode if required

36 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

When programming the user NVL, if the ECC Enable bit has
changed from its previous value, then it is necessary to reset
the chip and acquire it again and re-enter the Programming
mode (repeat Step 1 and Step 2). This is because the modi-
fied ECC setting takes effect only when the chip is reset
again; the modified value is needed for the Program Flash,
Verify Flash, Program Flash Protection, and Verify Flash
Protection steps.

3.6 Step 6: Program Flash

Flash memory in PSoC 5LP is programmed in rows. Each
row has 256 code bytes and 32 ECC bytes. There is an
option to use the ECC memory space to store configuration
data. The row latch to program the flash row288 bytes (if
ECC is enabled) or 288 bytes (if ECC is disabled). The flash
data to be programmed comes from the hex file. See “Intel
Hex File Format” on page 77 for information on the location
of flash programming data in the hex file.

During the programming process, if the ECC feature is
enabled, the row latch needs to be loaded with all the 256
bytes of data. In this scenario, the 256 code bytes should be
fetched from main flash data region of hex file at address
0x0000 0000. If ECC is disabled, the 32 ECC bytes should
be fetched from the configuration data region of hex file at
address 0x8000 0000. The programmer software should
concatenate these 32 bytes with the 256 bytes to form the
288 byte row data that needs to be loaded into the row latch.
This step needs to be done to program all flash rows.

The ECC enabled/disabled setting is stored in bit 3 of byte 3
of device configuration NVL. This byte is stored in address
0x90000003 of hex file. The Programmer software must
check this bit to determine the size of the flash row to be
programmed.

There are three parameters to consider in the flash pro-
gramming process.

 Number of flash arrays (K) of flash memory: The value of
‘K’ depends on flash memory size. The flash memory in
PSoC 5LP is organized as flash arrays, where each
flash array can have maximum size of 64 KB. Each flash
array in turn is organized as rows, where the size of
each row is 256 code bytes and 32 configuration bytes.
The maximum flash size in the PSoC 5LP family is 256
KB, and hence the maximum number of flash arrays
possible in PSoC 5LP is 4. Note that flash memory size
given in device datasheet refers only to the code region
of flash and not configuration region. A 256 KB flash
memory implies that code region memory size is 256
KB.

 K=1 for flash memory ≤ 64 KB,

 K=2 for 64 KB < flash memory ≤ 128 KB,

 K=3 for 128 KB < flash memory ≤ 192 KB,

 K=4 for 192 KB < flash memory ≤ 256 KB.

 Number of rows (N) of flash memory: The value of ‘N’
depends on the flash memory size of the target device.
For example, a 256 KB flash memory device has 1024
rows [(256K/256) = 1024 rows]. As mentioned previ-
ously, these rows are organized across multiple flash
arrays depending on the flash memory size. A 256 KB

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 37

PSoC 5LP Programming Flow

flash memory has the 1024 rows organized as four flash
arrays of 256 rows each. Also, note that the flash size
parameter does not consider the size of configuration
bytes. For example, a 64 KB flash size means that the
code region capacity is 64 KB. It does not include the
configuration bytes because this region cannot be used
for code space, only for configuration data.

 Number of bytes per row (L) of flash memory: Each row
of flash has 256 code bytes and 32 bytes of ECC. There
is an option to use the 32 ECC bytes to store configura-
tion data instead of error correction.

L = 256 bytes, if ECC is enabled

L = 288 bytes, if ECC is disabled

Figure 3-12 demonstrates the flash row programming pro-
cess. Before programming flash, it is necessary to get the
on-chip die temperature using the Get Temp command. This
temperature value is passed as one of the parameters for
the PROGRAM_ROW command. The Get Temp command
should be called twice, after device comes out of reset to get
an accurate temperature value. LOAD_ROW and
PROGRAM_ROW commands are required to program
flash. The LOAD_ROW command loads one row of flash
data into the row latch and the PROGRAM_ROW command
programs the latched data into the specified row of target
flash. This process needs to be repeated for every row of
flash array and for all flash arrays.

It takes time to load and then program each flash row. Direct
Memory Access (DMA) can speed up this process, because
the DMA runs in parallel with the flash operations. It can call
commands through two DMA channels, such that one chan-
nel can load row data and then call PROGRAM_ROW, and
the other channel can start loading data for the next row
while the previous command is still programming.

Figure 3-12. Program Flash

Fail and Exit

Yes

Write SRAM with (Even Flash Row)
LOAD_ROW and PROGRAM_ROW commands.

Increment Row_Count.

Check SPC Status Register

Command Executing
&& Time < 1 sec ?

Next Step

Yes

No

Init & Start DMA CH 0

Write SRAM with (Odd Flash Row)
LOAD_ROW and PROGRAM_ROW commands.

Increment Row_Count

Check SPC Status Register

Command Executing
&& Time < 1 sec ?

Yes

Yes

No

All Flash rows
programmed ?

No

No

(Time > 1 sec) OR
(Status != Success) ?

Fail and Exit

No

Init & Start DMA CH 1

Yes
No

(Time > 1 sec) OR
(Status != Success) ?

Bytes per row, L = 256 Bytes per row, L = 288

Yes No

ECC Enabled ?

Call “GetTemp” command twice to
get current die temperature (value returned during second call)

Get the “Number of Rows” parameter ‘N’,
“Number of Flash Arrays” parameter ‘K’,

Set “Row_Count = 0”

38 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

3.7 Step 7: Verify Flash
(Optional)

Figure 3-13 demonstrates the flash read process. This
optional step allows reading back and verifying data pro-
grammed in the Program Flash step. This step should be
done before the Checksum Validation step.

The READ_MULTI_BYTE command is used to read out all
bytes in flash rows. Each read command can read out a
maximum 256 code bytes. If ECC is disable, the 32 bytes of
configuration data need to be read out. To read this data, call
the READ_MULTI_BYTE command again addressed to
point to that configuration data. The number of returned data
should be set to 32. This cycle needs to be repeated for all
flash rows in all flash arrays.

After reading the data for one flash row, it should be verified
with the corresponding flash row data in the hex file. If there
is a mismatch in even one of the bytes, the programming
process should be stopped and restarted.

Note that in the hex file, the code region in flash row (256
bytes) starts at address 0x0000 0000 of hex file. If ECC is
disabled, the 32 configuration bytes for flash row are present
starting at address 0x8000 0000 of hex file. In this case the
256 bytes from the code region (0x0000 0000 of hex file)
and 32 bytes from the configuration region (0x8000 0000 of
hex file) must be concatenated to form a flash row.

Figure 3-13. Verify Flash Sequence

Bytes per row, L = 256 Bytes per row, L = 288

Yes No

ECC Enabled ?

Yes

Call “READ_MULTI_BYTE” command
to read 256 code bytes from Flash row

Store the 256 bytes of read data in an array

Next Step

Compare the read data from Flash row with
corresponding row data from hex file

(Code region of Flash at address 0x0000 0000,
Configuration region at address 0x8000 0000 of hex file)

All Flash rows
verified ?

No

Get the “Number of Rows” parameter ‘N’,
“Number of Flash Arrays” parameter ‘K’,

Set “Row_Count = 0”

Fail and Exit
YesNo

Byte mismatch ?

Call “READ_MULTI_BYTE” command
to read 32 Configuration bytes from Flash row

Append the 32 Configuration bytes of read data to array.

Increment Row_Count

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 39

PSoC 5LP Programming Flow

3.8 Step 8: Program WO NVL
(Optional)

Figure 3-14 shows the Program Write Once Nonvolatile
Latch setup flow. This step writes the 4-byte Write Once
(WO) NVL. Note that programming WO NVL with the correct
32-bit key (0x50536F43) makes the device One Time Pro-
grammable (OTP). Any other key value does not have any
impact on device security. Include this step after under-
standing its implications and only if it is required for the end
application. It is recommended to have this step as an
optional selection in your programmer software's graphical
user interface in the form of a check box; by default, it
should be cleared. See section “Nonvolatile Memory Orga-
nization in PSoC 5LP” on page 80 for details on the Device
Security feature that is supported by WO NVL.

Figure 3-14 shows the Program Write Once Nonvolatile
Latch setup flow. This step writes the 4-byte Write Once
(WO) NVL. The data to be written to the NVL is located in
address 32’h90100000 of the hex file. The LOAD_BYTE
and WRITE_USER_NVL commands are used in this step.
The LOAD_BYTE command loads the data one byte at a
time to a 4-byte latch. The WRITE_USER_NVL command
writes the four bytes of data in the latch to NVL. Therefore,
the LOAD_BYTE command needs to be called four times,
followed by one WRITE_USER_NVL command. The SPC
status register needs to be polled to check when the com-
mand finishes the write operation. The WRITE_USER_NVL
command should not take longer than 1 second, otherwise
an overtime error occurs.

Figure 3-14. Program Write Once NVL

The NVLs in PSoC 5LP have much lesser endurance com-
pared to flash and EEPROM memory. Due to this, the WO
NVL is written only if new data needs to be programmed into
the latch. This ensures that the latches are programmed
only when there is a change in the 4-byte security key in hex
file, which in turn maximizes the endurance time.

Next Step

No

Load Write Once NVL
with data from hex file

Call “WRITE_USER_NVL”
with Write Once NVL Array ID

 Read Write Once (WO) NVL bytes from PSoC5 using
 READ_BYTE command, and WO NVL Array ID

Compare the NVL bytes read from PSoC 5 with those in hex file
(WO NVL bytes in region 0x90100000 of hex file)

Byte mismatch ?

Yes

Check SPC Status Register

Fail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

Next Step

40 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

3.9 Step 9: Program Flash
Protection

Figure 3-15 shows the sequence to program the protection
rows in flash.

Figure 3-15. Program Flash Protection Sequence

The protection rows start in address 32’h90400000 in the
hex file, as shown in “Intel Hex File Format” on page 77. In
this step, commands LOAD_ROW and
PROGRAM_PROTECT_ROW are called to program flash
protection data. Similar to “Step 6: Program Flash” on
page 36, the Get Temp command is called initially to get the
on-chip die temperature. This temperature is sent as one of
the parameters for the PROGRAM_PROTECT_ROW com-
mand.

Each protection byte stores protection settings of four flash
rows. Each flash array in PSoC 5LP can have a maximum of
256 flash rows and, hence, a maximum of 64 flash protec-
tion bytes. The remaining bytes ((L–P) bytes) needed for the
LOAD_ROW command are initialized with zeros, as shown
in Figure A-3 on page 80. This programming of flash protec-
tion data should be done for one flash array at a time and
should be repeated for all flash arrays.

3.10 Step 10: Verify Flash
Protection (Optional)

Figure 3-16 explains the flash protection data verification
procedure. This step is optional, and it allows reading back
and verifying the data programmed in the Program Flash
Protection step. It is recommended that third party program-
mers include this step to validate the data programmed.

Figure 3-16. Verify Flash Protection Sequence

The READ_HIDDEN_ROW command is used to read out all
bytes in the Flash Protection row. This command always
returns 256 bytes irrespective of the ECC setting and the
number of valid flash protection bytes. Each protection byte
stores protection settings of four flash rows. Each flash array
in PSoC 5LP can have a maximum of 256 flash rows and
hence, a maximum of 64 flash protection bytes. The remain-

Call LOAD_ROW for loading
Protection_Data

Call PROGRAM_PROTECT_ROW

Get the “Number of Rows” parameter ‘N’,
“Number of Flash Arrays” parameter ‘K’

Prepare L-size array with first ‘P’ bytes from Flash
protection data region 0x90400000 of hex file,
and rest of (L-P) bytes of array filled with zeros

Check SPC Status Register

Fail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes

Next Step

Number of Protection bytes,
 P = (Number of rows in Flash array)/4

No

More Flash Arrays ?

Yes

No

Bytes per row, L = 256 Bytes per row, L = 288

Yes No

ECC Enabled ?

Call “GetTemp” command

Yes

No

Call READ_HIDDEN_ROW to read
Flash protection bytes

 Byte m ism atch ?

Store the Flash Protection bytes in to an array

Com pare the Protection bytes read w ith those in hex file

Fail and Exit

Get “Number of Flash Arrays” param eter ‘K’,
“Num ber of Rows” param eter ‘N ’.

 Next step

M ore Flash Arrays ?

Yes

No

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 41

PSoC 5LP Programming Flow

ing bytes returned by the READ_HIDDEN_ROW command
should be ignored during the verification step. The step
should be repeated for all the flash arrays.

