

4-Mbit (1 M × 4) Static RAM

Features

- Pin- and function-compatible with CY7C1046B
- High speed

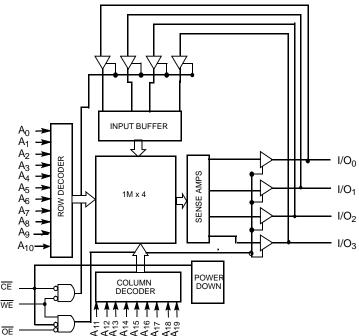
 □ t_{AA} = 10 ns
- CMOS for optimum speed and power
- Low active power
 □ I_{CC} = 90 mA at 10 ns
- Low CMOS standby power
 □ I_{SB2} = 10 mA
- Data retention at 2.0 V
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- Available in lead-free 400-mil-wide 32-pin SOJ package

Functional Description

The CY7C1046D is a high-performance CMOS static RAM organized as 1M words by 4 bits. Easy memory expansion is

provided by an <u>active LOW Chip Enable ($\overline{\text{CE}}$)</u>, an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is <u>accomplished</u> by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the four I/O pins (I/O₀ through I/O₃) is then written into the location specified on the address pins (A₀ through A₁₀).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The four input/output pins (I/O₀ through I/O₃) are <u>placed</u> in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are <u>disabled</u> ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1046D is available in a standard 400-mil-wide 32-pin SOJ package with center power and ground (revolutionary) pinout.

The CY7C1046D device is suitable for interfacing with processors that have TTL I/P levels. It is not suitable for processors that require CMOS I/P levels. Please see Electrical Characteristics on page 4 for more details and suggested alternatives.

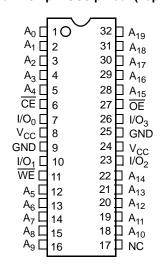
For a complete list of related documentation, click here.

Logic Block Diagram

Contents

Selection Guide	3
Pin Configuration	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	
Data Retention Waveform	6
Switching Characteristics	
Switching Waveforms	
Truth Table	11

Ordering Information	12
Ordering Code Definitions	
Package Diagrams	
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	16
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	16
Cypress Developer Community	16
Technical Support	



Selection Guide

Description	-10	Unit
Maximum Access Time	10	ns
Maximum Operating Current	90	mA
Maximum CMOS Standby Current (mA)	10	mA

Pin Configuration

Figure 1. 32-pin SOJ pinout (Top View)

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage temperature-65 °C to +150 °C Ambient temperature with Supply voltage on V_{CC} to relative GND $^{[1]}$ –0.5 V to +6.0 V DC voltage applied to outputs in high Z state $^{[1]}.....-0.5$ V to V $_{\rm CC}$ + 0.5 V

DC input voltage [1]	0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (per MIL-STD-883, method 3015)	> 2001 V
Latch up current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	4.5 V-5.5 V