3.11 Step 11: Checksum
Validation

Figure 3-17 demonstrates the checksum validation step.
This step validates that the programming operation is suc-
cessful by doing a checksum on the flash memory data. The
computed checksum is only for the code region and the con-
figuration region of flash memory. Flash protection data is
not included in the checksum computation. The programmer
software needs to locally compute the checksum for all flash

rows in all flash arrays, so that it can be compared to the
value read out from the target device. The CHECKSUM
command is used to compute and return the checksum
value, which can be read out through the data register at
32’h40004720. The checksum is a 4-byte value, so four
SWD read transfers are required. Only the lower two bytes
of this 4-byte value returned from the target device should
be taken for comparison as the hex file stores only 2-byte
checksum. If the lower 2-byte checksum values mismatch,
terminate the programming process. In the hex file, the 2-
byte checksum of all flash rows is stored at address 0x9030
0000 of hex file (MSB byte first). This is explained in “Intel
Hex File Format” on page 77.

Figure 3-17. Checksum Validation Sequence Block Diagram

3.12 Step 12: Program EEPROM
(Optional)

EEPROM nonvolatile memory in PSoC 5LP is used to store
constant data such as calibration data and look up table.
Some applications may require the EEPROM memory in
PSoC 5LP to be initialized as part of the device program-
ming sequence. The programmer software provides a con-

figuration option to the end user to select whether to include
the EEPROM initialization as part of programming
sequence. The Program EEPROM and Verify EEPROM
steps can be included if that option is selected and
EEPROM section is available in the hex file.

The number of rows in the EEPROM memory of the
PSoC 5LP device can be calculated based on the EEPROM
memory size in bytes given in the device datasheet. The

Call CHECKSUM
for numbers of rows in

current array

No

Yes

Read out current Flash
array checksum

More Flash Arrays ?

Checksum = Checksum + ArrayChecksum

Checksum = 0

Fail and Exit

Yes

Read out 2-byte checksum
and compare with that in hex file

(Hex file address 0x9030 0000 has 2-byte checksum)

Device Programming completed
successfully

Values match ?

No
Fail and Exit

Check SPC Status Register

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes

No

42 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

PSoC 5LP Programming Flow

EEPROM is written row wise with the programming data
coming from the EEPROM region of the hex file as
explained in “Intel Hex File Format” on page 77.

3.13 Step 13: Verify EEPROM
(Optional)

This step verifies the integrity of the EEPROM program
operation by ensuring the EEPROM data read from the
device matches the data in the hex file. This step should be
included only if the Program EEPROM step is also included.
The EEPROM data is read from the device by directly
accessing the EEPROM memory address through the
Debug and Access Port (DAP) interface. The step is suc-
cessful if all the EEPROM bytes read from the device
matches with the corresponding hex file data.

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 43

4. Programming Specifications

4.1 SWD Interface Timing and Specifications

Figure 4-1. SWD Interface Timing

The external host programmer should do all read or write operations on the SWDIO line on the falling edge of SWDCK, and
PSoC 5LP will do the corresponding write or read operations on SWDIO on rising edge of SWDCK.

Table 4-1. SWD Interface AC Specifications

Parameter Description Conditions Min Typ Max Units

f_SWDCK SWDCLK frequency

3.3 V ≤ Vddd ≤ 5 V – – 8a

a. The maximum frequency of 8 MHz is less than device datasheet specification as the CPU clock frequency is configured for a fixed frequency of 24 MHz in
the programming algorithm, and the f_SWDCK must be no more than 1/3 CPU clock frequency.

MHz

2.7 V ≤ Vddd < 3.3 V – – 7 MHz

2.7 V ≤ Vddd < 3.3 V,

SWD over USBIO pins
– – 5.5 MHz

T_SWDI_setup SWDIO input setup before SWDCK high T = 1/f_SWDCK max T/4 – –

T_SWDI_hold SWDIO input hold after SWDCK high T = 1/f_SWDCK max T/4 – –

T_SWDO_valid SWDCK high to SWDIO output T = 1/f_SWDCK max – – 2T/5

SWDIO
(PSoC 5 reading on SWDIO)

SWDCK

T_SWDI_setup

SWDIO
(PSoC 5 writing to SWDIO)

(1/f_SWDCK)

T_SWDI_hold

T_SWDO_valid

Programming Specifications

44 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

4.2 JTAG Interface Timing and Specifications

Figure 4-2. JTAG Interface AC Timing

The PSoC 5LP reads data on its TMS and TDI lines on the rising edge of TCK. The host should write to the TMS and TDI pins
of PSoC 5LP on the falling edge of TCK. PSoC 5LP writes to its TDO line on the falling edge of TCK. The host should read
from the TDO line of PSoC 5LP on the rising edge of TCK.

Table 4-2. JTAG Interface AC Specifications

Parameter Description Conditions Min Typ Max Units

f_TCK TCK frequency
3.3 V ≤ VDDD ≤ 5 V – – 8a

a. The maximum frequency of 8 MHz is less than the device datasheet specification as the CPU clock frequency is configured for fixed frequency of 24 MHz in
the programming algorithm, and f_TCK must be no more than 1/3 CPU clock frequency.

MHz

1.71 V ≤ VDDD ≤ 3.3 V – – 7 MHz

T_TDI_setup TDI setup before TCK high T = 1/f_TCK max (T/10) – 5 – – ns

T_TMS_setup TMS setup before TCK high T = 1/f_TCK max T/4 – – –

T_TDI_hold TDI and TMS hold after TCK high T = 1/f_TCK max T/4 – – –

T_TDO_valid TCK low to TDO valid T = 1/f_TCK max – – 2T/5 –

T_TDO_hold TDO hold after TCK high T = 1/f_TCK max T/4 – – –

TDI

TCK

T_TDI_setup

TDO

(1/f_TCK)

T_TDI_hold

T_TDO_valid T_TDO_hold

TMS

T_TMS_setup T_TMS_hold

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 45

Programming Specifications

4.3 Programming Mode Entry Specifications

Table 4-3. PSoC 5LP Programming Mode Entry Specifications

See the PSoC 5LP device datasheet for other specifications such as minimum device operating voltage and nonvolatile mem-
ory specifications.

Parameter Description Conditions Min Typ Max Units

TRESET Reset pulse width (active low) 1 – – μs

TSTART_SWDCK Maximum time from release of
device reset to start of SWDCK
signal clocking by host pro-
grammer

– 4 – μs

TSTART_TCK Time from release of device
reset to start of SWDCK signal
clocking by host programmer

– – 4 μs

TACQUIRE Initial Port Acquire window 6.1 8 9 μs

TBOOT Time for device boot process to
complete after releasing reset

– 68 – μs

TTESTMODE Time window to enter Program-
ming mode (Test mode)

395 420 430 μs

fSWDCK_ACQUIRE SWDCK clock frequency during
Port Acquire, Test mode entry

f_SWDCK max is from
Table 4-1 on page 43

1.4 – f_SWDCKmax MHz

fSWDCK_BITBANG Average SWDCK clock fre-
quency during Port Acquire,
Test mode entry for bit banging
SWD interface programmers

f_SWDCK max is from
Table 4-1 on page 43. The
minimum frequency is assum-
ing no overhead or delay
between SWD packets.

0.7 – f_SWDCKmax MHz

fTCK_ACQUIRE TCK clock frequency during
Port Acquire, Test mode entry

f_TCK max is from Table 4-2
on page 44

1.4 – f_TCKmax MHz

VPOR Vddd, Vdda rising trip voltage 1.64 – 1.68 V

46 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Programming Specifications

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 47

5. SWD and JTAG Vectors for Programming

5.1 Step 1: Enter Programming Mode

This is the first step in the programming procedure; the timing requirements are specified in Table 4-3 on page 45. Depending
on the programming interface used, the appropriate method to enter PSoC 5LP’s programming mode should be used from
the following methods. A separate method is provided for bit banging programmers that need to program PSoC 5LP through
SWD interface. Detailed information on all these methods are provided in “Step1: Enter Programming Mode” on page 26.

5.1.1 Method A

/*--- Entering Programming mode through SWD Interface using XRES or Power cycle mode---*/
 /* --------For Programmers with Hardware SWDCK generation capability------------*/
 /* Based on Test mode entry flowchart given in Figure 3-2 on page 27, Table 4-3 on page 45
*/

Step i.) Reset device using the XRES pin or the Power Cycle mode.

time_elapsed = 0

Step ii) Start sending Port Acquire key within time TSTART_SWDCK of releasing XRES pin high (for XRES mode) or Vddd, Vdda
voltages crossing VPOR voltage level (for Power Cycle mode). SWDCK frequency during this step should be fSWDCK_ACQUIRE.

do
{
/* Write Port Acquire key, Use SWD ADDR = 2’b11*/
 DPACC READBUFF Write [0x7B0C 06DB]

} while (ACK != "OK" AND time_elapsed < TTESTMODE)//Check port acquire retry time

if (ACK != “OK” OR time_elapsed > TTESTMODE) then FAIL_EXIT // Exit on timeout

Step iii) Send SWD packets for entering test mode. SWDCK frequency during this step should be fSWDCK_ACQUIRE. This step
should be completed within time TTESTMODE, as given below.

APACC ADDR Write [0x4005 0210] // Address of the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-bit test mode key

/* Exit on timeout or reception of FAULT response which means the device did not enter
Programming mode within time TTESTMODE. Retry again by doing reset and restarting.*/

if (ACK != "OK" OR time_elapsed > TTESTMODE) then FAIL_EXIT

SWD and JTAG Vectors for Programming

48 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Step iv) Wait for >= 15 uSec and send JTAG to SWD sequence. After that read SWD ID and compare it with 0x2BA01477. If
the ID is not matched with expected then do next step otherwise fail and exit. See, below implementation:

time_start = time_current

while (time_elapsed < T15uSec) {time_elapsed = time_current - time_start}
/*
* Send the JTAG to SWD switching sequence on TMS, TCK pins.
* See, section 2.6.2 for details.
*/
exp_idcode = 0x2BA01477
if (DPACC IDCODE Read != exp_idcode) then FAIL_EXIT //Exit on JTAG ID mismatch
else NEXT_STEP /* Entered PSoC 5LP Programming mode */

5.1.2 Method B

/* -----------Entering Programming mode through SWD Interface using XRES pin------------*/
 /* --------For Bit Banging Host Programmers ------------*/
/* Based on Test mode entry flowchart given in Figure 3-5 on page 31, Table 4-3 on page 45*/

Step i.) Reset device using the XRES pin.

time_elapsed = 0

Step ii.) Clock SWDCK at frequency of fSWDCK_ACQUIRE for time TBOOT. SWDIO pin of PSoC 5LP should be driven low by the
Host during time TBOOT. Host should start clocking SWDCK within time TSTART_SWDCK of releasing XRES pin high.

time_elapsed = TBOOT

Step iii) Start sending Port Acquire key in a loop after time TBOOT. Average SWDCK frequency during this step should be
fSWDCK_BITBANG.

do
{
/* Write Port Acquire key, Use SWD ADDR = 2’b11*/
 DPACC READBUFF Write [0x7B0C 06DB]

} while (ACK != "OK" AND time_elapsed < TTESTMODE)//Check port acquire retry time

if (ACK != “OK” OR time_elapsed > TTESTMODE) then FAIL_EXIT // Exit on timeout

Step iv) Send SWD packets for entering test mode. Average SWDCK frequency during this step should be fSWDCK_BITBANG.
This step should be completed within time TTESTMODE as given below.