Electrical Characteristics

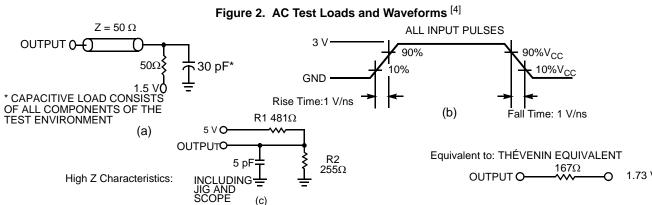
Over the Operating Range

Dovernator	Description	Took Conditions		-	10	Unit
Parameter	Description	Test Conditions		Min	Max	Onit
V _{OH}	Output HIGH voltage	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.4	_	V
		$V_{CC} = Max$, $I_{OH} = -0.1 \text{ mA}$		_	3.4 ^[2]	
V _{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8.0 mA		_	0.4	V
V _{IH}	Input HIGH voltage			2.0	V _{CC} + 0.5	V
V _{IL}	Input LOW voltage [1]			-0.5	0.8	V
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$	$GND \le V_{IN} \le V_{CC}$		+1	μΑ
I _{OZ}	Output leakage current	$GND \le V_{OUT} \le V_{CC}$, output disable	d	-1	+1	μΑ
I _{CC}	V _{CC} operating supply current	$V_{CC} = Max$, $f = f_{MAX} = 1/t_{RC}$	100 MHz	_	90	mA
			83 MHz	_	80	
			66 MHz	_	70	
			40 MHz	_	60	
I _{SB1}	Automatic CE Power-Down Current – TTL inputs			-	20	mA
I _{SB2}	Automatic CE Power-Down Current – CMOS inputs	$\begin{array}{c} \text{Max V}_{CC}, \ \overline{\text{CE}} \geq \text{V}_{CC} - 0.3 \text{ V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3 \text{ V}, \text{ or V}_{\text{IN}} \leq 0.3 \text{ V}, \text{ f} \end{array}$	= 0	_	10	mA

Notes

Document Number: 38-05705 Rev. *G

V_{IL} (min) = -2.0 V and V_{IH}(max) = V_{CC} + 2 V for pulse durations of less than 20 ns.
 Please note that the maximum V_{OH} limit does not exceed minimum CMOS V_{IH} of 3.5V. If you are interfacing this SRAM with 5V legacy processors that require a minimum V_{IH} of 3.5V, please refer to Application Note AN6081 for technical details and options you may consider.


Capacitance

Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	8	pF
C _{OUT}	I/O capacitance		8	pF

Thermal Resistance

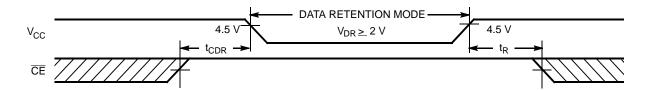
Parameter [3]	Description	Test Conditions	SOJ Package	Unit
JA	Thermal resistance (junction to ambient)	Still Air, soldered on a 3×4.5 inch, four-layer printed circuit board	53.44	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		38.25	°C/W

AC Test Loads and Waveforms

Notes

^{3.} Tested initially and after any design or process changes that may affect these parameters.

^{4.} AC characteristics (except high Z) are tested using the load conditions shown in (a). High Z characteristics are tested for all speeds using the test load shown in (c).


Data Retention Characteristics

Over the Operating Range

Parameter	ameter Description Conditions [5]		Min	Max	Unit
V_{DR}	V _{CC} for data retention		2.0	_	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR} = 2.0 \text{ V}, \overline{CE} \ge V_{CC} - 0.3 \text{ V},$	_	10	mA
t _{CDR} ^[6]	Chip deselect to data retention time	$V_{\text{IN}} \ge V_{\text{CC}} - 0.3 \text{ V or } V_{\text{IN}} \le 0.3 \text{ V}$	0	-	ns
t _R ^[7]	Operation recovery time		t _{RC}	_	ns

Data Retention Waveform

Figure 3. Data Retention Waveform

- No inputs may exceed V_{CC} + 0.3 V.
 Tested initially and after any design or process changes that may affect these parameters.
 Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 50 μs or stable at V_{CC(min)} ≥ 50 μs.

Switching Characteristics

Over the Operating Range

Parameter [8]	Description	7C104	I6D-10	Unit
Parameter	Description	Min	Max	Unit
Read Cycle			•	,
t _{power}	V _{CC} (typical) to the first access ^[9]	100	_	μS
t _{RC}	Read cycle time	10	_	ns
t _{AA}	Address to data valid	_	10	ns
t _{OHA}	Data hold from address change	3	-	ns
t _{ACE}	CE LOW to data valid	_	10	ns
t _{DOE}	OE LOW to data valid	_	5	ns
t _{LZOE}	OE LOW to low Z ^[11]	0	-	ns
t _{HZOE}	OE HIGH to high Z ^[10, 11]	_	5	ns
t _{LZCE}	CE LOW to low Z ^[11]	3	_	ns
t _{HZCE}	CE HIGH to high Z ^[10, 11]	_	5	ns
t _{PU}	CE LOW to power-up	0	-	ns
t _{PD}	CE HIGH to power-down	_	10	ns
Write Cycle ^{[12,}	13]			•
t _{WC}	Write cycle time	10	_	ns
t _{SCE}	CE LOW to write end	7	-	ns
t _{AW}	Address set-up to write end	7	_	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address set-up to write start	0	-	ns
t _{PWE}	WE pulse width	7	_	ns
t _{SD}	Data set-up to write end	6	-	ns
t _{HD}	Data hold from write end		-	ns
t _{LZWE}	WE HIGH to low Z ^[11]	3	_	ns
t _{HZWE}	WE LOW to high Z ^[10, 11]	_	5	ns

Notes

^{8.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V.

9. the power gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

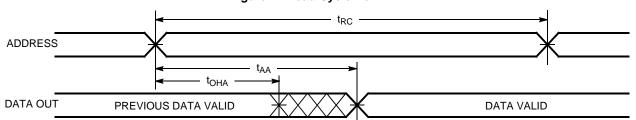
10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

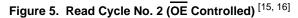
10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

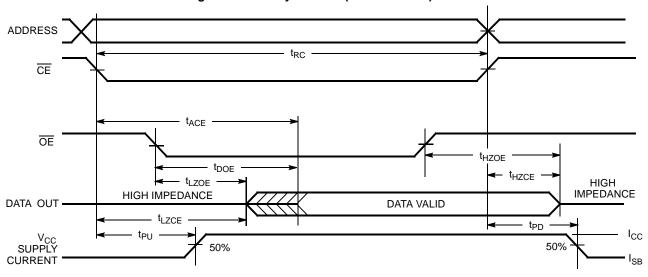
10. the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

10. the power supply should be at stable, the power supply should be at

^{11.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.


12. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.


13. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



Switching Waveforms

Figure 4. Read Cycle No. 1 [14, 15]

Notes

^{14.} Device is continuously selected. \overline{OE} , $\overline{CE} = V_{|L}$. 15. \overline{WE} is HIGH for read cycle.

^{16.} Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (CE Controlled) [17, 18]

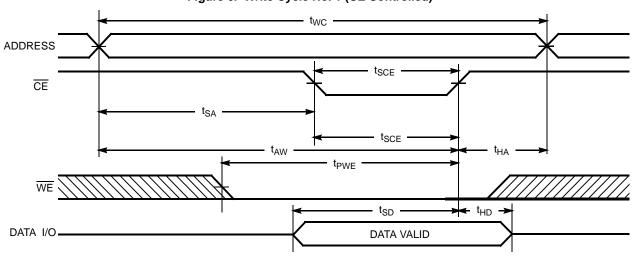
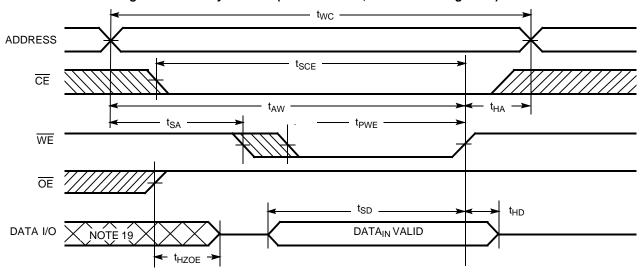



Figure 7. Write Cycle No. 2 (WE Controlled, OE HIGH During Write) [17, 18]

Notes

17. Data I/O is high impedance if $\overline{OE} = V_{|H-}$ 18. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

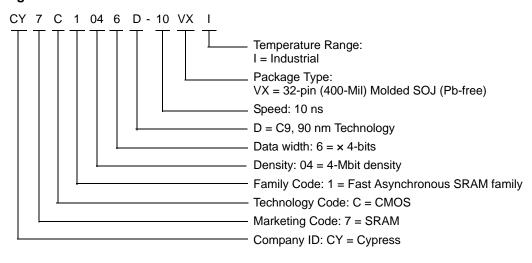
19. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW) [20]

Truth Table

CE	OE	WE	I/O ₀ -I/O ₃	Mode	Power
Н	X	Х	High Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, outputs disabled	Active (I _{CC})