APACC ADDR Write [0x4005 0210] // Address of the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-bit test mode key

/* Exit on timeout or reception of FAULT response which means the device did not enter
Programming mode within time TTESTMODE. Retry by doing a reset and restarting.*/

if (ACK!= “OK” OR time-lapse > TTESTMODE) then FAIL_EXIT

Step v) Wait for >= 15 uSec and send JTAG to the SWD sequence. After that read SWD ID and compare it with 0x2BA01477.
If the ID does not match as expected then do the next step; otherwise, fail and exit. See the following implementation:
time_start = time_current

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 49

SWD and JTAG Vectors for Programming

while (time_elapsed < T15uSec) {time_elapsed = time_current - time_start}
/*
* Send the JTAG to SWD switching sequence on TMS, TCK pins.
* See, section 2.6.2 for details.
*/
exp_idcode = 0x2BA01477
if (DPACC IDCODE Read != exp_idcode) then FAIL_EXIT //Exit on JTAG ID mismatch
else NEXT_STEP /* Entered PSoC 5LP Programming mode */

5.1.3 Method C

 /* Entering Programming mode through JTAG Interface */
 /* Based on Test mode entry flowchart in Figure 3-7 on page 32, Table 4-3 on page 45 */

a.) Move JTAG FSM in Reset state.
b.) TC’s IR = APACC //Set instruction register of Test Controller
c.) DAP’s IR = BYPASS //Set instruction register of Cortex-M3 DAP
d.) APACC ADDR Write [0x4005 0214] //Set address of TC_PM_CTRL register
 APACC DATA Write [0x0000 0040] //Set the “gen_tcr” bit to generate reset
e.) Wait for 1 ms. //This delay will cover Reset mode.
f.) Move JTAG’s FSM into Reset mode.g.) TC’s IR = BYPASS //Set instruction register of

Test Controller
h.) DAP’s IR = ID CODE //Set instruction register of Cortex-M3 DAP
i.) Shift out 32 bit ID from PSoC 5LP DAP.
g.) if (DAP’s != 0x4BA00477) then FAIL_EXIT
k.) TC’s IR = BYPASS
l.) DAP’s IR = APACC

5.2 Step 2: Configure Target Device
DPACC DP CTRLSTAT Write [0x50000000] //Configure DP Control & Status Register

DPACC DP SELECT Write [0x00000000] // Clear DP Select Register

APACC AP CTRLSTAT Write [0x22000002] // Set 32-bit transfer mode of DAP

APACC ADDR Write [0xE000 EDF0]
APACC DATA Write [0xA05F 0001] //Activate Debug

APACC ADDR Write [0xE000 EDFC]
APACC DATA Write [0x0000 0001] //Set VC_CORERESET, to halt CPU on reset release

APACC ADDR Write [0x4008 000C]
APACC DATA Write [0x0000 0002] // Release Cortex-M3 CPU Reset

APACC ADDR Write [0x4000 43A0]
APACC DATA Write [0x0000 00BF] // Enable individual sub-system of chip

APACC ADDR Write [0x4000 4200]
APACC DATA Write [0x0000 0002] // IMO set to 24 MHz

5.3 Step 3: Verify JTAG ID
/* Compare the 4-byte Device ID in the hex file (exp_idcode) at address 0x90500002 of hex
file with the Target Device Jtag ID. Abort programming operation if Device ID’s mismatch

SWD and JTAG Vectors for Programming

50 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

4-byte Device ID in hex file is in Big-endian format. See “Intel Hex File Format” for details
*/
int32 exp_idcode, dummy, JtagID

APACC ADDR Write [0x4008 001C] //Set address of the Jtag ID register
dummy = APACC DATA Read //Dummy Read - returns incorrect value, Next Read gives correct
Jtag ID value
JtagID = APACC DATA Read
if (JtagID != exp_idcode) then FAIL_EXIT // Exit on Jtag ID mismatch

5.4 Step 4: Erase All (Entire Flash Memory)
APACC ADDR Write [0x4000 4720] // SPC data register address
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00DC] // Second key:00DC(0xD3 + 0x09); 0x09 is Erase All opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0009] // ERASE_ALL opcode

/*Read SPC status register to check the status of SPC command. If “Command Success” status is
not received within 1 second, then exit the programming operation */
APACC ADDR Write [0x4000 4722]// SPC status register address
dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

time_elapsed = 0
int32 StatusReg //To store SPC_SR status register value
do
{
 StatusReg = APACC DATA Read // Save status register value to a local variable
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
} while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec);

if (time_elapsed > 1 sec) then FAIL_EXIT

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 51

SWD and JTAG Vectors for Programming

5.5 Step 5: Program Device Configuration Nonvolatile Latch

The data for this section is located in address 0x90000000 of the hex file.

/* The NV Latches have a lesser endurance, and hence should be written only when the data has
changed. First read the Device Configuration NVL bytes from target device and dump in to an
array, Data_Array. Compare the bytes read from the silicon to the NVL bytes in hex file at
address 0x90000000. Perform write operation only if there is a byte mismatch */

byte ByteRead = 0 //Variable to track number of bytes that have been read
byte Data_Array[4] //4-byte array to store the NVL data read from device

while (ByteRead < 0x0000 0004)
{

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00D6] // Second key:00D6(0xD3 + 0x03); 0x03 is Read Byte opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0003] //0x03 is Read Byte opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0080] // Device Configuration NVL array ID

APACC ADDR Write [0x4000 4720]
APACC DATA Write [ByteRead] //Byte number of User NVL to be read

// Poll status register bit till data is ready
APACC ADDR Write [0x4000 4722]

 byte dummy = APACC DATA Read //Dummy SWD Read, Next read gives correct status

byte StatusReg //To store SPC_SR status register value
 time_elapsed = 0
 do
 {

StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

 } while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT // Check if command execution time < 1 second

APACC ADDR Write [0x4000 4720]
byte dummy = APACC DATA Read //Dummy SWD read, first byte read is garbage
Data_Array[ByteRead] = (byte) APACC DATA Read /* Store the data read from device in to
 array */
ByteRead = ByteRead + 1

//Check if SPC Idle bit is high
time_elapsed = 0
APACC ADDR Write [0x4000 4722]// SPC status register address
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

do
{

StatusReg = (byte) APACC DATA Read// Save status register value

SWD and JTAG Vectors for Programming

52 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT
}

/*Compare the NVL bytes read from target device with those in hex file. Set “WriteFlag” if
there is change in NVL data even in one bit position. If “ECC Enable” bit in NVL (bit 3 of
byte 4 (last NVL byte)) has been changed from its previous value, “eccEnableChanged” flag is
set. If this flag has been set, a port acquire sequence (repeat of Step 1, Step 2) is done
again after completing NVL write operation. This is required for the new ECC settings to take
effect during subsequent Flash Programming, Read operations.*/

ByteRead = 0 /* Count of number of bytes read for comparison */

/*This flag determines whether the NV latch will be programmed or not. Flag is set when new
data needs to be written; otherwise reset */
byte WriteFlag=0

/*This flag, if set, indicates “ECC Enable”bit in User NVL in hex file

is different from what is already programmed in target device */
byte eccEnableChanged = 0

while (ByteRead < 0x04)
{

// Replace XX in below line with data at address (0x90000000 + ByteRead) of .hex file
if(Data_Array[ByteRead] != XX)
{

WriteFlag=1 //Set the flag if NV latch needs to be programmed

 /* Set the “eccEnableChanged” flag if “ECC_Enable” bit(bit 3 of NVL
 byte-4 is ECC_Enable bit) in User NVL is different between hex file and the
 target device. */
 if (ByteRead == 0x03)

{
 /* Replace XX in below line with data at address (0x90000000 + ByteRead) of
 .hex file */

 eccEnableChanged = (((XX ^ Data_Array [3]) & 0x08) == 0x08);
}

}
ByteRead = ByteRead + 1

}

//Check if the WriteFlag is set before programming User NVL

if (WriteFlag == 1)
{
 /* When writing the NV Latches, ensure that the GPIO/XRES pin P1[2] is configured to pull-
up drive mode when writing ‘1’ to XRES NVL bit. */

/* Replace hexNvlByte2 in the following line with data at address 0x90000002 of the hex file.
If the XRESMEN bit (msb) is set in that byte, check if the chip is already in resistive pull-
up drive mode by checking the NVL data read from the device (Data_Array[0]). If it is not,
configure the chip in resistive pull-up drive mode before performing a NVL write. */

pullupEnable = ((hexNvlByte2 & 0x80) == 0x80) && ((Data_Array[0] & 0x0C) != 0x08)
 if (pullupEnable == 1)

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 53

SWD and JTAG Vectors for Programming

 {

 APACC ADDR Write [0x4000 500A]

 Long dummy = APACC DATA READ

 Long PinState = APACC DATA READ //Read current state of P1[2]

 PinState = (PinState & 0x00F00000) | 0x00050000 //Set Pull-up Drive mode and High Data

 APACC ADDR Write [0x4000 500A]

 APACC DATA Write [PinState] //Apply new state for P1[2]

 }

byte AddrCount = 0
while (AddrCount < 4)
{
 APACC ADDR Write [0x4000 4720]// Write to command data register
 APACC DATA Write [0x0000 00B6]// First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D3] // Second initiation key: 0xD3 + 0x00

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000]// LOAD_BYTE opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0080]// Array ID of “Device Config NVL”

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [AddrCount]// Current address: 0 – 3

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00XX] // Replace XX with data located in
 // (0x90000000 + AddrCount) of .hex file

time_elapsed = 0
APACC ADDR Write [0x4000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
do // Poll status register
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT // Check if command execution time < 1 second

 AddrCount = AddrCount + 1 //Increment to load the next NVL byte
}

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00B6] // Call WRITE_USER_NVL command

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00D9]// Second initiation key: 0xD3 + 0x06

APACC ADDR Write [0x4000 4720]

SWD and JTAG Vectors for Programming

54 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

APACC DATA Write [0x0000 0006]// WRITE_USER_NVL opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0080]// Array ID: Device Config NVL

time_elapsed = 0
APACC ADDR Write [0x4000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
do // Poll status register
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT// Check if command execution time < 1 second

/* If “ECC Enable” bit changed from its previous value, do a Test mode entry again by
repeating all of “Step 1: Enter Programming mode ”, “Step 2: Configure Target Device ”.
This is necessary for the new ECC settings to take effect which in turn will be used in
subsequent Flash Program, Read operations. */

 if (eccEnableChanged)
 {
 /* Repeat “Step 1: Enter Programming mode ” */
 /* Repeat “Step 2: Configure Target Device” */
 }

} /* End of “WriteFlag ==1” loop */

5.6 Step 6: Program Flash

The data for this section is located in address 0x0000 0000 and 0x8000 0000 of the hex file. This step requires three
parameters: K - number of flash arrays, N - total number of flash rows, and L - number of bytes in row. K and N are derived
from the total flash memory size of the device, and the L value is fixed to 256 or 288, depending on ECC option. See the
respective device datasheet for flash memory size of each device.

/*Get the die temperature and store it in “Sign, Magnitude” bytes.
Note that when this command is called the first time after device comes out of reset
(which is in this step), it should be called twice. This is because the “Get Temp” command
returns accurate value only from the second time it is called after device comes out of
reset.*/

/**/

//Start of “Get_Temp” routine to get Die temperature

byte Temp_Sign, Temp_Magnitude; //Die temperature - used in the PROGRAM_ROW instruction

byte loop = 0; //This variable is used to do the Get_Temp routine twice.
 byte StatusReg //To store SPC_SR status register value

while (loop <= 1)
{

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00B6] //SPC_KEY1

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 55

SWD and JTAG Vectors for Programming

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00E1] //SPC_KEY2 + SPC_GET_TEMP (0xD3+0x0E)

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 000E] //SPC_ GET_TEMP opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0003] //Number of samples, valid values [1..5]

//Wait until Temperature data is ready
APACC ADDR Write [0x4000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x4000 4720]
byte dummy = APACC DATA Read // Dummy SWD read
Temp_Sign =(byte) APACC DATA Read // First byte read is sign of temperature
Temp_Magnitude =(byte) APACC DATA Read // Second byte read is magnitude of temperature

//Wait for IDLE - just in case. Must be in idle state once data byte is read.
APACC ADDR Write [0x4000 4722]// Poll status register

 byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

loop++;
}

/* End of “Get_Temp” routine to get Die temperature. The temperature value received
During second time of above loop is stored in Temp_Magnitude, Temp_Sign, and used in below
programming step */
/***/

//Calculating total number of rows ‘N’
int32 N = (Total_Flash_Code_size)/256; //Each row has 256 code bytes, “Total_Flash_size” is
 //in bytes

//Calculating total number of Flash arrays ‘K’
if (N % 256 == 0)
{
 byte K= (byte) N/256; //If rows are exact multiple of 256,quotient of (N/256) gives ‘K’
}
else
{

SWD and JTAG Vectors for Programming

56 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 byte K= (byte)((N/256) + 1); //If rows are not exact multiple of 256,increment quotient of
 // (N/256) by one for ‘K’s
}
int16 RowsPerArray; //Variable that hold the number of data rows in current Flash array

/* Setting AP Control/Status register configuration register for four-byte access to SRAM.
LSB 3bits: 2 - "4 byte", 1 - "2 byte", 0 - "1 byte" mode - already set during chip initial-
ization */
APACC AP CTRLSTAT WRITE [0x22000002]

// Program all Flash Arrays
for (byte ArrayCount = 0; ArrayCount < K; ArrayCount++)
{
 // Find number of rows in current array
 if (ArrayCount == (K-1))
 {
 RowsPerArray = N – (ArrayCount*256); //Last array may have less than 256 rows
 }
 else

 {
 RowsPerArray = 256; //Except last flash array, rest of them have 256 rows
 }

 int16 RowCount = 0;

 //Program Rows
 while (Row_Count < RowsPerArray)
 {
 //-------------Programming EVEN ROW ----------------------

 //"B6" - SPC_KEY1, "D5" - SPC_KEY2, "02" - LOAD_ROW opcode,
 // ArrayCount - Flash ArrayID
 APACC ADDR Write [0x2000 0000]// SRAM address- 32’h20000000
 APACC DATA Write [(0x0002 D5B6) | (ArrayCount << 24)] // 4 byte data

 int16 Byte_Count = 0

 /*Send Row data to SRAM from HEX file. Each row needs 288 bytes (256 Code bytes + 32
 Configuration bytes) for programming. The 256 code bytes for row are present
 starting at address 0x00000000 of hex file. The 32 Configuration bytes are present
 starting at address 0x80000000 of hex file. Thus a single row data is formed by
 concatenating these 256 code bytes and 32 configuration bytes to form a 288-byte row
 data. See “Intel Hex File Format” for more details. */
 while (Byte_Count < L) // Define L according to ECC settings
 {
 APACC ADDR Write [(0x20000000) + Byte_Count + 0x4]
 /* 4-bytes (d3d2d1d0) are from hex file starting at address (address of d0):

 i.) if Byte_Count < 256: (0x00000000 + (ArrayCount*65536)
 +(Row_Count * 256) + Byte_Count)
 ii.) if 256 <= Byte_Count < 288: Address of do = (0x80000000 +
 (ArrayCount*8192) + (Row_Count*32) + (Byte_Count – 256))

 The ii) address will be needed only if ECC is disabled.
 ECC data is 32 bytes per row.*/
 APACC DATA Write [d3d2d1d0] // Write 4 bytes at a time, 4-bytes are from hex file
 Byte_Count = Byte_Count + 4
 }

 //"00","00","00" - 3 NOPs for short delay, "B6" - SPC_KEY1

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 57

SWD and JTAG Vectors for Programming

 APACC ADDR Write [(0x20000000)+ (L - 1) + 0x05]
 APACC DATA Write [0xB600 0000]

 //"DA" - SPC_KEY1+SPC_PRG_ROW, "07" -SPC_PRG_ROW, " ArrayCount" -Flash Array ID,

 //"00" - High Byte of RowCount, ‘Temp_Sign’ – temperature Sign, ‘Temp_Magnitude’ – temp
Magnitude
 APACC ADDR Write [0x20000000 + (L - 1) + 0x09]
 APACC DATA Write [(0x000007DA) | (ArrayCount << 16)]

 APACC ADDR Write [0x20000000 + (L - 1) + 0xD]
 APACC DATA Write [(0x00 << 24) | (Temp_Magnitude << 16) | (Temp_Sign << 8) |
 (RowCount & 0xFF)] //Low byte of row number
 //and Die’s temperature (‘Temp_Sign’, ‘Temp_Magnitude’)

 //DMA operations

 APACC ADDR Write [0x4000 7018]// PHUB_CH0_STATUS Register
 APACC DATA Write [0x0000 0000]// Disable chain event, use TDMEM1_ORIG_TD0

 APACC ADDR Write [0x4000 7010]// PHUB_CH0_BASIC_CFG register
 APACC DATA Write [0x0000 0021] // Enable DMA CH 0

 APACC ADDR Write [0x4000 7600]// PHUB_CFGMEM0_CFG0 register
 APACC DATA Write [0x0000 0080]// DMA request is required for each burst

 APACC ADDR Write [0x4000 7604]// PHUB_CFGMEM0_CFG1 register
 APACC DATA Write [0x4000 2000] // Sets upper 16-bit address of destination/source

 APACC ADDR Write [0x4000 7800]//PHUB_TDMEM0_ORIG_TD0 register
 APACC DATA Write [(0x01FF 0000) + L + 15] // Set TD transfer counts

 APACC ADDR Write [0x4000 7804] // PHUB_TDMEM0_ORIG_TD1 register
 APACC DATA Write [0x4720 0000] // Set lower 16-bit address of the destination/source

 //Wait until SPC has done previous request
 APACC ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value

 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x4000 7014]// PHUB_CH0_ACTION register
 APACC DATA Write [0x0000 0001]// This creates a direct DMA request for channel ‘0’

 // DMA will transfer data from SRAM, and call LOAD_ROW and then WRITE_ROW
 //When the DMA is transferring data using Channel ‘0’, configure Channel ‘1’
 //to speed up programming time

 //-------------Programming ODD ROW ----------------------

SWD and JTAG Vectors for Programming

58 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 Row_Count = Row_Count + 1 // Increment row count and repeat process for the next row

 //"B6"-SPC_KEY1, "D5"-SPC_KEY2, "02"-LOAD_ROW opcode, "ArrayCount"-ArrayID
 APACC ADDR Write [0x2000 0200]// SRAM address 32’h20000200
 APACC DATA Write [0x0002 D5B6 | (ArrayCount << 24)]// 4-byte data as commented above

 /*Send Row data to SRAM from HEX file. Each row needs 288 bytes (256 Code bytes + 32
 Configuration bytes) for programming. The 256 code bytes for row are present
 starting at address 0x00000000 of hex file. The 32 Configuration bytes are present
 starting at address 0x80000000 of hex file. Thus a single row data is formed by
 concatenating these 256 code bytes and 32 configuration bytes to form a 288-byte row
 data. See “Intel Hex File Format” on page 77 for more details. */

 Byte_Count = 0
 while (Byte_Count < L) // Define L according to ECC settings
 {
 APACC ADDR Write [0x20000000 + Byte_Count + 0x204]
 /* 4-bytes (d3d2d1d0) are from hex file starting at address (address of d0):

 i.) if Byte_Count < 256: (0x00000000 + (ArrayCount*65536)
 +(Row_Count * 256) + Byte_Count)
 ii.) if 256 <= Byte_Count < 288: Address of do = (0x80000000 +
 (ArrayCount*8192) + (Row_Count*32) + (Byte_Count – 256))

 The ii) address will be needed only if ECC is disabled.
 ECC data is 32 bytes per row.*/
 APACC DATA Write [d3d2d1d0] // Write 4 bytes at a time, 4-bytes are from
 //hex file
 Byte_Count = Byte_Count + 4
 }

 //"00","00","00" - 3 NOPs for short delay, "B6" - SPC_KEY1
 APACC ADDR Write [0x20000000 + (L - 1) + 0x205]
 APACC DATA Write [0xB600 0000]

 //"DA" - SPC_KEY1+SPC_PRG_ROW, "07" -SPC_PRG_ROW, " ArrayCount" -Flash Array ID,

 //"00" - High Byte of RowCount, ‘Temp_Sign’ – temperature Sign, ‘Temp_Magnitude’ – temp
Magnitude
 APACC ADDR Write [0x20000000 + (L - 1) + 0x209]
 APACC DATA Write [(0x000007DA) | (ArrayCount << 16)]

 APACC ADDR Write [0x20000000 + (L - 1) + 0x20D]
 APACC DATA Write [(0x00 << 24) | (Temp_Magnitude << 16) | (Temp_Sign << 8) |
 (RowCount & 0xFF)] //Low byte of row number
 //and Die’s temperature (‘Temp_Sign’, ‘Temp_Magnitude’)

 //DMA operations
 APACC ADDR Write [0x4000 7028]// PHUB_CH1_STATUS Register
 APACC DATA Write [0x0000 0100] // Disable chain event, use TDMEM1_ORIG_TD1

 APACC ADDR Write [0x4000 7020]// PHUB_CH1_BASIC_CFG register
 APACC DATA Write [0x0000 0021]// Enable DMA CH 0

 APACC ADDR Write [0x4000 7608]// PHUB_CFGMEM1_CFG0 register
 APACC DATA Write [0x0000 0080]// DMA request is required for each burst

 APACC ADDR Write [0x4000 760C]// PHUB_CFGMEM1_CFG1 register
 APACC DATA Write [0x4000 2000]// Sets upper 16-bit address of

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 59

SWD and JTAG Vectors for Programming

 //destination/source

 APACC ADDR Write [0x4000 7808] //PHUB_TDMEM1_ORIG_TD0 register
 APACC DATA Write [(0x01FF 0000) + L + 15] // Set TD transfer counts

 APACC ADDR Write [0x4000 780C] // PHUB_TDMEM1_ORIG_TD1 register
 APACC DATA Write [0x4720 0200] // Set lower 16-bit address of the
 //destination/source

 //Wait until SPC has done previous request
 APACC ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do // Poll status register
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x4000 7024] // PHUB_CH1_ACTION register
 APACC DATA Write [0x0000 0001] //Creates a direct DMA request to Channel ‘1’.
 // DMA will transfer data from SRAM, and call
 //LOAD_ROW and then WRITE_ROW

 Row_Count = Row_Count + 1

 } //Repeat for all rows of one Flash array

} //Repeat for all Flash arrays

//Make sure that last SPC request is completed
APACC ADDR Write [0x4000 4722]// SPC status register address
dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

time_elapsed = 0
int32 StatusReg //To store SPC_SR status register value
do// Poll status register
{
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
} while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

SWD and JTAG Vectors for Programming

60 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

5.7 Step 7: Verify Flash (Optional)

This step requires three parameters: K - number of flash arrays, N - total number of flash rows, L - number of bytes in row (L
= 288). K and N are derived from the total flash memory size of the device, and the L value is fixed to 288. See the respective
device datasheet for flash memory size of each device.

//Calculating total number of rows ‘N’
int32 N = (Total_Flash_Code_size)/256; //Each row has 256 bytes, “Total_Flash_Code_size” is
 //in bytes
//Calculating total number of Flash arrays ‘K’
if (N % 256 == 0)
{
 byte K= (byte) N/256; //If rows are exact multiple of 256,quotient of (N/256) gives ‘K’
}
else
{
 byte K= (byte)((N/256) + 1); //If rows are not exact multiple of 256,increment quotient of
 // (N/256) by one for ‘K’
}

int16 RowsPerArray; //Variable that hold the number of data rows in current Flash array
int16 byte_index = 0 //Variable to keep track of number of bytes read in a Flash row
byte Data_Array[L] //Array of size ‘L’ bytes to store one row of data read from device
int32 address

//Read Flash data bytes for all Arrays
for (byte ArrayCount = 0; ArrayCount < K; ArrayCount++)
{
 // Find number of rows in current array
 if (ArrayCount == (K-1))
 {
 RowsPerArray = N – (ArrayCount*256); //Last array may have less than 256 rows
 }
 else

 {
 RowsPerArray = 256; //Except last flash array, rest of them have 256 rows
 }

 int16 RowCount = 0;

 // Iterate through all rows of flash
 while (RowCount < RowsPerArray)
 {
 int32 address = RowCount * 256 //Starting address of Flash row

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6]//First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D7]//0xD7= (0xD3 + READ_MULTI_BYTE opcode)

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0004] // READ_MULTI_BYTE opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ArrayCount]// Array ID

 APACC ADDR Write [0x4000 4720]

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 61

SWD and JTAG Vectors for Programming

 APACC DATA Write [(address >> 16) & 0xFF]//MSB byte2 of 3-byte address

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [(address >> 8) & 0xFF]//Byte1 of 3-byte address

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [(address >> 0) & 0xFF]//LSB Byte0 of 3-byte address

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00FF]// Number of bytes to be read minus one

 //Wait until Data is ready
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value

 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF //Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0001]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x4000 4720]
 dummyByte = APACC DATA Read // Dummy SWD read

 // Read 256 bytes of row data in to Data_Array
 int16 ByteRead = 0, byte_index = 0
 while (ByteRead <= 0x0000 00FF)
 {
 Data_Array[byte_index] = APACC DATA Read // Save Flash data
 ByteRead = ByteRead + 1
 byte_index = byte_index + 1
 }