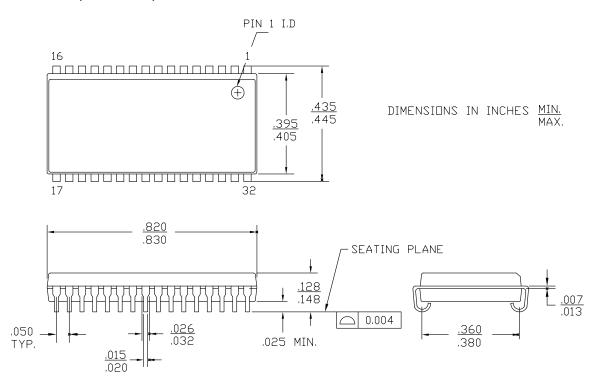


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1046D-10VXI	51-85033	32-pin (400-Mil) Molded SOJ (Pb-free)	Industrial

Please contact your local Cypress sales representative for availability of these parts.

Ordering Code Definitions



Package Diagrams

Figure 9. 32-pin SOJ (400 Mils) V32.4 (Molded SOJ V33) Package Outline, 51-85033

32 Lead (400 MIL) Molded SOJ V33

51-85033 *E

Acronyms

Acronym	Description			
CMOS	Complementary Metal Oxide Semiconductor			
CE	Chip Enable			
I/O	Input/Output			
OE	Output Enable			
SOJ	Small-Outline J-leaded			
SRAM	Static Random Access Memory			
TTL	Transistor-Transistor Logic			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μs	microsecond			
μΑ	microampere			
mA	milliampere			
ns	nanosecond			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

ocumen ocumen	t Title: CY7C t Number: 38	1046D, 4-Mbit 3-05705	(1 M × 4) St	atic RAM
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	307613	See ECN	RKF	New data sheet.
*A	399070	See ECN	NXR	Changed from Advance to Preliminary Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Removed -20 speed bin Removed L-Version Redefined I_{CC} values for Com'l and Ind'l temperature ranges I_{CC} (Com'l): Changed from 70 and 55 mA to 75 and 70 mA for 12 and 15 ns speed bins respectively I_{CC} (Ind'l): Changed from 80, 70 and 55 mA to 90, 85 and 80 mA for 10, 12 and 15 ns speed bins respectively Added Industrial Operating Range Changed reference voltage level for measurement of Hi-Z parameters from ± 500 mV to ± 200 mV Changed V_{CC} to 3 V in the Input pulse waveform at the AC Test Loads and Waveforms on page # 3 Changed V_{CC} from 8 to 7 ns for -10 speed bin Added Truth Table Added 10 ns parts in the Ordering Information table Changed part names from V33 to V324 in the Ordering Information Table Shaded Ordering Information Table
*B	459072	See ECN	NXR	Converted from Preliminary to Final. Removed -12 and -15 Speed bins Removed Commercial Operating Range product information. Changed Maximum Rating for supply voltage from 7V to 6V Changed the Capacitance value of input pins and I/O pins from 6 pF to 8 p Updated the Thermal Resistance table. Changed t _{HZWE} from 6 ns to 5 ns Added footnote #4 and 11 Updated footnote #7 on High-Z parameter measurement Updated the Ordering Information and replaced Package Name column wit Package Diagram in the Ordering Information table.
*C	3059162	10/14/2010	PRAS	Added Ordering Code Definitions. Updated Package Diagrams.
*D	3098812	12/01/2010	PRAS	Added Acronyms and Units of Measure. Minor edits and updated in new template.
*E	3446913	11/24/2011	TAVA	Removed Note referring to SRAM System Guidelines application note on page 1. Updated test conditions for IIX parameter.
*F	4039540	06/25/2013	MEMJ	Updated Functional Description. Updated Electrical Characteristics: Added one more Test Condition " $V_{CC} = Max$, $I_{OH} = -0.1$ mA" for V_{OH} paramet and added maximum value corresponding to that Test Condition. Added Note 2 and referred the same note in maximum value for V_{OH} paramet corresponding to Test Condition " $V_{CC} = Max$, $I_{OH} = -0.1$ mA".
*G	4574311	11/20/2014	MEMJ	Added related documentation hyperlink in page 1. Updated Figure 9 in Package Diagrams (spec 51-85033 *D to *E).

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2005-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.