 // If ECC is disabled, row size is 288
 If (L = 288)
 {
 // Configuration (ECC) data is addressed as following. MSB bit is ‘1’ to
 //specify that addressed memory is ECC (config) memory
 address = (RowCount * 32) | 0x00800000;

 // Call READ_MULTI_BYTE to read configuration data in ECC memory space

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6] //First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D7] //0xD7= (0xD3 + READ_MULTI_BYTE opcode)

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0004] // READ_MULTI_BYTE opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ArrayCount] // Array ID

SWD and JTAG Vectors for Programming

62 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [address >> 16) & 0xFF] //MSB Byte 2 of 3-byte address;

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [address >> 8) & 0xFF] //Byte 1 of 3-byte address

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [address >> 0) & 0xFF] //LSB Byte 0 of 3-byte address

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 001F] //Each row has 32 ECC bytes to be read

 //Wait until Data is ready
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value

 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF //Extract statuscode which is in 3rdbyte
 } while ((StatusReg != [0x0000 0001]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x4000 4720]
 dummyByte = APACC DATA Read // Dummy SWD read

 ByteRead = 0
 while (ByteRead <= 0x000 0001F)
 {
 Data_Array[byte_index] = APACC DATA Read// Save configuration data
 ByteRead = ByteRead + 1
 byte_index = byte_index + 1
 }
 }
 /* Now, the array Data_Array contains a row of Flash data.
 Compare it with data in hex file to check if the correct data has been programmed
 in to Flash row. If there is data mismatch, Abort the Programming operation and
 retry again. Repeat for all Flash rows in all Flash arrays. */

 RowCount = RowCount + 1; // Next Flash row

 } //Repeat for all rows of Flash array

}//Repeat for all Flash arrays

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 63

SWD and JTAG Vectors for Programming

5.8 Step 8: Program Write Once Nonvolatile Latch (Optional)
/* The NV Latches have a lesser endurance, and hence should be written only when the data has
changed. First read the Write Once NVL bytes from target device, and dump in to an array
(Data_Array). Compare the bytes read from the silicon to the NVL bytes in hex file at address
0x90100000. Perform write operation only if there is atleast one byte mismatch */

byte ByteRead = 0 //Variable to track number of bytes that are read
byte Data_Array[4] //4-byte array to store the NVL data read from device

while (ByteRead < 0x0000 0004)
{
 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6] // First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D6] //Second key:00D6(0xD3+0x03);0x03 is ReadByte opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0003] //0x03 is Read Byte opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00F8] //Write Once NVL array ID

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ByteRead] //Byte number of Write Once NVL to be read

 // Poll status register bit till data is ready
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value

 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0001]) AND time_elapsed < 1 sec);

 if (time_elapsed > 1 sec) then FAIL_EXIT //Check if command execution time < 1 sec

 APACC ADDR Write [0x4000 4720]
 dummyByte = APACC DATA Read //Dummy SWD read, first byte read is garbage
 Data_Array[ByteRead] = APACC DATA Read //Store the data read from device in to
 //array
 ByteRead = ByteRead + 1

 //Check if SPC Idle bit is high. Must be in idle state once data byte is read.
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do
 {
 StatusReg = APACC DATA Read //Save status register value to a local variable
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

SWD and JTAG Vectors for Programming

64 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 }

 //Compare the NVL bytes read from target device with those in hex file at address
 //0x90100000

 ByteRead = 0
 byte WriteFlag=0 /* This flag determines whether the NV latch will be programmed or not.
 Flag is set when new data needs to be written; otherwise reset */

 while (ByteRead < 0x00000004)
 {
 // Replace XX in below line with data at address (0x90100000 + ByteRead) of .hex file
 if(Data_Array[ByteRead] != XX)
 {
 WriteFlag=1 //Set the flag if NV latch needs to be programmed
 }
 ByteRead = ByteRead + 1
 }

 //Check if the WriteFlag is set before programming Write Once NVL
 if (WriteFlag == 1)
 {
 byte AddrCount = 0
 while (AddrCount < 4)
 {
 APACC ADDR Write [0x4000 4720]// Write to command data register
 APACC DATA Write [0x0000 00B6]// First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D3] // Second initiation key: 0xD3 + 0x00

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000]// LOAD_BYTE opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00F8]// Array ID of “Write Once NVL”

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [AddrCount]// Byte index in “Write Once NVL”

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00XX] // Replace XX with data located in
 // (0x90100000 + AddrCount) of .hex file

 // Poll status register
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 65

SWD and JTAG Vectors for Programming

 if (time_elapsed > 1 sec) then FAIL_EXIT // Check if command execution time < 1
 //second
 AddrCount = AddrCount + 1 //Increment to load the next NVL byte
 }

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6] // SPC_KEY1

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D9]// SPC_KEY2 + _WRITE_USER_NVL opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0006]// SPC_WRITE_USER_NVL opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00F8]//Array ID of “Write Once NVL”

 // Poll status register
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT//Check if command execution time < 1
 //second
 }

5.9 Step 9: Program Flash Protection Data

Flash protection data is located in address 32’h9040 0000 in the hex file. This step requires three parameters: K - number of
flash arrays, N - total number of flash rows, L - number of bytes in row. K and N are derived from the total flash memory size
of the device, and the L value is 256 or 288 depending on ECC option. See the respective device datasheet for flash memory
size of each device.

//Start of “Get_Temp” routine to get Die temperature
byte Temp_Sign, Temp_Magnitude; //Die temperature - used in the PROGRAM_PROTECT_ROW instruc-
tion
byte StatusReg //To store SPC_SR status register value
APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00B6] //SPC_KEY1
APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00E1] //SPC_KEY2 + SPC_GET_TEMP (0xD3+0x0E)

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 000E] //SPC_ GET_TEMP opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0003] //Number of samples, valid values [1..5]

//Wait until Temperature data is ready
APACC ADDR Write [0x4000 4722]

SWD and JTAG Vectors for Programming

66 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x4000 4720]
byte dummy = APACC DATA Read // Dummy SWD read
Temp_Sign =(byte) APACC DATA Read // First byte read is sign of temperature
Temp_Magnitude =(byte) APACC DATA Read // Second byte read is magnitude of temperature

//Wait for IDLE - just in case. Must be in idle state once data byte is read.
APACC ADDR Write [0x4000 4722]// Poll status register
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

/* End of “Get_Temp” routine to get Die temperature. The Temp_Magnitude and Temp_Sign are
used in below PROGRAM_PROTECT_ROW step */
/***/

//Calculating total number of rows ‘N’
int32 N = (Total_Flash_Code_size)/256; //Each row has 256 bytes, “Total_Flash_Code_size” is
 //in bytes
//Calculating total number of Flash arrays ‘K’
if (N % 256 == 0)
{
 byte K= (byte) N/256; //If rows are exact multiple of 256,quotient of (N/256) gives ‘K’
}
else
{
 byte K= (byte)((N/256) + 1); //If rows are not exact multiple of 256,increment quotient of
 // (N/256) by one for ‘K’
}

int16 RowsPerArray; //Variable that hold the number of data rows in current Flash array
byte protectionPerArray; //Variable that hold the number of security bytes in current
 //Flash array
int16 Offset =0; //Offset address of current security byte from address 0x9040 0000 of
 //hex file
//Program protection bytes for all Arrays
for (int ArrayCount = 0; ArrayCount < K; ArrayCount++)
{
 // Find number of rows in current array
 if (ArrayCount == (K-1))
 {
 RowsPerArray = N – (ArrayCount*256); //Last array may have less than 256 rows
 }

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 67

SWD and JTAG Vectors for Programming

 else
 {
 RowsPerArray = 256; //Except last flash array, rest of them have 256 rows
 }

 protectionPerArray = (RowsPerArray/4) //Each Flash protection byte stores
 //protection data of 4 Flash rows
 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6] // First initiation key
 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00D5] // Second initiation key: 0xD3 + 0x02

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0002] // LOAD_ROW opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ArrayCount]//Flash Array ID

 int16 ByteCount = 0
 while (ByteCount < L) // Define L according to ECC settings
 {
 APACC ADDR Write [0x4000 4720]

 if (ByteCount < protectionPerArray)
 {
 APACC DATA Write [XX]//Data at address (32’h90400000 + Offset) of
 //hex file
 Offset = Offset+1; //Increment the offset address in hex file
 }
 else
 {
 APACC DATA Write [0x0000 0000]//Fill bytes greater than protection size with
 //zero
 }

 ByteCount = ByteCount + 1
 }

 // After loading the protection data, program it in to the Flash hidden rows
 //using PROGRAM_PROTECT_ROW command
 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6] // First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00DE] // Second initiation key: 0xD3 + 0x0B

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 000B]// PROGRAM_PROTECT_ROW opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ArrayCount] //Flash array ID

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000] //Row select value is always zero for protection
 //data
 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [Temp_Sign] //Send Sign byte of die temperature

SWD and JTAG Vectors for Programming

68 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [Temp_Magnitude] //Send Magnitude byte of die temperature

 // Poll status register
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 } //Repeat for all Flash arrays

5.10 Step 10: Verify Flash Protection Data (Optional)

Flash protection data is located in address 32’h9040 0000 in the hex file. This step requires two parameters: K - number of
flash arrays, N - total number of flash rows. K and N are derived from the total flash memory size of the device. See the
respective device datasheet for flash memory size of each device.

//Calculating total number of rows ‘N’
int32 N = (Total_Flash_Code_size)/256; //Each row has 256 bytes, “Total_Flash_Code_size” is
 //in bytes
//Calculating total number of Flash arrays ‘K’
if (N % 256 == 0)
{
 byte K= (byte) N/256; //If rows are exact multiple of 256,quotient of (N/256) gives ‘K’
}
else
{
 byte K= (byte)((N/256) + 1); //If rows are not exact multiple of 256,increment quotient of
 // (N/256) by one for ‘K’
}

int16 RowsPerArray; //Variable that hold the number of data rows in current Flash array
byte protectionPerArray; //Variable that hold the number of security bytes in current
 //Flash array

int16 byte_index = 0 //Variable to keep track of number of bytes read

/* Array to store the protection bytes read from PSoC 5LP Flash array */
byte Data_Array[256];

for (int ArrayCount = 0; ArrayCount < K; ArrayCount++)
{
 // Find number of rows in current array
 if (ArrayCount == (K-1))
 {
 RowsPerArray = N – (ArrayCount*256); //Last array may have less than 256 rows
 }
 else

 {
 RowsPerArray = 256; //Except last flash array, rest of them have 256 rows

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 69

SWD and JTAG Vectors for Programming

 }

 protectionPerArray = (RowsPerArray/4) //Each Flash protection byte stores
 //protection data of 4 Flash rows

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6]//First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00DD]//0xDD= (0xD3 + READ_HIDDEN_ROW opcode)

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 000A]// READ_HIDDEN_ROW opcode

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ArrayCount]// Flash Array ID

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000]// RowID of Protection bytes row

 //Wait until Data is ready
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do

 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF //Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0001]) AND time_elapsed < 1 sec)
 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x4000 4720]
 dummyByte = APACC DATA Read // Dummy SWD read

 /* Read 256 bytes of row data in to Data_Array. Even though the maximum number of
 protection bytes is only 64 for a Flash array, it is still required to read all the
 256 bytes in Flash protection row to ensure that the SPC returns back to the idle state.
 */
 byte_index = 0
 while (byte_index < 256)
 {
 Data_Array[byte_index] = APACC DATA Read// Save data in to the array
 byte_index = byte_index + 1
 }

 /* Now, the array Data_Array contains a row of Flash protection data (256 bytes) read from
 the device. Compare the first “protectionPerArray” bytes in the array with the protection
 data in the hex file. In the hex file, the Flash protection bytes are present starting
 from the address 32’h90400000 of the hex file. */

 byte_index = 0
 while (byte_index < protectionPerArray)
 {
 /* hexData[i] is from address (32’h90400000 + (64* ArrayCount) + byte_index) of hex
 file*/

SWD and JTAG Vectors for Programming

70 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 if (Data_Array[byte_index] != hexData[i])
 {
 FAIL_EXIT /* Byte mismatch. Verify operation for Protection bytes failed. Abort
 Operation, Exit */
 }

 byte_index = byte_index + 1
 }

 /* Verify operation for Protection bytes passed. Go to next step */

 }//Repeat for all Flash arrays

5.11 Step 11: Verify Checksum

The data for this section is located in address 0x90300000 of the hex file. Only the lower two bytes of checksum are stored in
the hex file. The MSB byte is stored at address 0x90300000, and the LSB byte is stored at address 0x90300001. This step
requires two parameters: K - number of flash arrays, N - total number of flash rows.

//Calculating total number of rows ‘N’
int32 N = (Total_Flash_Code_size)/256; //Each row has 256 bytes, “Total_Flash_Code_size” is
 //in bytes
//Calculating total number of Flash arrays ‘K’
if (N % 256 == 0)
{
 byte K= (byte) N/256; //If rows are exact multiple of 256,quotient of (N/256) gives ‘K’
}
else
{
 byte K= (byte)((N/256) + 1); //If rows are not exact multiple of 256,increment quotient of
 // (N/256) by one for ‘K’
}

int16 RowsPerArray; //Variable that hold the number of data rows in current Flash array
int32 chipCheckSum = 0; //32-bit variable used to store the running checksum
//Calculate Checksum for all Arrays
for (byte ArrayCount = 0; ArrayCount < K; ArrayCount++)
{
 // Find number of rows in current array
 if (ArrayCount == (K-1))
 {
 RowsPerArray = N – (ArrayCount*256); //Last array may have less than 256 rows
 }
 else

 {
 RowsPerArray = 256; //Except last flash array, rest of them have 256 rows
 }

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00B6] //First initiation key

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 00DF] //0xDF = 0xD3 + 0x0C

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 000C] // GET_CHECKSUM opcode

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 71

SWD and JTAG Vectors for Programming

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [ArrayCount] //Flash array ID is the current Flash array

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000] //Starting row number (lower byte)

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000] //Starting row number (higher byte)

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [0x0000 0000] //Number of rows minus one (higher byte which is always 0)

 APACC ADDR Write [0x4000 4720]
 APACC DATA Write [(RowsPerArray - 1)&0xFF] //Number of rows minus one (lower byte)

 // Poll status register
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0001]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT
 APACC ADDR Write [0x4000 4720]
 dummyByte = APACC DATA Read// Dummy SWD read
 b3 = APACC DATA Read // Checksum byte 4(MSB byte)
 b2 = APACC DATA Read // Checksum byte 3
 b1 = APACC DATA Read // Checksum byte 2
 b0 = APACC DATA Read // Checksum byte 1(LSB byte)

 // Add current array 4-byte checksum to running checksum
 chipCheckSum = chipCheckSum + (b3 << 24) + (b2 << 16) + (b1 << 8) + (b0 << 0);

 // Poll status register till SPC is IDLE
 ADDR Write [0x4000 4722]// SPC status register address
 dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

 time_elapsed = 0
 int32 StatusReg //To store SPC_SR status register value
 do
 {
 StatusReg = APACC DATA Read
 StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte
 } while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 } //Repeat for all Flash arrays

 chipCheckSum = chipCheckSum & (0xFFFF); //Extract only the lower 2-byte checksum

 /* Compare with 2-byte checksum value in hex file (big endian format) at address
 0x90300000. Only the lower two bytes of checksum are stored in the hex file. The MSB byte

SWD and JTAG Vectors for Programming

72 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

 is stored at address 0x90300000, and the LSB byte is stored at address 0x90300001. */
 if (chipCheckSum != file_checksum) then FAIL_EXIT

5.12 Step 12: Program EEPROM (Optional)

The data for this section is located in address 0x90200000 of the hex file.

//Start of “Get_Temp” routine to get Die temperature
byte Temp_Sign, Temp_Magnitude; //Die temperature - used in the WRITE_ROW instruction
byte StatusReg //To store SPC_SR status register value
APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00B6] //SPC_KEY1
APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 00E1] //SPC_KEY2 + SPC_GET_TEMP (0xD3+0x0E)

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 000E] //SPC_ GET_TEMP opcode

APACC ADDR Write [0x4000 4720]
APACC DATA Write [0x0000 0003] //Number of samples, valid values [1..5]

//Wait until Temperature data is ready
APACC ADDR Write [0x4000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x4000 4720]
byte dummy = APACC DATA Read // Dummy SWD read
Temp_Sign =(byte) APACC DATA Read // First byte read is sign of temperature
Temp_Magnitude =(byte) APACC DATA Read // Second byte read is magnitude of temperature

//Wait for IDLE - just in case. Must be in idle state once data byte is read.
APACC ADDR Write [0x4000 4722]// Poll status register
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
StatusReg = (byte) APACC DATA Read // Save status register value
StatusReg = (StatusReg >> 16) & 0xFF // Extract status code which is in 3rd byte

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

/*Initialize EEPROM by setting 4-th bit in PM_ACT_CFG12 register*/

APACC ADDR Write [0x4000 43AC] //Read current value from PM_ACT_CFG12
byte dummy = APACC DATA Read // Dummy SWD Read
byte data = APACC DATA Read // Read actual value from the PM_ACT_CFG12
data = data | 0x10 // Set 4-th bit
APACC ADDR Write [0x4000 43AC]
APACC DATA Write [data] // Enable EEPROM

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 73

SWD and JTAG Vectors for Programming

/* Get the number of rows in EEPROM based on the EEPROM memory size information in the device
datasheet. Each row has 16 bytes */

byte NumofRows

/* EEPROM_SIZE_IN_BYTES is given in the device datasheet */

NumofRows = EEPROM_SIZE_IN_BYTES / 16

/* Program EEPROM row one by one */

byte Row_Count = 0/* Variable to keep track of current row number */

byte Byte_Count = 0/* Variable to keep track of byte number in a row */

while(RowCount < NumOfRows)

{

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 00B6]/* First SPC Key */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 00D5]/* Second SPC Key = 0xD3 + 0x02 */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 0002] /* Load Row Opcode */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 0040] /* EEPROM Array ID */

/* Load the 16 bytes of EEPROM row one by one by reading from the hex file */

for(ByteCount = 0; ByteCount < 16; ByteCount++)

{

/* EEPROMByteData is located in the hexfile at address (0x90200000 + (RowCount

 * 16) + ByteCount) */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [EEPROMByteData]

}

/* Read SPC status register to check the status of SPC command. If “Command Success”

 statusis not received within 1 second, then exit the programming operation */

APACC ADDR Write [0x4000 4722]/* SPC status register address */

int32 dummy = APACC DATA Read/* Dummy SWD Read */

int32 StatusReg/* To store SPC_SR status register value */

time_elapsed = 0

do

{

StatusReg = APACC DATA Read /* Save status register value */

StatusReg = (StatusReg >> 16) & 0xFF /* status code is in 3rd byte */

74 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

SWD and JTAG Vectors for Programming

} while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 00B6]/* First SPC Key */

 APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 00D8]/* Second SPC Key = 0xD3 + 0x05 */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 0005]/* Write Row Opcode */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [0x0000 0040]/* EEPROM Array ID */

APACC ADDR Write [0x4000 4720]

/* MSB byte of the 2-byte row number. Always zero for EEPROM since maximum number of

 rows can only be 128 */

APACC DATA Write [0x0000 0000]

APACC ADDR Write [0x4000 4720]

APACC DATA Write [RowCount]/* LSB byte of the 2-byte row number */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [Temp_Sign] /* Temperature Sign byte */

APACC ADDR Write [0x4000 4720]

APACC DATA Write [Temp_Magnitude]/* Temperature Magnitude byte */

/* Read SPC status register to check the status of SPC command. If “Command Success”

 status is not received within 1 second, then exit the programming operation */

APACC ADDR Write [0x4000 4722]/* SPC status register address */

int32 dummy = APACC DATA Read/* Dummy SWD Read */

int32 StatusReg/* To store SPC_SR status register value */

time_elapsed = 0

do

{

StatusReg = APACC DATA Read /* Save status register value */

StatusReg = (StatusReg >> 16) & 0xFF /* status code is in 3rd byte */

} while ((StatusReg != [0x0000 0002]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

RowCount = RowCount + 1 /* Next EEPROM row to be programmed */

}

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 75

SWD and JTAG Vectors for Programming

5.13 Step 13: Verify EEPROM (Optional)

/* Get the number of rows in EEPROM based on the EEPROM memory size information in the device
datasheet. Each row has 16 bytes */

byte NumofRows

/* EEPROM_SIZE_IN_BYTES is given in the device datasheet */

NumofRows = EEPROM_SIZE_IN_BYTES / 16

int read_address/* Location of EEPROM address to be read */

int read_data /* 4-byte data read from EEPROM */

byte ByteRead = 0 /* Variable to track number of bytes that have been read */

byte Data_Array[16] /* Array to store the EEPROM row data read from the device */

/* Verify the data programmed in to EEPROM, one row at a time */

while(RowCount < NumOfRows)

{

ByteRead = 0

/* Read the EEPROM row data from the device in 4-byte chunks and store in the array */

while(ByteRead < 16)

{

/* Address of EEPROM in PSoC 5. 0x40008000 is EEPROM base address */

read_address = 0x40008000 + (RowCount * 16) + ByteRead

APACC ADDR Write [read_address]

dummyByte = APACC DATA Read/* Dummy SWD read */

read_data = APACC DATA Read/* Actual 4-byte EEPROM data */

/* Store the 4-byte data in the array */

Data_Array[ByteRead] = (byte) (read_data)

Data_Array[ByteRead + 1] = (byte) (read_data >> 8)

Data_Array[ByteRead + 2] = (byte) (read_data >> 16)

Data_Array[ByteRead + 3] = (byte) (read_data >> 24)

ByteRead = ByteRead + 4 /* Read the next 4-bytes */

}

/* Verify the row data read from the device against the hex file data */

for(ByteRead = 0; ByteRead < 16; ByteRead++)

{

/* Replace XX below with byte data from the hex file at address (0x90200000 +

 (RowCount * 16) + ByteRead). Verify operation is a failure if there is a byte

 mismatch */

if(Data_Array[ByteRead] != XX) then FAIL_EXIT

}

76 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

SWD and JTAG Vectors for Programming

RowCount = RowCount + 1 /* Next row */

}

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 77

A. Appendix

A.1 Intel Hex File Format

Intel hex file records are a text representation of hexadecimal coded binary data. Only ASCII characters are used; the format
is portable across most computer platforms.

Each line (record) of the Intel hex file consists of six parts, as shown in Figure A-1.

Figure A-1. Hex File Record Structure

 Start code: one character - an ASCII colon ':'

 Byte count: two hex digits (1 byte) - specifies the number of bytes in the data field

 Address: four hex digits (2 bytes) - a 16-bit address at the beginning of the memory position for the data

 Record type: two hex digits (00 to 05) - defines the type of data field. The record types used in the hex file generated by
PSoC Creator are:

 00 - Data record, which contains data and 16-bit address

 01 - End of file record, which is a file termination record and has no data. This must be the last line of the file; only one
is allowed for every file

 04 - Extended linear address record, which allows full 32-bit addressing. The address field is 0000, the byte count is
02. The two data bytes represent the upper 16 bits of the 32 bit address, when combined with the lower 16-bit address
of the 00 type record

 Data: a sequence of ‘n’ bytes of the data, represented by 2n hex digits

 Checksum: two hex digits (1 byte), which is the least significant byte of the two's complement of the sum of the values of
all fields except fields 1 and 6 (Start code ‘:’ byte and two hex digits of the Checksum)

Examples for the different record types used in the hex file generated by PSoC Creator are as follows.

Consider that these three records are placed in consecutive lines of the hex file.

:0200000490006A

:0420000000000005F7

:00000001FF

The first record (:0200000490006A) is an extended linear address record as indicated by the value in the Record Type field
(04). The address field is 0000, the byte count is 02. This means that there are two data bytes in this record. These data bytes
(9000) specify the upper 16-bits address of the 32-bit address of data bytes. In this case, all the data records that follow this
record are assumed to have their upper 16-bit address as 0x9000 (in other words, the base address is 0x90000000). 6A is
the checksum byte for this record.

The next record (:0420000000000005F7) is a data record, as indicated by the value in the Record Type field (00). The byte
count is 04 indicating that there are four data bytes in this record (00000005). The 32-bit starting address for these data bytes
is at address 90002000. The upper 16-bit address (9000) is derived from the extended linear address record in the first line;

Start code

(Colon character)

Byte count

(1 byte)

Address

(2 bytes)

Record type

(1 byte)

Data

(N bytes)

Checksum

(1 byte)

http://en.wikipedia.org/wiki/ASCII

78 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Appendix

the lower 16-bit address is specified in the address field of
this record as 2000. F7 is the checksum byte for this record.

The last record (:00000001FF) is the end of file record, as
indicated by the value in the Record Type field (01). This is
the last record of the hex file.

Note The data records of the following multi-bytes region in
the hex file are in big-endian format (MSB in lower address):
Checksum data at address 0x9030 0000 of hex file; meta-
data at address 0x9050 0000. The data records of the rest of
the multi-byte regions in hex file are all in little-endian format
(LSB in lower address).

A.1.1 Organization of Hex File Data

The hex file generated by PSoC Creator contains different
types of data, which includes the flash code data, flash con-
figuration data, flash protection data, EEPROM data, cus-
tomer nonvolatile latch, and write once latch data. Apart
from this, the hex file also contains metadata. Metadata is
information that is not used for programming the device
memory. It is used to maintain data integrity of the hex file
and store silicon revision and device ID information. All infor-
mation including metadata are stored at specific addresses.
This allows the programmer to identify which data is meant
for what purpose. The address map is explained here and
summarized in Figure A-2.

0x0000 0000 – Flash Code Region Data: The flash code
data starts at address 0x0000 0000 of the hex file. Each
record in the hex file contains 64 bytes of actual data;
arrange these into rows of 256 bytes. This is because each
flash row of device is of length 256 code bytes (not including
the 32 configuration bytes, which are stored in another
region). The last address of this section depends on the
flash memory size of the device for which the hex file is
intended. As an example, for a device with a flash memory
capacity of 256 KB, the end address is 0x0003FFFF. See
the respective device datasheet or the Device Selector
menu in PSoC Creator to know the flash memory size of dif-
ferent part numbers.

0x8000 0000 – Flash Configuration Data: There are 32
bytes of configuration data for each row of flash. This data
needs to be appended with the main flash data during the
flash programming step. For every 256 code bytes in Pro-
gram Flash, 32 bytes from this section are appended. The
last address of this section depends on the device flash
memory capacity. A device with 256 KB flash memory has
32 KB of configuration memory. So in this case, the last
address is 0x80007FFF.

0x9000 0000 – Device Configuration NV Latch Data: A 4-
byte device configuration nonvolatile latch is used to config-
ure the device even before the reset is released. These four

bytes are stored in the addresses starting from 0x90000000.
One important bit in this NV latch data is the ECC enable bit
(bit 3 of byte 3 located at address 0x90000003). This bit
determines the number of bytes to be written during a flash
row write process. See “Nonvolatile Memory Organization in
PSoC 5LP” on page 80 for details of these four NVL bytes.

0x9010 0000 – Secured Device Mode Configuration
Data: This section contains four bytes of the write-once non-
volatile latch data that is used to enable device security.
Warning: Programming the write-once NV latch with the
correct 32-bit key locks the device; perform this step only if
all previous steps are passed without errors. PSoC Creator
generates all four bytes as zero if the device security feature
has not been enabled to ensure that there is no accidental
programming of the latch with correct key. Failure analysis
support may be lost on units after this step is performed with
correct key. Refer to Appendix B of the PSoC 5LP TRM for
details on this device security feature.

0x9020 0000 – EEPROM: PSoC 5LP devices have on-
chip EEPROM memory and the data to be programmed in to
the EEPROM is stored in this region. EEPROM is pro-
grammed row wise where each row contains 16 bytes.
Since each record in the EEPROM region of the hex file
contains 64 bytes of data, each record has the data corre-
sponding to 4 contiguous EEPROM rows.

0x9030 0000 – Checksum Data: This 2-byte checksum
data is the checksum computed from the entire flash mem-
ory of the device (main code and configuration data). This 2-
byte checksum is compared with the checksum value read
from the device to check if correct data has been pro-
grammed. Though the CHECKSUM command sent to the
device returns a 4-byte value, only the lower two bytes of the
returned value are compared with the checksum data in the
hex file. The 2-byte checksum in the data record is in Big-
endian format (MSB byte is first byte).

0x9040 0000 – Flash Protection Data: This section con-
tains data to be programmed to configure the protection set-
tings of flash memory. Arrange data in this section in a single
row to match the internal flash memory architecture.
Because there are two bits of protection data for each main
flash row, a 256 KB flash (with 1024 rows, 256 rows in each
of four 64K Flash arrays) has 256 bytes of protection data.

0x9050 0000 – Metadata: The data in this section of the hex
file is not programmed into the target device. It is used to
check the data integrity of hex file, silicon revision for which
the hex file is intended, and so on. The different data in this
section is tabulated as follows.

http://www.cypress.com/?id=2233&rtID=117

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 79

Appendix

Table A-1. Metadata Organization in Hex FIle

Hex File Version: This 2-byte data (big-endian format) is
used to differentiate between different hex file versions. For
example, if new metadata information or EEPROM data is
added to the hex file generated by PSoC Creator, there is a
need to distinguish between the different versions of hex
files. By reading these two bytes you can ascertain which
version of the hex file is going to be programmed. At pres-
ent, PSoC Creator generates only one type of hex file and
this field always has a constant value of 0x0001. The only
value that this field accepts is 0x0001 because there is only
one version of the hex file.

Device ID: This field has the 4-byte device ID (big-endian
format), which is unique to each part number. Compare the
device ID read from the device with the device ID present in
this field to make sure the correct device for which the hex
file is intended is programmed. See the device datasheet for
information on the device IDs of different part numbers.

Silicon Revision: This 1-byte value is for different revisions
of the silicon. This data is not used anywhere in the PSoC
5LP programming sequence. For PSoC 5LP, the revision
IDs are as follows:

1 – ES1 (TM)

2 – ES2 (LP)

Debug Enable: This 1-byte data stores a Boolean value
indicating if debugging is enabled for the program code.
This is also not used in programming. The possible values
for this byte are:

0 – Debugging Disabled, 1 – Debugging Enabled

Internal Use: The 4-byte data is used internally by PSoC
Programmer software. It is not related to actual device pro-
gramming and need not be used by programmers of third
party vendors.

Figure A-2. PSoC 5LP Hex File Address Map

Starting Address Data Type Number of Bytes

0x9050 0000 Hex file version 2 (big-endian)

0x9050 0002 Device ID 4(big-endian)

0x9050 0006 Silicon revision 1

0x9050 0007 Debug Enable 1

0x9050 0008 Internal use 4

80 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Appendix

A.2 Nonvolatile Memory
Organization in PSoC 5LP

PSoC 3 and PSoC 5LP devices have three types of nonvol-
atile memory: Flash, Electronically Erasable Programmable
Read Only Memory (EEPROM), and Nonvolatile Latch
(NVL). This section gives a quick overview of the interface
used to program the nonvolatile memory. It also discusses
nonvolatile memory organization. EEPROM memory is not
explained in this section because programming of EEPROM
using external programmer is not defined in the device pro-
gramming specification currently. Refer to the “Memory” sec-
tion of the PSoC 5LP TRM for detailed information on these
topics.

A.2.1 Nonvolatile Memory Programming

All nonvolatile memory programming operations are done
through a simple command/status register interface
summarized in Table A-2.

Table A-2. SPC Command and Status Registers

Commands and data are sent as a series of bytes to either
SPC_CPU_DATA or SPC_DMA_DATA, depending on the
source of the command. The programming procedure in this
document always uses the SPC_CPU_DATA register.
Response data is read via the same register to which the

command is sent. The status register, SPC_SR, indicates
whether a new command can be accepted, when data is
available for the most recent command, and a success/fail-
ure response for the most recent command.

A.2.2 Commands

Before sending a command to the SPC_CPU_DATA or
SPC_DMA_DATA register, the SPC_Idle bit in SPC_SR[1]
must be ‘1’. SPC_Idle will go to ‘0’ when the first byte of a
command (0xB6) is written to a data register, and go back to
‘1’ when command execution is complete or an error is
detected. Commands sent to either data register while
SPC_Idle is ‘0’ are ignored. All commands must adhere to
the following format:

 Key byte #1 – always 0xB6

 Key byte #2 – 0xD3 plus the command code (ignore
overflow)

 Command code byte

 Command parameter bytes

 Command data bytes

Refer to the “Nonvolatile Memory Programming” chapter in
the PSoC 5LP TRM for a list of command codes and the
explanation, parameters, and return values for each com-
mand.

A.2.3 Command Status

The status register, SPC_SR, indicates whether a new com-
mand can be accepted, when data is available for the most
recent command, and a success/failure response for the
most recent command. The bit-field definitions of the
SPC_SR register is given in Figure A-3.

Figure A-3. SPC_SR Status Register Bit Field Definitions

Data_Ready bit: This bit (Bit [0] of SPC_SR) indicates
whether the SPC has data that is ready to be read from the
SPC CPU or DMA Data Register.

SPC_Idle bit: This bit (Bit [1] of SPC_SR) indicates whether
the SPC is currently executing an instruction. The bit transi-
tions low as soon as the first byte of the 2-byte command
key (0xB6) is written into the SPC CPU or DMA Data Regis-
ter. The bit transitions high as soon as an instruction com-
pletes or if the second byte of the command key is invalid.

Status_code (5-bit status code): The Status Code (Bits
[7:2] of SPC_SR) represents the exit status of the last exe-
cuted SPC instruction. The values of this field are given in
Table A-3.

http://www.cypress.com/?id=2233&rtID=117
http://www.cypress.com/?id=2233&rtID=117

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 81

Appendix

Table A-3. Status Codes for an SPC Command

A.2.4 Nonvolatile Memory Organization

A.2.4.1 Flash Program Memory

PSoC 5LP flash memory has the following features:

 Organized in rows, where each row contains 256 main flash code bytes plus 32 bytes for configuration data storage. The
size of each flash row is 288 bytes. Flash memory can be programmed in resolution of rows.

 Organized as either one array of 128 or 256 rows, or as multiple arrays of 256 rows each.

 For each flash row, protection bits control whether the flash can be read or written by external debug devices and whether
it can be reprogrammed by a boot loader. For each flash array, flash protection bits are stored in a hidden row in that
array. In the hidden row, two protection bits per row are packed into a byte, so each byte in the hidden row has protection
settings for four flash rows of that array.

A.2.4.2 EEPROM

PSoC 5LP EEPROM has the following features:

 Organized in rows, where each row contains 16 bytes.

 Organized as one block (array) of 32, 64, or 128 rows, depending on the size of EEPROM memory.

SPC Status Code (Bits[7:2]
in SPC_SR register)

Meaning

0x00 Operation successful

0x01 Invalid array ID for given command

0x02 Invalid 2-byte key

0x03 Addressed nonvolatile memory array is asleep

0x04 External access failure (SPC is not in external access mode)

0x05 Invalid ‘N’ value for given command

0x06 Test mode failure (SPC is not in programming mode)

0x07 Smart write algorithm checksum failure

0x08 Smart write parameter checksum failure

0x09
Protection check failure: Flash protection settings are in a state which prevents the given
command from executing

0x0A Invalid address parameter for the given command

0x0B Invalid command code

0x0C Invalid row ID parameter for given command

0x0D Invalid input value for Get Temp and Get ADC commands

0x0E Tempsensor Vbe is currently driven to an external device

0x0F Invalid SPC state

0x10 – 0x3F Smart write return codes (only when using Smart Write algorithm)

0x20
PEP program failure (only when using PEP algorithm): Data verification failure (row latch
checksum!= programmed row checksum)

82 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

Appendix

A.2.4.3 Device Configuration NVLs

PSoC 5LP has a 4-byte array of device configuration NVLs that are used to configure the device at reset. The NVL register
map is shown in Figure A-4.

Figure A-4. Device Configuration NVL Register Map

Table A-4 shows the details for individual fields and their factory default settings that are relevant to device programming.
Refer to the "Nonvolatile Latch" chapter of the PSoC 5LP Architecture TRM for more details.

PSoC Creator enables modifying the device configuration NVLs. However, the number of NVL erase/write cycles is limited.
See the PSoC 5LP device datasheet for NVL specifications.

There are three settings in NVL that are relevant to the programming flow.

 Debug Port Select (DPS) setting: This 2-bit value determines the default protocol that is used to program or debug the
device through the Port 1 pins without sending the Port Acquire key. Entering programming mode through JTAG interface
is dependent on DPS setting.

Note The DPS setting is relevant only for JTAG interface programming. The only recommended DPS settings for JTAG
programming are 4-wire JTAG and 5-wire JTAG. Programmers that support JTAG interface programming should not allow
a hex file with "Debug Ports Disabled" setting to be programmed to the device, as this prevents further programming of the
device through the JTAG interface.

 XRESMEN setting: P1[2] pin may be configured either as an external reset (XRES_N) pin or as a GPIO pin. The configu-
ration of that pin is controlled with this NVL bit.

 0 - P1[2] is a GPIO pin. This is the default factory setting for non 48-pin devices that already have a dedicated XRES
pin.

 P1[2] is configured as a XRES_N. This is the default factory setting for 48-pin devices that do not have a dedicated
XRES pin.

To program 48-pin devices, which do not have a dedicated XRES pin, the P1[2] pin can be used as an XRES. To facilitate
this, 48-pin devices that come out of the factory have default value of XRESMEN = 1. Take care not to program the device
with NVL setting of “XRESMEN = 0". Otherwise, It is not possible to program the device further using XRES pin as P1[2]

Table A-4. Device Configuration NVL Register Description, Default Values

Field Description Settings

XRESMEN
Controls whether pin P1[2] is configured as a
GPIO pin or as an XRES pin.

0 (default value for devices with dedicated XRES) - GPIO pin

1 (default value for devices without dedicated XRES) - XRES
pin

DPS[1:0]
Controls the usage of various Port 1 pins as a
debug/Programming port.

00b - 5-wire JTAG

01b (default) - 4-wire JTAG

10b - SWD

11b - debug ports disabled.

DEBUG_EN

This bit allows access to be granted to the
Cortex-M3's DAP, which enables firmware
debug and programming when either in JTAG
or SWD mode.

0 - Debug Disabled (no DAP access)
1 (default) - Debug Enabled (DAP access)

ECCEN
Controls whether ECC flash is used for ECC
or for general configuration and data storage.

0 (default) - ECC disabled

1- ECC enabled

http://www.cypress.com/?id=2232&rtID=117
http://www.cypress.com/?id=2232&rtID=107

PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F 83

Appendix

is now configured as a GPIO pin. Power cycle mode programming is the only available option if P1[2] is disabled as XRES
pin for 48-pin devices.

To program non 48-pin devices, which have a dedicated XRES pin, the P1[2] pin cannot be directly used as an XRES pin.
This is because the devices with dedicated XRES pin that come out of the factory have default value of XRESMEN = 0.
The reason for this feature is that there is a dedicated XRES pin already available; only in rare cases P1[2] is also used as
an XRES pin.

 ECCEN setting: Flash memory in PSoC 5LP is organized in rows, where each row contains 256 code bytes plus 32 bytes
for either error correcting codes (ECC) or configuration data storage. The ECCEN bit determines whether these 32 bytes
are used for error correction or data storage.

 0 (default) - ECC feature is disabled

 1 - ECC feature is enabled

If the ECC feature is disabled, then during the Programming Flash step, 288 (255 + 32) bytes need to be loaded while pro-
gramming each flash row. If ECC is enabled, only 256 bytes need to be loaded.

 DEBUG_EN: This bit allows access to be granted to the Cortex-M3's DAP, which enables firmware debug and program-
ming when either in JTAG or SWD mode. JTAG or SWD can be enabled by the Debug Port Select (DPS) bits. When
DEBUG_EN is not set, it is required to enter test mode to gain DAP access and enable device programming.

 0 - Debug Disabled (no DAP access)

 1 (default) - Debug Enabled (DAP access)

A.2.4.4 Write Once Nonvolatile Latches (WO NVL)

The user can write the key in WOL to lock out external access only if no flash protection is set. In the programming flow, pro-
gramming of WOL is done before the flash protection bytes.

Note that when the WO NVL is programmed with the correct 32-bit key (0x50536F43) and the device is reset after program-
ming, the part cannot be programmed further, and becomes a One Time Programmable (OTP) device. The WO NVL locks the
part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. This step
should hence be exercised with extreme caution considering these effects.

Appendix

84 PSoC 5LP Device Programming Specifications, Document #: 001-81290 Rev. *F

A.3 Example Schematic

The following figure shows an example reference schematic for the 100-pin TQFP part with the power connections. This can
also be used for the other PSoC 5LP packages; however, the pinout will vary for each package. See the PSoC 5LP device
datasheet for information on specific package pinout and for specifications on power supply pins. Note that Figure A-5 does
not show the programming connections between the host programmer and PSoC 5LP. This is illustrated in Figure 1-1 on
page 6.

Figure A-5 shows that:

 The two pins labeled Vddd must be connected together.

 The two pins labeled Vccd must be connected together, with capacitance added. The trace between the two Vccd pins
should be as short as possible.

 The two pins labeled Vssd must be connected together.

Figure A-5. 100-pin TQFP Part with Power Connections

Note The two Vccd pins must be connected together with as short a trace as possible. A trace under the device is recom-
mended.

Vssb10

Ind11

Vboost12

Vbat13

Vssd14

XRES15

V
d

d
d

3
7

V
ss

d
3

8

V
cc

d
3

9

Vcca 63
Vssa 64
Vdda 65
Vssd 66

V
cc

d
8

6
V

ss
d

8
7

V
d

d
d

8
8

SIO, P12[2] 67
SIO, P12[3] 68

P4[0] 69
P4[1] 70

OA2out, P0[0] 71
OA0out, P0[1] 72

OA0+, P0[2] 73
OA0-, REF0, P0[3] 74

Vddio0 75O
A

2+
,

P
0

[4
]

7
6

O
A

2
-,

 P
0

[5
]

7
7

ID
A

C
0

,
P

0
[6

]
7

8
ID

A
C

2
,

P
0

[7
]

7
9

P
4

[2
]

8
0

P
4

[3
]

8
1

P
4

[4
]

8
2

P
4

[5
]

8
3

P
4

[6
]

8
4

P
4

[7
]

8
5

P5[0]16

P5[1]17

P5[2]18

P5[3]19

P1[0], SWIO, TMS20

P1[1], SWDIO, TCK21

P1[2]22

P1[3], SWV, TDO23

P1[4], TDI24

P1[5], nTRST25

V
d

d
io

1
2

6

P
1

[6
]

2
7

P
1

[7
]

2
8

P
1

2
[6

],
 S

IO
2

9

P
1

2
[7

],
 S

IO
3

0

P
5

[4
]

3
1

P
5

[5
]

3
2

P
5

[6
]

3
3

P
5

[7
]

3
4

U
S

B
 D

+
,

P
1

5
[6

]
3

5

U
S

B
 D

-,
 P

1
5

[7
]

3
6

P6[7]9

P
6

[0
]

8
9

P
6

[1
]

9
0

P
6

[2
]

9
1

P
6

[3
]

9
2

P
1

5
[4

]
9

3
P

1
5

[5
]

9
4

P
2

[0
]

9
5

P
2

[1
]

9
6

P
2

[2
]

9
7

P
2

[3
]

9
8

P
2

[4
]

9
9

V
d

di
o

2
1

00

P2[5]1

P2[6]2

P2[7]3

P12[4], SIO4

P12[5], SIO5

P6[4]6

P6[5]7

P6[6]8

N
C

4
0

N
C

4
1

P
1

5
[0

],
 M

H
zX

o
u

t
4

2

P
1

5
[1

],
 M

H
zX

in
4

3

P
3

[0
],

 I
D

A
C

1
4

4

P
3

[1
],

 I
D

A
C

3
4

5

P
3

[2
],

O
A

3-
,

R
E

F
1

4
6

P
3

[3
],

 O
A

3+
4

7

P
3

[4
],

 O
A

1-
4

8

P
3

[5
],

 O
A

1+
4

9

V
d

d
io

3
5

0

OA1out, P3[6] 51
OA3out, P3[7] 52

SIO, P12[0] 53
SIO, P12[1] 54

kHzXout, P15[2] 55
kHzXin, P15[3] 56

NC 57
NC 58
NC 59
NC 60
NC 61
NC 62

U2
CY8C55xx

Vssd
Vdda

Vcca

V
cc

d

V
ss

d

V
d

d
d

Vssd

V
d

d
d

V
dd

d
V

ss
d

P
3

2

Vssa

Vssa

Vssd

Vssd
Vssd

Vssd

0.1 uF
C8

Vssd

Vddd

Vddd Vddd

Vddd

Vssa Vssa

Vddd

Vssd

1 uF
C9

0.1 uF
C10

0.1 uF
C11

0.1 uF
C14

0.1 uF
C16

0.1 uF
C12

0.1 uF
C6

0.1 uF
C2

1 uF
C15

1 uF
C1

Vssd

Vddd

Vssd

Vdda
Vssd

Vccd

10 uF, 6.3 V

C13

1 uF
C17

Vssa

Vdda

http://www.cypress.com/?id=2233&rtID=107
http://www.cypress.com/?id=2233&rtID=107

	PSoC® 5LP Programming Specifications
	Contents
	1. Introduction
	1.1 Host Programmer
	1.2 Hardware Connections
	1.2.1 SWD Interface
	1.2.2 JTAG Interface

	Document Revision History

	2. PSoC 5LP Programming Interface
	2.1 Programming Interface Architecture
	2.2 Test Controller Block
	2.3 Programming Interface Registers
	2.3.1 Debug Port/Access Port (DP/AP) Access Register
	2.3.1.1 Writing to the DP/AP Access Register
	2.3.1.2 Reading from the DP/AP Access Register

	2.3.2 Debug Port (DP)/Access Port (AP) Registers

	2.4 SWD Interface
	2.4.1 Register Access Using SWD Interface

	2.5 JTAG Interface
	2.5.1 Register Access Using JTAG Interface

	2.6 Switching between JTAG and SWD Interfaces
	2.6.1 SWD to JTAG Switching
	2.6.2 JTAG to SWD Switching

	3. PSoC 5LP Programming Flow
	3.1 Step1: Enter Programming Mode
	3.1.1 SWD Universal Acquisition
	3.1.1.1 SWD Programming using XRES Pin
	3.1.1.2 SWD Programming using Power Cycle Mode:
	3.1.1.3 SWD Programming using Bit Banging Host Programmers:
	3.1.1.4 Determine fSWDCK_BITBANG:

	3.1.2 JTAG Compliant Acquisition

	3.2 Step 2: Configure Target Device
	3.3 Step 3: Verify JTAG ID
	3.4 Step 4: Erase Flash
	3.5 Step 5: Program Device Configuration NVL
	3.6 Step 6: Program Flash
	3.7 Step 7: Verify Flash (Optional)
	3.8 Step 8: Program WO NVL (Optional)
	3.9 Step 9: Program Flash Protection
	3.10 Step 10: Verify Flash Protection (Optional)
	3.11 Step 11: Checksum Validation
	3.12 Step 12: Program EEPROM (Optional)
	3.13 Step 13: Verify EEPROM (Optional)

	4. Programming Specifications
	4.1 SWD Interface Timing and Specifications
	4.2 JTAG Interface Timing and Specifications
	4.3 Programming Mode Entry Specifications

	5. SWD and JTAG Vectors for Programming
	5.1 Step 1: Enter Programming Mode
	5.1.1 Method A
	5.1.2 Method B
	5.1.3 Method C

	5.2 Step 2: Configure Target Device
	5.3 Step 3: Verify JTAG ID
	5.4 Step 4: Erase All (Entire Flash Memory)
	5.5 Step 5: Program Device Configuration Nonvolatile Latch
	5.6 Step 6: Program Flash
	5.7 Step 7: Verify Flash (Optional)
	5.8 Step 8: Program Write Once Nonvolatile Latch (Optional)
	5.9 Step 9: Program Flash Protection Data
	5.10 Step 10: Verify Flash Protection Data (Optional)
	5.11 Step 11: Verify Checksum
	5.12 Step 12: Program EEPROM (Optional)
	5.13 Step 13: Verify EEPROM (Optional)

	A. Appendix
	A.1 Intel Hex File Format
	A.1.1 Organization of Hex File Data

	A.2 Nonvolatile Memory Organization in PSoC 5LP
	A.2.1 Nonvolatile Memory Programming
	A.2.2 Commands
	A.2.3 Command Status
	A.2.4 Nonvolatile Memory Organization
	A.2.4.1 Flash Program Memory
	A.2.4.2 EEPROM
	A.2.4.3 Device Configuration NVLs
	A.2.4.4 Write Once Nonvolatile Latches (WO NVL)

	A.3 Example Schematic

